


% ﬁw:‘:% .
“*ﬁ .
L

.
.

i

=

ik
: .
. : : *%” %
. *%% . .

k .
S
%ﬁ%\ . . ‘ L

%
e
e

S

e
o
i

:’@)% SRS
o
e

- . .
¥ %
o 5 \
e -
p %@ .~ %»&N %\’
L
o
o

S

e

\!

R
.

Ay

| | 5
¥

e
o
N

i
.
o

3




The XENIX"

Development System

Programmer’s Reference

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.



Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microseft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used ‘or ‘copied only in accordance
with ‘the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983 '

The Santa Crus Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

{408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark ‘of Bell Laboratories
XENIX is a trademark of Microsoft Corporation .
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

-

S

i



Contents

1

ot i s
ER RS X

RBRNNND 8
AU B W=

VB WwWe W
LEN- WV S N

£-S

Introduction

Overview 1-1
UsingtheCLibrary Functions 11
UsingThisManual 1—1
NotationalConventions 1—2

Using The Standard 1/0 Functions

Introduction 2—1
UsingCommandLine Arguments 2-2
UsingtheStandardFiles 2-—4
UsingtheStream Functions 2-—12
UsingMore StreamFunctions 2—24
UsingtheLow—LevelFunctions 2-28

ScreenProcessing

Introduction 3—1
Preparing forthe ScreenFunctions 3-3
UsingtheStandardScreen  3—6
Creatingand Using Windows 3-—13
Using OtherWindow Functions 3—24
CombiningMovement with Action 3-28
Controllingthe Terminal 3-29

Character and StringProcessing

Introduction 4—1
UsingtheCharacter Functions 4—1
UsingtheString Functions 4—7

UsingProcess Control

Introduction 5—1
UsingProcesses 5—1
CallingaProgram '5—1
StoppingaProgram 5—2
OverlayingaProgram 5-3

Executing aProgram ThroughaShell 5—5

DuplicatingaProcess 5—5



5.8
5.9
5.

canoocas o
Q0 SICN WA B WD e

7.1
7.2
7.3

oo @
A o N e

92

9.1
9.2
9.3
9.4
9.5
9.6

Waiting foraProcess .5—6
Inheriting OpenFiles 5—7

10 ProgramExample 5-7

Creatingand UsingPipes

Introduction 6—1
OpeningaPipetoaNewProcess 6—]
Reading and WritingtoaProcess 6—2
ClosingaPipe 6~2
Openingal.ow—LevelPipe 6-3

Reading andWritingtoal.ow—LevelPipe 6—4
ClosingaLow—~LevelPipe 6—4
ProgramExamples 6—5

UsingSignals

Introduction 7—1
UsingthesignalFunction 7—1
Controlling Execution withSignals 7-7
Using SignalsinMultipleProcesses  7—11

UsingSystem Resources

Introduction 8—1
AllocatingSpace  8—1
LockingFiles 8—4

Using Semaphores 8—6
UsingSharedMemory 8—12

ErrorProcessing

Introduction 9—1
UsingStandard Error Handling  9—1
Usingtheermo Variable '9—2
PrintingErrorMessages 9—2
UsingErrorSignals 9—3
Encountering System

AppendixA  AssemblyLanguagelnterface

Al

Introduction A—1




AppendixB  XENIXSystemCalls

B.1
B.2
B3
B3
B4
B.S
B.6

Introduction ‘B—1

RevisedSystemCalls B—1

Version7 Additions B—1
Changestotheioctl Function B—2
Usingthemountand chownFunctions B—2
Super—BlockFormat B-—2

Separate VersionLibraries B—3



T,




Chapter 1
Introduction

1.1 Overview 1-1
1.2 Using the C Library Functions 1-1
1.3 Using This Manual 1-1

1.4 Notational Conventions 1-2



A,




Introduction

1.1 Overview

This manual explains how to use the functions given in the C language libraries
of the XENIX system. In particular, it describes the functions of two Clanguage
libraries: the standard ‘C library, and the screen updating and cursor
movementlibrary curses.

The Clibrary functions may be called by any program that needs the resources
of the XENIX system to perform a task. The functions let programs read and
write to files in the XENIX file system, read -and ‘write to devices such as
terminals and lineprinters, load and ‘execute other programs, receive and
process signals, communicate with other programs through pipes, share system
resources, and process errors.

1.2 Using the C Library Functions

To use the C library functions you must include the proper function call and
definitions in the program and specify the corresponding library is given when
the program‘is compiled. The standard:C library, containedin the file libe.a, is
automatically specified when you compile a C language program. Other
libraries, including the screen updating and ‘cursor movement library
contained in the file libcurses.a, must be explicitly specified when you compile a
program with the —1 option of the cc command (see Chapter 2, “Cc: a C
Compiler” in the XENIX Programmer’s Guide).

1.3 Using This Manual

This manual is intended to be used in conjunction with section S of the XENIX
Reference Manual. 1f you have never used the Clibrary functions before, read
this manual first, then refer to the Reference Manual to learn about other
functions. If youare familiar with the library functions, turn tothe Reference
Manual to see how these functions:may differ from the ones you already know,
then return to'this manual for examplesof the functions.

Chapter Lintroduces the Clanguage libraries.

Chapter 2 describes the standard input and output functions. These function
let-aprogram read and write to the filesof aXENIX file system.

Chapter 3 describes the screen processing functions. These functions let 2
program use the screen processing facilities.of auser’s terminal.

Chapter 4 describes the character and string processing functions. These

functions let a program ‘assign, manipulate, and compare characters and
strings.

1-1



Chapter 5 ‘describes the process control functions. These functions let a
programexecute other programs and create multiple copiesofitself.

Chapter 6 describés the pipe functions. These functions let programs
communicate with one another without resorting to the creation of temporary
files.

Chapter 7-describes the signal functions. These functionslet a program process
signalsthatare normally processed by the system.

Chapter 8 describes system resource functions. These functionslet a program
dynamically allocate' memory, share memory with other programs, lock files
againstaccess by other programs, and use semaphores.

Chapter 9 .describes the error processing functions. These functions let a
program process errors encountered while accessing the file system or
allocating memory.

Appendix A describes the assembly language interface with C programs and
explains the calling and return-value conventionsof Cfunctions.

Appendix Bexplainshow to.create and use new XENIX system calls.

This manual assumes that you understand the C programming language and
that you are familiar with the XENIX shell, sk. Nearly all programming
examplesin this guide are writtenin'C, and all examples showing ashell use the
ekshell.

1.4 Notational Conventions

This manual uses a number ‘of special ‘symbols to describe the form of the
library function calls. The following is a list of these symbolsand their meaning.

11 Bracketsindicate anoptionalfunctionargument.

Ellipses indicate that the preceding argument may be repeated
oneor more times,

»

SMALL Small capitals indicate manifest constants. These system-
dependent constantsand are defined in 2 variety of include files.

italics Italic characters indicate placeholders for function arguments.

These must be replaced ‘with ‘appropriate values or names of
variables.

1-2

3
J




Chapter 2
Using the Standard I/O Functions

2.1 Introduction  2-1
2.1.1 Preparingfor theI/OFunctions 2-1
212 SpecialNames 2-1
2.1.3 Special Macros 2-2

2.2 Using Command Line Arguments 2-2

2.3 Using the Standard Files 2-4
2:3.1 ReadingFromtheStandardInput 2-4
2.3.2 Writingtothe Standard Output  2-7
2.3.3 Redirectingthe Standard Input  2-9
2.3:4 Redirectingthe Standard Output 2-8
2.3.5 Pipingthe Standard Input and Output 2-9
2.36 Program Example 2-10

2.4 Usingthe Stream’Functions 2-11
2.4.1 UsingFilePointers 2-11
2.4.2 OpepingaFile 2-12
2.4.3 ReadingaSingle Character 2-13
2.4.4 ReadingaStringfromaFile 2-13
2.4.5 ReadingRecordsfromaFile 2-14
2.4.6 ReadingFormatted DataFromaFile 2-14
2.4.7 Writing aSingle Character 2-15
2.4.8 WritingaStringtoaFile 2-16
249 Writing FormattedOutput 2-17
2.4.10 WritingRecordstoaFile 2-17
2.4.11 Testing for the EndofaFile 2-18
2.4.12 TestingForFile Errors 2-18
2.4.13 Closing aFile 2-19
2.4.14 Program Example 2-19

2.5 Using More StreamFunctions 2-22
2.5.1 UsingBuffered Inputand Output 2-22
2.5.2 ReopeningaFile 2-23



2.5.3 ‘Settingthe Buffer 2-23
2.5.4 Puttinga Character Back intoaBuffer 2-24
2.5.56° Flushing a FileBuffer: 2-25

2.6 UsingtheLow-Level Functions 2-25
2.6.1 UsingFileDescriptors 2-26
2:6.2 OpeningaFile 226
2.6.3 ReadingBytesFromaFile 2-27
2.6.4 Writing BytestoaFile 2-27
2.6.5 ClosingaFile 2-28
2.6.6 ProgramExamples 2-28
2.6.7 UsingRandom Accessl/O 2-31
2.6.8 Movingthe Character Pointer 2-31
2.6.9 Movingthe Character PointerinaStream 2-32
2.6.10 RewindingaFile 2-33
2.6.11 Getting the Current Character Position 2-33



Using the Standard T/O Functions

2.1 Introduction

Nearly all programsuse some form of input and output. ‘Some programs read from or
write to files stored on disk. Others write to devices such as line printers. Many
programs read from.and write to the user’s terminal. For this reason, the standard C
library provides several predefined input and output functions that-a programmer can
useinprograms.
This chapter explains ‘how ‘to use the 1/O functions in the standard ‘C library. ‘In
particular, itdescribes:

— Commandline arguments

~- Standardinputand outputfiles

«— Streamfunctionsforordinaryfiles
— Low—levelfunctionsforordinary files

~-— Randomaccess functions
2.1.1 Preparing for the /O Functions

To use the standard 1O functions a program must include the file stdio.k, ‘which
defines the needed macros and variables. Toincludethis file, place the following line
atthebeginning of the program.

#include <stdio.h>

The actual functions are contained:in‘the library file libc.a. This file is automatically
read whenever you compile a program, 'so no special argument is:needed when you
invokethe compiler.

21.2 Special Names

The standard /O lLibrary uses many names for special purposes. In general, these
namescanbeusedinanyprogramthathasincludedthe stdio. hfile.



XENIX Programmer's Reference

The followingisalist of the specialnames:
stdin The name:of the standardinput file.

stdout The name of the standard output file.

stderr Thename of the standarderror file.

EOF The value returned by the read routineson end-of-file or error.

NULL The null pointer, returned by pointer-valued functions, to indicate
anerror.

FILE The name of thefile type used to declaré pointerstostreams.

BSIZE The size in bytes (usually 1024) suitable for-an IO 'buffer:supplied
by the user.

2.1.3 Special Macros

The functions getc, getchar, pute, putchar, feof, ferror,and filenoareactually
macros, not functions. This means that you.cannot redeclare them oruse them
astargetsfor abreakpoint when debugging.

2.2 Using Command Line Arguments

The XENIX system lets you pass information to a program at the same time you
invokeitfor execution. You can do this with command line arguments.

A XENIX command line is:the line you type toinvoke a program. A command
line argument is anything you typein a XENIX command line. A commandline
argument can be a filename, an option, or-a number. The first.argument.in any
command line must be the filename of the program you'wish to execute.

When you type a command line, the system reads the first argument and loads
the corresponding program. Ttalso.counts the other arguments, storesthem in
memory in the same order in which they appear on the line, and passes the
count and the locations'to the main function of the program. The function.can
thenaccessthe argumentsby accessing the memory in which they arestored.

To access the arguments, the main function must have two parameters:
“argc”, an integer variable containing the argument count, and ‘“argv”, an
array of pointers to the argument values. You can define the parameters by
usingthelines:

2-2

.
}




Using the Standard 1/O Functions

main (arge, argv)
int argc;
char #argv]];

at the beginning of the :main program function. When a program begins
execution, “argc’ :contains the-count, and each ¢lement in “‘argv* contains a
pointer to.one argument.

An argument is stored-as a null-terminated string (i.e., a string ending with a
null character, \0). The first string (at “argv[0]"} is the program name. The
argument ‘count is never less than 1, since the program name is always
considered the first argument.

Inthe following example, command line arguments areread and then echoed on
the terminal screen. Thisprogramissimilarto the XENIX echo command.

main(arge, argv) /# echo arguments */
int arge;
char +argv]];

int i;

for (i=1;i < arge; i++)
printf(" %s%c", argvli}, (i<arge-1) 7’ 2 '\n’);

}

In the example above, an extra space character is added at the ‘end of each
argument to separate it from the next-argument. This is required, since the
system automatically removes leading and trailing whitespace characters (i.e.,
spaces and tabs) when it readsthe arguments from the command line. Addinga
newline character ‘to the last argument is for convenience only; it causes the
shell prompt to appear on-the next line after the prograin terminates.

When ‘typing arguments on a command line, make sure each:argument is
separated from the others by one or more -whitespace characters. If an
argument ‘must .contain whitespace characters, enclose that argument in
double quotation marks. For.example,in the command line

display 3 4 "echo hello”

the string ‘““echo hello” is treated as a single argument Also enclose in double
quotation marksany argument:that contains charactersrecognized by the shell
(e-g.s <, >,],and ").

You should not change the values of ‘the “argc” and “argv” variables. If
necessary, assign -the argument value to another variable and change that
variable instead. You can give other functions in the programaccess to the
arguments by assigning their valuestoexternal variables.

2-3



XENIX Programmer’s Reference

2.3 Using the Standard Files

Whenever you invoke a program for execution, the XENIX system
automatically creates a standard input, a standard output, and ‘a standard
error file to handle a program’sinput and output needs. ‘Since the bulk of input
and output of most programs is through the user’s own terminal, the system
normally assigns the user’s terminal keyboard and screen as the standard input
and output, respectively. The standard error file, which receives any error
messages generated by the program, isalsoassigned to the terminal’s screen.

A program canread and write to the standard input and output files with the
getchar, gets, scanf, putchar, puts, and printf functions. ‘The standard error
file can be accessed using the stream functions described in the section “Using
StreamI/O" laterin this chapter.

The XENIX system lets you redirect the standard input-and output using the
shell'sredirection symbols. ‘This allowsa program touse other devicesand files
as its chief source of input and output in place of the terminal’s’keyboard and
screen,

The following sections explains how to read from and write to the standard
input and -output. It also explains how to redirect the standard input and
output.

2.3.1 Reading From the Standard Input

You can read from the standard input with the getchar, gete, and ‘scanf
functions.

The getchar function reads one character at-a time from the standard input.
Thefunction call has the form:

¢ == getchar()
where ¢ is the variable to receive the character. It'must have int type. The
"unction normally returns the character read, but will return the end-of-file
value EOF if the end of the file or an erroris encountered.
The getehar function is typically used in a conditional loop to read-a string of

tharacters from the standard input. For example, the following function reads
‘cnt”’ number of characters from the keyboard. - )

-4

"
%




Using the Standard I/O Functions

readn (p, ¢nt)

char p[J

int cnt;

{ -
mt 1,c;
i=0;

while { i<ent)
if ( pli++] = getchar()) = EOF ) {
Pl = Y

return{EOF);

return(0);

}

Note that if getchar is reading from the keyboard, it waitsfor characterstobe
typed beforereturning.

The gets function reads a string of characters from ‘the:standard input and
copiesthe string toa given'memory location. The function call hastheform:

gets(s)

where & is a pointer ‘to the location to receive the string. The function reads
characters until ‘it finds a newline character, then replaces ‘the newline
character with:a null character {(\0) and copies the resulting string to.memory.
The function returns the null pointer value NULL if the end of the file or an
errorisencountered. Otherwise,it returns the valueof s.

The function‘is typically used to'read a‘full line from the standard input. For
example, the following program fragmentreadsalinefrom the standard input,
stores it in the character array *‘cmdln” and calls a function (called parse) if no
error.occurs.

char cmdIn|SIZE};
if { gets(emdln) '== NULL }

parse();
In this case, the length of the string is-assumed to be lessthan “‘SIZE”.

Note that gets cannot check the length of the string it reads, so'overflow can
occur.

The scanffunction reads one or more values from the standard input where a
value may be a-character string or a decimal, octal, or hexadecimal number.
The function-call hasthe form:

scanf (format, argptr ...)



XENIX Programmer’s Reference

. where format isa pointer to.a string that defines the format of the values to be

read and argptr is one or more pointers ‘to the variables that will receive the

values. There must be one @rgptr for -each format given in the format string.
The format may be “%s" for a string, *‘%c" for a character, and “%d", “%o”,
or “%x" for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described in ecanf(S) in the XENIX Reference Manual.) The
function normally returns the number -of values it read from the standard
input, but it will return the value EOF if the end of the file or an error is
encountered.

Unlike the :getchar-and gets functions, scanf skips all whitespace characters,
reading only ‘those characters which make up a value. It then converts the
characters, if necessary, into the appropriate string or number.

The scanffunction istypically used whenever formatted input is required, i.e.,
input that must be typedin a special way:-or which has a special meaning. For
example, in-the following program fragment ecanf reads both ‘a name and a
number from the same line.

char name[20};
int ‘number;

scanf("%s %d”, name, &number);

In 'this example, the string “%s ‘%d” defines what values are to be read:(a
string ‘and a decimal number). The string is copied to the character array
“name” and the number to theinteger variable “number”. Note that pointers
tothese variablesare usedin the call and not the actual variables themselves.

When reading from the keyboard, scanf waits for values'to be typed before
returning. Each value must be separated from the next by one or more
whitespace characters (such asspaces, tabs, or even newline characters). For
example, for the function:

scanf("%s %d %c", name, age, sex);
an‘acceptableinputis:

John 27
M

If a value is a number, it must have the appropriate digits, that is, a decimal
number must have decimal digits, octal numbers octal digits, and hexadecimal
numbershexadecimal digits.

If scanfencounters an error, it immediately stops reading the standard input.
Before scanfcan be used again, the.illegal character that.caused the:error must
be removed from theinput using the getchar function.




Using the Standard I/O Functions

You may use the getchar, gets, and scanf functions in‘a single program. Just
remember that each function reads the next available character, making that
character unavailable tothe other functions.

Note that when the standard inputis the terminal keyboard, the getcher, gete,
and scanf functions usually do not return a value until at least one newline
character has been typed. This is trueevenif only one character is-desired. If
you'wish'to have immediate input.on a single keystroke, see theexample in the
section “Using the system Call” in Chapter 3.

2.3.2 Writing to the Standard Output

You :can ‘write to the standard output with the putchar, puts, and printf
functions.

The putchar function writes a single .character to ‘the output buffer. The
function.call hasthe form:

putchar (¢)

where ¢ is the character:to:be written. The function normally returns the same
characterit-wrote, but willreturn the value EOF if anerror isencountered.

The function is typically used in a conditional loop to -write a string of
charactersto the standard output. For example, the function

writen (p,ent)
char p[j;
int ‘ent;

{

int i;

for (i=0; i<=cnt; i++)
putchar( (i 1="cnt) ? pli} : "\n’);

}

writes “‘ent” number of characters plus a newline character to ‘the standard
output.

The pute function copies the string found at a given memory location to the
standard output. The function call hasthe form:

puts(e)

where sis a pointer tothe location containing the string. The string'may be any
number of characters, but must end with a null ¢haracter (\0). The function
writeseach character in the string to the standard output and replacesthe null
character attheend of the string with anewline character.



XENIX Programmer’s Reference

Since the function automatically appends a newline character, it is typically
used when writing full lines to the standard output. For example, the following
program {ragment writes one of three strings to the standard output.

char ¢;

switch(c) {
case{'1’):
puts(” Continuing...");
break;
case('2’):
puts("All done.”);
break; '
default:
puts(”Sorry, there was an error.”);

}

The string to be written.dependson the value of *‘¢”,

The printf function writes one or more values to the standard-output where a
value is a character string or a decimal, octal, or hexadecimal number. The
function automatically converts numbers into the proper display format. The
function callhasthe form:

printf{format], arg ...)

where formatisa pointer to-astring which describes the format of each value to
be written and argis one or more variables containing the values to be written.
There must be one arg for each format in the format string. The formats may
be*“%s” for a string, “%c" for ‘a-character, and “%d”, “%o", or “%x" for a
decimal, octal, .or hexadecimal number, ‘respectively. (Other formats are
described in print/(S)in the XENIX Reference Manual.) If astring is requested,
the corresponding arg:must be a pointer. The function normally returns 2ero,
but will return anonzero value if an error isencountered.

The printf function is typically used when formatted output is required, i.e.,
when the output must be displayedin a certain way. For example, you mayuse
the function to display a:nameand number on the:same line asin the following
example. '

char name {J;
int number;

printf("%s %d”, name, number);
In thisexample, the string “‘%s %d” defines the type of outputtobe displayed

(a string and a number separated by a space). The output values are copied
from the character array *“name” and the integer variable “number".




Using the Standard I/O Functions

You:may use the putchar, puts, and printf functionsin a single program. Just
remember ‘that the output appears in the same order as it is written to the
standard output.

2.3.3 Redirecting the Standard Input

You can change the standard input from the terminal keyboard toan ordinary
file by using the normal shell redirection symbol, <. This symbol directs the
shell to open for reading the file whose name immediately follows the symbol.
For -example, the following command line -opens ‘the file -phonelist as the
standard input to the program dial.

dial <phonelist

The dial program may then-use the getchar, gets, and scanffunctions to read
characters and values from thisfile. Note thatif‘the file:does not exist, the shell
displaysanerror message and stops the program.

Whenever getchar, gets, or scanf are used to read from:an ordinary file, they
return the value EOF if the end of the file or an errorisencountered. It isuseful
to checkfor this value tomake sure youdonot continuetoread charactersafter
anerror hasoccurred.

2.3.4 Redirecting the Standard Output

You can'change the standard output of a program from the terminal'screen to
an ordinary file by using the shell redirection symbol, >. The symbol directs
the -shell to open for writing the file ‘whose name immediately follows the
symbol. For example, the commandline

dial >savephone

opensthe file savephone asthe standard outputof the program dialand not.the
*terminal screen. You may use the putchar, puts, and printf functions to write
tothe file.

If the file does not-exist, the shell automatically creates.it. If the file exists, but
the program does not have permission to change or alter the file, the shell
displaysanerror inéessage and doesnot.execute the program.

2.3.5 Piping the Standard Input and Output

Another way to redefine the standard input and output isto create a pipe. A
pipesimply. connectsthe standard output of one program to the standard'input
of another. The programs may then usethe standard input.and output to pass
information fromone totheother. You can createa pipe by usingthe standard
shell pipesymbol, |.

2-9



XENIX Programmer’s Reference

Forexample, the commandline
dial | we

connects the standard output of the program dialto the standard input of the
program ‘we. (The standard input-of dial and standard output of we are not
aflected.) If dial writes to its standard output with the putchar, puts, or printf
functions, we canread thisoutput withthe getcharand seanffunctions.

Note that when the program on'the output side of a pipe terminates, the system
automatically places the constant value EOF in the standard input of the
program on the input side. Pipes are described in more detail in Chapter 6,
“Creating and Using Pipes”.

2.3.6 Program Example .

This section shows how you may use the standard input and output files to
perform useful tasks. The ecstrip (for “‘control character strip”) program
defined below strips out all ASCH control characters from itsinput except for
newline and tab. You may -use this program to display text or data files-which
contain charactersthat may disrupt your terminal screen.

#include <stdio.h>

main(}) /# cestrip: strip nth characters +/

int ¢;
while ({c == getchar()) = EOF)
if (¢ >=""2&&c < 0177) ||
¢ == \Y [l o == "\a')
putchar(c);
exit(0);

}

You can strip and display the contents of a single file by changing the standard
input.of the ccstripprogram to the desired file. The command line

cestrip <doc.t

reads the contentsof the file doc.t, stripsout control characters, then writesthe
stripped fileto the standard output.

Ifyouwishto strip several files:at the same time, youcan create a pipe between
thecat commandand ccstrip.

To read and strip the contents of the files file!, file2, and file3, then display
themonthe standard outputusethe command:

2-10




Using the Standard I/O Functions

cat filel file2 file3 | cestrip

If you wish to save the stripped files, you can redirect the standard output.of
¢catrip. For example, this command line writes the stripped files to the file
clean.

cat filel file2 file3 } cestrip >clean

Notethat the ezit function isused at theend of the program to ensure thatany
program which executes the ccstrip program will receive:a normaltermination
status{typically 0) from the program when it completes. An explanation.of the
ezit function‘and:how to-execute one program under control of anotherisgiven
in Chapter 5.

2.4 Using the Stream Functions

The functions described so far ‘have all read from the standard input and
written to the-standard output. Thenext step'istoshow functionsthat access
files not already connected to the program. One set of standard 1/O functions
allows a program toopen and accessordinary filesasif they were-a“‘stream” of
characters. For thisreason, the functionsare.called the stream functions.

Unlike the standard input and -output files, a file to be accessed by a stream
function must be explicitly opened with the fopen function. The function can
open a file for reading, writing, or appending. A program can read from:a file
with the getc, fgete, fgete, fgetw, fread, and fecanffunctions. It can write to:a
file with the pute, fpute, fputs, fputw, fwrite, and fprintffunctions. A program
can test for the end of the file or-for an error with the feof and ferror functions.
A program can close a file with the fclose function.

2.4.1 Using File Pointers

Every file opened for access by the stream functions has a unique pointer
associated with it-called a file pointer. This'pointer, defined with the predefined
type FILE found :in the stdio.h file, points to ‘a structure that contains
information about the file, such as the location of the buffer (the intermediate
storage ‘area between the actual file and the program), the current character
position in‘the buffer, and-‘whether the file is being read or written. The pointer
can be given a valid pointer value with the fopen function as described in the
next section. {The NULL value, like FILE, is defined in the stdio.k file. )
Thereafter, the file pointer may be used to refer to that file until the file is
explicitly closed with the felose function.

Typically, afile pointer is defined with the statement:

FILE #infile;

2.1



XENIX Programmer’s Reference

The standard input, output, and error files, like other opened files, have
corresponding file pointers. These file pointers are named stdin for standard
input, stdout for standard output, and etderrfor standarderror. Unlike other
file pointers, the standard file pointers are predefined in the stdio.k file. This
means:a program ‘may use these:pointers to read and write from the standard
files without first using the fopen function to open them.

The predefined file pointers -are typically used when a program needs to
alternate between the standard input or output file and an ordinary file.
Although the predefined file pointers have FILE type, they are constants, not
variables. They must not be assigned values.

2.4.2 Opening a File

The fopen function opens a given file and returnsa pointer (called a file pointer)
toa structure containing the data necessary to accessthefile. The pointer may
then be usedin subsequent stream functionstoread fromor write tothe file.

The{unction call hastheform:

fp == fopen(filename, type)

where fpis the pointer to receive the file pointer, filename is a pointer to-the
name of the file to-be opened and type is'a pointer to a string that defines how
the file is to be opened. ‘The type string may be “r” for reading, “w” for
writing, and “a" for appending, thatis, openfor writing at the end of the file.

A file may be opened for different operations at the same time if separate file
pointers are used. For example, the following program fragment opens the file
named fuer/accountsfor bothreadingand writing.

FILE #rp, swp;

rp = fopen(” fusr/accounts”,"r");
wp == fopen(” fusr/accounts”,”a”);

Opening an ‘existing file for writing destroys the old contents. Opening an
existing file for appending leaves the old contents unchanged and causes any
data writtento the file to be appendedto the end.

Trying to open a nonexistent file for reading causes an error. Tryingto opena
nonexistent file for writing or appending causes a newfile to be created. Trying
to.open any file for which the program does not have:appropriate permission
causes an error.

The function normally returns a valid file pointer, but will return the value

NULLif an'erroriopening thefile isencountered. Itis wise to:check for the NULL
valueafter eachcall to the functionto preventreadingor writing after anerror.

2-12

e

v



Using ‘the Standard I/O Functions

2.4.3 Reading a Single Character

The gete-and fgete functions return a single character read from a given file,
and return the value EOF if the end.of the file or an error is encountered. The
functioncalls have the form:

¢ == getc (stream)
and
¢ = fgetc (stream)

where stream is the file pointer to the file to be read and ¢ is the variable to
receivethe character. Thereturnvalueisalwaysaninteger.

The functions are typically used in conditional loops to read a string of
characters from a file. For example, the following programfragment continues
toread charactersfrom the file given to it by “infile” until the end of the file.or
anerror isencountered.

int i;
char buf[MAX];
FILE =infile;

while ((c=getc(infile)) 1== EOF)
buffi++]=c;

The only difference between the functionsisthat getcis defined asa macro, and
fgete as-atrue function. This:means that, unlike gete, fgete may be passed as
an argument ‘in another function, used as a target for .a breakpoint when
debugging, or-used to-avoid any side eflectsof macro processing.

2.4.4 Reading a String from a File

The fgets function reads a:string of characters a file and copies the string toa
givenmemory location. Thefunction call hasthe form:

fgets (g,n,stream)

where 8 is'be a pointer to the location toreceive the string, nis.a ¢ountof the
maximum number of characters to be in the string, and stream is the file
pointer of the file to-be read. The function reads n-1 charactersior upto tothe
first newline character, whichever occurs first. The function appends a null
character (\0) to the last character read and then stores the string at the
specified location. The function returns the null pointer value NULL if the end
of the file or anerrorisencountered. Otherwise, it returnsthe pointer s.

2-13



XENIX Programmer’s Reference

The function is typically used to.read a full line from a file. For example, the
following program fragment reads a string of characters from the file given'by
“myfile”.

char ¢mdIn[MAX];

FILE smyfile;

if ( fgets( emdin, MAX, myfile } 1= NULL)
parse( cmdln );

Inthisexample, fgetscopiesthestring toithe character array “cmdin”.

2.4.5 Reading Records from a File

The fread function reads one or more records from a file and copies'them to a
given memory location. The function call hasthe form:

fread(ptr, eize, nitems, stream)

where ptris a pointer to the location to receive the records, size is the size (in
bytes) of each record tobe read, nitemsisthe number of records to be read, and
stream is the file pointer of the file to be read. The ptrmay be apointer to a
variable of any type (from a single character to a structrure). The size, an
integer, should give the numbers of bytes in each item you wish to read. One
way to ensure this is to use the sizeof function on the ‘pointer ptr (see the
example below). The function always returns the number of records it read,
regardlessof whetheror not theend of the file or anerror isencountered.

The function s typically used'to read binary datafrom a file. For-example, the
following program fragment reads two records from the file given by
“database” and copies the recordsinto the structure “person®.

FILE +database;

struct record {
char name[20];
int ‘age;

} person;

fread{&person, sizeof{person), 2, database);
Note that since fread does not explicitly indicate errors, the feof and ferror
functions should be used to detect end of the file anderrors. These functionsare
describedlater in this chapter.

2.4.6 Reading Formatted Data From a File

The.fscanffunction reads formatted input from a given file and copiesittothe
memory location given by the respective argument pointers, just as the ecanf

2-14




Using the ‘Standard 1/O Functions

functionreadsfrom thestandardinput. The function call hasthe form:
fscanf (stream, format, argptr ...)

where stream is the file pointer of the file to be read, format isa pointer to the
string that defines the format of the input to be read, and ‘argptris one or more
pointers to the variables thatare toreceive the formatted input. There must be
one argptrfor each format given in the formatstring. The format may be*‘%s"
for astring, “%c” for a-character, and “%d”, “%o0”, or “%x" for a decimal,
octal, or hexadecimal number, respectively. (Other formats are described in
ecanf(S)in the XENIX Reference Manual.) The function normally returns'the
number of arguments it.read, but will return the value EOF if the end of the file
oranerror isencountered.

The function is typically used to read files that contain both numbers and-text.
For example, this program fragment reads aname anda:decimal number from
the file givenby “file”.

FILE sfile;

int pay;

char name[20];

fscanf(file,”%s %d\n”, name, &pay);
This program fragment copies the name tothe character array “name’’ and the
number-to the integervariable *“pay”’.

2.4.7 Writing a Single Character

The putec and fputc functions ‘write single characters to a given file. The
function callshave the forms:

putc (¢,stream)
and

fpute (¢ stream)
where ¢ isthe character to be written and stre.amis the file pointer to the file to
receive the character. The function normally returns the character written,
but'will return thevalue EOF if anerror isencountered.
The function is defined as a2 macro and may have undesirable side -effects
resulting from argument processing. In such cases, the equivalent function
fputeshould beused.
These functions are typically used in conditional loops to write a string of

characters to .a file. For example, this following program fragment writes
charactersfrom thearray “name’ tothefile given by “out”.

2-15



XENIX Programmer's Reference

FILE =out;
char name[MAX]};

int i;

for (i=0; i<MAX; i++)
fputc( nameli], -out);
The only-difference between the putc-and fpute functions is that puteis-defined
as'amacro and fpute as an-actual function. This:means that fputc, unlike pute,

may be used as.an.argument to another function, as'the target of a breakpoint
when debugging, andto.avoid the side effects of macro processing.

2.4.8 Writing a String to a File
The fputefunction writes astring toa given file. The function call has the form:

fputs(e,stream)

where s a pointer to the string to be written and stream is-the file pointer to
the file. :

The function ‘is typically used to:copy strings from one file to .another. For
example, in-the following program fragment, gets and fputs are combined to
copy stringsfrom thestandardinputito thefilegivenby ‘‘out”.

FILE *out;
char cmdin[MAX];

if ( gets(.cmdln ) 1= EOF )
fputs{ cmdln, out);

The function normally reéturns zero, but will return EOF if an ‘error is
encountered.

2-16




Using the Standard [/O Functions

2.4.9 Writing Formatted Output

The fprintf function writes formatted output to a given file, just asthe printf
function writes'to the standard output. The function call hasthe form:

fprintf (stream, format [, arg]...)

where streamisthe file pointer-of the file to be written to, format is a pointer to
a string which defines the format -of ‘the output, and arg is one or ‘more
arguments to be written. There must beone argforeach formatin the format
string. ‘The formats may be “%s" for a string, *“%¢c”’ for a character, and
“%d”, “%o0”, or “%x" for a decimal, ‘octal, or hexadecimal number,
respectively. (Other formats are described in printf(S)in the XENIX Reference
Manual.) If a string is requested, the corresponding arg must be a pointer,
otherwise, the actual variable must be-used. The function hormally returns
zero, but willreturn a nonzeronumber if an errorisencountered.

The function is typically used to'write output that contains both-numbers and
text. For example, to write a name and a decimal number to the file given by
“outfile” use-the following program fragment.

FILE soutfile;
int pay;
char :name][20};

fprintf(outfile,”%s %d\n", name, pay);

The name is.copied from the character array‘“‘name’ and the number fromthe
integer variable*‘pay”.

2.4.10 Writing Records to a File

The fwrite function writes one or'more records to a given file. The function call
hastheform:

fwrite (ptr, size, nitems, stream)

where ptrisapointer to the first record to be written, sizeis the size (in'bytes)of
eachrecord, nitemsis thenumberof recordstobe written, and streamis the file
pointerof the file. The ptrimay point to-a variable of any type (from a single
character to astructure). The:sizeshould give the number of bytesineachitem
to ‘be written. One way to ensure this is to use the sizeof function (see the
example below). The function always returns the number of items actually
written to the file whether or not the end of thefile or an error isencountered.

The function is typically used to write binary data toa file. For example, the
following prograin fragment writestworecordsto the file given by “database”.

2-17



XENIX Programmer’s Reference

FILE sdatabase;

struct record {
char name[20};
int age;

} ‘person;

fwrite(&person, sizeof(person), 2, database);
The records are copied from thestructure “person’.
Since the function does not report the end of the file or:-errors, the feof and
ferrorfunctions should be usedto detect these conditions.
2.4.11 Testing for the End of a File

The feof function returns the value —1if a given file has reached its'end. The
function call has the form:

feof {stream)

where streamisthe file pointer.of the file. The function returns-1only if the file
has reached its end, otherwise it returns:0. The return value is always an
integer.

The feof function is typically used after those functions whose return value is
not a clear indicator.of an end-of-file condition. For example, in the following
program fragment the function checks for the end of the file after each
characteris read. The readingstopsassoon as feofreturns-1.

char name[10};
FILE #stream;

do
fread{ name, size(name), 1, stream );
while(!feof( .stream ));

2.4.12 Testing For File Errors

The ferrorfunction tests:a given stream file for an error. The function call has
the form:

ferror (stream)
where stream isthe file pointer of the file to be tested. The function returnsa

nonzero (true) valve if an error is detected, otherwise it returns zero:(false).
The function returns aninteger value.

2-18

"
f}




Using the Standard I/O Functions

The function is typically used to test for errors before perform a subsequent
read or writetothe file. For example,in the following program fragment ferror
tests the filegiven by *stream™.

char ‘sbuf;
char x[5];

while ( Herror(stream) )
fread(buf, sizeof(x), 10, stream);

I it returnszero, the nextitem in the file given by “stream” is copied to “buf”.
Otherwise, execution'passesto the nextstatement.

Furtheruseof afile after aerror isdetected may cause undesirable results.

2.4.13 Closing a File

The felose function ‘closes a file by breaking the connection between the file
pointer and the structure created by fopen. Closing a file emptiesthe contents
of the corresponding buffer and frees the file pointer for use by another file. The
functioncall has'the form:

fclose (stream)

where stream is the file pointer of ‘the file to close. The function normally
returns0, but-willreturn~1if anerrorisencountered.

The felose function is typically used tofreefile pointers when they are no longer
needed. Thisisimportant because usually no'more than 20 files.can be.open at
the:same time. For example, the following program fragment closes the file
givenby “infile” when the file hasreached itsend.

FILE infile;

if (feof(infile) )
fclose( infile );

Note that whenever a program terminates normally, ‘the felose Tunction is
automatically called for each open file, so‘noexplicit:call is required unlessthe
program must close a file before its end. Also, the function automatically ealls
fllush to-ensure that everything written to the file's buffer actually gets to the
file.

2.4.14 Program Example
This section shows how you may use the stream functions you have seen so far

to perform useful tasks. The following program, which counts the characters,
words, and lines found in one or more files, uses the fopen, fprintf, getc, and

2-19



XENIX Programmer’s Reference

felose functions to-open, ‘close, read, and write to the given files. The program
incorporates a basic:design that is common to.other XENIX programs, namely:it ) 3
uses the filenames found in the command line as the filesto open and'read, or if 4
nonamesare present, it uses the standard input. Thisallows the program to be

invoked onitsown, orbe thereceivingend ofa pipe.

2-20



Using the ‘Standard I/O Functions

#include <stdio.h>

main(arge, argv) /+* we: count lines, words, chars */
int argc;
char sargv{};

int ¢, 1, inword;

FILE #{p, «fopen(};

long linect, wordct, charct;

long tlinect =0, twordct =0, ‘tcharct = 0;

i=1
fp = stdin;
do

t if (arge > 1 &&
(fp="fopen{argv(i], "r")) ==== NULL) {
fprintf (stderr, "wc: can’t open %s\n",
~argi
continue;

linect = wordct = charct = inword = 0;
while {{¢ == getc(fp)) 1= EOF) {

charct++4;
if (¢ ==="\n")
linect++;

if (¢ =="" ] c =="\t' || c-o=="\n)
inword = 0;

else if (inword ==0) {
inword = 1;
wordct++;

}

printf("%7ld %71d %71d", linect, wordct, charct);
printf(arge > 17" %s\n” : "\n", argvli]);
fclose(fp);
tlinect += linect;
twordct +== wordct;
tcharet 4= charet;

} while (++41 < arge);

if (arge > 2)
printf("%71d %71d %71d total\n", tlinect,

twordct, tcharct);
exit(0);
}

The ‘program uses *‘fp" as the pointer to receive the current file pointer.
Initially this is set to *‘stdin” incase no filenames are present in'the command
line. If afilenameis present, the program-calls fopenand assigns the file pointer
to “fp”. M the file cannot be-opened (in which case fopen returns NULL), the

2-21



XENIX Programmer’s Reference

program writes an error message to the standard error file “stderr” with the
Jprintf function. The function prints the format string “wc: can’t open %s",
replacing the “%s" with the name pointed to by “argvli]".

Once a file isopened, the program uses the getc function to read each character
from the file. Asitreadscharacters, the program keeps a count of the number
of characters, words, and lines. The program continues to read:until the endof
the fileisencountered, thatis, when gete returnsthe value EOF.

Once a file hasreached its end, the program uses the printffunction to display
the character, word, and line counts at the standard-output. The format string
in this function causes the counts to be displayed as long decimal numbers with
no:more than 7 digits. The program then closes:the current file with the fclose
function and examines the command line arguments to see if there is-another
filename.

When all files have been counted, the program uses the printf function to
display a grand total at the standard output, then stops execution with the ezst
function.

2.5 Using More Stream Functions

. The stream functionsallow more-control over a file than just opening, reading,
writing, and closing. The functions also let a program take an existing file
pointer-andreassign it to another file (similar toredirecting the standard input
and output files) as well as manipulate the buffer that.is used for intermediate
storage between the file and the program.

2.5.1 Using Buffered Input and Output

Buffered /0 is:an'input and output technique used by the XENIX system to-cut
down the time needed to read from and write to files. Buffered I/0 lets the
system collect the characterstoberead or writtenandthen transfer them allat
oncerather than one character atatime. Thisreducesthe number of timesthe
system must access the I/0O devices and consequently provides more time for
running user programs. Not all files have buffers. For example, files associated
with terminals, such asithe standard input and output, are not buffered. This
preventsunwanted delays when transferring the input-and output. When a file
does have a buffer, the buffer size in bytes is given by the mainfest constant
BSIZE, whichis defined in the stdto.Afile.

When a file has a buffer, the stream functionsread from and write to'the buffer
instead of the file. The system keepstrackof the buffer and when necessary fills
it with new characters (when reading) or flushes (copies) it to the file {when
writing). Normally, a buffer is not directly accessible to a program, however-a
program can define its own buffer for a file with the setbuf function. The
function also lets a program change a buffered file to be an unbuffered one. The
ungetc function lets a program put a character it has read back into the buffer,

2-22

)




Using the Standard I/O Functions
and the fflush function lets 2 program flush the buffer' before it isfull.

2.5.2 Reopening a File

The freopen closes the file associated with a given file pointer, thenopens anew
file and gives it the:same file pointer as the old file. ‘The function call hasthe
form:

freopen (newfile, type, stream)

where newfile is a pointer to the name of the new file, type is a pointer to the
string that defines how the file is to be opened (*‘r” for read, “w” for writing,
and “‘a” for appending), and stream is the file pointer of the cld file. The
function returns the file pointer stream if the new fileis opened. Otherwise, it
returns the nullpointer value NULL.

The freopen function is used chiefly to attach the predefined file pointers
“stdin”, “‘stdout”, and “‘stderr” to other files. For example, the following
program fragment opens the file named by “newfile” as the new standard
outputfile.

char *newfile;

FILE =*nfile;
nfile = freopen(newfile,”r” ;stdout);

Thishas the same effect as using the redirection symbolsin'the command line of
the program.

2.5:3 Setting the Buffer

The eetbuf Tunction changes the buffer associated with a given file to the
program’s.own buffer. It can also change the access to the file to no buffering.
The function callhasthe form:

setbuf (stream, buf)

where stream is a file descriptor and bufis a pointer to the new buffer, or isthe
null.pointer value NULL if no'buffering is desired. If a buffer is given, it must be
BSIZE bytesin length, where BSIZE is a manifest.constant found in stdio. h.

The functionis typically used to to create abuffer for the standard output when
it is assigned to the user’s terminal, improving execution time by eliminating
the ‘need to write one «character to the screen at a time. For example, the
following program fragment changes the buffer of the standard output the
location pointedatby “p».

2-23



XENIX Programmer’s Reference

char #p;

p=malloc( BSIZE };
setbuf (-stdout, p );

The new buffer isBSIZE byteslong.

The function may alsobe used to change afile from buffered tounbuffered input
or -output. Unbuffered input and output generally increase the total time
needed to transfer large numbers of characters to-or from 2 file, but give the
fastest transfer speed for individual characters.

The setbuf function should be called immediatcly after opening a file and before
reading or writing to it. Furthermore, the fclose or flush function must be used
to flush the bufler ‘before terminating the program. If not used, some data
written to the buffer may not be written to thefile.

2.5.4 Putting a Character Back into a Buffer

The ungete function puts a‘character back into the buffer of a given file. The
function call hasthe form:

ungete (¢, streem)

where ¢ isthe character to.put back and streamisthe file pointer of the file. The
function normally returns the same character it put back, but will return the
value EOF if anerrorisencountered.

The function is typically used when seanning a file for the first character of a
string of characters. For example, the following program fragment puts the
first character that is not a whitespace character back into the buffer of the file
given by “infile”, allowing the subsequent call-to gets toread that character as
the first characterinthestring.

FILE #infile
char name[20};

while( isspace( c==getc(infile) ) )

?
ungete( c,.stdin };
gets( name, stdin );

Putting a character back into the buffer doesnot change the corresponding file;
itonly changesithe next character tobe read.

Note that the function can put-acharacter back only if one hasbeen previously
read. The function cannot put more than one character back at a time. This
meansif three charactersare read, thenonly the last character can be put back,
never the first two.

2-24

T,

s




Using the Standard I/O Functions
‘Note thatthe value EOF mustnever be putbackinthe buffer.

2.5.5 Flushing:a File Buffer

The flush function empties the buffer of a give file by:immediatély writing the
bufler contentstothe file. The functioncallhastheform:

fllush (stream)

where stream isthe file pointer-of the file. The function normally returnsaero,
but will return the value EOF if an-error isencountered.

The function is typically used to guarantee that the contentsof a partially filled
buffer are written to the file. For example, the following program fragment
empties the buffer for the file given by *‘outtty” if the error condition given'by
“errflagis0.

FILE souttty;
int errflag;

if (errflag === 0)
filush( outtty );

Note that, fllush is automatically called by the felose function to empty the
bufler before closing the file. This means that no explicit call to flush is
required if the file is also being closed.

The function ignores any attempt to empty the buffer of a file opened for
reading.

2.8 Using the Low-Level Functions

The low-level Tunctions provide direct access to files-and peripheral devices.
They are actually direct calls to the routines used in the XENIX operating
system to read from :and write to files and peripheral devices. The low-level
functions give a program the same control over a file or device as the system,
letting it access the file or device in ways that the stream Tunctions do not.
However, low-level functions, unlike stream functions, donot provide buffering
or :any other useful services of the stream functions. This means that any
program that usesthe low-level functions has the complete burden of handling
input andoutput.

The low-level functions, like the stream functions, cannot be-used:to read from
or ‘write to a file until the file has been opéned. A program may use the open
function to open an existing or a new file. A file can be opened for reading,
writing, orappending.

2-25



XENIX Programmer's Reference

Onceafileisopened for reading, a program canread’bytesfrom it withithe read
function. A program can write to a file opened for writing or appending with
the writefunction. A program cancloseafile with the close function.

2.68.1 Using File Descriptors

Each filethat hasbeenopened for access by the low-level functions hasaunique
integer called -a **file descriptor” associated with it. A file descriptor is:similar
to -a file ‘pointer in that it identifies the file. A file descriptor is.unlike a file
pointerinthatit does not pointtoany specific structure. Instead the descriptor
1s used internally by the system to access the necessary information. Since.the
system ‘maintains all information about a file, the only access to 2 file for a
program is through the file descriptor.

There are ‘three predefined file descriptors (just as there are three predefined
file pointers) for the standard input, output, anderror files. Thedescriptorsare
0for the standard input, 1 for the standard.output, and 2for the standarderror
file. As with predefined file pointers, 2 program may use the predefined file
descriptors withoutexplicitly opening the associated files.

Note ‘that if the standard input and output files are redirected, the system
changes the default assignments for ‘the file descriptorsi0 and 1 to the named
files. This is also true if the input.or output is associated with a pipe. File
descriptor 2normally remainsattached to'the terminal.

2.6.2 Opening a File

The open function opens an existing or a new file and returns a file descriptor
for that file. The function call hasthe form:

fd == open(name, access |;mode] );

where fdis the integer variable to receive thefile descriptor, nameisapointer to
a'string containing the filename, accesais an integer expression giving the type
of file access, .and mode isan integer number giving a new file’s permissions.
The Tunction normally returns a file descriptor {a paositive integer), but will
return-lifanerrorisencountered.

The :access.expression isformed by using one or more of the following manifest
constants::O_RDONLY for reading, O_WRONLY for writing, O_RDWR for both
readingand writing, O_APPEND{or-appending to the endof an existing file, and
O_CREAT for creating s new file. (Other constantsiare described in-open{S) in
the XENIX Reference Manual.) The logical OR operator { | ) may be used to
combine the constants. The mode is required only if O_CREAT is given. For
example, in the following program fragment, the function is used to open the
existing file named fuer/accounts for reading and-open the new file named
Jusr/tmp/acratchfor reading:and writing.

2-26




Using the Standard I/O Functions

int in, out;

in = open( /usr/accounbs” O_RDONLY J);
out = open( /usr/tmp/scratch" O_WRONLY | O_CREAT, 0754 );

In the XENIX system, each file has 9 bits.of protection information which
control read, write, and execute permission for the owner of the file, for the
owner's group, and for all others. ‘A three-digit .octal number is the most
convenient way ‘to specify the permissions. For-example, in'the example above
the octal number “0755 specifies read, write,-and execute permission for the
owner, read and execute permission for the group, and read-everyone €lse.

Note that if O_CREAT is given and the file already exists, the function destroys
the file’s old contents.

2.8.3 Reading Bytes From a File

The read function reads one or more bytes of data from a given file and copies
them:to a given memory location. Thefunction:call hasthe form:

n_read == read(fd, buf, n);

where n_readis the variable to receive the count of bytes actually read, fdisthe
file-descriptor of the file, bufis a pointer:to the memory location to receive the
.bytesread, and n is a count of ‘the desired number of bytesto be read, The
function :normally returns the same number -of bytes as requested, but will
return fewer if the file does not have that many bytes left to be read. The
functionreturns0if the file hasreacheditsend, or-1ifan errorisencountered.

When the file is:a terminal, readnormally reads only up to'the next newline.
The number of bytesto be read is arbitrary. The two most.common valuesare
1, which means one:character at a time, and 1024, which corresponds to the
physicalblock:size on many peripheral devices.

2.6.4 Writing Bytes to a File

The write function writes.one or more bytes from a given memory location'to a
givenfile. Thefunction callhastheform:

n_written == write(fd, :buf, n);
where n_writtenis the variable to receive a count.of bytes actually written, fdis
the file descriptor of the file, bufis the name of the bufler containing the bytesto

be written,and nisthenumberof bytestobe written.

The function always returns the number of bytes actually written. Tt is
considered an error if the return value is not equal to the number of bytes

2-27



XENIX Programmer’s Reference

requested to be written.

The number of bytes to be written is arbitrary. The two most-common values
are 1, which means one character at a time and 512, which correspondsto the
physical block size on many peripheral devices,

2.6.5 Closing a File

The close function breaksthe connection between a file descriptor and an.open
file, and frees the file descriptor for use with some other file. The function call
hasthe form:

close (fd)

where fdis the file descriptor of the file to close. The function normally returns
0, but willreturn-1ifanerrorisencountered.

The function is typically used to close files that are not longer needed. For
example, the following program fragment closes the standard input if the
argument countisgreater thanl,

int fd;

if (arge >1)
close( 0);

Note that all open files in a program are closed when a program terminates
normally -or when the ezit function is called, s0 no explicit call to close is
required.

2.6.6 Program Examples

This section shows how touse the low-level functionsto perform useful tasks. It
presents three examples that incorporate the functions as the sole method of

input and output.

Thefirst program copiesitsstandard input to itsstandard output.

2-28




Using the Standard I/O Functions

f#define BUFSIZE BSIZE
main() /* copy input to output */

char  buf| BUFSIZE |;
int n;

while ((n == read( 0, buf, BUFSIZE }) > 0)
write(1, buf, n);
exit(0);

}

The program-uses the read function to read BUFSIZE bytes from the standard
input {file descriptor 0). It then uses write to write the same number of bytesit
read tothe standard output (file descriptor 1). If the standardinput file size is
notamultiple of BUFSIZE, the last reed returnsa smaller number of bytes.to be
written by write, and the nextcall to readreturnszero.

Thisprogram can be used like a copy command to copy the content of onefile to
another. You can do this by redirecting the standardinputand output files.

The second .example shows how ‘the iread and write functions can be used to
construct higher level functions like getcher and putehar. For example, the
following is aversion of getchar which performsunbufleredinput:

#define CMASK 0377  /»for making chars > 0 ¢/

getchar()/+ unbuffered single character input =/

{

char ¢;
return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);

The variable “‘c” must be declared char, because read accepts a character
pointer. In:this case, the character being returned:must be masked with octal
0377 to ensure that ‘it is positive; otherwise sign extension may make it
negative.

The second version of getchar reads input in large blocks, but -hands out the
charactersoneata time:

2-29



XENIX Programmer's Reference

#define CMASK 0377  /+ for making char’s > 0.2/ L,
#define BUFSIZE BSIZE v ‘:}

getchar()/« buffered version &/

static.char buf[BUF SIZE};
static char sbufp = buf;
static intn = 0;

if'(n====0){ ./ buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf; _

} .
y return{(--n >=0) ? #bufp++ & OMASK : EOF);

Again,eachcharacter must’be masked with the octal constant 0377.

The final example is a:simplified version of the XENIX utility;.¢p, a program
that copies-one file to another. The main simplification is that this version
copiesonly onefile, and does not permit the secondargument tobe a-directory.

k)
@
i

##define NULL-0
#define BUFSIZE BSIZE
#define PMODE 0644 /= RW for owner, R for group, others +/

main(atgc, argv) /*.cp:.copy fl to f2¢/
int arge;

char sargv[};

{

int f1, 12, n;
char  buf[ BUFSIZE };

if {arge 1= 3)
error("Usage: c¢p from to”, NULL);
if ((f1 = open{argv[l], O_RDONLY)) === -1)
error{"cp: can’t open %s", argvll]);
if ((f2 = open(argv[2], O_CREAT | O_WRONLY,
PMODE)) == 1)
error("cp: can’t create %s”, argv(2]);

while {(n == read(f1, buf, BUFSIZE)} > 0)
if {write(f2, buf, n) !=n)
error(”cp: write error”, NULL);

exit(0);

2-30



Using the Standard I/O Functions

error(sl, s2) /* print error message and die */
char #sl, #s2;

printf(sl, s2);
printf{"\n"});
exit(1);

There is a limit (usually 20) to the number of files that a program may have
open simultaneously. Therefore, any program which intends to process:many
files must be prepared toreuse file descriptors by closing unneeded files.

2.8.7 Using Random Access I/O

Input and output operations on any file are normally sequential. ‘This means
each read or write takes place at the character position immediately after the
last character read or written. ‘The standard library, however, provides a
number of stream and low-level functions that allow.a program to accessa file
randomly, that s, to exactly specify the position it wishesto read from or write
tonext.

The functions that provide random access operate :on a file’s “‘character
pointer”. Every open file has a character pointer that points to the next
character to be read from that file, .or the next place in the file to receive a
character. Normally, the character pointer ismaintained andcontrolled by the
system, but the random access functionslet a program move the pointer to any
positionin the file.

2.6.8 Moving the Character Pointer

The lseek function, a low-level function, moves the character pointer-in a file
opened for low-level access toagiven position. The function call hasthe form:

Iseek(fd, offsct, origin);
where fdis thefile descriptorof the file, offsetis the number of bytes tomove the
character pointer, and originis the number that givesthe starting point for the
move. It may be'0 for the beginning of the file, 1.for:the current position, and 2
for theend.

For example, this call forces the current position in the file whose descriptoris 3
to'movetothe 512th byte from the beginning of the file.

Iseek( 3, (long)512,0 )

Subsequent reading or writing will begin at that position. Note that offset must
bealonginteger and fdand origin must beintegers.

2-31



XENIX Programmer’s Reference

. The function may be used to move the character pointer to-the endof a file to
allow appending, or ‘to the beginning as'in a rewind function. Forexample, the
call

Iseek(fd, (long)o, 2);
preparesthe filefor appending, and
Iseek(fd, (long)0, 0);

rewinds the file (moves the ‘character pointer to the beginning). Notice the
“‘(long)0” argument; it could also be written as

0L

Using lseekit is possible totreat filesmore or less like large arrays, at the price
of slower access. For.example, thefollowingsimple function readsany number
of bytesfrom anyarbitrary placein afile:

get(fd, pos, buf, n) /+ read n bytes from position pos */
int fd, n;

long pos;

char #buf;

lseek(fd, pos, 0); /= get to pos #/
return(read(fd, buf, n});

2.6.9 Moving the Character Pointer in a Stream

The fseekfunction, astream function, movesthe character pointerinafiletoa
givenlocation, The function call hasthe form:

fseek (stream, offset, ptrname)
where stream is the file pointer of the file, offeet is the number of charactersito
move tothe new position (it must be alonginteger), and ptrnameisthe starting
position in the file of the move (it.must be *‘0” for beginning, *‘1”, for current
position, or **2" for end of thefile). The function normally returnszero, but will
return the value EOF if an-error isencountered.

For example, the following program fragment moves-the character pointer to
the end of the file given by *‘stream.

FILE #stream;

fseek(stream, (long)o, 2);

2-32

?




Using the Standard I/O Functions
The function may be used on either buffered orunbuffered files.

2.6.10 Rewinding a File

The rewind function, :a stream function, moves the character pointer to the
beginning of a given file. The function call hastheform:

rewind (streem)

where stream is the file pointer of ‘the file. The function is equivalent to the
following function-call

fseek (stream,0L;0);

Itis chiefly used as a more readable version of the call.

2.6.11 Getting the Current Character Position
The ftell function, a stream function, returns the current position of -the
character pointer in the given'file. The returned position is always relative to
the beginningof the file. The function call hasthe form:

p == ftell (stream)
where stream is the file pointer of the file and piis the variable to receive the
position. The return value is always along integer. The function returnsthe
value-1ilanerrorisencountered.
The function is typically used to'savethe current location in:the file so that the
program can later return to that position. Forexample, the following program
fragment first savesthe current character position'in “oldp”, then restores the
file tothis position if the current character position is greater than *800",

FILE soutfile;
long oldp;

oldp = ftell{ outfile );

if ((ftell( outfile )) > 800)
fseek{outfile, oldp, 0);

The ftellisidentical to thefunctioncall
Iseek( 1d, (long)o, 1)

where fdisthe file descriptorof thegivenstream file.

2-33






Chapter 3
Screen Processing

3.1 Introduction  3-1
3.1.1 ScreenProcessingOverview 3-1
3.1.2 UsingtheLibrary 3-2

3.2 PreparingtheScreen  3-4
3.2.1 Initializingthe Screen  3-4
3.2.2 Using Terminal Capability and Type 3-5
3.2.3 Using Default Terminal Modes 3-5
3.2.4 UsingDefault WindowFlags 3-6
3.2.5 Using theDefault Terminal Size 3-6
3.2.6 Terminating ScreenProcessing 3-6

3.3 Using the Standard Screen  3-7
3.3.1 AddingaCharacter 3-7
3.3.2 AddingaString 3-8
3.3.3 Printing Strings, Characters, and Numbers 3-8
3.3.4 Readinga Character From the Keyboard 3-9
3.3.5 ReadingaString FromtheKeyboard 3-9
3.3:6 Reading Strings, Characters, and Numbers 3-10
3.3:7 Movingthe Current Position 3-11
3.3.8 InsertingaCharacter 3-11
3.3.9 InsertingaLine 3-11
3.3.10 Deleting a Character 3-12
3.3.11 Deletingaline 3-12
3.3.12 Clearing the Screen  3-13
3.3.13 Clearing aPart of the Screen  3-13
3.3.14 Refreshing From the Standard Screen 3-14

3.4 Creating and Using Windows 3-14
3.4.1 CreatingaWindow 3-14
3.4.2 CreatingaSubwindow 3-15
3.4.3 Addingand Printing toa Window 3-16
3.4.4 ReadingandScanningforInput 3-17
3.4.5 Movinga the CurrentPositionina Window 3-19



3.4.6 InsertingCharacters 3-19

3.4.7 Deleting CharactersandLines 3-20

3.4.8 Clearingthe Screen 3-21

3.49 RefreshingFromaWindow 3-22

3.4.10 Overlaying Windows 3-23

3.4.11 OverwritingaScreen 3-23

3.4.12 Movinga Window 3-24

3.4.13 Reading a CharacterFroma Window 3-24
3.4.14 Touching aWindow 3-25

3.4.15 Deleting 2 Window 3-25

Using Other Window Functions 3-26

3.5.1 DrawingaBox 3-26

3.5.2 Displaying Bold Characters 3-26

3.5.3 Restoring Normal Characters 3-27

3.5.4 Gettingthe CurrentPosition 3-28

3.5.5 Setting WindowFlags 3-28
3.5.6 ScrollingaWindow 3-29 ;

Combining Movement With Action 3-30

Controlling the Terminal 3-30

3.7.1 Settinga Terminal Mode 3-30

3.7.2 Clearinga TerminalMode 3-31

3.7.3 Movingthe Terminal’s Cursor 3-32

3.7.4 Getting the Terminal Mode :3-32

8.7.5 Savingand Restoring the Terminal Flags 3-33
3.7.6 SettingaTerminal Type 3-33

3.7.7 Readingthe TerminalName 3-33



Screen Processing

3.1 Introduction

This chapter explains how to use the screen ‘updating 2nd cursor movement
library named curses. The library provides functions to create and update
screen windows, get input from the ‘terminal in‘a screen-oriented way, and
optimize the motion of the:.cursor onthe screen. :

3.1.1 Screen Processing Overview

Screen processing gives a program a simple ‘and efficient way to use the
capabilities of the terminal attached to the program’s standard input and
output files. Screen processing doesnot rely on the terminal’stype. Instead the
screen processing functions use the XENIX. terminal capability file
[ete[termeap to tailor their actions for any given terminal. This makes a
screen processing program terminal-independent. The program can be run
withany terminal aslong asthat terminal is describedin the fete/termeapfile.

‘The screen processing functions access a terminal screen by working through
intermediate “‘screens” and “‘windows” in memory. A screen is a
representation of what the entire terminal sereen should look like. A window'is
arepresentation of what some:portion of the terminal screen should look like.
Ascreen-can be madeup of oneormore windows. A window ¢canbe assmallasa
single character or aslargeas anentirescreen. .

Before a screen or window can be used, it must be created by using the newwin
or -subwin functions. These functions-define the size of the screen or window in
termsof lines and columns. Each position in a screen or ‘window represents a
place for-a single character and corresponds to a similar place-on the terminal
screen. Positionsare numbered according toline and column. For example, the
positionin the upper left corner of ascreen or windowisnumbered (0,0) and the
position immediately to its right is (0,1). A typical screen has 24 lines'and 80
columns. Its upper left corner corresponds to the upper left corner of the
terminal screen. A window, on the other hand, may be any size (within the
limits of the actual screen). Its upper left corner can correspond to any position
on the terminal screen. For convenience, the initscrfunction which initializesa
program for screen processing also creates a -default screen , stdscr (for
“standard screen”). The stdser may be used without first creating it. The
function also creates curser (for “current screen™) which contains a copy of
whatis currently onthe terminalscreen.

To display characters at the terminal screen, a program must write these
characters to a screen or window using screen processing functions such as
addch and waddch. If necessary, a program canmoveto the desired position in
the screen or window by using the move and wmove functions. Once characters
are-added to.a screen or window, the program c¢an copy the characters to the
terminal :screen by ‘using the refresk or wrefresh function. These functions
update the terminal screen according to what has changed in the given screen
or window. Since the terminal screen is not changed until a program calls

3-1



refresh.or wrefreek, a program can maintain several different windows, each
containing different characters for the same portion of the terminal screen.
The program can choose which ‘window should actually be displayed before
updating.

A program-cancontinuetoadd new characterstoascreenor windowasneeded,
and edit these characters by using functions such ‘as insertln, deleteln, and
clear. A program canalso combine windows to:make a:composite screen using
the .overlay and overwrite functions. In each ‘case, the refreeh or wrefresh
functionisused to copy the changes'to the terminalscreen.

3.1.2 Using the Library
Tousethecurseelibraryinaprogram,youmustadd the line

#include <curses:h>

to ‘the beginning of your program. The curses.k file contains definitions for
typesand variables used by the library.

The actual screen processing functions are in the library files libcurses.a and
libtermcap.a. These files are not-automatically read when you compile your
program, so you ‘must include the :appropriate library switches in your
invocation of the.compiler. The command line:must have theform:

cc file ... <Icurses -ltermcap
where file is the name of the source file you wish to compile. You may given
more than one filename if desired. You may also use other.compiler optionsin
the.commandline. Forexample, the command

cc-main.c intf.c <leurses -ltermeap -0 sample

compiles the files matn.c and ¥ntf.c, and copies:the executable program to the
file sample after linking the sereen'processing library files to the program.

Note ‘that the curses.h file automatically includes the file sgtty.% in your
program. Thisfile must-not beincludedtwice.

The screen processing library has avariety of predefined names. These names

refer ‘to variables, manifest constants, and types that can be used with the
library functions. The followingisalist of these names.

3-2

b
3




Screen Processing

Variables
Type Name Description
WINDOW=  curscr A pointer to the current versionof the
terminal screen.
WINDOW=  stdscr A pointer to the default screen used
for updating when no explicit screen
| isdefined.
char Def_term A pointer to the default terminal type
if the type cannot be determined.
bool My_term  The terminal type flag. If set, it
causes ‘the terminal specification ‘in
“Def_term" to be used, regardless of
the real terminal type.
char ttytype A pointer ‘to ‘the full name of the
current terminal.
int LINES Thenumberof lineson the terminal.
int COLS The number ‘of columns on ‘the
terminal.
int ERR Theerror flag. Returned by functions
onanerror.
int OK The okay flag. Returned by functions

onsuccessful operation.

3-3



Typesand:Constants

Name Description

reg A storage class. It is the same as
register storage class.
bool Atype. Itisthesameachar type.

TRUE  Theboolean'true value(1).
FALSE Theboolean false value(0).

3.2 Preparing the Screen
The tnitscrand endwin functions perform the operationsrequired to initialize

and terminate programs that use the ‘screen processing functions. The
following sections describe these functions and how they affect the terminal.

3.2.1 Initializing the Screen
The tritscr function initializes screen processing for a program by allocating
the required memory space for the screen processing functions and variables,

and by setting the terminal to the proper modes. The function call has:the
form:

initser()
Noargumentsarerequired.
The tnitscr function must be used to prepare the program for subsequent calls
to other screen processing functions and for .use ‘of the screen processing
variables. For example, in the following program fragment initscr initializes
the screening processing functions.

#include <curses.h>

main ()

initscr();

if ( cmpstr{ttytype,”dumb") )
fprintf(stderr, " Terminal type can’t display screen.”);

In this.example, the predefined variable “‘ttytype” is checked for the current
terminaltype.

The function returns(WINDOWs+) ERR if memory allocation causesan overflow.

3-4

b

i



Screen Processing

3.2.2 Using Terminal Capability and Type

The snitecr function ‘uses the terminal capability descriptions given ‘in the
XENIX system’s fetc/termeap file to prepare the screen processing functions
for creating -and wupdating terminal screens. The descriptions define the
character sequences required to perform a given.operation on a given terminal.
These sequences are used by the ‘screen processing functions to add, insert,
delete, and move characters on the screen. The descriptions are automatically
read from the file when screen processing is initialized, so direct access’by a
program isnotrequired.

The fnitscr function uses the shell’s “TERM” variable to determine ‘which
terminal capability description to use. The “TERM" variable is ‘usually
assigned an identifier when & user logsin. Thisidentifier defines the terminal
type and is ‘associated with a terminal capability description in the
Jete/termeapfile.

If the “TERM” variable has no value, the functions use the default terminal
type in the library’s predefined variable “Def_term”. This variable initially
hasthe value ‘““dumb” (for ‘‘dumb terminal”’), but the user may change it to any
desired value. This must be done before calling the fnitscr function.

In some cases, it is desirable to force the screen processing functions to use the
default terminal type. This can be done by setting the library’s predefined
variable ““My_term” to the value 1. The full name of the current:terminal is
stored in the predefined variable “ttytype.

Terminal capabilities, types, and identifiers are described in detail in
termeap(F) in the XENIX Reference Manual.

3.2.3 Using Default Terminal Modes

The ¢nitscr function automatically sets-a terminal to default operation modes.
These‘modes define how the terminal displays characters sent to the screen and
how it responds to characters typed at the keyboard. The fnitscr function sets
the terminal to ECHO mode which causes characters typed at the keyboard to
bedisplayed atthe screen, and RAW mode which causes characterstobe used as
direct input (noeditingorsignal processing is done).

The default terminal modes can be changed by using theappropriate functions
described in the section “Setting a Terminal Mode” in this chapter. If the
modes are changed, they must be changed immediately after calling initscr.
Terminal modes ‘are described in detail in tty(M) in the XENIX Reference
Manual.

35



Note

The terminal mode functions should only be used in conjunction with
other screen processing functions. They should not be used alone.

3.2.4 Using Default Window Flags

The snstscr function automatically clears the cursor,scroll, and clear flagsof
the standard screen to their default values. These flags, called the window
flags, define how the refresh function affects the terminal screen when
refreshing from the standard screen. When ¢clear, the cursor flag preventsthe
terminal’s cursor from moving back to its-original location after the screen is
updated, the scroll flag prevents scrolling on the screen, and the clear flag
prevents the charactersonthe screen from being cleared before being updated.
The flags may be changed by ‘using the functions described in the section
“Setting WindowFlags,” in this chapter.

3.2.5 Using the Default Terminal Size

The snitsc# function sets the terminal screen size to a default number of lines
and columns. The default valuesaregiveninthe predefined variables'LINES”
and ‘“COLS". You can change the default size of a terminal by setting the
variables to.new values. This should be done before the first.call to initscr. Ifit
is done after the first call, a second call to initscr must be made to delete the
existing standard screen and create a new one.

3.2.8 Terminating Screen Processing

The endwinfunction terminates the screen processingin a program by freeing
all ‘memory ‘resources allocated by the screen processing functions .and
restoring the terminal to the state before screen processing began. The
function-callhastheform:

endwin(}
Noargumentsare required.
The endwin function must be used before leaving a program that has called the
tnitecr function to restore the terminal to its previous state. The function is
generally the last function call in the program. For example, in the following

program fragment snttscr and -endwin form the beginning and end of the
program.

3-8

J



Screen Processing

#tinclude < curses.h>

main ()

initser();
/* Program body. ¢/
endwin();

Note that endwin must not be called if inétsc rhasnot been called. Also, endwin
should be called before any call to the ezit function. The endwin function must
also be called if the gettmode and setterm functions have been called even if
initscrhasnot.

3.3 Using the Standard Screen

The following sections explain how to use the standard screen to display and
edit characterson the terminal screen.

3.3.1 Adding a Character

The :addch function adds a given character to the standard screen-and moves
the character pointer one position to the right. Thefunctioncall hias the form:

addch( ch )

where ‘ch gives the character to be added and must have char type. For
example, if the current positionis(0,0), the funetion call

addch(’A’)
placesthe letter “*A’ at this position and movesthe pointer to(0, 1).

If anewline (*\n’) character isgiven, the function deletesall charactersfromthe
current position to the end of the line and moves the pointer.one line down. If
the newline flag is set, the function deletes the characters and moves the
pointer to.the beginning of the next line. If a return ("\r’) is given, the function
moves:the pointer:to the beginning of the currentline. If a tab ("\t')isgiven, the
function moves the pointer to the next tabstop, addingenough spacés to fill the
gap between the current position and the stop. Tab stops are placed at every
eight character positions.

The functionreturns ERR if itencountersanerror, such asillegal scrolling.

3-7



3.3.2 Adding a String

The addstr function adds astring of characters to the standard screen, placing
the first character of the:string at the current position and moving the pointer
one'position to the right for each character in the string. The function call has
the form:

addstr( str )

where stris a character pointer to the givenstring. For example, if the current
positionis(0,0), the function call

addstr{"line”);

places the beginning of the string “‘line” at-this position and moves the pointer
to0(0,4).

If the string contains newline, return,or tab characters, the function performs
the same actions as described for the addehfunction. Ifthe string doesnot fiton
the current line, the string istruncated.

The function returnsERR if it encounters anerror such asillegal serolling.

3.3.3 Printing Strings, Characters, and Numbers

The printw function printsone or more valueson the standard screen, where a
value may be astring, a character, or adecimal, octal, or hexadecimalnumber.
The function callhasthe form:

printw( fmt |, arg]...)

where fmtisa pointer toa string that defines the formatof the values, and argis
a value to be printed. If more than one arg is given, each must be separated
from the preceding argument with a comma<{,). For each arggiven, there must
be a corresponding format given in fmt. A format may be *%s” for string,
“9%c" for character, and “%d"”, “%o”, or *%x" for a decimal, -octal, or
hexadecimalnumber, respectively. (Otherformatsare described in printf(S)in
the XENIX Reference Manual }1f*%s” is given, the corresponding arg must be
a character pointer. For other formats, the ‘actual value or a ‘variable
containing the value may be given. )

The function is:typically used to copy both numbers and strings to the standard
screen at the same time. For example, if the ‘current position is (0,0), the
functioncall

printw{"%s %d", name, 15);

prints the name given by the variable “name” starting at position (0,0).1t then

3-8




Screen Processing

rintsthenumber*‘15” immediately after the name.
P

The function returnsERR if itencounters an error such asillegal scrolling.

3.3.4 Reading a Character From the Keyboard

The getch function reads a single character from the terminal keyboard and
returnsthe character asavalue. Thefunction.callhasthe form:

¢ = getch()
where cisthe variabletoreceive the character.

The function is typically used to read a series of individual characters. For
example, in the following program fragment, characters:are read and stored
until-a newline or the end of the file is encountered, or until the buffer size has
been reached.

char ¢, p[MAX];

int i;

i=0;
while ((c=getch(}))!="\n" && ¢ 1=EOF && i <MAX)
plit+] =:¢;

If the terminal is set to ECHO mode, getch copies the character to the standard
screen; otherwise, the screen remains unchanged. If the terminal is not set to
RAW .or NOECHO ‘mode, getch automatically sets the terminal to CBREAK
mode, then restores the previous mode after reading the character. Terminal
modes are described later in the chapter.

Thefunction returnsERR if itencounters anerror suchasillegal serolling.

3.3.5 Reading a String From the Keyboard

The getstr function reads a string of characters from the terminal keyboard
and copies the string toagiven location. The function callhasthe form: -

getstr( etr)

where stris a character pointer to the variable or location to receive the string.
When typed at the keyboard, the string must end with:a newline character or
with the end-of-file character. The extra character is replaced by a null
character when ‘the string is stored. It is:the programmer’s responsibility to
ensurethat strhasadequate space to store the typedstring.

The function istypically used to read names.and other text fromthe keyboard.
For example, in the following program fragment, reads a filename from-the

3-8



keyboard and storesitinthe array “name”.
char name[20}];
getstr (name);

If the terminal is set to ECHO mode, getstr copies the string to the standard
screen. I the terminal is not set to RAW .or NOECHO mode, the function
automatically sets the terminal to. CBREAK ‘mode, then restoresthe previous
mode after reading the character. Terminal modes are described later in the
chapter.

The function returnsERR if it encountersanerrorsuchas illegal scrolling.

3.3.6 Reading Strings, Characters, and Numbers"

The scanwfunction reads one or more values from the terminal keyboard and
copies the values to given locations. ‘A value may be a string, character, or
decimal, octal, or hexadecimal'number. The function-call hastheform:

scanw( fmt, argptr...)

where fmt is a pointer to a string defining the format of the valuesto'be read,
and argptrisapointer tothe variable toreceiveavalue. I morethanone argptr
is given, each mustbe separated from the preceding item with a.commaf,). For
each argptrgiven, there must be a corresponding formatgivenin fmt. Aformat
may be**%s" for string, “%¢” for.character, and “%d", “%0", or “%x” for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in ¢ anf(S) in the XENIX Reference Manual.)

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment scanw
readsanameandanumber fromthekeyboard.

char ‘name[20];
int id;

scanw(”%s %d”, name, &id);

In this-example, the input valuesare stored in the.character array “name” and
the integer variable“‘id”.

If the terminal is set to ECHO ‘mode, the function copies ‘the string to the
standard screen. If the terminal is not set to RAW or NOECHO mode, the
function automatically sets the terminal to CBREAK mode, then restores the
previousmode after reading the character.

The function returnsERR if itencountersanerror such asillegal scrolling.

3-10




Screen Processing

3.3.7 Moving the Current Position

The move function moves:the pointer to-the given position. The function call
hasthe form:

move (y, z)
where yisaninteger value giving the new row position, and zis aninteger value
giving the new column position. For example, if the current position is (0,0),
the function call

move(5,4)

movesthe pointer toline 5, column 4.

The function returns ERR if it encountersan error such asillegal scrolling.

3.3.8 Inserting a Character

The tnech function inserts a character at the current position and.shifts the
existing character (and all characters to its right) one position to the right. The
function call hasitheform:

insch:( ¢)
where ¢isthe character to beinserted.
The function is typically used to insert aseries of characters into an existing
line. For example, in the following program fragment inschis used to insertthe
number of characters given by “‘ent” into the standard screen a the current

position.

int cnt;
char #string;
while (entt=0) {

insch(stringfent]);
ent--;

The function returnsERR ifit encounters anerror such asillegal scrolling.
3.3.9 Inserting a Line
The insertln function inserts a blank line at the current position and moves the

existing line {and all lines below it) down one line, causing the last line to move
fithe bottom of the screen. The functioncalthas the form:

3-11



insertln()
No arguments-are required.
The Tunction is-used ‘to insert additional lines of text in:the standard screen.
For example, in the following program fragment insertln is used to insert a
blank line when the countin‘‘cnt” isequal to 79.

int -cnt;

if (ent == 79 )
insertln();

The function returns ERR if it encountersan error such asillegal scrolling.

3.3.10 Deleting a Character
The delch function deletes the character :at the current position and shifts the
character to the right of ‘the deleted character {and all charactersto its right)
one position to the left. The last-character on the line is replaced by a space.
The function callhasthe form:

delch()
Noargumentsarerequired.
The function istypically-used to-delete aseries of charactersfrom the standard
screen. For éxample, in the following program fragment delch deletes the
character at:the.current position aslong asthe countin “cnt’ isnot 0.

int ent;

while (ent =07 {

delch();
ent-- ;

3.3.11 Deleting a Line
The deleteln function deletes the current line and shifts the line below the
deleted line (and all lines below it} one line up, leaving the last line on the screen
blank. The function call hasthe form:

deleteln()

Noargumentsare required.

3-12

e



Screen Processing

The deletelr function is used to delete existing lines from the standard screen.
For example, in the following program fragment deleteln isusedto.delete.aline
from the standard screen'if the count in ““¢nt’ is 79.

int cnt;
if (ent ==179)
deleteln();
3.3.12 Clearing the Screen
The clear and €rase functions clear all characters from thestandard screen by
replacing them with spaces. The functions are typically used to prepare the
screen for new text.
The clear function clears all characters from the standard screen, moves the
pointer to {0,0), and sets the standard screen’s:clear flag. The flag causes the
next.call to the refresh functionto:clear all.characters from the terminal screen.
The erase function clears the standard screen, but does not set the clear flag.
For.example, in the following program fragment clear clearsthe screen if the
input valueis 12.
char ¢;
if ((c=getch()) == 12)
clear();
3.3.13 Clearing a Part of the Screen
The clrtobot and clrtocol functions clear one or more characters from the
standard screen by replacing the characters with spaces. ‘The functions are

typically used:to prepare apartof the standardscreen for new characters.

The elrtobot function clears the screen from the-current positionto the bottom
of the screen. For example, if the current position'is (10,0), the function call

clrtobot();
clearsall characters'from line 10 and alllines below line 10.
The clrtoeol function clears the standard screen from the current position to
the end of the current line. For example, if the current position is (10,10), the

function call

clrtoeol();

3-13



clearsall.characters from (10,10):to (10,79). The charactersat the beginningof
the lineremainunchanged.

Note that both the clrtobot and clrtoeol functions do not change the current
position.

3.3.14 Refreshing From the Standard Screen

The refresh function updates the terminal screen by copying one or more
characters fromthe standard screen to the terminal. The function effectively
changes the terminal screen to reflect the new contents of the standard:screen.
The function callhasthe form:

refresh()
No.argumentsare required.
The function is -used solely to display changes to ‘the standard screen. The
function copies only those characters that have changed since the last.call to
refresk and leavesany existing text.on the terminal screen. Forexample,inthe
following program fragment refreshis called twice.

addstr(" The first time.\n");

refresh();

addstr{" The second time.\n");

refresh();
In thisexample, the first.call to refresk copies the string “The first time.” tothe
terminal screen. The second call copies-only the string “The second time.” to
the terminal, since theoriginal stringhasnot been changed.

The function returns ERR if it encounters an error such asillegal scrolling. If an
error isencountered, the function attemptsto update as:much-of the screenas
possible without causing the seroll.

3.4 Creating and Using Windows

The following sections explain how to create and use windows to display and
edit:text-on theterminalscreen.

3.4.1 Creating a Window

The newwinfunction creates a window and returns-a pointer that may be used
in'subsequent screen processing functions. “The function call hasthe form:

win = newwin( linee, cols, begin_y, begin_z )

3-14

o

e



Screen Processing

where winis the pointer-variable to receive the returnvalue, ¥ines and cols are
integer values that give the total number of lines and columns, respectively, in
the window, and begin_y-and begin_z are integer values'that give the line and
column positions, respectively, of ‘the upper left corner of the window when
displayed on the terminal screen. The win variable must have type

WINDOW=.,

The function is typically used in programs that maintain a set of windows,
displaying different windows at different times or alternating between window
as needed. For example, in the following program fragment newwin creates a
new window and assigns the pointer to this window tothe variable midscreen.

WINDOW #midscreen;
midscreen = newwin(5, 10, 9, 35);

The window has 5 lines:and 10 columns. Theupper left corner of the window is
placedat:the position (9,35) on the terminal screen.

If either lines or coleis zero, the function automatically creates a window that
has “LINES - begin_y" lines or “COLS - begin_z" columns, where “LINES"
and “‘COLS" are the predefined constants giving the total number of lines and
columns.on the terminal screen. Foriexample, the function call

newwin(0, 0,0, 0)

creates a new window whose upper left-corner is at position (0,0):and that has
“LINES" lines’and ““COLS” columns.

Note

You must not ccreate windows that exceed the dimensions of the actual
screen.

The ‘newwin Tunction returns the value (WINDOW+) ERR 'on an error, such as
insufficient memory for thenew window.

3.4.2 Creating a'Subwindow

The :subwin function creates a subwindow and returns a pointer to the new
window. A subwindow is a window which shares-all or part of the character
spaceof another window and providesan alternate way to accessthe characters
inthat:space. The functioncallhastheform:

3-15



swin == subwin( win, lines, cols, begin_y, begin_z)

where swinisthe pointer-variable to receive the return value, win isthe pointer
to the window to contain the new subwindow, lines and colsare integer values
that give the total number of lines and columns, respectively, in ‘the
subwindow, and begin_yand begin_z are integer values that give the line and
column position, respectively, of the upper left corner of the subwindow when
dislayed ‘on the terminal screen. The swin variable must have type

WINDOW =,
The function is typically used to divide a large window iinto separate regions.

For example,in thefollowing program fragment subwin createsthe subwindow
named “cmdmenu” in the lower partof the standard screen.

WINDOW #*cmdmenu;
emdmenu == subwin(stdser, 5, 80, 19, .0);
In:this exam;.).le, changesto ““cmdmenu’ affect the standard:screen a.s well.
The subwin function returns the value (WINDOWSs) ERR on an error, such as
insufficient memory for the new-window.
3.4.3 Addingand Printing to a Window

The waddch, waddstr, and wprintwfunctions add and print characters, strings,
andnumbers to a given window.

The waddehfunction addsagiven character tothe given windowand movesthe
character pointer one position to the right. Thefunction call has the form:

waddch( win, ch)
where winisa pointer to the window toreceive the character, and ch gives:the
character to be added; ch must have char type. For example, if the current
position inthe window “‘midscreen” is{0,0), the function call
waddch{midscreen, *A’)
placestheletter ““A’ at this position and moves the pointer to (0,1).
The waddstr function adds a string of characters:to the given window, placing
the first character of the string at the current position:and moving the pointer
one position to the right for each character in'the string. The function call has

the form:

waddstr( win, str )

where winis a pointer to the window to receive the string, and strisacharacter.

3-18

)

o



Screen Processing

pointer to the given string. For example, if the current position is(0,0), the
function.call

waddstr(midscreen, "line”};

places the bkeginning of the string ‘‘line” at this position and moves the pointer
to (0,4).

The wprintw function prints.one:or. more valueson the given window, where a
value may be a string, a character, or a decimal, octal, or hexadecimal number.
The function call hastheform:

wprintw{ win, fmt |, arg]...)

where win is a pointer to the window to-receive the values, fmt is'a pointer to a
string that defines the format of the values, and argisa value to be printed. If
more than one arg is given,each must be separated from the preceding witha
comma {,). For each arg given, there must be a corresponding format givenin
fmt. Aformatmay be ‘“%s" for string, “%c" for character, and “%d", “%o",
or “%x" for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described in printf(S) in the XENIX Reference Manual.)If “%s" is
given, the corresponding arg must be.a character pointer. For other formats,
the actual valueor avariable containing the value may be given.

The function is typically used to copy both numbersand stringsto the standard
screen at the same time. For example, in the following program fragment
wprintw printsa name and then the number *“15” at the current position in'the
window “midscreen”.

char ‘*name;

wprintw(midscreen, "%s %d", name, 15);
Note that when a newline, return, or tab character is given to a waddch,
waddstr, ‘or wprintw function, the functions perform ‘the same actions as
described for the addck function. The functions return ERR if they encounter
errorssuchasillegal scrolling.
3.4.4 Reading and Scanning for Input
The wgeteh, ‘wgetstr, and -wscanw functions read characters, strings, and
numbers from the standard input file and usually echo the values by copying

them tothe given'window.

The wgetch function reads a single character from the standard input file and
returnsthe character asavalue. Thefunction call hastheform:

¢ == ‘wgetch( win )

317



where winisa pointer to a window, and ¢isthe character variable toreceive the
character.

The function is typically used to read aseries of charactersfrom-the keyboard.
For example, in the following program fragment wgetch reads charactersuntil
acolon(:)isfound.

char ¢, dir[MAX];

int ;

i =0
while ((c=wgetch{cmdmenu)) 1= " && i <MAX)
dirfi++] = ¢;

The bgctotr function readsa string of characters from the terminal keyboard
and copiesthe string to a givenlocation. The function call hasthe form:

wgetstr( win, str )

where winis a pointer to:a window, and strisa character pointer to the variable
or location to receive the string. When typed at the keyboard, the string must
end ‘with a newline :character ‘or with the end-of-file character. The ‘extra
character is replaced by a null character when the string lis stored. It is the
programmer’s responsibility to ensure that str has adequate space for storing
the typed string.

The function is typically used to read.namesand other text from the keyboard.
For example, in'the following program fragment wgetstrreadsa string from the
keyboard andstoresit in thearray “filename”.

char filename[20];
wgetstr(cmdmenu, filename);

The wecanw function reads.one or more values fromthe standardinput file and
copiesthe values to given locations. A value may be a string, a character, ora
decimal, octal, or hexadecimal number. The function callhastheform:

wscanw( win, fmt |, argptr] ... )

where win is:a pointer to a window, fm¢ is a pointer to a string defining the
format of the valuesto be read, and argptris a pointerto the variable toreceive
a value. If more than one argptr is given, each must be separated from the
preceding by a comma{(,). For each argptrgiven, there must bea corresponding
formatgivenin fmt. Aformat may be “%s’ for string, “%¢" for character, and
“%d”, “%o0", or “%x" for a decimal, octal, or hexadecimal number,
respecti\sely. (Other formatsare described in scanf(S) in the XENIX Reference
Manual.

3-18



Screen Processing

The function is typically used to read a combination of strings and numbers
from-the keyboard. For example, in the following program fragment wscanw
readsanarme and anumber from the keyboard.

char name|[20};
int id;

wscanw{midscreen, " %s %d”, name, &id);

In this example, the name is stored in the character array “name” and ‘the
number in the integer variable*‘id”. .

If the terminalis:set to ECHO mode, the function copies the string to the given
window. If the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previous
mode after reading the character.

The functionsreturn ERR if they encounter errorssuchasillegal scrolling.

3.4.5 Moving a the Current Position in a Window

The wmove function ‘moves the current ‘position in a given window. The
function call has the form:

wmove (win, y, z)
where win is a pointer to a window, y is an integer value giving the new line
position, and zisan integer value giving the new column position. Forexample,
the function call

wmove(midscreen, 4, 4)

movesthe current positionin the window “midscreen” to(4,4).

The function returnsERR if it encountersanerror such asillegal scrolling.

3.4.8 Inserting Characters

The winsch and winsertln functions insert characters and lines into a given
window.

The winsch function inserts a character at the current position and shifts the
existing character:{and all.characters to its right) one position to the right. The
functioncall has the form:

winsch (‘win, ¢ )

where winisa pointer toawindow, and cisithe character to beinserted.

3-18



The function is typically used to-edit the contents of the given window. For
example, the function call

winsch(midscreen, 'X’);
inserts the character “X""at'the current positionin the window “midscreen”.
The winsertin function inserts a blank line at the current position and moves
the existing line (and all lines below it} down-one line, causing thelast line to
moveoff the bottom of the screen. The function.call hasthe form:

winsertIn( win }
where winisapointertothe-window toreceive the blank line.
The function is'used to insert linesinto a window. For example,in the following
program fragment winsertln inserts a blank line at the ‘top of the window
“e¢mdmenu’ preparingit for anewline,

char line[80};

wmove(cmdmenu, 3, 0);

winsertin{cmdmenu);

waddstr(¢cmdmenu, line);

Bothfunctionsreturn ERR if they encountererrors such-asillegal scrolling.

3.4.7 Deleting Characters and Lines

The wdelck and wdeleteln functions delete characters and lines from the given
window.

The wdelehfunction deletesthe character at the current:position:and shifts the
character to the right of the deleted character (and all characters to'its right)
one position to the left. The last character-onthe line is replaced with a space.
The function.callhasthe form:

wdelch( win )

where winis a pointer toa window.

The function is typically used to edit the contents.of the standard screen. For
example, the function call

wdelch(midscreen);

deletesthe character atthe current position in'the window**midscreen”.

3-20




Screen Processing

The wdeleteln function deletes the -current line and shifts the line below the
deleted line (and alllines below it) one line up, leaving the last line in the screen
blank. The functioncall hasthe form:

wdeleteln( win )
where winis a pointer toa window.
The function is typically used to delete existing lines from a given window. For
example, .in the following program fragment wdeleteln deletes ‘the lines in
“midscreen’ until“cnt’ is equal to zero.

int -cnt;

while (-ent 1=0 ) {

wdeleteln(midscreen);
ent--; g

3.4.8 Clearing the Screen
The welear, werase, welrtobot, and welrtoeol functions clear all.or part of the
characters from the given window by replacing them with spaces. The
functions are typically used toprepare the windowfor new text.
The welear function clears all characters from the window, moves the pointer
to (0,0), and sets the standard screen’s clear flag. The flag causes the next
refresh function call to clear all characters from the terminal screen. The
function.call hasthe form:

welear( win )
where winisthe windowtobecleared.
The werase function clears the given window, moves the pointer to (0,0, but
does not set the clear flag. Tt is used whenever the contents of the terminal
screen must be preserved. The function callhasthe form:

werase( win )

where winisa pointer tothe window tobe-cleared.

The welrtobot function clears the window from the current position to ‘the
bottomof the screen. The function callhasthe form:

welrtobot( win )

where winis a pointer to the window tobe cleared. For example, if the current

3-21



positionin the window “midscreen” is{10,0), the function call
welrtobot( midscreen );
clearsall characters from line 10 and alllines belowline 10.

The welrtoeol function clears'the standard screen from the current position to
the end of the:current line. Thefunction callhasthe form:

welrtoeol(-win )

where win'is a pointer to the window to be cleared. For example, if the current
positionin ““midscreen” is(10,10), the function call

welrtoeol( midscreen );

clears all characters from (10,10} to the end of the line. The characters at the
beginningoftheline remain unchanged.

Note that the welrtobot and wclrtoeol functions do not change the current
position.

3.4.0 Refreshing From a Window

The wrefresh function ‘updates the terminal screen by copying one-or more
characters from the given -window to ‘the terminal. The function eflectively
changes the terminal screen to reflect ‘the new contents of the window. The
function call has the form:

wrefresh( win )
where win is'a pointer to a window.

The function is used solely to display changes to the window. The function
copies only ‘those characters that have changed since the last call to wrefresh
and leaves -any ‘existing text on the terminal screen. For example, in the
following program fragment wrefreshis called twice,

waddstr{cmdmenu, "Type a command name\n”);
wrefresh(emdmenu);

waddstr(cmdmenu, "Command: ");
wrefresh(emdmenu);

In this example, the first call to wrefresh copies the string “Type a command

name” ‘to ‘the terminal screen. The second call copies only the string
“Command:” to the terminal, since the original string hasnot been:changed.

3-22




Screen Processing

Note

If curser is given with -wrefresh, the function restores the actual screen
to its most recent contents. This is ‘useful for implementing a
“redraw” feature for screens that become cluttered with unwanted
output.

The function returns ERR if it encounters an errorsuch asillegal scrolling. If an
error is encountered, the function attempts to update as much of the screen as
possible without.causing the scroll.

3.4.10 Overlaying Windows

The overlay function copies all characters, except spaces, from one window to
another, moving characters from their original positions in the first window to
identical positionsin the second. The function effectively lays the first window
over the second, letting characters in the second window that would otherwise
be covered by spacesremain unchanged. ‘The function callhas the form:

overlay( winl, win2)

where winlis a pointer to the window to be copied, and win2is a pointer to the
window to receive the copied text. The starting positions of win!and wing
must match, otherwise an error occurs. If winlislarger than win2, the function
copiesonly those linesand columnsin winZthat fitin win?,

The function is typically used to build a composite screen from overlapping
windows. For example, in the following program fragment overlay is used to
build the standard screen from two different ' windows.

WINDOW #info, *cmdmenu;

overlay(info, stdscr);
overlay(cmdmenu, stdscr);
refresh(};

3.4.11 Overwriting a Screen

The overwrite function copies all characters, including spaces, from one
window to another, moving characters from their positions in the first window
toidentical positionsin the second. Thefunctioneflectively writesthe contents
of the first window over the second, destroying the previous contents of the
second window. The function call hasthe form:

328



overwrite( winl, win?)

where winlisapointer to'the window to be copied, and win2is a pointer to:the
window to receive the copied text. If wini is larger than win2, the function
copiesonly those lines and columns in winZ that fitin win2.

The function is typically used to-display the contentsof:a temporary window.in

the middle of alarger window. For example, in:the following program fragment
overwriteisusedto copy the contents of a work window to the standard screen.

WINDOW #*work;

overwrite{work, stdscr);
refresh();

3.4.12 Moving a Window
The mowin function moves a given window to a new position on the terminal

screen, causing the upperleft-corner of the window to'occupy ‘a given line and
columnposition. Thefunction callhastheform:

mvwin( win, g, )
where winis a pointer to'the'window to be moved, yisaninteger value giving
the line to which'the corner isito be:moved, and zisan integer value giving the
column to whichthe corner istobe moved.
The function is typically used to move a temporary window when an existing
window ‘under it contains ‘information to be viewed. For -example, in the
following program fragment mvwin moves the window named ““work” to the
upper left.cornerof the terminal sereen.

WINDOW swork;

mvwin(work, 0,0);
The function returns ERR if it.encounters a.error such as an attempt to.move

part-of a window off the.edge of the screen.

3.4.13 Reading a Character From a Window

The tnch and winch functions read asingle character from the current pointer
positionina windowor screen.

The tnch function reads a character from the standard screen. The function
callhastheform:

3-24

§
7



Screen Processing

¢ = inch()
where cisthe character variable toreceive the character read.

The ‘winch function reads a character from a given window ‘or screen. The
function callhastheform:

¢ == winch{ win)
where win is the pointer to'the window containing the charactertoberead.
The functions are typically used to compare the actual contents of a window
with what is assumed to be there. For example, in the following program
fragment inchand winchare used to compare the characters at position (6,0)in
thestandardscreen and inithe window named*‘altscreen”.

char cl, ¢2;

¢l = inch(};

¢2 == winch(altscreen);

if (c1 1==¢2)

error(};

Note that reading a character from a window doesnot alter the contentsof the
window.
3.4.14 Touching a Window
The touchwin function makes the entire contents of a given window appear to
be modified, causing a subsequent refresh call to copy ‘all characters in the
window tothe terminalscreen. Thefunction call has the form:

touchwin( win )

where winis apointer tothe window tobe touched.

The function is typically used when twoor more overlapping windows make up
the terminal screen. For example, the functioncall

touchwin(leftscreen);

is'used to touch the window named “leftscreen”. A subsequent refresk copies
all charactersin “leftscreen’ tothe terminalscreen.

3.4.15 Deleting a Window

The delwin function deletes a given window from memory, freeing the sbace
previcusly occupied by the window for -other windows or for dynamically

3:25



allocated variables. The function:call hastheform:
delwin( win )
where winis the pointer'to the window to bedeleted.

The function is typically used to remove temporary windows from a program
or to free memory space for.other uses. For example, the function call

delwin(midscreen); }

removes the window named ““midscreen’’.

3.5 Using Other Window Functions

The following sections explain how ‘to perform a variety of operations on
existing windows, such as setting window flags and drawing boxes around the
window.

3.5.1 Drawing a Box

The box function draws a box around a'window using the given characters to
form thehorizontaland verticalsides. Thefunctioncallhastheform:

box( win, vert, ‘kor )

where win is the pointer to the desired window, wert is the vertical character,
and horisthe horizontal character. Both verand hormusthavechar type.

The Tunction is typically used to distinguish:one window from another when

combining windows-on a single screen. For example, in the following program

fragment boz createsaboxaround the window in thelower half of the screen.
WINDOW ‘scmdmenu;

emdmenu == subwin(stdscr, 5, 80, 19, 0);
box(cmdmenu, ', *-*);

If necessary, the function will leave the corners of the box blank to prevent
illegal scrolling.

3.5.2 Displaying Bold Characters

The -standout and wetandout functions set the standout character ‘attribute,

causing characters subsequently added ‘to the given window or screen to be
displayed asbold characters.

3-26



Screen Processing
The standout function sets the standout attribute for characters added to the
standardscreen. Thefunction call hasthe form:
standout()
Noargumentsarerequired.

The wstandout function sets the standout attribute of charactersadded to the
givenwindowor screen. The function call hasthe form;

wstandout{ win }
where win is a pointer to a window.
The functionsare typically used to.make error messages or instructions clearly
visible when displayed at the terminal screen. For example, in the following
program fragment standout sets the standout character ‘attribute before
adding an error message tothe standard screen.

if ( code =5} {

standout();
addstr("Illegal :character.\n");

Note that the actual appearence of characters with the standout attribute
dependson the given terminal. This attribute is defined by the SO and SE (or
US and UE) sequences given'in the terminal’stermeapentry (see termcap(M)in
the XENIX Reference Manual).

3.5.3 Restoring Normal Characters

The standendand wstandend functions restore the normal character attribute,
causing characters :subsequently added to a given window or screen to be

displayed.asnormal characters.

The etandend function restores the normal attribute for the standard sereen.
The function callhasthe form: )

standend()
Noargumentsarerequired.

The ‘wstandend function restores the normal attribute for a given window-or
screen. Thefunctioncall hastheform:

wstandend( ‘win )

where win isa pointer toa window.

3-27



The functions are typically used after an error message or instructions have
been ‘added to a screen ‘using the standout attribute. For example, iin the
following program fragment standend restores the normal attribute after an
error message hasbeen added to the standard screen.

N

if ( code == 5} {
standout();
addstr("Illegal character.\n");
standend();
}

3.56.4 ‘Getting the Current Position

The getyz function copies the current line and ‘column ‘position .of a given
window ppointer to-a corresponding pairof variables. The function call hasthe
form:

getyx( win, y, 2z)

where win'isa pointer to the window containing the pointer to be examined, yis
the integer variable to receive the line position, and z isthe integer variable to 3
receive the column position. E

The function is typically used to save the current position so that the program
can return to the position ‘at a later time. For example, in the following
program fragment getyz saves the current line and column position in the
variables*line’’ and*column”.

int line, column;

getyx(stdscr, line, column);

3.5.6 Setting Window Flags

The leaveok, scrollok, and clearok functions set or clear the cursor, scroll,
and clear-screen flags. The flags control the action of the refresh function
when-called for the given window.

The leaveok function sets or clears the cursor flag which defines how the
refresh function places the terminal cursor ‘and the window pointer after
updating the screen. If the flag is set, refresh leaves the cursor after the last
character to be copied and moves the pointer to the corresponding position in
the window. If the flag is cleared, refresh moves the cursor to the same position
on the screen as the current pointer position in the window. The function call
hasthe form:

3-28



Screen Processing

leaveok( win, state )
where winis a pointer to the window containing the flag to be set, and stateisa
Boolean value defining the state of the flag. If state is TRUE the flag is set; if
FALSE, theflagiscleared. Forexample, the functioncall

leaveok(stdscr, TRUE);
setsthe cursorflag.
The eerollok function setsor clears the scroll flag for the given window. If the
flag is set, scrolling through the window is allowed. If the flag is-clear, then no
scrollingisallowed. The functioncallhasthe form:

scrollok( win, state )
where winisa pointer toa window, and state isaBoolean value defining how the
flag is to be set. If state is TRUE, the flagis set; il FALSE, the flagis cleared. The

flagisinitially clear, makingscrollingillegal.

The clearok function sets and clears the clear flag for a given screen. The
function call hasthe form:

clearok( win, state)
where winis a pointer'to the desired screen, and étate is a Boolean value. The
function sets the flag if stateis TRUE, and clears theflag if FALSE. For example,
the function call

clearok(stdscr, TRUE)
setstheclear flag for the standard screen.
When the clear flag is set, each refresh call tothe given screen automatically
clears ‘the screen by .passing a clear-screen sequence to the terminal. This
sequenceaflects the:terminalonly; it does not.changethe-contents of the screen.
If clearokisused to set the clear flag for the current screen “curser”, each callto
refresh automatically clears the screen, regardlessof which window is givenin
thecall.
3.5.8 Scrolling 2 Window

The scroll function scrolls:the contents of a.given window upward by one line.
The function calthasthe form:

scroll{ wsn)

where winisapointer tothe window tobe scrolled. The function should be used

3-29



in'special casesonly.

3.8 Combining Movement With Action

Many screen operations move ‘the current position of a given window before
performing -an action on ‘the ‘window. For convenience, you can combine a
number ‘of functions ‘with the movement prefix. This combination has the
form:

mvfunc ([ win, | 3, 2], 6rg]...)

where func is the name of a function, win is a pointer to the window to be
operated on (stdscrused if none is given), yis aninteger value giving the line to
moveto, zisaninteger value giving the columntomove to, and argisarequired
argument for the given function. If more than one argument is required they
must be separated with commas{,). For.example, the functioncall

mvaddch(10, 5, 'X');
moves the position to/(10,5) and adds the character “X. The operation is the
same .as ‘moving the position with the move function and -then adding a
character with addch.
A complete list of the functions which may be used with the movement prefix'is
givenin curses(S) inthe XENIX Reference Manual.
3.7 Controlling the Terminal
The following sections explain how to:set the terminal'modes, how to move the
cursor, and how to access other aspectsof the terminal. These functionsshould
only beused when using other screen processing functions.

3.7.1 Setting a Terminal Mode

The crmode, echo, nl, and raw functions set the terminal mode, causing
subsequentinput from the terminal’skeyboard tobe processed accordingly.

The ermode function sets the CBREAK :mode for the terminal. The mode
preservesithe function of the signal keys, allowing allowing signalsto be sent to
a program from the keyboard, but disablesthe function of the editing keys. The
functioncall hasthe form:

crmode(}

Noarguments are required.

3-30

i



Screen Processing

The eckofunction sets the ECHO mode for the terminal, causing each character
typed at'the keyboard to be displayed at the terminal screen. The function call
has the form: :

echo()
No arguments are required.
The nl function sets a ‘terminal to NEWLINE ‘mode, causing all newline

characters to ‘be mapped to a corresponding newline and return character
combination. The function callhasthe form:

nl()
Noargumentsarerequired.
The raw function sets.the RAW mode for the terminal, causing each character
typed-at the keyboard to be sent as direct input. The RAW mode disables the
function of the editing and signal keys:and :disables the mapping:of newline
characters into newline and return combinations. The function call has the
form:

raw()

Noargumentsare required.

3.7.2 Clearing a Terminal Mode

The nocrmode, noecho, nonl, and noraw functions clear-the current terminal
mode, allowinginput tobe processedaccording toa previous mode.

The nocrmode function ‘clears a terminal from ‘the CBREAK mode. The
functioncall has the form:

nocrmode()
Noargumentsarerequired.
The noecho function clears a terminal from the ECHO mode. This mode
prevents characters typed at the keyboard from being displayed on the
terminal screen. Thefunctioncallhastheform:

noecho()
Noargumentsarerequired.
The nonl function clears a terminal from NEWLINE mode, .causing newline

characters to be mapped into themselves. This allows the screen processing
functions toperform better optimization. The function call hastheform:

3-31



nonl(} e
M

Noargumentsarerequired.

The ‘noraw function clears a terminal from RAW mode, restoring normal
editing and signal generating function to the keyboard. The function call has
the form:

noraw()

Noargumentsarerequired.

3.7.3 Moving the Terminal’s Cursor

The mveur function moves:the terminal’s cursor from one position to-another
in‘an-optimalfashion. Thefunction callhasthe form:

mveur ( last_y, last_z, new_y, new_z)
where last_y and last_z are integer values giving the last line and column
position of the cursor, and new_yand new_zare integer values giving the new
line and column positionofthe cursor. For example, the function call 4

mveur(10, 5,3, 0)

movesthe cursor from (10,5) to(3,0) on the terminal screen.

Note

The mveur function should only be used in programs that do not use
other screen processing functions. This means the function :can be
used to perform ‘optimal .cursor :motion without the aid ‘of the other
functions, For programs that do use other functions, the move,
wmove, refresh, and wrefresk functions :must be used ‘to ‘move the
cursor.

3.7.4 Getting the Terminal Mode

3
The gettmode function returnsthe current tty mode. The function call hasthe m»’?
form:

§ = gettmode(}

where zisthe variable toreceive the status.

3-32



Screen Processing
The function isnormally called by the fnitscrfunction.

3.7.5 Saving and Restoring the Terminal Flags

The savetty function saves the current terminal flags, and the resetty function
restores the flags previously saved by the savettyfunction. These functionsare
performed automatically by initscr and endwin functions. They are not
required-when performingordinary screen processing.

3.7.6 Setting a Terminal Type

The stterm function sets the terminal type to the given type. The function.call
hasthe form:

setterm( name )
where name is:a pointer to astring containingthe terminal type identifier. The
function is normally called by the ¢nitscr function, but may be used in special
cases.

3.7.7 Reading the Terminal Name

Thelongname function convertsagiven termeapidentifier into the full name of
the corresponding terminal. The function callhasthe form:

longname( termbuf, name )
where termbuf is a pointer tothe string containing the terminal type identifier,
and name is a.character pointer to the location to receive the long name. ‘The
terminal type identifier must exist in'the /etc/termeapfile.
The function is typically used to get the full name of the terminal currently

being used. Note that the current terminal’s identifier is stored in the variable
“ttytype”, which may be used toreceive anew name.

3-33



i
f




Chapter 4
Character and String Processing

4.1 Introduction  4-1

4.2 Using the Character Functions  4-1
4.2.1 Testingfor an ASCII Character 4-1
4.2.2 ConvertingtoASCH Characters 4-2
4.23 Testingfor Alphanumerics 4-2
4.2.4 TestingforaLetter 4-3
4.2.5 Testingfor Control Characters 4-3
4.26 TestingforaDecimalDigit 4-3
4.2.7 TestingforaHexadecimal Digit 4-4
4.2.8 Testingfor Printable Characters 4-4
4.29 Testingfor Punctuation 4-4
4.2.10 Testing for Whitespace 4-5
4.2.11 Testing for Casein Letters 4-5
4.2.12 Convertingthe Caseof aLetter 45

4.3 Using the String Functions 4-6
4.3.1 Concatenating Strings 4-6
4.3.2 Comparing Strings  4-7
4.3.3 CopyingaString 4-8
4.3.4 GettingaString’sLength 4-8
4.3.5 Concatenating CharacterstoaString 4-8
4.3.6 Comparing Charactersin Strings 4-9
4.3.7 Copying CharacterstoaString 4-10
4.3.8 Reading ValuesfromaString 4-10
4.3.9 Writing ValuestoaString 4-11






Character and String Processing

4.1 Introduction

Character -and string processing is an important part of many programs.
Programs regularly assign, manipulate, and compare characters and stringsin
order to complete their tasks. For:thisreason, the standard library providesa
variety of character and string processing functions. These functions give a
convenient way to test, translate, assign, and compare charactersand strings.

To use the character functions ina program the file, ¢type.k, which provides

the definitions for special character macros, must be included inthe program.
Theline

##include <ctype.h>
must appear at the beginningof the program.
To use the string functions, no:special action is required. These functions are
defined in the standard C library and are read whenever you compile a C
program.
4.2 Using the Character Functions
The -character functions test and convert characters. Many -character
functions are defined ‘as'macros, and as such cannot be redefined or used as a
targetfor abreakpoint when:debugging.

4.2.1 Testing for an ASCHl Character

The ¥sascsi Tunction tests for characters in the ASCIHI character set, i.e.,
characters whose values range from 010127, The function call hasthe form:

isaseti :(¢)

where ¢ is the character to be tested. The function returns.a nonzero {true)
value if the character is ASCII, otherwise it returns zero (false). For example,in
the following program fragment ssascii determines whether or.not thevalue in
“c" read from the file given by ‘‘data’ isinthe acceptable ASClirange.

FILE *data;

int ¢;

¢ = fgetc(data);

if {lisascii(c))
notext();

In this example, a Tunction named -notezt is called if the character is not'in
range.

4-1



4.2.2 Converting to ASCH Characters

The toascii function converts non-ASCH charactersto ASCIL. The function ¢all
hasthe form:

¢ == toascii (1)
where ¢isthe variable toreceive the character,and fis the value tobe changed.
The function creates an ASCII character by truncating all but the low order 7
bits of the non-ASCII'value. If the i value is already an ASCII character, no
change takesplace. For example, the function:call

ascii ‘= toascii(160)
convertsvalue 160 to 32, the ASCHi value of the space character.
The function is typically used to prepare non-ASCII characters for display at
the standard output. For example, in the following program fragment toascis

convertseach.character read from the file given by “‘oddstrm”.

FILE soddstrm;
int c;

¢ == toascii( gete( oddstrm ) );
if (‘isprint{c) ]| isspace(c) )
putchar(c);
If the resulting character is printable or is whitespace, it is wfitten to the
standard.output.

4.2.3 Testing for Alphanumerics

The iealnum function testsfor letters and decimal digits, i.e., the alphanumeric
characters. The function call hasthe form:

isalnum (c)
where ¢ is the character to test. The function returns anonzero (true)value if
the character is an alphanumeric, otherwise it returns zero (false). For
example, the function:call

isalnum(’1’)
returnsanonzero value, but the call

isalnum(*>")

returnszero.

42




Character and String Processing

4.2.4 Testing for a Letter

The ssalpha function tests for uppercase or lowercase letters, i.e., alphabetic
characters. Thefunction call hastheform:

isalpha (¢)
where ¢ is the.character to be tested. The function returns a nonzero (true)
value if the character is a letter, otherwise it returns zero. For example, the
functioncall

isalpha(’a’)
returnsanonzero value, but the call

isalpha('1’)

returnszero.

4.2.5 Testing for Control Characters

The dscntrl function test for control characters, i.e., characters whose ASCII
values arein the range 0.to 31 oris 127. The function call has theform:

isentrl (c)
where ¢ is the character to be tested. The function returns a nonzero (true)
value if the character is a:control character, otherwise it returns zero (false).
For example, in the program following fragment isentrl determines whether or
not the character in “c” read from the file given by “infile” is a control
character.

FILE sinfile, *outfile;
int ¢;

¢ = {getc(infile);
if { lisentrl{c) )
fpute( c, outfile );

The fpute functionisignored if the character is acontrol character.

4.2.8 Testing for a Decimal Digit
The iadigit function testsfor decimal digits. Thefunction callhas the form:

isdigit (¢)

43



where ¢ is the character to be tested. The function returns a nonzero value if
the character isadigit, otherwise it returnszero. For example, in the following
program fragment each new-character in*'¢’ isadded to the running totalif the
character isadigit.

FILE sinfile;

int ¢, num;
while { isdigit( c==getc(infile) ) )
num == num#10 4 c-48;
4.2.7 Testing for a Hexadecimal Digit
The tezdigit function tests for a hexadecimal digit, that is, a character that is
either a decimal digit or an uppercase or lowercase letter in the range A to F.
The function callhasthe form:
isxdigit {¢)
where ¢ is'the character to be tested. The function retﬁrns a nonzero value if
the character is a digit, otherwise it returnszero. For example, in the following
program fragment iszdigit tests whether a hexadecimal digit is read from the
standardinput.
int ¢;
¢ = getchar();
if { isxdigit{c) )
hexmode();
In this example, a function named kezmode is.called if a hexadecimal digit is
read.

4.2.8 Testing for Printable Characters

The isprint function testsfor printable characters, i.e., characters whose ASCIl
values range from 32 to 128. Thefunction.call hasthe form:

isprint (c)
where ¢ isthe character to be tested. The function returns a nonzero value if
the characterisprintable, otherwise it returnszero.
4.2.9 Testing for Punctuation

The fepunct function tests for punctuation characters, i.e., charactersthat are

4-4

i




Character and String Processing
neither control charactersnor alphanumeric.characters. The function call has
the form:

ispunct (¢}
where ¢ is the character tobe tested. The functionreturnsanonzero functionif
the-characterisa punetuation character, otherwise it returnszero.
4.2.10 Testing for Whitespace
The fsspace function tests for whitespace characters, i.e, the space, horizontal
tab, ‘vertical tab, carriage return, formfeed, and newline characters. The
function call hastheform:

isspace (c)
where ¢ is the character to be tested. The function returns a nonzero value it
the character isa whitespace character, otherwiseit returnszero.

4.2.11 Testing for Case in Letters

The fsupper and felower functions test for uppercase and lowercase letters,
respectively. The functioncallshave the form:

_ isupper (¢)

and

islower (c)
where ¢ is the character to.be tested. The function returns a nonzero value if
the character is the proper case, otherwise it returns zero. For example, the
functioncall

isupper(’b’)
returns zero:(false), but the call

islower('b’)

returnsanonzero{true) value.
4.2.12 Converting the Case of a Letter

The tolower and toupper functions convert the -case of a given letter. The
functioncallshave the form:

4-5



¢ = tolower (i)
and
¢ == toupper (i)

where ¢ is the variable to receive the converted letter, and ¢is the letter to be
converted. Forexample, thefunctioncall

lower = ‘tolower('B’)
converts''B” to‘'b” and assigns it to the variable “lower”, and the call

upper = toupper(’b’)
converts‘'b” to *B” and assignsit to the variable “upper”’.
The tolower function returnsthe.character unchanged if it is not an uppercase
letter. Similarly, the toupper function returns the character unchangedif it is
not alowercase letter.
These functions:are typically used to make the case of the charactersread from
a file or standard input consistent. For example, in the following statement
tolowerchanges the character read from the standard input tolowercase before

itiscompared.

if { tolower( getchar() ) 1=="y")
exit(0);

This conversion allows the user to type either “Y" or “y” to prevent ‘the
statement from executing the ezitfunction.

4.3 Using the String Functions

The string functions concatenate, compare, copy, and count the number of
characters in a string. Two special string funections, sscanf and sprintf, let a
program read from and write to a string in the same way the standard input
and output can be read and written. These functions are convenient when
readingor writing whole lines containing valuesof several different formats.

Many string functions have two forms: a form that manipulates all characters
in the string and one that manipulates a given number-of characters. This gives
programsvery fine control over allor partsol strings.

4.3.1 Concatenating Strings

The streat function concatenates two strings by appending the characters of
onestring to theend of another. The function call hasthe form:

46




Character and ‘String Processing

streat (dst, src)

where dst is a pointer to thestring to receive the new characters, and sreisa
pointer to the string containing the.new.characters. The function appends the
new charactersin the same order :as'they appear in #re, then appends a null
character (\0) to the last character ‘in the new string. The function always
returnsthe pointer dst.

The function is typically used to build astring such-asa fullpathname from two

smaller strings. For example, in the following program fragment streat
concatenates the string ‘‘temp” to the contentsof the.character array “dir”.

char dir]MAX] = " fusr/";

streat(dir, "temp”);

4.3.2 Comparing Strings
The stremp function compares the characters in one string to those in another
and returns an .integer value showing the result of the comparison. The
function call has theform:
stremp (a1, .82
where 81 and #2 are the pointers to the strings to be compared. The function
returns zeroif the strings are equal (i.e., have the same characters in the same
order). If the strings are not equal, the function returns the difference between
the ASCIl'values of the first unequal pair of characters. The value of the second
string character is always subtracted from the first. For example, the function
call
stremp(™Character A”, "Character A”);
returnszerosince the stringsare identicalinevery way, but the function call
stremp(” Character A", "Character B");
returns—1since the ASCll value of “B” isone greater than A",
Note ‘that the stremp function -continues to compare characters until a
mismatch is found. If one string is shorter than the other, the functionusually
stops at theend of the shorter string. For example, the function call

stremp("Character A”, " Character ”)

returns 65, that is, the difference between the null character at the end of the
second stringandthe “A” inthe first string. :

4-7



4.3.3 Copying a String T,

i

The strepy function copies a given string to a given location. The function call s
hasthe form:

strepy (dst, erc)
where :#r¢ is a pointer to the string to be copied, and det is a pointer to the
location to receive the string. The function copies all characters in the source
string src to the dst and appends-a null character (\0) to the end of the new
string. If dst contained a string before the copy, that string is destroyed. The
function always returns the pointer to the new string.

For example, in the program fragment strepy copies the string “‘not available”
tothe location given by “name”.

char naj} = "not available";
char ‘name{20};

strepy( name, na );
Note that the location to receive a string must be large enough to.contain the :
string. The function cannot detect overfiow. ,}
4.3.4 ‘Getting a String’s Length

The ‘strlen function returns the number of character contained in a given
string. Thefunction call hasitheform:

strlen (s)

where 8 is a pointer toa string. The count includes all charactersup'to, but not
including, the first null character. Thereturnvalueisalwaysan integer.

In the following program fragment, strlenisused to determine whether or not
the contentsof “inname’ are short enough tobe stored in “*name”.

char *inname;

char name[MAX];

if ( strlen(inname) < MAX ) "
strcpy( name, inname); o )

4.3.5 Concatenating Characters to a String

The strncat function appends one or ‘more characters to the end of a given
string. Thefunctioncallhastheform:

48



Character and String Processing

strncat (dst, erc, n)
where.dstis a pointer tothestring to receive thenew characters, srcisa pointer
to the string containing the new characters, and nisan'integer value giving the
number of characters to be concatenated. The function appends the given
numberof characters totheend of the dst string, then returnsthe pointer dst.

In the following program fragment, strncat copiesithe first three charactersin
“letter’ tothe.endof “cover”.

char cover[]:= "cover”;
char letter{] = "letter”;

strncat( cover, letter, 3);

Thisexample creates the newstring *‘coverlet’ in “cover”.

4.3.6 Comparing Characters in Strings
The stracmp function compares one or more pairsof characters in two given
strings and returns an integer value which gives the result of the comparison.
The function callhasthe form:
strnemp (e1, 22, n)
where #1.and #2are pointers tothe strings to be compared, and niis an integer
value giving the number of charactersto.compare. The function returns seroif
the first n characters are identical. ‘Otherwise, ‘the function returns the
difference between the ASCIl valuesiof the first- unequal pair of characters. The
function generates the difference by subtracting the second string character
from the first.
For example, the function call
strnemp(” Character A”, "Character B”, 5)
returnszero because the firstfive charactersareidentical, but the function call
strnemp(” Character A”, " Character B”, 11)

returns—1because the value of “B’ isone greaterthan “A”.

Note that the function continuesto.compare characters until amismatchor the
endof 2 stringis found.

4-9



4.3.7 Copying Characters to a String

The strnepyfunction copiesa given number of characterstoa givenstring. The
function call has the form:

strnepy (det, src, n)

where dstis a pointer to the string to receive the characters, src isa pointer to
the string -containing the characters, and n is an integer value giving the
number of characters to be copied. The function copies either the first n
characters in sre to :det, or if src has fewer than n characters, ‘copies all
characters :up to the first ‘null character. The function -always ‘returns the
pointer.dst.

In the following program fragment, strncpy copies the first three charactersin
“‘date’ to‘‘day”.

char buf [MAX};
char date [29] = {"Fri Dec 29 09:35:44 EDT 1982"};
char #day == buf;

strnepy( day, date, 3);

Inthisexample, “day’’ receivesthe string *“Fri".

4.3.8 Reading Values from a String

The s2canffunction readsone or morevalues from agivencharacter string.and
stores the values at a given memory location. The function is similar to the
scanf function which reads values from the standard input. The function call
hasthe form:

sscanf (e, format, argptr ...)

where & is a pointer to the string to be read, format is a.pointer to the string
defining the format of the values to be read, and argptr is a pointer to the
variable that istoreceive the valuesread. If more than one argptrisgiven, they
must be separated with commas. The format string may :contain the same
formats as.given for scanf(see scanf(S) in the XENIX Reference Manual). The
function alwaysreturnsthe number of valuesread.

The function is typically used to read values from a string containing several
values of different formats, -or to read values from ‘a program’s own input
buffer. For example, in the following program fragment. sscanf reads two
valuesfrom'the string pointed toby *‘datestr™.

4-10

,9"




Character and String Processing

char datestr[] = {"THU MAR 28 11:04:40 EST 1983"};
char month[4];
char ‘year[5];

sscanf(datestr,” %¢35%35% #2s%+85% +35%4s”;month,year);
printf(” %s, %s\n" ;month,year);

The first value (a three-character string) is stored at the location pointed to by
“month”, the second value (a four-character string) is stored at the location
pointed to by “‘year”.

4.3.9 Writing Values to a String

The sprintf function writes one or more values to a given string. The function
callhasthe form:

sprintf (e, format [, arg] ...}

where ¢ is a pointer to the string to receive the value, format is a pointer to a
string which defines the format of the values to be written, and arg is the
variable or value to be written. If more than.one arg is given, they must be
separated by commas(,). The formatstring may contain the same formats as
given for.printf (see printf(S)in the XENIX Reference Manual). After all values
are written to.the string, the function adds a null character (\0) to the end of
the string. The function normally returns zero, but will return a nonzero value
if an errorisencountered.

The function is typically used to build a large string from several values of
different format. For .example, in the following program fragment sprintf
writesthree values to the string pointed to by ““cmd”.

char emd[100];

char *doc = 7 Jusr/sr¢/cmd/cp.c”
int width = 50;

int length == 60;

sprintflcmd,” pr -w%d -1%d %s\n",width,length,doc);
system(cmd);

In this example, the string created by sprintf is used in.a call to the system
function. The first two values‘are the decimal numbers given by “width" and
“length”. The last value is astring (a filename) and is pointed to by doc. The
final stringhas the form:

pr -w50 -160 Jusr/src/cmd/cp.c

Note that the string to receive the values must have sufficient length to store
those values. The function cannot check for overflow.

4-11






‘hapter b
[sing Process Control

Introduction 5-1

Using Processes 5-1

CallingaProgram 5-1
StoppingaProgram 5-2

Starting a NewProgram 6-3

Executing aProgram ThroughaShell 5-5
Duplicatinga Process 5-5

Waiting for aProcess 56

Inheriting OpenFiles 5-7

0 Program Example 5-7






Using Process Control

5.1 Introduction

This chapter describesthe process.control functionsof the standard Clibrary.
The functions let a program call other programs, using a method similar to
calling functions.

There are avariety of process control functions. The system and ezt functions
provide the highest level of execution control and are used by most programs
that need a straightforward way ‘to ‘call another program or terminate the
current -one. The ezecl, ezecv, fork, and wait functions provide low-level
control .of execution and ‘are for those programs which must have very fine
control over their own execution and the execution of other programs. Other
process control functions such as abort and ezec are described in detail in
section Sof the XENIX Reference Manual.

The process control functions are a part of the standard C library. Since this
library is automatically read when compiling a.C program, no special library
argumentisrequired wheninvoking the compiler.

6.2 Using Processes

“Process’ is the term used to describe a program .executed by the XENIX
system. A process-consists of instructionsiand data, and a'table of information
about the :program, such as its :allocated memory, open files, and current
executionstatus.

You create a process whenever you invoke a program through a shell. The
system assigns-a unique process ID to.a program when it is invoked, and uses
this ID to control and ‘manage the program. The unique IDs are needed in a
system runningseveral processes at the same time.

You can also create a process by directing a program to call another program.
This causes the system to perform the same functions as when it invokes a
program through a shell. In fact, these two methods are actually the same
method; invoking a program through a shell is nothing more than directing a
program {the shell) tocall another program.

The :system handles all processes in essentially the same way, so the sections
that follow should give you valuable ‘information for writing your own
programs andan insight into the XENIX system itself.

5.3 Calling a Program

The system function calls the given program, executes it, and then returns
control to the original program. The function call hasthe form:

5-1



system (command-line)

where command-line is:a pointer to a string containing-a shell command line.
The:command linemust be:exactly.as it would be typed at the terminal, that s,
it ‘must begin with the program name followed by any required or optional
arguments. For.example, the call

system("date”);

causes the system to execute the date command, which :displays the current
time-and date at the standard output. The call

system(* cat >response”);

causes ‘the system ‘to execute the cat command. In this case, the standard
output is redirected to the file response, so the command reads from the
standard input and copiesthisinput to'the file response.

The system function is-typically used in the same way ‘as a function -call to
execute a program and return to the original program. For example, in the
following program fragment system calls a program whose name is;given in the
string “‘cmd”.

char *name, *¢md;

_ printf("Enter filename: ");
scanf(”%s", name);
sprintf(cmd, "cat %s ", name);
system(cmd);

Note that the string in “cmd’ is built using the sprintf function and contains
the program name cetand an argument (the filename read by scanf). The effect
isto.executethe cat command with the givenfilename.

When using the syetem Tunction, ‘it is important to remember that buffered
input and output functions, suchas getc:and putc, donot.change the contentsof
their buffer until it is ready ‘tobe read or flushed. If aprogram usesone of these
functions, then executes.a command with the system function, that command
may read or write data not intended for its use. To avoid this problem, the
program should clear all buffered input and output before making a call to the
system function. You can do thisfor output with the flusk function, and for
input ‘with the setbuf function described in the section “Using More ‘Stream
Functions” in Chapter 2.

5.4 Stopping a Program

The ezt function stops the execution of a program by returning:control tothe
system. Thefunction call has the form:

5-2




Using Process Control

exit (status)

where status is the integer value to be sent to the system as the termination
status,

The function is typically used to terminate a program before its normal end,
such as.after a seriouserror. For example, in the following program fragment
ezit stops the program and 'sends the integer ‘value ““2” to the system if the
Jopenfunction returnsthe null pointer value NULL.

FILE sttyout;

if ( fopen(ttyout,”r") ==== NULL )
exit(2);

Note that the ezit function automatically closes each.open:file in:the program
before returning to the:system. This:means no explicit calls to the felose or
¢lose functionsarerequired before an exit.

5.5 Starting a New Program
The ezecland ezecvfunctions cause the system tooverlay the calling program
with the given one, allowing the calling program to terminate while the new
program continuesexecution.
The ezeclfunctioncall hastheform:

execl (pathname, command-name, argptr ...)
where ;pathname is a pointer to a string containing the full pathname of the
command you want to execute, commend-name ‘is a pointer to a string
containing the name of the program you want to-execute, and argptrisoneor
more pointers to:strings which contain the program arguments. Each argptr
must be separated from:anyother argumentby acomma. Thelast argptrinthe
list must be the null pointer value NULL. For example, in‘the call

execl(” /bin/date”, "date”, NULL);

the date command, whose full pathname is*‘/bin/date”, takesno arguments,
andin the-call

execl(” /bin/cat”, "cat”, filel, file2, NULL);

the cat command, whose full pathname is *“/binfcat”, takes the pointers
“file]” and “‘file2” asarguments.

The ezecvfunctioncall hasthe form:

5-3



execv (pathname, ptr);

where pathname is the full pathname of the program you want to execute, and
ptrispointer to an array of pointers. Each element in the array must point toa
string. Thearray may have any number of elements, but the first element:must
point to a string containing the program name, and the last must be the null
pointer, NULL.

The ezecl and ezecy functions are typically used in programs that execute in
two ormore phases and communicate through temporary files(for example.a
two-pass compiler). The first.part of sucha program can call thesecond part by
giving the name of the second part and the appropriate arguments. For
example, the following program fragment checks the status of “‘errflag”, then
either overlays the current program with the program pass2, or displays an
error message and quits.

char stmpfile;
int errflag;

if {errflag === 0)
execl(” /usr/bin/pass2”, "pass2”, tmpfile, NULL);
else {
fprintf(stderr, "Error %d: Quitting”, errflag);
exit(2);

The ezeco function is typically used to passarguments to a program when the
precise number of arguments is not known beforehand. For example, the
following program fragment reads .arguments from the command line
(beginning with the third -one}, copies the pointer of each'to an element in
‘“cmd”, setsthe lastelementin“‘cmd toNULL, and executes the cat command.

char *cmd{ J;

emd[0] = "cat”;

for (i=3; i<arge; i++)
emd[i] = argvii;

emd[arge] = NULL;

execv(” /binfcat”, cmd);

The ezecland ezecv functions return control to the original program only if
there is an error in finding the given program(e.g., a misspelledpathname or no
execute permission). This:allows the-original program to check for errors and
display an -error message if necessary. For example, the following program
fragment searchesfor the program displayinthe fusr/bin directory.

execl(” Jusr/bin/display”, "display”, NULL);
fprintf(stderr, "Can’t execute 'display’ \n");

5-4



Using Process Control

If the program display is not found or lacks the necessary permissions, the
original program resumescontrol and displaysanerror message.
Note that the ezecland ezecv functions will not expand metacharacters (e.g.,
<, >,*,1,and[])giveninthe argument list. If a program needsthese features,
it can-use ezeclor ezecvtocallashell asdescribed inthe next section.
6.8 Executing a Program Through a Shell
One drawback of the ezecl and ezecv functionsisthat they donot provide the
metacharacter features of ashell. One way to overcome:this problem is'to use
ezecltoexecute ashellandlet the shell execute the.commandyou want.
The function callhasthe form:

execl (" /bin/sh”,"sh",”=<¢", command-line, NULL);
where command-line is a pointer to the string containing the command line
needed to execute the program. The string mustbe exactly asit- would appear if
typed at the terminal.
For.example,aprogram-canexecute the command

cat *.c
{(which contains the metacharacter + ) with:the call

execl(” /bin/sh”, "sh”, ”"~c", "cat +.c”, NULL);
In this example, the full pathname /bin/sk and command name sh start:the
shell. The argument *~c”’:causes the shell to treat the argument “cat *.c” asa
whole.command line. Theshell expands the metacharacter and displaysallfiles
which.end with .¢, something that the cat command cannot do by itself.

5.7 Duplicating a Process

The fork function splits an executing program into two.independent and fully-
functioning processes. The function callhasthe form:

fork ()
Noargumentsarerequired.

The function is typically used to make multiple copies of any program that
must take divergent actions:as a part of its normal operation, e.g., a program
that :must use the ezecl function yet still continue to execute. The original
program, called the “parent” process, continues to execute normally, just as it
would after any other function call. The new process, called the *‘child”

55

B



process, starts its execution at the same point, that is, just after the fork-call.
(The child never goes back to the beginning of the program to start execution.)
The two processes are in effect synchronized, and continue to execute as
independent programs.

The fork function returns a different value to each process, To the parent
process, the function returns the processiD of the child. The process ID is
always a positive integer and is always different than the parent’sID. To'the
child, the function returns 0. All other variables and valuesremain exactly as
they were in the parent.

The return value is typically used to determine which steps the :child and
parent:should take next. For example, in the program segment

char #cmd;

if (fork() == 0)
execl(” /bin/sh”, "sh”, "—¢”, cmd, NULL);

The.child’s return value, 0, causes the expression “fork() === 0", to be true,
and therefore the ezecl function is called. The parent’s return value, on the
other hand, causes the.expression to-be false, and the function:call is skipped.
Executing the ezecl function causes the child to be overlayed by the program
givenby“command”. Thisdoesnot affect the parent.

If fork encounters.an error and cannot createa child, it will return the value ~1.
Itisa goodideatocheck for this value after each call.

5.8 Waiting for a Process

The wait function causes a parent process to-wait until its child processes have
completed their execution before continuing its own execution. The function
calthasthe form:

wait (ptr)

where ptr.is a pointer to-an integer variable. It receives the termination status
of the child from both the system and the child itself. The function normally
returns the process ID of the terminated child, so the parent may -check it
againstthevalue returned by fork.

The function is typically used to.synchronize the execution.of a parentand its
child, and is especially useful if the parent-and child processes:accessthe same
files. For example, the following program fragment causes the parent to wait
while the program .named by “pathname” (which has overlaid ‘the ¢hild
process) finishesits execution.

5-6

g
s



Using Process Control

int status;
char #pathname;
char +cmd] J;

if (fork() === 0)
execv(pathname, cmd);
wait(&status);

The ‘wait function always copies a status value to its argumens. The status
valueisactually two8-bit valuescombined into one. The low-order8 bitsisthe
termination statusof the child as defined by the system. This statusis sero for
normal termination and nonzero for other kinds of termination, such as
termination by an interrupt, quit, or hangup signal (see signal(S)in the XENIX
Reference Manual for a description of the various kinds of termination). The
next.8 bitsis the termination status of the child as defined by itsown call to ezst.
If the child did not explicitly call the function, thestatusiszero.

5.9 Inheriting Open Files

Any program called by another program or created .asa child process to
aprogram automatically -inherits ‘the original program’s open files and
standard input, output, and error files. This meansif the file was open in-the
original program, it will be openin the new program or process.

A new program also inherits the contents of the input'and output buffers used
by:the-open files of the original program. Toprevent anew program or process
from reading or writing data that is not intended for its use, these buffers
should be flushed before calling the program or creating the new process. A
program:can flush an output buffer with the flusk function, and an input buffer
with:setbuf.

5.10 Program Example

This section shows how to use the process control functions to control asimple
process. The following program starts a shell on the terminal given in the
command line. The terminal is assumed tobe connected tothesystem through
aline that hasnotbeen enabled for multiuser operation. .

5-7



#finclude <stdio.h>

main(arge, argv)
int arge;

char *argv] };

{

int status;

if {arge < 2) {
fprintf(stderr,” No tty given.0);
exit(1);

}
if (fork() ====0) {
if {freopen(argv[l],"r" stdin) == NULL)
exit(2); _
if (freopen(argv]l],” w" stdout) === NULL)
exit(2);
if (freopen(argv|l],” w” stderr) === NULL)
exit(2);
execl(” /bin/sh”,”sh” NULL);

wait(&status);
if (status == 512)
fprintf("Bad tty name: %s90, argv[l]);

In this example, the fork function creates a. duplicate copy of the program. The
child changes the standard input, output, and error files to'the new terminal by
closing ‘and reopening them with the freopen function. The ‘terminal name
pointed to by *‘argv'’ must be:the name of the device special file associated with
the terminal, e.g., “/dev/tty03”. The ezeclfunction then calls the shell which
usesthenew terminal asits standard input, output, and error files.

The parent process ‘waits for the ‘child to terminate. The eait function
terminates the process if an error occurs when reopening the standard files.
Otherwise, the process.continues until the CNTRL-D key is pressed at the new
terminal.

5-8




Chapter 6
Creating and Using Pipes:

6.1 Introduction ‘6-1

6.2 OpeningaPipetoaNewProcess :6-1

6.3 Reading and WritingtoaProcess 6-2

6.4 Closing aPipe 6-2

6.5 Opening aLow-LevelPipe 6-3

6.6 Reading'and WritingtoaLow-Level Pipe 6-4 -
6.7 Closing aLiow-LevelPipe 6-4

6.8 ProgramExamples 6-5






Creating -and Using Pipes

6.1 Introduction

A pipe is an artifical file thata program may create and use to passinformation
to other programs. A pipe issimilar to afilein thatit hasafile pointer and/or a
file descriptor and.can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
thatisindependent of the program’sown memory and is controlled entirely by
the system.

Pipes are chiefly used to pass information between programs, just as the shell
pipe symbol ( | ), is used to pass the output of one program to the input-of
another. This eliminates the need to create temporary files to passinformation
to other programs. A pipe can also be used as a temporary storage place for a
single program. A program can write to the pipe, then read that information
back at alater time.

The standard library provides several pipe functions. The popen and pelose
functions:control both a pipe and -a process. The popen function opensa pipe
and creates a new process at the same time, making the new pipe the standard
input or output of the new process. The pelose function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other hand, giveslow-level access to a pipe. The function issimilar to the open
function, but opens the pipe for both reading and writing, returning two file
descriptors instead of one. The program can either use both sidesof the pipe or
close the one it does not need. The low-level input and output functions read
and write can be used to read from and write to a pipe. Pipe file descriptorsare
usedin the same way asother file descriptors.

8.2 Opening a Pipe to a New Process

The popenTunction creates a new processand thenopensa pipe tothe standard
input or output file of that new process. The function call has the form:

popen (command, type)

where commandisa pointer to-a string that containsa shell command line, and
typeisa pointer to the string which defines whether the pipeisto be opened for
reading or writing by the original process. It may be “r’ for readingor “w"for
writing. The function normally returns the file pointer to the open pipe, but
will returnthe null pointer value NULL if an error isencountered.

The function is typically used.in programs that need to call another program
and pass substantial amounts of data ‘to that program. For example, in the
following program fragment popen creates a new process for the cat command
and opens a pipe for writing.

6-1



FILE *pstrm;
pstrm = popen(”cat >response”,"w"});

The new pipe given by “‘pstrm” links the standard input of the command with
the program. Data written to the pipe ‘will be used ‘as input by the cat
command.

8.3 Reading and Writing to a Process

The fscanf, fprintf, and other stream functions may be used ‘to read from or
write to a pipe opened by the popen function. These functions have the same
form-asdescribed in Chapter2.

The facanf function can be used to read from a pipe opened for reading. For
example, in the following program fragment fecanf reads from the pipe given
by pstrm.

FILE spstrm;
char name[20}];
int number;

pstrm = popen(”cat”,"r");
fscanf(pstrm, "%s %d", name, &number);

This pipe is:connected to the standard output-of the.cat command, so fecanf
readsthe first name and number written by-cat toitsstandard output.

The fprintf function can be used to read from a pipe opened for ‘writing. For
example,in the following program fragment fprintf writes the string pointed-to
by “buf” to the pipe given by “pstrm”’.

FILE spstrm;
char buf[MAX];

pstrm = popen(”wc” ,"w"};
fprintf(pstrm,” %s” buf)

This pipe is connected to the standard input of the wc command, so the
command readsand.countsthe contents of “buf”.
8.4 Closing a Pipe

The pclose function closes the pipe opened by the popenfunction. The function
callhasthe form:

pelose (stream)

6-2

e



Pstry, pen("cac response” " ”):
he ney Pipe 8ivep by “pstnn " lingg € Stang, inpuc of the ¢
the program. Dag, Writte 0 the Pe win b Useq inpy, b
comlnand.
8.3 Read ng ang riting to g Process
he Je canf, v 7 and., €T Stre ns May d to ad fr,
Write to 4 Pipe Peneg by the Pope,, fupe, * Thes, fup t ons p €the
forp, asdescrib d Cbap er2,

The ecantp, ion 2n-be dto ad ipe op d for “ading. For
exa le, in the ollo ing %8ram g, ent f, f re. Trop, the pipegive
by Patry,

*Pstry,
char name[20],
ing number;
Pstr popen("cat”,”r”);
fscanf(pstrm, "% %d”, nam, number}
his € Js nnected the Stapg rd o ut.q the 3L 00 180 fec an
ip p o/
ads theg, ang Umbe, wnttenb at., itsstandard {7
2 Spring Tupeg: 2N be Used ¢, Feaq fropm, ip
"ple, in the fojj, Wing program !'ragment/
Supr O.the Pipe 8ivep by “pstrm ",

HLES p0pen(”Wc”,"W”);
nt!(pscrm, " %s . bul)
is oo Neg to st arq inpy, of the e com
readsand OUnts e, ¢ ntso!“buf”.
ing 2 Pip
etion loseg the pe %Peneq b the popenl‘unctron
m
"am)



Creating and Using Pipes

6.1 Introduction

A pipe isan artifical file that a program may create and use to passinformation
toother programs. A pipeissimilar toafile inthat it has a file pointer and/ora
file descriptor and can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe ‘does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
that isindependent of the program’s own memory and is controlled entirely by
the system.

Pipes are chiefly used to pass information between programs, just as the shell
pipe symbol { | }, is used to pass the output of one program to the input-of
another. This eliminates the need to create temporary files to passinformation
to other programs. A pipe.can also be used asa temporary storage place for a
single program. A program can write to the pipe, then read that information
back at alater time.

The standard library provides several pipe functions. The popen-and pelose
functions control both a pipe and a process. The popea function opens-a pipe
and creates a new process:at the same time, making the new pipe the standard
input or .output of the new process. The pclose function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other-hand, giveslow-level access to a pipe. The function issimilar tothe open
function, but.opens the pipe for both reading and writing, returning two file
descriptorsinsteadof one. The program can.either use both sidesof the pipeor
close the one it does not need. The low-level input-and output functions read
and write can be used to read from and write to a pipe. Pipe file descriptorsare
used inthe same way asother file descriptors.

8.2 Opening a Pipe to a New Process

The popen function createsa new process and then opensa pipe to the standard
inputoroutput fileof that new process. The function.call has the form:

popen (command, type)

where commandisa pointer to a string that contains 2 shell command line, and
type is a pointer to the string which defines whether the pipe isto be opened for
reading or writing by the original process. It may be "’ for readingor *w” for
writing. ‘The function normally returns the file pointer to the open pipe, but
will returnthe null pointer valueNULL if an error isencountered.

The function is typically used:in programsthat need to call another program
and pass substantial amounts of data to that program. For example, in the
following:program fragment popen creates anew processfor the cat command
and opensa pipe for writing.

6-1



Creating and Using Pipes

The system copies the end-of-file value EOF to a pipe when the process that
made the original pipe'and every process created or called by ‘that process has
closed the writing side of the pipe. This means, for example, that if a parent
process is sending data to a child process through a pipe and closes the pipeto
signal the end of the file, the child process will not receive the end-of-file value
unlessit has already closed itsown write side of the pipe.

8.8 Program Examples

This section shows how to-use the process control functions with the low-level
pipe function to create functionssimilar to the popen and pelose functions.

The first example is a-modified version of the popen function. The modified
function identifies the new pipe with a file descriptor rather than a file pointer.
It also requiresa ““mode™ argument rather thana ‘“type” argument, where the
mode is0 for reading or 1 for writing.

ftinclude <stdio.h>
#define READ 0

#define WRITE 1
#define tst(a, b) (mode === READ ? (b) : (a))

static  int popen_pid;
popen{cmd, mode)
char *cmd;
int ‘mode;
{ .
int p[2];
if (pipe(p) < 0)

return(NULL);

if ((popen_pid == fork()) == 0) {
lose(tst(p|WRITE], p[READI));
close(tst{0, 1));
dup(tst(p[READ], p|WRITE]));
close(tst(p|READ], p|WRITE}));
execl(” /bin/sh”, "sh”, "-¢”, cmd, 0);
exit(1); /# sh cannot be found =/

}

if (popen_pid == -1}
return{NULL);

close(tst(p[READ], p[WRITE)));
) return(tst{p|WRITE}, p]READ]));

The function creates a pipe with the pipe function first. It then uses the fork

6-5



function to create two copies cf the original process. Each process hasits own
copy -of the pipe. The child process decides whether it is supposed to read or
write through the pipe, then closes the other side of the pipe and uses ezecl to
create the new process.and execute the desired program. The parent, on the
other hand, closes the side:of the pipeit.doesnot.use.

The sequence of close functions in the child processis a trick used to link the
standard input ‘or output of the child process to the pipe. The first close
determines which side of the pipe should be closed and closes it. Il *‘mode” is
WRITE, ‘the writing side is closed; if READ, the reading side is closed. The
second close closes the standard input or output dependingon the mode. If the
mode is WRITE, the input is closed; if READ, the output is closed. The dup
function createsa duplicate of the side of the pipe still open. Since the standard
inputor output was:closed immediately before this call, this-duplicate receives
the same file descriptor :as the standard file. "The system :always chooses the
lowest available file descriptor for a newly opened file. Since the duplicate pipe
has the same file descriptor asthe standard fileit becomesthe standard input or
output file for the process. Finally, the last ¢lose closesthe original pipe, leaving
only the duplicate.

The following example is a ‘modified version ‘of ‘the pelose function. The

modified version requires a file descriptor ‘as an argument rather than a file
pointer.

6-6




Creating and Using Pipes

#include <signalh>

pelose{fd) {* close pipe fd =/

int fd;

{ .
it r, status;
int {#hstat)(), (sistat)(), {#qstat)(};
extern int popen_pid;

close(fd});

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN});
hstat = signal{SIGHUP, SIG_IGN);

while ((r == wait(&status)) 1= popen_pid && r == -1)

i (r == 1)
status = —1;

signal(SIGINT, istat);
signal{SIGQUIT, gstat);
signal(SIGHUP, hstat);

return(status);

}

The function closes the pipe first. It thenusesa while statement to wait for the
child process given by *‘popen_pid’’. Il other child processes terminate while it
walits, it ignores them and continues to ‘wait for the given process. It stops
waiting-assoon asthe given process terminates orif nochild processexists. The
functionreturns the termination'status of the child, or the value -1if there was
anerror.

The signal function calls used in this example ensure that mo interrupts
interfere with the waiting process. The first.set of functions causes the process
to ignore the interrupt, quit, and hang up signals. The last set restores the
signals to their original status. The signal function is described in detail in
Chapter 7,““Using Signals”.

Note that both example functions use the external variable “popen_pid” to
store the process 1D of the child process. If more than.one pipeis to be:opened,
the “popen_pid"” value must be saved in another variable before each call to
popen, and this value must be restored before calling peloge to close the pipe.
The functions can be modified to support more than‘one pipe by changing the
“popen_pid” variable to-an array indexed by file descriptor.

6-7






Chapter 7
Using Signals

7.1 Introduction  7-1

7.2 Using the signalFunction  7-1
7.2.1 Disabling a Signal  7-2
7.2.2 Restoring aSignal’s Default Action 7-3
7.2.3:CatchingaSignal 7-4
7.2.4 RestoringaSignal 7-6
7.2.5 Program Example 7-6

7.3 Controlling Execution With Signals 7.7
7.3.1 Delaying aSignal’s Action  7-7
7.3.2 Using Delayed Signals With System Functions
7.3.3 Using Signalsin InteractivePrograms  7-9

7.4 Using Signals in Multiple Processes 7-10
7.4.1 Protecting Background Processes 7-11
7.4.2 Protecting Parent Processes 7-12

7-8



e



Using Signals

7.1 Introduction

This chapter explains how to use Clibrary functionsto process signalssent toa
program by the XENIX system. A signal is the system’s response to'an unusual
conditionthat occurs during execution of a‘program such asa user pressing the
INTERRUPT key or the system detecting an ‘illegal operation. A signal
interrupts normal execution of the program and initiates an action such as
terminatingthe programor-displayingan error.message.

The stgnal function of the standard Clibrary letsaprogram define theactionof
asignal. The functioncan be used to disable a signal to prevent it from aflecting
the'program. It can-also beused to give asignal auser-definedaction.

The signal function is often used ‘with the setymp and longymp functions to
redefine and reshape the action of a signal. These functions allow programs to
save and restore.the execution state of a;program, giving a program a means to
jump from one state -of execution to another without a complex ‘assembly
languageinterface.

Tousethe stgnal function, youmustadd the line

#include <signalh>
to the beginning of the program. The eignal.hfile defines the various manifest
constants used :as arguments by the function. To use the setjmp and longimp
functions youmustadd theline

Ftinclude <setjmp.h>
to the beginning of the program. The setjmp.kfile containsthe declaration for

the type jmp_buf, atemplate for saving a program's current.execution state.

7.2 Using the signal Function

The #ignal function changes the action of asignal from its current actiontoa
givenaction. The function hasthe form

signal(sigtype, ptr)

where sigtype is-an integer or a.mainfest-constant that defines the signal to be
changed, and ptris a pointer to the function defining the new action or a
manifest constant giving a predefined action. The function always returns a
pointer value. This pointer.definesthe signal’s previousaction and may be used
in subsequent calls'to restore the signal to its previous value.

The ptr may be “SIG_IGN” to indicate no action (ignore the signal) or

“SIG_DFL” to'indicate the default action. The sigtype may be ““SIGINT” for
interrupt signal, caused by pressing the INTERRUPT key, “SIGQUIT" for quit

7-1



XENIX Programmer's Reference

signal, caused by pressing the QUIT key, or “SIGHUP” for hangup signal,
caused by hangingup the line when connected to the system by modem. {Other
constants for other signals are given in signal(S) in the XENIX Reference
Manual.) . : :

For example, the functio'n call
signal(SIGINT, SIG_IGN}

changes the action.of the interrupt:signal to no action. The signal will have no
eflecton the program. The default actionisusually to terminate the program.

The following sections show how to use the signal function to disable, change,
and restore signals.

7.2.1 Disabling a Signal

You can disable asignal, i.e., prevent it from aflecting a program, by using the
“SIG_IGN" constant-with efgnal. The function call hastheform

signal (sigtype, SIG_IGN)

where ‘#igtype is the manifest .constant of the signal you wish to disable. For
example, the function call

signal(SIGINT, SIG_IGN);
disables the interrupt signal.

The function call is typically used to prevent a signal from terminating a
program executingin'the background (e.g., achild process that is not using the
terminal for input or output). The system passes signals generated from
keystrokes at a terminal to all programs that have been invoked from that
terminal. This means that pressing the INTERRUPT key to stop a program
runningin the foreground willalso stop a program runninginthe backgroundif
ithasnot disabled that signal. For.example, inthe following program fragment
signalisusedto disable theinterruptsignal for the child.

&)



Using Signals

#include <signal.h>

main {)
{
if { fork() ==

signal(SIGINT, SIG_IGN};
/* Child process. */

}

/* Parent process. #/

}

This call does not affect the parent process which continues to receive
interrupts as before. Note that if the parent processisinterrupted, the child
process.continuesto execute until it reachesitsnormalend.

7.2.2 Restoring a Signal’s Default Action

You canrestoreasignal to its default-action by usingthe “SIG_DFL" constant
with:eignal. The functioncall'hasthe form

signal (stgtype, SIGDFL)

where eigtype is the manifest constant defining the signal you wish to restore.
For example, the function call

signal (SIGINT, SIG_DFL)
restores the interruptsignaltoits defaultaction.
The function call is typically used to restore a signal after it has been
temporarily ‘disabled to keep it from interrupting critical -operations. For

example, in:the following program fragment the second call to-signal restores
the signalto its default.action.



XENIX Programmer’s Reference

#include <signal.h>
#include <stdio.h>

main ()
{
FILE +fp;
char #record[BUF}, filename[MAX]);

signal (SIGINT, SIG_IGN);
fp == fopen(filename, "a");
fwrite(fp, BUF, record, 512);
signal (SIGINT, SIG_DFL);

}

In thisexample, theinterrupt signal is ignored while arecord is record from the
file given by “fp”.

7.2.3 Catching a Signal
You can catch asignal and define your own action for it by providing a function
that-defines the new action and giving the function as an argument to eignal.
The function call has theform

signal (eigtype, newptr)
where #igtype is the manifest constant defining the signal to be caught, and
newptr s a pointer to the function defining the new action. For example, the
functioncall

signal{SIGINT, catch)

changes the action of the interrupt signal to the action defined by the function
named catch,

The function call is typically used to let a program do additional processing
before terminating. In the following program fragment, the function .catch
definesthenew actionfor theinterruptsignal.




Using Signals

#include <signal.h>
main ()
int catch {);

print{("Press INTERRUPT key to stop:0);
signal (SIGINT, catch);
while () {

/* Body +/

catch ()
{

printf("Program terminated.\n");
exit(1);

}

The cateh function prints the message “Program terminated” before stopping
the program with the ezit function.

A program may redefine the -action of a signal at any time. Thus, many
programs define different actions for different conditions. For example, in the
following program fragment the action of the interrupt signal depends on the
returnvalue of afunction named keytest.

#include <signalh>
main ()
int catchl (), catch2 ();
if (keytest() == 1)
signal(SIGINT, catchl);

else
signal(SIGINT, catch?);

}

Later the program may change the signal to the other action or even:a third
action.

When usinga function pointer in the signal call, you must make sure that the
function name is defined before the call. Inthe program fragmentshownabove,
catchland cateh? areexplicitly declared at the beginning of the main program
function. Their formaldefinitionsare assumed to appear afterthe signal call.

7-5



XENIX Programmer’s Reference

7.2.4 Restoring a Signal

You can restore a signal to its previous value by saving the return value.of a
signal call, then using this valuein.a subsequent call. The function call hasthe
form: )

signal (eigtype, oldptr)

where -sigtype is the manifest constant defining the signal to be restored and
oldptristhe pointer valuereturned by a previoussignalcall.

The function call is typically used to restore a signal when its previous action
may be one of many possible actions. For example, in the following program
{ragment the previous action depends solely on the return value of a function
keytest.

#include <signalh>
main () '

int-catchi(), catch2();
int (*savesig)();

if (keytest() === 1)
signal(SIGINT, catchi);
else

signal(SIGINT, catch2);

savesig = signal (SIGINT, SIG_IGN);
compute(};
signal(SIGINT, savesig);

}

In this example, the old pointer issaved in the variable “savesig”, Thisvalue s
restored after the function computereturns.

7.2.5 Program Example

Thissection shows how to use the signalfunction to create a modifed version of
the systemfunction. Inthis version, system disablesallinterruptsin the parent
process until the child processthas completed:its operation. It then restores the
signalsito their previousactions.




Using Signals

#include <stdio.h>
#include <signal.h>

system(s) /* run command string s */
char *s;
{ . :

int status, pid, w;

register int (*istat)(), (*qstat)();

if ((pid = fork()) == 0) {
execl(” /binfsh”, "sh”, "-¢”, s, NULL);
exit(127);

istat = signal{SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG_IGN);
while ((w == wait(&status)) T== pid £& w 1= -1)

if (w == —1)

status == -1;
signzl(SIGINT, istat);
signal(SIGQUIT, qstat);
return(status);

}

Note that the parent uses the while statement to wait untilthe child’sprocess
ID “pid’" isreturned by wast. If wastreturns the error code**~1".no-more child
processes are left, sothe parent returns the error code asits ownstatus.

7.3 Controlling Execution With Signals

Signals do not need to be used solely as.a means.of immediately terminating a
program. Many signals can be redefined to delay their actions or even cause
actions that terminate a-portion of a program without terminating the entire
program. The following sections describe ways that signals can be caught and
usedto.provide controlof a program.

7.3.1 Delaying a Signal’s Action

You candelay the action of a signal by catching the signal and redefining its
action to be nothing more than setting a globally-defined flag. ‘Such a signal
does nothing to the current execution of the program. Instead, the program
continues uninterrupted until it can test the flag to see if a signal has been
received. It canthenrespondaccordingto the valueof the flag.

Thekey toa delayed:signalis that:all functionsreturnexecutionthe exact point
at ‘which the program was interrupted. If the function returns normally the
program continuesexecution just:asif nosignal occurred.



XENIX Programmer’s Reference

Delaying asignal isespecially useful in programs that must not be:stopped atan
arbitrary point. I, for example, a program updates alinked list, the action of a
signal can be delayed to prevent ‘the signal from interrupting the update and
destroying the list. For -example, in ‘the following program fragment the
function delay used to catch the interrupt signal sets the globally-defined flag
“sigflag’ and returns immediately to the point of interruption.

#include <signalh>
int.sigflag;

main ()

int-delay ();
int {»savesig)();
extern int sigflag;

signal(SIGINT, delay); /* Delay the signal. #/
updatelist();
savesig == signal(SIGINT, SIG_IGN); /+ Disable the signal. +/
if (sigflag)
/* Process delayed signals if any. ¢/

delay ()
{ o
extern int sigflag;

sigflag=1;

}

In this example, if the signal is received while updatelist is executing, it is
delayed untilafter updatelist returns. Note that the interruptsignalisdisabled
béfore processing the delayed signal toprevent a change to*‘sigflag’’ when it is
being tested.

Note that ‘the system automatically resets a signal to its default action
immediately ‘after the signal is processed. If your program delays a signal,
make sure that the signal is redefined after each interrupt. Otherwise, the
default action willbe taken onthenext occurrence of the signal.

7.3.2 Using Delayed Signals With System Functions

When ' a delayed signal is used to interrupt the execution of a XENIX system
function, suchas read or-wast, the system forcesthe function to stop-and return
an error ‘code. This action, unlike actions taken during ‘execution of other
functions, causes all ‘processing performed by the system function to be
discarded. A seriousierror can occur.if a program interprets a system function
error caused by delayed signals-as a normal error. For example, if a program

7-8




XENIX Programmer’'s Reference

Delaying asignal is especially usefulin programs that must not be stopped at an
arbitrary point. If, for example, a program updates alinked list, the actionof.a
signal can be delayed to prevent the signal from interrupting the update and
destroying the list. For example, in the following program fragment the
function delay used to catch the interrupt signal sets the globally-defined flag
“sigflag’’ and returnsimmediately tothe point of interruption.

#include <signalh>
int sigflag;

main {)

int delay ();
int {esavesig)();
extern int sigflag;

signal(SIGINT, delay); /* Delay the signal. */
updatelist();
savesig == signal(SIGINT, SIG_IGN); /+ Disable the signal. ¢/
if (sigflag)
/* Process delayed signals if any. s/

delay ()
{ i
extern int sigflag;

siglag=1;
}

In this example, if the signal is received while updatelist is executing, ‘it is
delayed until after updatelistreturns. Note that the interruptsignalisdisabled
before processing the delayed signal to prevent a change to “sigllag™ when it is
being tested.

Note that the system ‘automatically reséts a signal to its default action
immediately after the signal is processed. If your program delays a signal,
make sure that ‘the signal is redefined after each interrupt. Otherwise, the
default action will be taken on the next occurrence of the signal.

7.3.2 Using Delayed Signals With System Functions

When a delayed signal is used to interrupt the execution of 2 XENIX system
function, such as read or wait, the system forces the functionto stop and return
an error code. This action, unlike actions taken during execution of other
functions, causes all processing performed by the system function to be
discarded. A serious.error canoccur if'a program interprets a system function
error caused by delayed signals as a normal error. For example, if a program

7-8

S



XENIX Programmer’s Reference

The longjmpfunction hastheform

longjmp (buffer)

where buffer is ‘the variable containing the execution state. It must contain
values previously saved with a setbuf function. The function copiesthe valies
in‘the buffer variable to the program counter, data and address registers, and
the processstatustable. Execution continuesasif it had just returned fromthe
setbuf function which saved the previous execution state. For example, in the
following program fragment setbuf saves the execution state of the program at
the location just before the main processing loop-and longjmprestoresit-on an
interruptsignal.

#include <signalh>
#include <setjmp.h>

main()
int onintr(};

setjmp(sjbuf);
signal(SIGINT, -onintr);

/* main processing loop */

}

onintr ()

printf("\nInterrupt\n");
longjmp(sjbuf);
}

In thisexample, the action of theinterrupt signal asdefined by onintristoprint
the message “Interrupt” and restore the old execution state. When an
interrupt signal is received in the main processing loop, execution passes to
onintr ‘which prints the message, then passes execution back to the main
program function, making it appear:as though control is returning from the
setbuffunction.

7.4 Using Signals in Multiple Processes

The XENIX system passes all signals generated at a given terminal to -all
programs invoked at that terminal. 'This means that a program has potential
access to a signal even if ‘that program is executing in'the background or as.a
child to some other program. The following sections explain how signals may
be usedin multiple processes.

7-10



Using Signals

.7.4.1 Protecting Background Processes

Any program that hasbeeninvoked using the shell's background symbol (&) is
executed ‘as a background process. ‘Such programs usually do .not use the
terminal for :input or .output, and complete their tasks silently. ‘Since these
programs do not need additional input, the shell automatically disables the
signals before executing the program. This means signals generated at the
terminal do not-affect execution of the program. This is how the shell protects
the program from signals intended for other programs invoked from the same
terminal. .

In some cases, a program that has been invoked as a background process may
also attempt to catch ‘its own signals. If it succeeds, the ‘protection from
interruption given to‘it by the shell is defeated, and signals intended for other
programs will interrupt.the program. To prevent this, any program which is
intended to be executed asa background process, should test the currert state
of asignal before redefining its action. A program should redefine a signal only
if the signal has not been disabled. For example, in the following program
fragment the action of the interrupt signal is changed only if the signal is not
currently beingignored.

#tinclude <signal.h>
main()
int catch();

if (signal(SIGINT, SIG_IGN) !== SIG_IGN)
signal(SIGINT, catch);

/* Program body. */
}

This step letsa program continue to ignore signalsif it is already doing so, and
change the signalifitisnot.

7-11



XENIX Programmer’s Reference

7.4.2 Protecting Parent Processes

A program can create and wait for-a child processthat catchesitsownsignalsif
and only if the program protectsitsell by disabling all signals before calling the
wast function. By disabling the signals, the parent process prevents signals
intended for the child processesfrom terminating its call to wast. Thisprevents
serious-errors that may result if the parent process continues execution before
the child processesare finished.

For example, in the following program fragment the interrupt signalisdisabled
inthe parent processimmediately after the child iscreated.

#include <signal.h>
main ()
int - (#saveintr)();

if (fork () == 0)
execl( ... );

saveintr == signal (SIGINT, SIG_IGN};
wait( &status);
signal (SIGINT, saveintr);

}

The:signal’s-action is restored after the wait function returns normal control to
the parent.

7-12

g



Chapter 8
Using System Resources

8.1 Introduction  -8-1

8.2 Allocating Space 81
8.2.1 Allocating Space for a Variable 81
8.2.2 Allocating Space foran Array  8-2
8.2.3 Reallocating Space  8-3
8.2.4 Freeing Unused Space  8-3

8.3 LockingFiles = 8-4
8.3.1 PreparingaFilefor Locking 84
8.3.2 LockingaFile &5
8.3.3 ProgramExample 8-5

8.4 Using Semaphores  8-6
8.4.1 Creating a Semaphore 87
8.4.2 Opening a Semaphore 8-8
8.4.3 Requesting Control of aSemaphore  8-8
8.4.4 Checkingthe StatusofaSemaphore 89
8.4.5 Relinquishing Control of a Semaphore  8-9
8.4.6 ProgramExample 810

8.5 Using Shared Data 8-12
8.5.1 Creatinga Shared Data Segment 8-13
8.5.2 Enteringa Shared DataSegment 8-14
8.5.3 Leaving aShared Data Segment 8-14
8.5.4 Gettingthe Current Version Number 8-15
8.5.5 Waiting for'a Version Number 8-15
8.5.6 FreeingaShared Data Segment 8-16






Using System Resources

8.1 Introduction
This chapter describes the standard C library functions that let programs
share the resources of thie XENIX system. The functions give a program the
means to queue for the:use and control of a given resource and tosynchronize its
use with use’by other programs.
Inparticular, thischapter explainshow to

— Allocate memory fordynamically required storage ~

—  Lockafile toensureexclusive use by a program

—  Usesemaphoresto controlaccesstoaresource

—  Sharedataspacetoallowinteractionbetween programs

8.2 Allocating Space

Some ‘programs require significant changes to ‘the size of their allocated
memory space during different phases -of their execution. The memory
allocation functions of the standard C library let programs allocate space
dynamically. This means a program can request a given number of bytes of
storage for its exclusive use at the moment it needs the space, then free this
space after it hasfinished usingit.

There are four memory allocation functions: malloc, calloc, ralloc, and free.
The ‘malloc and calloc functions are used to allocate space for the first time.
The functions allocate a given number of bytes:and return-a pointer to the new
space. The realloc-function reallocates anexisting space, allowing it to be used
inadifferent way. The freefunction returnsallocated space'to the system.

8.2.1 Allocating Space for a Variable

The malloc function allocatesspace for avariable containing a given number.of
bytes. Thefunction call'hasthe form:

malloc (size)

where size is-an unsigned number which gives the number of bytes to be
allocated. Forexample,the function call

table = malloc (4)
allocatesfour bytesor storage. The function normally returns.a pointer to'the

starting address of the allocated space, but will return-the null pointer value if
there is not enoughsspaceto allocate.

8-1



Thefunction is typically used to allocate storage for a group of strings that vary
in length. For example, in the following program fragment malloc is-used 'to
allocate space for ten different strings, each of different length.

int i;
char #temp, *strings[10];
unsigned isize;

for (i==0; i<10; i++) {
scanf("%s", temp);
isize = ‘strlen(temp);
string[i] = malloc(isize);

In this example, the strings-are read from the standard input. Note thatthe
strlenfunction is used toget the sizein bytesofeach string.

8.2.2 Allocating Space for an Array

The calloc function allocates storage for a given array and initializes each
element in the new:array tozero. The function call hasthe form:

calloc (n, size)

where nis the number-of elementsin thearray, and size is the number of bytes
in each element. The function normally returns a pointer to the starting
addressof the allocated space, but will return anull pointer value if there is not
enoughmemory. Forexample, the function call

table = ‘calloc {10,4)
allocates sufficient spacefor a 10.clement array. Eachelement has4 bytes.

The function is typically used in programs which must process large arrays
without knowing the size of an array in advance. For example, in the following
program fragment calloc is used toallocate storage for-an-array of valuesread
from thestandardinput.

int i
char stable;
unsigned inum;

scanf("%d”, &inum);

table == icalloc (inum, 4);

for {i=0; i<inum; i++) .
scanf("%d", tablefi}));

Note that the number of elements is read from the standard input before the
elementsareread.

8-2

%
4




Using System Resources

8.2.3 Reallocating Space

The realloc function reallocates the space:at a given address without-changing
the contents of the memory space. The function call has the form:

realloc (ptr, size)

where ptris a pointer to the starting addressof the space to be reallocated, and
sizeisan unsigned number giving the new size in bytesof the reallocated space.
The function normally returnsapointer to the starting address of the allocated
space, but will return a null pointer value if there is not enough space to
allocate.

This function is typically used to keep storage as compact as possible. For
example, in the following program fragment realloc is used to remove table
entries.

main ()

char *table;
int i;
unsigned inum;

for (i=inum; i>-1; i) {
printf(” %d0, stringsli]);
strings = realloc{strings, i*4);

In this:example, an entry is removed after:it has been printed at the standard
output, by reducing the size of the allocated space from its current length tothe
length given by *‘i=4”.

8.2.4 Freeing Unused Space

The free function frees unused memory space that had been previously
allocated by amalloc, calloe, or realloc function call. The function call hasthe
form:

free(ptr)

where ptr is the pointer to the starting address of the space to be freed. This
pointer must be thereturn'value of a malloc, .calloc, or realloc function.

The function is used exclusively tofree space which is no longer used or tofree
space to be used for other purposes. For example, in the following program
fragment free frees ‘the allocated space pointed to by “strings” if the first
elementisequal tozero.

8-3



main ()
char ‘stable;

if ( table[0] == -1)
free (table);

8.3 Locking Files

Locking a file is a ‘way to synchronize file use ‘when several processes may
require accessto a single file. The standard C library provides one file locking
function, the locking function. This function locks any given sectionof a file,
preventing -all .other processes which wish to use the section from gaining
access. A processmay lock the entire file or only a small portion. In any case,
only the locked section’is protected;all other sections may be accessed by other
processesasusual.

File locking protects a file from the damage that may be caused if several
processestry to read ‘or ‘write to the file at the same time. It also provides
unhindered-access to any portion.of a file for ‘a-controlling process. Before-a file
can'be locked, however, it:-must be prepared using the .openand lseek functions
described in Chapter 2, “Using the Standard I/O Functions.” To use the
lockingfunction, you must add the line

#include <sysflocking.h>

to:the beginning of the program. Thefile sys/locking.h contains definitions for
the modesused with the function.

8.3.1 Preparing a File for Locking

Before a file can be locked, it must first be-opened using the open function, then
properly positioned by using the lseek function to move the file’s character
pointer tothe first byte to be locked.

The open function is.used once at the beginning of the program toopén the file.
The lseek function may be used any number of times to 'move the character
pointer toeach newsection to belocked. For example, the following statements
prepare ‘the first 100 bytes beginning at the byte position 1024 from the
beginning of the file reeervatione for locking.

fd .= open("reservations”, O_RDONLY)
Iseek(fd, 1024, 0)

8-4

S

W



Using System Resources

8.3.2 Locking a File

The locking function locks one or more bytes-of a given file. The function call
hasthe form:

locking (filedes, mode, size)

where filedes is the file descriptor of the file to be locked, mode is an integer
value which defines the typeoflock tobe applied to the file , size isalonginteger
value giving the size in bytes.of the portion of the file section to be locked or
unlocked. The mode may be “LOCK” for locking the given bytes, or
*“UNLOCK” for unlocking them. For example, in the following program
fragment locking locks 100 bytes at the current character pointer position in
the file given'by “fd”’.

#include <sys/locking.h>
main {)

i

int 1d,

fd = open("data”, 2);
locking(fd, LOCK, 100);

The function normally returns the number of bytes locked, but will return -1if
it encounters.an error.

8.3.3 Program Example

This section shows how to lock and unlock a small section in a file using the
locking function. In the following program, the function locks 100 bytes in the

file data-which is.opened for reading and writing. Thelocked portion of the file
isaccessed, then lockingis used againto unlock the file.

8-5



:tinclude <sysflocking.h>
main()

int fd, err;
char *data;

fd == open("data”,2); /* Open data for R/W =/

if (fd == -1)
perror("");
else »
Iseek(fd, 100L, 0); - /* Seek to pos 100 +/

err = locking(fd, LK_LOCK, 100L}; /* Lock bytes 100-200 =/
if {err === -1) .
/* process error return */

/* read or write bytes 100 - 200 in the file &/

lseek(fd, 100L, 0); /* Seek to pos 100 «/
locking(fd, LK_UNLCK, 100L); /#* Lock bytes 100-200 =/

}

8.4 Using Semaphores

The standard C library provides a group ‘of functions, called .the semaphore
functions, which may be used to control the access to a given system resource.
These functions create, open, and request control of “semaphores.”
Semaphores are regular files that have names and entries in the file.system, but
contain no data. Unlike other files, semaphores cannot be accessed by more
than one process.at atime. A processthat wishes totake controlofa semaphore
away from another process must wait until that process relinquishes control.
Semaphores can be used to control a system resource, such as a data file, by
requiring that a process gain control of the semaphore before attempting to
access the resource.

There are five semaphore functions: cre atsem, opensem, waiteem, nbwaitsem,
and sigsem. The creatsem function createsa semaphore. Thesemaphore may
then be opened:and used by other processes. A process can open asemaphore
with ‘the opensem function and rTequest control of a semaphore with the
waitsem or nbwaitsem function. Once a processhas control of a semaphore it
can carry out tasks using the given resource. All other processes must wait.
When 2 process has finished accessing the resource, it can relinquish control of
the semaphore with the sigsem function. This lets other processes get control
of the semaphore and use thecorresponding resource.

8-6

\



Using ‘System Resources

8.4.1 Creating a Semaphore

The creatsem function creates a semaphore, returning a semaphore number
which may be used in subsequent semaphore functions. The function call‘has
theform:

creatsem (sem_name, mode)

where sem_name is a character pointer to the name of the semaphore, and
mode is an integer value which defines the access mode of the semaphore.
Semaphore names have the same syntax:asregular file names. The names must
be-unique. The functionnormally returns an integer semaphore number which
may beused'in subsequent semaphore functions torefer tothe semaphore. The
function returns -1if it-encountersan error, such as creating a semaphore that
already exists, or usingthe name of an‘existing regular file.

The function is typically used atthe beginning of one process to clearly define
the semaphores it intends to share with other processes. For-example,in the
following program fragment creatsem creates a semaphore named “ttyl”
before preceding withits tasks.

main ()

int ttyl;
FILE ftty};

ttyl = creatsem(”tty1”, 0777);
fttyl = fopen(” /dev/tty01”, "w");
/* Program body. +/

Note that fopen is used immediately after creatsem to open:the file /dev/tty01
for writing. Thisisone way tomake the association between asemaphoreanda
deviceclear.

The mode *“0777" defines the semaphore’saccess permissions. The permissions
are similar to the permissions of a regular file. A semaphore may have read
permission for the owner, for users.in the same group as.the owner, and for-all
other users. The write and execution permissions have no meaning. Thus,
0777 meansread permission for all users.

No more than one process ever need create a given semaphore; all other
processessimply open thesemaphore with the opensemfunction. Once created
or opened, a semaphore may be accessed only by ‘using the waitsem,
nbwattsem, or ‘sigsem functions. The ¢reatsem Tunction may be used more
than-once during-execution of a process. In particular, it can’be used to reseta
semaphore if'a process failsto relinquish control before terminating.

8-7



8.4.2 Opening a Semaphore

The opensem function ‘opens an existing ‘semaphore for use by the given
process. Thefunction call'hastheform:

opensem {sem_name)

where #em_name isa pointer to the nameof the semaphore. This must’be the
same name used when creating the semaphore. The function returns a
semaphore number that may be used in subsequent semaphore functions to
refer to the semaphore. The function returns -1if it encounters'an error, such
as ‘trying to open ‘a semaphore ‘that does not exist -or using-the name of an
existing regular file. ’

The function is typically used by a process just before it requests control ofa
given semaphore. A ‘process need not use the function if it also created the
semaphore. For example, in the following program fragment opensem is used
toopen thesemaphorenamed semaphored.

main ()

{

int seml;

if ( (sem1 = opensem{"semaphorel”}} 1= -1)
waitsem(sem1);

In this'example, the'semaphore number is assigned to the variable “‘sem1”. If
the number isnot -1, then “sem1’ is used in the sesmaphore function wattsem
whichrequests control of the semaphore.

Asemaphore must not be opened:morethan once duringexecution of a process.

8.4.3 Requesting Control of a.Semaphore

The waitsem function requests control of a given semaphore for the calling
process. If the semaphore is available, ‘control is given immediately.
Otherwise, the process waits. Thefunction call hastheform:

waitsem (sem_num)

where sem_numisthesemaphore number of thesemaphore to be controlled. If
the semaphore is not available {if it is-under ‘control-of another process), the
function forces the requesting process to wait. If other processes-are already
waiting for control, the request is-placed nextin a queue of requests. Whenthe
semaphore becomes available, the first process to request control receives it.
When thisprocessrelinquishes control, the next processreceives control, andso
on. The function returns -1 if it encounters .an error such as réquesting a

8-8




Using System Resources

semaphore that does not exist or requesting a semaphore that is Jocked to 2
dead process.

The function is used whenever a given process wishes to access the device or
system resource associated with the semaphore. For example, in the following
program fragment waitsem signals the intention to write to the file given by
l‘tt’yl".

main ()

int ttyl;
FILE fttyl;

waitsem( ttyl );
fprintf( fttyl, » Changing tty -driver\n”);

The function waits until current controlling process relinquishes control.of the
semaphore before returning to the next'statement.

8.4.4 Checking the Status of a Semaphore

The ‘nbwastsem function checks the current status of a semaphore. If the
semaphore is not available, the function returns an error-value. Otherwise, it
gives immediate control of the ssmaphore to the calling process. The function
call hasthe form:

nbwaitsem (sem_num)

where sem_numis the semaphorenumber of the semaphore to be checked. The
function returns -1 if'it encounters an error such as requesting a semaphore
that does not exist. The function also returns ~1 if the process controlling the
requested ‘semaphore terminates without relinquishing control of the
semaphore.

The function is typically used in place of .waitsem to take control of a
semaphore.
8.4.5 Relinquishing Control of a Semaphore
The sigsem function causesa process torelinquish control of a given semaphore
and to-signal this Tact to all processes waiting for the:semaphore. The function
callhasthe form:

sigsem (sem_num)
where sem_num is the:semaphore number of the semaphore torelinquish. The

semaphore ‘must have been previously created or ‘opened by ‘the process.
Furthermore, the process must have been previously taken control of the

8-9



semaphore with the waiteem or nbwastsem function. The functionreturns-1if
it ‘encounters an error:such as trying to take control of a semaphore that does
notexist.

The function ‘is typically used after a process has finished accessing the
corresponding device or:system resource. Thisallows waiting processesto take
control. For example, in the following program fragment sigsem signals the
end of control of the semaphore “tty 1.

main ()

int ttyl;
FILE temp, fttyl;

waitsem( ttyl );

while ((c="{getc(temp)) = EOF}
fpute(e, Tttyl);

sigsem( ttyl );

This example also signals the end of the icopy operation to the semaphore’s
corresponding device, given by “‘ftty1”".

Note that a semaphore can become locked to a dead process if the process fails
to signal ‘the ‘end of the :control before terminating. In such a case, the
semaphore must be'reset by using the creatsemfunction.

8.4.6 ‘Program Example

Thissection shows how to use the ssmaphore functionsto control the accessofa
system resource. The following program creates five different processes which
vie for control of a semaphore. Each processtequestscontrol of the semaphore
five times, ‘holding -control for one second, then releasing it. Although, the
program performs no meaningful work, it clearly illustrates the use of
semaphores. ’

8-10




##define
char

int

int

main()

}

doit(id)
{

}

err(s)
char »s;

{

Using System Resources

NPROC 5
semf]] = "_kesemDOOOX;

sem_num;
holdsem = :5;

register i, chid;

mktemp(semf);
if {((sem_num = :creatsem(semf, 0777)) < 0)
err{"creatsem”);
for (i=1; i < NPROC; ++i) {
if{{chid == fork()} < 0)
err("No fork™);
else if(chid == 0) {
if((sem_num = opensem(semf)) < 0)
err("opensem”)};
doit(i);
exit(0);

}

doit(0);

for (i = 1; i < NPROGC; ++1i)
while(wait({int *)0) < 0)

unlink(semf);

while(holdsem—} {
if(waitsem(sem_num) < 0)
err("waitsem”);
printf(" %d\n", id);
sleep(1);
if(sigsem(sem_num) < -0)
err("sigsem”);

perror(s);
exit(1);

8-11



The program contains 'a number of global variables. The array “semf”
contains the semaphore name. The nameis'used by the creatsemand opensem
functions. The variable “sem_num” is the semaphore number. This is the
value returned by creatsem and opensem and-eventually used in waitsem and
stgsem. Finally, the variable “*holdsem” contains the number of times each
processrequestscontrolof the semaphore.

The:main program function uses the mktemp function to create a unique name
for the 'semaphore and ‘then ‘uses the name with creatsem to create ‘the
semaphore. Once the semaphore is:created, it begins to-create child processes.
These processes will eventually vie for control of the semaphore. Aseach child
process is created, it .opens the semaphore ‘and calls the dost function. When
control returns from dost the child processterminates. The parent process also
calls the dost function, then waits for termination of each child process and
finally deletes the semaphore with the unlink function.

The dost function calls the wasitsem function to request control of the
semaphore. The function waits until the semaphore is available, it then prints
the ‘process ID to the standard output, waits one second, and relinquishes
control using the sigsem function.

Each step of the program is checked for possible errors. If an error is
encountered, the program calls the errfunction. This function printsanerror
message and terminates the program.

8.5 Using Shared Data

Shared memory is a method by which :one process shares its allocated data
space with another. ‘Shared memory allows processes-to-pool informationina
central location and -directly access that information without the burden of
creating pipes or'temporary files.

The standard C library providesseveralfunctions toaccessand control shared
memory. The sdgetfunctioncreatesand/or adds ashared memory segment to
a given process’s data space. To access a segment, a process must.signal its
intention with the sdenterfun¢tion. Once asegment has completed its access, it
can signal that it is finished using the the segment ‘with the sdleave function.
The edfree function is used to remove a segment from a process'’s dataspace.
The sdgetv and sdwasty functions are used to synchronize processes when
several are accessingthe segment at the same time.

To use the shared datafunctions, youmust-add theline
#include <sd.h>

at the beginning of the program. The ed.4 file contains definitions for the
mainfest constants and other macrosused by the functions.

8-12




Using System Resources

8.5.1 Creating a Shared Data Segment

The sdget function creates a shared data segment for the-current process, or if
the segment ‘already exists, attaches the segment to the data space of the
current process. The function call hasthe form:

sdget {path, flag |, size, mode ])

where path is a character pointer to a valid pathname, flagis an'integer value
which defines how the segment should be created or attached, size is aninteger
value which defines the size in bytesof the segment to be-created, and mode is
an‘integer value which defines'the access permissions to be given to the segment
if created. The size 'and mode values-are used only when creating a segment.
The flag may be SD_RDONLY for attaching the segment for reading only,
SD_WRITE for -attaching the segment for reading and writing, SD_CREAT for
creating the segment given by pathif it does not already-exist, or SD_UNLOCK
for :allowing simultaneous access by multiple processes. The values can be
combined by logically ORing them. The SD_UNLOCK value is used only if the
segment is created. The function returns the address of the segment if it has
been successfully created or attached. Otherwise, the function returns ~1if'it
encountersan error.

The Tunction is most often used to:create a segment to be shared by ‘another
process. The function may :then be used in the other process ‘to attach the
segment to its data space. For example, in the following program fragment
sdgetcreatesasegmentandassignsthe addressof the segmentto*‘shared”.

#include <sd.h>
main {}
char #shared, *spath;

shared = sdget( spath, SD_CREAT, 512, 0777 );

When the segment is created, the size ““512"’ and the'mode *0777" are:used to
define the segment’s size'in bytes:and access permissions. Access permissions
are-similar to permissions given to regular files. A segment may have read or
write permission for the owner of the process, for usersbelonging to the same
group asthe owner, and for all other users. Execute permission for a segment
has no meaning. For example, the mode *0777” ‘means read and ‘write
permission for everyone, but “‘0660" means read-and write permissions for the
owner and group ‘processes-only. When first created, a.segment s filled with
zeroes.

Note that the SD_UNLOCK flag used on systems without hardware:support for
shared datamay severely degradethe executionperformanceof the program.

8-13



8.5.2 Entering a Shared Data Segment

The ‘sdentersignals a process’s intention to access the contentsof ashared data
segment. A processcannoteffectively access the contentsof the segment unless
it-entersthe segment. The function callhasthe form:

sdenter (addr, flag)

where ‘addr isa character pointer to the segment to be accessed, and flagis an
integer-value which defineshow the segmentisto be accessed. The flagmay be
SD_RDONLY for:indicating read only access to the segment, or SD_NOWAIT for
returning an -error if ‘the segment is locked and ‘another process is currently
accessingit. Thesevaluesmay alsobe combined by logically ORing them.

The function normally waits for the :segment to become available before
allowing access:to it. A segment isnot available if the segment hasbeen created
without SD_UNLOCK flag and another processis currently accessingit.

In general, it is unwise to stay in‘a shared datasegmentany longer than it takes
to-examineor modify the:desired location. The edleave functionshould be used
after ‘each access. When in:a shared data segment, -a-program should :avoid
using system functions. System functions can disrupt the normal operations
required ‘to support shared data and may cause some data to be lost. In
particular, if a program creates ashared data segment that cannot be shared
simultaneously, the program must not call the fork function when it is also
accessing that:segment.

8.5.3 Leaving a Shared Data Segment

The sdleave function signals ‘a process’s intention to leave a shared .data
segment after reading or modifying its contents. The function call has the
form:

sdleave (addr)
where addrisa pointer with type char to the desired segment. The function
returns -1ifit:iencounters an error, otherwise it returns 0. The return value is
alwaysaninteger.

The function should be used after each access of the shared data to terminate
the access. If the segment’slock flag isset, the function must be used after each
access to allow ‘other processes to access the segment. For example, in the
following program fragment sdleave terminates each access to the segment
given by “shared”.

8-14




Using System Resources

#include <sd.h>

main ()

char sshared;

while (#x4+41=10) {
sdenter(shared);

[* write to segment */
sdleave(shared);

8.5.4 Getting the Current Version Number

The sdgetv function returns the current version number of the given data
segment. Thefunction callhasthe form:

sdgetv (addr)
where eddr is a character pointer to'the desired segment. A segment’s version
number isinitially zero, but it is incremented by one whenever a process leaves
the segment using the edleave function. Thus, the version number isarecordof
the ‘number ‘of times the segment has been accessed. The function’s return
valueisalwaysaninteger. It returns—1ifit encounters anerror.
The function is typically used to choose an action based on the current version
number of the segment. For example, in the following program fragment
#dgety determines whether or not #denter should be used toenter the segment
given by “shared”.

#8$include <sd.h>

main ()

char #shared;

if (sdgetv(shared) > 10)
sdenter(shared);

In this example, the segment is-entered if the current version number of the
segment is greater than **10".

8.5.5 Waiting for a Version Number

The sdwaity function causes a process to wait until the version'number for the
given segment is no longer equal to.a given version number. The function call

8-15



hastheform:
sdwaitv (addr, vnum)

where addris a character pointer to the desired segment, and vnumisan integer
value which defines the ‘version number to wait on. The function normally
returns the new version number. It returns-1if it.encounters an error. The
returnvalueisalwaysaninteger.

The function is typically used to synchronize the -actions ‘of two separate
processes. For example, in the following program fragment the program waits
while the program -corresponding ‘to the version number *‘radical_change”
performs its operationsin the'segment.

#include <sd.h>

main ()

int radical_change = 3;

if ( sdwait ( sdseg, radical_change ) == -1}
fprintf(stderr, "Cannot find segment\n");

Ifan error occurs while waiting, an error message isprinted.

8.5.8 Freeing a Shared Data Segment

The sdfree function detaches the current process from the given shared data
segment. The function callhastheform:

sdfree (addr)

where addris a character pointer to the segment to be set free. The function
returnsthe integer value 0, if the segment isfreed. Otherwise,itreturns-1.

If the process is currently accessing the segment, #dfree automatically calls
sdleave toleave the segment before freeing it.

The contents of segments that have been freed by all attached processes are

destroyed. To reaccess thesegment, a process.must recreate itusing the sdget
functionand SD_CREAT flag.

8-16

)




Chapter 9
Error Processing

9.1 Introduction '9-1

9.2 Using the Standard ErrorFile 9-1
9.3 Using theerrno Variable 9-1

9.4 Printing Error Messages 9-2

9.5 UsingError Signals 9-3

9.6 Encountering SystemErrors 9-3






Error Processing

8.1 Introduction

The XENIX system automatically detects-and reports errors that occur when
using standard C library functions. Errorstange from problems with accessing
files to allocating memory. In most cases, the system simply reports the error
and lets the program decide how to respond. The XENIX system terminates a
program ‘only if a serious error has occurred, such as:a violation of memory
space.

This chapter explains how to process errors, and describes the functions and
variables aprogram may use respond:toerrors.

9.2 Using the Standard Error File

The standard error file is‘a special output file that can be used by a program to
display error messages. The standard error file is one of three standard files
(standard iinput, output, and error) automatically created for the program
whenitisinvoked.

The standard error file, like the standard output, is normally assigned to the
user’s terminal screen. Thus, error messages written tothe file are displayed at
the 'screen. The file can also be redirected by ‘using the ‘shell’s redirection
symbol (>) For example, the following command redirects the standard error
file tothe file errorlist.

dial 2>errorlist
In this case, subsequent error messagesare written to the given file.

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr may
be used in stream functions to copy data to theerror file. Thefile descriptor 2
may be used in low:level functions to copy data to the file. For example, in the
following program fragment stderris-used to-write the message “Unexpected
end of file” to the standard errorfile.

if ( (c=gescaer{)) == EOF) _
fprint{(stderr, "Unexpected end of file.\n");

The standard error fileis not affected by the shell’s pipe symbol (|). This means
that even if the standard output of a program is piped to another program,
errors generated by the program will still appear at the terminal screen {or in
the appropriate file if the standard error is redirected).

9.3 Using the errno Variable

The errno variable is a predefined external variable which contains the error

9-1



number of the most recent XENIX ‘system function error. Errors detected by N
system functions, such as access permission errors and lack of space, cause the ]
system to set the errno variable to a number ‘and return control to ‘the
program. The error number identifies the error condition. The variable may
beusedin subsequent statementsto processtheerror.

The errno variable is typically used immediately after a system function has
returned an error. In the following program fragment, errno is used to
determine the course of action after-an unsuccessful call to the openfunction.

if ({fd=open("accounts”, O_RDONLY)) === -1 )
switch (errno) {
case(EACCES):
{d = open{” Jusr/tmp/accounts”;0_RDONLY);
break;
*default:
exit(errno};

}

In this example, if errno is equal to EACCES (a manifest constant), permission
to open the file accounte in the current directory.is denied, so the fileiis opened
in the directory fusr/tmp instead. If the variable is any other value, the .
program terminates. 4

To use the errno variable in a program, it must be explicitly defined as an
external variable with int type. Note that the file errno.h contains manifest
constant definitions for each error number. These constants may be used in
any program:in-whichthe line

#include <errno.h>
is placed at the beginning of the program. The meaning of each manifest
constantisdescribedin Intro(S)inthe XENIX Reference Manual.
9.4 Printing Error Messages .

The perrorfunction copies a short error message describing the most recent
system function errorto the standard error file. ‘The function callhasthe form:

perror (s)

where ¢ is a pointer to a string containing additional information about the
error. .

The perror function places the given string before the error message -and
separates the two with a colon (:). Each error message corresponds to the
current value of the errno variable. For example, in the following program
fragment perror displays the message

9-2



Error Processing

accounts: Permission denied.
iferrnoisequal tothe constant EACCES.

if ( errno === EACCES ) {

perror(”accounts” );

fd = open (" fusr/tmp/accounts”, O_RDONLY});
}

All ‘error messages displayed by perror are stored in an array named
sys_errno, an external array of character strings. The perror function uses
the variable errno ‘as the index to the ‘array element containing the desired
message.

9.5 Using Error Signals

Some program errors cause the XENIX system to generate error signals. These
signals-are passed back to the program that caused the error and normally
terminate the program. The most common error signals are SIGBUS, the bus
error signal, SIGFPE, the floating point exception signal, SIGSEGV, the segment
violation signal, ‘SIGSYS, the system call error signal, and SIGPIFE, the pipe
error signal. Other signals are described in #ignal(S)in the XENIX Reference
Manual.

A program ¢an, if necessary, catch an error signal and perform its own error
processing by using the signal function. This function, as-described in Chapter
7, “Using Signals” canset the action of a signal to-a user-defined action. For
example, the function call

signal(SIGBUS, fixbus);

sets the action of the buserrorsignal to the action defined by the user-supplied
function fizbus. Such afunction usually attemptstoremedy the problem,or at
least ‘display detailed information about the problem before terminating the
program.

For details about how to catch, redefine, and restore these signals, see Chapter
7.

8.6 Encountering System Errors

Programs that encounter serious errors, such as hardware failures or internal
errors, generally do not receive detailed reports on the cause of the errors.
Instead, the XENIX system treats thiese errors as*‘system errors’,-and reports
them by displaying a system error message on the system console. This section
briefly describes some aspects of XENIX system rrors.and how they relate to
user programs. For acomplete list and.description of XENIX system errors, see
messages(M) in the XENIX Reference Manual.

9-3



Most system errorsioccur-duringcallsto system functions. If the systemerror is
recoverable, the system will return an error valueto the program and set the
errno variable toan-appropriate value. No other information about theerror
isavailable.

Although the system lets two-or more:programs share a given resource, it does
not keep close track of which program is-using the resource at any given time.
When an error occurs, the system returns.an error ‘value to all programs
regardless of which caused the error. No information about which program
caused the errorisavailable.

System-errorsithat occur during routine I/O operationsinitiated by the XENIX
system .itself generally do not affect user programs. Such errors cause the
system:todisplay appropriate system error messagesonthe system console.

Some system ‘errors are not detected by the system wuntil after the
corresponding function has returned successfully. Such errorsoccur when data
written to afile by a'program has been:queued for writing to disk at a more
convenient time, or ‘when a portion ‘of data to be read from disk is found to
already ‘be in memory and the remaining portionisnot read untillater. Insuch
cases, the system assumes that the subsequent read or ‘write operation will be
carried out successfully and passes-control back to the program along with a
successful return value. If operation is-not carried out successfully, it causes a
delayederror.

When adelayed error occurs, the system usually attemptstoreturnanerroron
the next-call to-a system function that-accesses the same file or resource. If the
program has already terminated or does not make asuitable call, then theerror
isnotreported.




Appendix A
Assembly Language Interface

(ga 1stersandRe Valuesi
i z sncc



e



Assembly Language Interface

Al Introduction

When mixing MC68000 assembly language routines and compiled C routines, there
areseveralthingstobe awareof:

e RegistersandReturn Values
e CallingSequence

e StackProbes

With -an understanding of these three topics, you should ‘be able to write both C
programs that call MC68000 assembly language routines and assembly language
routinesthat call compiled Croutines.

A.l.1 Registers and Return Velues

Function return values are passed inregisters if possible. The set of machine registers
usedis called the save set, and includesthe registers from d2 —d7 anda2 —a7that are
modified by aroutine. The compiler assumesthat these registers are preserved by the
callee, ‘and saves them itself when it is generating code forthe callee (whena C
compatible routine is called by another routine, we refer to the calling routine as the
caller. We refer to the called routine as the callee.) Note that a6 and a7 are in effect
savedbyalink instructionat procedureentry.

The functionreturn-value is ind). The:current floating point implementation returns
the high order 32 bits of doubles ind!, and the low order 32 bitsind0. Functions that
returnstructure values (not pointerstothe vatues) dosoby loading 40 withapointertoa
static buffercontaining the structure value.

Thismakesthe following twofunctionsequivalent:

struct foo proc ()
struct foo this;

return (this);
1

struct foo *proc ()
struct foo this;
static ‘struct foo temp;

tcmp = this;
return (&temp);

1
1

This implememation allows recursive reentrancy (as long as:the explicit form is not
used, since the first sequence is indivisible but not the ‘second). However, ‘this
implementationdoes not permit mulmaskmg reentrancy. Note thatthe latter includes
the XENIX signal(3)call.

Setjmp(3) :and longjmp(3) can not be implemented as they are on the PDP~—11,
because each procedure saves only the registers from the save setthat it will modify.
This makes it difficult-to-get back the current values:of the register variables of the

A-1



XENIX Programmer’s Reference

procedurethatisbeing setjimpedto. Hence, register variable valuesafter alongjmpare
the same as before.a corresponding setjmp is called. If you need local variables to
changebetweenthe call of setjmp andlongjmp, they cannot be register variables.

Al.2 Celling Sequence

The calling sequence is straightforward: arguments-are pushed on the stack from the
lasttofirst:i.c., fromrighttoleft asyoureadtheminthe Csource. The pushquantumis
4 bytes, 'soif you are pushing a:character, you must extend it-appropriately before
pushing. Structures and floating point numbers that are larger than4 bytes are pushed
inincrements of 4 bytes sothat they'end up inthe same orderin stack memory as they
areinany othermemory. Thismeans pushingthe last word first and longword padding
the last word (the first pushed)if necessary. Thecallerisresponsible for removing his
ownarguments. Typically, an

addgl #constant,sp

is done. It is not really important whether the:caller actually pushes and-pops his
arguments-or just:stores themin.a static area at the top of the stack, but the debugger,
adb, examines the addgl-or addw from the spto decide how many arguments there
WETC:

A.1.3 Stack Probes

XENIX is designed to dynamically allocate stack for local variables, function
arguments, return‘addresses, etc. To dothis, the XENIX kernel checksthe offending
instruction when-a memory fault occurs. If it isa stack reference, the kernel maps
enough stack memory for the instructionto complete its execution successfully. Then
the procedure continues execution where it left off. Generally, this means restarting
the offending memory reference instruction (usually a push or store). Unfortunately,
the MC68000does not provide a waytorestartinstructions.

Therefore, we need to perforin a special instruction, which we call a'stack probe, that
potentially causesthe memory fault, butthathas noeffect other thanthe memory fault
itself. The kernel canthen allocate any needed stack memory, ignore the factthatthe
stack probe instruction ‘did not complete, -and continue ‘on-to the next instruction.
When ‘we perform a stack probe and ‘a:memory fault occurs, the kernel-allocates
additionalmemory forthe stack. The stackprobeinstructionfor 68000 XENIX is

tstb —value(sp)

Value mustbe negative: sinceanegativeindex fromthe stack pointerisabovethetop of
the stack-— an-otherwise absurd reference— XENIX knows that this instruction can
onlybeastackprobe.

Forthe general case, use the following procedure entry sequence:

procedure_entry: .
link a6, #—savesize
tstb —pushsize—slop—8(sp)

Anyregistersamong d2—d7 and a2—a5 thatareused in thisprocedure are saved witha
moveml instruction after this sequence. The number of registers saved inthe moveml
needsto be accounted forinthe push size. Thus, pushsize isthe sum of the number of

A-2

i



Assembly Language Interface

bytespushed astemporaries, save areas, andarguments by the whole procedure. The

8 bytes are the ispace for the return -address and frame pointer save:(by the link
instruction)of a nested call. The slop istolerance so that extremely short runtimes that
use little stack do not ieed to perform a stack probe. Thetolérance is intentionally kept
small to:conserve memory, so make sure you understand what you are doing before

youconsider leaving outa stackprobe in your assembly procedures.

1n most cases, unless you are pushing hugé structures or doing tricks with the stack
withinyourprocedure, youcanusethe following instruction foryour stack probe:

tstb —100(sp)
Thismakes sure that enough space hasbeen allocated for most of the usual things you
might do with the stack andisenough for the XENIX runtimes that donot perform stack

probes. Notethatyou donot need to consider space allocated by the link instruction in
this stackprobe, since itisalready addedby indexing offthe stack pointer.



Assembly Language Interface

A.1 Introduction

Whenmixing MC68000 assembly language routines and compiled C routines, there
areseveralthingstobeaware of:

® RegistcrsandRcmmValues
e CallingSequence

o StackProbes

With :an understanding of these three topics, you should be able to write both C
s that call MC68000 assembly language routines and :assembly language
routinesthatcall compiled Croutines.

Al Registers and Return Values

Function return valuesare passedinregisters if possible. The setof machineregisters
usediscalledthe save set, andincludes theregisters from d2 —d7 anda2 —a7thatare
modified by aroutine. The compiler assumesthat theseregistersare preserved bythe
callee, and saves them itself when it is generating code for the callee (whena C
compatible routine is called by another routine, we refer to the calling routine as the
caller. Werefer tothe called routine asthe callee.) Note that a6 and a7 are in effect
savedbyalinkinstmaionatprocedurcemry.

The function return value isind0. The current floating point implementationreturns
the high order 32bitsof doubles indl, andthe low order 32 bitsind0. Functionsthat
returnstructure values (notpointerstothe values)dosoby loadingd0 withapointertoa
staticbuffercontainingthe structure value.

Thismakesthe followingtwo functionsequivalent:

struct foo proc ()l
struct foo this;

return (this);
1

struct foo *proc (!
struct foo this;
static ‘struct foo-temp;

temp = this;
return (&temp);

This implementation allows recursive reentrancy (as long as the explicit formis not
used, since the first sequence is indivisible but not the second). However, this
implementationdoesnor permit multitasking reentrancy . Note thatthe latter includes
the XENIX signal (3)call.

Setjmp(3) and longjmp(3) can not be implemented as they are on the PDP—11,
because each procedure saves only the registers from the save set thatit will modify.
This makes it difficult-to get back the current values of the register variables of the

A—-1



Appendix B
XENIX System Calls

B.1 Introduction B-1

B.2 ExecutableFile Format B-1

B.3 Revised System Calls B-1

B.4 Version 7 Additions B-1

B.5 Changesto theioctiFunction B-2

B.6 PathnameResolution B-2

B.7 Using the mountand chownFunctions B-2
B.8 Super-Block Format B-2

B.9 Separate Version Libraries B-3






XENIX System Calls

B.1 Introduction

Thisappendix lists some of the differences bet ween XENIX 2.3, XENIX 3.0, UNIX
V7, and UNIX System 3:0. It isintendedtoaid users who wish to convert system
callsinexisting application programsfor use onother systems.

B.2 Executable File Format

Both XENIX 3.0 and UNIX System 3.0 execute only those programs with the
z.out executable file format. The format is:similar tothe old a.outformat, but
contains additional information about theexecutable file, such-astext and:data
relocation bases, target machine identification, word and byte ordering, and
symbol ‘table and relocation table format. The z.out file also contains the
revision number of the kerne! which is used during execution to control access
to system functions. To execute existing programs in a.out format, you must
first convert to the z.outformat. The format is described indetailin ¢.out(F)in
the XENIX Reference Manual.

B.3 Revised System Calls

Some system callsin XENIX 3.0 and UNIX System 3.0 have been revised and do
not perform the same tasks asthe corresponding calls in previous systems. To
provide ‘compatibilty for old programs, XENIX 3.0 and UNIX System 3.0
maintain both the new and the old system calls and automatically check the
revision information'in the z.out header to determine which version of asystem
call should be-made. The following table lists the revised system calls and their
previousversions.

System Call# XENIX2.3function System 3function

35 ftime unused
38 unused clocal
39 unused setpgrp
40 unused exenix
57 unused utssys
62 clocal fentl
63 cxenix ulimit

The czeniz function proxjides access ‘to:system calls-unique to XENIX System
3.0. The clocalfunction providesaccesstoall callsunique to.an OEM.

B.4 Version 7 Additions

XENIX 3.0 maintains 2 number of UNIX V7 features that were dropped from
UNIX System 3:0. In particular, XENIX 3.0 continues to support the dup2and

B-1



ftime functions. The ftime function, used with the ctémefunction, provides the
default value for the'time zone'when the TZ environmentvariable hasnot been
set. ‘This means a binary configuration program can be used to change the
default time zone. No source license isrequired.

B.5 Changes to the ioctl Function

XENIX 3.0 and UNIX System 3.0 have a full:set of XENIX 2.3-compatible foctl
calls. Furthermore, XENIX 3.0 hasresolved problemsthat previously hindered
UNIX System 3.0 compatibility. For convenience, XENIX 2.3-compatible foctl
calls can beexecuted by a UNIX System 3.0 program. The available XENIX:2.3
toctl calls -are: TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC, TIOCGETC,
TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, and TIOCSETD.

B.8 Pathname Resolution

If a null pathname is given, XENIX 2.3 interprets the name to be the current
directory, but UNIX System 3.0 considers the name to be an-error. XENIX 3.0
usestheversion numberinthe z.out headerto determine what action to take.

Il the symbol “..”"is given as'a pathname when:in a root directory that hasbeen
defined ‘using ‘the -chroot ‘function, XENIX 2.3 moves ‘to ‘the next higher
directory. XENIX 3.0 also allows the *..” symbol, but restricts its use to the
super-user.

B.7 Using the mount and chown Functions

Both XENIX 3.0.and UNIX System 3.0 restrict the useof the mountsystem call to
the super-user. Also, both allow the owner of a file:to use chown function to
change the file ownership.

B.8 Super-Block Format

Both UNIX System 3.0 and UNIX System 5.0 have new super-block formats.
XENIX 3.0 uses the System 5.0 format, but uses a different magic number for
each revision. The XENIX 3.0 super-block has an additional field at the end
which can be used ‘to distinguish between XENIX 2.3 and 3.0 super-blocks.
XENIX 3.0 checks this magic number at boot time and -during a mount. If a
XENIX 2.3 super-block is read, XENIX 3.0 converts it to the new format
internally. Similarly, if a XENIX 2.3 super-block is written, XENIX ‘3.0 converts
it back to the old format. This permits XENIX 2.3 kernels to be run on file
systemsalso usable by UNIX System 3.0.

j



XENIX System Calls

B.9 Separate Version Libraries

XENIX 3.0 and UNIX ‘System 3.0 support the -construction of XENIX 2.3
executable files. ‘These systems maintain both the new and old versions of
system callsin separate librariesand include files.

B3



£



idex

‘te/termeap file 3-1

ldeh function 3«7

[dstr function 3-8
‘gcgargument count variable
defining 2-2

described 2-2

‘gvg,argument value array
defining 2-2

described 2-2

;sembly language interface,
described 4A-~1

w function 3-26

3IZE, buffer size

value 2=2

iffered 170

character pointer 2-30
creating 2-22

described 2-22

flushing a buffer 2-24
returning a character 2-24

rtes

reading from a file 2-27
reading from a pipe 6-4
writing to a file 2-26
writing to a pipe 6-U
calling conventions
described A-1

language libraries
described 1-1

use in program 1-1

all sequence A-1

alloec function 8=2

CBREAK mode 3-30
Character functions,
described U-1
Character pointer
described 2-31
moving 2-31
moving 2-31
moving to start 2-33
reporting position 2-33
Characters
alphabetic 4-3
alphanumeric U4-2
ASCII 4-1
control U-3
converting to ASCII 4.2
converting to
lowercase 4-5
converting to
uppercase -5
decimal digits 4-3
hexadecimal digit 4-4
lowercase 4-5
printable U-4
printable 4-5
processing, described 4-1
punctuation 4-4
reading from a file 2-13
reading from standard
input 2-4
uppercase U5
writing to a file 2-15
writing to standard
output 2.7

1=1



Programmer's Reference

process,
ribed 55

function 3«13

k function 3-28
function 2-28

ot function 3=13

ol function 3«13

d line arguments 2-2
d line arguments,

age order 2«2

d line

ribed 2-2

ation

rogram 1=1

em function 8<7
function 330

h file Y=1

» the screen

essing library 1«1
h file 3«2

ing, restrictions 2-2
function 3-12

In function 3«12
function 3-25
netion 6«6

unction 3=30

ode 3=31

ode 3«5

-file value, EOF 2-2
-file

ing 2-18

function 3-6
nd-of-file value 2-2
function 3-13
variable

ned 9=2

ribed 9-1

Errors wwmﬁ
catching signals 9-3 ;
delayed 9-4
errno variable 9-1
error constants 9-2
error numbers 9-1
printing error
messages 9-2
processing 9-1
routine system 1/0 9=4
sharing resources 9-U
signals 9-3 .
standard error file 9-1
system 9-3
testing files 2-18

execl function 6-3

execv function 5=3

exit function 5«2 .

felose function 2-19 i

feof function 2-18 f

ferror function 2-18

fflush function 2-25

fgete function 2-13

fgets function 2-13

File descriptors
creating 2-26
described 2-26
freeing 2-28
pipes .6-1
predefined 2-25

File pointers
creating 2-11
defining 2-11
described 2-11
file descriptors 2-25
FILE type 2-11 0
freeing 2-19 KW;}



NULL value 2-11

pipes 6-1

predefined 2-12

recreating 2-23
FILE, file pointer type 2=2
Files

buffers 2-21

buffers 2-22

buffers 2-23

buffers 2=24

c¢losing 2-19

closing low-level

access 2-28

inherited by processes 5~7

locking 8-U

opening 2-12

opening for low-level

access 2-26

random access 2«31

reading bytes 2-27

reading characters 2-13

reading formatted data 2-

14

reading records 2-14

reading strings 2-13

reopening 2-23

testing end-of-file

condition 2-18

testing for errors 2-18

writing bytes 2-27

writing characters 2-15

writing formatted

output 2-17

writing records 2-17

writing strings 2-16
fopen function 2«12

fork function 5-5
Formatted input
reading from a file 2-1Y4
reading from a pipe 6-2
reading from standard
input 2-4
Formatted output
writing to a file 2-17
writing to a pipe 6-2
writing to 'standard
output 2<7
fprintf function 2-17
fpute function 2-15
fputs function 2-16
fread function 2-14
free function 8-3
freopen function 2-23
fscanf function 2-1l
fseek function 2-32
ftell function 233
fwrite function 2-17
gete function 2-13
getch function 3-9
getchar function 2-4
gets function 2-5
getstr function 3-9
gettmode function 3-32
getyx function 3-28
inch function 3-24
initser function 3-4
insch function 3-11
insertln function 3-11
isalnum function Y-2
isaplha function 4.3
isascii function 4-1
isentrl function U-3
isdigit function Uu4-3



Progranmer's Reference

r function 45
t function H<i
t function U=l
e function U5
r function U<5
it function 44
k function 3-28
» 8tandard C library
1=1
ses.a, screen
essing library
1=1
ses.,a, the screen
essing library 3-2
meap.a, the terminal
ary 3-2
g files
ribed 84
aration 8-l
locking.h file 8-4
g function 8-5
p function 7-10
ne function 3-33
vel functions
ssing files 2-26
~ibed 2-25
descriptors 2-26
om access 2-31
"unction 2-31
y Special 1/0
;ions 2-1
function 8-1
allocation functions,
*ibed 8-1

rating arrays 8-2
rating dynamically 8-1

allocating variables 8-1

freeing allocated

space 8-3

reallocating 8-3
move function 3-11
mveur function 3-32
mvwin function 3-24
nbwaitsem function 8«9
NEWLINE mode 3-31
newwin function 3-14
nl function 3-30
nocrmode function 3-31
noecho function 331
nonl function 3-31
noraw function 3«31
Notational conventions,

described 12
NULL, null pointer

value 2-2
open function 2«26
opensem function 8-8
overlay function 3«23
overwrite function 3-23
Parent process,

described 5«5
pclose funetion 6-2
perror function 9-2
pipe function 6<3
Pipes

closing 6-2

closing low-level

access 6-4

described 6«1

file descriptor 6-3

file descriptors 6«1

file pointer 6-1

file pointers 6-1

R



low-level between
processes 6-6
opening for low-level
access 6-3
opening to a new
process 6-1
process ID 6-1
reading bytes 6-4
reading from 6-2
shell pipe symbol 6-1
writing bytes 6-4
writing to 6-2
popen function 6-1
printf function 2-8
printw function 3-8
Process ‘control functions,
described 5-1
Process ID
described 5-1
Process
termination status 5-2
Processes
background 7-11
calling a system
program 5-1
child 5=5
communication by pipe 6-1
described 5«1
ID 5-1
multiple copies 5-5
overlaying 5-3
parent 5-5
restoring an execution
state 7-10
saving the .execution
state 7-9
splitting 5-5

terminating 5-2
termination status 5-7
under shell control 5«5
waiting 5-6
Programs, invoking 2«2
pute function 2-15
putchar function 2-7
puts function 2-7
Random access functions
character pointer 2-31
described 2-31
raw function 3-30
RAW mode 3-31
RAW mode 3-5
read function 2-27
realloc function §8-3
Records
reading from a file 2-14
writing to a file 2-17
Redirection symbol
input 2-9
output 2-9
pipe 2-9
refresh function 3-14
restty function 3-33
Return values A-2
rewind function 2<33
Routine entry sequence A-I
Routine exit sequence 4A-2
savetty function 3-33
scanf function 2-4
scanw function 3-10
Sereen processing functions,
described 3-1
Screen processing library,
described 1-1
Screen processing
/ete/termecap file 3«1



‘rogrammer's Reference

ig characters 3-16
ig characters 3-7

g strings 3-16

Ig strings 3-8

g values 3-16

Iig values 3-8
characters 3-26

ing a screen 3-13
ing a screen 3-21
ing subwindows 3-15
ing windows 3=14
nt position 3-1

nt position 3-28
s,h file 3=2

1t terminal 3=5

ing a window 3-25
ing characters 3-12
‘ing characters 3«20
ing lines 3-12

ing lines 3-20

ibed 3-1

alizing 3-U4

ting characters 3=11
ting characters 3-19
ting lines 3-11
ting lines 3-19
rses.a file 3-2
rmcap.a file 3-2
ent prefix 3-30

g a window 3-24

g the position 3-11
g the position 3-19
1 characters 3-=27
aying a window 3-23
riting a window 3-23
fined names 3-2

ng characters 3-17

reading characters 3=9
reading strings 3«17
reading strings 3-9
reading values 3«10
reading values 3-17
refreshing a screen 3-22
refreshing the screen 3-14

screen 3-1

serolling 3-29

sgtty.h file 3«2

standard screen 3-7

terminal capabilities 3«1

terminal cursor 3-32

terminal modes 3=30

terminal modes 3=5

terminal size 3-6

terminating 3-6

using 3-4

window 3-1

window flags 3-28

window flags 3-6
Screen

described 3-1

position 3-1
scroll function 3-29
serollok function 3-28
sdenter function 8-14
sdfree function 8-16
sdget function 8-13
sdgetv function 8-15
sdleave function 814
sdwaitv function 8-15
Semaphore functions,

described 8<6
Semaphores

checking status 8«9

i



SIGQUIT constant T-1

SIG_DFL constant 7-1

SIG_IGN constant 7-1

to a child process T-12

to background

processes 7-11

with interactive

programs T-9

with multiple

processes 7=10

with system functions T-8
sigsem function 8-9
sprintf function 4-11
sscanf function #4-10
Stack order A1
Standard C library,

described 1-1

creating 8-7
described 8-6
opening 8-8 ‘
relinquishing control 8-9
requesting control 8-8
setbuf function 2-23
setjmp function 7-9
set jmp.h file,
described 7-1
sgtty.h file 3-2
Shared data
attaching segments 8-13
creating segments 8«13
described 8-12
entering segments 8~14
freeing segments 8-16
leaving segments 8-14
version number 8-15 Standard error
waiting for segments 8-15 described 2-U
Shell Standard files
called as a ‘separate deseribed 2-U
process 5«5 predefined file
signal function 7-1 descriptors 2-26
signal.h file, predefined file
described T-1 pointers 2-11
Signals reading and writing 2=
catching 7-U redirecting 2-U
catching 9-3 redirecting 91
default action T7-3 Standard I/0 file 2-1
delaying an action 7-T Standard 170 functions 2-1
described 7-1 Standard input

disabling 7-2

on program errors 9-3
redefining T-U
restoring 7-3
restoring 7-6

SIGINT constant T-1

described 2-U4

reading 2-4

reading characters 2-lU
reading formatted
input 2-4

reading strings 2-5



rogrammer's Reference

ecting 2-9
1 output

ibed 2-4
ecting 2-9
d Output
ng 2-=7
i output
ng characters 2«7
ng formatted
t 2-8
ng strings 2=7
3 function 3-27
t function 326
standard error file
er 2-2

standard error file
er 2-12

the standard error
9-1

standard input file
er 2=2

standard input file
er 2=-12

file

ibed 2-1

ding 2-1

standard output file
er 2«2

standard output file
er 2-12

function Y-6
function U7
function U8
functions,

ibed 2-11

functions

sing files 2-12

accessing standard
files 2-11
file pointers 2-11
random access 2-31

String functions,
deseribed U-6

Strings
comparing 4-7
comparing 4=9
concatenating Y4-6
concatenating 4-8
copying 4-10
copying 4-8
length 4~8
printing to 4-11
processing, described U=1
reading from a file 2-13
reading from standard
input 2«5 )
scanning #=10 ‘
writing to a file 2-16
writing to standard
output 2-7

strlen function U=8

strncat function U8

strnemp function U<9

strncpy function #4-10

stterm function 3-33

subwin function 3-15

sys/locking.h file 8-l

System errors
described 9-3
reporting 94

system function 5-1

System programs
calling as a separate R
process 51 \“f}




System resource functions,
described 8-1
System
resources 8-1
sys_errno array,
described 9-3
TERM variable 3-5
Terminal screen 3-1
Terminal
capabilities 3-1
capability description 3-5

cursor 3=32

modes 3-30

modes 3-31

modes 3-5

type 3-5
termination status,

described 5-7
termination status

processes 5-2
toascii function H4=2
tolower function #-5
touchwin function 3-25
toupper function U4-5
Unbuffered 1/0

creating 2-22

described 2-22

low=level functions 2«25
ungete function 2-24
Variables

allocating for arrays 8<2

memory allocation 8-1
waddch function 3-16
waddstr function 3-16
wait function 65<6
waitsem function 8-8

welear function 3-21
welrtobot function 3-=21
welrtoeol function 3-21
wdelch function 3-20
wdeleteln function 320
werase function 3=21
wgeteh function 3-17
wgetstr function 3-18
winch function 3«24
Window

border 3-26

deleting 3-25

described 3-1

flags 3-<6

position 3-1
Windows

creating 3-14

flags 3-28

moving 3-24

overlaying 3-23

overwriting 3-23

reading a character 3-24

updating 3-25
winsch function 3-19
winsertln function 3-19
wmove function 3-19
wprintw function 3-17
wrefresh function 322
write function 2=-27
wscanw function 3«18
wstandend function 3-27
wstandout function 3-26






CONTENTS

Programming Commands(CP)

intro Introducesprogramming commands

adb Invokesageneral—purposedebugger

admin Createsandadministers SCCS files

ar Maintainsarchives and libraries

as Invokesthe XEN1 X assembler

cb BeautifiesCprograms

cc Invokesthie Ccompiler

cdc Changesthcdeltacommentary of
anSCCSdelta

comb CombinesSCCS deltas

‘config Configure a XENIX system

cref Makesacross—referencelisting

ctags Createsatagsfile

delta Makesadelta(change)toan
SCCSfile

get Getsa versionof anSCCS file

gets Getsastring fromthestandard
input

hdr Displaysselected partsof
objectfiles

help Asks forhelpabout SCCS commands

1d Invokesthelinkeditor

lex Generatesprogramsforlexical
analysis

lint ChecksClanguage usage andsyntax

lorder Finds orderingrelationforan
object

m4 1nvokesamacroprocessor

make Maintains, updates, and

. regeneratesprograms

mksty Createsanerrormessagefile
from C source

nm Printsnamelist

prof Displaysprofiledata

prs PrintsanSCCS file

ranlib Convertsarchivestorandom
libraries

ratfor 1nvokes RATFOR preprocessor

regemp Compilesregular expressions

mmdel RemovesadeltafromanSCCS
file

sact Printscurrent SCCS file
editing

scesdiff Comparestwo versionsofan
SCCsfile

size Printsthe sizeof anobjectfile

spline Interpolatcssmoothcurve

1-i



strings

Findstheprintable stringsinan
object
Removessymbolsandrelocationbits
Timesacommand
Sortsafiletopologically
Undoesapreviousgetofan
SCCsfile

ValidatesanSCCS file
Cross—referencesCprograms
Extracts strings from Cprograms
Invokesacompiler—compiler




Index

Archivesand libraries ar
Assembler as
Ccompiler cc
Clanguageusage and syntax lint
Cprogram, formatting cb
Compiler compiler yace
Debugger adb
Errormessagefile mkstr
Execution, time time
Graphics, interpolating curves spline
Lexicalanalyzers lex
Linkeditor Id
Macroprocessor m4
Object file, printable strings strings
Objectfile, size size
Object file, displaying hdr
Object file, symbolsandrelocation strip
Orderingrelations lorder
Programlisting, cross—reference xref
Programlisting, cross—reference cref
Programmaintenance make
Rational FORTRAN ratfor
Regularexpressions regemp
SCCsfiles, combining comb
SCCsfiles, comments cde
SCCsfiles, comparing scesdill
SCcsfiles, creatingnew versions delta
SCCsfiles, editing sact
SCCs files, printing prs
sccsfiles, removing rmdel
SCCsfiles, restoring unget
SCCsfiles, retrieving versions get
SCCsfiles, creating and maintaining admin
Sccsfiles, validating val
$CCS,commandhelp help
Sortingtopologically tsort
Standardinput, reading strings gets
Strings, extracting xstr
System, XENIX configuration config

Tagsfile







INTRO(CP) INTRO (CP)

Name

intto ~ Introduces XENIX Software Development commands.

Description

This section describes ‘use of the individual commands available in
the XENIX Software Development System. Each individual .com-
mand is labeled with the letters CP to distinguish ‘it from commands
available in the XENIX Timesharing .and Text Processing Systems.
These letters are used for easy reference from other documentation.
For example, the reference :cc(CP) indicates a reference to a discus-
sion of the ‘cc command in this section, where the letter *‘C” ‘stands
for “‘command’’ and the letter *‘P"* stands for ‘‘Programming".

Syntax

Unless otherwise noted, :commands described ‘in this section accept
options and other arguments according to the following syntax:

name [options] [emdarg)
where:
name The filename or pathname of ‘an executable file

option A single letter representing a command option By con-
vention, most options are preceded with :a dash.
Option letters can sometimes be grouped together as
in — abed or alternatively they are specified individu-
ally as in —-a — b — ¢ ~d . The method of :specifying
options ‘depends on the syntax of the individual -com-
mand. .In the latter method of ‘specifying options,
arguments can be given to the options. For example,
the — f:option for many commands often takes a fol-
lowing filename argument.

emdarg A pathname or other command argument not begin-
ning with a-dash. It may also be a-dash alone by itself
indicating the standard input.
See Also
getopt( C), getopt(S)
Diagnostics

Upon termination, €ach command returns 2 bytes of status, one sup-
plied by the system and giving the cause for termination, and:(in the

Marek 24, 1984 Page 1



INTRO(CP)  INTRO(CP)

case .of “‘normal” ‘termination) one supplied by the program (see
wait(S) and .ezit(S)). The former byte is 0 for normal termination;
the latter is customarily 0 for successful .execution and nonzero to
indicate troubles such as erroneous parameters, or bad or inaccessi-
ble data. It is called variously ‘‘exit code’, ‘‘exit status”, or “return
code’, and is described only where special conventions are involved.

Notes

Not all commands adhere to the above syntax,

March 24, 1984 Page 2



ADB(CP) ADB(CP)

Name
adb — debugger

Syntax
adb [~w] | objfil | corfil } ]

Description
Adb is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe—
cution -of XENIX programs.

Objfil is normally an executable program file, preferably containing
a symbol table; if not then the symbolic features of .adb cannot be
used although the file can still be examined. The default for obijfil
is ‘a.out. Corfil is assumed to ‘be a core image file produced after
executing objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses are
to the ‘standard ‘output. If the —w flag is present then both objfil
and corfil ‘are created if necessary and opened for reading and
writing 'so that ‘files can ‘be modified using adb. Adb ignores
QUIT; INTERRUPT ‘causes return to the next adb command.

in general requests to adb are of the form:
[address] [, count] [command] [,]

If address is present then dot is sct to address. Initially dot is set
to 0. For most commands count specifies how ‘many times the
command will be executed. The default count is 1. Address and
count are expressions.

The interpretation of :an address depends on the context it is used
in. If a subprocess is being debugged then addresses are inter—
preted in the usual .way in the address space of the subprocess.
For further details of address mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current increment.

a

The value of dot decremented by the current increment.
" The last :address typed.

integer If the integer begins with 0 it is an an octal number. It is
a hexadecimal ‘number if preceded by Ox or 0X. It is a
decimal number ‘when preceded by 0d, 0D, O, or OT;
otherwise the current input radix (default decimal).

*cece’  ‘The ASCH value of up to 4 characters. \:may be used to

May 10, 1984 Page 1



ADB{(CP)

ADB(CP)

escape a ',

< name The value of name, which is either a wvariable :-name or a

register name. Adb maintains ‘a number of variables (see
VARIABLES) named by single letters or digits. If name is
a register name then the value of .the register is obtained
from the system header in corfil.

symbol A symbol is a sequence -of upper or lower case letters,
underscores or ‘digits, not starting with a-digit. The value
of the symbol is taken from the symbol table in objfil. An
initial _ or ~ will be prepended to symbol if needed.

--symbol
In C, the ‘true name’ of an external symbol begins with
an underscore (). It may be necessary to use this name
to distinguish it from the internal or hidden variables of a
program. -

(exp) The value of the expression exp.

Monadic operators

sexp  The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

—exp Integer negation.

“exp  Bitwise complement.

Dyadic operators are left ‘associative and are less binding than
monadic ‘operators.

el +e2
el —e2
else2
el %e2
el&e2
el|e2
el #e2

Integer addition.

integer subtracticn.

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

E] rounded up to the pext multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following ‘verbs -are available. (The commands *?’
and ‘' may be followed by ‘x’; sce ADDRESSES for further

details.)

¥

May 10,

Locations starting at address in obijfil are printed according

1984 Page 2

R



ADB(CP) ADB(CP)
to the format f.
if Locations starting at address in corfil are printed according
to the format f.
=f The value of address itself is printed in the 'styles indi—
cated by the format f.

A format consists of one or more characters that specify a style of
printing. [Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While step—
ping through a format dot is incremented temporarily by the
amount given for each format letter. If no format is given then the
last format is used. The format letters available are as follows.

o 2

RogaegQe O
(XN

[ SIE- N S g

aeTar KW
ISR ORI S S I -

May 10, 1984

Print 2 bytes in-octal. All octal numbers output
by adb are preceded by 0.

Print-4 bytes in-octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal. All hexadecimal
pumbers output by adb are preceded by Ox.

Print 4 bytes in hexadecimal.

Print-as an unsigned decimal number.

Print long unsigned decimal.

Print the addressed byte in octal.

Print the addressed character.

Print ‘the addressed character using the following
escape convention. ‘Character values 000 to 040
are printed as @ followed by ‘the corresponding
character in the range 0100 to 0140. The char—
acter @ is printed as @@.

Print the addressed characters until ‘a zero char—
acter ‘is reached.

Print a string using the @ -escape convention. n
is the length of the string including its zero ter—
minator.

Print 4 bytes in-date format (see ctime(S)).

Print :as MC68000 instructions. # is the number
of ‘bytes occupied by the instruction. This style
of printing causes ‘variables 1 and 2 to be set to
the offset parts of the source and destination
respectively.

Print the value of dot in symbolic form. Symbols

Page 3



ADB(CP) : ADB(CP)

are checked to ensure ‘that they have -an
appropriate type as indicated below.

/ local ‘or global data symbol
?  local or global text symbol
= local or global absolute symbol
p 2  Print the addressed value in symbolic form using
~ the same rules for symbol lookup as a.
t 0 When preceded by an integer tabs to the next
~ appropriate tab stop. For example, 8t moves to
the next 8—space tab stop.
r O Print.aspace.
n 0  Print a newline.

"...”0 Print the enclosed string.

. Dot is decremented by the current increment.
Nothing is printed. ’

+ Dot is incremented by 1. Nothing is printed.

- Dot is decremented by 1. Nothing is printed.

newline If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
command with a count of 1.

[2/) value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used then the
match is for 4 bytes at-a time instead of 2. if no match is
found then .dot is unchanged; otherwise dot is set to the
matched location. If mask is omitted then —1 is used.

[?/)w value ...
Write the 2—byte value into the addressed location. If the
command is W, write 4 bytes. ‘Odd addresses are :not
allowed ‘when writing to the subprocess address space.

[2/)m b1 el f1]2/) ,

New values for (bI, el, f1) are recorded. If less than
three -expressions are given then the remaining map
parameters are left unchanged. If the ‘?° or */’ is followed
by “«’ ‘then the second segment (b2 ,€2,12) of the map—
ping is changed. If the list is terminated by “?’ or */’ then
the file (objfil or corfil respectively) is used for subsequent
requests. (So -that, for example, ‘/m?" will cause /' to
refer to-objfil .)

>name Dot is assigned to the variable or register named.

May 10, 1984 Page 4



ADB(CP) ADB(CP)

! A shell is called to read the rest of the line following 1.

$modifier
Miscellaneous commands. The available modifiers are:
<f Read commands from the file fand return.
>f Send output to the file f, which is created if it
does ‘not exist; > ends the ‘output diversion.

r Print the general registers and the instruction
addressed by pe. Dot is set to pe.

b Print all breakpoints and their associated .counts
and commands.

c C stack backtrace. If address is given then it is

taken ‘as the address of the current frame.
(instead of a6). If count is given then only the
first count frames are printed.

e The names and -values of external -variables are
printed.

w Set ‘the page width for output to -address (default
80).

s Set the limit for symbol matches to -address

(default 255).

Set the current input radix to octal.

Set the current input radix to decimal. EXPRES—

SIONS.

Set the current input radix to hexadecimal.

Exit from adb.

Print all non zero variables in hexadecimal.

Print the address map.

a e

H<eo xw

smodifier
Manage ‘a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is
executed count—1 times before causing a stop.
Each time the breakpoint is ‘encountered the
command ¢ is ‘executed. If this command sets
dot to :zero then the breakpoint causes a stop.

d Delete breakpoint at .address.

r Run objfil as a subprocess. If address is given
explicitly then the program is entered .at this
point; .otherwise the program is -entered at its
standard entry point. ‘count specifies how many
breakpoints ‘are to be ignored ‘before stopping.
Arguments to the subprocess may be supplied on

May 10, 1984 Page S5



ADB(CP) ADB(CP)

the same line as the command. An argument
starting ‘with < or > causes the standard-input or
output to be established for the command. All
signals are turned on on entry to the subprocess.

cs The subprocess is continued ‘with signal s ¢ s, see
signal(S). ‘If address is given then the subpro—
cess ‘is continued at this ‘address. If no signal is
specified then the signal that caused the subpro—~
cess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for ¢ except that the subprocess is single
stepped count times. If there is no current sub—
process then objfil is run as a subprocess as for r.
1n this case no signal can be sent; the remainder
of the line is treated as arguments to the subpro—
cess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides ‘a number of variables. Named variables are set ini—
tially by -adb but are not used subsequently. ‘Numbered variables
are reserved for communication as follows.

0 The last value printed. ‘
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil.
If corfil does not appear to be a core file then these values are set
from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
s The stack segment size.
t The text segment size.
ADDRESSES

The :address in a file associated with a ‘written address is deter—

mined by a mapping associated with that file. [Each mapping is

represented by two triples (b1, €1, f1) and (b2, €2, #2) and the file )

address corresponding 10 a written -address is ‘calculated as follows. L
bl <address<el => file

address =address +f1—bl, otherwise,

May 10, 1984 Page 6



ADB (CP) ADB(CP)

b2=<address<e2 => file
address=address +f2—b2,

otherwise, the requested address is not legal. In some ‘cases (e.g.,
for programs with separated 1 and D space) the two segments fora
file may overlap. {fa ? or / is followed by an = then only ‘the
second triple is used.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is ‘not of the kind expected then, for
that file, b1 is set 100, el is set to the maximum file size and fI is
set 10 0; in this way the whole file can be examined with no
address translation.

So that adb may be used -on large files all appropriate values are
kept as signed 32 bit integers.
Files
/dev/mem
/deviswap
a.out
core

See Also
ptrace(S), a.out(F), core(F)

DIAGNOSTICS
The message ‘adb’ when there is no:current command or format.
Comments about inaccessible files, syntax errots, abnormal termi—
nation .of commands, etc.
Exit ‘status is 0, unless last command failed or returned nonzero
status.

Notes .
A breakpoint set at the entry point is not effective on initial entry to
the program. )

When single stepping, system ‘calls do ‘not count as an executed
instruction.

Local variables whose names are the same ‘as an external variable
may foul up the accessing of the external.

May 10, 1984 Page 7



ADMIN (CP) ADMIN ( CP)

Name

admin - Creates and administers SCCS files.

Syntax

admin [-n] [-i[name]] [- rrel] [- t[name]] [- fflag|fiag-val]
- dflag[flag-val]] |- alogin [~ elogin] [~ m|mrlist]
- ylcomment]] {~ h] {~ z] files

Description

Admin is used to create new SCCS files and to change parameters of
existing ones. Arguments to .edminmay appear in any order. They
consist of options, ‘which begin with — , and named files (note that
SCCS filenames must begin with the .characters s.). If a named file
doesn’t exist, it is created, and its parameters are initialized accord-
ing ‘to the specified -options. Parameters -not initialized by a option
are assigned a default value. If a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are left as is.

If a directory is named, admin behaves as though each file in the
directory ‘were specified as a named file, except ‘that nonSCCS files
{last .component of ‘the pathname does not begin with s.) and
unreadable files are silently ignored. If ‘the .dash — is given, ‘the
standard input‘is read; ‘each line -of the standard input istakento be
the ‘name ‘of an SCCS file to be processed. Again, nonSCCS files and
unreadable files are silently ignored.

The options are as Tollows. Each is explained as though only one
named file is to be ;processed since the effects of the arguments apply
independently to each named file.

-n This -option indicates that a new ‘SCCS file is to ‘be
created.
~ i[name] The name of a file from which the text for 2 new

SCCS file is to be taken. The text constitutes the
first delta of ‘the file {see —r below for -deita
numbering scheme). If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun-
tered. If this option is omitted, then the :SCCS file is
created empty. Only one SCCS file may be created
by an edmin command on which ‘the i option is sup-
plied. Using a single admin to create ‘two ‘or ‘more
SCCS files require that they be ‘created empty {no
~ i option). Note that the — i option implies the
— n option.

March 24, 1984 Page 1



ADMIN (CP)

—rrel

— t{name}

- fflag

March 24, 1984

ADMIN (CP)

The release into which ‘the ‘initial delta is inserted.
This option may be ‘used :only if the — i option is
also used. If the — r option is not used, the initial
delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial -deltas are
named 1.1).

The name of a file from which descriptive text for
the SCCS file is to be taken. If the —t option is
used and admin is creating a new SCCS file (the — n
andfor — i options also used), the descriptive text
filename ‘must also be supplied. In the case of exist-
ing -SCCS files: a — t option without a filename
causes removal of descriptive text (if any) currently

“in -the SCCS file, and a — t option with a filename

causes text (if any) in the named file to replace the
descriptive text (if any) -currently in the SCCS file.

This option specifies a flag, and possibly a value for
the flag, to be placed in the SCCS file. Several £
options may be supplied on a single admin com-
mand line, The allowable flags and their values are:

Allows use of ‘the — b option ‘on a get{CP)
command to create branch deltas,

ccedl  The highest release (i.e., ““ceiling’’), a number

less ‘than or equal to 9999, ‘which may be
retrieved by a get(CP) command for editing.
The default value for an unspecified ¢ flag is
9999.

ffloor The Jowest release (ie., “‘floor'’), a number

greater ‘than 0 but less than 9999, which may

be retrieved by a get{CP) command for edit-

ing. The default value for an unspecified f flag
“is .

dSID  The :default-delta number (SID) to be used by

a.get( CP) command.

Causes the “*No id keywords {ge6)”” message
issued by get(CP) or delta(CP) to be treated as
a fatal error. In the absence of ‘this flag, the
message is only a warning. The message is
issued if no SCCS identification keywords (see
get(CP)) are found in the text retrieved or
stored in the SCCS file.

Allows concurrent get(CP) commands for edit-
ing on the same SID of an SCCS file. This
allows multiple concurrent updates to the same
version of the SCCS file.

Page 2



ADMIN(CP)

- d[flag]

March 24, 1984

Llist

qtezt

mmod

ttype

vlpgm|

ADMIN (CP)

A list-of releases to which deltas can no longer
be made {get — e against one of these
“locked'’ releases fails). The list has the fol-
lowing syntax:

<ligt> ::=n Lrange> | <list> , <range>
<range>> == - RELEASE NUMBER | a

The character a in the Iist is equivalent to
specifying all releases for the named SCCS file.

Causes delta(CP) to create a ‘‘null” delta in
each -of those releases {if any) being skipped
when a delta is made in a new release (e.g., in
making delta 5.1 after delta 2.7, releases 3 and
4 are -skipped). These null deltas serve as
‘‘anchor points” go that branch -deltas ‘may
later be created from them. The absence of
this flag causes skipped releases to be nonex-
istent in ‘the ‘SCCS file preventing branch deltas
from ‘being created from them in the future.

User-definable text substituted for -all
occurrences ‘of the keyword in SCCS file text
retrieved by get(CP).

Module name of the SCCS file substituted for
all occurrences of the admin.CP keyword in
8ces file text retrieved by get(CP). If the m
flag is not specified, the value assigned is the
name -of the SCCS file with the leading s.
removed.

Type-of module in the SCCS file substituted for
all occurrences of

keyword in SCCS file text retrieved by
get{(CP).

Causes delta(CP) to prompt for Modification
Request {MR) numbers as the reason for
creating a delta. The ‘optional value :specifies
the name of an ‘MR number validity ‘checking
program (see delta{CP)). (If this flag is set
when creating-an SCCS file, the m option must
also be used even if its value is null).

Causes removal (deletion) of the specified flag from
an SCCS file. The — doptidn may be specified only
when processing existing SCCS files. Several —d
options ‘may be supplied on a single admin com-
mand. ‘See the — foption for allowable flag names.

Page 3




ADMIN ( CP)

— -alogin

~ elogm

- Y[commen{

- m{mdis

March 24, 1984

ADMIN (CP)

st A list of releases to be “‘unlocked’. ‘See the

—f option for a description of the I flag and
the syntax of a list.

A login name, or numerical XENIX group ID, ‘to be
added to the list of users which may make deltas
{changes) to the SCCS file. A group ID is equivalent
to specifying all login names ¢common to that group
ID. Several a options ‘may be used on a single
admin command line. .Ass many logins, or numerical
group IDs, as desired ‘may be on the list simultane-
ously. If the list of users is empty, then anyone
may add deltas.

A login name, ‘or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admin command line.

The comment text is inserted into the SCCS fils as a
comment for the initial delta in a manner identical
to that of delta(CP). ‘Omission of the — y option
results in ‘a default comment line being inserted in
the form:

YY/MM/DD HH:MM:5S by login

The — y option is valid only if the ~ i and/or ~ n
options ‘are :specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in 2 manner identical to delta(CP}.
The v flag must be set and ‘the MR numbers are
validated if the v flag has = value (the name of an
MR number validation program). Diagnostics will
occur if the v flag is not set or MR ‘validation fails.

Causes admin to check the structure of the SCCS file
(see sccafile(F)), and to compare a newly computed
checksum (the sum of all the characters in the SCCS
file except those in the first line) with the checksum
that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, nullifying
the effect of any .other options supplied, and is
therefore only meaningful when processing -existing
files.

Page 4



ADMIN (CP) ADMIN (CP)

-2 The SCCS file checksum is recomputed and stored in
the first line -of the SCCS file {see — h, above).

Note that use of this option on a truly.corrupted file
may prevent future detection of the corruption.

Files

The last component of all SCCS filenames must be of the form
s.file-name. New SCCS files are created read-only (444 modified by
umask) (see ¢hmod(C)). Write permission in the pertinent directory
is, of course, required to create a file. All writing done by admin is
to a temporary x-file, called x.filename, (see get{CP)), created with
read-only permission if the admin command is creating a new SCCS
file, -or ‘with the same mode ‘as the SCCS file if it exists. After suc-
cessful execution ‘of admin, the SCCS file is removed (if it exists),
and ‘the x-file is renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only iif no -errors
occurred.

It is recommended that directories containing SCCS files be mode
755 and ‘that SCCS files themselves be rread-only. The ‘mode ‘of the
directories allows only the owner to modify SCCS files ‘contained in
the <directories. ‘The mode of the SCCS files prevents .any
modification at all except by SCCS commands.

If it should be :necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor. Care must be taken! The edited file should always be pro-
cessed by an admin — h to check for corruption followed by an
admin — 2 to generate a proper checksum. Another admin — his
recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file {(called z.filename),
which is used to prevent simultaneous updates to ‘the SCCS file by
different users. See get( CP) for further information.

See Also

delta( CP}, d(C), get(CP), help(CP), prs(CP), what{C), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 ' Page 5



AR (CP) AR (CP)

Name

ar ~ Maintains archives-and libraries.

Syntax

ar key [ posname ] afile name ...

Description

ar maintains groups of files combined into a:single archive file. Tts
main use 'is to :create and update library files as used by the link edi-
tor, though it-can be used for any similar purpose.

When ar creates an archive, it.always creates the header in the for-
mat.of the local system.

Key is one character from the set drqtpmx, optionally concatenated
with -one ‘or more ‘of vuaibcl. afile is the archive file. The names are
constituent files in the archive file. The meanings of the key charac-
ters are:

d

r

Deletes the named files from ‘the archive file.

Replaces ‘the named files in the archive file. If the optional
character u is used with r, then only those files with ‘modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the :posname
argument must be present and specifies ‘that new files ‘are to .be
placed after (a) or before (bor i) posname. Otherwise new files
are placed -at the end.

Quickly appends the named files to the end of the archive file.
Optional positioning characters -are invalid. The command does
not ‘check whether the added members are already in the
archive. Useful only to avoid quadratic behavior when creating
a large archive piece by piece.

Prints a table of contents of ‘the archive file. If no names are
given, all files in the archive are tabled. If names are given,
only those files are tabled.

Prints the named files in the archive.
Moves the named files to the end of the archive. If a position-
ing character is present, then ‘the ‘posname argument must be

present and, as in 1, specifies where the files are to be moved.

Extracts the named files. If no names are given, all files in the
archive are -extracted. In neither case does x alter the archive

March 20, 1984 Page 1



AR (CP) AR (CP)

file.

v Verbose. Under the verbose ‘option, @er gives a file-by-file
description of the making of a new -archive file from the old
archive and the constituent files. 'When used with t, ‘it gives a
long listing of all information about ‘the files. When used with
X, it precedes each file with a name.

¢ Create. Normally ar will create afile when it needs to. The
create option suppresses the normal message that is produced
when afile is created.

1 Local. Normally ar places its temporary files in the directory
Jtmp. This option causes them to be placed in the local direc-
tory.

Files
[tmp/v* . Temporary files
See Also

1d(CP), lorder(CP), ar(F)

Notes

If the same file is mentioned twice in ‘an argument list, it may be put
in ‘the archive twice.

March 20, 1984 Page 2

S



AS(CP) AS(CP)

Name

as — assembler
Syntax

as| —1][ —o objfile || —g | file.s
Description

As -assembles the named file. 1if the -argument —1 is -used, an
assembly listing is produced .and ‘written to file.L. This includes the
source, the assembled code, and any assembly errors.

The ‘output ‘of the assembly is left on the file objfile; if that is
omitted, file.o is used. If the optional —g flag is given, undefined
symbols will be treated as externals. Arguments may appear in
any -order, ‘except that —o must immediatly precede objfife. The
optional flag —e (externals only) prevents local symbols from being
extended into objfile’s symbol table,

Files
mp/A68tmpr* temporary
See Also
1d(CP), nm(CP), adb(CP), a.out(F)

May 10, 1984 Page 1



CB(CP)

Name

¢b - Beautifies C programs.

Syntax

b [file]

Description

CB(CP)

Cb places a copy of the C program in file {standard input if file is

not given) on the standard ‘output with spacing and indentation that

displays the structure of ‘the program.

March 24, 1984

Page 1



CC(CP) CC(CP)

Name

cc — C-compiler
Syntax

cc [ option] .. file ...
Description

Cc is the XENIX M68000 -C compiler. Arguments whose ‘names
end with “.c’ are taken to be C source programs; ‘they are .com—
piled, and each ‘object program is left on the file whose name is
that ‘of the source with ‘.0’ substituted for “.c’. The ‘.0’ file is
_normally deleted, however, if a single C program is compiled and
loaded all at one go.

in the same way, -arguments whose .names end ‘with *‘.s’ are taken

to be ‘assembly source programs and .are assembled, producing a

‘.0’ file.

The following options are interpreted by cc. See Id(CP) for

load—time options.

-c Suppress the lozding phase of the compilation, :and force
an object file to be produced even if only one program is
compiled.

-0 Invoke an object—code optimizer.

-8 Compile the named C programs, and leave ‘the
assembler—language -output ‘on -corresponding files
suffixed ‘.s".

—0-output

Name the final output file output. If this option is used
the file ‘a.out’ will be left undisturbed.

—Dname=def
—Dname Define the name to the preprocessor, as if by ‘#define’.
1f no definition is given, the name is defined as 1.

—Uname Remove any initial definition of name.

—Idir  ‘#include’ files whose names do not begin with /" are
always ‘sought first in the directory of the file argument,
then in directories named in —I-options, then in direc—~
tories on a standard list.

~t1 replace the compiler phase with .a program -called ¢68
from the current directory.

—-t2 replace ‘the object code optimizer phase ‘with a program
called 680 from the current directory.

May 10, 1984 Page 1



CCc(Cp) cC(cp)

-K Do not generate stack probes. Stack probes are -necessary
for XENIX :user programs to-assure proper stack growth.

Other arguments
are taken to be either loader option argumecnts, or C— w,>
compatible object programs, typically produced by an ;
earlier .cc run, or ‘perhaps libraries of ‘C—compatible
routines. These programs, together with the results -of
any compilations specified, are loaded (in the order
given) to produce .an ‘executable program with name

a.out.

Files

file.c input file

file.o object file

a.out loaded output

file.[isx] temporaries for cc

Nib/cpp preprocessor

1lib/c68 compiler for.cc

{lib/c680 optional -optimizer

Nib/crt0.0 runtime :startoff

flib/libc.a standard library, see intro(S)

lusr/include standard directory for ‘#include’ files *f)
See Also ‘

B. W. Kerighan and ‘D. M. Ritchie, The C Programming
Language, Prentice—Hall, 1978

D. M. Ritchie, C Reference Manual

adb(CP), 14(CP)

DIAGNOSTICS

The diagnostics produced by C itsclf are intended to be self—
explanatory. Occasional messages may be produced by the
assembler ‘or the loader. Of these, the most mystifying are from
the assembler, as(C), which produces line number reports based on
the generated -code, which :is only loosely related to the source
linenumber. Running the compiler with the —S option-and :assem—
bling the result by hand ‘may help you resolve the difficulty.

May 10, 1984 Page 2



CDC (CP) CDC (CP)

Name

cde — ‘Changes the delta commentary of an SCCS delta.

Syntax

cdc — 151D [- m{mrlist]] |- y]comment]] files

Description

Cde changes the delta commentary for the SID specified by the —r
option, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR)
and comment information ‘normally specified via the delta(CP) com-
mand {—~ mand — y options).

If a directory is named, .¢dc behaves as though each file in the direc-
tory were specified as 2 named file, except that nonSCCS files (last
component of the pathname does not begin with s.) and unreadable
files are silently ignored. If a:name of — is given, the standard input
is read (see Warning); -each line of the standard input is taken to be
the name of an SCCS file to be processed.

Arguments to ‘cdc, ‘which may appear in any order, consist of options
and file names.

All the described options apply independently to each named file:

~ rSID Used to specify the SCCS IDentification (sID)
. string -of ‘a delta for -which the delta commen-
tary is to be changed.

~ mfmrlist] If the SCCS file has the v flag set (see
admin{CP)} ‘then a list of MR numbers to be
added and/or deleted in the delta commentary
of the SID specified by the — r option may be
supplied. ‘A null MR list has no effect.

MR entries are added to the list.of MRs in the
same ‘manner as that of delta(CP). In order to
delete an MR, precede the MR number ‘with
the character ! (see Examples). If the MR to
be deleted is currently in the list of MRs, it is
removed and changed into a ‘“‘comment’” line.
A list of all .deleted MRs is placed in the com-
ment section of the delta commentary and pre-
ceded by a comment line stating that they were
deleted.

March 24, 1984 Page 1



CDC (CP) | CDC(CP)

If - m is not used and the standard inputis s
terminal, the prompt MRs? iis ‘issued on the
standard ‘output before the standard input is
read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt always
precedes ‘the comments? prompt (see —y
option).

MRs in a list are separated by blanks and/or
tab characters. ‘An unescaped newline charac-
ter terminates the MR list.

Note that if the v flag has a value (see
edmin(CP)), it is taken to be the name of a
program (or shell procedure) which wvalidates
the -correctness’ of the MR numbers. If a
nonzero -exit status is returned from the MR
number validation program, -edec terminates
and the delta commentary remains unchanged.

~ ylecomment] Arbitrary text used ‘to replace the comment{s)
’ already existing for the delta specified by the
- r option. The previous comments are kept
and preceded by a comment line stating that
they ‘were changed. A null comment has no
effect.

If — y is not specified and the standard inputis
a terminal, the prompt ‘‘comments?’ is issued
on ‘the standard -output before the standard
input is read; if the standard input is:not a ter-
minal, no prompt is ‘issued. An ‘unescaped
newline character terminates the comment text.

In general, if you made the delta, you can change its delta
commentary; .or if you own the file and directory you can
modifly the delta commentary.
Examples
The following:

cde ~ r1.6 - m"bi78-12345 1bi77-54321 bl79-00001” — ytrouble
s.file

adds bl178-12345 and 'bi79-00001 to the MR list, removes bl77-54321

from ‘the MR list, and ‘adds the comment trouble to delta 1.6 of
s.file. *

March 24, 1984 Page 2




CDC(CP) CDC (CP)

The following interactive sequence ‘does the same thing.
ede - 1.6 s.file
MRs? 1b177-54321 b178-12345 bi79-00001
comments? trouble
‘Warning
1f SCCs file names are supplied to the ¢de command via the standard
input (~ on the command line), then the — m and -y options must
also be used. )
Files
x-file  See delta(CP)

z-file  See delta(CP)

See Also
2dmin(CP), delta{CP), get(CP), help(CP), prs(CP}, scesfile(F)

Diagnostics

Use kelp(CP) for explanations.

March 24, 1984 Page 3



COMB (CP) COMB (CP)

Name

comb - Combines SCCS deltas.

Syntax
comb [- o] [-.8] [ psid] [~ clist] files

Description

Comb provides the means to combine one or :more deltas in an SCCS
file :and make a single new delta. The new delta replaces the previous
deltas, making the SCCS file smaller ‘than the original,

Comb does not perform the combination itself. ‘Instead, it generates
a shell procedure that you must save and execute to reconstruct the
given SCCS files. ‘Comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the out-
put to a file. The saved file can then be executed like any other shell
procedure {see sk(C)).

When invoking comb, arguments may be specified in :any order. All
options ‘apply to all named SCCS files. If a directory is named, comb
behaves as though each file in the directory were specified as a
named file, except that nonSCCS files (last component of the path-
name does not begin ‘with s.) ‘and unreadable files ‘are silently
ignored. If a name of ~ is given, the standard input is read; each
line -of the standard input is taken to be the name of an SCCS file to
be processed; nonSCCS files and unreadable -files are silently ignored.

The options -are as follows. Each is explained as though only one
named file is to be processed, but the effects of any -option apply
independently to each named file.

— pSID The SCCS Dentification string (SID) ‘of :the oldest delta to
be preserved. All older deltas are -discarded in the recon-
structed file.

— clist A list {see get(CP) for the syntax of a lisf) of deltas to be
preserved. All other deltas are discarded.

-0 For each get — e generated, ‘this argument causes the recon-
structed file to be -accessed at the release of ‘the delta to be
created, otherwise the reconstructed ‘file ‘would be accessed
at the most recent ancestor. Use of the - o option ‘may
decrease the size of the reconstructed SCCS file. It may also
alter the shape ‘of the delta tree of the original file.

March 24, 1984 Page 1



COMB (CP) COMB (CP)

-8 This argument .causes comb to generate a shell procedure
that ‘will produce ‘a report for each file giving the filename,
size (in blocks) after combining, original size (also iin
blocks), and percentage change computed by:

100 * (original - .combined) / original

Before any ‘SCCS files are actually combined, you should use this

option to determine exactly how much space is saved by the combin-

ing process.

If .no .options ‘are specified, comb will ;preserve ionly leaf deltas and

the minimal number of ancestors needed ito preserve the tree.

Files

comb???7? Temporary files

See Also

admin(CP), delta(CP), get{CP), help(CP)}, prs(CP), scesfile(F)

Diagnostics

Use help(CP) for explanations.

Notes
Comb may rearrange the shape of the tree of deltas. It:may not.save

any space; in fact, it is possible for the reconstructed file to be larger
than ‘the ‘original.

March 24, 1984 Page 2



CONFIG{CP) CONFIG (-CP)

Name

config - -configure a XENIX system

Syntax
Jetc/eonfig [t} [- 1file] [~ c file] [~ m file] dfile

Description

Config is :a program ‘that takes a description of :a XENIX system and
generates a file ‘which is a ‘C program defining the configuration
tables for the various devices on ‘the system.

The — ¢ option specifies the name of ‘the configuration table file; c.c
is the default name.

The — 1 option specifies the name ‘of the file that contains all the
information regarding supported devices; fetc/master is the -default
name. This file is supplied ‘with the XENIX ‘system and should not be
modified -unless the user fully understands its construction.

The — t option requests a short table of major device numbers for
character and block type devices. This can facilitate the creation :of
special files.

‘The .user must supply dfile; ‘it must contain device information for
the user’s system. This file is divided into two parts. The first part
contains ‘physical device specifications. The 'second part contains
system-dependent information. Any line with an asterisk (*) in
column 1is°a comment. :

All configurations are .assumed to have a set.of required devices
which must be present to run XENIX such as the system clock.
These devices must not be specified in dfle.

First Part .of dfile

Each line -contains two fields, delimited by blanks and/or tabs in the
following format:

devname number

where devname is the name of the device (as it appears in the s )
/etc/master device table}, and number is the number (decimal} of
devices associated with the corresponding controller; -number is

optional, and if omitted, a default value which is the maximum

value for that controller is used.

March 24, 1984 Page 1



CONFIG (CP) CONFIG (CP)

There .are -certain drivers that may be provided with the system, that
are actually pseudo-device drivers; that is, ‘there is no ‘real hardware
associated with the driver. Drivers of this type are identified on
their respective manual entries.

Second Part of dfile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbi-
trary.

1. Root/pipe device specification

Each line has three fields:

root devnmame minor
pipe  devname minor

where ‘minor is the minor device number (in oetal).
2. Swap device apec{ﬁcatf&n
One line that contains five fields as follows:
swap devname minor swplo nswap

where swplo is the lowest disk block :(decimal) in the swap area and
nswap is the number of disk blocks (decimal) in the swap area.

3. Parameter specification

A number of lines of two fields each as follows {number is decimal):

buffers number
inodes number
files - number
mounts number
swapmap number
pages number
calls number
procs number
maxproc number
texts number
clists number
locks number
timezone number
daylight Oorl
Example

Suppose we wish to configure :a system with the following devices:
one HD disk drive controller with 1 drive
one FD floppy disk drive controller with 1 driver

March 24, 1984 Page 2



CONFIG (CP) CONFIG (CP)

We must also specifly the following parameter information:
root device is an HD {pseudo disk 3)
pipe device is an HD (pseudo disk 3)
swap device is an HD (pseudo disk 2) >)
with a swplo of 1 and an nswap.of2300
number of buffers is 50
number of processes is 50
maximum number of processes per-user ID is 15
number -of mounts is 8
number of inodes is 120
number of files is 120
number of calls is 30
number of texts is:35
number of character buffers is 150
number of swapmap entries is 50
number-of memory pages is 512
number of file locks is 100
timezone ‘is pacific time
daylight time is in effect

Sy

The actual system configuration would be specified as follows:
hd 1
fd 1
root hd 3
pipe hd -3
swap hd 2 0 2300 }
*.Comments may be ‘inserted in this manner E
buffers 50
procs 150
maxproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150
swapmap 50
pages (1024/2);
locks 100
timezone (8+60)
daylight 1

Files
Jete/master default input master device table
c.c default-output configuration table file
See Also
master(F)

March 24, 1984 "Page 3



CONFIG{ CP) CONFIG ( CP)

Diagnostics

Diagnostics are routed to the standard output and are self-
explanatory.

Notes

The — t option does not know about devices that have aliases. How-
ever, the major device numbers are always correct.

March 24, 1984 Page 4



CREF(CP) CREF{CP)

Name

cref — Makes a cross-reference listing.

Syntax

eref | - acilnostux123 | files

Description

Cref makes a.cross-reference listing of assembler or C programs. The
program searches ‘the given files for symbols in ‘the appropriate C or
assembly language syntax.

The output report is in four columns:

1. Symbol

2. Filename

3. Current symbol or line number
4. Text as‘it appears in the file

Cref uses either an ignore file or an only file. I the — i option is

given, the next argument is taken to be an sgnore file; if the — o
option is given, ‘the next argument is taken to be an only file. Ignore )
and only files are lists of symbols separated by newlines. All sym-

bols in an ignore file are ignored in columns 1 and 3 of ‘the output.

If an only file is given, only symbols in that file will appear in

column 1. Only one of these options may be given; the default set-

ting is - i ‘using the default ignore file (see FILES below). Assem-

bler predefined:symbols or C keywords are ‘ignored.

The —:s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C,
the current function name. The — | option causes ‘the line number
within the file to be putin column 3.

The — t option causes the ‘next available argument to be used as the
name of the intermediate file (instead of the ‘temporary file
Jtmp/fert??). This file is created and is not removed at the end of
the process.

The -cref options are:

a  Uses assembler format (default} )

¢ UsesC format
i Uses an ‘ignore file (see above)

1 Puts line number in column 3 {instead of current symbol)

March 24, 1984 Page I‘l



CREF(CP) CREF(CP)

n  Omits column 4 (no context)

o Uses an .only file (see above)

s Current.symbol in column 3 (default)

t User-supplied temporary file

u Prints only symbols that occur exactly once
x Prints only C external symbols

1  Sorts outputon column 1 (default)

2 Sorts outputon column 2

3 Sorts:output on column 3

Files
fust/flibferef/+ Assembler specific files

See Also
as(CP}, .cc(CP), sort(C), xref(CP)

Notes
Cref ‘inserts an ASCII DEL -character into the intermediate file after

the eighth character of .each name that is eight or more characters
long in the source file.

March 24, 1984 Page 2



CTAGS (CP) CTAGS (CP)

Name

ctags — Creates a tags file.

Syntax

etags | —u] [ - w] [ - x] name ...

Description

Ctage makes a tags file for #i(C) from the specified C sources. A tags
file gives the locations of specified objects {in this case functions) ‘in
a group -of files. Each line of the tags file contains the function
name, the file in which it is defined, ‘and a scanning pattern used to
find ‘the function definition. These are given in separate fields-on the
line, separated by blanks or tabs. Using the tags file, v can ‘quickly
find these function definitions.

If the — x flag is given, ctags produces a list of function names, the
line ‘number and file name .on which each is defined, as ‘well as the
textof ‘that line and prints this on ‘the standard output. This is a sim-
ple index which can be printed out as an off-line readable function
index.

Files whose name -ends in .c or .h are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:

- w ‘Suppresses warning diagnostics.

—u Causes the specified files to be ‘updated in tags; that is, all refer-
ences to them are deleted, and the new values are appended to
the file. (Beware: this option is implemented in -a ‘way which is
rather slow; itis-usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs.i The ‘tag formed is

created by prepending M to the name ‘of the file, with a trailing .c

removed, if any, and leading pathname components also removed.

This makes use ‘of ctage practical in -directories with more than one

program.

Files

tags Output tags file

See Also
ex{C), vi(C)

‘March 24, 1984 Page 1



CTAGS (CP) CTAGS (CP)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 Page 2



DELTA(CP) DELTA (CP)

Name

delta— Makes-a delta (change) to an SCCS file.

Syntax

delta |- rSID] [~ s] |- n] [- glist] |- m[m#list]] {- y[comment]]
[~ p] files

Description

Delta is used to permanently introduce iinto the named SCCS file
changes that were made to the file retiieved by get(CP) (called the
g-file, or:generated file).

Delts makes a.delta to .each SCCS file named by files. If a directory
is .named, delta behaves as though each file in the directory were
specified as a named file, except that nonSCCS files (last component
of the ‘pathname does not begin with -8.) and unreadable files are
silently ignored. If a name of — is given, the standard input is read
(see ‘Warning); each line of ‘the standard input is taken to be the
name of an SCCS file to be processed.

Delta may issue prompts on the standard output -depending upon
certain .options specified and flags (see admin{CP)) that may be
present in the SCCS file (see — m and - y options below).

Options apply independently to each named file.

- rSID Uniquely identifies which delta is ‘to ‘be made to the
SCCS file. The use of this keyletter is necessary
only if two or more versions of the same SCCS file
have been retrieved for editing (get —e) by the
same person {login name). The SID value specified
with ‘the — r keyletter can be ‘either the SID specified
on ‘the get command line or the SID to be made as
reported by ‘the get command {see get(CP)). A
diagnostic results if ‘the specified SID is ambiguous,
or if it is necessary and omitted on the command
line.

-8 Suppresses ‘the issue, on the standard output, of ‘the
created delta's SID, as ‘well -as the number of lines
inserted, deleted :and unchanged in the SCCS file.

-n Specifies retention of the -edited g-file {normally
removed at completion ‘of delta processing).

March 24, 1984 Page 1




DELTA (CP)

— glist

~ m| mris]

— y|comment

Files

DELTA (CP)

Specifies a list (see get(CP) for the definition of ist)
of .deltas ‘which are to be ‘tgnored ‘when the file is
accessed at the change level (SID) created by this
delta. :

If the SCCS file has the v flag set (see admin(CP))
then 'a Modification Request (MR) number -must be
supplied as the reason for creating the new delta.

If — m is not 'used and the standard input is a termi-
nal, the prompt MRs? is‘issued on the standard out-
put'before ‘the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt {see —y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter-
minates the MR list.

Note that if the v flag has a value {see admin(CP)),
it is ‘taken to be ‘the name of a program :{or shell
procedure} which will validate the correctness of the
MR numbers. If a nonzero ‘exit status is returned
from MR number validation program, delta ter-

‘minates (it is assumed ‘that the MR :numbers ‘were

not all valid).

Arbitrary text used to describe the reason for mak-
ing the delta. A null string is considered a valid
comment.

If — y is not specified and the standard input is a
terminal, the prompt comments? is issued on the
standard .output before :the standard input is read; if
the ‘standard input is not a terminal, no prompt is
issued. ‘An unescaped newline :character terminates
the comment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied. Differences are displayed ‘in a d{ff(C) for-
mat.

All files of the form ¢-file ‘are explained in ‘Chapter 5, “‘SCCS: A
Source Code Control System” in the XENIX Programmer’s Guide. The
naming convention for these files is also described there.

g-file

March 24, 1984

Existed before the execution of delta; removed after
completion of delta.

Page 2



DELTA (CP)

p-file
q-file
x-file
z-file
d-tile

Jusr/bin/bdiff

Warning

DELTA (CP)

Existed before the execution -of delta; may exist
after completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created -during ‘the execution of delta; renamed to
SCCS file after completion of delta.

Created during the execution of delta; removed dur-
ing the execution of .delta.

Created during the execution of deélta; removed after
completion of delta.

Program to compute differences between the
‘retrieved’’ file and the g-file.

Lines beginning with an SOH ASCII character (binary 001} cannot be
placed in the SCCS file unless the SOH is escaped. This character has
special meaning to SCCS {see sccafile(F)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should
be ‘avoided when the get generates a large amount of data. Instead,
multiple get/delta sequences should be used.

If the standard input (- } is specified on the delta command line, the
— m (if necessary) and ~ y options must also be present. ‘Omission
of these options causes an error to occur.

See Also

admin(CP), bdiff(C), get{CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984

Page 3



GET(CP)

DEL TA (cP 3
stisee 9 { for goitio? ot tie)
ich 7€ b ignored when ¢ fle 38
y the € jevel {sv ) a by this
o fle h3s v fiag 8 (se adm \G?“
Aod'\f\cat.'\o est (M 3 pumbe’ nust b¢
the n for creatiin {he ne¥ delta-
18 MOY used 4 the stand 4 nput 15 2 0T -k [~ ¢
e pxomph 44 '\s"\ssue& n the s(.andaxd oulr
fore the © at\daxcl inpy! ready 1t the standal
15 mob inal, B0 rompt 15 Assu® The
t prompt Aways precedes the ©© nts?
ypriees ™ y key\emt\. sordi
sording
in » Bst are separated py bl andfor tab 'toThe
Jracters o unest® a pewine characte? ter- X all
nates MR hie 'O:,lhs}l
at
[ote tha¥ Y theV fag 1oS avalue (see admin o)) with
p i KN, e the B e of % program (or chell 15
procedme\ which Wil yahde cot ectnes® of the tls
MR aumbe i ponze’ 1 state® tetumed in,
from R aumbe’ adatio® progia™ delts BT
min? &\ jg 258 a thav MR B pers Wer i
aobal AR €
Arbmaxy se eserid 1e3800 { ak-
ing the delta 11 string s'\detec\ yahd
comme™
u-Y 15 nob 5pe and the stan jnput is B
mrm’ma\, the prom? o st 18 cped OF the
stan 1 0UY 4, befor® the smnda.rc\ snput is reads it
the standal input ot erminah comph 1#
jgsue nesca! 4 w o e mina®
the €O attext
Canses delte © Pt n andard output) the
§cced file d'\ﬁetmces fore 4 afte? the Jelta 18
app\\ed D'\ﬁerence dispd yed in® diﬂ\C\ for-
mab
files of the ¢-file 872 explain® in Chapte® «wgoCs: A
arce Code Con¥® yste » jn the XENI Prog" mmer’ Guide- The
ming <° yentio for these files 1® a0 & cribed there
€ ecutl ot deltss 1emo 3 afte?
Page %



GET{CP)

— ilist

~ xlist

March 24, 1984

GET(CP)

gets Tor editing on ‘the same SID ‘until delta is executed or
the j (joint edit) flag is set in ‘the SCCS file (see
admin(CP)). Concurrent use of get —e for different
SIDs is always allowed.

If the g-file generated by .get ‘with an — e option is
accidentally ruined in the editing :process, it may be
regenerated by reexecuting ‘the :get command with the
— k option in place of the — ‘e option.

SCCS file protection specified via the ceiling, floor, and
authorized ‘user list stored in the SCCS file (see
admin(CP)) are enforced when the — e option is used.

Used with ‘the — e option to indicate that the new delta
should ‘have an SID in a new branch. This option is
ignored if the b flag is not present in the file (see
admin(CP)} ‘or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no successors on ‘the SCCS
file tree.)

Note: A ‘branch delta may always be created from a non-
leaf delta.

A list of deltas to be included (forced to ‘be applied) in
the creation of the generated file. The list has the follow-
ing syntax:

<list> == <range> | <list> , <range>
<range> i:==SID |SID - SID

SID, the SCCS Identification of a delta, may ‘be in any
form described in Chapter 5, **SCCS: A Source Code
Control System,’” in the XENIX Programmer’s Guide.

A list of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the — i option
for the list format.

Suppresses replacement of identification keywords (see
below) in ‘the retrieved text by their value. The — k
option is implied by the - e-option.

Causes ‘a delta summary ‘to be ‘written into an l-file. If
~ Ip is used then an I-file is not created; the delta sum-
mary is written on the standard output instead. See
FILES for the format of ‘the {-file.

Causes the text retrieved from the ‘SCCS file to be written
on ‘the standard output. No g-file is created. All output
that normally goes ‘to ‘the standard output goes to file
descriptor 2 instead, ‘unless the — s option is used, in
which case it disappears.

Page 2



GET(CP) GET (CP)

-8 Suppresses all output normally written on the standard
output. However, fatal error messages (which always go
to file descriptor 2) remain unaffected.

—m Causes each text line retrieved from ‘the SCCS file to be
preceded by the SID .of the delta that inserted ‘the text
line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the
98M % identification keyword value (see below). The for-
mat is: 9M% value, followed by a horizontal tab, fol-
lowed by the text line. When both the —m and — n
options are used, the format is: %M % value, followed by
a horizontal tab, followed by the - m option generated
format.

- g Suppresses the actual retrieval of text from the SCCS file.
It is primarily used to generate an .[-file, or to verify the
existence of a particularSID.

~t Used ‘to access the most recently created (top) deltain a
given release (e.g., — rl), or release and level (e.g.,
- rl.2).

—aseq-no. The delta sequence number of the SCCS file delta (ver-
sion) to be retrieved {see eccafile(F)). This option is
used by ‘the comb{CP) command; it is not particularly
useful sshould be -avoided. If both the —r and - a
options are specified, the - a option is used. Care
should be taken when using the — a option in conjunc-
tion ‘with the — e option, as the SID of the ‘delta to be
created may not be what you expect. The — roption can
be used with the — a and — e options to control the nam-
ing of the SID -of the delta to be created.

For -each file processed, get responds (on the standard output) ‘with
the SID being accessed and with :the number of lines retrieved from
the SCCS file.

If the — e option is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated. If
there is more than one named file or if a directory or standard input
is named, ‘each filename is printed (preceded by a newline} before it
is processed. If the — i option is used included :deltas are listed fol-
lowing the notation *“‘Included’’; if the — x option is used, excluded
deltas are listed following the notation *‘Excluded”’.

Identification Keywords

Identifying information is inserted :into ‘the text retrieved from ithe
sccs file by replacing sdentification ‘keywords -with their walue

March 24, 1984 Page 3



GET (CP)

ye used in the

¢h are @ e
change jevel (stD) create
a'ti in the file w)
o SCOS file

et (s
umber must be
%) of the

t tab .
e icharactel tet- D}.
VY).
3)

2 Jist are sepaxa.md
caped newlin:
file (see

ymbers. It exit status is Tetumne

MR pumber yalidation program: delte el .
es (v s assumed tha? the MR aumbers Were riden-

i valid)- ) “‘this .

ended )

trary text ysed © Jescribe the reason for mak- rs.

the delta. A null string 18 cor\sideted a valid ).

menk 's for
ntal-

cified and the standard input i8

rompt com™ ? is jssued on the

o standard input is read; il

a (0)
iles.

®
a
-]
E]
]
@
=)
e
e
W
e
LB, 0
s B
[=5
Q
e
o
-]
[
&
&
®
0 B

, form ¢.file are €X din €
< the XENIX Programme’

sontrol System
ntion for these

Existed vefo
completion
' Page 2



GET(CP) GET(CP)

implied, the ¢-file’s mode is 644; otherwise the mode is 444. Only
the real user need have write permission in ‘the ‘current directory.

The {-file contains a table showing which -deltas ‘were applied in gen-
erating the retrieved ‘text. The I-file is created in the ‘current direc-
tory if the ~-1 option is used; its mode is 444 and it is owned by the
real user. Only ‘the real user need have write permission in the
current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise
b. A ‘blank <character if the delta was applied or ‘wasn’t applied
and ignored;
* il the delta wasn’t-applied and wasn’t ignored
¢. A code indicating ‘a *‘special’’ reason why ‘the delta was or
was ‘not applied:
“I": Included
“X: Excluded
“0": Cut off (by a — c option)
Blank
SCCS identification (SID)
Tab character
Date ‘and time (in the form YY/MM/DD HH:MM:SS) -of crea-
tion
Blank
Login name of person who created delte

ME e

The ‘comments and MR .data follow on :subsequent lines, indented
one ‘horizontal tab character. A blank line terminates each -entry.

The p-file is ‘used ‘to pass information resulting from a get with an
— e option along to delta. Its contents are :also used to ‘prevent a
subsequent execution :of get with an -~ e option for the same SID
until delta is executed or the joint edit flag, j, see admin(CP)) is set
in the 8CCS file. The p-file is created in the directory containing the
SCCs file and the effective user must have write ‘permission in that
directory. Its mode is 644 and it is .owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed
by the SID that the new delta will have when it is made, followed by
a blank, followed by ‘the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed by a
blank and the ~ i option if it was present, followed by a blank and
the — x -option if it was present, followed by a newline. There .can
be an arbitrary number of lines in the p-file at any time; no two lines
can have the :same new delta SID.

The z-file serves :as a lock-out -mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the com-
mand {(i.e., get) that-created it. The z-file is created in the directory
containing the ‘SCCS file for the ‘duration of get. The same protection
restrictions as those for the p-file apply for the z-file. The z-file is

March 24, 1984 Page 5



GET(CP) GET(CP)

created mode 444,

See Also

admin{CP), delta(CP), help(CP), prs(CP), what{C), sccsfile(F)

Diagnostics

Use help(CP) for explanations,

Notes

If ‘the effective user has write permission (either explicitly or impli-
citly) in the directory containing the SCCS files, -but the real user
doesn’t, then only one file may be named when the — e option is
used.

)

March 24, 1984 Page 6



GETS(CP) GETS (CP)

Name

gets — ‘Gets a string from the standard input.

Syntax

gets | string |

Description
Gets can be used with csh(CP) to read a string from the standard
input. If .stmng is given ‘it is used as a default value if an error
occurs. The resulting string :(either string or ‘as read from the stan-

dard input) is ‘written to ‘the standard ‘output. If no string is given
and :an error occurs, gets exits with exit status 1.

See Also
line(C), :csh(CP)

March 24, 1984 Page 1



HDR (CP) HDR (CP)

Name

hdr - Displays selected parts of object files.

Syntax
hdr{ - dhprsSt ] file ...

Description

Hdr displays object file headers, symbol tables, and text or data relo-
cation records in human-readable formats. It also prints out seek
positions for the various segments in the object file.

A.out, x.out, and x.out segmented formats and archives are under-
stood. :

The symbol table format consists of six fields. In a.out formats the

third field is missing. ‘The first field is the symbol's.index or position

in the symbol table, :printed in decimal. The index of the first entry

is zero. The second field is the type, printed in hexadecimal. The

third field is the s_seg field, printed in hexadecimal. The fourth

field is the symbol’s value in hexadecimal. The fifth field is.a single .
character which represents the symbol's type -as.in am(CP), except C )
common is ‘not recognized as .a special case of undefined. The last ’
field is the symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. "This field is used for external relo-
cations ‘as an index into -the symbol ‘table. It should reference ‘an
undefined 'symbol table entry. The third field is the position, or
offset, within the current segment at ‘which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment referenced in ‘the relocation: text, data, bss or EXT for
~external. The fifth field is the size of relocation: byte, word (2
bytes), or long. The last field will indicate, if present, that the relo-
cation is relative.

If short form relocation is present, the format consist of three fields.
The first field is ‘the relocation command in hexadecimal. the second
field contains the name of ‘the segment referenced; textor data. The
last field indicates the size of relocation: word or long.

Options and their meanings are:

~ h-Causes ‘the -object file header and extended header to be printed
out. Each field iin the header or extended header ‘is labeled.
This is the default option.

March 24, 1984 Page 1



HDR (CP) HDR (CP)

— d ‘Causes the data relocation records to be printed out.
— t Causes the text relocation records to be ‘printed out.
—r Causes both text and data relocation to be printed.

~ pCauses seek ;positions to be printed -out as defined by macros in
the include file, <a.out.h>.

— 8 Prints the symbol table.

— 'S Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.) :

See Also
a.out(F), nm(CP)

March 24, 1984 Page 2



HELP(CP) HELP (CP)

Name

help - Asks for help about'SCCS commands.

- N : o

help | ‘;ugs]

Description

Help finds information to explain a.message from ‘an SCCS command

or explain ‘the use of a command. Zero or more arguments may be

supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers {which normally

appear in parentheses following ‘messages) or command names.

There are the following types of arguments:

type 1 Begins ‘with nonnumerics, ends in numerics. The non-
numeric prefix is usually an abbreviation for the program
or set of routines which produced the message :(e.g., ge8,
for message 6 from ‘the get command).

type 2 Does not contain numerics (as a command, such as get)

type 3 Is all numeric (e.g., 212)

The response -of the program ‘will be the .explanatory information
related to the argument, if there is any.

When all else fails, try “*help stuck’.

Files

~fustflib/help Directory containing files of message text

March 24, 1684 Page 1



LD(CP) LD(CP)

Name
1d — link -editor

Syntax
ld [ option ] file ...

Description
Ld ‘combines several ‘object programs into -one, resolves external
references, and searches libraries. Ld combines the given object
files, producing an object module which can be either executed -or
become the input for a further /4 run (in the latter case, the —r
option must be given to preserve the relocation records). The
output of /d is left by default in the file x.out. This file is made
executable only if no errors occurred.

The files given as arguments .are concatenated in the order
specified. The ‘default entry point of ‘the -output ‘is the beginning of
the first routine in the first file. The C compiler, cc , calls Id
automatically unless given the —c option. The command line that
cc passes to ld is

14 Nlib/cxt0.0 files cc—options —l¢

if any argument is a library, it is searched exactly once at the point
it is encountered in the argument list. ‘Only those routines defining
an unresolved ‘external reference ‘are loaded. If a routine from a
library references another routine in the library, and the library has
not ‘been -processed by ranlib(CP), the referenced routine ‘must
appear ‘after the referencing routine in the library. Thus the order
of programs ‘within libraries may be important. 1f the first member
of ‘a library is named ‘_.SYMDEF’, then it is understood to ‘be a
dictionary for the library

as produced by ranlib; the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols ‘_etext’, ‘.edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’
in C) are reserved, -and if referred to, are set to the first location
above the program, the first location above initialized data, and the
first location above all data, respectively. It is erroneous to define
these symbols.

If no errors ‘occur and there ‘are no unresolved external references,
then short form relocation information is attached and the file is
made executable. This short form relocation information is
sufficient to allow the file to be used for another pass of Id , to
change the text and data base addresses. ‘At the same time, the —n

May 10, 1984 Page 1



LD(CP)

LD{CP)

, —1 , or —F options can be used to produce different types of
executable files.

Ld understands several options. Except for I, they should appear
before the names of all-object file arguments.

-8

-1

-P

May 10,

‘Strip’ the output to save space by removing the symbol
table and relocation records. Note that stripping impairs
the usefulness of the debugger. This information can also
be removed later with strip(CP).

Do not attach the short form of relocation. This does not
imply removing ‘the symbol table, as with —s .

Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for loading
wholly from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the
loading of the first routine.

Discard all symbols except those that are undefined exter—
nal.

The same as —U, except also retain the following list of
giobal ‘symbols. The list consists .of the next command
line arguments -and is terminated by the end of the com—
mand line, by — alone, or by any further option beginning
with a —.

The same as —g, except that the list of global symbols is
taken from the file named by the following argument. If
the next argument is — alone, the standard input is read.
The symbols may be separated by any type of whitespace.

This option is an .abbreviation for the library name
‘Nib/libx.a’, where x is a string. If the library ‘does not
exist, Id then tries ‘/ust/lib/libx.a’. A library is searched
when its name is encountered, so:the placement of a —1 is
significant. Note that —1 with no argument, defaults to
~Ic . If the processor on ‘which Id is running is not the
same as the target processor, then it is possible that —p
may be implied. In the case of the MC68000 target, —p
fusr/lib/mlib is implied.

Take the following argument as the directory in which —lx
libraries will be found. -

Do not preserve local (non.globl) symbols in ‘the output

1984 Page 2




LD (CP)

=-r

—nor

-0

—€

May 10,

LD(CP)

symbol table; only enter -external symbols. This option
saves some space in the output file.

Save local symbols except for those whose names begin
with “L’. This option is used by cc(CP) to discard inter—
nally generated labels while retaining symbols local to
routines.

Generate (long form) relocation records in ‘the output file
so that the output file can be the subject of ancther /d run.
This flag also prevents final definitions from being given
to common symbols .and suppresses the ‘undefined sym—
bol’ diagnostics.

Force definition of common storage even if the —r flag is
present.

Arrange that when the output file is executed, the text
portion will be read—only and shared among all users
executing the file. This involves moving the data areas up
to the first possible page ‘boundary following the end of
the text. A warning is issued if the current machine does
not support this option.

Identical to —~nn except that the text and data positions are
reversed.

Identical to whichever of —nn and —nr is the default for
the .current machine.

When the -output file is executed, the program text and
data arcas -are given separate address spaces. The -only
difference ‘between ‘this option and —n is that with —i the
data may start at a boundary unrelated to ‘the position of
the text. A warning is issued if the current ‘machine does
not support this option.

The name argument after —o is used as the name of the Id
output file, instead of x.out.

The following ‘argumerit is taken to be ‘the name of the
entry point of the loaded program. The base of ‘the text
segment is the default.

The next argument is a decimal number that sets the size
of the ‘data segment.

The next argument is taken to be -a hexadecimal number
that sets the pagesize, or rounding size, for use with the
—n option. With —1, it :specifies the base of the data

1984 Page 3



LD(CP) LD(CP)

segment. ‘With —nn, it is used to compute the base of the
data segment. With —nr, ‘it is used to compute the base
of the text segment.

-R The next argument is taken to ‘be a hexadecimal number
that is used as the base address for text relocation. With
-1 or —nn , it also specifies the text base address; with
—nr it specifies the data base address.

-F The next argument is taken to be a hexadecimal number
that specifies the size -of ‘the stack required by the object
file when executing. This only has meaning .on those
processors that cannot expand the stack dynamically.

Files
/lib/lib*.a libraries
fusr/mlib/lib*.a more libraries
x.out output file
See Also

as(CP), ar(CP), cc(CP), ranlib(CP), strip(CP), x.out(F)

May 10, 1984 Page 4



LEX(CP) LEX(CP)

Name

lex - Generates programs for lexical analysis.

Syntax

‘lex [--etvn] [ file | ...

Description
Lez generates programs to be used in simple lexical analysis of text.

The input files (standard input default) ‘contain strings and expres-
sions to be searched for, and C text'to be executed when strings are
found.

A file lex.yy.c is generated which, when loaded with the library,
copies ‘the input to the output except when ‘a string specified in ‘the
file is found; then the corresponding program text is executed. The
actual string matched is left in yytest, an external character array.
Matching is done in ‘order of the strings in the file. The strings may
contain square brackets to indicate ‘character classes, as in [abx— z]
to indicate -a, b, X, y, and z; and the operators *, +, and ! mean
respectively any nonnegative number of, any positive number of,
and either ‘zero or one occurrences of, the previous character or
character class. The character . is the class of :all ASCII characters
except newline. Parentheses for grouping and vertical bar for alter-
nation are also supported. The ‘notation r{d,e} in a rule indicates
between d and ¢ instances of regular.expression r. It has higher pre-
cedence than | but lower than *, #, +, and concatenation. The
character * ‘at the beginning of an expression permits a successful
match only immediately after a newline, and the character § at the
end of an expression requires a trailing newline. The character /in
an expression indicates trailing context; only the part of ‘the expres-
sion up to the slash is returned in yytest, but the remainder of the
expression must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within * symbols or pre-
ceded by \. Thus [a~ zA~ Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a
character; unput{¢) to replace a character read; and output{c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated ‘is
named yylex(), and the library contains a main() which calls it. The
action REJECT ‘on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same yytezt; and
the function yyless(p) pushes back the portion of the string matched
beginning at p, which should be between yytezt and yytest+ yyleng.
The macros input and output use files yyin and yyout to read from

March 26, 1684 Page 1



LEX(CP) LEX(CP)

and write to, defaulted to stdin and stdout, respectively.

Any line beginning with ‘a3 blank is assumed to contain only C text
and is copied; if it precedes 9%%it is copied into the external defini-
tion area of the lex.yy.c file. ‘All rules should follow a 98% as in
YACC. Lines preceding 9% which begin with a nonblank character
define the string on the left to be the remainder of the line; it can be
called -out later by surrounding it with {}. Note that curly brackets
do not imply parentheses; only string substitution is done.

Example
D [0- 9]
%o S
it printf("IF statement\n");

[a~ 2]+ printf("tag, value %s\n",yytext);
0D} printf("octal number %s\n",yytext);
{D}+ -printf("decimal number %s\n",yytext);
"+ 4" printf("unary op\n");
P ? printf("binary op\n®);
e { loop:

while (input() l=="¥);

switch (input())

case /" ‘break; )
case '¥: unput{"™); o
default: go to loop;

}

The external names generated by lez all begin with the prefix yy or
YY. )

The options must appear before any files. The option — ¢ indicates
C ‘actions and is the default, — t causes the lex.yy.c program to be
written instead to standard output, — v provides a one-line summary
.of statistics of the machine generated, — n will not print out the —
summary. Multiple files are treated ‘as a single file. If no files are
specified, standard .input is used.

Certain table sizes for the resulting finite state machine can be set in
the definitions section:

% n
number of positions is n (default:2000)

% n
number of states is n (500)

% n
number-of parse tree nodes is n (1000)

March 26, 1984 Page 2



LEX(CP) LEX(CP)

% n

number of transitions is = (3000)

The use of one or more of the above automatically implies the — v
option, unless the — n.option is used.

See Also

yace(CP)
Xenix -Software Development Guide

March 26, 1984 Page 3



LINT(CP) LINT(CP)

Name

lint - Checks C language usage and syntax.

Syntax

lint [~ abchlnpuvx] file ...

Description

Lint attempts to detect features of the C program file that are likely
to be bugs, nonportable, ‘or wasteful. Italso checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered -at the top,
automatic variables declared and not used, and logical expressions
whose value s -constant. Moreover, the usage of functions is
checked to find functions which return values in some places and
not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

If more than one file is given, it is assumed that all the files are to be
loaded together; they are checked for mutual compatibility. If rou-
tines from the standard library are called from file, lint checks the
function definitions using the standard lint library Hibe.ln. If lint is
invoked with the — p option, it checks function definitions from the
portable lint library Hibport.ln.

Any number of lint options may be used, in any order. The follow-
ing options:are used to suppress certain kinds:.of complaints:

— a Suppresses complaints about assignments of long values to vari-
ables that are not long,.

— b Suppresses .complaints about ‘break statements that cannot be
reached. (Programs produced by lez or yace will-often result in
a large number of such complaints.)

- ¢ Suppresses complaints about casts that have questionable porta-
bility.

— h Does not apply heuristic tests that ‘attempt to intuit bugs,
improve style, and reduce waste.

— u Suppresses complaints about functions and external variables
used and not defined, or defined and not used. {(This option is
suitable for running lint on a subset of files of a larger program.)

v Suppresses complaints -about unused arguments in functions.

— x Does not ‘report variables referred to by external declarations
but.never-used.

March 24, 1984 ‘ Page 1



LINT(CP) LINT(CP)

The following arguments alter lint’s behavior:

— n Does ‘not check compatibility against either the standard or the
portable lint library.

— p Attempts to check portability to other dialects of C.

— llibname
Checks functions definitions in the specified lint library. For
example, — lm causes the library ilibm.In to be checked.

The - D, — U, and — 1 options of cc(CP) ‘are also recognized as
separate arguments.

Certain conventional comments in the C ssource will change the
behavior of lint:

/*NOTREACHED*/
At appropriate ‘points stops -comments about ‘unreachable
code.

/*VARARGSn®/
Suppresses the usual checking for variable numbers-of argu-
ments in ‘the following function declaration. The ‘data types
of the first n arguments are checked; a missing » is taken to
be 0.

J*ARGSUSED*/
Turns on the — v-option for the next function.

/‘LINTLIBRARY'/
Shuts off complaints about-unused functions in this file.

Lint produces its first output.on a per source file basis. Complaints
regarding included files are collected and printed after all source files
have been processed. Finally, information gathered from all input
files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from ‘a given-source file or from
one of its included files, the source filename will be printed followed
by a question mark.

Files
Jusr/lib/lint[12] Program files
[usr/lib/llibe.ln, Jusr/lib/llibport.In, Jusr/lib/llibm.ln,

Jusr/lib/llibdbm.In, fusr/lib/llibtermlib.In
Standard lint libraries (binary format)

March 24, 1984 Page 2



LINT(CP) LINT(CP)

Justflibfllibe, Jusr/libfllibport, Jusr/lib/llibm, Jusr/lib/llibdbm,
Jusr/lib/llibtermlib
Standard lint libraries (source format)

Jusr/tmp/*lint* Temporaries ” »’)

See Also
cc(CP)

Notes

Ezit(S), and other functions which do not return, ‘are not under-
stood. This can-cause improper error messages. ’

March 24, 1984 Page 3



LORDER (CP) LORDER (CP)

Name

lorder -~ Finds ordering relation for an object library.

Syntax
lorder file ...

Description
Lorder creates an -ordered listing of object filenames, showing which
files depend on variables declared in other files, The file is one -or
more object or library archive files (see ar(CP)). The standard out-
put is ‘a list of pairs of object filenames. The first file of the pair
refers to external identifiers defined in the second. The output may
be processed by teort(CP) to find an ordering of -a library suitable for
one-pass ‘access by {d(CP). .

Example
The following command builds 3 new library from existing .o files:

ar ‘cr library “lorder *.0 {tsort*

Files

*symref, *symdel Temp files

See Also
ar(CP), 1d(CP), tsort(CP)

Notes
Object files whose names do not end with .o, even when contained

in library archives, :are overlooked. Their global symbols and refer-
ences are attributed to some other file.

March 24, 1984 Page 1



M4 (CP) M4 (CP)

Name

m% - Invokesa macro processor.

Syntax

m4 [ options ] [ files ]

Description

M4 is a macro processor.interided ‘as ‘a front end for Ratlor, ‘C, -and
other languages. Each of the argument files is processed in order; if
there are no files, or if a filename is - , the standard input is read.
The processed text'is written .on the standard ‘cutput.

The options and their effects are -as follows:

— e Operates interactively. Interrupts are ignored and the .output is
unbuffered.

~ 8 Enables line sync output for the ‘C preprocessor (#line ...)

~ Bint
Changes the size of the push-back and argument -collection
buffers-from the -default of 4,096.

— Hint :
Changes the size of the symbol table hash array from -the
default of 199. The size should be prime.

— Sint
Changes the size of the call stack from the default of 100 siots.
Macros take three slots, and nonmacro arguments take one.

~ Tint
Changes the size of the token buffer from the default of 512
bytes.

“To be effective, these flags must appear before any filenames and
before any — D .or — U flags:

- Dname[==ral)
Defines name to val or to null in wal's absence.

~ Uname
Undefines name.

March 24, 1984 Page 1



M4 (CP) M4 (CP)

Macro Calls
Macro ‘calls have the form:
name(argl,arg2, ..., argn)

The { must immediately follow the name of the macro. If a defined
macro name is ‘not followed by a(, it is deemed to have no argu-
ments. Leading unquoted blanks, ‘tabs, and newlines are ignored
while -collecting arguments. Potential macro names consist of :alpha-
betic letters, digits, and underscore _, where the first character is not
a . digit.

"Left and right.single quotation marks ‘are used to quote strings. The
value of a'quoted string is the string stripped of the ‘quotation marks.

When a macro name is recognized, its arguments are collected by
searching for 2 matching right parenthesis,. Macro evaluation
proceeds normally during ‘the collection of the arguments, and any
commas or right parentheses which happen ‘to turn up within the
value ‘of a nested call are as effective as those in ‘the original input
text. After argument collection, ‘the value of the macro is pushed
back ‘onto the input.stream -and rescanned.

M{ makes available the following built-in ‘macros. They may be
redefined, but once ‘this is done the -original meaning is lost. Their
values are null unless otherwise stated.

define The second argument is installed as the value .of the
macro whose name is the first argument. Each
occurrence of $n in ‘the replacement text, where n is a
digit, is replaced by the n-th argument. Argument 0 is
the name of the macro; missing arguments ‘are replaced
by the null string; $¢ is replaced by the number of
arguments; $* is replaced by a list of all the arguments
separated by commas; $@ is like $*, but each argument
is ‘quoted (with the current quotation marks).

undefine Removes the definition of the macro named in its argu-

ment.
defn Returns the quoted definition of its argument{s). It is
useful for renaming macros, ‘especially built-ins.
pushdef Like define, but saves any previous definition.
popdef Removes current definition of its argument(s), expos-

ing the previous one if any.

ifdef If the first argument is defined, the value is the second
argument, otherwise the third. If there is no third
argument, the value is ‘null. The ‘word XENIX" is
predefined in M{.

March 24, 1984 Page 2



M4 (CP)

shift

changequote

changecom

divert

undivert

divhum

dnl

ifelse

iner

decr

eval

March 24, 1984

M4 (CP)

Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect of the extra scan that
will subsequently be performed.

Changes ‘quotation marks ‘to -the first and second argu-
ments. The symbols may be ‘up to five characters long.
Changequote without arguments restores the original
values (i.e., *)

Changes left and right comment markers from the
default # and newline. With no arguments, the com-
ment mechanism s effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu-
ments, both markers are affected. Comment markers
may be up to five characters long,

M4 maintains 10 output streams, numbered 0-9. The
final ‘output is the concatenation of the streams in
numerical ‘order; initially .stream 0 ‘is ‘the .current
streamn. The divert macro changes ithe current output
stream to .its (digit-string) -argument. Output diverted
%o ‘a stream ‘other than 0 through 9 is discarded.

Causes immediate output of text from diversions
named as -arguments, -or all diversions if no argument.
Text :may be wundiverted into another .diversion.
Undiverting discards the diverted text.

Returns the ‘value of the current-output:stream.

Reads and .discards characters -up to ‘and including the
next newline.

Has three or more arguments. If the first argument is
the same string as the second, then the value is the
third argnment. If not, and if there .are more than four
arguments, the process is repeated ‘with arguments 4, 5,
6 and 7. Otherwise, ‘the value is either the fourth
string, or if itis not present, null.

" Returns the “value "of ‘its argument incremented by 1.

The value of the argument is :calculated by interpreting
an initial digit-string as a decimal number.

Returns the value of its argument decremented by 1.

Evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. -Operators include +, -, *, /,
% " (exponentiation), bitwise &, |, %, and 7; relation-
als; parentheses. Octal and hex numbers may be
specified -as in C. The second ‘argument specifies the

Page 3

e



M4 (CP)

len

index

substr

translit

include

sinclude

sysemd

sysval

maketemp

miexit

m4wrap

errprint

dumpdef

traceon

traceoff

March 24, 1984

M4 (CP)

radix for the result; the default is 10. The third argu-
ment may be used to specify the minimum number of
digits in the result.

Returns the number of :characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or - 1 if the
second argument does not-occur.

Returns a substring of its first ‘argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates ‘the length -of
the substring. A missing third argument is taken to be
large enough to extend to the end of ‘the first string.-

Transliterates the characters in its first argument from
the set given by the ‘second ‘argument to the :set given
by the third. No abbreviations-are permitted.

Returns ‘the contents of the file named in the argu-
ment.

Identical to tnclude, except that it says nothing if the
file is inaccessible.

Executes the XENIX -command .given in the first argu-
ment. No value is returned.

Is the return code from the last call to .sysemd.

Fills in a string -of XXXXX in its argument with the
current process ID.

Causes immediate -exit from m{. Argumentl, if given,
is the exit code; the default is 0.

Argument 1 will be pushed back ‘at final EOF; example:
m4wrap( “cleanup( ) 9

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named
items, or for all if no arguments are given.

With ‘no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

Turns -off ‘trace globally and for any ‘macros specified.

Macros specifically traced by traceon can be untraced
only by specific calls to traceoff.

Page 4



MAKE(CP)

Name

MAKE (CP)

make — Maintains, updates, and regenerates groups of programs.

Syntax

make {- f mzkefile] [~ p] [~ 1] [~ k] [~8] [~ [-n] [-b] [-¢
Cd1-d [-d [pames] M-

Description

The following is a brief description .of all options and some special

names:

— f makefile Description filename. Makefile is assumed to be ‘the

March 24, 1984

name -of a ‘description file. A filename of - denotes
the standard input. The contents of makefile override
the built-in rules if they are present.

Prints out ‘the -complete set of macro definitions and
target descriptions.

Ignores -error codes returned by invoked commands.
This mode is entered if the fake target name .IGNORE
appears in the ‘description file.

Abandons work on the ‘current entry, but continues on
other branches that do not depend on that entry.

Silent ‘mode. Does not print command lines ‘before
executing. This mode is also entered if the Take target
name .SILENT appears in the description file.

Does not use the built-in rules.

No execute mode. Prints commands, but does not
execute them. Even lines beginning with an @ are
printed.

Compatibility mode for old makefiles.

Environment variables override .assignments ‘within
makefiles.

Touches the target files {causing them to be up-to-
date) rather than issues the usual commands.

Debug mode. Prints out detailed information on files
and times examined.

Page 1

s

e



MAKE (CP) MAKE (CP)

-.q Question. The wmeke command returns a zero ‘or
nonzero status ‘code depending on whether ‘the target
file is‘or is not up-to-date.

DEFAULT If a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands associ-
ated with the name .DEFAULT are used if it exists.

:PRECIOUS Dependents of this target will not be removed ‘when
quit or-interrupt are hit.

SILENT Same effect as the — s option.
JGNORE Same effect as the — i-option.

Make executes commands in makefile to update one or more target
names. Name is typically a program. If no — f option is present,
makefile, Makefile, :s.makefile, and s.Makefile are tried in -order.
If ‘makefile is — , the .standard input is taken. More than one — T
makefile argument pair may appear.

Madke updates -a target only if it depends on files that are newer than
the target. All prerequisite files of ‘a target are added recursively to
the list of targets. Missing files are deemed to be out.of date.

Makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, nonnull list of ‘targets,
then a :, then a (possibly null) list of prerequisite files or dependen-
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first
line that does not begin ‘with -a tab-or # begins a new dependency or
macro definition. ‘Shell commands ‘may be continued across lines
with the <backslash><newline> sequence. (#) and newline sur-
round comments.

The following makefile says that pgm depends on two files a.0 and
b.o, and that they in turn depend on their corresponding source files
{a.c and b.c) and a common file incl:h:

pgm: a.0 b.o
cc a.0 b.o - .0 pgm
a.0: ‘inclh ac

cc - ¢ ac
b.o: incl.h bie
cc ~ ¢ b

Command lines are executed one ata time, each by its.own shell. A
line ‘is printed when it is executed unless :the — s option is ppresent,
or the entry .SILENT: is in makefile, or unless the first character of
the command is @. The - 'n option specifies printing ‘without execu-
tion; however, if the command line has the string'$( MAKE) in it, the

March 24, 1984 Page 2



MAKE (CP) MAKE (CP)

line is always executed (see discussion -of the MAKEFLAGS macro
under Environment). The - t:(touch) option updates ‘the modified
date of a file without executing any commands.

Commands returning nonzero status mormally terminate make. If
the — i.option is present, or the entry JGNORE: appears in makefile,
or if the line specifying ‘the command begins with
<tab><hyphen>, the error is ignored. If the -k option ‘is
present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The — b option allows old makefiles (those ‘written for the old ver-
sion -of make) to run without errors. The difference between the old
version of make and this version is that this version requires all
dependency lines to have a (possibly null) command associated with
them. The previous version of make assumed if no command was
specified explicitly that the command was null.

Interrupt and ‘quit ‘cause the target to be deleted unless the target
depends on the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be

macro definitions :and processed as such. The envirenment variables )
are processed before any makefile and after the internal rules; thus, ’
macro ‘assignments in a makefile override ‘environment variables.

The — e -option ‘causes the environment to override the macro

assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal inpus option (except ~ f, — p, and —d) defined
for the command line. Further, upon invocation, make “‘invents’
the variable if it is not in the environment, puts the current options
into it, and passes it ‘on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves
~very useful for “super-makes”. In fact, as noted above, when the
~ n option is used, the command $(MAKE) is executed anyway;
hence, one can perform a make ~ n recursively on a whole software
system ‘to see what would have been executed. This is because the
~ n is put in MAKEFLAGS and passed to further invocations -of
$(MAKE). This is one way of debugging all of the makefiles for a
software project without-actually doing anything.

Macros

Entries of the form stringl == string? are macro definitions. Subse-
quent appearances of $(stnngl|:eubst!=[subst2]]) are replaced by
string?. The parentheses are optional if a single character macro
name is used and ‘there is no substitute sequence. The optional
ssubstl=subst?2 is a substitute sequence. If it is specified, all nono-
verlapping occurrences of :subst! in the named macro are replaced by

March 24, 1984 Page 3



MAKE (CP) MAKE ( CP)

subst?. Strings {for the purposes -of this type of substitution) are
delimited by blanks, tabs, newline characters, and beginnings of
lines. .An example of :the use ‘of ‘the substitute ‘sequence is shown
under Librarics.

Internal Macros

There are five internally ‘mazintained macros which are useful for
writing rules for building targets:

$*¢ The macro $* stands for the filename part of the ‘current
dependent with ‘the suffix ‘deleted. It is evaluated -only for
inference rules.

$@ The $@ macro stands for the full target name :of the current
target. It is evaluated only for-explicitly named dependencies.

$< The $< macro ‘is only -evaluated for ‘inference ‘rules or ‘the
DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the “‘manufactured” dependent
filename). Thus, in the .c.o rule, the $< macre would evalu-
ate to the .c file. An example for making optimized .o files
from .c files is:

.
cc —¢c -0 $*%¢c

or

.C.0%

-cc—c—O$<

$? The $! macro is -evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are
out ‘of date with -respect to ‘the target; essentially, those
modules which must be rebuilt.

$% The $% macro is only ‘evaluated when the target is an archive
library member of ‘the form lib{file.0). In this case, $@ evalu-
ates to lib and $%evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper
case D or F is appended to ‘any of the four macros the ‘meaning is
changed ‘to “‘directory part’’ for D -and “‘file part” for F. Thus,
$(@ D) refers to the directory part of the string $@. If there is no
directory part ./ is generated. The only macro excluded from this
alternative form is $?.

Suffizes

Certain names (for instance, ‘those ‘ending with .o} have -default

March 24, 1984 Page 4



MAKE (:CP) MAKE (CP)

dependents such ‘as .c, .8, ete. If no update commands for such a
file ‘appear in makefile, and if a default dependent exists, that prere-
quisite ‘is compiled to make the target. In this case, make has infer-
ence rules which allow building files from other files ‘by examining
the suffixes and determining an ‘appropriate inference rule to use.
The current default inference rules are:

. «¢” .sh .sh™ .c.o .¢Tio .¢7c 80 870 yio .y o Lo Ao
y.c .yie e .ca.ctasTa hTh

The internal rules for make are ‘contained :in the source file rules.c
for the make program. These rules can be locally modified. To print
out the rules compiled into the make on any machine in.aform suit-
able for recompilation, the following command is used:

make ~ fp - 2> /dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(S)
prints when handed a null string.

A tilde in the above ‘rules refers to an SCCS file (see zccsfile(F)).
Thus, the rule .c”.0 would transform an SCCS C source file into an
object file (.0). Because the 8. of ‘the SCCS files is a prefix it is
incompatible ‘with ‘make’s suffix point-of-view. Hence, the tilde is a
way of changing any file reference into .an SCCS file reference.

A rule with only one suffix (i.e. .c:) is the definition of how to build
z from z.c. In effect, the other suffix is null. This is useful for
building targets from only one source file (e.g., shell procedures,
simple 'C programs).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file and
a rule existis inferred as a prerequisite.
The default list is:

SUFFIXES: .0 .c.y J .5
Here again, ‘the above .command for printing the internal rules will
display the list of suffixes implemented ‘on the current machine.

Multiple suffix lists ‘accumulate; .SUFFIXES: ‘with no dependencies
clears the list-of suffixes.

Inference Rules

The first example can be done more briefly:
pgm: a.0 b.o

cc 2.0 ‘b.o - 0 .pgm
2.0 b.o: incLh

March 24, 1984 Page 5



MAKE (CP) MAKE (CP)

This is because make has a:set.of internal rules for building files.
The user may add rules to this list by simply putting them ‘in the
makefile.

Certain macros are used by the default inference rules to permit the
inclusion of ‘optional matter :in any resulting commands. For exam-
ple, CFLAGS, LFLAGS, and YFLAGS are used for compiler options to
¢c(CP), lez(CP), and yace(CP) respectively. Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create
a file with suffix .o from a file with suffix .c is specified as :an entry
with .c.o: as ‘the target and no dependents. Shell commands associ-
ated with the target define the rule for making a .o file from a .c file.
Any target that has no slashes in it and starts with a dot'is identified
as ‘'a rule and not as a:true target.

Libraries

If 2 target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus lib{file.o) and $(1IB)(file.o) both
refer to an archive library ‘which contains file.o. (This assumes the
LIB 'macro. has been previously defined.) The -expression
$(LI1B)(filel.o ‘file2.0) is not legal. ‘Rules pertaining to archive
libraries have ‘the form .XX.a where the XX is the suffix from which
the archive member is to be made. An unfortunate byproduct of the
current implementation requires ‘the XX to be different from the
suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib: lib(filel.o) lib(file2.0) 1ib(file3.0)
@-echo lib is now up to date
e
$(cc) - ¢ $(CFLAGS) $<
ar rv $@ $%0
rm -f $§*%o0

In fact, the .c.a rule listed above is built into make and is unneces-
sary in ‘this example. A more interesting, but more limited example
of an archive library maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) - ¢ ${CFLAGS) §(?10=.c)
ar rv lib $?
rm $? @echo lib is now up to date
.c.ay

Here the ‘substitution mode :of the macro expansions is used. The
$? list is defined to be the set of object filenames {inside lib) whose

March 24, 1984 Page 6



MAKE (CP) _ MAKE ( CP)

C source files are -out of date. The substitution mode translates the
.0 to .c. (Unfortunately, one cannot as yet transform to .c”) Note
also, the disabling of the .c.a: rule, which would have created each
object file, ;one by one. This particular construct speeds up archive
library maintenance considerably. 'This type of construct becomes
very cumbersome if ‘the archive library contains a mix .of assembly
programs and C programs.

+Files
[Mm]}akefile

s.[Mm]akefile

See Also
sh(C)

Notes

Some comimands return nonzero status inappropriately; use — i to

overcome ‘the difficulty. Commands that are directly executed by the :
shell, notably ¢d(C), are ineffectual across newlines in make. The )
syntax (lib{filel.o file2.0 file3.0) is illegal. You cannot build )
lib{file.o) from file.o. The macro $(a:.0==.c") is not available.

March 24, 1984 Page k§



MKSTR ( CP) MKSTR (CP)

Name

mkstr — Creates an -error message file from C source.

Syntax

mkstr{- | messagefile prefix file ...

Description

MkEstr is used to create files of error messages. Its use can make pro-
grams with large numbers of error diagnostics much smaller, and
reduce system -overhead in running the program as the error mes-
sages do not-have to be ‘constantly swapped in and out.

Mkstr will process each specified file, placing a massaged -version of
the ‘input file in a file whose name ‘consists of the specified prefiz and
the original name. The optional dash (- ) causes the error messages
to be -placed at the end of the specified message file for recompiling
part of a large ‘mketred program.

A typical mkestr command line is
mkstr pistrings xx *ic

This command causes all the error messages from the |C source files
in ‘the .current directory to be placed in the file :pistrings and processed
copies of the source for these files ‘to be pplaced in files whose names
are prefixed with zz.

To process the -error messages in the source to ‘the message file,
mkstr keys on the string ‘error(”™ ‘in the input stream. Fach time it
occurs, the C string starting -at the ‘™ is ‘placed in the message file
followed by a null character and a newline character; the null charac-
ter terminates the ‘message so it can be easily used when retrieved,
the newline character makes it possible to sensibly cat the error mes-
sage file to see its contents. The massaged copy of the input file
then contains a lseek pointer into the file which can be used to
retrieve the message. For example, the command changes

error("Error on reading”, a2, a3, a4);
into

error(:m, a2, 23, ad);
where mis the 'seek position .of the string in the resulting error mes-
sage file. The programmer must create a routine error which opens

the ‘message file, reads ‘the ‘string, and prints it out. The following
example illustrates such a routine.

March 24, 1984 Page 1



MKSTR (CP) MKSTR (CP)

Example

char efilname] = "fusr/lib/pi_strings”;
int efil = -1;

error(al, a2, a3, a4)
char buf[256];
if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {

perror(efilname);

exit{C);

if (Iseek(efil, (long) al, 0) ||read(efil, buf, 256) <==0)
goto-0ops;
printf(buf, a2, a3, ad);
}

See Also
lseek(S), xstr(CP)

Credit

This -utility was developed at-the University of California at Berkeley
and is used ‘with permission.

Notes

All the arguments except the name of the file to be processed are
unnecessary.

March 24, 1984 Page 2




NM{(CP) NM(CP)

Name
nm — Prints name list.

Syntax
nm | —gnoOprucv || file ... |

Description
nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for ‘each
object file in the archive will be produced. ‘If no file is given, the
symbols in x.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss segment
symbol), ‘ot <C (common symbol). If the symbol is local (non—
external) the type letter is in lowercase. The output is sorted
alphabetically.

Options are:
-2 Print only global (external) symbols.
-n Sort numerically rather than alphabetically.

-0 Prepend file or -archive element name to -each output line
rather than only once.

-0 Print symbol values in octal.

-p Don’t sort; print in symbol—table order.
= Sort in reverse order.

—u Print only undefined symbols.

—c Print only ‘C program symbols (symbols which begin with
‘") as they appeared in the C:program.
-v Also describe the object file and symbol table format.

Files

x.out  Default input file
See Also

ar(CP), ar(F), x.out(F)

May 10, 1984 Page 1



PROF{(CP) PROF{(CP)

Name
prof — display profile data

ot ] —a 1[ <11 ~tow| ~high 1] fie

Description

Prof interprets the file mon.out produced by the monitor subrou—
tine. Under default modes, the symbol table in the named -object
file (x.out ‘default) is read and correlated with the mon.out profile
file. For each external symbol, the percentage of time spent exe—
cuting between that symbol .and the next is printed (in decreasing
order), ‘together ‘with the number -of times that routine was called
and the number of milliseconds per call.

If the —a option is used, all symbols are reported rather than just
external symbols. If the —1 option is-used, the output is listed by
symbol value rather than decreasing percentage.

if the —v option is used, all printing is :suppressed and a graphic
version of the profile is produced on the standard output for display
by the plot(C) filters. The numbers low and high, by default 0:and
100, ‘cause a selected percentage of the profile to be plotted with
accordingly higher resolution.

In order for the number of calls to a routine to be tallied, the —p
option of cc must have been given when the file containing the

routine ‘was compiled. This option ‘also arranges for the mon.out
file to be produced automatically.

Files .
mon.out for profile
x.out  for namelist

See Also
monitor(S), profil(S), cc(CP) , plot(C)

Notes
Beware of quantization errors.

If you use-an explicit-call to.monitor (8) you will need to make sure
that the buffer size is equal to or smaller than the program size.

May 10, 1984 Page 1

i



PRS( CP)> PRS (CP)

Name

pre - Prints an SCCS file.

Syntax
prs |- d[dataspec]] [~ r[SID]] [- €] [~ 1] [~ 2] Tiles

Description

Prs prints, on the standard output, all .or part of an SCCS file (see
sccefile(F)) in a user supplied format. If a directory is named, :prs
behaves as though each file in ‘the directory were specified as ‘a
named file, except that nonSCCS files (last component of the path-
name does not begin with 8.), and unreadable files are silently
ignored. If a name of — :is given, the standard input is read; each
line of ‘the standard input is taken to be the name of an SCCS file or
directory to be processed; nonSCCS files .and unreadable files are
silently ignored.

Arguments to prs, which may appear in .any ‘order, consist -of
options, and filenames.

All the described optionsapply independently to each named file:

— d|dataspec] Used to specify the output data specification. The
dataepec ‘is a string consisting-of SCCS file data key-
words (see Data Keywords) interspersed with optional
user-supplied text.

- r|SID) Used to specify the SCCS IDentification (SID) string
of ‘a delta for which information ‘is desired. If no
SID is specified, the ‘SID ‘of the most recently created
delta is assumed.

-e Requests information for -all -deltas created -earlser
than and including the delta designated via the —.r
option.

-1 Requests information for all deltas created later than
and including the delta designated via the —r
option.

—-a Requests printing of information for both removed,

i.e., delta type = R, (see rmdel(CP)) and existing,
i.e., delta type = D, deltas. If the — a option is not
specified, information for existing deltas only is pro-
vided.

March 24, 1984 Page 1



PRS(CP) PRS (CP)

Data Keywords

Data keywords specify which parts of ‘an SCCS file are to be retrieved
and output. All parts of an SCCS file {see sccefile(F}) have an asso-
ciated data keyword. There is no limit on the ‘number of times a
data keyword may appear in a dataspec.

The information printed by :prs consists of the user-supplied text and
appropriate values {extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec.
The format of a data keyword value is either simple, in which key-
word substitution is direct, or multiline, in which keyword substitu-
tion is followed by a carriage return.

User-supplied text is any text other ‘than recognized data keywords.
A tab is specified by \t and ‘carriage return/newline is:specified by \n.

J

March 24, 1984 Page 2



PRS (CP) PRS (CP)

TABLE 1. SCCS Files Data Keywords

KeywordDagta Ttem File Section Value Format
:Dt: :Delta information Delta Table See belows S
:DL: Deltaline statistics » sLizfiLds/sLu: S
:Li: Lines inserted by Delta ” anpRn S
:Ld: Lines deleted by Delta » onnpn S
:Lu: Lipes unchanged by Delta » nonnn S
:DT: Deltatype » DorR s

:l: SCCS ID string (SID) * sRacleiBiaS: 8
:R: Release number » nnnn s
:L: Level number ” annn s
:B: ‘Branch nember ” annn s
:8: Sequence pumber » anRn S
:D: Date Delta created » Dy:/:Dm:/:Dd: S
:Dy: Year Delta created ” an S
:Dm: Month Delta created » an S
:Dd: Day Delta created . nn S
:T: Time Delta created ” sTh:::Tm::Ts: S
:Th: Hour Delta created » 2 S
:Tm: Minutes Delta created ’ nn ]
:Ts: Seconds Delta created * on S
:P: Programmer who created Delta » logname S
1D8: Delta sequence number ’ annn S
:DP: Predecessor Delta seq-no. " Donn ]
:Dl: Seg-no. of deltas incl,, ‘exdl., ignored » :Dns/:Dx:/:Dg: 8
:Dn: Deltas included (seq#) » :DS: :DS: ... ]
:Dx: Deltas excluded (seq #) » :DS::DS:... 8
:Dg: Deltas ignored (seq #) » :DS: DS, S
:MR: MR pumbers for delta » text M
sC: Comments for.delta . » text M
:UN: Usernames User Names text M
:FL: Flaglist Flags text M
sY: ‘Module:type flag » text S
:MF: ‘MR validation 8ag ’ yes or no s
:MP: MR wvalidation pgm name » text ]
:KF: ‘Keyword error/warning flag * yes or no S
:BF: Branch flag " yee o1 o S
1% Joint.edit -flag d yesor no s
:LK: Locked releases ’ iR S
:Q: Userdefined keyword » text S
:M: Module name » text S
:FB: Floor boundary » :R: S
:CB: Ceiling boundary ’ :R: S
:Ds: ‘Default SID 4 HH S
:ND: Null delta flag » yes or no s
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body ’ text M
iW: A form of wha{(C) string N/A sZuM:\tI: 8
tA:  Aform of :wha!(C) string N/A  2ZuY::M:sleZ: S
iZ:  what(C) string delimiter N/A Q(#) 8
:F:  SCCSfilename N/A text S
:PN: SCCS file pathname N/A text S

¢ iDt: = DT 1l: :D: <T: :P: :DS: :DP:

March 24, 1984 Page 3



PRS (CP) PRS (CP)

Examples

The following:

prs — d"Users and/or user IDs for :F: are:\n:UN:" s.file \)
may produce on the standard output:

Users andfor user IDs for s.file are:

Xyz

131

abe

prs — d"Newest ‘delta for pgm :M:: :I: ‘Created :D: By :P:" - r
s.file

may produce .on the standard output:
Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:
prs s.file
may produce on the standard output: }
D 1.1 77/12/1-00:00:00 cas 1 0600000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry-of the *“D* type. The only option allowed
to be used with the ‘special case is the — a option.

Files

See Also
admin(CP), delta(CP), get(CP), help(CP), sccsfile(F)

Diagnostics el )

Use hkelp(CP) for explanations.

March 24, 1984 Page 4



RANLIB (CP) RANLIB(CP)

Name
ranlib — ‘Converts :archives to random libraries.

Syntax
ranlib archive ...

Description
Ranlib converts cach -archive to a form that can be loaded more
rapidly by the loader, by adding a table of contents named
_.SYMDETF to the beginning of the archive. It uses ar(CP) to
reconstruct ‘the archive, so sufficient temporary file space must be
available in the file system containing the current directory.

See Also
14(CP), ar(CP), copy(C), settime(C)

Notes
Because generation of a library by ar and randomization by ranlib
are separate, phase errors are possible. The loader /d warns when
the modification date of ‘a library is more recent than the creation
of its dictionary; but this means you get the warning even if you
only copy the library. On XENIX 68K use of ranlib is optional.

May 10, 1984 . Page 1



RATFOR (CP) RATFOR (CP)

Name

ratfor - Converts Rational FORTRAN into-standard FORTRAN.

Syntax

ratfor | option ... ] { filename ... |

Description

Ratfor converts & rational dislect of FORTRAN into ordinary irra-
tional FORTRAN. Ratfor provides control flow -constructs essentially
identicsl to those -in C:

statement grouping:
- {statement; statement; statement }

decision-making: . .
if (condition) statement | else statement
switch (integer value) { ‘
) case integer:  statement

[ default: | statement

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [ until { condition) |
break [n]
next [n)

and some additional syntax to make programs-easier to read and write:

Free form input: )
multiple statements/line; automatic ¢continuation

Comments:
# this is:a comment

Translation of relationals:
>, >=, etc., become .GT., .GE,, ete.

Return (expression)
returns expression to caller from function

Define:
define name replacement

March 26, 1984 Page 1




RATFOR (CP) RATFOR (CP)

Include:
include filename

The option — h causes quoted strings to be turned into 27H con-
structs. — C-copies comments to the output, and attempts to format
it neatly. Normally, continuation lines are marked with an & in
column 1; the option — 6x makes the .continuation character x and
places it in column 6.

March 26, 1984 Page 2



REGCMP (CP) REGCMP { CP)

Name

regemp — Compiles regular expressions.

Syntax

regemp |~ | files

Description

Regemp, in most cases, precludes the .need for calling regemp (see
regez(S)) from C programs. This saves:on both execution time and
program size. The command regemp .compiles the regular ‘expres-
sions in file and places the outputin file .i. If the — option is used,
the output will be placed in file .c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expréssion enclosed in double .quotation marks. The output
of regemp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included
into 'C ‘programs, or file.c files may be compiled and later loaded. In
the C program which uses the :regemp output, regez( abe,line) applies
the regular expression named abe to line. Diagnostics are self-
explanatory.

Examples
name "(JA- Za- z][A- Za- 30- 9_]*)$0"
telno  "\({0,1)({2- 9][01][1~ 8])$0\){0,1} *"

"([2- o]lo- 9]{2}$1] - ] @,1)
"(lo- 8} {a))82’

In the C program that uses the regempoutput,
regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

See Also

regex{S)

March 26, 1984 ' Page 1




RMDEL (CP) RMDEL (CP)

Name

rmdel - Removes-a delta from an SCCS file.

Syntax
rmdel —~ rSID files

Description

Rmdel removes the delta specified by the SID from each named SCCS
file. The delta to be removed must be the newest {most recent)
delta in its branch in the .delta chain of each named SCCS file. In
addition, the SID specified must not be that.of a vérsion being edited
for the purpose of making a delta. That is, if a p-file exists for the
named SCCS file, the SID specified must not ‘appear in any entry of
the .p-file(see get(CP)).

If a directory is named, rmdel behaves as though ‘each file in the
directory were specified 2s a named file, except that nonSCCS files
(last component of ‘the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of —~ is given, the
standard input is tead; each line of the standard input is taken to be
the name of an SCCS file to be processed; nonSCCS files and unread-
able files are silently ignored.
Files
x-file See delta(CP)

z-file See delta(CP)

See Also
delta(CP), get(CP), help{CP), prs(CP), scesfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 Page 1



SACT(CP) SACT(CP)

Name

sact - Prints current:SCCS file editing activity.

Syntax E

sact files

Description

Sact informs the user of any impending deltas to a named SCCS file.
This situation occurs when get(CP) ‘with ‘the — e option has been
previously executed without a subsequent-execution of delta(CP). If
a directory is named on the command line, sact behaves as though
each file in the directory were specified as 2 named file, except that
nonSCCS files and unreadable files are silently ignored. If :a'name of
— is given, the standard input is read with each line being taken as
the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by

spaces.

Field 1 Specifies the SID of a delta that currently exists in :the ‘
sces file to ‘which changes will be made to .make the )
new delta ey

Field 2 Specifies the SID for the new deltato be created

Field 3 Contains the logname of the user who will make the
delta i.e., executed a get for editing

Field 4 Contains the date that get — e was executed

Field 5 Contains the time that get —~ e was executed

See Also

. delta(CP), get{CP), unget{ CP)

Diagnostics

Use kelp(CP) for explanations.

March 24, 1984 Page 1



SCCSDIFF (CP) SCCSDIFF( CP)

Name

scesdiff - ‘Compares two versions of an SCCS file.

Synta.x.

scesdiff — rSID1 — rSID2 |- p] |- sn] files

Description
Secsdiff compares two versions ‘of an SCCS file and generates the
differences between the two versions. .Any number of SCCS files
may be specified, but arguments apply to all files.
— rSID? .SID1 and SID2 specify the deltas of an :SCCS file that are
to be compared. Versions are passed to bdiff{C) in the
order given.

-p Pipe output for each file through pr(C).

—8n n is the file segment size that bdiff ‘will pass to diff{ O).
This is useful ‘when diff Tails due to a high system load.

Files

See Also
bdiff(C), get{CP}, help(CP), pr{C)

Diagnostics
file: No differences If the two versions are the same.

Use ‘help(CP) for explanations.

March 24, 1984 Page 1



SIZE (OP)

Name

size - Prints the size of an object file.

Syntax

size [ object ... |

Description

SIZE (CP)

Size prints the (decimal) number of bytes required by the text, data,
and bss portions, ‘and their sum in decimal and hexadecimal, of each

object-file argument. If no file is specified, a.out is used.

See Also
a.cut{F)

March 24, 1984

Page 1



SPLINE (CP) SPLINE ( CP)

Name

spline — Interpolates smooth curve.

Syntax

spline | option | ...

Description

Spline takes pairs of numbers from ‘the standard input as abcissas and

ordinates of a function. It produces a similar set, which is approxi-

mately equally spaced and includes ‘the input 'set, on the standard
output. The ‘cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

— a ‘Supplies -abscissas automatically (they are missing from the
input); spacing is given by the next argument, or is assumed to
be 1 if next argumentis nota number.

— 'k The constant k used in the boundary value computation
14 14 ~ ?

Yo =kyl s oo Yn =kyn—l
is set by the next argument. By default k = 0.

— n Spaces output points so ‘that approximately n intervals occur
between the lower and upper z limits. (Default n == 100.})

~ p Makes output periodic, i.e. matches derivatives at.ends. First
and last input values should normally agree.

—x Next 1 (or 2) arguments are lower (and upper) .2 limits. Nor-
mally these limits are calculated from the ‘data. Automatic
abcissas start at lower limit (default 0).
Diagnostics
When data is not strictly monotone in z, :spline reproduces the input
without interpolating extra points,
Notes

A limit.of 1000 input points is silently enforced.

March 26, 1984 Page 1



STRINGS (CP) STRINGS (CP)

Name

strings -~ Finds the printable strings in an object file.

Syntax

strings [~ | [- o] [~ number] file ...

Description

Strings looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline
ot a null .character. Unless the — flag is given, etrings only looks in
the initialized data space of object files. If the — o flagis given, then
each string is preceded by ‘its decimal offset in the file. If the
~ number flag is given then number is used as the minimum string
length rather than 4.

Strings is useful for identifying random object files :and many ‘other
things.

See Also
hd(C), od(C)

)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 Page 1



STRIP(CP) STRIP(CP)

Name

strip - Removes:symbols and relocation bits.

Syntax

strip.-name ...

Description
Strip removes the symbol table and relocation bits ordinarily ‘attached
to the output of the assembler and link editor. This is useful for
saving space after a program has been debugged.
The effect of strip is the same as use of the — s option of {d.
If name is -an archive file, strip will remove the local symbols from
any a.out format files it finds in the ‘archive. ‘Certain libraries, such
as those residing in /lib, have no need for local symbols. By delet-
ing them, the size of ‘the archive is decreased and link editing perfor-
mance is increased.

Files

Jtmp/stm* Temporary file

See Also
1d(CP)

March 26, 1984 Page 1



TIME (CP) , TIME (CP)

Name

time ~ Times a command.

Syntax

time command

Description
The given command is executed; -after it is complete, time prints the
elapsed time :during the command, the itime spent in the system, and
the time spent in execution of the command. Times are reported in
seconds.

The times are printed on the standard error.

See Also

times('S)

March 24, 1984 Page 1




TSORT(CP) TSORT(CP)

Name

tsort - Sorts a file topologically.

Syntax
tsort | file ]

Description

Teort produces ‘on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input
file. 1f no file is spetified, the standard inputis understood.

The input consists of pairs of items (nonempty strings) separated by

blanks. Pairs of different itemns indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also
lorder(CP)

Diagnostics
Odd data: There is an odd number of fields in the input file.

Notes

The #ort algorithm is quadratic, which can be slow if you have a large
input list.

March 24, 1984 Page 1



UNGET(CP) UNGET( CP)

Name

unget - Undoes a previous get of an SCCS file.

Syntax

unget [~ rSID] [~ 8] [~ n] files

Description

Unget undoes ‘the effect of 2 get — e done prior to creating the
intended ‘new delta. Il a directory is named, unget behaves as
though -each file in the directory were specified as a named file,
except that nonSCCS files and unreadable files are silently ignored.
If a name of ~ is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed.

Options apply independently to each named file.

- rSID Uniquely identifies which delta is .no longer intended.
(This would have been specified by get as the ““new
delta’.) The use of this option is necessary only if two
or more versions of the same SCCS file have been
retrieved for editing by the same person (login name).
A diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

-8 Suppresses the printout, .on the standard output, of the
intended delta’s SID.

-1 Causes the retention of the file ‘which would normally
be removed from the .current directory.

See Also
delta(CP), get(CP}, sact{CP)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 Page 1




VAL (CP) : VAL (CP)

Name

val ~ Validates an SCCS file.

Syntax
val —

val [~ s] [~ rSID] [~ mname] |- ytype] files

Description

Val determines if the .specified file is an ‘SCCS file meeting the
characteristics specified by the optional argument list. Arguments to
val ‘may appear in any order. The arguments consist of options,
which begin with a — , and named files.

Val has aspecial argument, — , which -causes reading of the standard
input until an end-of-file :condition is detected. Each line read is
independently processed as if it were a command line argument list.

Val :generates diagnostic .messages -on the standard output for ‘each
command line and file processed and also returns a single 8-bit code
upon -exit-as described below.

The -options are defined as follows. The effects of any option apply
independently to each named file on the command line:

-8 The presence of this argument silences the diagnos-
tic message normally generated on the standard out-
put Tor any ‘error that is ‘detected while processing
each -named file on a given command line.

- rSID The argument ‘value SID (SCCS [IDentification
String) is ‘an SCCS delta number. A check is made
to determine if ‘the SID is ambiguous (e. g., rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, ete. which may exist) or invslid (e.
g., rL0 or rl.1.0 are invalid because neither case
can exist as a valid .delta number). If the SID is
valid and not ambiguous, a check is made to deter-
mine if it actually exists.

— mname The argument value name is compared ‘with the

SCCS %M % keyword in file.

—~ Ytype The argument value type is compared with the SCCS
%Y % keyword in file. .

March 24, 1984 Page 1



VAL (CP) VAL (CP)

The 8-bit code ‘returned by val is a disjunction of the possible errors,
i. ‘e, can be interpreted as a bit string where (moving from left to
right) set bits are interpreted as follows:

bit 0 == Missing file argument

bit 1 == Unknown or duplicate option

bit'2 == Corrupted SCCS file

bit '3 == Can’t open file or file not SCCS

bit 4 == SID is invalid or ambiguous

bit'5 == SID.does not-exist

"bit 8 == 95Y %, ~ y mismatch

bit 7 == %M %, ~ m mismatch

Note ‘that val can process two or mote files on a given command line
and in turn can process multiple command line {when reading the
standard input). In these cases an aggregate code is returned; a logi-

cal ‘OR of the codes generated for each command line and ‘file pro-
cessed.

i

See Also
admin(CP), delta(CP}, get{ CP), prs(CP)

Diagnostics

Use help(CP) for explanations.

Notes

Val can process up to 50 files on a single command line.

March 24, 1984 Page 2



XREF (CP) XREF (:CP)
Name

xrel - Cross-references C programs.

Syntax
. xref | file ... |

Description

Xref reads the named files or the standard input if no file is specified
and prints ‘a cross reference consisting of lines of :the form

identifier filename line numbers ...

Function -definition is indicated by a plus sign {+) preceding the line
number.

See Also
cref(CP)

March 24, 1984 Page 1



XSTR (CP) XSTR (CP)

Name

xstr — Extracts strings from ‘C programs.

Syntax
xstr{- ¢] [~ ] [ file]

Description

Xatr maintains 2 file .stnings into which strings in component parts of
a large program are hashed. These strings are replaced with refer-
ences to this common area. ‘This serves to implement shared con-
stant strings, most useful if they are also read-only.

The command
xstr.~ ¢ name

will :extract the ‘strings from the C source in name, replacing string

references by expressions of the form (&xstr[number]) for some

number. An appropriate declaration of zstr is prepended to the file. )
The resulting C ‘text is placed in the file z.c, to then be compiled. }
The strings from this file are placed in the strings data base if they
are not there already. Repeated strings and strings which are suffices

of existing strings do not cause changes to the data base.

After all components of a large program have ‘been compiled, a file
zs.c declaring the common zetr space can be created by a command
of ‘the form )

xstr -cinamel name2 name3 ...
This zs.c file should then be compiled and loaded with ‘the restof the
program. If possible, the array can be made read-only (shared) sav-
ing space and swap overhead.
Xotr.can also be used on asingle file. A command

xstr name

creates files z.c and zs.c as before, without using or affecting any
stnngs file in the same directory.

It may be useful to run zstr after the C preprocessor if any macro R
definitions yield 'strings or if there is conditional code which contains

strings which may not, in fact, be needed. Xstr reads from its stan-

dard input when the argument— is given. An appropriate command

sequence for running zstr after the ‘C preprocessor is:

March 24, 1884 Page 1



XSTR (CP) XSTR (CP)

¢c - E name.c |xstr - ¢~
cc - ¢ X.C
mv X.0 Name.o
Xstr does not touch the file stringe unless new items are added, thus
make can avoid remaking zs.0 unless truly necessary.
Files
strings D ata base of strings
x.c Massaged C source

xs.¢ C source for definition of array “*xstr”’

[tmp/xs* Temp file when *‘xstr-name’’ doesn’t touch stringe

See Also
mkstr{CP)

Credit
This utility was developed at-the University of California at Berkeley
.and is used with permission.
Notes
If ‘a string is a suffix of another string in the .data base, but the

shorter string is seen first by zetr , both strings will be placed in the
data base when just placing the longer one there will do.

March 24, 1984 Page 2



YACC(CP) : YACC (CP)

Name

yacc— Invokes a compiler-compiler.

Syntax

yace { - vd] grammar

Description

Yace -converts a context-free grammar into a set-of tables for a sim-
ple automaton which executes an ‘LR(1) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The ‘output file, y.tab.c, must be compiled by the C compiler to pro-
duce .a program yyparse. This program must be loaded with the lexi-
cal analyzer program, yylez, as well as main and gyerror, an error
handling routine. These routines must be supplied by the user;
lez{CP) is useful for creating lexical analyzers usable by yace.
If the — v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report-on conflicts generated ;
by ambiguities in the grammar.
If the - d flag is used, the file y.tab.h is generated with the #define
statements that associate the yace-assigned ““token codes” with ‘the
user-declared “‘token names’, This allows source files other than
y-tab.c to access the token codes.

Files
y.output
y:tab.c
y.tab.h Defines for token names
yacc.tmp, ‘yacc.acts Temporary files

Just/lib/yaccpar Parser prototype for C programs

See Also

lex(CP)

Vlarch 26, 1984 Page 1



YACC(CP) YACC (CP)

Diagnostics
The number of reduce-reduce and shift-reduce conflicts is reported
on ‘the ‘standard ‘output; a more detailed report is found ‘in the
y-output file. Similarly, if some rules are not reachable from the
start symbol, this is also reported.

Notes

Because filenames are fixed, :at most one -yacc process can be active
in a given directory at atime.

March 26, 1684 Page 2



i
‘;;/:
S



CONTENTS

intro
a64l,164a

abort

abs

access
-acct

alarm

assert

atof, atoi, atol
bessel, jO, j1, jn,
y0.yl,yn
bsearch

chdir
chmod
chown

chroot

chsize

close

conv, toupper,
tolower, toascii
creat

creatsem

crypt, setkey, encrypt
ctermid

ctime, localtime,
gmtime, asctime,
tzset

ctype, isalpha,
isupper, islower,
isdigit, isxdigit,
isalnum, isspace,
ispunct, isprint,
isgraph, iscntrl,
isascii

curses

cuserid

dbm, dbminit, fetch,
store, delete,
firstkey, nextkey

SystemServices(S)

Introduces systemservices and
error numbers
Convertsbetweenlong integerand
base64 ASClL

GeneratesanlOT faukt
Returnsanintegerabsolute value
Determinesaccessibility ofafile
Enablesordisablesprocess
accounting
Setsaprocessalarmclock
Helps verify validity of programs
Converts ASCl tonumbers

Performs Bessel functions
Performsabinary search
Changesthe working directory
Changesmodeofafile
Changestheownerand group
ofafile

Changesthe rootdirectory
Changesthe size of afile
Closesafiledescriptor

Translatescharacters
Createsanew fileorrewritesan
existingone
Createsaninstanceofa

binary semaphore
Performsencryption functions
Generatesa filename for
aterminal

Convertsdateandtimeto ASCH

Classifiescharacters
Performsscreenand cursor
functions
Readsdefaultentries

Performsdatabase functions

1—i



defopen, defread
dup, dup2

ecvt, fovt

execl, execv, execle,
execve,execlp, execvp
exit

exp, log, pow, sqrt

fclose, filush
fontl

ferror, feof,
clearer, fileno,
floor, fabs, ceil,

fopen, freopen, fdopen
fork

fread, fwrite
frexp,ldexp, modf

fseek, fiell, rewind
gamma

getc, getchar,
fgetc, gatw

getewd

getenv

getgrent, getgrgid,
getgrnam, setgrent,
endgrent

getlogin

getopt

getpass
getpid, getpgrp,
getppid

getpw

getpwent, getpwuid,
getpwnam, setpwent,
endpwent

gets, fgets

getuid, geteuid,
getgid, getegid

hypot
ioctl
kilt

Readsdefaultentries
Duplicatesanopenfile
descri

Performsoutputconversions

Executesafile
Terminatesaprocess

Performsexponential, logarithm, .
" ‘power, squareroot functions

Closesor flushesastream
Controlsopenfiles

Determines stream status

Performsabsolute value, floor,
ceiling, andremainder functions
Opensastream
Createsanewprocess
Performsbufferedbinary
inputand output

Splits ﬂoatmg-pomtnumbenmo
amantissaandanexponent
Repositionsastream
Performslog gamma functions

Getscharacteror word froma

stream

Getspathname of current
working directory

Getsvalue forenvironment name

Getgroupfileentry
Getsloginname
Getsoptionletter from argument
vector

Readsapassword

Getsprocess, process group, and

parentprocessiDs
Getsname fromUID

Getspasswordfileentry
Getsastring fromastream

Getsrealuser, effective user, real”

groupandeffectivegrouplDs
DeterminesEuclideandistance
Controlscharacterdevices
Sendsasignaltoaprocessorora

groupofprocesses

3
3




3tol, 1tol3

link
lock
locking

Jogname
Isearch

Iseek

malloc, free,
realloc, calloc
mknod

mktemp
monitor
mount
nap

nice
nlist
open
opensem
pause

perror, syserrlist,
SYS_DCIT, errno
pipe

popen, pclose
printf, fprintf, sprintf Formatsoutput
profil

ptrace

putc, putchar,
fputc, putw
putpwent

puts, fputs

gsort

rand, srand

rdchk

read
regex,regcmp

regexp
sbrk

scanf, fscanf, sscanf
sdenter, sdleave

sdget

Convertsbetween3~byteintegersand
longintegers
Linksafiletoanexistingfile
Locksaprocessinprimarymemory
Locksafileregionfor
reading or writing

Findsloginname ofuser
Performslinear searchandupdate
Movesread/write file pointer

Allocates mainmemory
Makesadirectory,oraspecial
orordinary file

Makesaunique filename
Preparesexecution profile
Mountsafilesystem

Suspends execution forashort
interval
Changespriorityofaprocess
Getsentriesfromnamelist
Opensfile forreading or writing
Opensasemaphore
Suspendsaprocessuntilasignal
occurs

Sendssystem errormessages
Createsaninterprocesschannel
InitiatesI/Otoor fromaprocess

Createsanexecutiontime profile
Tracesaprocess

Putsacharacterorwordona
stream

Writesafile password eniry
Putsastringonastream
Performsasort
Generatesarandomnumber
Checkstoseeifthercis
datatoberead

Readsfromafile
Compilesandexecutesregular
expressions

Performsregular expressioncompile
andmatchfunctions
Changesdatasegment space
allocation

Convertsand formatsinput
Synchronizesaccesstoashared
datasegment
Anachesanddetachesashared
datasegment

1=iii



sdgetv, sdwaitv
setbuf

setjmp, longjmp
setpgrp

setuid, setgid
shutdn

signal
sigsem

sinh, cosh, tanh
sleep

ssignal, gsignal
stat, fstat
stdio

stime

string, strcat,
strmcat, stremp,
strncmp, strepy,
strnepy, strlen,
strchr, sterchr,
strpbrk, strspn,
strespn, strtok
swab

sync

system

termcap, tgetent,
tgetnum, tgetflag,
tgetstr, tgoto, tputs
time, fii

times

tmpfile
tmpnam

trig, sin, cos, tan,
asin, acos, atan, atan2
ttyname, isatty

ulimit

umask

umount
uname

ungetc
unlink

ustat
utime

1-iv

Synchronizesshared dataaccess
Assignsbufferingtoastream
Performsanonlocal"goto”
SetsprocessgroupiD
SetsuserandgroupiDs
Flushesblockl/Oandhalts
the CPU
Specifieswhattodoupon
receiptofasignal
Signalsaprocess waitingon
asemaphore
Peformshyperbolic functions
Suspendsexecutionforan
interval

Implements software signals
Getsfile status

Performs standardbuffered
inputand output

Setsthetime

Performsstring operations
Swapsbytes

Updatesthe super—block

Executesashell command

Performsterminal functions
Getstimeanddate

Createsaname fora
temporary file

Performstrigonometric functions -
. Findsthe name ofaterminal

Getsand setsuserlimits
Setsandgetsfilecreation
mask

Unmountsafile system
Getsnameof current XENIX
system
Pushescharacterbackinto
input stream
Removesdirectory entry
Getsfilessystem statistics
Setsfileaccessand




wait

waitsem, nbwaitsem

write
xlist, fxlist

modificationtimes

Waits forachildprocessto
stopor terminate

Awaitsand checksaccessto
aresource goverenedby
asemaphore

Writestoafile

Getsname listentries from files






Index

Absolute value, integer

Absolute value, real

Accounting

acos function

Alarmclock

asctime function

asinfunction

atanfunction

atan2 function

atoi function

atol function

Binarysearch

brk function

cabsfunction

calloc function

ceilfunction

Characters, classification

clearerr function

Conversion, 3—byteintegersandlongintegers
Conversion, byte swapping
Conversion, dateandtime toASCII
Conversion, integerandbase 64 ASCH
Conversion, ASCIItonumbers.

Conversions, output

Conversions, realtomantissaandexponent
Conversions, t0ASClH characters

cos function

coshfunction

Database, functions

dbminit function

Defaultentries

defread function.

delete function

Devices, controls

dup2 function

dup

encrypt function

crypt

Encryption

crypt

endgrent function

getgrent

endpwent function

getpwent

Environment, value

geteny

errnovariable

perror

Errormessages

perror

Errornumbers

intro

execlfunction

exec

execle function

exec

execlpfunction

€xec




Execution, files exec my
Execution, nonlocal *‘goto”” setjmp J
Execution, profiling monitor

Execution, shell system

execvfunction exec

execve function exec

execvpfunction exec

fabsfunction floor

fcwvt function ecvt

fdopenfunction fopen

feof function ferror

fetchfunction dbm

fflush function fclose

fgetc function gete

fgetsfunction gets

File system, mouriting mount

Filesystem, statistics ustat

File system,unmounting amount

File, accessandmodificationtimes atime

File, accessibility access

File, check forreading rdchk

File, closing close 3
File, control fentl A
File, creation creat

File, creation mknod

File, creationmask umask

File, duplication dup

File, errorand status ferror

File, linking link

File, lockingregions locking

File,mode chmod

File,opening open

File, ownership chown

File, reading read

File,removal unlink

File, size chsize

File, status stat

File,temporary tmpfile

File,userand group1D setuid

File, writing write

Filename, creation mktemp

Filename, temporary tmpnam

fileno function ferror )
Files, repositioning Iseck L
firstkey function dbm

Floor, ceiling, andremainder functions fioor

fmodfunction floor

fprintffunction print{




fputc function pute
fputs function puts
freefunction malloc
freopenfunction fopen
fscanffunction scanf
fstatfunction stat
ftell function fseek
ftime function time
fwrite function fread
fxlist function xlist
gevt function ecvi
getcharfunction gete
getegid getuid
geteuid getuid
getgid getuid
getgrgid function getgrent
getgrnam function getgrent
getperp function getpid
getppidfunction getpid
getpwnam function getpwent
getpwuid function getpwent
getwfunction getc
gmtime function ctime
Group, fileentries getgrent
gsignal function ssignal
isalnum function ctype
isalphafunction ctype
isascii function ctype
isatty function ttyname
iscntrl function ctype
isdigitfunction ctype
isgraphfunction ctype
islower function ctype
isprint function ctype
ispunct function ctype
isspacefunction ctype
isupper function ctype
isxdigitfunction ctype
jOfunction bessel
j1function bessel
jnfunction bessel
164afunction a4l
Idexpfunction frexp
Library names intro
Library, screenand cursor functions curses
Library, standard inputandoutput stdio
Linearsearch Isearch
localtime function ctime




log function exp
loglOfunction exp
Loginname cuserid
Loginname, user logname
Login, name getlogin
longjmp function setjmp
Itol3 function 13tal
Mathematics, Bessel functions bessel
Mathematics, Euclideandistance hypot
Mathematics, exponentialandlogarithm functions exp
Mathematics, hyperbolic functions sinh
Mathematics, log gamma function gamma
Mathematics, trigonometric functions trig
Memory, allocation malloc
Message, errors assert
modffunction frexp
Namelist nlist .
Namelist xlist
nbwaitsem function waitsem
nextkey function dbm
Option, fromargument vector getopt
Password, fileentrics getpwent
Password, fileentries putpwent
Password, foruserID getpw
Password, input getpass
pclose function popen
Pipe, creating pipe
Pipe, openingandclosing popen
pow function exp
Process,alarmclock slarm
Process,creation fork
Process, executionpriority nice
Process, executiontime profile profil
Process, executiontimes times
Process, grouplD setpgrp
Process, limits ulimit
Process, lockinginmemory lock
Process, memory allocation sbrk
Process, realand effectivelDs getuid
Process, suspensionuntil signal pause
Process, temporary suspension nap
Process, temporary:suspension sleep
Process, termination abort
Process, termination exit
Process, termination kill
Process, trace ptrace
Process, waiting forchild process wait
Process,IDs getpid




putcharfunction puic
putw function pute
Randomnumbers rand
realloc function malloc
regemp function regex
Regularexpressions regex
rewind function fseek
Rootdirectory chroot
sdfree function sdget
sdleave function sdenter
sdwaitvfunction sdgetv
Semaphore, creation creatsem
Semaphore, opening opensem
Semaphore, signaling sigsem
Semaphore, waiting forresource waitsem
setgid function setuid
setgrent function getgrent
setkey function crypt
setpwert function getpwent
Shared data, attaching and detaching sdget
Shared data, enteringand leaving sdenter
Shared data, sychronized access sdgetv
Signal, processing signal
Signal, software ssigmal
sinfunction trig
Sorting gsort
sprintf function printf
sqrt function exp
srand function rand
sscanf function scanf
store function dbm
strcatfunction siring
strchrfunction string
stremp function string
strepy function string
strespn function string
strdup function string
Stream, bufferedinputandoutput fread
Stream, buffers setbuf
Stream, characterinput gete
Stream, characteroutput putc
Stream, closing and flushing fclose
Stream, formattedinput scanf
Stream, formattedoutput printf
Stream, opening fopen
Stream, repositioning fseek
Stream, réturning characterto ungete
Stream, string input gets




Stream, stringoutput puts
Strings, operations string
strlenfunction string
strncat function string
strncmp function string
strncpy function string
strpbrk function string
sterchr function string
strspnfunction string
strtok function string
System, currentname bname
System, stopping shutdn
System, super—block sync
System, time stime
sys.errlist variable perror
sys.nerrvariable perror
tanfunction trig
tanhfunctioon sinh
Terminal, capability functions fermcap
Terminal, filenames ctermid
Terminal, name ttyname
tgetflag function termcap
tgetnum function termcap
tgetstrfunction termcap
tgotofunction termeap
Timeanddate time
toasciifunction conv
tolower function conv
toupper function conv
tputs function termcap
tzsetfunction ctime
Working directory chdir
Workingdirectory, pathname getewd
yOfunction bessel
ylfunction bessel
ynfunction bessel

S



INTRO{S) INIRO(S)

Name

intro -~ Introduces system services, library routines and -error
numbers.

Syntax

#include <errno.h>

Description

This ‘section describes all system services. System services include
all routines or system calls that are available in the operating system
kernel. These routines are ‘available to a C program automatically as
part of the standard library libc. Other routines are available in a
variety -of libraries. ‘On :8086/88 and 286 systems, versions for
Small, Middle, and Large model programs are provided (that is,
three of each library}.

To use routines in a program that are not part of the standard library
libe, the appropriate library must be linked. This is done by specify-
ing ~ lname to the compiler or linker, where name is the name listed
below. For example — Im, .and - ltermcap are specifications to ‘the
linker to search the ‘named libraries for routines to be linked to ‘the
object module. The names of ‘the :available libraries are:

c The standard library contairing all system -call ‘interfaces,
Standard IO routines, :and other general purpose services.

m The standard ‘math library.

termcap Routines for accessing the termeap data base describing ter-
minal characteristics.

curses Screen and cursor manipulation routines.
dbm . Data base management routines.

Most services that.are part of the operating system kernel have one
or more :error returns. .An error condition is indicated by an other-
wise impossible returned value. This is almost always — 1; the indi-
vidual descriptions specify the details. An error number is also
made -available in the external variable errno. Errno is not cleared
on successful calls, so it should be tested only after an efror has
been indicated.

All-of the possible error numbers are not listed in each system ‘call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in <error.h>.

March 24, 1984 Page 1



INTRO(S) INTRO(S)

1

(3]

EPERM Not owner
Typically this error indicates an attempt to :modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed
only to the super-user.

ENOENT No such file .or directory
This error occurs ‘when ‘a filename is specified and the file
should exist but :doesn’t, or when one :of the directories in a
pathname does not exist.

ESRCH No such process
No process can be found corresponding to that specified by pid
in kill or ptrace.

EINTR Interrupted system -call
An asynchronous signal {such as interrupt or quit}, which the
user has elected to catch, occurred during a system call. If exe-
cution is resumed after processing the signal, it will appear as if
the interrupted system call returned this error-condition.

EIO I/O error
Some physical 1/0 error. This error may in some cases occur-on
a-call following the one ‘to which it actually applies.

ENXIO No such device .or address
1/O on a special file refers to a subdevice which does not exist,
or beyond the limits of the device. It may also occur when, for
example, -a tape .drive is not on-line or no disk pack is loaded on
a drive.

E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
memberof ithe ‘ezec Tamily.

ENOEXEC Exec format error
A request is ‘made to execute -a file which, although it has the
appropriate permissions, does not start with a valid ‘magic
number (see a.out(F}).

EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respec-
tively write) request is made to a file which is open only for
writing (respectively reading).

10 ECHILD No-child processes

A wait, was executed by a process that had no existing or
unwaited-for ¢hild processes.

11 EAGAIN No more processes

A fork, failed because the .system’s process table is full or the
user is not allowed to create any more processes.

March 24, 1984 Page 2

s




INTRO(S) INTRO(S)

12 ENOMEM Not-enough space
During an .ezee, or sbrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the
maximum space size is.a system parameter. The error may also
occur if the arrangement of ‘text, data, and stack segments
requires too ‘many segmentation registers, or il there is not
enough swap space during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden ‘by the
protection system.

14 EFAULT Bad address
The system encountered a hardware fault in -attempting to -use
an argument of :a system call.

15 ENOTBLK Block device required
A nonblock file was mentioned where a block device was
required, e.g., in mount.

16 EBUSY Device busy
An attempt to mount a device that was already mounted or ‘an
attempt was made to dismount a device on which ‘there is an
active file {open file, current directory, mounted-on fle, active
text segment). It will also.occur if ‘an attempt is made to enable
accounting when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was :made to apply an inappropriate system .call to a
device; -e.g., read a write-only device.

20 ENOTDIR Not a directory
A nondirectory was specified where ‘a directory is required, for
example in a path prefix of -as an argument to chdir(S).

21 EISDIR Is a directory
An attempt to write on -a directory.

22 EINVAL Invalid argument
Some invalid argument {e.g., dismounting a nonmounted dev-
ice; mentioning an undefined signal in signal, or kill; reading or
writing a file for which leecek has generated a negative pointer).
Also set by the math functions described in the (S) entries of
this manual,

March 24, 1984 Page 3



INTRO(S) INTRO(S)

23

24

25
26

27

28

29

30

31

32

33

34

35

36

ENFILE File table overflow
The system’s table of open files is full, and temporarily no more
opens ican ‘be accepted.

EMFILE Too many open files
No process may have more than 20 ‘file ‘descriptors open at a
time.

ENOTTY Not a typewriter

ETXTBSY Text file busy

An attempt to execute :a pure-procedure program which is
currently open for writing (or reading). Also an attemptto open
for writing a pure-procedure program that is being executed.

EFBIG File too large
The size of a file -exceeded ‘the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit('S).

ENOSPC No space left on device
During a wnite to an ordinary file, there is no free space left on
the device.

ESFIPE Illegal seek
An lseek ‘was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

EPIPE Broken pipe

A write .on ‘a pipe for which there is no processto read the data.
This ccondition normally generates a signal; the error is returned
if the signal is‘ignored.

EDOM Math arg outof domain of func
The -argument of a function in the math package is out:-of ‘the
domain of the function.

ERANGE Math result not representable
The value of a function in the math package is not representable
within machine precision.

EUCLEAN File system needs cleaning
An attempt was made to mount(S) a file system ‘whose super-
block is not flagged clean.

EDEADLOCK Would deadlock
A process’ attempt to lock a file region would cause a deadlock

March 24, 1984 Page 4

"




INTRO(8) INTRO(S)

between processes vying for contral-of that-region.

37 ENOTNAM Not a name file
A creatsem(S), opensem(S), waitsem(S), or eigsem(S) was issued
using :an invalid semaphore identifier.

38 ENAVAIL Not available

An opensem(S), waitsem(S) or sigeem(S) was issued to a sema-
phore ‘that has not been initialized by ‘a call to creatsem(S). A
sigeem was issued to .3 semaphore out of sequence; i.e., before
the process has issued the -corresponding waitsem to the sema-
phore. ‘An mbwaiteem was issued to a :semaphore guarding 2
resource that is currently in use by another process. The sema-
phore on which a process was waiting has been left in an incon-
sistent state when the ‘process .controlling ‘the semaphore exits
without relinquishing ‘control properly; i.e., without issuing a
waitsem on the semaphore.

39 FEISNAM A name file
A name file (semaphore, shared data, etc.) was specified when
not expected.
Definitions
Procees ID
Each active process in the system is uniquely identified by a positive
integer «called a process ID. ‘The range of this ID .is from 0 to 30,000.
Parent Process ID
A new process is created by a currently active process; see fork(S).
The parent process 1D ‘of ‘a process is the process ID of its ccreator.
Process Group ID
Each ‘active process is a member of a process group that is identified
by a positive integer called ‘the process group ID. This ID is the pro-
cess 1D :of the group leader. This grouping permits the signaling of
related processes; see kill(S).
Tty Group .ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the ‘tty group ID. This grouping

is used to terminate a group of related process upon termination of
one of the processes in the group; see ezit(S) and eignal(8).

March 24, 1984 Page 5



INTRO(S) INTRO(S)

Real User 1D and Real Group ID

Each user allowed on :the system is identified by a positive integer
called a real user ID.

Each user is also a member-of a-group. The group is identified by a
positive integer called the real group ID.

An ‘active process has areal user 1D and real group 1D that are set to
the real userID and real:group 1D, respectively, of the user responsi-
ble for the creation of the process.

Effective Uses ID and Effective Group ID

An ‘active process has an eflective user ID -and an effective groupID
that are ‘used to determine file access permissions (see below). ‘The
effective user ID and effective group ID are equal to the process’ real
user ID and real group ID respectively, ‘unless the ‘process or one of
its ancestors evolved from a file that had the set-user-ID bit or sét-
group ID 'bit set; see ezec(S).

Super-User
A process is recognized as-a super-uger process and is granted special
privileges if iits eflective user ID is‘0.

Special Processes

The processes ‘with a process ID of 0 and a process ID -of 1 are ‘special
processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Procl is the initialization process (init).
Procl is the ancestor of every other process in the system zand is
used to -control the process structure.

Filename

Names consisting of up to 14 characters may be used to name -an
ordinary file, special file or directory.

These characters may be selected from the set of all character values
excluding 0 {(null) ‘and the ASCH code for a / (slash).

Note that it is generally unwise to use =, ?, |, or | as part of
filenames because ‘of the special meaning attached to these characters
by the shell. Likewise, the high order'bit of the character should not
be set.

March 24, 1984 Page 6






INTRO(S)

it of
iate access b
Tnropri

 op a:baern{S) Wag issued
. wm?aem{S) or a:yaem(S) Wag issued lo 5 Semg.
Nog been initialized Y 2 Call ¢ creatcern 4
issued a semapbore ou 44 sequence; i.e., bel‘ore
as issued the Correg, onding Yastse to ¢p, Semga.
aéwa:?aem Wag issUed o , semaplzore Suary:

is currentlyi Use by a.notber process. The S

b process Wag Waiti, ag Cen lery ; i
Yen the process controlling the se
iship “Ontra; properly; ie
rrnapl)ore.

fle

Page 8
T inacion of
I(S}.

R



AB4L (S) A4L (S)

Name

a64], 1642 - Converts between long integer and base ‘64 ASCI.

Syntax

long a84l (s)
char *s;

char *164a(1)
long 1;

Description

These routines are used to maintain numbers stored in base 64
ASCll. This is a notation by which long integers ‘can be represented
by up to six characters; each character represents a ‘‘digit” in a radix
64 notation.

The characters .used to represent ‘‘digits'’ are . for 0, / for 1, 0
through 9 for 2 through 11, A through Z for 12 through 37, and a
through 'z for 38 through 63.

A64l takes 2 pointer to a null-terminated base 84 representation and
returns a-corresponding long value. L64a takes a long argument and
returns a‘pointer to the corresponding base 64 representation.

‘Notes

The value returned by 164a is a pointer into a static buffer, the con-
tents of which ‘are:overwritten by each call.

March 24, 1984 Page 1



ABORT(S) ABORT(S)

Name

abort - ‘Generates an IOT fault.

Syntax

abort ( )

Description

Abort causes an 1/0 ‘trap signal (SIGIOT) to be sent to the calling
process. “This usually results in termination with a:core dump.

Abort can return control if the calling process is set to catch or
ignore ‘the SIGIOT signal; see signal(S).

See Also
adb(CP), exit(S)}, signal(S)

Diagnostics

If an aborted process returns control to the shell { sk(C)), the shell
usually displays the message ““abort — core dumped”.

March 24, 1984 Paée 1




ABS(8) ABS (8)

Name

abs - Returns an integer absolute value.

Syntax
int abs (i)
int i;
Description

Abs returns the absolute value of its integer operand.

See Also

fabs in floor(S)
Notes

If the largest negative integer supported by ‘the hardware is given,
the function returns it unchanged.

March 24, 1984 Page 1



ACCESS (S) ACCESS (S)

Name

access - Determines accessibility of a file.

Syntax

int access (path, amode)
char *path;
int amode;

Description

Path points to a pathname naming a file. Access checks the named
file for accessibility according to the bit pattern contained in amode,
using the real ‘user ID ‘in -place of ‘the effective user ID :and the real
group ID in place of the -effective group ID. The bit pattern for
amode can be formed by adding any combination of the following:

04 Read
02 Write

01 Execute (search)
00 Check existence of file

Access to the file is denied if .one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a
null pathname. [ENOENT]

The named file does not exist. -|[ENOENT)

Search permission is denied on a component of the path prefix.
|EACCES)

Write access is requested for a file on a read-only file system.
[EROFS] :

Write -access is requested for a pure procedure (shared text) file
that is being executed. {ETXTBSY]

Permission bits of the file mode do ‘not permit the requested
access. {[EACCES]

Path points outside the process’ allocated address space.
IEFAULT]

Access checks the permissions for the owner of a file by checking the
“owner’’ read, write, and execute mode bits. For members of the
file's group, the “‘group’ mode ‘bits are checked. For all-others, the
“‘other’” mode bits are checked.

March 24, 1984 Page 1

:\_/



ACCESS (8) ACCESS (8)

Return Value

If the requested access is permitted, a value of 0 is returned. Other-
wise, a value of - 1 isreturned and errno is set to indicate the error.

See Also

chmod(S), stat(S)
Notes

The super-user (root) may access any file, régardless of permission
settings.

March 24, 1984 Page 2



ACCT(S) ACCT(S)

Name

acct ~ Enables or disables process accounting.

Syntax >
int acct (path)
char *path;
Description
Acct is 'used to enable -or disable the system’s process accounting
routine. If the routine is -enabled, an accounting record ‘will be writ-
ten on an accounting file for each process that terminates. A process
can be terminated by a call to -ezit or by receipt-of a signal which ‘it
does mot ignore or catch; see ezit(S) and eignal(S). The effective
user ID -of the calling process must be super-user to use this.call.

Path points to ‘the pathname of the accounting file. The accounting
file format is given in acct(F).

The accounting routine is ienabled if path is nonzero and no errors
occur during the system call. It is disabled if path iis zero and no .
errors occur -during the system -call. )

Acet will fail if -one ‘or more of the following are true:

The effective user ID of the calling process is not super-user.
[EPERM|

An attempt is being ‘made to enable accounting when it is
already enabled. [EBUSY]

A component of the path prefix is not a directory. [ENOTDIR]

One or more components -of the accounting file’s pathname .do
not.exist. |[ENOENT]

A component of the path prefix denies search permission.
|EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode ‘permission ‘is denied for the named accounting file. ’
[EACCES] . )

The named file is a directory. [EACCES]

The named file resides-on ‘a read-only file system. [EROFS]

March 24, 1984 Page 1



ACCT(S) ACCT(S)

Path points to an illegal address. [EFAULT]
Return Value
Upon successful completion, a value ‘'of 0 is returned. Otherwise, a

value of - 1 is returned and errno is set'to indicate the error.

See Also

accton(C), acctcom(C), acct{F)

March 24, 1984 Page 2



ALARM(8) ALARM (8)

.
Name

alarm - Sets a process’ alarm clock.

Syntax
unsigned alarm (sec)
unsigned sec;

Description
Alarm -sets the ealling process’ alarm ‘clock 4o sec seconds. After sec
“real-time’’ seconds have elasped, the alarm clock sends a SIGALRM
signal to the process; see -signal(S).

Although alarm does not wait for the signal after setting the alarm
clock, pause(S) may be used to make the calling process wait,

Alarm requests are not stacked; successive calls reset the calling pro-
cess’ alarm clock. :

If eec is 0, ‘any previously made alarm ‘request is canceled.

Return Value

Alarm returns the amount of time previously remaining in ‘the cal-
ling process’ alarm clock.

See Also

pause(S), signal(S)

March 24, 1984 Page 1




ASSERT(S) ASSERT(S)

Name

assert — Helps verify validity of program.

Syntax
#include <assert.h>

assert (expression);

Description

This macro is useful for putting diagnostics into programs under
development. When it is executed, if ezpreseion is false, it prints

Assertion failed: file name, line nan
on the standard ‘error file ‘and ‘exits. Name is the source filename
and nnn the source line number of the aesert statement.
Notes

To suppress calls to ‘assert, use the option ‘- DNDEBUG' when
compiling the program; see ¢cc(CP)).

March 24, 1984 : Page 1



ATOF(8) | ATOF(S)

Name

atof, atol, atol - ‘Converts ASCH to numbers.

Syntax

double atof {nptr)
char ®nptr;

int atoi (nptr)
char *nptr;

long atol (nptr)
char *nptr;

Description
These functions convert a string pointed ‘to by npir to floating,
integer, and long integer numbers respectively. The first unrecog-
nized ‘character ends the string.
Atof recognizes a string of ‘the form:

[ 4]~ ] digits[. digits ][ e]E[ + |~ ] digits ]

where ‘the digits are continguous.decimal digits. . Any number of tabs
and spaces may precede the string. The 4 and - ‘signs are optional,
Either e-or E may be used to mark the beginning of the exponent.

Atos and atol ‘recognize strings of the form:

[ +]~ ] digits
where the digits are contiguous decimal digits. Any number of tabs
and spaces ‘may precede the string. The + and - signs ‘are
optional.
See Also
scanf(S)
Notes

There are no provisions for overflow.

Mareh 24, 1984 Page 1

N



BESSEL (8) BESSEL (8)

Name

bessel, j0, jl, jn, ¥0, ¥1, yn - Performs Bessel functions.

Syntax
#include <math.h>

double j0 (x)
double x;

double j1 (x)
double x;

double jn (n, x);
double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int:n;
double x;
Description
These functions calculate Bessel functions of ‘the first 'and ‘second
kinds for real arguments and integer orders.
Notes

Negative arguments cause y0, yI, and gn to return a huge negative
value.

March 24, 1984 Page 1



BSEARCH (8) BSEARCH (8)

Name

bsearch ~ Performs a binary search.

Syntax

char *bsearch (key, base, nel, width, compar)
char *key;

char ®*base;

int nel, width;

int {*compar)();

Description

Beearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm ‘B. It returns a pointer into -a table indicating the location
at which 3 datum may be found. The table must be previously
sorted in increasing order. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base ‘of ‘the table. The third is the number of elements in the
table. The fourth is the width of an element in bytes. The last-argu-
ment iis the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an ‘integer less than, equal to, or greater than 0, \)
depending on whether the first argument is to be -considered less
than, equal to, or greater than the second.

Return Value

If the key cannot'be found in the table, & value of 0.is returned.

See Also
Isearch(S), gsort(S)

March 24, 1984 Page 1



CHDIR (8) CHDIR (S)

Name

chdir — Changes the working directory.

Syntax

int chdir (path)
char *path;

Description
Path points to the pathname of a directory. Chdir causes the named
directory to become the current working directory, the :starting point

for path searches for pathnames not beginning with /.

Chdir -will fail and the current working directory will be ‘unchanged if
one or more of the following are true:

A component of the pathname is not a directory. [ENOTDIR|
The named directory does not exist. |ENOENT)

Search permission is denied for any component of the path-
name. |EACCES]

Path points outside the process’ allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to .indicate the error.

See Also

chroot(S)

March 24, 1984 Page 1



CHMOD (S) CHMOD (S)

Name

chmod -~ Changes mode of 3 file,

Syntax .

int.chmod (path, mode)
char *path;
int mode;

Description

Path points-to -a pathname naming a file. Chmod sets the access per-
mission portion .of the named file’s mode according to the bit-pattern
contained in mode.

Access permission bits for mode can be formed by adding any combi-
nation of the following:

04000 ‘Set-user ID on-execution

02000 Set group ID ‘on ‘execution
01000 Save text image after execution
00400 Read by owner

00200 Write by owner

00100 Execute (or search if a directory) by owner
00040 Read by group

00020 Write by group

00010 Execute {or:search) by group
00004 Read by others

00002 Write by others

00001 Execute {or search} by others

To change the mode of a file, the effective user ID -of ‘the process
:must match the owner of the file or must be super-user.

If the -effective user ID of the ‘process is not super-user, mode bit
01000 (save textimage on execution) is-cleared.

If the effective user ID of the ‘process is not super-user or the
eflective group ID of the process does not:match the group ID of the
file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing, then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the file ‘when its last user terminates. Thus,
when the next user executes the file, the text need not be read from
the file system but can simply be swapped in, saving time. Many
systems have relatively small amounts of swap space, and the same-
text bit should be used sparingly, if atall.

March 24, 1984 Page 1

R



CHMOD (8) CHMOD (S)

Chmod will fail and the file mode will be unchanged if one or more
of the following ‘are true:

A component-of the path prefix is not a directory. [ENOTDIR]
The named file does not.exist. {ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

e -effective user 1D does not match the owner of the file and
effective user ID iis not.super-user. |EPERM]

med file resides on a read-only file system. [EROFS]

‘uts -outside ‘the process’ allocated’ address space.

* letion, a value ‘of 0 is returned. ‘Otherwise, a
Frs and ‘errno is set to indicate the error.

¥

March 24, 1984 Page 2



CHOWN (S) CHOWN (8S)

Name

c¢hown ~ Changes the owner and group of a file.

Syntax
int chown (path, owner, group)
char *path;
int-owner, group;
Description
Path points to a pathname naming a file. The owner ID and group
ID of the named file are set to the numeric values contained in

owner and group respectively.

Only processes with ‘an effective user ID equal to ‘the file owner or
super-user may .changeé the ownership .of a file.

If ckoun is invoked by other than the super-user, the set-user-ID
and set-group-1D bits of the file mode, 04000 and 02000 respectively,
will be cleared. -

Chown will fail and the owner and group of the named file will
remain unchanged if ‘one or more .of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission ‘is ‘denied on a component.of the path prefix.
[EACCES]

The effective user ID .does not match the owner of the file, and
the effective user ID is not super-user. [EPERM]

The named file resides on aread-only file system. [EROFS]

Path points outside the process’ allocated .address space.
{EFAULT] :

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of ~ 1 is returned and errmo is'set to indicate the error.

See Also
chmod(S)

March 24, 1984 Page 1




CHROOT(S) CHROOT(S)

' Name

chroot - Changes the root directory.

Syntax

int chroot (path)
char *path;

Description
Path points to a pathname naming a directory. Chroot causes the
named ‘directory to ‘become the root directory, the starting point for

path searches for pathnames beginning with /.

To change the root directory, ‘the effective .user ID ‘of the process
must be super-user.

The *‘..”" entry in the root directory is interpreted to mean the root
directory itself. Thus, ““..”’ cannot be used to access files-outside the
root directory.

Chroot ‘will fail and the root directory will remain unchanged if one
or more of the following are true:

Any component of the pathname is not a directory. [ENOTDIR]
The named directory does not exist. [ENOENT)
The effective userID is not super-user. {EPERM]
Path points outside ‘the -process’ allocated address space.
[EFAULT]
Return Value
Upon :successful completion, a value .of 0 is returned. Otherwise, a
value of - 1is returned and erro is set to indicate the error.
See Also
chdir(8), chroot{C)

March 24, 1984 Page 1



CHSIZE (S) CHSIZE(S)

Name

chsize - Changes the size of a file.

Syntax

int chsize (fildes, size)
int fildes;
long size;

Description

Fildes is a file descriptor obtained from a creat, -open, dup, fentl, or
pipe system call. Cheize changes the size of the file associated with
the file descriptor fildes to be exactly #ize bytes in length. The rou-
tine either truncates the file, or pads it with an appropriate number
of bytes. If size is less than the initial size of the file, then -all allo-
cated disk blocks between :size and the initial file size are freed.

The maximum file size as set by ‘ulimit(S) is enforced when chaize is
called, rather ‘than -on subsequent writes. Thus cheize fails, and the
file size remains unchanged if the new changed file size would
exceed :the ulimit.

Retum Value
Upon successful completion, a value of 0 is returned. Otherwise,
the ‘value - 1 is returned and errno is set to indicate the error.

See Also
creat(S), dup(S), lseek(S), open(S), pipe(S}, ulimit(S)

Notes

In general if cheize is used to expand the size of a file, when data‘is
written to the end of the file, intervening blocks are filled with seros.
In a few rare cases, reducing the file size may not remove the data
beyond the new end-of-file.

March 24, 1984 Page 1

e ani

P



CLOSE (8) CLOSE(S)

Name

close — Closes a file descriptor.

Syntax
int close (fildes)
int fildes;
Description

Fildes is a file .descriptor obtained from ‘& creat, open, dup, fentl, or
pipe system call. Close closes the file descriptor indicated by fildes.

Close will fail if fildes is not a valid open file-descriptor. {EBADF)
Return Value
Upon successful completion, a value of 0 is returned. ‘Otherwise, a

value of - 1is returned and errno is set to indicate the error.

See Also
creat(’S), dup(S), exec(S), fentl(S), open(S), pipe(S)

March 24, 1984 Page 1



CONV(S) » CONV(S)

Name

conv, toupper, tolower, toascii ~ Translates characters.

Syntax

#include <ctype.h>

int toupper {c)
int.c;

int tolower (c)
int.c;

int _toupper {c)
intc;

int _tolower (c)
int c; ’

int toascii (c)
intc;

Description

See

Toupper and ‘tolower convert the argument ¢ to a letter of opposite
case. Arguments may be the integers - 1 through 255 (the same
values returned by gete(S)). If the argument of toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If
the argument of tolower represents an uppercase letter, the result is
the corresponding lowercase letter. All other arguments are returned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted argument values and are fas-
ter. _toupper requires a lowercase letter as its argument; its result is
the -corresponding uppercase letter. _tolower requires an uppercase
letter as its argument; its result is the corresponding lowercase letter.
All.other arguments cause unpredictable results.

Toascii -converts integer values to ASCH characters. The funection

clears all bits of the integer that are not part of a standard ASCH
character; it is ‘intended for compatibility with other systems.

Also

etype(S)

March 24, 1984 Page 1




CONV(:S) CONYV (8)
Notes

Because _toupper and _tolower are implemented as macros, they
should not be used where unwanted side effects may occur. Remov-
ing the _toupper and _tolower macros with the gundef directive
causes the corresponding library functions to be linked instead. This
allows ‘any arguments to ‘be used without -worry about side effects.

March 24, 1984 Page 2



Losp(s

ldes)
Scr)
1. g, Ptor op
Clog, elo e:at';ed lfmm
e
ﬁlle, is ¢ des to p dy
not ind; s Jeny
2 valid op,,, e des cated by ? OF
Criptoy [
- 1EBap 1
! e
Mpletio g
ed &n;’ Valye : ier
set g ;. rCtume 18y
indic the op,. - cTWise, o 1en
ey )
<(8), ¢, ared.
end(s), %pen(s) Pive(
r S)
. See
the file
n if the
e begin-
ross -ezec
n 20 files
mode that
ENOTDIR]

IOENT]

he path prefix.

iich the file is to

Page | Page 1

L



CREAT{(S) CREAT(S)

The named file resides or would reside on a read-only file sys-
tem. [EROFS]

The file is a pure procedure (shared text) file that is being exe-
cuted. [ETXTBSY]

The file exists and write permission is denied. |[EACCES]
The named file is an existing directory. {EISDIR]
Twenty file descriptors are currently-open. [EMFILE]
Path points outside the process’ allocated address -space.
[EFAULT]
Return Value
Upon successful completion, a nonnegative integér, namely the file
descriptor, is returned. Otherwise, -a ‘value of - 1 is returned and
errno is set to indicate the error.
See Also

close(S), dup(S), lseek(S), open(8), read(S}, umask(S), write(S)

Notes

Open(S) is preferred to creat.

March 24, 1984 Page 2



CREATSEM () CREATSEM (S)

Name

creatsem — Creates:an instance of a binary semaphore.

Synitax

sem_num == creatsem(sem_name,mode);
int .sem_num,mode
char *sem_name;

Description

Creatsem defines a binary semaphore named by sem_name to be used
by ‘waitsem(S) and sigsem(S) to manage mutually exclusive access to
a resource, shared wvariable, ‘or critical section of a program.
Creatsem retutns a unique semaphore number sem_num which ‘may
then be used as the parameter in waitsem and eigeem calls. ‘Sema-
phores are special files of 0 length. The filename 'space is used to
provide unique identifiers for semaphores. Mode sets the accessibil-
ity of the semaphore using the same format as file access bits.
Access to ‘a :semaphore is granted only on the basis of ‘the read
access bit; the write and execute bits-are ignored.

A semaphore can be operated on only by a synchronizing primitive,
such ‘as wastsem or eigeem, by creatsem which initializes it to some
value, or by opensem which opens the semaphore for use by a pro-
cess. Synchronizing primitives are guaranteed to be executed
without iinterruption once started. These primitives are used by
associating ‘a semaphore with each resource (including critical code
sections) to be protected.

The process controlling the semaphore should issue
sem_num = creatsem(”semaphore”, mode);

to -create, initialize, and open the ssemaphore for that process. All
other processes using the semaphore should issue

sem_num == opensem( "semaphore”)
to access the semaphore’s identification value. Note that a process
cannot open ‘and use a semaphore ‘that has not ‘been initialized by a
call to ‘creatsem, nor should :a process open a semaphore more than
once in one period of execution. Both the creating and opening
processes use ‘wastsem and sigsem to use the semaphore sem_num. i )

See Also

opensem(S), waitsem(S), sigsem(S).

March 24, 1984 Page 1



CREATSEM (S) CREATSEM (S)

Diagnostics

Creatsem returns the value — 1 if an error occurs. If the semaphore
named by sem_name is already open for use by :other processes,
errno is set to EEXIST. If the file specified exists but is not a sema-
phore type, errno is set to ENOTNAM. If the ‘semaphore has not
been ‘initialized by a call to creatsem, ermo is set to ENAVAIL.

Notes

After a creatsem you ‘must do a waistsem to gain control of a given
resource. )

March 24, 1984 Page 2



CRYPT(S) CRYPT(S)

Name

crypt, setkey, encrypt ~ Performs encryption functions.

Syntax

char *crypt (key, salt)
char *key, *salt;

setkey (key)
char *key;

encrypt {block, edflag)
char *block;
int-edflag;

Description

Crypt is the password encryption routine. It is based on the NBS
Data ‘Encryption Standard (DES), with variations intended (among
other things) to frustrate use of hardware implementations of ‘the
DES for key search.

The first argument to erypt is-a user’s typed password. The second is
a 2-character string chosen from the set [a-zA-Z0-9./]; this -salt
string is used to perturb the DES algorithm in one of 4096 different
ways, after which the ‘password is used as the key to ‘encrypt repeat-
edly a constant string. The returned value points ‘to the encrypted
password, in the same alphabet as the #alt. The first two characters
are ‘the salt itself.

The setkey and ‘encrypt entries provide ‘access to the actual DES algo-
rithm. The argument of setkey is a character array of length 64 con-
taining only ‘the characters ‘with numerical value 0 -and 1. If this
string is divided into groups of ‘8, the low-order bit‘in each group is
ignored, leading to a 56-bit key which is setinto the machine.

The argument to the encrypt entry is likewise a character array of
length 64 containing zeroes and ones. The argument array is
modified in ;place to a similar array representing the bits of the argu-
ment after having been subjected to the DES algorithm using the key
set by wetkey. If edflag is:0, the argument is encrypted; if ‘nonzero, it
is decrypted.

See.Also

passwd(C), getpass(S), passwd(M)

March 24, 1984 Page 1



“CRYPT(S) CRYPT(S)

Notes

The return value from crypt points ‘to :static data that is overwritten
by ‘each call.

March 24, 1984 Page 2



CTERMID (S) CTERMID (8)

Name

ctermid -~ Generates a filename for a terminal.

Syntax
#include <stdio.h>

char *ctermid(s)
char %s;

Description

Ctermid returns a pointer to a string that, when used used as a
filename, refers to the controlling terminal of the calling process.

If (int)e is zero, the string is stored in ‘an internal static area, the
contents-of ‘which -are overwritten at:the next call to «ctermid, and the
address of which is returned. If (int)s is nonzero, then ¢ is assumed
to point ‘to a character .array of at least L_ctermid ¢lements; the
string is ‘placed in this array and the value ‘of ¢ is returned. The
manifest constant L_ctermid is defined in <stdio.h>.

Notes
The difference between ctermid and ‘#yname(S) is that tiyname must
be given a file descriptor and it returns the actual name of the termi-
nal associated with that file descriptor, while ctermid returns a magic
string ( /dev/tty) that will refer to the terminal if used as a filename.
Thus ttyname is useless unless the process already has at least one
file ‘open to a terminal.

See Also

ttyname(S)

March 24, 1984 Page 1



“§) CTIME(S)

‘me, asctime, tzset ~ Converts date and time

sy %
[ % " }z],/&/
4
e 5 .
Yoy
b,.l-t
e

dme :pointed to by clock (such .as returned by
Al and returns :a pointer to ‘a 26-character string in
m:

16 01:03:52 1973\n\0

£y, fields in this string are padded with spaces to keep the
;onstant length.

dme and gmtime return pointers to structures containing the

; as a'variety ‘of individual -quantities. These quantities give the

ae on -a 24-hour «clock, day of month (1-31), month of year (0-

.1), day ‘of week (Sunday == 0}, year (since 1900), day of year (0-

365), and a flag that is nonzero if daylight saving time is in effect.

Localtime corrects for the time zone and possible daylight savings

time. Gmtime converts directly to Greenwich time (GMT), which is
the time the XENIX system uses.

Asctime converts the times returned by localtime -and gmtime to a
26-character ASCII string and returns a pointer to this string.

March 24, 1984 Page 1



CTIME(S) CTIME (S)

The structure declaration for tm is defined in fusr/include/time.h.

The external long variable #imezone contains the difference, in
seconds, between GMT and local standard time (e.g., in Eastern
Standard Time (EST), timezone is 5*60%60); the external integer vari-
able daglight is nonzero if and only if the standard U.S;A. Daylight
Savings Time conversion should be applied. The program knows
about the peculiarities of this conversion in 1974 and 1975.

If an environment variable named TZ is present, .asctime uses ‘the
contents of the variable to override the default time zone. The
value of TZ must be ‘a three-letter time zone name, followed by a
number representing the difference between local time (with optional
sign) -and ‘Greenwich time in hours, followed by an optional three-
letter name for a daylight time zone. For example, the setting for
New Jersey would be ESTSEDT. The effects of setting TZ .are thus to
change ‘the values of ‘the external variables #imezone and daglight. In
addition, the time zone names contained in the external variable

char *tzname|2] = {"EST", "EDT"};
are -set from the ‘environment variable. The function tzeet sets the
external variables from ‘TZ ; it is called by aectime and may also be
called explicitly by the user.
See Also

time(S), getenv(S), environ(M)
Notes

The return values point to:static data those .content is overwritten by
each call.

March 24, 1984 Page 2

i



CTYPE ()

Name

CTYPE(S)

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, ‘isspace,
ispunct, isprint, isgraph, iscntrl, isascii - Classifies characters.

Syntax

#include <ctype:h>

int isalpha (c)

int'c;

Description

These macros classify ASCIl-coded integer values by table lookup.
Each returns -nonzero .for true, zéro for false. .Jsascii is defined on
all integer values; the rest are defined only where tsascii is true .and
on the single non-ASCHl value EOF (see stdio(S)).

tealpha
tsupper
1slower
tedigit
tezdigit
tealnum

tegpace

tapunct

isprint

tegraph

feentrl

fzagcit

March 24, 1984

¢ is aletter

¢ is-‘an uppercase lettgr

¢ is a lowercase letter

¢ is a digit [0-9]

¢ is a hexidecimal digit [0-9], [A-F] or [a-]
¢ is an alphanumeric

¢ is ‘a space, tab, carriage return, newline, vertical
tab, or form feed

¢ is a punctuation character {neither control nor
alphanumeric)

¢ is a printing character, octal 40 (space) through
octal 176 (tilde)

¢ is ‘a printing character, like taprint except false for
spate

¢ is a delete character (octal 177) or ordinary con-
trol character (less than octal 40).

¢ is an ASCII character, code less:than 0200

Page 1



CTYPE(S)

See Also
ascii(M)

March 24, 1984

CTYPE(S)

Page 2



CURSES (8) CURSES (8)

Name

curses — Performs screen and cursor functions.

Syntax

cc | flags | files — leurses — ltermlib | libraries ]

Description

These routines give :the user .a method of updating screens with rea-
sonable ‘optimization. They keep an image of the current screen,
and ‘the user sets up an image of a new.one. Then the refresk() tells
the routines to make the -current screen look like the new one. In
order to initialize ‘the routines, ‘the ‘routine initscr{} must be called
before any of ‘the other routines that deal with windows and screens

are used.

The routines are linked with the loader option -lcurses.

See Also

termceap(F), stty(S), setenv(S)

leaveok(win, boolf)

Functions
addch(ch) Adds a character to stdecr
addstr(str) Adds a string to stdscr
box(win,vert, hor) Draws a box around a window
crmode() Sets cbreak mode
clear() Clears stdscr
clearok(scr,boolf) Sets clear flag for ser
clrtobot() Clears to bottom on .etdscr
clrtoeol() Clears to end of line on ‘stdscr
delwin{win) Delete win
echo() Sets echo mode
erase() Erase stdscr
getch() Gets a char through stdser
getstr(str) Gets s string through stdecr
gettmode() Gets tty modes
getyx(win,y,x) Gets (y,x) coordinates
inch() Gets char at current (y,x) co-ordinates
initscr() Initializes screens

Sets leave flag for win

longname{termbuf,name) Gets long name from termbuf

move(y,x)

Moves to (y,x) ion stdser

myvcur(lasty,lastx,newy,newx)Actually moves cursor
newwin(lines,cols,begin_y,begin_x)Creates a new window

March 27, 1984

Page 1



CURSES (8) CURSES (8)

nl() Sets newline mapping
nocrmode() Unsets cbreak mode

noecho() Unsets echo mode

nonl() Unsets newline mapping
noraw() Unséts raw mode
overlay{winl,win2) Overlays winl on win2
overwrite( winl,win2) Overwrites winl on top of win2
printw(fmt,argl,arg2,...) Printfs on stdscr

raw() Sets raw ‘mode

refresh() Makes current screen look like stdscr
restty() Resets tty flags to stored value
savetty() Stored current tty flags
scanw(fmt,argl,arg2,...) ‘Scanf:through stdscr

scroll( win) Scrolls win one line

scrollok( win,boolf) Sets scroll flag

setterm{name) Sets term ‘variables for name
unctrl{<ch) Printable version of ¢k
waddch(win,ch) Adds char to win
waddstr(win,str) Adds string to win

welear(win) “ Clear win

welrtobot( win) Clears to bottom of win
welrtoeol(win) Clears to.end of line on win
werase(win) Erase ‘win

wgetch(win) Gets ‘a-char through win

wgetstr( win,str) Gets a string through win
winch(win) Gets char at current (y,x) in win
wmove(win,y,x) Sets current (y,x) co-ordinates.on win
wprintw(win,fmt, argl,arg2,...) Printf on win

wrefresh{win) Makes screen look like ‘win

wscanw(win,fmt,argl, arg2,...)Scanf through win
Credit

This utility was developed at the University ‘of ‘California at Berkeley
and is used with permission.

March 27, 1984 Page 2



CURSES (8)

wd cursor funetions,

Itermlib | Librarjes ]

a‘method of updating screens with rea-
keep an image of the current screen,
¢ of a new one, Then the refresh() tells
‘fent screen look like the new one. In

!5, ‘the routine snitscr() ‘must be called
tes that deal with windows .and screens

1¢ loader option ~lcurses,

a character to stdscr
a:string to stdsey

' a box around .a window
break mode

stdser

ear flag for ser

to bottom op otdscr

to end of line op stdscy
win

ko mode

tdser

shar through stdgep
itring through stdscy
“modes

x) coordinates

¥ at current {y,x) co-ordinates
s:Screens

e flag for win

g name from termbuf
' (¥,x) on stdser

dly moves cursor
Oreates a new window

Page 1

USERID (S)

the login name
 this represen-
ress of which is
to an array of at
It in this array.
o.h>.

1s NULL; if ¢ is

results of a user’s
zquent -call to ‘the

Page 1



DBM (8) DBM (S)

Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs databas
functions. )

Syntax
typedef struct {char *dptr; int dsize; } datum;

dbminit(file)
char #file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey();

datum nextkey(key);
datum key; )

Description

These functions maintain key/content pairs in a database. The func-
tions will handle very large (a billion blocks) databases and will
access 3 keyed item in one ‘or two file system ‘accesses. The func-
tions are obtained with the loader option — ldbm.

Keys and contents are described by ‘the datum typedef. A datum
-specifies ‘a string of deize bytes pointed to by dptr. Arbitrary binary
data, as well as normal ASCIH strings, ‘are allowed. The database is
stored in two files. ‘One file is a directory containing a bit - map and
has “.dir” as its suffix. The second file contains all data and has
¥, pag’”’ as its suffix.

Before a database can ‘be ‘accessed, it must be opened by dbminit. At
the time of ‘this call, the files fle.dir and file.pag must exist. (An
empty database is created by ereating zero-length *“.dir’’ and *‘.pag”’
files.)

Once open, the data stored under a key is accessed by fetch and data
is placed under a key by store. A key(and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be ‘made, in an (apparently) random order, by use of firstkey and
neztkey. [Firstkey will return the first key in the database. With any
key neztkey will return the next key in the database. This code will

March 24, 1984 Page 1



DBM(S) DBM (8)

Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs database
functions. ’

Syntax
typedef struct { char *dptr; int dsize; }datum;

dbminit(file)
char *ile;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete( key) -
datum key;

datum firstkey();

datum nextkey(key); .
datum key; )

Description

These functions maintain key/content pairs in a database. The func-
tions ‘will ‘handle very large (a billion blocks) ‘databases and will
access a keyed item in ‘one or two file system accesses. The func-
tions ‘are obtained with the loader option — ldbm.

Keys and contents are described by the datum typedef. A datum
-specifies a string of .dsize bytes pointed to by dptr. Arbitrary binary
data, as ‘well :as normal ASCII strings, are allowed. The database iis
stored in two files. One file is a directory ‘containing a bit map and
has ““.dir”’ as its suffix. The second file contains all .data and has
4, pag’’ as its suffix.

Before a database can be accessed, it must be opened by dbminit. At
the time of ‘this -call, the files file.dir and file.pag must exist. (An
empty database is created by creating zero-length *‘.dir’’ and *‘.pag’’
files.)

Once open, the data stored under a key is accessed by fetch and data s
is placed under-a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be ‘made, in an (apparently) random order, by use of firstkey and
neztkey. Firstkey will return ‘the first key in the :database. ‘With any
key neztkey will return the next key in the database. This code will

March 24, 1984 Page 1



DEFOPEN(S) DEFOPEN(S)

Name

defopen, defread ~ Reads default entries.

Syntax

int.defopen(filename)
char #filename;

char *defread(pattern)
char *pattern;

Description

Defopen and defread are a pair of routines designed to allow easy
access to default definition files. XENIX is normally distributed in
binary form; ithe use of default files allows OEMS or site administra-
tors to customize utility defaults without having the source code.

Defopen opens the default file named by the pathname ‘in .filename.
Defopen returns null if it is successful in opening the file, or the
fopen failure code (errno) if ‘the open fails.

Defread reads the previously opened file from the beginning until it
encounters a line beginning with pattern. Defread then returns a
pointer to the first character in the line after the initial pattern. If a
trailing newline character is read it is replaced by a null byte.

S

When all items of interest have been ‘extracted from the opened file
the program ‘may call defopen with the name of another file to be
searched, -or it may «call defopen with NULL, which closes the default
file ‘without opening another.

Files
The XENIX convention is for ‘a system program zyz to store iits
defaults (if any) in the file Jetc/default/xyz.

‘ Diagnostics

Defopen returns zero on success and nonzero if the open fails. The
return value is the errno'value set by fopen(S). » )

Defread returns NULL if a ‘default file is not open, if the indicated

pattern could not be found, or if it encounters any line in the file
greater than the maximum length of 128 characters.

March 24, 1984 Page 1



DUP(S) DUP(S)

Name

dup, dup2 ~ Duplicates an open file debscriptor.

Syntax

int.dup (fildes)
int fildes;

dup?2(fildes, fildes2)
int fildes, fildes2;
Description
Fides is a file descriptor .obtained from a creat, open, dup, fentl, or
pipe system call. Dup returns a.new file descriptor having the follow-
ing in common with the original:
Same open file (or pipe).

Same ‘file pointer (i.e., both file .descriptors share one file
pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across ezec system
calls, See fentl(S).

Dup returns ‘the lowest available file descriptor. Dup? causes fildes?
to refer to the same file as fildes. If fildes? already referred to .an
open file, it is closed first.

Dup will Tail if one or more of the following are true:

Fildes is not a valid open file descriptor. |EBADF)

Twenty file descriptors are currently open. [EMFILE]

Return Value
Upon successful completion a nonnegative iinteger, namely the file
descriptor, is returned. Otherwise, s value of = 1 is returned and
errno is set to indicate the error.

See Also
creat(’S), close(S), exec(S), fentl(S), open(S), pipe(S)

March 24, 1984 Page 1



ECVT(S) ECVT(S)

Name

ecvt, fovt, gevt—~ Performs output conversions.

Syntax

char *ecvt {value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gevt (vaiue, ndigit, buf)
double value;
char *buf;

Description

Ecvt converts ‘the value to a null-terminated string of ndigit ASCI
digits and returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored
indirectly through decpt'(negative means to ‘the left of thé returned
digits). If the sign of the result is negative, the word pointed to by
#ign is nonzero, otherwise it'is zero. The low-order digit is rounded.

Fevt is identical ‘to -ecet, except that the correct digit has been
rounded for FORTRAN F format output of the number of digits
specified by ndigits. :

Gevt converts the value ‘to -a null-terminated ASCII string in buf and
returns a pointer to buf. It attempts to produce ndigit significant
digits in FORTRAN F format if possible, otherwise E format, ready
for printing. Trailing zeros may be suppressed.

See Also

printf{S)
Notes

The return values point to static data whose content is overwritten
by each «call.

March 24, 1984 Page 1



EXEC(S) EXEC(S)

Name

execl, execv, execle, execve, execlp, execvp — Executes a file.

Syntax

int execl (path, arg0, argl, ..., argn, 0)
char ®*path, *arg0, *argl, ..., *argn;

int execv (path, argv)
char *path, *argv| ];

int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *arg0, *argl, ..., *argn, *envp| |;

int execve (path, argv, envp);
char *path, *argv( ], *envp| |;

int execlp (file, arg0, argl, ...., argn, 0)
char *file, *arg0, *argl, ..., *argn;

int.execvp (file, argv)
char *file, ®argv| |;

Description

Ezee in all its forms transforms the -calling process ‘into a ‘new pro-
cess. The new iprocess is constructed from an ordinary, ‘executable
file -called the “‘new process file’’ . There can be no return from a
successful ezec because ‘the ‘calling process is ‘overlaid by the new
process.

Path points to a pathname that identifies the new process file.

File points to the new process file. The path prefix for this file ‘is
obtained by a search of the directories passed as the environment line
“PATH =" (see environ(M)). The environment is supplied by the
shell (see 8h(C)).

Arg0, argl, ..., argn are pointers ‘to null-terminated character
strings. These strings constitute the argument list available to the
new process. By cconvention, at least arg0 must be present, ‘and ‘it
must point to a string that is the same as path (or its last com-
ponent}.

Argv is an array of character pointers to ‘null-terminated ‘strings.
These strings constitute the argument list available to the new pro-
cess. By convention, iarge must have at least one member, and it
must point to a string that is the same as path (or its last com-
ponent). Argv is terminated by a:null pointer.

March 24, 1984 Page 1



EXEC/(S) EXEC(S)

Envp is an array of character pointers to null-terminated strings.
These strings .constitute the environment for the new process. Envp
is terminated by a null pointer.

File descriptors open in the calling process remain .open in the new \}
process, except for ‘those whose -close-on-exec flag is set; see
Jentl(S). For those file descriptors that remain open, the file :pointer

is unchanged.

Signals set to terminate the -calling process will be set to ‘terminate
the new process. Signals set to be ignored by the calling process will
be set to be ignored by ‘the new process. Signals set to be caught by
the calling process will be set to terminate new process; see
signal(S).

If the set-user-ID mode bit of the new process file is set (see
chmod(8S)), ezec sets the :effective user ID ‘of the -new process to the
owner 1D ‘of the new process file. Similarly, if the set-group-ID
mode ‘bit of the new process file is set, the effective group ID :of the
new -process is set.to the group ID of the new process file. The real
user ID -and real group ID of the new process remain ‘the same as
those ‘of ‘the ‘calling process.

Profiling is disabled for the new process; see profil(S).

The new process also inherits the Tollowing attributes from the cal- )
ling process:

Nice value {see nice(S))

Process 1D

Parent process ID

Process group ID

tty group ID (see ezit{S) and signal(S))

Trace flag {see ptrace(S) request0)

Time left until an alarm clock signal (see alarm(S))
Current working directory

Root directory

File mode creation mask (see umask(S))
File size limit (see ulimit{S))

utime, stime, cutime, and cetime (see times(S))

March 24, 1984 Page 2



EXEC(S) EXEC(S)

The -ezeco version is useful when the number of arguments is unk-
nown .in ‘advance. ‘The arguments to ezeco are the ‘name of the file
to be executed and a vector -of strings containing the arguments.
The last argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

mazin(arge, argv, envp)
int arge;
char esargy, esenvp;

Argois directly usable in another ezeco because args]arge] is 0.

Enypis a pointer to an array of strings that constitute the environment
of the process. Each string consists of a name, an “‘="' and a nyll-
terminated value. ‘The array of pointers is terminated by a null
pointer. The shell 8k{C) passes an environment entry for each glo-
bal shell variable defined when the program is called. See
environ(M) for some conventionally used names. ‘The Q¢ run-time
start-off routine places a-copy of envp in the global .cell environ,
which is used by ezeev and ezeel to pass the environment to any sub-
programs executed by the current program. The ezee routines use
lower-level routines ‘as follows to pass an environment explicitly:

execle(file, argo, argl, ..., argn,-0, environ);
execve(file, argv, environ};

Ezeclp and -ezecop are called with the same arguments as ezeel and
ezecy, but duplicate the shell’s actions in searching for an executable
file in -a list of directories. The directory list is .obtained from ‘the
environment.

Ezec will fail and return to the calling process if one or more .of ‘the
following are true:

One ‘or more components of the new process file’s pathname do
not exist. [ENOENT]

A component of the new process file’s path prefix is not a direc-
tory. [ENOTDIR|

March 24, 1984 Pace 2



EXEC(S)

Se
ce

£l

Return

It
rety

See Alsg

(3 ¢!

Mare

SN

oW pr/

h,>arg

EXEC(8)
Name

execl, execy, execle, execve, execlp, execvp - Executes 3

Syntax

int.execl (path, arg0, argl, ..., argn, 0)
char *path, *arg0, *argl, «vy *argn;

int'execv (path, argv)
char *path, *argv| |;

int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *argo, ‘argl, ..., *argn, *envp| J;

int. execve (path, argv, envp);
char *path, *argv| ], *envp| |;

int execlp (file, argo, argl, ..., argn, 0)
char *file, *arg0, *argl, «wey *argn;

int execvp (file, argv)
char *file, *argv] J;

Description

Ezee in all its forms transforms the calling process into a n
cess. The new process is constructed from ‘an ordinary, ex
file called the “new Process file’” . There can be no return

successful ezec because the calling process js overlaid by
process.

Patk points to a pathname that identifies the new process file.

File points to ‘the new process file. The ‘path prefix for ‘this
obtained by a search of the directories passed as the environm

“PATH = (see environ(M)). ‘The environment is supplied
shell (see s4(C)).

Arg0, argi, +s+y GTgR are pointers to null-terminated ¢h
strings. ‘These strings ‘constitute the argument list available
new process. By convention, at least arg0 must be present,

must point to a string that s the same as path (for its last
ponent).

Argv is an array of character pointers to nulk-terminated s
These 'strings constitute the argument list available to the nev
cess. By convention, args must have at least .one member, ;
must point to a string that is the same as patk (or its last
Ponent). Argv is terminated by a null pointer,

March 24, 1984 P



EXIT(S) EXIT(8)

Name

exit - Terminates a process.

Syntax

exit (status)
int status;

Description

Ezit terminates the calling process. All of the file descriptors open in
the -calling process are ‘closed.

If the parent process -of the «calling process is executing a wait, it is
notified of ‘the calling process’ termination and the low-order 8 bits
(i.e., bits 0377) -of etatus are made available to it; see wait(8).

If ‘the parent process of the calling process is not executing a wast,
the .calling process is transformed into a ‘“‘zombie ‘process.” A zom-
bie process is a process that only ‘occupies a slot in the process table,
it ‘has ‘no other space allocated either in user ‘or kernel space. The
process table slot that it occupies is partially -overlaid with time
accounting information (see <sys/proc.h>) to be used by times(S).

The parent process 1D of all of the calling process’ existing child
processes and zombie processes is set'to 1. This means the initiali-
zation process (see intro(S)) inherits each of these processes.

An accounting record is written on the accounting file if the system’s
accounting routine iis enabled; see acct(S).

If the process ID, tty group ID, and process group ID ‘of the calling
process -are equal, the SIGHUP signal is sent to each processes that
has a process group 1D .equal to that of the calling process.

See Also

signal($S), wait(S)

Warning

See Waming in ‘signal(S)

March 24, 1984 Page 1



EXP () . EXP(S)

Name

exp, log, pow, sqrt, logl0 — Performs exponential, logarithm,

power, square root functions. i =N
Syntax

#include <math.h>

double exp (x)
double x;

double log {x)
double x;

double pow (x, y)
double x, y;

double sgrt (x)
double x;

double logl0 .(x)
double x;

Description
Ezp returns the exponential function of 'z,
Log returns the natural logarithm of 2.
Pow returns 29,

Sgrt returns the square rootof 2.

See Also
intro(S), hypot('S), sinh{8)

Diagnostics

Ezp and pow return a huge value when ‘the correct value ‘would
overflow. A truly outrageous argument may also result in ermo
being set to ERANGE . Log returns a huge negative value and 'sets
errmo to EDOM when 2 is nonpositive. Pow returns a huge negative
value and sets errmo to EDOM when z is nonpositive and y is not an
integer, or when z and y-are both zero. S¢rt returns 0 and sets erro
to EDOM when z is negative.

March 24, 1984 -~ Page 1



FCLOSE (S) FCLOSE(S)

Name

fclose, fllush ~ Closes or flushes a stream.

Syntax
#include <stdio.h>

int fclose (stream)
FILE ®*stream;

int fAlush (stream)
FILE *stream;

Description
Felose causes any buffers for the named stream to be emptied, and
the file to be closed. Buffers allocated by the standard input/output
system are freed.

Felose is performed automatically upon -calling ezit(S).

Fflueh causes any buffered data for the named output stream to be
written to that file. The stream remains open.

These functions return 0 for success, and EOF il any errors were
detected.

See Also
close(S), fopen({S), setbuf(S)

March 24, 1984 Page 1



FCONTL (8)

Name

FCNTL (S)

fentl~ Controls open files.

Syntax

#include <fentl.h>

int fentl (fildes, cmd, arg)
int fildes, emd, arg;

Description

Fentl provides for control over open files. Fildes is an .open file
descriptor obtained from a ereat, open, dup, fentl, or pipe system -call.

The emds ava_ilable are:

F_DUFFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

March 24, 1984

Returns a new file descriptor as follows:

Lowest numbered ‘available file -descriptor greater than
or-equal to ary.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode {read, write or read/write).

Same file status flags (i.e., both file ‘descriptors share
the same file status flags).

The close-on-exec flag associated with the new file
descriptor is ‘set to remain open across ezee(S} system
calls.

Gets the close-on-exec flag associated 'with the file
descriptor fildes. If the low-order bit is 0 the file will
remain open across ezec, otherwise :the file will be
closed upon execution of -ezec.

Sets the ‘close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

Gets file status flags.

Sets file status flags to arg. Only certain flags can be
set. .

Page 1




FONTL (S)

sne or more of the following is true:
not-a valid open file descriptor. {EBADF]

3 F_DUPFD ‘and 20 file descriptors are -currently open.
JE]

is F_DUPFD and arg is negative or greater than 20.
TAL]
e

uccessful completion, the value returned depends on ‘emd .as

DUPFD A new file descriptor
-GETFD  Value of flag (only the low-order bit is defined)
F.SETFD Value other than - 1
F.GETFL  Value of file flags
F_SETFL Value otherithan - 1
sherwise, a value of - 1 is returned and erro is set to indicate the
TOr.
Also
close(S), exec(S), open(S)

March 24, 1984 Page 2



FERROR () FERROR (8)

Name

ferror, feof, clearerr, fileno ~ Determines stream status.

Syntax
#include <stdio.h>

int feof (stream)
FILE *stream;

int ferror (stream)
FILE %stream

clearerr (stream)
FILE *stream

int fileno{stream)
FILE *stream;
Description

Feof returns nonzero when end-of-file is read on the named iinput 5 -
stream, otherwise zero. 3

Ferror returns nonzero when an error has occurred reading or ‘writ-
ing the named stream, otherwise zero. Unless cleared by clearerr,
the ‘error indication lasts until the stream is closed.

Clearerr Tesets the error indication on the named stream.

Fileno returns ‘the integer file descriptor associated with the stream,
see open(S).

Feof, ferror, and fileno are implemented as macros; they cannot be
redeclared.

See Also

open(8), fopen(S)

March 24, 1984 Page 1



FERROR (S) FERROR ()

Name

ferror, feof, clearerr, fileno - Determines stream ‘status.

Syntax
#include <stdio.h>

int feof (stream)
FILE *stream;

int ferror (stream)
FILE *stream

clearerr (stream)
FILE *stream

int fileno(stream)
FILE *stream;
Description

Feof returns nonzero when end-of-file is read on the named input
stream, otherwise zero. g

Ferror returns nongero when an error has occurred reading or writ-
ing ‘the named stream, otherwise zero. Unless cleared by elearerr,
the error indication lasts until the stream is-closed.

Clearerr resets the ‘error indication on the named stream.

Fileno returns ‘the .integer file descriptor associated with ‘the stream,
see open(S).

Feof, ferror, and fileno are implemented :as ‘macros; they ¢annot be
redeclared.

See Also
open(S), fopen(S)

March 24, 1984 Page 1



FOPEN (8)

FC’LOSE{S)
a:stream.
stream)
!mpﬁed: and
Bput/outpyt
by flename and associates a stream ‘with
to be used to identify the stream in sub-
ream to pe
aving one of the following values:
TOrs were

titing-at end of file, or create for writing

sading and writing)

:reate for update atend of file

: named file in ‘place of ‘the open stream. It
lue of stream. The original stream is closed,
he open call ultimately succeeds.

sed ‘to attach the preopened constant names
err to specified files.
tream ‘with a file descriptor obtained from .open,
). The type of the stream must agree with the
e. The type must be provided because the stan-
no ‘way to query the type of an open file descrip-
the new stream.

Page 1




FOPEN (8) FOPEN(S)

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be directly
followed by input without an intervening feeek or rewind, and input
may not be directly followed by output without an intervening feeck,
rewind, or an input-operation which encounters the end of the file.

See Also
open(S), felose(S)

Diagnostics

Fopen and freopen return the pointer NULL if filename cannot be
accessed.

March 24, 1984 Page 2



FORK (S} . FORK(S)

Name

fork ~ ‘Creates a new process.

Syntax

int fork ()

Description
Fork -causes creation of 'a new process. The new process (child pro-
cess) is an ‘exact copy of the calling process (parent process) except
for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the pro-
cess ID of the parent process).

The child process has its own copy of the parent’s file descrip-
tors. Each -of ‘the child’s file descriptors shares a -common file
pointer with the ‘corresponding file descriptor of the parent.

The child process’ utime, stime, cutime, and catime are set to 0;
see times(S).

The time left on the parent's alarm clock is not passed on to ‘the
child.

Fork returns = value of 0 to ‘the child process.

Fork returns the process ID of the ‘child process to the parent pro-
cess. .

Fork will fail and no child process will be created if one or more of
the following are ‘true:

The system-imposed limit on the total number of processes
under execution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes
under-execution by a single user would be exceeded. {[EAGAIN]

Not enough ‘memory is available to create the forked image.
|ENOMEM]

Return Value

Upon successful completion, fork returns a value of 0 to the child
process and returns the process ID of the child process to ‘the parent

March 24, 1984 Page 1




FORK (8) FORK ()

process. Otherwise, a value of - 1 is returned to the parent process,
no child ‘process is icreated, -and errno is set to indicate the:error.

See Also
exec(S), wait(S)

March 24, 1984 Page 2



FREAD () FREAD ()

Name

fread, fwrite — Performs buffered binary input and output.

Syntax
#include <stdio.h>

int fread ((char *) ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

int fwrite ({char *) ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

Description

Fread reads, ‘into a block beginning at ptr, nitems of data of ‘the ‘type
of *ptr from the named input stream. Itreturns the number of items
actually read.

Funite appends at most nitems of data of the type of *ptr beginning at
ptr to the named output stream. It returns the number -of items
actually written.

o

See Also

re;ad(S), write(8), fopen(S), getc(S), pute(S), gets(S), puts(S),
printf( S}, scanf(S)

March 24, 1984 Page 1



FREXP(S) FREXP(S)

Name
frexp, ldexp, modf - Splits floating-point number into a ‘mantissa
and an ‘exponent.
Syntax
double frexp (value, eptr)
double value;
int *eptr;

double Idexp (value, exp)
double value;

double modf (value, iptr)
double value, *iptr;

Description
Frezp returns the mantissa of a double value as a double quantity, .z,
of magnitude less than 1, and stores an integer n such that value =
2*2**nindirectly through ‘eptr.

Ldezp returns the quantity value*(2**ezp).

Modf returns the positive fractional part of value and stores the
integer part indirectly through sptr.

March 24, 1984 Page 1



FSEEK (S) FSEEK (S)

Name

fseek, ftell, rewind -~ Repositions a stream.

Syntax
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE ®stream;

long offset;

int ptrname;

4

long fiell (stream)
FILE *stream;

rewind(stream)
FILE *stream;

Description
Faeek sets the position -of the next input or output.operation on ‘the ‘
stream. The new position is at the signed distance offset bytes from
the beginning, the current position, -or the end-of ‘the file, -according }
as ‘ptrname has the value 0, 1, or 2. o

Feeek undoes any effects of ungete(S).

After fseek or rewind, the next operation on an update file may be
either inputor output.

FYell returns the current value ‘of the offset relative to the beginning
of the file associated with the named stream. The offset is measured
in bytes.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

See Also
lseek(S), fopen(S)

Diagnostics

Feeek returns nonzero for improper seeks, otherwise zero.

March 24, 1984 Page 1



GAMMA (S) GAMMA (8)

Name

gamma~ Performs log gammafunction.

Syntax

#include <math.h>
extern int signgam;

double gamma (x)
double x;

Description

Gamma returns Inf'({z])]. ‘The sign of T'(|z]]) is returned in the
external integer signgam. The following ‘C program fragment might
be ‘used to calculate I':

y = gamma (x);
if (y > 88.0)
error ();
y == exp (y) * signgam;

Diagnostics

For negative integer arguments, a huge value is returned, and ermno
is'set to EDOM.

March 24, 1984 Page 1



GETC(S) GETC(S)

Name

getc, getchar, fgete, getw.— Gets character or word from a stream.

«Syntax
#include <stdio.h>

int getc (stream)
FILE ®*stream;

$
int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE ®*stream;

Description
Gete returns the next.character from the named input stream.
Getchar() is identical to getc(atdin).
Fgete behaves like gete, but is a genuine function, not a macro; it
may therefore be ‘used as an argument. Fgetc runs more slowly than
gete, but takes less space per invocation.
Getw returns ‘the next word from the named input etream. It returns
the constant EOF upon end-of-file or error, but since thatis a valid
integer value, feof and ferror(S) should be used to icheck the success
of getw. Getw assumes no.special alignment in the file.

See Also
ferror(S), fopen(8), fread(S), gets(S), pute(S), scant(S)

Diagnostics
These functions return the integer constant EOF at 'the end-of-file or
upon ‘a'read-error.

Notes
Because gete is implemented as a macro, stream arguments with side

effects are treated incorrectly. In particular, *‘gete( #f++ )* doesn’t
work ;properly.

March 24, 1984 Page 1




GETCWD (8) GETCWD (S)

Name

getcwd — ‘Gets pathname of current working directory.

Syntax
len =='getcwd (pnbuf, maxlen);
int len;
char *pnbuf}
int - maxlen;
Description
Getcwd determines the pathname of the current working directory
and places it in prbuf. The length excluding the terminating NULL is

returned. Mazlen is the length of pnbuf. If the length of the (null-
terminated) pathname exceeds mazlen, it is treated as an error.

Diagnostics

A length <=0 is returned on error.
Notes

mazlen (and pnbuf ) mustbe 1 more ‘than the ‘true maximum length
of the ‘pathname.

March 24, 1984 Page 1



GETENV (8) GETENV (S)

Name

getenv — Gets value for environment name.

Syntax
char *getenv (name)
char ®name;
Description
Getenv searches the environment list (see environ(M)) for a string of

the form name==valuc and returns value if such a string is present,
otherwise 0 NULL ).

See Also
sh(C}, exec(S)

March 24, 1984 Page 1



GETGRENT (S) : GETGRENT(S)

Name
getgrent, getgrgid, getgrnam, setgrent, endgrent - Get group file
entry.
Syntax
#include <grp.h>
struct group *getgrent { );

struct group *getgrgid (gid)
int gid;

struct group *getgrmam (name)
char ®*name;

int setgrent( );
int-endgrent ( );

Description

Getgrent, getgrgid and getgrnam each return pointers. The format of
the structure is defined in fusrfinclude/grp.h.

The members of this structure are:
gr.name The name of the group.
gr_passwd The encrypted password of the group.
gr_gid The ‘numerical group ID.

gr_mem Null-terminated ‘vector ‘of pointers to the iindivi-
dual member names.

Getgrent reads the next line .of the file, so successive calls may be
used to search ‘the entire file. Getgrgid and getgrnam search from the
beginning of the file until a matching gid or name is found, or end-
of-file is encountered.

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file
when processing is complete.

Files

Jetc/group

March 24, 1984 Page 1



GETGRENT(S) GETGRENT(S) -

See Also
getlogin(S), getpwent{S), group(M)

Diagnostics

A null pointer (0) is returned on end-of-file or error.
Notes

Allinformation is contained in a static area, so it must be copied if it
is to be saved.

March 24, 1984 Page 2

s



GETLOGIN (8) GETLOGIN(S)

Name

getlogin — Gets login ‘name.

Syntax

char *getlogin { );

Description
Getlogin returns a pointer to the login name as found:in fetc/utmp.
It may be used in conjunction with getpunam to locate the .correct
password file entry ‘when the same user ID is shared by several login
names.
If getlogin ‘is called ‘within ‘a process that is not attached to ‘a terminal
device, it returns NULL. The correct procedure for deterimining the
login name is to call cuserid, or to call getlogin :and if ‘it fails, to call
getpwuid.

Files

Jete futmp

See A];O

cuserid(S), getgrent{S), getpwent(S), utmp(M)

Diagnostics

Returns NULL if name not found.
Notes

The return values point to static data whose content is overwritten
by -each call.

March 24, 1984 Page 1



GETOPT(S) GETOPT(S)

Name

getopt - Gets option letter from argument vector.

Syntax
#include <stdio.h>

int getopt (arge, argv, optstring)
int'arge;

char **argv;

char *optstring;

extern char *optarg;

extern int optind;

Description

Getopt teturns the next option letter in ‘argv that matches a letter in
optstring. Opletring is a string of recognized option letters; if a letter
is followed by ‘a colon, the option is expected to have an argument
that may or may not be separated from it by whitespace. Optarg is
set ‘to :point to the start of the ‘option argument -on return from

getopt.

Getopt places in -optind the argv index of the next argument to be
processed. Because optind is -external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first nonoption
argument), getopt returns EOF. ‘The special option -- may be used to
delimit the end of the options; EOF ‘will be returned, and - ‘will be
skipped.
Diagnostics
Getopt prints an eérror message on stderr and returns ‘a question mark
(?) when it encounters an option letter notincluded in optstring.
Examples
The following code fragmentshows how one might process the ‘argu-

ments for a command that can take the mutually exclusive options a
and b, and the -options f and 0, both of which require arguments:

March 24, 1984 Page 1



GETOPT(S)

main (arge, argv)
int argc;
char **argv;

int ¢;
extern int optind;
extern char *optarg;

GETOPT(S)

while ((c = getopt (arge, argv, "abf:0:")) 1= EOF)

switch (¢) {
case 'a’:
if (bAg)
errflg+ + ;
else
aflg+ +;
break;
case 'b’;
if (aflg)
errflg+ + ;
else
bproc();
break;
case 'f";
ifile = optarg;
break;
case ‘o”:
ofile = optarg;
bufsiza = 512;
break;
l?l:
errfig+ +;

case

if (errflg) {
fprintf (stderr, "usage: . . . );
exit (8);

for( ; optind < arge; optind++) {
if (access (argv]optind], 4)) {

March 24, 1984

Page 2



GETPASS (S) GETPASS ()

Name

getpass — Reads a password.

Syntax

char *getpass (prompt)
char *prompt;

Description
Getpass reads ‘3 password from the file /dev/tty, or if that cannot be
opened, from the standard input, after prompting with the null-
terminated :string prompt and disabling echoing. A pointer is
returned to a null-terminated string.of at:most eight characters.

Files
[dev /ity

See Also

erypt(S)

Notes

The return value points to :static data whose content is overwritten
by each call.

March 24, 1984 Page 1

)
J



GETPID (8) GETPID (8S)

Name
getpid, getpgrp, getppid - Gets process, process group, and ‘parent
process 1Ds.
Syntax
int getpid ()
int getpgrp ()

int getppid ()

Description
Getpid returns the process’ID of the calling process.
Getpgrp returns the process group ID of ‘the calling process.

Getppid returns the parent process ID of the calling process.

See Also

exec(S), fork(S), intro(S), setpgrp($), signal(S)

March 24, 1984 Page 1



GETPW () GETPW (8)

Name

getpw — - Gets password for a given :user ID.

Syntax
getpw (uid, buf)
int uid;
char *buf;

Description
Getpw searches the ‘password file for the uid, and fills in buf with the
corresponding line; ‘it returns nonzero if wutd could not be found.
The line is null-terminated. Uid:must’be an integer value.

Files

[etc/passwd

See Also

getpwent(S), passwd(M)

Diagnostics

Returns nonzero on error.
Notes

This routine is included -only for compatibility with prior.systems and
should not be used; see getpwent(S) for routines to use instead.

March 24, 1684 Page 1

s



GETPWENT(8) GETPWENT ('S)

Name
getpwent, getpwuid, getpwnam, setpwent, endpwent — Gets jpass-
word file entry.
Syntax
#include <pwd.h>
struct passwd *getpwent ( };

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent { );

int-endpwent { );

Description
Getpwent, getpwusd and getpwnam each returns a pointer to a struc-
ture containing the fields of an entry line in the password file. The
structure of a password entry is defined in fusr/include/pwd.h.

The fields have meanings described in passwd(M). (The
pu_comment field is unused.)

Getpwent reads ‘the next line in ‘the file, so successive calls can be
used to search the entire file. Getpwuid and getpwnam search from
the beginning of the file ‘until a matching »id or name is found, or
EOF is encountered.

A call to setpwent has the effect of rewinding the password file to

allow repeated searches. Endpwent may be called to close the pass-
word file 'when processing is complete.

Files

Jetc/passwd

See Also

getlogin(S), getgreny(S), passwd(M)

March 24, 1984 Page 1



GETPWENT (S) GETPWENT(S) .
Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is-contained in 2 static area so ‘it must be copied if it
is to be saved.

March 24, 1984 Page 2



GETS(8) GETS (S)

Name

gets, fgets - Gets a string from a stream.

Syntax
#include <stdio.h>

char *gets (s)
char %s;

char *fgets (s, n, stream)
char *s;
int n;
FILE ®*stream;

Description
Gets reads a string into & Trom ‘the standard input stream stdin. The
function replaces the newline character at the end of the string with
a null character before copying to 8. Gets.returns a pointer to .
Fgete reads characters from the stream until a newline character is
encountered or until a— 1 characters have been read. The characters
are then copied ‘to the string 8. A null character is automatically

appended to the end .of the string before copying. Fyets returns a
pointer to e.

See Also
ferror(S), fopen(S), fread(S), gete(S), puts(S), scanf(S)
Diagnostics
Gets and fgets return ‘the constant pointer NULL upon end-of-file or

error.

Notes

Gets deletes the newline ending its input, but fgets keeps it.

March 24, 1984 Page 1



GETUID () GETUID ()

Name
getuid, geteuid, getgid, getegid — Gets real user, effective user, real
group, ‘and effective group IDs.
Syntax
int getuid ()
int geteuid ()
int getgid ()

int getegid ()

Description
Getusd returns the real user ID ‘of the calling process.
Geteuid returns the effective user ID .of the :calling process.
Getgid returns the real group 1D of the -calling f)rocess.

Getegid returns the effective groupID of the ealling process.

See Also
intro(S), setuid(S)

March 24, 1984 . Page 1




HYPOT(S)

Name

hypot, cabs - Determines Euclidean distance.

Syntax
#include <math.h>

double hypot {x, y)
double x, y;

double cabs (z)

struct {double x, y;} z;
Description

Hgypot and -cabs return

sqrt{x*x + y°)

Both take precautions against unwarranted overflows.

See Also

sgrtin exp(S)

March 24, 1984

HYPOT(S)

Page 1



+IOCTL (8) 100C1L ()

Name

ioctl - Controls character devices.

T mtax
ftinclude <sys fioctl.h>

ioctl(fildes, request, arg)
int fildes;

Description
Toctl performs a variety of functions on character special files (dev-
ices). The writeups of various devices in Section M discuss how foctl
applies ‘to ‘them.
Toctl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Fildee is not associated ‘with a .character special device.
|ENOTTY] ‘ )

Reguest-or arg.is not valid, See #y(M). [EINVAL]}

Return Value

If an error has occurred, a value of - 1 is returned and erro is set
to indicate the error.

See Also
tty(M)

March 24, 1984 Page 1



KILL (S) KILL (S)

Name

kill - ‘Sends asignal to a process or a group of processes.

Syntax

int kill (pid, sig)
int pid, sig;

Description

Kill sends a signal to a process or a group.of processes. ‘The process
or group of processes to which ‘the 'signal is to .be sent is specified by
pid. The signal that is to be sent is specified by #g and is.either one
from ‘the list given in #ignal(S), or 0. If sig is O (the null signal),
error checking is performed but no signal is actually sent. This can
be used to ‘check the validity of pid.

The .effective user ID of ‘the sending process must match the
effective -user ID of ‘the receiving process unless, the effective user.ID
of the sending process is super-user, .or the process is sending to
itself.

The processes with a process ID of 0 and a processID of 1 are special
processes (see intro($S)) :and ‘will be referred to below as proc0 and
procl respectively.

If pid is greater than zero, eig will be sent to the process whose pro-
cess ID is equal to pid. Pid may equal 1.

If pid is 0, &g will be sent to all processes excluding proc0 and proct
whose ‘process ‘group 1D is -equal to the process group ID of the
sender.

If pid is:— 1 and the effective user ID of the sender is not super-user,
#ig ‘will ‘be sent to :all processes excluding proc0 and procl whose real
user ID is equal to ‘the effective user ID of the sender.

If pid is — 1:and the effective userID of the sender is super-user, sig
will be sent to -all processes excluding proc0 and procl.

If pid is negative but not ~ 1, sig will be sentto all processes whose
process group ID is equal to :the absolute value of pid.

Kill ‘will fail and no signal ‘will be sent if .one or more of the follow-
ing-are true:

Sig is not a valid signal number. |EINVAL]

No process ‘can be found corresponding to that.specified by pid.
|ESRCH|

March 24, 1984 Page 1



KILL (8) KILL (8)

The sending process is not sending to itself, ‘its effective ‘user ID
is not super-user, and its effective user 1D does not match the
real user ID of the receiving process. |EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1is returned and erro is:set to indicate the error.

See Also
kill(C), getpid(8), setpgrp(S), signal(8)

March 24, 1984 Page 2



LSTOL (8) LS8TOL (S)

Name

13tol, 1tol3 -~ ‘Converts between 3-byte integers and long integers.

Syntax

13tol (1p, cp, n)
long *lp;

char *cp;

int-n;

1tol3 (cp, ip, n)
char *cp;

long *lp;

int'n;

Description

L8l converts a. list of n 3-byte integers packed into ‘a character
string pointed to by .¢p into a list of long integers pointed to by Ip.

Ltol8 performs the reverse conversion from long integers (Ip) to 3-
byte .integers {¢p).

These functions -are useful for file system maintenance where the
block numbers are 3 bytes long.

See Also

filesystem(F)

March 24, 1984 Page 1



LINK (S) LINK(S)

Name

link - Links a new filename to an existing file.

Syntax
int link (pathi, path2)
char ®pathi, ®*path2;

Description
Patk! points to a pathname naming an existing file. Path? points to
a pathname giving the new filename to be linked. Link makes a new
link by creating & new directory entry for the existing file using the
new name. The contents of the existing file .can then ‘be accessed

using either name.

Leink will fail and no link ‘will be created if one or more of the fol-
lowing are true:

A component of either path prefix is nota directory. [ENOTDIR]
A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission.
[EACCES]

The file named by path! does not exist. [ENOENT]
The link named by path? already exists. {EEXIST]

The file named by path! is a directory and the effective user ID
is not super-user. [EPERM]

The link ‘named by path2 and the file named by path! are on
different logical devices (file systems). [EXDEV]

Pqth?2 points to anull pathname. [ENOENT]

The requested link requires writing in a directory with a mode
that denies write permission. [EACCES]

The requested link requires writing in a directory ion ‘a read-only
file system. [EROFS]

Pathk points outside the process’ allocated :address space.
[EFAULT]

March 24, 1984 Page 1

y
,'}




LINK (S) LINK(S)

Return Value

Upon successful .completion, a value ‘of 0 is returned. Otherwise, &
value of — 1is returned and -errmo iis set to indicate the error.

See Also
In{C)

March 24, 1984 : Page 2



LOCK (8) LOCK(S)

Name

@ lock ~ Locks a process in primary memory.

Syntax

Tock(flag)

Description

If- the flag argument is nonzero, the process executing this call will
not be swapped except if it is required ‘to grow. If the argument is
zero, the process is unlocked. This call may only be ‘executed by the
super-user.

Notes

Locked processes interfere with the compaction of primary memory
and can cause deadlock. ‘Systems with small memory configurations
should avoid using ‘this call. It is best to lock process soon after
booting because that will tend to lock them into one end of memory.

March 24, 1984 Page 1



LOCKING ( S) LOCKING(S)

Name

locking — Locks or unlocks a file region for reading or writing.

Syntax

locking(fildes, mode, size);
int fildes, mode;

long size;

Description

Locking allows a specified number of bytes in a file to be controlled
by ‘the locking process. Other processes which attempt to read or
write a portion of the file containing the locked region may sleep
until the area becomes unlocked depending upon the mode in ‘which
the file region was locked. A process that attempts to write to or
read a file region that has been locked against reading and writing by
another process {using the LK_LOCK or LK_NBLCK mode) will sleep
until the region of the file has been released by the locking process.
A process thatattempts to write to a file region that has been locked
against writing by another process (using the LK.RLCK or
LK_NBRLCK mode) will sleep until the region of the file has been
released by the locking process, but-a read request for that file region
will proceed normally.

A process that attempts ‘to lock a region of a file that contains ‘areas
that have been locked by other processes will sleep if it has specified
the LK_LOCK or LK_RLCK mode ‘in its Jock request, but will return with
the error EACCES if it specified LK_NBLCK or LK _NBRLCK.

Fildesis the value returned from a successful creat, open, dup, or pipe
system -call.

Mode specifies the type of lock ioperation ‘to ‘be performed on the file
region. The available values for mode are:

LK_UNLCK 0
Unlocks the specified region. The calling process releases a
region of the file it had previously locked.

LK_LOCK 1
Locks ‘the specified region. The calling process will sleep ‘until
the entire region is available if any part of it has been locked by
a different process. The region is then locked for the calling
process and no other process may read or ‘write in any part-of
the locked region. (lock against read and write).

March 24, 1984 . Page 1



LOCKING (8) . LOCKING (8)

LK_NBLCK 2
Locks the ‘specified region. If any part-of the region is already
locked by a different ‘process, return ‘the error EACCES instead
of ‘waiting Tor the region to become available for locking (non-
blocking lockrequest).

LK_RLCK 3
Same as LK_LOCK except that the locked region may be read by
other processes {read permitted lock).

LK NBRLCK 4
Same ‘as LK_NBLCK ‘except that ‘the locked region may be read
by other processes (nonblocking, read permitted lock).

Size is the number of .contiguous bytes to be locked .or unlocked.
The region to be locked starts at the current offset'in the file. If efze
is 0, the entire file (up to-a maximum of 2°to the power of :30 bytes)
is locked or unlocked. Size may extend beyond the end of the file,
in ‘which ‘case only the process issuing the lock ‘call may access or add
information to ‘the file within the boundary defined by sise.

The potential for a deadlock occurs when a process ‘controlling a

locked area is put to sleep by accessing another process’ locked area.

Thus ‘calls to locking, read, or write scan for a deadlock prior to sleep-

ing on a locked region. ‘An ‘efror return is made if sleeping on the )
locked region would cause a-deadlock. -

Lock requests may, in whole or part, contain :or be icontained by a
previously locked region for the same process. When this occurs, or
when adjacent regions are locked, the regions :are combined ‘into a
single area if the mode of the lock is the same {i.e; either read per-
mitted or regular lock). If the mode of the overlapping locks differ,
the locked ‘areas will be assigned assuming that the most recent
request must be satisfied. Thus if a read only lock is applied to a
region, -or ‘part of a region, that had been previously locked by the
same ‘process against both reading and writing, ‘the .area of the file
specified by the new lock will ‘be locked for read only, while the
remaining region, if ‘any, will remain locked against reading and writ-
ing. There is no arbitrary limit to the number of regions which may
be locked in a file. There ‘is however a system-wide limit on the
total number of locked regions. This limit is 200 for XENIX systems.

Unlock requests may, in whole or ‘part, release one or more locked

regions controlled by the process. When regions are not fully

released, the remaining areas are still locked by the process. Release : )
of ‘the center section of ‘a locked area requires an additional locked T »)
element ‘to hold the separated section. If the lock ‘table is full, an

error is returned, and the requested region is not released. Only the

process which locked the file region may unlock it. An wunlock

request for a‘region that the process does not have locked, or thatis

already unlocked, has no effect. When a process ‘terminates, all

locked regions controlled by that process are unlocked.

March 24, 1984 Page 2



LOCKING (S) LOCKING (8)

If a process has done more than one open on 3 file, all locks puton
the file by that process will be released.on the first-close of the file.

Although no error is returned ‘if Jocks are ‘applied to special files or
pipes, read/write operations on ‘these types of files will ignore the
locks. Locks may not be applied to a directory. .

See Also
creat(S), open(S), read(S), write(S), dup(§), close(S), lseek(S)

Diagnostics

Locking returns the value {int) -1 if :an error occurs. If any portion
of the region has been locked by another process for the LK_LOCK
and LK_RLCK .actions and the lock request is to testonly, ermo is set
to EACCES. If the file specified is a directory, errno is set to
EACCES. If locking the region would cause a deadlock, errro is set
to EDEADLOCK. If there are no more free internal locks, errmois set
to EDEADLOCK. .

March. 24, 1984 Page 3



LOGNAME (S) LOGNAME (S)

Name

logname -~ Finds login name of user.

Syntax

char *logname( );

Description

Logname returns a ‘pointer to the null-terminated login ‘namé. It
uses ‘the string found in the LOGNAME variable from the user's
environment. :

Files
fete/profile

See Also
env(C), login(M), profile(M), environ(M}

March 24, 1984 Page 1



LSEARCH (8) LSEARCH ()

Name

Isearch - Performs linear search and update.

Syntax

char *lsearch {key, base, nelp, width, compar)
char *key;

char *base;

int *nelp;

int width;

int (*compar)();

Description

Lesearch is a linear search routine generalized from Knuth (86.1)
Algorithm Q. It retumns a pointer into 2 table indicating the location
at ‘which ‘2 datum ‘may be found. If the item does not occur, it is
added at the end-of ‘the table. The first argument is 2 pointer to the
datum to be located in ‘the table. The second argument.is a pointer
to ‘the base of the table. The ‘third argument is the address of an
integer containing the number of items in the table. It is incre-
mented if the item is added to the table. The fourth argument.is the
width ‘of ‘an element in bytes. The last argument is the name of the
comparison routine. It is called with two arguments which -are
pointers ‘to the elements being compared. The routine must return
zero if the items are equal, and nonzero otherwise.

Notes
Unpredictable events can occur if there is not enough room in ‘the

table to add :a new item.

See Also
bsearch(S), gsort(S)

March 24, 1984 Page 1



LSEEK (8) LSEEK (8)

Name

lseek — Moves read/write file pointer.

Syntax
long Iseek (fildes, offset, whence)
int fildes;
long offset;
int ' whence;
Description
Fildee is a file descriptor returned from a creat, open, dup, or fent
system call. Leeek sete the file pointer associated with fildes as fol-
lows:
If whence is 0, the pointer is set to offeet bytes.
If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus -offset.

Upon successful completion, ‘the resulting pointer location as meas-
ured in bytes from the beginning of the file is returned.

Leeek will fail and the file pointer will remain unchanged if ‘one or
more of the following are true:

Fildes is not an open file descriptor. [EBADF)]
Fildes is associated with a pipe or fifo. |ESPIPE]
Whence is not0, 1'or 2. [EINVAL and SIGSYS signal]
The resulting file pointer would be negative. |EINVAL)
Some devices are incapable of seeking. The value of the file pointer
associated with such a-device is undefined.
Return Value
Upon successful completion, -a:nonnegative integer indicating the file

pointer value is returned. Otherwise, a value .of ~ 1 is returned and
errno is set-to indicate the error.

March 24, 1984 Page 1




«LSEEK (S) LSEEK (S)

See Also
creat(S), dup(S), fentl(S), open(S)

1984 Page 2



MALLOC(S) MALLOC (S)

Name

malloc, free, realloc, calloc ~  Allocates main memory.

Syntax
char *malloc (size) unsigned size;

free (ptr)
char®ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned elem, elsize;

Description

Malloc and free provide a simple general-purpose memory allocation
package. .Malloc returns a pointer to a block of at least size bytes
beginning on.a 'word boundary. b

The argument to free is a pointer to a block previously allocated by
malloc; this space is made available for further allocation, but its
contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by
malloc is overrun or if some random number is handed to free.

Malloc allocates the first contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adja-
cent free blocks ‘as it searches. It calls ebrk (see sbrk(S)) to get
more memory from the system -when ‘there is no suitable space
already free.

Realloc changes the size of the block pointed to by pir to size bytes
and returns a pointer to the (possibly moved) block. The contents
will be unchanged up to the lesser of the new and old sizes.

Realloc also ‘works if ptr points to a block freed since the last call of

malloc, realloc, or calloc; thus sequences of free, malloc and realloc o

can exploit the search strategy of malloc to do storage compaction. )
B

Calloc ‘allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of

March 24, 1984 Page 1



MALLOC(S) MALLOC(S)

object.

Diagnostics

Malloe, realloc and calloc return a null pointer (0) if there is no
available memory :or if the area has been detectably corrupted by
storing outside the bounds of a block. When realloc returns 0, the
block ‘pointed to by ptr may be destroyed.

March 24, 1984 Page 2



MKNOD (S) MEKNOD ()

Name

mknod - Makes a directory, or.a special or ordinary file,

Syntax

int-mknod-(path, mode, dev)
char *path;
int mode, dev;

Description

Mknod creates a new file named by the pathname pointed to by path.
The mode of the new file is initialized from mode. ‘Where the value
of mode is interpreted as follows:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 Directory
0050000 Name special file
0060000 Block special
0100000 or 0000000 Ordinary file

0004000 Set userID 'on execution
0002000 Set group 1D ‘on execution
0001000 Save ‘text image after execution

0000777 Access permissions; constructed from the following
0000400 Read by owner
0000200 Write by owner
0000100 Execute {search on directory) by owner
0000070 Read, write, execute (search) by group
0000007 Read, ‘write, execute (search) by others

Values of mode other than those above are undefined and should not
be used.

The file’s owner ID iis set to the process’ effective user'ID. The file's
group ID is set to the process’ effective groupID.

The low-order 9 bits of mode are modified by ‘the process’ file mode
creation ‘mask: ‘all bits 'set in the ‘process’ file mode creation mask are
cleared. See umaek(S). If mode indicates a block, character, or
name special file, then .dev is a configuration dependent specification
of a character or block 1/O device. If .mode does not indicate a
block, character, or name special file, then dev is ignored. For block
and character ‘special files, dev ‘is the special file’s device number.
For name special files, dev is the type of ‘the name file, either a

March 24, 1984 Page 1



MKNOD {8} MKNOD ('S)
shared ‘memory file or a semaphore.

Mknod may be invoked ‘only by ‘the super-user for file types other
than named pipe special.

Mknod will fail and the new file will not be created if -one or more of
the following ‘are true:

The process’ effective userID is not super-user. |EPERM]
A componentof the path prefix is nota directory. [ENOTDIR]
A component of the path prefix does not exist. [ENOENT]

- The directory in which the file is to be created is located on a
read-only file system. |EROFS]

The named file exists. [EEXIST]

Path points outside ‘the process’ allocated address space.
[EFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

mkdir(C), mknod(C), -chmod(S), creatsem(S), exec(S), sdget(S},
umask(S), filesystem(F)

Notes
Semaphore files should be created with the creatsem(S) system call.

Share data files should be created with the #dget(S) system call.

March 24, 1684 Page 2



MKTEMP(S) MKTEMP(S)

Name

mktemp -~ Makes a unique filename.

Syntax
char *mk temp{ template)
char *template;

Description
Mktemp replaces template with a unique filename, ‘and returns a
pointer to the name. The template should look like a filename with
six trailing X°s, which ‘will be replaced with the ccurrent process 1D
preceded by a zero.

See Also

getpid(S)

March 24, 1984 ' Page 1




MONITOR (S) MONITOR (8)

Name

monitor = Prepares-execution ‘profile.

Syntax
monitor (lowpe, highpc, buffer, bufsize, nfunc)

int (#lowpe)( ), (*highpe)( );
short buffer| };

int bufsize, nfunc;
Description

Monitor is an interface to’ profil(S). Lowpec and hkighpe are -the
addresses of two functions; buffer is the address -of a user-supplied
array of bufeize short integers. Monitor arranges to record a histo-
gram .of periodically sampled values of the program ‘counter, :and of
counts of calls of certain functions, in ‘the buffer. The lowest
address sampled is that.of lowpe and the highest is just below highpe.
At most nfunc call counts can be kept; only calls of functions com-
piled :with the profiling -option — p of ¢c(CP) are recorded. For the
results to be significant, especially where ‘there are small, heavily
used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.
To profile the entire program, itis:sufficientto use

extern etext();

monitor(2, etext, buf, bufsize, nfunc);

FEtezt lies just above all the program text.

To stop execution monitoring and ‘write the results on the file
mon.out, use

monitor(0);

prof(CP) can then be used to examine the results,

Files

mon.out

See Also
cc{CP), prof{ICP), profil(S)

March 24, 1984 Page 1



MONITOR (8) MONITOR (8)

Notes
An executable program created by cc — p automatically includes calls

for ‘monstor with default parameters; ‘monitor needn’t be -called expli-
citly except to gain fine .control.over profiling.

March 24, 1984 Page 2




MOUNT(S) MOUNT(S)

Name

mount - Mounts a file system.

Syntax
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

Description
Mount requests that a removable file system ccontained on the block
special file identified by spec be mounted on the directory identified
by dir. Spec and dir are pointers to pathnames.

Upon successful completion, references to the file dir will refer to
the root directory-on the mounted file system.

The low-order bit of ruflag is used to :control write permission on
the ‘mounted file system; if 1, writing is forbidden, otherwise writing
is permitted according to individual file ‘accessibility.
Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true:
The effective user ID is not super-user. [EPERM]
Any of the named files does not exist. {ENOENT]
A component of a path prefix is not adirectory. |[ENOTDIR]
Spec is not a block special device. [ENOTBLK]
The device associated with spec does not exist. [ENXIO]|

Dir is'not a directory. [ENOTDIR]

Spee or :dir points outside ‘the process’ allocated address space.
[EFAULT]

Dir is currently mounted on, is someone’s ‘current working
directory or is otherwise busy. [EBUSY]

The device associated with ‘gpec is currently mounted. [EBUSY]

March 24, 1984 Page 1



MOUNT(S) MOUNT(S)

Return Value

Upon successful completion a value ‘of 0 is returned. Otherwise, a
value of - 1isreturned and ermo is set to indicate the error. ‘\>

See Also
mount{C), umount(8)

March 24, 1984 Page 2



NAP(S) | NAP(S)

Name

nap - .Suspends execution for a short.interval.

Syntax
long nap( period)
long period;

Description
The .current process is suspended from execution for at least the
number of milliseconds specified by period, or until a signal is
received.

Return Value
On successful completion, a long integer indicating the number of
milliseconds actually slept is returned. If the process recieved a signal
while napping, the return value will be -1, and errmo will be set to
EINTR.

Notes
This function is driven by the system clock, which in -most cases has
a granularity of ‘tens of milliseconds.

See Also

sleep(S)

March 24, 1984 Page 1



s

NICE(8) NICE (8)

Name

nice - Changes priority of a process.

Syntax

int nice‘(incr)
int incr;

Description

Nice adds the value of sner to the nice value of the -calling process.
A process’ ‘nice ‘value is a positive number for which a higher value
results in lower CPU priority.

A ‘maximum nice value of 39 and a minimum nice value of 0 .are
imposed by the system. Requests for values above or below these
limits resultin the nice value being set to the corresponding limit.

Nice will not change the nice value il 4ner is negative -and the
effective user ID of the calling process is not super-user. {EPERM]

Return Value

Upon successful completion, nice returns the new nice value minus
20. Note that nice is unusual in the ‘way return codes are handled. It
differs from most other system calls in two ways: the value - 1isa
valid return code (in ‘the case where the new nice value is 19}, and
the system call either works or ignores the request; there is never an
error.

See Also

nice(C), exec(S)

March 24, 1984 Page 1



NLIST(S) NLIST(S)

Name

nlist - ‘Gets entries from name list.

Syntax

#include <a.out.h>
nlist (filename, nl)
char *filename;
struct nlist nl] ];

Description

Nlist examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an
array ‘of structures containing names, types and values. The list is
terminated with a null name. Each name is looked up in ‘the name
list of the file. If the name is found, the type and value of the name
are inserted in ‘the next two fields. If ‘the name is not found, both
entries are set to 0. See a.out(F) for a discussion of the symbol
table structure.

See Also
a.out(F), xlist(S)

Diagnostics

Nhet return -~ 1 and sets -all ‘type -entries to ‘0 if the file cannot be
read, is ‘not an object file, ‘or contains ‘an invalid name list. ‘Other-
wise, nlist returns 0. A return value of 0 does not indicate that any
or all symbols were found.

March 24, 1984 Page 1



OPEN (8)

Name

OPEN(S)

open - Opens file for reading or writing.

Syntax

#include <fentl.h>
int open (path, oflag], mode])

char *path;

int.oflag, mode;

Description

Path points to a pathname naming a file. ‘Open opens a file descrip-
tor for the named file and sets the file status flags according to the
value of oflag. Oflag values are constructed by or-ing flags from the
following list (only one of the first three flags below may be used):

O_RDONLY
O_WRONLY
O_RDWR

O_NDELAY

March 24, 1984

Open for reading only.
Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and writes.
See read(S) and wnite(S).

When -opening a FIFO with ‘O_RDONLY or
O_WRONLY set:

If O_NDELAY ‘is set:
An open for reading-only will return without
delay. An open for writing-only will return an
error if ‘no process currently has the file .open for
reading.

If ONDELAY is clear:
An -open for reading-only will block until a pro-
cess opens the file for writing. An open for
writing-only will block until a process opens the

file for reading.

When opening a file associated with a communication
line:

Hf O_NDELAY is set:

The open will return without waiting for carrier.

Page 1




OPEN ($) OPEN (8)

If O_NDELAY is clear:
The open will block ‘until carrier is present.

O_APPEND If set, the file pointer will be set to the end of the file
prior to each write.

O_CREAT If the file exists, ‘this flag 'has no -effect. Otherwise,
the file’s owner ID is set to the process’ effective user
ID, the file’s group ID is set to the process’ effective
group ID, :and the low-order 12 bits of the file mode
are :set to the value .of mode modified as follows (see
creat(S)):

All bits set in ‘the process’ file mode creation
mask ‘are cleared. ‘See umask(S).

The “‘save ‘text image after execution bit’’ of the
mode is cleared. See chmod(S).

O_TRUNC Ifthe file exists, its length is truncated to 0 and the
mode and owner are unchanged.

O_EXCL If O_EXCL and ‘O_CREAT are set, .open will {ail if the
file exists.

O_SYNCW Every write ‘to -this ‘file :descriptor -will be synchro-
nous, that is, when ‘the ‘write system :call completes
data is guaranteed to have been written to disk.

Upon successful completion a nonnegative integer, the file descrip-
tor, ‘is returned.

The file pointer used to mark :the .current ‘position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across :ezec system
calls. See fentl(S).

No ‘process may have more than 20 file descriptors open simultane-
ously.

The .-named file is opened unless one or :more of the following are
true:

A component-of the path prefix is not a directory. [ENOTDIR]

O_CREAT is not set and ‘the named file does not exist.
[ENOENT| v

A component of ‘the path prefix denies search permission.
[EACCES]

March 24, 1984 Page 2



OPEN () OPEN(S)

Oflag permission is denied for the named file. [EACCES]

The named file is a directory -and oflag is write or read/write.
[EISDIR]

The named file resides on a read-only ‘file system and oflag is
write or readfwrite. [EROFS]

Twenty file descriptors are currently open. |[EMFILE]
The named file is a character special -or block special file, and
the .device -associated with this special file does not exist.

[ENXIO]

The file is 'a pure ‘procedure (shared text) file that is being exe-
cuted and oflag is write or read/write. [ETXTBSY)

Path points outside the process’ allocated address space.
|[EFAULT] .

O_CREAT and O_EXCL are set, and the named file exists.
|EEXIST)

O_NDELAY is :set, the named file is a FIFO, O_WRONLY is set,
and no process has the file open for reading. |ENXIO]

Return Value
Upon :successful completion, ‘2 nonnegative :integer, namely a file

descriptor, is ‘returned. Otherwise, a value :of — 1 is returned and
errno is set to indicate the -error.

See Also
~close(8), creat(S), dup(S), fentl(S), lseek(S), read($S), write(S)

March 24, 1984 Page 3



OPENSEM (S) . OPENSEM (S)

Name

opensem - ‘Opens a semaphore.

Syn'tax

sem_num == opensem(sem_name);
int.sem_num;
char *sem_name;

Description

Opensem opens ‘a semaphore named by sem_name and returns the
unique semaphore identification number -sem_num used by waiteem
and -sigegem. Createem should always be called to initialize the sema-
phore before the first attempt to open it, .or to reset the semaphore if
it has become inconsistent due to an exiting process neglecting to do
a sigsem after issuing a waitsem.

See Also

creatsem(S), waitsem(S), sigsem(S)

Diagnostics

Opensem returns the value ~ 1 if :an error occurs. If the semaphore
named :does not exist, .errno is set to ENOENT. If the file specified is
not a semaphore file (i.e., afile previously created by a process‘using
a call to creatsem), errno is set to ENOTNAM. If the semaphore has
become invalid due to inappropriate use, errno is set to ENOTAVAIL.

March 24, 1984 Page 1



PAUSE (8) PAUSE(S)

Name

pause - Suspends a process until asignal occurs.

Syntax

int pause ();

Description

Pause suspends the calling process until it receives a signal. "The sig-
nal must be one thatis not currently set to be ignored by the calling
process.

If the signal ecauses termination -of the calling process, pause will not
return.

If the signal is caught by the -calling process and control is returned
from the signal ‘catching Tunction (see #ignal(S)), the calling process
resumes execution from the pointof suspension; ‘with a return value
of — 1 from pause and errmo set to EINTR.
See Also } .
alarm(§), kill(S), signal(S), wait(S)

March 24, 1984 Page 1



PERROR(S) PERROR(S)

Name
perror, sys.errlist, sys.nerr, errno — Sends system error messages.

Syntax
perror (s)
char *s;
int sys.nerr;
char *sys_errlist] |;

int erTno;

Description
Perror produces a short emor ‘message on the standard error,
describing the last error encountered during a system call from a C
program. First the argument string s is printed, then a colon, then
the message and a newline. To be of ‘most use, the argument
string should be the name of the program that .incurred the ‘error.
The ‘error number is taken from the external variable errno, which
is set ‘when ‘errors occur ‘but not cleared when correct calls are
made.

To simplify variant formatting ‘of messages, the vector of message
strings sys_errlist is provided; errno -can be used as an index in this
table to get the message string without the newline. Sys.nerr is the
number of entries provided for in the table; it should be checked
because new error codes may be added to the system before they
are added to the table.

See Also
intro(S)

May 10, 1984 Page 1



PIPE(S) PIPE(S)

Name

pipe - ‘Creates an interprocess pipe.

int pipe (fildes)
int fildes[2];
Description -
Pipe creates an 1/O mechanism called ‘a pipe and returns two file
descriptors ‘in the array fildes. Fildes[0] is opened for reading and
fildes]1] is opened for writing. The -descriptors remain ‘open across
fork(S) system calls, making communication between parent and
child possible.
Writes up to 5120 ‘bytes of ‘data are buffered by ‘the -pipe before the
writing process is blocked. A read on file descriptor fildes[0]
accesses the ‘data written to fildes|1] on a first-in-first-out basis.
No process may have more than 20 file descriptors open simultane-
ously. >
Pipe will Tail if 19 or more file descriptors are currently open. -
{EMFILE)
Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1is returned and errno is set to indicate the error.

See Also
sh(C), read(S), write(S), fork(S}, popen(8)

March 24, 1984 Page 1



POPEN(S) POPEN (S)

Name

popen, pelose — Initiates I/O to or from aprocess.

Syntax
#include <stdio.h>

FILE ®*popen {command, type)
char *command, *type;

int pclose {stream)
FILE ®stream;

Description

The ‘arguments ‘to popen ‘are pointers to null-terminated strings con-
taining, respectively, a shell command line ‘and an 1/O mode, either
“r? for ‘reading or ‘““w’’ for writing. Popen creates a pipe between
the calling process ‘and the command to be executed. The value
returned is a stream pointer that can be used (as appropriate) to
write to the standard input of the ‘command or read from its stan-

dard output.
A stream -opened by popen should be closed by pelose, which waits
for the associated process to terminate and returns the exit status of
the command. Because open files ‘are shared between processes, a
type *‘r"’ command may be used as an input filter, and a type “w”’
as-an output filter,

See Also

pipe(S), wait{S), fclose(S), fopen(S), system(S)

Diagnostics .

Popen returns ‘a null pointer if files or processes cannot be created,
or if the shell ¢cannot be accessed.

Pelose returns — 1 if stream is not associated ‘with a popened com-
mand.

Notes
Only one stream opened by popen can be in use at once, Buffered
reading before opening an input filter-may leave the standard input

of that filter mispositioned. Similar problems with an :output filter
may be forestalled by careful buffer flushing; see fclose(S).

March 24, 1984 Page 1



PRINTF(S) PRINTF (S)

Name

printf, fprintf, sprintf - Formats output.

#include <stdio.h>

int printf (format | , arg ] ... )
char *format;

int fprintf (stream, format | , arg} ... )
FILE *stream;
char *format;

int.sprintf (s, format | , arg] ... )
char *s, format;

Description

Printf places output on the standard output stream stdout. Fprintf

places output on the named output etream. Sprin{f places output,

followed by the null character (\0) in consecutive bytes starting at s;

it is the user's responsibility to ensure that enough storage is :avail- )
able. Each function returns the number of characters placed (not !
including the \0 in the case of spnnff}), or a negative value if an out-

put error was encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The format iis a character string that contains
two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results
in fetching.of zero or more args. The results are undefined if there
are insufficient args for the format. If the format is exhausted while
args remain, the excess args are simply ignored. ‘

Bach conversion specification is introduced by the character %
After the 23 the following appear in sequence:

Zero or ‘more flags, which modify the meaning of the conver-
sion specification.

An optional decimal digit string specifying a ‘minimum field
width. If the converted value has fewer characters than the field
width, it will be padded on the left (or right, if the left-
adjustment flag described below has been given) to the field
width.

A precision that gives the minimum number of digits to appear
for the d, o, u, x, or X conversions, the number of digits to
appear after the -decimal :point for the  and f conversions, the

March 24, 1984 Page 1



PRINTF(S) PRINTF(S)

maximum number of significant digits for the g conversion, .or
the maximum number of characters to be printed from a string
in s conversion. The precision takes the form of a period (.)
followed by a decimal digit string: 2 null digit string is treated as
zero0.

An optional 1 specifying that a following d, o, u, x, or X conver-
sion character applies to a long integer ary.

A character that indicates the type of conversion to be applied.
A field ‘width or precision may be indicated by ‘an asterisk (*) instead
of a digit string. In this case, an integer arg supplies the field width
or precision. The .arg ‘that is :actually .converted is not fetched until
the ‘conversion letter is seen, s0 the args specifying field ‘width or
precision must appear before the arg {if any) to be converted.
The flag characters and their meanings are:

- The result of the conversion ‘will be left-justified within

the field.

4 The result-of a signed ‘conversion ‘will always begin with a
sign (4 or—).

blank If ‘the first character of a signed conversion ‘is not a sign,

a blank will be prepended to the result. “This implies that
if the blank and 4 flags both appear, the blank flag will
be ignored.

# This flag specifies ‘that the -value is to be converted to an
“alternate form,” For ¢, d, 8, and u conversions, the flag
has no effect. ‘For o conversion, it increases the precision
to force the first digit of the result to be a zero. For x
(X} -conversion, a mnonzero result ‘will have Ox (0X)
prepended to it. For e, E, f, g and ‘G conversions, the
result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point appears
in the result of these conversions only if a-digit follows
it). For g and ‘G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned
octal, decimal, or ‘hexadecimal notation (x and X),
respectively; the letters abedef are ‘used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits ‘to appear; if ‘the
value being converted can be represented in fewer digits,
it ‘will be expanded ‘with leading zeroes. The default pre-
cision is 1. The result of converting a zero value with a
precision ‘of zero s a-null string (unless the conversion is

March 24, 1984 Page 2



PRINTF(S)

e,E

&G

%

PRINTF (S)

0, x, or X .and the # flag is present).

The float or double arg is ‘converted to decimal notation
in the style **[— ]|ddd.ddd”, where the number of digits
after the decimal ‘point is ‘equal to ‘the precision
specification. If the precision is ‘missing, six digits ‘are
output; if the precision is explicitly 0, no decimal point
appears.

The float or double arg is converted in the style
. |d.dddex dd”’, ‘where there is one digit before the
decimal ;point and the number of digits after it is equal to
the precision; when the precision is missing, 6 -digits are
produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of ‘e introducing the exponent. The ‘exponent
always ‘contains exactly two digits.

The float or double -arg is printed in style £ or e (or in
style B in the case of a G format code}, ‘with the precision
specifying the number of significant digits. ‘The style used
depends on the value converted: style e will ‘be used only
if the exponent resulting from the conversion is less than
— 4 ‘or greater ‘than the precision. Trailing zeroes are
removed from ‘the result; a decimal point appears only if
itis followed by a digit.

The ccharacter arg is printed.

The arg iis taken to be a string {character pointer) and
characters from the string are printed until a null charac-
ter (\0) is encountered or the number of characters indi-
cated by the precision specification is reached. If the pre-
cision is missing, it is taken to be infinite, so -all :charac-
ters up to the first null character are ‘printed.

Print-a %3 no argumentis converted.

In mno case ‘does a nonexistent or small field width cause truncation
of a field; if the result.of a conversion is ‘wider than the field width,
the field is simply expanded ‘to ‘contain ‘the -conversion result. Char-
acters generated by printf :and fprintf are printed as if putckar had
been ‘called {see pute(8)).

March 24, 1984 Page 3




PRINTF () PRINTF(S)

Examples

To print a date and time in the form ‘‘Sunday, July 3, 10:02", where
weekday and month are pointers to null-terminated strings:

printf("%s, % %4, %2d:%.2d", weekday, month, day, hour,
min);

To print 7 to five decimal places:

printf("pi = %5f", 4*atan(1.0));

*See Also
ecvt(S), putc(S}), scanf(S)

March 24, 1984 . Page 4



PROFIL () PROFIL (8)

Name

profil - Creates an .execution time profile.

Syntax

profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

Description

Buff points to an area of core whose length (in bytes) is given by
bufeiz. After this call, the user’s program counter is examined.each
clock tick, where a clock tick is some fraction of .a second given in
machine(M). Offsct is subtracted from it, and the result multiplied
by scale. If the resulting number corresponds to a word inside buff,
that word is incremented.

The scale ‘is interpreted as an unsigned, fixed-point fraction with

binary point at the left: 0177777 (octal) gives a 1-1 mapping of pc's

to words in buff; 077777 {octal) ‘maps each pair of instruction words

together. 02(octal) maps all instructions onto the beginning of buff > :
(producing a noninterrupting core clock}. /

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufeiz of 0. Profiling is turned off ‘when an
ezec is executed, but remains on ‘in child and parent both -after a
fork. Profiling will be turned off ‘if an update in buff would cause a
memory fault.

See Also
prof(.CP), monitor($S)

March 24, 1984 . Page 1



PTRACE(S)

Name

PTRACE(S)

ptrace — Traces a process,

Syntax

int ptrace (request, pid, addr, data);
int request, ;pid, data;

Description

Pirace provides a means by which ‘a parent process ‘may control the
execution .of a child process. Its primary use is in the implementa-
tion ‘of breakpoint debugging; see adb{CP). The child process
behaves normally until it encounters a signal (see signal(S) for the
list), at which time it enters a stopped state and ‘its parent is notified
via wait(S). When the child is in the stopped state, its parent can
examine and modify its *“memory image" using ptrace. Also, the
parent -can cause the child -either to terminate or continue, with the
possibility of ignoring the signal that caused it to stop.

The -addr argument ‘is dependant on the underlying machine ‘type,
specifically the process memory model. On systems where the
memory ‘management mechanism provides a uniform and linear
address space to user processes, the argument is declared as:

int *addr;

which is sufficient ‘to address any location in the process’ memory.
On machines where the user address space ‘is segmented (even if the
particular program being traced has only one segment allocated), the
form of the addr argument is:

struct {
int offset;
int segment;

} saddr;

which allows ‘the -caller to specify segment and offset in the process

address space.

The ‘request argument determines the ‘precise action to be taken by
ptrace and is one of the following:

0

March 27, 1984

This request must be issued by the -child process if ‘it
is to ‘be -traced by its parent. It turns on the child’s
trace fiag that stipulates that the child should be left in
a stopped state upon receipt of a signal rather than ‘the
state specified by fune; see signal(S). The pid, addr,
and data arguments are ignored, and a return value is

Page 1



PTRACE (8)

PTRACE (S)

not -defined for this request. Peculiar results will
ensue if the parent does not expect to trace the child.

The remainder of the requests can only be ‘used by ‘the parent pro-
cess. For each, pid is the process ID :of the child. The child must be
in ‘a:stopped state before these requests are made.

1,2

4,5

March 27, 1984

The word -at location -addr in the -address space of the
child is ‘returned to ‘the parent process. If I.and D
space are separated, request 1 returns a word from 1
space, and request 2 returns a word from D space. If
I and D space are not separated, either request 1 or
request 2 may be ‘used with equal results. The data
argument is ignored. These two requests will fail if
addris not the start address-of a word, in which case a
value .of — 1 is returned ‘to the parent process and the
parent’s errno is set to ‘EIO.

With this request, ‘the word at location addr in the
child’s 'USER ‘area in the system’s address space (see
<sysfuser.h>) is returned to the parent process.
The data argument is ignored. This request will fail if
addr is ‘not the start address of a ‘word or is outside
the USER area, in which case a wvalue of -1 s
returned to :the ‘parent process and the parent’s ermo
is set to EIO.

With these requests, the value given by the data argu-
ment is written into the address space of the child at
location addr. If I .and D space are separated, request
4 -writes a word into 1 space, and request 5 writes a
word into D space. If 1 and D space are not separated,
either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written
into ‘the ‘address space -of the child is returned to the
parent. ‘These two requests will fail if addris a loca-
tion :in a pure procedure space and another processis
executing in that space, or addris not the start address
of a-word. Upon failure a value .of - 1 is returned to
the parent process ‘and the pparent’s errno is set to EIO.

With this request, :a few entries in ‘the child’s USER
area.can be written. Data gives the value thatisto be
written and addr is the location of the entry. The few
entries that.can be written follow:

~ ‘The general registers

- Any floating-point status registers

~ Certain bits of ‘the processor status

Page 2

)



PTRACE (8) PTRACE (S)

7 This request .causes the child to resume execution. If
the data argument is 0, all pending signals including
the one that caused the child to stop are canceled
before it resumes execution. If the data argumentisa
valid signal number, the child resumes execution as if
it ‘had incurred that signal 'and any other pending sig-
nals are canceled. In a linear address space memory
model, the value of eddr must be {int #}1, or.in aseg-
mented address space the segment part of addr must
be zero ‘and the offset part of addr must be (int #)1.
Upon successful completion, the value of data is
returned to the parent. This request will fail if data is
not 0 'or a valid signal number, in which ‘case a value
of - 1 is returned to the parent process and the
parent’s .errno is set to EIO.

8  This request causes the child to terminate “with the
same consequences as ¢z#(S).

9 Execution continues as in request 7; howevet, as soon
as possible ‘after execution -of at least one ‘instruction,
execution stops again. The signal number from the
stop is SIGTRAP. This is part of the mechanism for
implementing breakpoints. The exact implementation
and behaviour is somewhat CPU dependant.

As indicated, these calls (except for request 0) can be -used
only ‘when the subject process has stopped. The wait system
call is used to determine when a process stops; in such a
case the termination status returned by wait has the -value
0177 to indicate stoppage rather than genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent ezec(S) calls. If a traced process calls
ezee, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.
Errors
Ptrace will in general fail if one or more ‘of the following are true:
Requeat is an illegal number. [EIO]
Pid identifies a child that does not exist or has not executed a
ptrace with request 0. [ESRCH]
Notes
The implementation and precise ‘behaviour of ‘this system call is

inherently ‘tied to the specific CPU ‘and process memory model in
use onh a particular machine. Code using this call is likely to not be

March 27, 1984 Page 3



PTRACE(S) PTRACE(S)

portable across all implementations without some change. Please
note that IBM-PC performs no memory mapping.

System calls cannot be single-stepped. If a ptrace call requests a sin-
gle step through -a system -call, the traace bitis cleared, and the user : ”’)
program will run to completion or until it encounters an explicitly set
breakpoint.

See Also

adb(CP)}, exec(S), signal(S), wait{S), machine(M)

March 27, 1884 Page 4



PUTC(S) PUTC(S)

Name

pute, putchar, fpute, putw —~ Puts a character or 'word on astream.

Syntax
#include <stdio.h>

int putc (c, stream)
charc;
FILE *stream,;

putchar (c)

int fputc (¢, stream)
FILE %stream;

int putw ('w, stream)
int w;
FILE ®stream;

Description

Pute appends the character ¢ to the ‘named output stream. It returns
the character written.

Putchar(¢) is defined as putc(¢,stdout }.

Fpute behaves like pute, but is a genuine function rather than a
macro; it ‘may therefore be used as an argument. Fpute runs more
slowly than pute, but takes less space per invocation.

Putw appends the word (i.e., integer) w to the output stream. Putw
neither assumes nor causes special alignment in the file.

The standard ‘stream stdout is normally buffered if and only if the
output does ‘not refer to a terminal; this default :may be changed by
sethuf(S). The standard stream stderr is by default unbuffered
unconditionally, but use of freopen (see fopen(S)) will .cause it to
become ‘unbuffered; setbuf, again, will set the state to whatever is
desired. When an output stream is unbuffered information appears
on the destination file or terminal as soon as written; ‘when it is
buffered many characters are saved up and -written as a block. See
fAlush is fclose(S).

See Also

felose(S), ferror(S), fopen(S), fread($S), gete(S), printf(S), puts(S)

March 24, 1984 Page 1



PUTC () PUTC(S)

Diagnostics

These functions ‘return the constant EOF upon error. Since this isa
valid integer, ferror(S) should be used to detect putw errors.

Notes

Because pute is implemented as a macro, the etream argument with
side effects is not treated correctly.

March 24, 1984 Page 2

" "j



PUTPWENT(S) PUTPWENT(S)

Name

putpwent -~ Writes a password file entry.

Syntax
#include <pwd.h>
int putpwent (p, f)
struct passwd *p;
FILE *f;
Description
Putpwent is the inverse of .getpwent(S). Given a pointer to a passwd

structure -created by getpwent (or getpwuid or .getpunam), putpwent
writes a line .on ‘the stream f. The line matches the format of

/etc/passwd.

See Also

passwd(M), getpwent(S)
Diagnostics

Putpwent returns nonzero if an error was detected during its opera-
tion, otherwise zero.

March 24, 1884 Page 1



PUTS () PUTS (S)

Name

puts, fputs — Puts a string on a stream.

Syntax
#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

Description

Puts copies ‘the null-terminated string ¢ ‘to the standard output
stream stdout and appends a newline character.

Fpute copies the null-terminated string # to the named output stream.

Neither routine copies the terminating null character.

Diagnostics .

Both routines return :EOF on error.

See Also
ferror(8), fopen(S), fread(s), gets(S), printf(S), pute(S)

Notes

Puts appends a newline, fputs does not.

March 24, 1984 Page 1




QSORT(S) QSORT(S)

Name

gsort — Performs asort.

Syntax

qsort ( base, nel, width, compar)
char *base;

int nel, width;

int (*compar)( };

Description

Qeort is an implementation ‘of the quicker-sort algorithm. The first
argument is a pointer to the base -of the :data; the second is ‘the
number of elements; the third is the width of -an element in bytes;

. the last is the name of the comparison routine. It is called with two
arguments which are pointers ‘to the elements being compared. The
routine must return an integer less than, equal to, -or greater than 0
according to ‘how much the first argument is to be considered less
than, equal to, -or greater than the second.

See Also
sort{C), bsearch($), lsearch(8), string(S)

March 24, 1884 Page 1



RAND(S) RAND (8)

Name

rand, srand ~ ‘Generates a. random number.

Syntax

srand (seed)
unsigned seed;

int rand{ )

Description

Rand uses a multiplicative congruential random number generator
with period 2 to return successive pseudo-random numbers in the
range from 040 2°°— 1.

The generator is reinitialized by calling srand with 1 as argument. It

can be set to a random starting point by -calling erand with an
unsigned integer in argument seed.

March 24, 1984 Page 1




RDCHK () RDCHK (8)

Name

rdchk — Checks to see if there is:data to be read.

Syntax

rdchk(fdes);
int fdes;

Description

Rdehk checks to see if a process will block if it attempts to read the
file designated by fdes. Rdckk returns 1 if there is data to be read:or
if it is the end of the file (EOF). In this ‘context, the proper
sequence of calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes);
See Also ~
read(S)

Diagnostics

Rdchk returns -1 if -an error occurs (e.g., EBADF)}, 0 if the process
will block if ‘it ‘issues ‘a ‘read and 1 if it is okay to read. EBADF is
returned if a rdekk is done .on a semaphore file or if the file 'specified
doesn’t exist. .

March 24, 1984 Page 1



READ () -READ (8)

Name

read ~ Reads from a file.

Syntax

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

Fides is # file descriptor obtained from a ereat, open, dup, fentl, or
pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with fildes. Upon return from
read, the file pointeris incremented by the number of bytes actually
read. .

Devices that are incapable of seeking always read from the -current
position. The ‘value -of a file pointer associated ‘with such a file is
undefined.

Upon successful completion, read returns the number of bytes actu-
ally read and placed in the buffer; this number may be less than
nbyte if the file is associated with a communication line (see foct(S)
and #ty(M)), or if the number of bytes left in :the file is less than
nbyte bytes. ‘A value of 0 is returned when an end-of-file has been
reached.

When attempting to read from an empty pipe (or FIFO}:

If O_NDELAY is set, the read will return:a 0.

If O.NDELAY is clear, ‘the read will block ‘until data is written to
the file or the file is'no longer open for writing.

When attempting to read a file associated with a tty that has no data .
currently available: , )

If O_NDELAY ‘is set, ‘the read ‘will return a:0.

If O_NDELAY is clear, the read will block until data becomes
available.

March 24, 1984 Page 1



READ (S) READ (S)

Read will fail if one or more of ‘the following are ‘true:
Fildes is not-a valid file descriptor open for reading. [EBADF)

Buf points-outside the allocated address space. [EFAULT]

Return Value
Upon successful completion a nonnegative iinteger is returned indi-
cating the number of bytes actually read. ‘Otherwise, a -1 is
returned and ermo is set to indicate the error.

See Also
creat{S), dup(8), fentl(S}, ioctl(S), open(8), pipe(S), tty(M)

Notes

Reading a region of a file locked with locking causes read to hang
indefinitely until the locked region is-unlocked.

March 24, 1984 Page 2



REGEX(8) REGEX(S)

Name

regex, regemp - Compiles and executes regular expressions,

Syntax

char ®regemp(stringl[,string2, ...},0);
char ®stringl, *string2, ...;

char *regex(re,subject],ret0, ...]);
char ®re, *subject, *ret0, ...;

Description

Regemp -compiles a regular expression and returns a pointer to ‘the
compiled form. Malloc{8) is used to create space for the compiled
expression. It is the user’s responsibility to free unneeded space so
allocated. A zero return from regemp indicates an incorrect argu-
ment. Regemp(CP) has been swritten to generally preclude the need
for this routine at execution time.

Regez executes a compiled pattern against the subject string. Addi-
tional arguments are passed to ‘receive values back. Regez returns
zero ‘on failure -or ‘a pointer to the next unmatched character on suc-
cess. A global character pointer _loc! points to ‘where the match
began. Although regemp and regez were derived from the editor,
¢d(C), the syntax and semantics have been changed slightly. The
following are the valid symbols and their associated meanings.

{1*."  These symbols retain their current meaning.

$ Matches the end of the string, \n matches the newline.

- Within brackets the minus means through. For example,
[a- 2] is-equivalent to [abed...xyz]. The — -can appear as

itself only if used as the last or first character. For exam-
ple, the character class expression []~ ] matches the char-

acters ] and — .

+ A regular expression followed by 4+ means "one or more
times”. For example, [0-9]+ is equivalent to
[0- 9}[0- 9]*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be ‘applied. ‘m is the
minimum number and «u is a number, less than 256, which
is the maximum. If only m is present (e.g., {m}), it indi-
cates the exact number of times the regular expression is

March 24, 1984 ) Page 1



REGEX{(S) REGEX(S)

to be applied. {m,} is analogous to {m,infinity}. The plus
(+) and star (*) operations are equivalent to {1,} and {6,}
respectively.

(...)8n The value of the enclosed regular -expression is to be
returned. The value will be stored in the {n+ I)th argu-
ment following the subject argument. At present, at most
ten enclosed regular expressions are allowed. Regez makes
its -assignments unconditionally.

(.-.) Parentheses are used for grouping. An operator, e.g. ®

+, {}, can work on ‘a single character or a regular expres-
sion enclosed in parenthesis. For.example, {a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must,
therelore, be escaped to be used as themselves.

Examples
Ezample 1:
char *cursor, *newcursor, *ptr;

newcursor = regex{{ptr=regemp(”"\n",0)) cursor);
free(ptr);

This example will match a leading newline in the subject string
pointed at by cursor.

Ezample 2

char ret0[9};
char *newcursor, *name;

name -=“1"egcmp(”([A— Za~ z]|A- za- 20- 9_]{0,7})$0",0});
newcursor == regex(name,”123Testing321",ret0};

This example will match through the string ‘‘Testing3’’ and will
return the :address of the character after the last matched character
(cursor# 11). The string ‘“Testing3” will be copied to the character
array ret0.

Ezample 5:
#include ™file.i”
char *string, *newcursor;

newcursor == regex(name,string);

This example applies a precompiled regular expression in file.i {see
regemp( CP)) -against string.

March 24, 1984 Page 2



REGEX(S) REGEX(S)

See Also
¢d(C), regemp(CP), malloc(S)

Notes

The user program may run out of memory if regemp is called itera-
tively ‘without freeing the vectors no longer required. The following
user-supplied replacement for malloc(S) reuses the same vector sav-
ing time and space:

/* user’s program */
malloc(r'ni‘
{

static int rebuf[256);
return :‘&rebuf;

March 24, 1984 Page 3



REGEXP ()

Name

REGEXP ()

regexp — ‘Performs regular expression compile and match functions.
gexp P

*Syntax

#define INIT <declarations>>

#define GETC{) <gete code>

#define PEEKC( ) <peekc code>

#define UNGETO(¢) <ungetc code>

#define RETURN(pointer) <retirn code>

#define ERROR(val) <error code>

#include <regexp:h>

char *compile{instring, expbuf, endbuf, eof)
char ®instring, *expbuf, *endbuf;

int step(string, expbuf)
char ®string, *expbuf;

Description

This ‘entry describes general purpose regular expression matching
routines in ‘the form of ed(C), defined in fusr/include/regexp.h.
Programs such as ed(C), eed(C), grep(C), 45(C). ezpr(C), etc.,
which ‘perform regular expression matching use ‘this source file. In
this ‘way, only this file need be changed to maintain regular expres-

sion compatibility.

The .interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared before
the “#include <regexp:h>'' statement. These macros are used by

the compile routine.

GETC()

PEEKC( )

March 27, 1984

Returns the value of the next.character in the
regular expression pattern. ‘Successive calls to
GETC() 'should return successive characters of
the regular expression.

Returns ‘the next character -in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned by
GETC())-

Page 1



REGEXP(S). REGEXP(S)

UNGETC( ¢) Cause the ‘argument ¢ ‘to be returned by the
next call to GETC() (and PEEKC()). No more
that one character of pushback is ever needed
and this character is guaranteed to be the last
character ‘read by GETC(). The value of the
macro UNGETC( ¢) is always ignored.

RETURN( posnter) This macro is used on normal exit of the com-
pile routine. The wvalue of the argument
pointer ‘is a pointer to ‘the character after the
last character of the compiled regular expres-
sion. This is useful to programs which have
memory -allocation to manage.

ERROR( val) This is the abnormal return from the compile
routine. The argument val is an error number
{see ‘table below for meanings). This call
should never return.

Error Meaning

11 Range endpoint too large

16 Bad number

25 ‘*\digit”’ out-of range

36 Illegal or missing delimiter

41 . No remembered search string N
42 \( \) imbalance g
43 Too many \(
44 More than 2 numbers given in \{ \}

45 } expected after \

48 First number exceeds second in \{ \}

49 []imbalance

50 Regular expression overflow

The syntax of the compile routine is-as follows:
compile(instring, épruf, endbuf, eof)

The first parameter snsiring is never used explicitly by the .compile
routine but is useful for program that pass down different pointers to
input characters. It is sometimes used in the INIT declaration (see
below). Programs which -call functions to input .characters -or have
characters in an external array can pass down a value of ((char *) 0)
for this parameter.

The next parameter ezpbuf is-a character pointer. It points to ‘the
place where the compiled regular expression ‘will be placed.

The parameter endbuf is one more that the highest address that the
compiled regular expression may ‘be placed. If the compiled expres-
sion cannot fit in (endbuf- ezpbuf) bytes, a call to ERROR(50) is
made.

March 27, 1984 Page 2



REGEXP(S) REGEXP(S)

The parameter eof is the character which marks the end of the regu-
lar expression. Forexample, in ¢d(C), this character is usually a /.

Each programs that includes this file must have a fdefine statement
for INIT. This definition will be placed right after the declaration for
the function compile and the opening curly brace ({). It is used for
dependent declarations and ‘initializations. 1t is ‘most often used to
set a register variable to point the beginning of the regular expres-
sion so that this register variable can be used in the ‘declarations for
GETC(), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC{), PEEKC()
and UNGETC(). :See the example below of the declarations ‘taken
from :grep(C). .

There are other functions in ‘this file ‘which perform actual regular
expression matching, one of which is the function step. The call to
otep is as follows:

step(string, ‘expbuf)

The first parameter to step is a pointer to -a string of characters to be
checked for a .match. This string should be null terminated.

The second parameter ezpbuf is -the compiled regular expression
which was obtained by a call of the function compile.

The function step returns one, if the given string matches the regular
expression, and zero if the expressions do not match. If there isa
match, two external character pointers are set as a side effect to the
call to step. The variable set in step is locZ. This is 2 pointer to the
first character ‘that matched the regular expression. The ‘variable
loc2, which is set by the function -advance, points the character after
the last character that matches the regular expression. Thus if ‘the
regular expression ‘matches the entire line, locl will point to the first
character of string and {oc2 will pointto the null at the end of string.

Step uses the external variable ciref which is set by compile if the reg-
ular expression begins with “. ‘If this is set then step will only try to
match the regular expression to the beginning of the string. If more
than one regular expression is to be compiled before the the first is
executed the value of e¢iref should be saved for each compiled
expression and eiref should be set to that saved value before each
call to step.

The function advance is called from step with the same arguments as
step. The purpose of step is to step through the stnng argument and
call ‘advance until sdvance returns a one indicating a match ‘or until
the end of string is reached. If one wants to constrain string to the
beginning of the line in all cases, step need not be called, simply call
advance.

When advance -encounters a * or \{ \} sequence in the regular
expression it will advance its jpointer to the .string to be matched :as

March 27, 1984 Page 3



REGEXP(S) REGEXP (S)

far as possible and ‘will recursively call itself trying to match the rest
of the string to the rest-of the regular expression. As long as there
is ‘no match, advance will back up along the string until it finds a
match or reaches the point in the string that initially matched the *

or \{ \}. It is sometimes desirable to stop this backing up before the %‘q
initial point in the string is reached. If the external character pointer T 4

locs i8 equal to ‘the point in the string at sometime during the back-
ing up process, advance will break out of the loop ‘that backs up and
will return zero. This is used be ed{C) and sed(C) for substitutions
done globally (not just the first.occurrence, but the whole line) o,
for example, expressions like 8/y®//g do not loop forever.

The routines eemp and getrange are simple and are called by the rou-
tines previously mentioned.
Examples

The following is an example of how the regular expression macros
and calls look from grep(C):

yfdefine INIT register char *sp == instring;
$define GETC( ) (*sp+ +)

#define PEEKC( ) (*sp)

#define UNGETC(c) (- - sp)

#define RETURN(¢) return;

#define ERROR(¢) regerr( )

#include <regexp.h>
compile(*argv, expbuf, &expbuf[ESIZE], '\0");

if(step(linebuf, expbuf))
succeed( );

Files

Justfinclude fregexp.h

See Also
ed(C), grep(C), sed(C).

Notes

The handling of ‘eiref is kludgy.

The routine eemp is equivalent to the standard I/O routine strnemp
and should Jre replaced by that routine.

March 27, 1084 Page 4



SBRK(S) SBRK (S)

Name

sbrk, brk - Changes data segment space allocation.

Syntax

char #sbrk (incr)
int incr;

Description

Sbrk is used to dynamically change the amount of space allocated for
the calling process’ data segment; see ezec(S). The change is made
by resetting the process’ break value. The break value is the address
of the first location beyond the end of the data segment. The
amountof allocated space increases as the break value increases.

Sbrk adds iner bytes to the break value and changes the allocated
space accordingly. Iner can be negative, in which case the amount of
allocated space is decreased.

Shek will fail without ‘naking any change in the allocated space if
such ‘a change ‘would result in ‘more space being allocated .than s
allowed by a system-imposed maximum (see ulimit(S)). {ENOMEM]

Return Value
Upon successful :completion, ebrk and brk return pointers to ‘the

beginning of the ‘allocated space. Otherwise, 3 value of -1 is
returned and errno is set to indicate ‘the error.

See Also
exec(S)

March 27, 1984 Page 1



SCANF (8) SOANF(S)

Name

scanf, fscanf, sscanf ~ Converts and formats input..

Syntax
#include <stdio.h’>

int scanf (format | , pointer ] ... )
char *format;

int fscanf (stream, format [ , pointer ] ... )
FILE ®stream;
char *format;

int sscanf (s, format | , pointer ] ... )
char *s, *format;

Description

Seanf reads from ‘the standard input stream stdin. Fscanf reads from
the named input stream. Secanf reads from the character ‘string e.
Each function ‘reads characters, interprets them according to a for-
mat, and stores the results in its arguments. Each expects, as argu-
ments, ‘a control string format described below, ‘and ‘a set of pointer
arguments indicating where the converted input.should be stored.

The control ‘string usually contains conversion specifications, which
are used to direct interpretation of ‘input sequences. The control
string ‘may contain:

1. Blanks, tabs, or newlines, which cause input to be read up to the
next nonwhitespace character.

2. An ordinary character (not 9%, which must match the next char-
acter of the input stream.

3. Conversion specifications, consisting of the character ‘% ‘an
optional assignment suppressing character *, an optional numeri-
cal'maximum field width, and a .conversion ccharacter.

A conversion specification directs the conversion of the next input
field; the result is :placed in the wvariable pointed to by the
corresponding argument, unless assignment suppression was indi-
cated by ®. An input field is defined as a string ‘of ‘nonspace ‘charac-
ters; it-extends to the :next inappropriate character or -until the field
width, if specified, is exhausted.

The conversion character indicates the ‘interpretation of the input
field; the corresponding pointer argument must usually be of a res-
tricted type. The Tollowing conversion characters-are allowed:

March 24, 1984 Page 1



SCANF (8} SCANF{S)

S A single %%is expected in the input at this point; no assignment
is done. X

A decimal integer is expected; ‘the corresponding argument
should be an integer pointer.

a

o An octal integer is expected; the corresponding argument should
be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument
should :be an integer pointer. :

s A character string is expected; the corresponding argument
should be a character pointer pointing to :an .array of characters
large enough to accept the string and a terminating \0, which
will be added automatically. The input field is terminated by a
space character or a newline.

¢ A character is expected; the corresponding argument should be
a character pointer. The normal skip .over space .characters iis
suppressed in this case; to read the next nonspace .character, use
%ds. If a field width is given, the corresponding argument
should refer to a character array; the indicated number of char-
acters is read.

e,f A floating-point number is expected; the next field is converted
accordingly and stored through ‘the corresponding argument,
which should be -2 pointer to a float. The input format for
floating-point numbers is an optionally signed string -of digits,
possibly -containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by an option-
ally signed integer.

[ Indicates a string that is not to be delimited by space characters.
The left bracket is followed by 2 set of characters and a right
bracket; ‘the :characters between the brackets define a set of .char-
acters making up the string. If the first character is not a caret
(*), the input field consists of all characters up to ‘the first char-
acter thatis not in the set between the brackets; if the first char-
acter ‘after ‘the left bracket is a %, the input field consists of all
characters ‘up to ‘the first character that is in ‘the set of ‘the
remaining characters between the brackets. The corresponding
argument must point to a character array.

The .conversion characters d, o, and x may be capitalized and/or pre-
ceded by 1 to indicate that a pointer to long rather than to int is in
the argument list. Similarly, the .conversion characters € and f may
be capitalized and/or preceded by 1 to indicate that'a pointer to dou-
ble rather than to float is in the argumentlist. The character h will,
some time in the future, indicate short data items.

Scanf conversion terminates at EOF, at the end of the control string,
or when an input character conflicts with the control string. In the

March 24, 1984 Page 2



SCANF (S) SCANF (S)

latter case, the offending character is left unread in ‘the input stream.
This ‘is very important to remember, because subtle errors can
occur ‘when not taking this into account.

Secanf returns the number of successfully matched and assigned

. input items; this number can be zero in the event.of an early conflict
between .an input character and the control string. ‘If the inputends
before the first conflict or conversion, EOF is returned.

Examples
The call:

int i; float x; char name[50};
scanf ("%d%%s", &i, &x, name);

with the input line:
25 .54.32E- 1 thompson

will assign to f the value 25, to z ‘the value 5.432, and name will
contain thompson\0. Or:

int i; float x; char name|50}; i
scanf ("%2d%d%*d%]1234567890]", &i, &x, name); 4

with input:
56789 0123 56a72

will assign 58 to 1, 789.0 to z, skip 0123, and place the string 56\0 in
name. The next:call to getchar (see gete(S)) will return a

See Also
atof(8), getc(S), printf(S)
Diagnostics
These functions return EOF on end of input and a short count for

missing or illegal data items.

Notes

The success of literal matches and suppressed assignments is not
directly determinable.

Trailing whitespace (including a ‘newline) is left unread wunless
matched in the control string.

March 74, 1984 Page 3



SDENTER(S) SDENTER(S)

Name :
sdenter, sdleave - Synchronizes access to a shared data segment.

Syntax
#include <sd.h>

int sdenter(addr,flags)
char *addr;
int fiags;

int sdleave(addr)
char ®*addr;

Description
Sdenter is used to indicate that the current process is about to
access the contents of a shared data segment. The actions per—
formed depend on the value of flags. Flags values are formed by
OR—ing together entries from the following list:

SD.NOWAIT  If another process has called sdenter but not
sdleave for the indicated segment, and the seg—
ment was not created with the SD_UNLOCK flag
set, return an error instead of waiting for ‘the
segment to become free.

SD.WRITE Indicates that the process intends to modify :the
data. If SD:WRITE isn't specified changes made
to -data are not guarenteed to be reflected in-other
proceses. ;

Sdleave is used to indicate that the current process is done modi—
fying the contents of a shared data segment.

Only changes ‘made between invocatations of sdenter and sdleave
are guaranteed to be reflected in other processes. Sdenter and
sdleave are very fast; consequently, it is recommended that they be
called frequently rather than leave sdenter in effect for any petiod
of time. In particular, system calls should be avoided between
sdenter and sdleave calls.

The fork system call is forbidden between calis to sdenter and
sidleave if the segment was created without the SD-UNLOCK flag.

May 10, 1984 Page 1



SDENTER(S) SDENTER(S)

Return Value
Successful calls return 0. Unsuccessful calls return —1, and .errno
is set to indicate the error.

See Also
sdget(S), sdgetv(S)

May 10, 1984 Page 2




SDGET(S) SDGET(S)

Name

" sdget = Attachs and detachs a shared .data segment.

Syntax
#include <sd.h>

char ssdget(path, flags, [size, mode})
char #path; -

int-flags, mode;

long size;

int sdfrec(addr);
char *addr;

Description

Sdget attachs a shared data segment to the data space of the current
process. The actions performed are controlied by the value of flage.
Flags values are constructed by ‘OR-ing flags from the following list:

SD_RDONLY
Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists, this flag has no
. effect. Otherwise, the segment is created according to
the values of #ize and mode. Read and write :access to
the segment is granted to other processes based on the
permissions passed.in mode, and functions the same as
those for regular files. Execute permission is meaning-

less. The segment is initialized to ‘contain all zeroes.

SD_UNLOCK
If the segment is created ‘because of ‘this call, the seg-
ment will be ‘made so that more than one process can
be between sdenter and sdleave «calls.

Sdfree detachs the current process from the shared data segment that
is attached at the specified address. If the current process has done
an sdenter but nota sdleave for the specified segment, an edleave will
be done before detaching the segment.

When no process remains attached to the segment, the contents of

that :segment disappear, and no process -can attach to the segment
without creating it by using the SD_CREAT flag in sdget.

March 24, 1984 Page 1



SDGET(S) SDGET(S)

Return Value

On successful completion, the address at which the segment was
attached is returned. Otherwise, -1 is returned, .and errno is set to
indicate the error.

Notes

Use of the SD_UNLOCK flag on systems without hardware support
for shared data may cause severe performance degradation.

See Also
sdenter(S), sdgetv(S)

March 24, 1984 . Page 2



SDGETV(S) SDGETV(S)

Name

sdgetv, sdwaitv — Synchronizes shared data access.

Syntax
#include <sd.h>
int.sdgetv(addr)
int sdwaitv(addr, vnum)
char *addr;

int vhum;

Description
Sdgety and sdwaitv may be used to synchronize cooperating processes
that are using shared data segments. The return value of both rou-
tines is the version number of the shared data segment attached to
the process at address .addr. The version number of a segment
changes wherever some process does an edleave for that segment.
Sdgetv simply returns the version number of the indicated segment.
Sdwaitv forces the current process to sleep until the version number
for the indicated segment is no longer equal to enum.

Return Value
Upon successful completion, both sdgete and ‘sdwaity return a positive
integer that is ‘the current version number for the indicated shared
data segment. :Otherwise, a valye of -1 is returned, and ermo is set
to indicate the error.

See Also

sdenter(S), sdget(S)

March 24, 1984 Page 1



SETBUF(S) SETBUF(S)

Name

setbuf -~ Assigns buffering to a stream.

S

Syntax
#include <stdio.h>
setbuf (stream, buf)
FILE ®stream;
char *buf;

Description
Setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of :an
automatically ‘allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.
A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(S) upon the first gete(S)
or putc(S) :on the file, except that output streams directed to termi-
nals, ‘and the standard error stream stderr are normally not buffered.

A common source of error is -allocation ‘of buffer space as an
‘‘automatic’’ variable in a code block, :and ‘then failing to close ‘the
stream in the same block.

See Also
fopen(S), getc(S), malloc(S), pute(S)

March 24, 1984 Page 1



SETIMP(S) SETIMP(S)

Name

setjmp, longjmp — Performs a nonlocal *‘goto™.

Syntax
#include <setjmp.h>

int setjmp(env)
jmp_buf env;

“int longjmp (env, val)
jmp_buf env;

Desecription

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of :a program.

Setjmp saves its stack environment in ¢nvfor later use by longjmp. Tt
returns value 0.

Longjimp restores the environment saved by the last call of setjmp. It
then returns in such a way that execution continues :as if the call of
setymp had just returned the ‘value ‘val ‘to ‘the corresponding call ‘to
setymp. The routine which ‘calls setyjmp must not itself have returned
in the interim. Longjmp cannot return the ‘value ‘0. I longimp is
invoked with a second argumentof 0, it will return 1. All accessible
data have values as of the time longjmp was called. The only excep-
tion to this are register variables. The value of register variables are
undefined in the routine that called setjmp when the corresponding
longjmp-is invoked.

*See Also
signal(S)

March 24, 1984 Page 1



SETPGRP{S) SETPGRP(8)
Name

setpgrp — Sets process group ID.
Syntax

int setpgrp ()

Description

Setpgrp sets the process group ID of the calling process to the process
1D of the calling process and returns the new process group ID.

Return Value

Setpgrp returns the 'value of the new process group ID.

See Also ,
exee(S), fork(S), getpid(S), intro(S), kill(S), signal(S)

March 24, 1984 Page 1

T




SETUID (8) SETUID (S)

Name

setuid, setgid — ‘Sets user-and group IDs.

.Syntax

int setuid (uid)
int uid;

int setgid (gid)
int gid;
Description

Setuid is used to set the real user ID and effective user ID of the cal-
ling process. -

Setgid is used to set the real group ID and effective groupID of the
calling process. )

If the effective user ID of the calling process is super-user, the real
user {group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to uid (gid), the effective user
(group) 1D is set to uid (gid).
Setuid will fail if the real user (group) ID of the calling process is not
equal to uid (gid) and its effective user ID is not super-user.
[EPERM]|

Return Value
Upon successful completion, a value of 0 is ‘returned. Otherwise, a
value of — 1.s returned and ermo is set to indicate the error.

See Also
getuid($S), intro(S)

March 24, 1984 Page 1



SHUTDN(S) SHUTDN(S)

Name

shutdn - Flushes block 1/0 and halts the CPU.

Syntax
#include <sys/filsys.h>

shutdn (sblk)
struct filsys #sblk;

Description

Shutdn causes all information in ‘core memory that should be on disk
to be written out. ‘This includes modified super-blocks, modified
inodes, and delayed block 1/0. ‘The super-blocks of all writable file
systems .are flagged “clean’, so ‘that they .can be remounted without
cleaning when XENIX is rebooted. .Shutdn then prints “Normal Sys-
tem ‘Shutdown’’ .on the console and halts the CPU. ’

If sblk is nonzero, it specifies the address of a super-block which will
be written to the root device :as the last 1/O before the halt. This
facility is provided to allow file system repair programs to supercede
the system’s copy of the root super-block with one .of their-own.
Shutdn locks out all other processes while it is doing its work. How-
ever, it is recommended that user processes be killed off {see
Kkill(8)) ‘before calling shutdn as some types .of disk activity could
cause file systems to not be flagged ““clean’’.

The -caller must be the super-user,

See Also
fsck(C), haltsys(C), shutdown(C), mount(S), kill(S)

March 24, 1984 Page 1



SIGNAL (S)

Name

SIGNAL (S)

signal - Specifies what to do upon receipt of a signal.

Syntax

#include <signal:h>

int (*signal (sig, func))()

int sig;
int (*func)();

Description

Signal allows the -calling process to choose .one of three ways in
which it is jpossible to handle ‘the receipt of a specific signal. Sig
specifies the signal and func specifies the choice.

Sig ‘can be assigned any one of the following except SIGKILL:

SIGHUP 01
SIGNT 02
SIGQUIT 03+
SIGILL 04s
SIGTRAP 05%
SIGOT 06#
SIGEMT 07+
SIGFPE 08s
SIGKILL 0$
SIGBUS 10=
SIGSEGV 11+
SIGSYS 12+
SIGPIPE 13

SIGALRM 14
SIGTERM 15

SIGUSR1 16
SIGUSR2 17
SIGCLD 18
SIGPWR 19

Hangup

Interrupt

Quit

Illegal instruction (not reset when -caught)
Trace trap (not reset when caught)
1/O trap instruction

Emulator trap instruction
Floating-point-exception

Kill {eannot be caught or ignored)
Bus error

Segmentation violation

Bad argument to system -call

Write on a pipe with no one to read it
Alarm clock

Software ‘termination :signal
User-defined signal 1

User-defined signal 2

Death of achild (see Warning below)
Power fail (see Waming below)

See below for the significance of the asterisk in the above list.

Func is ‘assigned one of three values: SIG_DFL, SIG_IGN, or a func-
tion address. The actions prescribed by these values of are described

below.

The ‘SIG_DFL ‘value causes termination .of the process upon receipt
of a signal. Upon receipt-of ‘the signal a1y, the receiving process is to
be terminated with the following-consequences:

March 24, 1984

Page 1



SIGNAL () SIGNAL (S)

1. All'of the receiving process’ open file descriptors will be ¢losed.

2. 1If the parent process of the receiving processis executing a wait,
it will be notified of the termination of the receiving process and
the ‘terminating signal’s ‘number will be made available ‘to the
parent process; see wait(S).

3. If the parent process of the receiving process is not executinga
wait, ‘the receiving process ‘will be transformed into ‘a zombie
process {see ezit(S) for definition of sombie process).

4. The parent process ID of each of the receiving process’ existing
child processes and zombie processes will be set to 1. This
means the initialization process (see ‘intro(S)) inherits each of
these processes.

5. An accounting record will be written on the accounting file if the
system’s accounting routine is enabled; see -acct(S).

6. If the receiving process’ process ID, tty group ID, and process
group ID are equal, the signal SIGHUP will be sent to all of the
processes ‘that have a process group ID equal to the process -
group 1D of the receiving process.

7. A ‘‘core image” will be made in the current working directory
of the receiving process if #ig is one for which an asterisk
appears in the above list and the following conditions are met:

~ The -effective user ID and the real user ID of the receiving
process are equal.

- An ordinary filenamed core exists and is ‘writable or can be
created. If the file must.be created, it will have a mode of 0666
modified by ‘the file creation mask (see umasek(8S)), a file owner
ID ‘that is the same as the effective ‘user ID of the receiving pro-
cess, 2 file group ID that is the same as the effective group ID of
the receiving process

The SIG_IGN value causes the process to ignore a signal. ‘The signal
sig is to be ignored. Note that the signal SIGKILL cannot be
ignored.

A function address value causes to process to catch a signal. Upon
receipt of ‘the signal sig, the receiving process is to execute the
signal-catching function pointed to by func. The signal number sig
will be passed as the only argument to the signal-catching function.
There are the following consequences:

1. Upon retura from the signal-catching function, the receiving
process will resume execution at the point it was interrupted and
the value of func for the .caught signz! will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, SIGCLD, or SIGPWR.

March 24, 1984 Page 2




‘

SIGNAL (S) SIGNAL (S)

2. When asignal that is to be eaught occurs during a reed, a wnte,
an ‘open, or an toctl system call on aslow device (like a termi-
nal; but not a file}, during a pause system -call, or during a wait
system call that .does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching funection will be executed and then the interrupted sys-
tem call will return a - 1 to the calling process with errno set to
EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to signal cancels.a pending signal #ig except for a pending SIG-
KILL signal.

Signal will fail if-one or more -of the following are ‘true:
Sig is an illegal signal number, including SIGKILL. [EINVAL]

Fune points to anillegal address. [EFAULT]

Return Value

Upon successful completion, -signal returns the previous value of
func for the specified signal eig. Otherwise, a value of - 1 is
returned and errno is set to indicate the error.

See ‘Also

kill(C}, kill(8), pause(S), ptrace(S), wait(S), setjmp(S).

Warning

Two ‘other ‘signals ‘that behave -differently than ‘the signals described
above exist in this release of the system; they are:

SIGCLD 18 Death of a:child {not reset when caught)
SIGPWR 19 Power fail (not reset when caught)

There is no guarantee ‘that, in future releases of XENIX, these signals
will continue to behave as described below; they -are included only
for compatibility with other versions of XENIX. Their use ‘in new
programs is strongly discouraged.

For these signals, func is assigned one of three values: SIG_DFL,
SIG_IGN, or a function eaddrese. The actions prescribed by these
values of are as-follows:

SIG_DFL - ignore signal
The -signal is‘to be ignored.

March 24, 1984 Page 3



SIGNAL (8)

SIGNAL (S)

SIG_IGN - ignore signal

The signal is ‘to ‘be ignored. Also, if sig is SIGCLD, the
calling process’ :child processes will not create zombie
processes when they terminate; see ezit(S).

function address - catch signal

If the signal is SIGPWR, the action to be taken is the
same ‘as that described above for func equal to function
address. The same is true if the signal is SIGCLD except,
that while the process is executing the signal-catching
function any received SIGCLD signals will be .queued and
the signal-catching function will be continually reentered
until the queue is-empty.

The SIGCLD affects two other system calls (wasit(S), and ezit(S))

in ‘the fo

wast

exit

When pr
pipeline

llowing ways:

If the func value of SIGCLD is set to SIG_IGN and a wast
is executed, the wait will block until all of the calling pro-
cess’ child processes terminate; it will then return a value
of - ‘1 with errno setto ECHILD.

If ‘in the exiting process’ parent process the fune value of
SIGCLD is set to SIG_IGN, the exiting process will ‘not
create ‘a zombie process.

ocessing a pipeline, the shell makes the last process in the
the parent of the proceeding processes. A process that

may be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be caught.

Notes

The ‘defined constant NSIG ‘in signal.h standing for the number of
signals is always at least-one greater than the actual number.

March 24, 1984

Page 4



SIGSEM (S) SIGSEM (S)

Name

sigsem — Signals a process waiting on ‘a semaphore. -

Syntax

sigsem(sem_num);
int sem_num;

Description

Sigsem signals a process that is ‘waiting on the semaphore ‘sem_num
that it may proceed and ise the resource governed by the sema-
phore. Sigeem is used in conjunction with waiteem(S) to allow syn-
chronization ‘of processes wishing to access a resource. One .or more
processes ‘may waitsem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues a sigsem call. If there are any ‘waiting processes, sigscm causes
the process which is mext in line on the semaphore’s .queue to be
rescheduled for execution. The semaphore’s queue is organized in
first in first out (FIFO) order.

See Also

creatsem(S), opensem(S), waitsem(S)

Diagnostics

Sigsem returns the value (int) -1 if an error occurs. If sem_num does
not refer to a semaphore type file, ermo is set to ENOTNAM. Hf
sem_num has not been previously opened by .opensem, errno is set'to
EBADF. If the process issuing a sigsem call is not the current
“owner” of the semaphore (i.e., il the process has not issued a
waitsem -call before the sigsem), errno is set to ENAVAIL.

March 24, 1984 Page’l



SINH (8) SINH (8)

Name

sinh, cosh, tanh - Performs hyperbolic functions.

Syntax
#include <math.h>

double sinh (x)
double x;

double cosh {x)
double x;

double tanh (x)
double x;

Description

These functions compute the designated hyperbolic functions for real
arguments.

Diagnostics

Sink and cosh return a huge value of appropriate sign when ‘the
correct-value would overflow.

March 24, 1984 Page 1




SLEEP(S) SLEEP(S)

Name

sleep.— ‘Suspends execution for an interval.

Syntax

unsigned sleep (seconds)
unsigned-seconds;

Description

See

The current process is:suspended from execution for the number of
scconds specified by the argument. The actual suspension time may
be less than that requested for because scheduled wakeups occur at
fixed 1-second intervals, and any ‘caught signal ‘will terminate the
eleep following execution of that signal’s catching routine. Also, the
suspension time may be longer than requested by an arbitrary
amount ‘due to ‘the scheduling of .other activity in the system. The
value returned by eleep will be the “unslept” amount (the requested
time ‘minus the time ‘actually slept) in case ‘the caller had an alarm
set to go off earlier than the end of the requested sleep time, or
premature arousal-due ‘to another caught signal.

The routine :is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of ‘the
alarm signal is saved and restored. The calling program may ‘have
set up .an alarm 'signal before -calling sleep; if the eleep time exceeds
the time till such alarm signal, the process sleeps only wuntil the
alarm signal ‘would have occurred, ‘and the caller’s ‘alarm catch rou-
tine is-executed just before the sleep routine returns, but if the sleep
time iis less than ‘the time till such alarm, the prior alarm time is
reset to go ‘off at the same ‘time ‘it would have gone off ‘without the
intervening éleep.

Also

alarm(8), nap(S}, pause(S), signal({S)

March 24, 1984 Page 1



SSIGNAL (S) SSIGNAL (S)

Name

ssignal, gsignal - Implements software signals.

Syntax
#include <signal.h>

int (*ssignal (sig, action))( )
int sig, (®action)( );

int gsignal (sig)
int sig;

Description

Ssignal and gsignal implement a software Tacility similar to eignal(S).
This facility is used by the standard :C library to enable ‘the user to
indicate the disposition ‘of error .conditions, and is also made -avail-
able to the user for his own purposes.

Software signals made available to users are associated with integers
in the ‘inclusive range 1 through 15. An action for a software signal
is established by a call to ssignal, and a software signal is raized by a
call to .gsignal. Raising a software signal causes the action esta-
blished for that signal to be taken.

el

The first.argument to ssignal is a number identifying the type of sig-
nal for which an action is to be established. The second argument
defines the ‘action; it is either the name of a (user defined) action
Junction or one of the manifest constants SIG_DFL (default) or
SIG IGN {ignore). Ssignal returns the action previously established
for that signal type; if no action has been established ‘or the signal
number is illegal, esignal returns SIG_DFL.

Geignal raises the signal identified by its argument, sig:

If ‘an “action function has been established for eig, then that
action 1s reset to SIG_DFL ‘and the action function is entered
with argument sig. Gaignal returns the value returned to it by
the action function.

If the action for sig is SIG_IGN , gsignal returns the value 1 and
takes no other action.

If the ‘action for eig is:SIG_DFL , geignal returns the value .0 and
takes no other action.

If #ig has ‘an illegal value ‘or no action was ever specified for
eig, geignal returns the value 0 and takes no other action.

March 24, 1984 Page 1



SSIGNAL { S) SSIGNAL (S)
Notes

There are some ‘additional signals with numbers outside ‘the range 1
through 15 that are used by the standard C library to indicate -error
conditions. Thus, some signal numbers outside the range 1 through
15 are legal, although their use may interfere with the operation of
the standard |C library.

March 24, 1984 Page 2



STAT{(S) STAT(S)

Name

stat, fstat — Gets file status.

Syntax

#include <sys/types.h>
#include <sys/stat.h>

int stat {path, buf)
¢har *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

Description

Path ‘points ‘to a pathname naming a file. Read, write or execute
permission of the named file is.not required, but all directories listed
in the jpathname leading to ‘the file must be searchable. Stat obtains
information about the named file.

Similarly, fstat obtains information :about an ‘open file known by the
file descriptor fildes, obtained from ‘a successful open, creat, dup,
fentl, or pipe system call.

Buf is 'a pointer to a stat structure into which information is ‘placed
concerning ‘the file.

The ¢contents -of the structure pointed to by buf include ‘the following
members:

ushort st_mode;  /* File mode; see mknod(S) */

ino_t  ‘st_ino; /* Inode number */
dev_t stodev; /* ID of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* 1D of device */

/* This entry is defined only for */
J* special files */
short  st_nlink; /* Number of links */

ushort st_uid; /* User 1D ‘of the file’s owner */
ushort  st_gid; /* Group ID of the file’s group */
off_t  ‘st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */
/*00:00:00 GMT, Jan. 1, 1970 */

March 24, 1984 Page 1



STAT(S)

st_atime

st_mtime

st_ctime

st_rdev

STAT(S)

Time when file data was last accessed. Changed by the
following system calls: .creat(S), mknod(S), pipe(S),
ufime{S), and ‘réad(S).

Time when data was last modified. Changed by the fol-
lowing system calls: ereat(S), mknod(S), pipe(S),
utime(S), and wnite(S).

Time when file status was last changed. Changed by the
following system calls: chmod(S), chown(8), creat(S),
link(S), mknod(S), pipe(S), utime(S), and write(S).

Device indentification. In the case of block and character
special files ‘this contains the device major and minor
numbers; in the ccase of shared memory and semaphores,
it contains the type code. The file
Jusr/include/sys /types.h contains the ‘macros major()
and minor() for extracting major and minor numbers
from #t_rdev. See fusr/include/sys/stat.h for the sema-
phore and shared memory type code values S_INSEM and
S_INSHD.

Stat will fail if one .or more of the following are true:

A com

ponent of the path prefix is nota directory. [ENOTDIR]

The named file does not exist. [ENOENT)

Search

permission is denied for ‘a component of the path prefix.

|[EACCES)]

Buf or

path points ‘to ‘an invalid address. [EFAULT]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. |EBADF]

Buf po

Return Value

ints to an invalid address. |[EFAULT]

Upon successful completion a value of 0 is returned. Otherwise, 2

value of —
See Also

chmod(S),
unlink(8)

March 24, 1984

1 is returned and errno is set to indicate ‘the -error.

chown(S), creat(S), link(S), mknod(S), time(S),

" Page 2



STDIO(S) SIDIO(S)

Name

stdio - Performs standard buffered input and output.

Syntax

#include <stdio.h> : "‘}
FILE *stdin, *stdout, *stderr; ;

Description

The .etdio library contains an efficient, user-level 1/O ‘buffering
scheme. The in-line ‘macros getc(S) and putc(S) -handle characters
quickly. The macros -getchar, putchar, and the higher-level routines
faete, fgets, fprindf, [putc, fputs, fread, focanf, furite, gets, getw, print/,
pute, putw, and ecanf all use getc and :putc; ‘they can be freely inter-
mixed.

A file with associated buffering is ‘called 2 ““stream” and is declared
to be a pointer to a defined ‘type FILE . Fopen(S) creates certain
descriptive data for a stream -and returns a pointer to designate the
stream in .all further transactions. Normally, there are three open
streams with -constant pointers ‘declared in the “‘include” file and
associated with the standard open files:

stdin Standard input file )
stdout Standard output file ‘
stderr Standard error file

A constant “*pointer’’ NULL ‘designates the null stream.

An integer constant EOF is returned wupon end-of-file or error by
most ‘integer functions that deal with streams (see ‘the individual
descriptions for details).

Any ‘program that uses this package must include the header file of
pertinent macro definitions, as follows:

finclude <stdio.h>

Most of the functions and constants ‘mentioned in this section of ‘the
manual ‘are declared in that “‘include’ file and are described else-
where. The constants and the following “functions’ .are imple-
mented as macros {redeclaration of these names is perilous): gete,
getchar, pute, putchar, feof, ferror, and fileno. J

March 24, 1984 Page 1



STDIO(S) STDIO(S)

See Also

open(S), -close(S), read(S), write(S), ctermid(S), -cuserid(S),
fclose(S), ferror(S), fopen(S), fread(S), fseek(S), getc(S), gets(S),
popen(S), printf(S), -putc(S), puts(S), scanf(S), setbuf(S),
system($), tmpnam{S)

Diagnostics
Invalid stream pointers can cause grave disorder, possibly including

program termination. Individual function descriptions describe the
possible error conditions.

March 24, 1984 Page 2



STIME(S) STIME(S)

Name

stime - Sets the time.

Syntax

#include <sys/types.h>
#include <sys/timebh>

time_t stime (tp)
long *tp;
Description
Stime sets the system's idea.of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT January 1,

1970.

Stime will fail if the -effective user ID of the :calling process is not
super-user. [EPERM]

Return Value
Upon -successful completion, a value of 0 is returned. Otherwise, a

value of - 1 is returned and errno is set to indicate the error.

See Also

time(S)

March 24, 1984 Page 1




STRING () STRING (S)

Name

string, strcat, strncat, stremp, strnemp, strcpy, strnepy, strlen, strchr,
strrchr, strpbrk, strspn, strespn, strtok, strdup - Perform .string
operations.

Syntax

char *strcat (s1, 82)
char *s1, *s2;

char *strncat (s1, 82, n)
char *s1, *s2;
int n;

int stremp (81, 82)
char *si, *s2;

int strncmp {s1, 82, n)
char *s1, %s2;
int'n; :

char *strepy (=1, s2)
char *s1, *s2;

char *strncpy (s1, 2, n)
char *sl, *s2;
int-n;

int strlen (s)
char ®s;

char *strchr (s, )
char %, ¢;

char *strrchr.(s, )
char ®s, ¢;

char *strpbrk (sl1, 52)
char *s1, *s2;

int.strspn (s1, s2)
char *sl, *s2;

int strespn (s1, s2)
char *sl, *s2;

char ®striok (s1,s2)
char *sl, *s2;

char *strdup (s)
char®s;

March 24, 1984 Page'1



STRING (8) STRING (S)

Description

These functions ‘operate on null-termmated strings, They do not
check for overflow of any receiving string.

Streat appends a copy -of string &2 to the end of string el. Sirneat
copies at most n characters. Both return a pointer to the null-
terminated result.

Stremp compares its arguments and returns an integer greater than,
equal to, or less than 0, according as sl is lexicographically greater
than, equal to, or less than #2. Strncmp makes the same comparison
but looks at at most » characters.

Strepy copies string o2 to a1, stopping after the null character has
been moved. Stmepy copies exactly - characters, truncating or null-
paddmg 82; the target may not be null-terminated if the length of s2
is n or more. Both return 1.

Strlen returns the number of nonnull characters in s.

Strchr (strrchy) returns s pointer to the first (last) occurrence of
character ¢ in string 8, or NULL if ¢ ‘does not occur in the 'string.
The null character terminating a string is-considered to be part of the
string. t

Strpbrk returns a pointer to the first occurrence in string o of any
character from st.rmg 62, or NULL if no character from 22 exists in
el.

Strapn ( strcepn) returns the length -of ‘the initial segment of string a1
which consists entirely of characters from (not from) string #2.

Strtok considers the string e to consist of ‘a sequence of zero or

- -more text tokens separated by spans of one or more :characters from
the separator string 2. The first call (with pointer s! specified)
returns a pointer to the first character of ‘the first token, -and ‘will
have written 2 NULL character into 81 immediately following the
returned token. Subsequent -calls with 2ero for the first argument,
will work through ‘the string #1 in this way until no tokens remain.
The separator string 82 may be different from call to call. When no
token remains in €1, a NULL is returned.

Strdup returns :a pointer to .a duplicate .copy of ‘the string ‘pointed to
by s. The duplicate string is automatically allocated storage using a
malloc(S) system call. This call allocates the exact number of bytes
needed to store the string and its terminaiing null character. i )

March 24, 1984 . Page 2



STRING {S) STRING (S)

Notes

Stremp uses native character comparison, which is signed on some
machines, unsigned on others.

All string movement is performed character by -character starting at
the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

March 24, 1984 Page 3



SWAB (5) SWAB(S)

Name

swab - Swaps bytes.

Syntax

swab (ﬁom, to, nbytes)
char *{rom, *to;

int nbytes;

Description
Swab copies nbytes pointed to by from to the position pointed to by
to, exchanging adjacent even ‘and -odd bytes. It is useful for tran-

sporting binary data between machines that differ in the ordering of
bytes. Nbytes should be even.

March 24, 1984 Page 1




SYNC{'S) SYNC(8)

Name

sync— Updates the super-block.

Syntax

sync ()

Description
Syne causes all information in memory that should be on disk to be
written out. This includes modified super-blocks, ‘modified inodes,
and-delayed block I/0.

- It should be used by programs which examine a file system, for
example feck(C), df(C), ete.

The writing, although scheduled, is not necessarily complete upon
return from syne. :

See Also

syne(C)

March 24, 1984 Page 1



SYSTEM (S) SYSTEM (S)

Name

systemm — Executes ashell command.

Syntax
#include <stdio.h>
int system (string)
char ®string;

Description
System passes the string to a new invocation of ‘a shell (see #h(C)).
The :shell reads and ‘executes the etring as if it had been typed as a
command at a terminal, then returns the exit status of the command
to the -calling process. The ‘calling ;process waits until the shell has
returned a status before proceeding with execution.

See Also
sh(C), -exec(S)

Diagnostics

System stops if it can’t-execute eh(C).

March 24, 1984 Page 1




TERMCAP(S) TERMCAP(S)

Name

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — Performs terminal
functions. g

Syntax

char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

charstgetstr (id, area)
char #id, **area;

char *tgoto {cm, destcol, destline)
char *cm;

tputs(cp, affent, outc)
register char *cp;

int affent;

int ( *outc)();

Description

These functions extract and use :capabilities from :the terminal capa-
bility data base termcap(M). These -are low level routines; see
curses(S) for a higher level package.

Tyetent extracts the entry for terminal name into the buffer at bp. Bp
should be a character buffer of size 1024 and must be retained
through :all subsequent calls to tgetnum, tgetflag, and tgetstr. Tgetent
returns - 1if it cannot.open the termeap file, 0 if the terminal name
given does not have an entry, and 1 if all goes well. It:will look in
the environment for a TERMCAP variable. If found, and ‘the value
does not begin with a slash, and the terminal type name is the same
as the environment string TERM, the TERMCAP string is used
instead -of reading the ‘termcap file. If it:does begin ‘with a slash, the
string is used as a pathname rather than jftctermcap. This can speed
up entry into programs that call tgetent, as well as to help debug new
terminal ‘descriptions :or to make -one for your terminal if you can’t

March 24, 1984 Page 1



TERMCAP(S) TERMCAP(S)

write the file fetefermeap.

Tgetnum gets the numeric value -of capability id, returning - 1 if is
not given for the terminal. Tgetflagreturns 1 if the specified capabil-
ity is present in the terminal’s .entry, 0 if it is not. Tgetstr gets the
string value of capability 4d, placing it in the buffer at areq, advanc-
ing the area pointer. It decodes the -abbreviations for this field
described in termeap(M), except for cursor addressing and padding
information.

Tgoto returns a cursor :addressing ‘string decoded from ¢m to go to
column desteol in line destline. It uses the external variables UP-(from
the up capability) and BC-(if 'bc is given rather than bs) if necessary
to -avoid placing \n, CNTRL-D -or NULL in the returned string. (Pro-
grams which call #goto should be sure ‘to turn off the TAB3 bit (see
tty(M)), since fgote may now output a tab. Note that programs
using termcap should in general turn off TAB3 anyway since ‘some
terminals use CNTRL-I for other functions, such as nondestructive
space.) If a %6 sequence is given ‘which is not-understood, then tgoto
returns “OQOPS”.

Tpute decodes the leading padding information .of the string ¢p; affent
gives the number of lines affected by the operation, or 1 if this is
not applicable, oute is a routine which is called with each character in
turn. The external variable ospeed should contain the ‘output speed
of the terminal as encoded by etty(C). The external variable PC
should .contain ‘a pad character to be used (from the pc capability) if
a NULL is inappropriate.

Files
Jusr/lib/libtermcap.a ~ ltermeap library
Jete/termcap data base

See Also

curses(8), termcap(M), tty(M)
Credit
This utility was .developed at the University of California at Berkeley

and is used ‘with permission.

Notes

These routines can be linked by using the linker option ~ ltermeap.

March 24, 1984 Page 2

i



TIME () TIME(S)

Naine

time, ftime — Gets ‘time and date. -

Syntax
time_t time :((long *) 0)

time_t time (tloc)
time_t *tloc;

#include <sys/types.h>
#include <sys/timebh>

ftime(tp)
struct timeb *tp;

Description

Time returns ‘the current system time in seconds since 00:00:00
GMT, January 1, 1970.

1f tloc {taken as an .integer) is nonzero, the return value is also
stored in the location to which #oc points.

Ftime returns the time in a structure (see below under Return
Value.)

Time will fail if tloc points to an illegal address. [EFAULT] Likewise,
ftime will fail if tp points to an illegal address. [EFAULT]

Return Value

Upon successful completion, ‘time returns the value -of time. Other-
wise, a value of — 1 is returned and errno is set to indicate the ‘error.

The ftime entry fills in ‘a structure pointed to by its ‘argument, as
defined by <sys/timeb.h>:

*
+ Structure returned by ftime system call
struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short -dstflag;

March 24, 1984 Page 1



TIME (S) TIME (S)

The structure contains the time since the epoch in seconds, up to
1000 milliseconds .of ‘more-precise interval, the local time sone
(measured in ‘minutes of time westward from Greenwich), and a flag
that, ‘if nonzero, indicates that Daylight Saving time :applies locally
during the appropriate part of the year.

See Also

date(C), stime(S), ctime(S)

March 24, 1984 Page 2



TIMES ( S) TIMES (S)

Name

times - Gets process and -child process times.

Syntax
#include <times.h>

long times (buffer)
struct tmbaf {
long utime;
long stime;
long cutime;
long cstime;
} ‘buffer;

Description
Times fills ‘the 'structure ‘pointed to by ‘buffer with time-accounting
information. This information comes from the calling jprocess -and
each of iits terminated child processes for which it has executed a

vait(S).

All times are in-clock ticks where 3 tick is:some fraction of a second
defined in machine (M).

Utime ‘is the CPU time used while executing instructions in the user
space of the calling process.

Stime is the CPU ‘time ‘used by the system on behalf of the calling
process.

Cutime is the sum of the -utimes and cutimes of the child processes.
Cstime ‘is the sum of the stimes and cstimes of the child processes.

Times will fail if buffer points to an illegal address. {EFAULT]

Return Value
Upon ‘successful completion, times returns the elapsed real time, in
clock ticks, since an arbitrary point in the past, such as the system
start-up time. This point does not change from one invocation of

times to another. If times fails, @ ~ 1 is returned and errno is set to
indicate the error.

See Also
exec(S), fork($8), time(S), wait(S), machine(M)

March 24, 1984 Page 1



TMPFILE (8) TMPFILE (S)

Name

tmpfile -~ Creates a temporary file.

Syntax
##include <stdio.h>

FILE *tmpfile ()

Description
Tmpfie creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically

be deleted 'when the process using it terminates. ‘The file is opened
for update.

See Also

creat{S), unlink(S}, fopen(S), mktemp(S), tmpnam(S)

March 24, 1984 Page 1



TMPNAM (S) IMPNAM (8)

Name

tmpnam — Creates-a name for a‘temporary file.

Syntax
#include <stdio.h>

char *tmpnam (s)
char ®s;

Description

Tmpnam generates a filename ‘that -can safely be used for a tem-
porary file. If (int)s is zero, -tmpnam leaves its result in an internal
static area and returns 2 pointer to that area. The next call to
tmpnam will destroy the ‘contents of the area. If (int)s'is 'nonzero, &
is assumed to be the address of an array of at least L_tmpnam
bytes; ‘tmpnam places its result iin ‘that array and returns s as its
value.

Tmpnam generates a different filename -each time it is:called.
Files created using tmpnam -and either fopen or creat are only tem-
porary in ‘the sense that they reside in ‘a directory intended for tem-
porary use, and their names are unique. It is the ‘user's responsibil-
ity to use unlink (S) to remove the file when its use is-ended.

See Also
creat( S}, unlink($), fopen(S), mktemp(S}

Notes

If called more than 17,576 times in a single .process, #mpnam will
start recycling previously used names.

Between the ‘time a filename is created and the file is opened, it is
possible for some .other process to ccreate a file with the same name.
This can ‘never happen if that other process ‘is ‘using tmpnam or
mktemp, and the filenames are chosen so as to render duplication by
other means unlikely.

March 24, 1984 Page 1



TRIG (S) TRIG (8)

Name
sin, cos, tan, esin, acos, atan, atan2 — Performs trigonometric func-
tions.

Syntax
#include <math.h>

double sin (x}
double x;

double cos (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan {x)
double x;

double atan2 (y, x)
double x, y;
Description
Sin, cos-and tan return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to
make sure ‘the result is meaningful.
Asin returns the ‘arc sin in the range - /2 to 7 /2.
Acos returns the ‘arc cosine in the range 0to x.

Atan returns the arc tangent.of z in the range - 7/2to 7 /2.

Atan2 returns the arc tangent of y/z in the range - 7 to 7.

Diagnostics

Arguments -of magnitude greater than 1 cause aein and acos to . e
return -value 0.

Notes

These routines.can be linked with the linker option - 1m.

March 24, 1984 Page 1



TTYNAME (8) TTYNAME (8)

Name

ttyname, isatty - Finds the name of a terminal.

Syntax
char *ttyname (fildes)
int isatty (fildes)

Description

Tyname returns a ‘pointer to the null-terminated pathname ‘of the
terminal device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated ‘with a terminal device, 0 other-
wise.

Files
Jdev/*

Diagnostics

Ttyname returns a null pointer (0) if fildes does not describe a termi-
nal device in directory /dev.

Notes

The return value points to static data whose content is overwritten
by -each call.

March 24, 1984 Page 1



ULIMIT(S) ULIMIT(S)

Name

ulimit = Gets and.sets user limits.

Syntax

long ulimit (cmd, newlimit)
inticmd;
long newlimit;

Description

This function provides for control over process limits. The emd
values available are:

1 Gets the process’ file size limit. The limit is in units of disk
blocks and is inherited by child processes. Files of ‘any size :can
be read.
2  ‘Sets the process’ ‘file size limit to the value of newlim#t. Any
process may decrease this limit, ‘but only a process with an
effective ‘user ID of super-user may increase the limit. Ulimit
will fail and the limit ‘will be unchanged if a ‘process with an
eflective user ID other than super-user attempts to increase its ]
file size limit. {EPERM]

3 Gets the maximum possible break value. See ¢brk(S).

Return Value
Upen successful completion, a nonnegative value is returned. Oth-
erwise, a value of - 1 is returned and errno is ‘set to indicate the
error.

See Also
sbrk(S), chsize(S), write(S)

Notes

The file limit is only enforced on writes to regular files. Tapes, disks,
and other devices of any size can be ‘written.

March 27, 1084 Page 1



UMASK (8) UMASK (S)

Name

umask - ‘Sets and gets file ‘creation ‘mask.

Syntax
int umask (cmask)
int cmask;

Description
Umask sets the process’ file ‘mode ‘creation ‘mask to .cmask and
returns the previous value of the mask. ‘Only the low-order 9 bits-of
cmask and the ‘file ‘mode ‘creation mask are used.

Return Value

The previous value of the file mode creation mask is returned.

See Also
mkdir{C), mknod(C), sh(C}, chmod(8), mknod(S), open(S)

March 24, 1984 Page 1



UMOUNT () UMOUNT(S)

Name

umount - Unmounts a file system.

Syntax }
int umount (spec)
char *spec;
Description
Umount requests that a previously mounted file system contained on
the block special device identified by spec be unmounted. Spec is a
pointer to a pathname. After unmounting the file system, the direc-
tory upon which the file system ‘was mounted reverts to its ordinary
interpretation.
Umount may be invoked only by the super-user.
Umount will fail if one or more ‘of the following are ‘true:
The process’ effective user ID is not super-user. |EPERM]
Spec :does not-exist. [ENXIO] )
Spec is not a block special device. [ENOTBLK]
Spec is not:mounted. [EINVAL]
A file on épec is busy. [EBUSY]
Spec points -outside ‘the process’ allocated address space.
[EFAULT]
Return Value
Upon successful .completion a value of 0 is returned. Otherwise, a
value of ~ 1 is returned and erro is:set to indicate the error.

See Also
mount{C), mount{S)

March 24, 1984 Page 1



UNAME ('S) UNAME (8)

Name

uname - ‘Gets name of current XENIX system.

Syntax
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

Description

Uname stores information -identifying the current XENIX ssystem in
the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h>:

struct utsname {
char  'sysname[9};
char  ‘nodename[9];
char  release[9];
char  version|8];
unsigned short sysorigin;
unsigned short sysoem;
long sysserial;
k
Uname returns a null-terminated character ‘string naming the -current
XENIX system in ‘the .character array sysname. Similarly, nodename
contains the name that the system ‘is known by on a communications
network. Release and version further identify the operating system.
Sysongin and syseom identify the source of the XENIX version. Sye-
serval is a software serial number which may be zero if unused.

Uname will fail if ‘name points to an invalid:address. [EFAULT]

Return Value

Upon successful completion, a nonnegative value is returned. ‘Oth-
erwise, — 1 is returned and -errno is:set to indicate the error.

March 24, 1984 Page 1



UNAME (8)

See Also

uname(C)

Notes

Not:all fields may be set:on a particular system.

March 24, 1984

UNAME (8)

Page 2



UNGETC(S) _ UNGETC (S)

Name

ungetc - Pushes character back into input stream.

Syntax
#include <stdio.h>
int ungetc (¢, stream)
charc;
FILE *stream;
Description
Ungete pushes the character ¢ back on an input stream. The charac-
ter ‘will be returned by the next gétc :call on ‘that stream. Ungete

returns c.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered.
Attempts to ‘push EOF .are rejected.

Feeek(S) -erases all. memory of pushed back characters.

See Also
fseek(S), getc(S), setbuf(S)

Diagnostics

Ungete returns EOF if it can’t‘push a character back.

March 24, 1984 Page 1



UNLINK (S) UNLINK (S)

Name

unlink ~ Removes directory entry.

Syntax
int unlink (path)
char *path;
Description

Unlink removes the directory entry named by the pathname pointed
to by path.

The named file is unlinked unless one or more of the following are
true:

A component of the path prefix is not a directory. {ENOTDIR]
The named file does not exist. |[ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Write ‘permission is denied on the directory containing the link
to be removed. {EACCES]

The named file is a directory and -the effective user ID -of the
process is-not super-user. [EACCES]

The entry to be unlinked is the mount point for-a mounted file
system. |EBUSY]

The entry to be unlinked is “*.”" or **..”" in the root directory of a
mounted filesystem. [EBUSY]

The entry to be -unlinked is the last link to a pure procedure
{shared text) file that is being executed. [ETXTBSY]

The directory entry to be unlinked is part of a read-only file sys-
tem. |[EROFS)

Path points outside the process’ allocated address space.
[EFAULT]

When all links to a file have been removed and no process has the
file open, ‘the space occupied by the file is freed and the file ‘ceases to
exist. If one or more processes have the file open when the last link
is removed, ‘the removal is postponed until all references to the ‘file
have been ¢closed. i

March 24, 1984 Page 1



UNLINK (S) UNLINK (S)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -~ 1 is returned ‘and -ermo is set to indicate the error.

See Also
rm{C), close(8), link(S), open(S)

March 24, 1984 Page 2



USTAT(S) USTAT(S)

Name

ustat - Gets file system statistics.

Syntax

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat *buf;

Description
Ustat returns information about a mounted file system. Dev is a

device number identifying.a device containing a mounted file system.
Buf is a pointer to a ustat structure that includes the following ele-

ments:
daddr_t {_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char  {_fname|$]; /* Filsys name */ .
char I _fpack|6}; /* Filsys pack name */ )

Ustat will fail if one or more of the following are true:

Dev is not the device number-of a device :containing a mounted
file system. [EINVAL]}

Buf ‘points outside the process’ allocated address space.
[EFAULT]
Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and efrno is set to indicate the error.
See Also
stat(8), filesystem(F)

Notes
When using file systems from previous versions of XENIX, fsck(C)

must be run on the file system before mounting. Otherwise the ‘ustat
system ‘call ‘will not' work correctly. This only needs to be done once,

March 24, 1984 Page 1



UTIME(S) UTIME (8)

Name

utime ~ Sets file zccess and modification times.

Syntax

#include <sys/types.h>
int utime (path, times)
char *path;

struct utimbuf *times;

Description

Path points to a pathname naming a file. Utime sets the access and
modification times of the named file.

If tsmes is NULL, the access and modification times of the file are set
to the ‘current time. A process must be the owner of the file .or have
write permission to use utime in this manner.

If timee is not NULL, times is interpreted .as a pointer to a utimbuf
structure and the access-and modification times ‘are set to the values

contained in ‘the ‘designated structure. ‘Only the owner of the file or
the super-user may ‘use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct  utimbuf {
time_t -actime; /* access time */
time_t modtime; /*modification time */
2
Utime will fail if .one or more-of the following are true:
The named file does not exist. |ENOENT]
A component of the path prefix is nota directory. |[ENOTDIR]

Search permission is-denied by a component-of the path prefix.
[EACCES)

The effective ‘user ID is not super-user and not the owner of the
file ‘and times is not NULL. [EPERM]

The effective user ID :is not super-user and not the owner of the
file and times is NULL and ‘write access is-denied. [EACCES]

The file system containing the file is mounted read-only.
|EROFS]

March 24, 1984 Page 1



UTIME (S) UTIME (S)

Timee is ‘not NULL and points outside the process’ allocated
address space. {EFAULT]

Patk points outside the process’ allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of .0 is returned. Otherwise, a
value of - 1'is returned and errno is set to indicate the error.

See Also
stat(S)

March 24, 1984 Page 2




WAIT(S) WAIT(S)

Name

wait — Waits Tor a child process to stop-or terminate.

Syntax

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

Description

Wait suspends the calling process until it receives a signal that'is to
be caught {see eignal(S)), or until any one of the calling process’
child processes stops in a trace mode (see ptrace(S)) or terminates.
If ‘a child process stopped or terminated prior to the :call on wait,
return is immediate.

If stat_loc (taken as an integer) is nonzero, 18 bits of information
called ““status’ are ‘stored in the low-order 16 bits of ‘the location
pointed to by stat_loc. Status can be used to differentiate between
stopped :and terminated child processes and if the «child process ter-
minated, :status identifies the .cause of termination ‘and passes useful
information to the parent. This is accomplished in the following
manner:

If the child process stopped, the high-order 8 bits :of status will
be zero and the low-order 8 bits will be set equal to 0177.

If the child process terminated due to an ezit call, the low-order
8 ‘bits of 'status will be zero and the high-order 8 bits ‘will contain
the low-order 8 bits ‘of ‘the argument that the -child ‘process
passed to -ezit; see ezit(S).

If the child process terminated due to a signal, the high-order 8
bits -of status will be zero and the low-order ‘8 bits will .contain
the number of the signal that caused the termination. In addi-
tion, if the low-order seventh bit (i.e., bit 200) is set, a *‘core
image’ ‘will have been produced; see signal(S).

If a parent process terminates without waiting for its child processes
to terminate, the parent process ID of each child process is set to 1.
This means the ‘initialization process inherits the child processes; see
intro(S).

March 24, 1984 Page 1



WAIT(S) WAIT(S)

Wait will fail and return immediately if one .or more of ‘the following
‘are true:

The calling process has no existing unwaited-for child processes.
[ECHILD]

Stat loc points to an illegal address. {EFAULT)

Return Value
If wait returns .due ‘to the receipt of a signal, a value of - 1 is
returned to the calling process and ermo is set to EINTR. If ‘wast
returns due to a stopped or terminated -child ‘process, the process ID

of the child is returned to the calling process. Otherwise, a value of
-1 is returned and ermo is set-to indicate the error.

See Also

exec(8), exit(S), fork(S), pause(S), signal(S)

Warning

See ‘Warning in ‘signal(S).

A
]
i

March 24, 1984 Page 2



WAITSEM () WAITSEM (8)

Name

waitsern, nbwaitsem - Awaits and checks access to :a resource
governed by ‘a:semaphore.

Syntax

waitsem(sem_num);
int sem_num;

nbwaitsem{sem_num);
int sem_num;

Description

Waitsem gives the calling process access to the resource governed by
the semaphore ‘#em_num. I the resource is in use by another pro-
cess, waitéem will put the process to sleep until the resource becomes
available; nbwaistsem will return the error ENAVAIL. Waitsem and
nbwaitsem are used in conjunction with sigsem to allow synchroniza-
tion of processes wishing to access a rTesource. One or more
processes may ‘waitsem on ‘the given semaphore and will ‘be put to
sleep until the process which currently has access to ‘the ‘resource
issues sigsem. Sigsem causes the process which is next in line on ‘the
semaphore’s queue to be rescheduled for -execution. The
semaphore’s queue is organized in first in first out (FIFO) order.

See Also

creatsem(S), opensem($S), sigsem(S)

Diagnostics

-Waiteem returns the value {int} -1 if an error occurs. If sem_num
has not been previously opened by a call to opensem or creatsem,
errno is set to EBADF. If sem_num does not refer to a semaphore
type file, errno is set to ENOTNAM. All processes waiting (or
attempting to wait) on the semaphore when the process controlling
the semaphore -exits without relinquishing control (thereby leaving
the resource in an undeterminate state) return ‘with ermo set to ENA-
VAIL.

March 24, 1984 Page 1



WRITE(S) WRITE (S)

Name

write — Writes to a file.

Syntax ‘,,

int write (fildes, buf, nbyte)
int fildes;

char*buf;

unsigned nbyte;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call.

Whrite attempts to ‘write nbgte bytes from the buffer pointed to by buf
to the file -associated ‘with the fildes.

On devices capable of seeking, the actual writing of data proceeds
from the position -in the file indicated by the file pointer. Upon
return from ‘wnite, the file pointer is incremented by ithe number of
bytes actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is-undefined.

If the O_APPEND flag of the file status flags is set, ‘the file pointer
will be set to the end of the file prior to each ‘write.

Whrite will fail and ‘the file pointer will remain unchanged if one or
more of the following are true:

Fildes is nota valid file .descriptor open for writing. [EBADF]

An attempt is made ‘to write to a pipe ‘that is not open for read-
ing by ‘any process. [EPIPE and SIGPIPE signal]

An attempt was made ‘to write a file that exceeds the process’
file size limit or the maximum file size. See -ulimst(S). [EFBIG]

Buf points .outside ‘the process’ allocated ‘address space.
[EFAULT

If a wnite requests that more bytes be ‘written than there is.room for
(e:g., ‘the ulimit (see ulimit(S)) or the physical end of a medium),
only as many bytes as there is room for will be written. For exam-
ple, suppose there is space for 20 bytes more in a file before reach-
ing a limit. A write of 512 bytes will return 20. The next write of a
nonzero number-of bytes will give a failure return {except as noted

March 24, 1984 Page 1



WRITE(S) WRITE(S)

below).

If ‘the file being ‘written is a pipe (or FIFO), no partial writes will be
permitted. Thus, the write will fail if 2 write of nbyte bytes would
exceed a limit.

If the fle being written is a pipe (or FIFO) -and the O_NDELAY flag
of the file flag word is set, then write to a full pipe (or FIFO) will

return a count of 0. Otherwise (O_NDELAY clear), ‘writes to a full
pipe {or FIFO) will block until space becomes available.

Return Value
Upon successful completion the number of bytes actually written is
returned. Otherwise, — 1 is returned and ‘errno is set to indicate the
error.

See Also
creat{ S}, dup(S), lseek(S), open($), pipe(S), ulimiy(S)

Notes

Writing a region of a file locked with locking causes wnie to hang
indefinitely until the locked region is unlocked.

March 24, 1984 Page 2



XLIST(S) XLIST(S)

Name

‘xlist, fxlist — Gets name list-entries from files.

Syntax

#include <a.out.h>
xlist{filename, x1)
char *filename;
struct xlist x1] };

#include <a.out.h>
#include <stdio.h>
fxlist(fp, x1)

FILE »fp;

struct xlist x1[ ];

Description

Felist performs the same function as zlist, except that fzlist accepts a
pointer to a previously opened file intead of a filename.

Xlist examines the name list in the given executable output file ‘and
selectively extracts :a list of values. The name list structure 2! con-
sists .of an array of :alist structures containing names, types, values,
and segment values (if applicable). The list is terminated by either a
pointer to a null name or a null pointer. Each name is looked up in
the name list of the file. If the name is found, the type and value of
the name are inserted into the next two fields. The segment value (if
it -exists) is inserted in the ‘third field. If the name is not found,
both entries are set to zero. See a.0ut(F) for a discussion of the xlist
structure.

X.out and ‘a.out formats are understood, as well as 8086 relocatable
and ‘x.out segmented formats.

If the symbol table is in a.out format, and if the symbol name given

to zliet is longer than eight characters, only the first eight characters

are used for comparison. In all other cases, the name given to zlist

must be the same length as a name list.entry in order to match.

If two or ‘more :symbols happen to match the name given to zlist,

then the type and value used will be those of the last symbol found.
See Also . e

a.out(F)

March 24, 1984 . Page 1



XLIST (8) XLIST(S)
Diagnostics
Xlist returns -1 and sets all type entries to zero if the file cannot be
read, is not an object file, or contains an invalid name list. Other-

wise, zlist returns zero. A return value of zero does not indicate that
any or all of the given symbols were found.

March 24, 1984 Page 2






CONTENTS

intro
a.out
acct

core
cpio

§ksyaem

master
mnttab
scesfile
types
x.out

FileFormars(F)

Introductiontofile formats

Formatof assemblerand link editoroutput
Formatofper—processaccounting file
Archive file format

Listoffile systemsprocessed by fsck
Formatofcorcimagefile

Formatof cpioarchive
Formatofadirectory

Incremental dumptape format
Formatofasystem volume
Formatofaninode

Formatof masterdeviceinformationtable
Formatofmounted file systemtable
FormatofanSCCSfile

Primitive system datatypes
Loaderoutput






Index

Accountingfile acct
Assemblerand link editoroutput a.0ut
Archivefile ar
Archivefile cpio
Coreimagefile core
Datatypes, system types
Directory dir
Dumptape dump
File formats, introduction intro
Filesystemlist checldist
Filesystem volume filesystem
Inode inode
loaderoutput x.out
Mountedfile systemtable muttab

scosfile scesfile



e



INTRO(F) INTRO(F)

Name

intro - Introduction to file formats.

Description

This ‘section .outlines ‘the formats .of various files. Usually, these
structures can be found in ‘the directories fusrfinclude or
fusr/include/sys.

March 24, 1984 Page 1



A.QUT(F) A.OUT{F)
Name

a.out - Format of assembler and link editor output,

Description
A.out is the output file of the assembler as and the link -editor Id.
Both programs will make a.out executable if there were no ‘errors in
assembling or linking, and no unresolved external references.
The format of a.out, called the x.out or segmented x.out format, is
defined by the files jusrfncludefs.out:-h and furfincludefoysfrelsym.h.
The a.out file has the following general layout:
1. Header.
2.  Extended header.
3.  File segment table (for segmented formats).
4.  Segments {Text, Data, Symbol, and Reloeation). "
In the segmented format, there may be several text and data seg-
ments, depending on the memory model of the program. Segments
within the file begin on boundaries which are multiplies of 512 bytes
as defined by the file's pagesize.

See Also

as{CP), (CP), nm(.CP), strip(CP).

March 24, 1984 Page 1

-



ACCT(F) : ACCT(F)

Name

acct - Format.of per-process accounting file.

Description

Files produced as a result of calling acct(S) have records in the form
defined by <sys/acct:h>.

In ac_flag, the AFORK flag is turned on by each fork(S) and turned
off by an ezee(S). The ac_comm field is inherited from the parent
process and is reset by any ezéc. Each time the system charges the
process with a clock tick, it also adds the current process size ‘to
ac_mem computed as follows:

{data size) + (text size) / (number of in-core processes using
text)

The value of ac_memjac_stime ican be viewed as an -approximation to
the ‘mean process size, as ‘modified by text-sharing.

See Also
acet{C), acctcom{C), acet(S)

Notes

The ac_mem value for a short-lived command gives little information
about the actual size of the command, because ac_mem may be
incremented while a different command {e.g., the shell) is being exe-
cuted by the process.

March 24, 1984 Page 1



AR (F). AR (F)

Name

ar— Archive file format.

Description
The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link edi-
tor 1d(C).
A file produced by ar has a magic number at the start, followed by
the constituent files, each preceded by a file header. The magic
number is 0177545 octal (or Oxff65 hexadecimal). The header of
each file is declared in fusrfinclude/ar.h.
Each file begins on a word boundary; a null byte is inserted between
files if necessary. Nevertheless the size given reflects the actual size
of the file exclusive of padding.

Notice there is no provision for empty areas in an archive fle.

See Also
ar(CP), 1d(CP)

March 24, 1984 Page 1



CHECKLIST(F) CHECKLIST(F)

Name

checklist ~ Listof file systems processed by fack.

Description
The Jetcfchecklist file contains a list of the file systems ‘to be checked
when feck(C) is invoked without arguments. The list ‘contains at
most 15 epecial file names. Each epecial file name must be on a
separate line :and must correspond to a file system.

See Also
fsck(C)

March 24, 1984 ' Page 1



CORE (F) CORE (F)

Name

core - Format-of core image file.

Description

XENIX writes out a core image of a terminated process when any of
various errors occur. See signal(S) for the list-of reasons; the most
common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is
written in the process’ working directory (provided it can be; normal
access controls apply). A process with an effective user.ID different
from the real:user ID will not produce a.core image.

The first section of the core image is a copy of the system’s per-user
data for the ‘process, including the registers as they were at the time
of the fault. The size of this section depends on the parameter usize,
which is defined in /usrfinclude/sys/paramh. The remainder
represents the ‘actual contents of the user's core area when the core
image ‘was written. If the text segment is read-only and shared, or
separated from data space, ‘it is not dumped.

The format.of the information .in the first.section is described by the

user ‘structure of the system, defined in Jusrfinclude/sys/user.h.

The locations of registers, are outlined in /usr/include/sys freg.h. )
See Also

adb(CP}, setuid(S), signal(S)

March 24, 1984 Page 1



CPIO(F) CPIO(F)

Name

cpio ~ Format-of cpio archive.

Description
The header structure, when the c-option is not used, is:

struct {
short h_magic,
h_dev,
h_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2},
h_namesize,
h_filesize[2];
char . ‘h_name|h_namesize rounded to word];
} Hdr;

When the ¢ option is used, the header information is described by
the statement below:

sscanf( Chdr, %60 %60 %60 96607560 7o %60 %60 %ol Lo Zbo T80 %s™,
&Hdr.h_magic,&Hdr.h_dev,&Hdr.h_ino,&Hdr.h_mode,
&Hdrh_nid,&Hdr.h_gid,&Hdr.h_nlink,&Hdr.h_rdev,
&Longtime,&Hdr.h_namesize, &Longfile, Hdr.h_name);

Longtime and Longfile are ‘equivalent to Hdr.h_mtime -and
Hdr.h_filesize, respectively. The -contents of -each file is recorded in
an -element of the array of varying length structures, archive,
together with other items describing ‘the ‘file. Every instance of
h_magic ‘contains the constant 070707 (octal). The items A_dev
through h_mtime have meanings explained in ataf(S). The length of
the null-terminated pathname h_nome, including the null byte, is
given by h_namesize.

The last record of the archive dlways contains the name TRAILERI!!.
Special files, directories, and the trailer are recorded with h_fllesize
equal to zero.

See Also

¢pic(C), find(C), stat(S)

March 24, 1984 ¢ Page 1



DIR (F) DIR (F)

Name

dir -~ Format of a .directory.

Syntax
#include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except that no user
may write into ‘a directory. The fact that a file is a directory is indi-
cated by a bit in the flag word of its inode entry (see flesystem(F)).
The ‘structure of a directory is given in the include file
Jusr/include/sys /dir.h.

By convention, the first two ‘entries in each directory are*‘dot” (.)
and “‘dotdot” (..). The first is an entry for the directory itself, The
second is for ‘the parent directory. The mesning of dotdot is
modified for the root directory of the master file system; there is no
parent, so dotdot has the same meaning as dot.

See Also
filesystem(F)

March 24, 1984 ’ Page 1




DUMP (F) DUMP(F)

Name

dump - Incremental dump tape format.

Description

The dump and restor commands are used to ‘write ‘and read iincre-
mental dump magnetic tapes.

The dump tape consists of a header record, some bit mask records, a
group of records describing file system directories, ‘a group of records
describing file system files, and some records describing a second bit
mask.

The header record and the first record of each description have the
format described by the structure included by:

#include <dumprestor.h>
Fields in the ‘dumprestor structure -are described below.
NTREC is ‘the number of 512 byte blocks in a physical tape record.
MLEN ‘is the number of bits in :a bit map word. ‘MSIZ is the number

of bit map words.

The TS_ entries are used in the ‘¢_type field to indicate what sort of
header this is. The types and their meanings are as follows:

TS.TYPE Tape volume label.

TS_INODE A file or direc’wry follows. The ¢_dinode field is a copy
of the disk inode and:contains bits telling what sort of
file ‘this is.

TS_BITS A bit mask follows. This bit mask has a one bit for
each inode that was dumped.

TS_ADDR A subblock to a file (75_INODE). See the description
of ¢_count below.

TS_END End-of tape record.

TS_CLRI A bit mask follows. This bit mask contains a one bit
for all inodes that were empty on the file system when
dumped.

MAGIC All'header blocks have this number in ¢_magic.

CHECKSUM Header blocks checksum to this value.

March 24, 1984 Page 1



DUMP (F)

DUMP(F)

The fields of the header striucture -are :as follows:

c.type
c_date
c_ddate
c_volume

c_tapea

¢_inumber

c_magic

c_checksum

¢_dinode

c_count

c_addr

The type of the header.

The ‘date the dump was taken.

The date the file system was dumped from.
The current volume number of the dump.

The current block number of this record. This is
counting 512 byte blocks.

The ‘number of ‘the inode being dumped if this is of
type TS_.INODE.

This contains ‘the value MAGIC above, truncated as
needed.

This contains ‘whatever value is needed to ‘make the
block sum to CHECKSUM.

This is a copy of the inode as ‘it appears on the file
system.

This is the count.of characters following that describe
the ‘file. A character is zero if the block associated
with ‘that character was not present-on the file system,
otherwise ‘the ‘character is nonzero. If the block was
not -present on the file system no block was dumped
and it is replaced 2s a hole in the file. If there is not
sufficient space in this block to describe all of the
blocks in a file, TS_ADDR blocks will be scattered
through the file, .each one picking up where the last
left off.

This is the array of characters that is used as described
above.

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a TS_END block and then the ‘tape-

mark.

The structure idates describes an entry iof the file ‘where dump his-

tory is kept.

See Also

dump(C), restor(C), filesystem(F)

March 24, 1984

Page 2




FILESYSTEM (F) FILESYSTEM (F)

Name

file system — Formatof asystem volume.

Syntax

#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/paramh>

Description

Every file system storage volume (e.g., a hard disk) has 2 common
format for certain vital information. Every such volume iis divided
into a certain number of 256 word (512 byte) blocks. Block 0 is
unused and s available ‘to ‘contain a bootstrap program ‘or other
information.

Block 1 is the super-block. The format of :a super-block is described
in Jusrfinclude/sys/filesys.h. In that include file, S dsize is the
address .of the first data block after the i-list. The i-list starts just
after the super-block in block 2; thus the i-list is 8 snze~ 2 blocks
long. S_feize is the first block not potentially available for allocation
to a file. These numbers are used by the system to check for bad
block numbers. If an ““impossible’ block number is allocated from
the free list or is freed, -a diagnostic is written on the console. More-
over, ‘the free array is cleared so as to prevent further allocation
from a presumably corrupted free list.

The free list for each volume is maintained as follows. ‘The ¢ _free
array contains, in & free[1], ..., o_free[e_nfree— 1], up to 49 numbers
of free blocks. -S_free[0] is the block number of the head of a chain
of blocks constituting the free list. The first long in ‘each free-chain
block is the number {up to 50) of free-block numbers listed in the
next 50 longs of this chain member. The first of these 50 blocks is
the link to the next.member of the chain. To allocate a block: decre-
ment o_nfree, and the new block is o_free[s_nfrec]. If the new block
number is 0, there are no blocks left, so give an error. If s_nfree
becomes 0, read in the block named by the new block number,
replace ‘a_nfree by its first word, 'and copy the block numbers in the
next 50 longs into the s_free array. To free a block, check if .« nfree
is 50; if 'so, copy 8_nfrec and the g_frec array into it, write it out, and
set a_nfree to 0. In any event set s_free[s_nfree] to the freed block’s
number and increment s_nfree.

5_tfree is the total free blocks available in the file system.
S_ninode is the number of free i-numbers in the ¢_inode array. To
allocate ‘an ‘inode: if #_ninode is greater than 0, decrement it and

return ‘g_fnode|s_ninode]. If it was 0, read the i-list ‘and place ‘the
numbers of ‘all free inodes {up to 100) into the _inode array, then

March 24, 1984 Page 1



FILESYSTEM (F) FILESYSTEM (F)

try again. To free an inode, provided ¢_ninode is less than 100, place
its ‘number into & fnode[s_ninode] =and increment s_ninode. If
¢_ninode is already 100, do .not bother to enter the freed inode into
any table. This list of inodes only speeds up the allocation process.
The information about whether the inode is really free is maintained
in the inode itself.

8_tinode is-the total free inodes available in the ﬁie system.

S_flock and ¢ _ilock are flags maintained in the core ‘copy of the file
system ‘while ‘it is mounted :and their values on disk are immaterial.
The value of 4_fmod on disk is also immaterial, ‘and is used as-a flag
to indicate :that the super-block has changed and should be ‘copied to
the ‘disk during the next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, ‘and is 2 double-precision representation of the number of
seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). Duringa
reboot, the s_time of the super-block for the root file systemis used
to set the system’s idea of ‘the time.

I-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 8 of them fit into a block. There-
fore, ‘inode ¢ is located in block (¢+15)/8, and begins
64X((4+ 15) (mod 8)) bytes from its start. Inode 1 is reserved for
future use. Inode 2 is reserved for the root directory of the file sys-
tem, but no ‘other i-number has a built-in meaning. Each inode
represents ‘one file. For the format of an inode and its flags, see
inode(F).
Files
{usr/include/sys/filsys.h

[usr/include /sys/stat.h

See Also
fsck(C), mkis(C), inode(F)

March 24, 1684 Page 2



INODE (F) INODE (F)

Name

inode - ‘Format-of an inode.

Syntax
#include <sys/types.h>
#include <sys/ino.h>

* Description
An inode for a plain file or directory in 3 file system has the struec-
ture defined by <sys/ino.h>. For the meaning of the defined
types off it and tme_t see types(F).

Files
Justfinclude/sysfinoh

See Also
stat(S}, filesystem (F}, ‘types(F)

March 24, 1984 Page 1



MASTER (F)

Name

MASTER (F)

master - master device information table

Description

This file is used by the config( CP) program to obtain device informa-
tion that enables it to generate the configuration files. The ‘file -con-
sists of 4 parts, each separated by a line with a dollar sign ($) in
column 1. Part 1 contains device information; part 2 contains the
line discipline ‘table; part 3 contains names of devices that have
aliases; part 4 contains ‘tunable parameter information. Any line
with an asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines .consisting of 14 fields with the ﬁeldé delimited
by tabs and/or blanks:

Field 1:
Field 2:
Field 3:

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

Field 10:
Fields 11-14:

March 24, 1984

device name (8 chars. maximum).
interrupt vector size (decimal, in bytes).
device ‘mask ‘(octal)- each *‘on’ bit indicates that
the driver has the corresponding handler or strue-
ture:

000400 tty structure

000200 stop handler

000100 not used

000040 not used

000020 open handler

000010 close handler

000004 read handler

000002 write handler

000001 ioctl handler.
device type indicator {octal):

000200 allow only one of these devices

000100 not used

000040 not used

000020 required device

000010 block device

000004 character device

000002 ‘not used

000001 not used.
handler prefix {4 chars. maximum).
not used.
major device number for block-type device.
major device number for character-type .device.
maximum number of devices per controller
(decimal).
not used.
maximum of four interrupt vector addresses.
Each address is followed by a unique letter or a
blank.

Page 1




MASTER (F) MASTER (F)

Part 2 contains lines with 11 fields each. Each field is a maximum’ of
8 characters delimited by a blank if less than 8:

Field 1:

Device associated with this line
Field 2:

open routine
Field 3:

close routine
Field 4:

read routine
Field 5:

write routine
Field 6:

ioctl routine
Field 7:

receiver interupt routine
Field 8:

unused- should be nulldev
Field 9:

unused- should be nulldev
Field 10:

output start routine
Field 11:

unused- should be nulidev
Part-3 contains lines with 2 fields each:
Field 1: alias name of device (8 chars. maximum).
Field 2: reference name of device (8 chars. maximum;

specified in part 1).

Part 4 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears iin ‘description file;
20 chars. - maximum})

Field 2: parameter name (as it appears in the c.c file; 20
chars. maximum)

Field 3: default parameter value (20 chars. maximum;
parameter specification is required if this field is
omitted)

Devices that are ‘not interrupt-driven have -an interrupt vector size of
zero. Devices which generate interupts but are not-of ‘the standard
character or block device mold, should be specified with a type (field
4 in part 1) ‘which has neither the block nor char bits set.

See Also

config{ CP)

March 24, 1984 Page 2



MNTTAB (F) K MNTTAB(F)

- Name

mnattab~ Format of mounted file system table.

Syntax
#include <stdio.h>
#include <mnttab.h>
Description

The ftcjmniteh file contains a table of .devices mounted by the
mount(C) command.

Each table entry contains the pathname of the directory on which
the device is ‘mounted, ‘the name of :the device special file, the
read/write .permissions of ‘the special file, and the .date on ‘which the
device was mounted.

The maximum number of entries in minttab is based on the system
parameter NMOUNT located ‘in fusr/sys/conf/c.c, which defines the
number of allowable mounted special files.

See Also

mount{C)

March 24, 1984 Page 1



SCCSFILE (F) SCCSFILE (F)

Name

scesfile— Format of an SCCS file.

Description

An SCCS file is an ASCII file. It consists of six logical parts: the
checksum, the delta table (contains information about each delta),
user names -(contains login names and/or numerical group IDs of
users who may add deltas), flage (contains definitions of internal
keywords), comments (contains arbitrary -descriptive information
about the filc), and ithe body (contains the ‘actual text lines inter-
mixed with :control lines). Each logical part of an SCCS file is
described in detail below.

Throughout an ‘SCCS file there -are lines which begin with the Ascll
SOH (start of heading) character {octal 001). This character is
hereafter referred to as the control character and will be represented
graphically as @ . Any line described below which is not depicted as
beginning with the control character is prevented from beginning
with ‘the control character. Entries of the form DDDDD represent a
five digit string (a number between 00000 and 99999).

Checkesum

The checksum :is the first line of -an SCCS file. The form .of the line
is:

@ hDDDDD
The value of the checksum is the sum ‘of all characters, except those
of ‘the first line. The @hR provides a magic number of (octal)
064001.
"Delta Table”
The delta table consists.of a variable number of entries of the form:
@s DDDDD/DDDDD/DDDDD
@d <type> <SOCSID> yr/mo/da hrmise <pgmr> DDDDD DDDDD
@i DDDDD ...
@x DDDDD ...

@gDDDDD ...
@ m <MR number>

@ ¢ <comments> ...

Qe

March 24, 1984 Page 1



SCCSFILE(F) SCCSFILE (F)

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@:d)
contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of ithe delta, the date and time of creation of the
delta, the login name corresponding to the real user ID :at the time
the delta was created, and the serial numbers of the delta -and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optionsl.

The @m lines (optional) each contain one MR number associated
with ‘the delta; the ‘@ ¢ lines contain comments associated with the
delta.

The @ e line ends the delta table entry.

User Names

The list-of login names and/or numerical group IDs ‘of users who
may add deltas to the file, separated by new-lines. The lines contain-
ing these login names and/or numerical group IDs are surrounded by
the bracketing lines @u and ‘@U. An empty list allows anyone to :
make a delta. !

Flags

Keywords used internally (see .admin{CP) for more information on
their use). Each flag line ‘takes the form:

ef <flag> <optional text>
The following flags are defined:

@ft <type of program>
@fv <program name>
efi

@éfb

@fm <module name>
a@ff <floor>

@fc <ceiling>

@fd <default-sid>

or )

@f]1 <lock-releases>
@fq <userdefined>

The t flag defines the replacement for the identification keyword.

The v flag controls prompting for MR numbers in addition to com-
ments; il the optional text is present it defines an MR number

March 24, 1984 Page 2



SCCSFILE (F) SCCSFILE (F)

validity checking program. The i flag controls the warning/ferror
aspect of the ““No id keywords’ message. When the i flag is not
present, ‘this message is only s warning; when the i flag is present,
this ‘message will cause a ““fatal’” error (the file will not be gotten, or
the delta will not be made). When the ‘b flag is present the — b
option may be used ‘with ‘the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement
text of the sccshleF identification keyword. The f flag defines the
“foor” release; the release below which no deltas may be added.
The ¢ flag defines the “ceiling’’ release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta ‘to
insert a *“‘null” delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release (e.g.,
when delta 5.1 is ‘made after delta 2.7, releases 3 and 4 are skipped).
The absence of the n flag causes skipped releases to be completely
empty. The j flag causes get to allow concurrent edits of ‘the same
base SID. The 1 flag defines a list of releases that are locked against
editing (get(CP) with the - e option). The q flag defines the
replacement for the identification keyword. .

Comments
Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically ‘contains a description -of the file’s pur-
pose.
Body
The body consists of text lines and control lines. Text lines don’t
begin with the control character, control lines do. There :are three
kinds of control lines: insert, delete, and end, as follows:

@1 DDDDD

@D DDDDD

QEDDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

Sce Also
admin(CP), delta{CP), get{ CP), prs(CP)

Xenix Programmer’s Guide

March 24, 1984 Page 3



TYPES(F) TYPES(F)

Name

types ~ Primitive system data types.

Syntax
#include <sys/types.h>

Description

The data types defined in the include file <sys/types.h> are used
in XENIX system code; some data of these types are accessible to
user code.

The form daddr_t is used for disk addresses except in an inode on
disk, see filesystem(F). Times sre encoded in seconds since :00:00:00
GMT, January 1, 1970. The major and minor parts-of » device code
specify kind and unit number of 2 .device and are installation-
dependent. Offsets are measured in bytes from the beginning of a
file. The label_t variables are used to save the processor state while
another process is running.

See Also

filesystem(F)

March 24, 1984 Page 1




X.OUT(F) . X.0UT(F)

Name
x.out — loader output

Synopsis
#include [a.out.h]

Description
x.out is the output file of the loader 1d(CF). 1d(CP) makes x.out
executable if there are no errors and no unresolved external refer—
ences. The following layout information is given in the include file
for the 68000:

struct xexec { /¥ x.out header */
unsigned short x.magic; /* magic number */
unsigned short x_ext; r* size of header extension */

long  xtext; 1* size of text segment */

long  x.data; 1* size of initialized data */

long x_bss; 1* size of uninitialized -data */
long X.Syms; /* size of symbol table */

long  xreloc; * relocation table length %/

long x_entry; /* entry point */

char  xcpu; * cpu type & byte/word order ¥/

char  xrelsym; ® relocation & symbol format */

unsigned short x.renv;  /* run—time environment */
i»
struct  xext { /* x.out header extension */

long xetrsize; /* size of text relocation */

long xe.drsize; /* size of data relocation */

long :xetbase; /* text relocation base */

long xe.dbase;  /* data relocation base */

long xestksize; /* stack size (if XEFS set) */
» .
The file has four sections: a header, the program’s text and data,
relocation information, and 2 symbeol table, in that order. The
header optionally has a header extension as shown above. The
relocation and symbol ‘section will be empty if the program ‘was
loaded with the —s option of Id, or if the symbols and relocation
have been removed by strip(CP). The sizes of each section in the
header ‘are -given ‘as longs, but have even alighment. The size of
the header is not included in any of the other sizes. When an
x.out file is loaded into core for execution, three logical segments
are set up: the text segment, the data segment (with uninitialized
data, ‘which starts off as all 0, following initialized data), and a
stack. The text segment begins at 0 in the core image; the header

May 10, 1984 Page 1



X.OUT(F) X.0UT(F)

is not loaded.

The layout of a symbol table entry, and the principal flag values
that distinguish symbol types, are given in the include file. If a
symbol’s type is undefined external, and the value field is non—
zero, ‘the symbol is interpreted by the loader, Id, as the name of a
common region whose size is indicated by the value of the symbol.
The value -of a word in the text or data portions, ‘which is not a
reference to ‘an undefined external symbol, is exactly the value that
will appear in corc when the file is executed. If a word in the text
or data portion involves a reference to an undefined external sym—
bol, ‘as ‘indicated by the :relocation information for ‘that word, then
the value of the word as stored in the file is an offset from the
associated external symbol.

When the file is processed by the loader and the external symbol

becomes defined, the value of the symbol will be added into the

word in the file. If relocation information is present, ‘it amounts to

one word per word of program text or initialized data.
Files

lust/include/a.out.h
Notes }

Seealso as(CP), 12(CP), nm(CP), /ust/include/a.out.h.

May 10, 1984 Page 2



