MICROSOFT XENIX VOL. 1

PROGRAMMER’S
MANUAL

.

i

e
2

g s i G . ‘ . i 4 . e
Wl V.4

o
S
//j/ i

o g / . ::;/,;;f?’fﬁ xRy ////
g ; i E ';::’E:".. il : : 4 4 '_,-_..: j%? :, = i . e : '

~
i
.-"’f-"' é‘; s

XENIX OS
Programmer’s Manual

Volume]

)

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement.

©1979, Bell Telephone Laboratories, Incorporated
Reprinted with permission.

Copynghf 1979 Bcll Telephone Laboratoncs Incorporatcd SURTIE S« S T

Holdc:s of a UNIX™ software license are-permitted to copy thxs document or any pomoa@f

it, as necessary for licensed use of the softwarc provided this copyrxghandtxcc and stateméqc o

of pcmussxon are included. : S e

ad

8601-100-01

INTRODUCTION TO YOLUME 1

This volume gives descriptions of the publicly available features of the UNIXT system. It does
not attempt to provide perspective or tutorial information upon the UNIX operating system, its
facilities, or its implementation. Various documents on those topics are contained in Volume 2.
In particular, for an overview see ‘The UNIX Time-Sharing System’ by Ritchie and Thompson;
for a tutorial see ‘UNIX for Beginners’ by Kernighan.

Within the area it surveys, this volume attempts to be timely, complete and concise. Where
the latter two objectives conflict, the obvious is often left unsaid in favor of brevity. It is
intended that each program be described as it is, not as it should be. Inevitably, this means
that various sections will soon be out of date. :

The volume is divided into eight sections:

Commands

System calls

Subroutines

Special files

File formats and conventions

Games

Macro packages and language conventions
Maintenance

e S il

Commands are programs intended to be invoked directly by the user, in contradistinction to
subroutines, which are intended to be called by the user’s programs. Commands generally
reside in directory-/bin (for binary programs). Some programs. also reside in /usr/bin, to save
space in /bin. These directories:are searched automatically by the command interpreter.

System calls are entries into the UNIX supervisor. Every system call has one or more C
language interfaces described in section 2. The underlying assembly language interface, coded
with opcode sys, a synonym for wap, is given as well.

An assortment of subroutines is available; they are described in section 3. The primary
libraries in which they are kept are described in inro(3). The functions are described in terms
of C, but most will work with Fortran as welil.

The special files section 4 discusses the characteristics of each system ‘file’ that actually refers
to an I/O device: The names in this section refer to the DEC device names for the hardware,
instead of the names of the special files themselives.

The file formats and conventions section 5 documents the structure of particular kinds of files;
for example, the form of the ‘output of the loader and assembler is given. Excluded are files
used by orly one command, for éxample the assembler’s intermediate files.

Games have been relegated to section 6 to keep them from contaminating the more staid infor-
mation of sectionl.

Section 7 is a miscellaneous collection of information necessary to writing in various specialized
languages: character codes, macro packages for typesetting, etc.

The maintenance section 8 discusses procedures not intended for use by the ordinary user.
These procedures often involve use of commands of section 1, where an attempt has been

tUNIX is a Trademark of Bell Laboratories.

- iii -

made to single out peculiarly maintenance-flavored commands by marking them 1M.

- Each section consists of a number of independent entries of a page or so each. The name of
the entry is in the upper corners of its pages, together with the section number, and sometimes
a letter characteristic of a subcategory, e.g. graphics is 1G, and the math library is 3M. Entries
within each section are alphabetized. The page nnumbers of each entry start at 1; it is infeasible
to number consecutively the pages of a document like this that is republished in many variant
forms.

All entries are based on a common format, not all of whose subsections will always appear.

The name subsection lists the exact names of the commands and subroutines covered
under the entry and gives a very short description of their purpose.

The synopsis summarizes the use of the'program being described. A few conventions are
used, particulariy in the Commands subsection:

Boldface words are considered literals, and are typed just as they appear.

Square brackets [] around an argument indicate that the argument is optional.
When an argument is given as ‘name’, it always refers to a file name.

Ellipses ‘..." are used to show that the previous argument-prototype may be
repeated. '

A final convention is used by the commands themselves. An argument beginning

with a minus sign ‘=’ is often taken to mean some sort of option-specifying argu-

ment even if it appears in a position where a file name could appear. Therefore, it is
unwise to have files whose names begin with ‘ —

The description subsection discusses in detail the subject at hand.
The ﬁles subsection gives the names of files which are built into the program
A see also subsection gives pointers to related information.

s - -

A diagnostics subsection discusses the diagnostic mdrcatrons whrch rnay be ~produced.
Messages which are intended to be self-explanatory are not listed.

" The bugs subsection gives known bugs and sometimes deﬁmencres Ocr:a,sronally also the
suggested fix is described. :

In section 2 an assembler subsectron carries the assembly language system mterface

At the beginning of the volume is a table of contents, organized by -section :dnd- alphabettcally
within each section. There is also a permuted index derived from the table of contents.. Within
each index entry, the title of the writeup.to which it refers is follewed by the:apprapriate sec-
non ‘number in parentheses This fact is important because: 1here< is consrderable name duplica-
tion among the sections, arlsmg prmcrpally from commands whrch exnst only to:exercise a par-
ticular si‘stem call. . : S

{‘«.1-

R . R I

HOW.TO GET STARTED =~ S
This sectxon sketches the basrc lnformatren you need to get started on .ie: lkG,Ule ‘how to

log in and 16g ‘out, how to communicate though yourterminak; and how 10 ruma. program See
‘UNIX for Béginners’ in Volume 2 for.a more complete tﬁtroducuon to. thesystem. ara

Logging in. You must call-UNIX from an appropriate- termmal’ UNIX: termmals are typrﬁed by
the 'I”I‘Y 43, the GE- Terminet 300, the DASI<300S and 450, and most vrdeo termmals;such as
.the’ Batarnedra 5120 or HP 2640, You must also have a valid usér name, which may <be .
obtamed,,together with the telephone number, from the system- admlmsn'ators, sThersame. tele-
- phone tmmber serves ‘terminals” ‘operdting at all the standard speeds. After a data cormectron is -

establlshed, the logm procedure depends on what kind of terminal you are usmg. gy,

300-baud terminais:. Such terminals mclude the GE Terminet:300:and most, drsplay termmals -
run with popular modems These terrmnals generally ‘have a speed switch whtch should. be set -
at ‘300’ (or ‘30’ for 30 characters per- second) and a~half/full duplex switch which should be set

-jv -

at fuil-duplex. (This switch will often have to be changed since many other systems require
half-duplex). When a connection is established, the system types ‘login:’; you type your user
name, followed by the ‘return’ key. If you have a password, the system asks for it and turns
off the printer on the terminal so the password will not appear. After you have logged in, the
‘return’, ‘new line’, or ‘linefeed’ keys will give exactly the same resuits.

1200- and 150-baud terminals: If there is a half/full duplex switch, set it at full-duplex. When
you have established a data connection, the system types out a few garbage characters (the
‘login:’ message at the wrong speed). Depress the ‘break’ (or ‘interrupt’) key; this is a speed-
independent signal to UNIX that a different speed terminal is in use. The system then will type
‘login:,’ this time at another speed. Continue depressing the break key until ‘login:’ appears in
clear, then respond with your user name. From the TTY 37 terminal, and any other which has
the ‘newline’ function (combined carriage return and linefeed), terminate each line you type
with the ‘new line’ key, otherwise use the ‘return’ key.

Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud;
otherwise the preceding instructions apply.

For all these terminals, it is important that you type your name in lower-case if possibie; if you
type upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters
and will translate all subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a ‘S’ to
you. (The Shell is described beiow under ‘How to run a program.’)

For more information, consuit szzy(1), which tells how to adjust terminal behavior, gerny(8),
which discusses the login sequence in more detail, and ny(4), which discusses terminal 1/0.

Logging our. There are three ways to log out:
You can sxmply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control-d) to the
Shell. The Shell will terminate and the ‘login: * message will appear again.

' You can also tog in dlrectly as another user by ngmg a fogm(l) command.

How 10 commumcate through your zermmal. When you type characters, a gnome deep in the sys-
- tem gathers-your characters and saves them in a secret place. The characters will not be given
to a program until you type a return (or newline), as described above in Logging in.

UNIX terminal 170 is full-duplex. 1t has full read-ahead, which means that you can type at any
time, even while a program is typing at:you. Of course, if you type during output, the printed
output will- have the input characters interspersed. However, whatever you type will be saved
up and mterpreted in correct sequence. There is a limit to the amount of read-ahead, but it is
generous and:not hkely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters. '

The character ‘@’ in typed input kills all the preceding characters in the line, so typing mrstakes
can be repaired on a single line. Also, the character ‘#’ erases the last character typed. Succes-
sive uses of ‘#’ érase characters back to, but not beyond, the beginning of the line. ‘@’ and
‘#° can be transmitted.to a program by preceding them with \’. (So, to erase \’ you need two
- ‘#'s). These conventrons can be. changed by the stty(1) command. :

The ‘break’ o mterrupt key causes ‘an mterrupr signal, as does the The AsSCll ‘delete’ (or
‘rubout’) character, which is not. passed .to programs. This signal generally causes whatever
. programi-you.are mnnmg to terminate. It is typically used to stop a long prmtout that you don’ t
want. However, programs can arrange either to .ignore this signal iltogether, or to-be: notified
when it happens (instead of being terminatéd). The editor, for exampie,’ catches’ ‘rntex:rupts and
stops what it is doing, instead of terminating, so that an mterrupt can be used to halt ‘an edrtor
printout without losing the file being edited. ;i : -

The quit signal is' generated .by typing the ASCH FS cha;acter (FS appears many places on‘
different. termmals, most cummonly aé commi~\ .er. control-|.) It rmt only causes a: ‘running

r:

-
e . . SRl LT A LT Lo

=

program to terminate but also generates a file with the core image of the terminated process.
Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you
have a terminal with the newline function or whether it must be simulated with carriage-return
and line-feed. In the latter case, all input carriage returns are turned to newline characters (the
standard line delimiter) and both a carriage return and a line feed are echoed to the terminal.
If you get into the wrong mode, the szzy(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have them turned into spaces during output, and echoed as spaces
during input. The system assumes that tabs are set every eight columns. Again, the suy(1)
command will set or reset this mode. Also, the command mbs(1) will set the tab stops
automatically on many terminais.

How to run a program; the Shell. When you have successfully logged in, a program called the
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a com-
mand name and arguments, and executes the command. A command is simply an executable
program. The Shell looks first in your current directory (see below) for a program with the
given name, and if none is there, then in a system directory. There is nothing special about
system-provided commands except that they are kept in a directory where the Shell can find
them.

The command name is always the first word on an input line; it and its arguments are separated
from one another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a ‘S’ at you to
indicate that it is ready for another command.

The Shell has many other capabilities, which are described in detail in sectlon sh(l)

The current directory. UNIX has a file system arranged in a hierarchy of dlrectones ‘When the .
system administrator gave you a user name, he also created a directory for you, (.ordmanly with-
the same name as your user name). When you log in, any file name you.type is by, defauit in.
this directory. Since you are the owner of this directory, you have full permxssnon to read,
write, alter, or destroy its contents. Permissions to have your wnll with other du'ectones and
files will have been granted or denied to you by their owners. As a matter of observed fact,
few UNIX users protect their files from destructlon, let alone perusal by other users. .

To change the current directory (but not the set of permlsswns you were endowed wnth at
login) use cd(1).

Path names. To refer to files not in the current directory, you musl use a path name. Full
path names begin with ‘/°, the name of the root directory of the ‘whole file* system. After the
slash comes the name of each directory containing the next sub-dxrectory (foliowed by a ‘/°)
until finally the file name is reached. For example, /usr/lem/filex refers to“the ‘file’ filex in the
directory lem; lem is itself a subdirectory of usr; usr springs directly-from the root- dxrectory

If your current dxrectory has subdu'ectones, the path names of files theréin be‘gm w:th the name
of the subdirectory with no prefixed ‘/°.

A path name may be used anywhere a file name is required.

Important commands which modify the contents of files are cp(1), mv(l) “and rm(1), which
respectively copy, move (i.e. rename) and remove files. To find out the’ status of ﬁles or direc-
tories, use Is(1)... See mkdir(1) for makmg directories and rmdir (in- rm{1))+for-destroying
them. N T ian

Fora fuller discussion of the file system, see ‘The Ule Tnme-Sharmg System, by Kga Thomp~
son and Dennis Ritchie. It may also be useful to glance through section 2. of this' manual,
which discusses system calls, even if you don’t intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use the editor ed(1).
The three principal languages in UNIX are provided by the C compiler cc(1), the Fortran

-vi-

compiler f77(1), and the assembler as(1). After the program text has been entered through
the editor and written on a file, you can give the file to the appropriate language processor as an
argument. The output of the language processor will be left on a file in the current directory
named ‘a.out’. (If the output is precious, use mv to move it to a less exposed name soon.) If
you wrote in assembly language, you will probably need to load the program with library sub-
routines; see /d(1). The other two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the Shell in response to the ‘$’ prompt.

Your programs can receive arguments from the command line just as system programs do, see
exec(2).

Text processing. Almost all text is entered through the editor ed(1). The commands most
often used to write text on a terminal are: car, pr, roff and aroff, all in section 1.

The car command simply dumps ASCII text on the terminal, with no processing at all. The pr
command paginates the text, supplies headings, and has a facility for multi-column output.
Nroff is an elaborate text formatting program. Used naked, it requires careful forethought, but
for ordinary documents it has been tamed; see ms(7). Roff is a simpler text formatting pro-
gram, and requires somewhat less forethought.

Troff prepares documents for a Graphics Systems phototypesetter; it is very similar to nroff, and
often works from exactly the same source text. [t was used to produce this manual.

Status inquiries. Various commands exist to provide you with useful information. Who(1)
prints a list of users presently logged in. Dare(l) prints the current time and date. Ls(1) will
list the files in your directory or give summary information about particuliar files.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to
use them, it would be well to learn something about them, because someone else may aim
them at you. . :

To comrnunicate with.another user currently logged in, write(1) is used; mail(1) wnll leave a

Imessage whose presence will be announced to another user when he next logs in. The write-
ups in the manual also.suggest how to respond to the two commands if you are a target

When you log in, a message-of-the-day may greet you before the first ‘S,

CONVERTING FROM THE 6TH EDITION

There follows a catalogue of significant, mostly incompatible, changes that will affect old users
converting to the 7th edition.

Addressing ﬁles Byte addresses in files are now long (32-bit) integers. Accordingly seek has
been replaced by /seek(2). Every program that contains a seek must be modified. Star and
Sfstar(2) have been affected ,Ls;mnlarly, since file lengths are now 32- rather than 24-bit quantities.

Assembly language. System entry points are no longer built in symbols. Their values must be
obtained from /usr/mclude/syss see intro(2). All system calls modify r0. This -means that
sequences like : ' _ :

mov file,r0 . -

sys Iseek,0,0,2

sys _ write, buf n. _
will no: lcmger work (In fact, Iseek now modxﬁes rl as well, so be doubly cautious.)
The sleep(2) entry point is gone; see the more general facility, alarm, plus pause.

Few hbz'ary functxons have assembly language entry points any more. You w;ll have to sxmulatef
the C: callmg sequence

- vii -

Sty and gry. These system calls have been extensively altered, see ioct/(2) and ny(4).

Archive files. The format of files produced by ar(1) has been altered. To convert to the new
style, use arcv(1).

C language, lint. The official syntax for initialization requires an equal sign = before an initial-
izer, and brackets { } around compound initial values; arrays and structures are now initialized
honestly. Two-address operators, such as =+ and =-, are now written += and -= to avoid
ambiguities, although the old style is still accepted. You will also certainly want to learn about

long integers

type definitions

casts (for type conversion)

unions (for more honest storage sharing)

#inctude <filename> (which searches in standard places)

The program /int(1) checks for obsolete syntax and does strong type checking of C programs,
singly or in groups that are expected to be loaded together. It is indispensable for conversion
work.

Fortran. The old fc is replaced by f77, a true compiler for Fortran 77, compatible with C.
There are substantial changes in the language; see ‘A Portable Fortran 77 Compiler’ in Volume
2.

Stream editor. The program sed(1) is adapted to massive, repetitive editing jobs of the sort
encountered in converting to the new system. It is well worth learning.

Standard /0. The old fopen, getc, purc complex and the old —/p package are both dead, and
even getchar has changed. All have been replaced by the clean, highly efficient, stdio(3) pack-
age. The first things to know are that gerchar(3) returns the integer EOF (—1), which is not a
possible byte value, on end of file, that 518-byte buffers are out, and that there is a defined
FILE data type.

Make. The program make(1) handles the recompilation and loading of software in an orderly
way from a ‘makefile’ recipe given for each piece of software. It remakes only as much as the
modification dates of the input files show is necessary. The makefiles will guide you in building
your new system.

Shell, chdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every com-
puter scientist because it is there. So it is with the shell for UNIX users. Everything beyond
simple command invocation from a terminal is different. Even chdir is now spelled cd You
will want to study sAa(1) long and hard.

Debugging. Adb(1) is a far more capable replacement for the debugger db. The first-time user
should be especially careful about distinguishing / and ? in adb commands, and watching to
make sure that the x whose value he asked for is the real x, and not just some absolute loca-
tioh equal to the stack offset of some automatic x. You can always. use the ‘true’ name, _x, to
- pin down a C external variable.

’ Dsw This little-known, but indispensable facility has been taken over by rm —ri.

Boot procedures. Needless to say, these are all different. See section 8 of this volume, and
‘Setting up UNIX’ in Volume 2.

PERMUTED INDEX

fabs, floor, ceil —

phys — allow a process to
access — determine

ac — login

sa, accton — system

acct — execution

acct — turn

sa,

sin, cos, tan, asin,

dn — DN-11

phys — allow a process to access physical
basename — strip filename
piot: openpl et

brk, sbrk, break — change core

malloc, free, realloc, calloc — main memory
lex — generator of lexical

bed, ppt — convert to

bc —

tp — manipulate tape
ar —

ar —

tar — tape

arcv — convert

echo — echo

expr — evaluate
pow, gcd, rpow ~ multiple precision integer

bc — arbitrary-precision

asctime, timezone — convert date and time to

atof, atoi, atol — convert

ASCIl ctime, localtime, gmtime,
functions sin, cos, tan,
as —

a.out —

setbuf —

sin, cos, tan, asin, acos,

language
store, delete, firstkey, nextkey — data
bas —

c¢b — C program

P N

abort(3)

abort — generate IOT fault

abs — integer absolute value abs(3)
absolute value, floor, ceiling functions floer(3)
ac — loginaccounting ac(1)
access — determine accessibility of file access(2)
access physical addresses phys(2)
accessibilityof file access(2)
accounting ac(1)
accounting sa(l)
accounting file acct(5)
accountingonoroff acct(2)
accton — system accounting. sa(l)
acos, atan, atan2 — trigonometric functions sin(3)
ACUinterface dn(4)
adb — debugger, adb(1)
addresses phys(2)
affixes basename(1)
al. — graphics interface plot(3)
alarm — schedule signal after specified time alarm(2)
allocation L brk(2)
allocator malloc(3)
analysisprograms lex(1)
antigquemedia bed (6)
a.out — assembler and link editor output. a.out(5)
ar — archive and library maintainer ar(1)
ar — archive (library) file format ar(5)
arbitrary-precision arithmetic language be(1)
archive tp(1)
archive and library maintainer ar(1)
archive (library) file format ar(5)
archiver tar(1)
archivestonewformat arev(1)
argumMents echo(1)
arguments as an expression expr(l)
arithmetic /msub, mult, mdiv, min, mout, mp(3)
arithmetic — provide drill in number facts arithmetic(6)
arithmetic fanguage be(l)
as —assembler as(1)
ASCH. ctime, locaitime, gmtime, ctime(3)
ascii = map of ASCII characterset ascii(7)
ASClltonumbers atof(3)
asctime, timezone — convert date and time to ctime(3)
asin, acos, atan, atan2 — trigonometric. sin(3)
assembler, as(1)
assembler and link editoroutput a.out(5)
assert — program verification assert(3)
assign bufferingtoastream setbuf(3)
at - execute commands at a later time at(1)
atan, atan2 — trigonometric functions sin(3)
atof, atoi, atol — convert ASCII to numbers atof (3) -
await completion of process wait (1)
awk — pattern scanning and processing) awk(1)
backgammon — thegame backgammon(6)
banner — make longposters banner(6)
bas —basic bas(1)
base subroutines dbminit, fetch, dbm(3)
basename — strip filename affixes basename(1)
basic, bas(1)
bc — arbitrary-precision arithmetic language be(l)
bed, ppt — convert to antique media bed (6)
beautifier, R cb(1)

j0, j1, jn, y0, y1, yn —
fread, fwrite — buffered

sync — update the super

sync ~ update super-

update — periodically update the super
sum — sum and count

ching, fortune — the

brk, sbrk,
export, login,/ sh, for, case, if, while,

fread, fwrite —

stdio — standard

setbuf — assign

mknod —

" 13tol, Itol3 — convert between 3-
swab — swap

cc, pec —

ch ~

lint - a

hypot,

dc — desk
cal — print

indir — indirect system

cu -

malloc, free, realloc,

intro, errno — introduction to system

exec, exit, export, login, newgrp,/ sh, for,

signal ~
cat —

sh, for, case, if, while, break, continue,
.................. fabs, floor,
brk, sbrk, break —

chdir ~

passwd —

chmod —

chmod —

chown —

chown, chgrp —

cd —

ching, fortune — the book of

pipe — create an interprocess

ungetc — push

ispunct, isprint, iscntrl, isascii —
eqnchar — special

getc, getchar, fgerc, getw — get

putc, putchar, fputc, putw — put

ascii — map of ASCIHI

tr - translate

functions

dcheck — file system directory consistency

icheck —.file system storage consistency '

eqn, neqgn,

chess — the game of
chown,

other cookies

isprint, iscntrl, isascii ~ character
cri —
feof, ferror,

-ix -

bessel functions 03
binary input/output fread(3)
bj — the game of blackjack bj{(6)
block sync(l)
block, sync{2)
block update(8)
blocksinafite sum(1)
book of changes and other cookies ching(6)
boot — startup procedures boot(8)
break — change core allocation brk(2)
break, continue, cd, eval, exec, exit, sh(1)
brk, sbrk, break — change core allocation brk(2)
buffered binary input/output fread(3)
buffered input/output package stdio(3)
bufferingtoastream setbuf(3)
build special file mknod(1)
byte integers and long integers 13toi(3)
bytes swab(3)
Ccompiler ce(l)
C program beautifier. cb(1)
Coprogram verifier lint(1)
cabs — euclideandistance hypot(3)
cal — printcalendar cal(l)
caleulator de(1)
calendar, cai(l)
calendar — reminder service calendar(1)
call ... indir(2)
calUNIX cu(l)
calloc — main memory allocator malloc(3)
calls and errornumbers intro(2)
case, if, while, break, continue, cd, eval, sh(1)
cat — catenateand print cat(l)
cat — phototypesetter interface cat(4)
catch orignoresignals signal(2)
catenateand print cat(1)
¢b — C program beautifier cb(1)
cc,pcc — Ccompiler ce(l)
cd — change working directory cd(1)
cd, eval, exec, exit, export, login, newgrp,/ sh(1)
ceil — absolute value, floor, ceiling floor(3)
change core allocation brk(2)
change default directory chdir(2)
change loginpassword passwd (1)
changemode, chmod(1)
changemodeof file chmod(2)
change owner and groupofafile chown(2)
change ownerorgroup chown(1)
change working directory cd(1)
changes and othercookies. ching(6)
chanmef pipe(2)
character back into input stream ungetc(3)
character classification /isalnum, isspace, ctype(3)
character definitions foreqn eqnchar(7)
character or word from stream getc(3)
character or word ona stream putc(3)
characterset ascii(7)
characters tr(1)
chdir — change defauit directory chdir(2)
check L, dcheck (1)
check L icheck(1)
checkeq — typeset mathematics egn(l)
checkers —game checkers(6)
chess chess(6)
chgrp — change ownerorgroup chown(1)
ching, fortune — the book of changes and ching(6)
chmod — changemode chmod(1)
chmod — change modeoffile chmod(2)
chown — change owner and group of a file. chown(2)
chown, chgrp — change owner or group chown(l)
classification /isalnum, isspace, ispunct, ctype(3)
cleari-node e e clri(l)
clearerr, fileno —.stream status inquiries ferror(3)

cron —

fclose, fllush —

sortedfiles
system — issue a shell

test — condition

time ~ time a

nice, nohup — run a

uux — unix to unix

set, shift, times, trap, umask, wait —

intro — introduction to

at — execute

comm — select or reject lines

diff — differential file

cmp —

diff3 — 3-way differential file

cc, pec — C

f77 — Fortran 77

yacc — yet another compiler-

wait — await

test —

mkconf — generate

dcheck — file system directory

icheck ~— file system storage

mkfs —

deroff — remove nroff, troff, tbl and eqn

Is — list

login,/ sh, for, case, if, while, break,
ioctl, stty, gtty —

init, rc — process

terminals —

ecvt, fovt, gevt — output

printf, fprintf, sprintf — formatted output
scanf, fscanf, sscanf — formatted input
units —

dd -~

arcy -

atof, atoi, atol —
................. 13tol, 1toi3 ~
localtime, gmtime, asctime, timezone —
bed, ppt —

, fortune — the book of changes and other
cp —

uucp, uulog — unix to unix

dd — convert and

integers

brk, sbrk, break — change

core — format of

mem, kmem —

trigonometric functions sin,

we - word
sum - sum and

pipe —
umask — set file

- convert date and timeto ASCII

ttt,

spline — interpolate smooth
cron — clock

prof — dispiay profile

ttys — terminal initialization

fetch, store, delete, firstkey, nextkey — -

clockdaemon
close —closeafile
closeorflushastream.
ciri — cleari-node e e e e e
cmp — comparetwofiles
col — filter reverse linefeeds
comm — select or reject lines common totwo
command
command
command L. Lo
command at lowpriority
command execution
command language /newgrp, read, readonly,
commands e e
commands ata latertime
commontotwosortedfiles
COMPATALOT v v v it e e et e e e
comparetwo files
COMPArISON ¢ o v vt e e e e e
compiler e
compiler
compiler
completionof process
conditioncommand
configurationtables
consistencycheck
consistencycheck
construct afilesystem
CONSITUCES v v v v e e v e e e e e e e e e e e s
contentsof directory
continue, cd, eval, exec, exit, export,
controldevice
control initialization
conventionalnames
CONVEISION ¢ o v v et e e e e e e e e e e
CONVErSION v v i i it it e e e e e
CONVEISION v . v it i i ie i
CONVErsion program« v« v ..
convertandcopyafile.
convert archivestonewformat..
convert ASClltonumbers
convert between 3-byte integersand long
convert date and time to ASCII ctime,
converttoantigquemedia
cookies. oo ching
CODY o v e e e e e e e e e e e e e e e e
CODY o« i it e e e e e e e e e e e e e e e e e e e
copyafile
core — format of core image file
coreallocation
coreimage file
COTEMEMOTY . « & v v v v v v e v e e et e e e e e e
cos, tan, asin, acos, atan, atan2 —
cosh, tanh — hyperbolic functions
COUML . . . vttt e i e e e et e e e e e e e e e
countblocksinafile.
CP ™ COPY & v v v e e e e e e e e e e e e
crash — what to do when the system crashes
creat — createanewfile
create an interprocess channel v
creationmodemask,
cron —clockdaemon
crypt — encode/decode
crypt, setkey, encrypt — DES encryption
ctime, localtime, gmtime, asctime, timezone
cun —cal UNIX
cubic — tic-tac-toe,
CUIVE & . . o ottt e e e e e e e e e e e e e e

cron(8)
close(2)
fclose(3)
clri(1)
cmp(l)
col(1)
comm(l)
system(3)
test(1)
time(1)
nice(1)
uux(1)
sh(1)
intro(1)
at(1)
comm(l)
diff (1)
cmp(l)
diff3(1)
ce(l)
f77(1)
yace(1)
wait(1)
test(1)
mkconf(1)
dcheck (1)
icheck(1)
mkfs(1)
deroff(1)
Is(1)
sh(1l)
iocti(2)
init(8)
term(7)
ecvt(3)
printf(3)
scanf(3)
units{1)
dd(1)
arcv(1)
atof(3)
13tol(3)
ctime(3)
bed (8)
ching(6)
cp(l)
uucp(1l)
dd(1)
core(5)
brk(2)
core(5)
mem{(4)
sin(3)
sinh(3)
we(l)
sum(l)
cp(l)
crash(8)
creat(2)
pipe(2)
umask (2)
cron(8)
crypt(1)
crypt(3)
ctime(3)
cu(l)

1ttt (6)
spline(1)
cron(8)
prof(1)
ttys(5)
dbm(3)

nufl —

types ~ primitive system

join — relational

du, dp — DU-11 201

date — print and set the

time, ftime — get

gmtime, asctime, timezone — convert
touch — update

nextkey — data base subroutines
check
dump,

adb —

tp —

crypt — encode/

tc — TC-11/TUS6

chdir — change

eqnchar ~ special character

subroutines dbminit, fetch, store,
tail —

mesg — permit or

crypt, setkey, encrypt —

dup, dup2 — duplicate an open file
dc -

access —

file —

ioctl, stty, gtty — control

constructs

diff -
diff3 — 3-way

mv — move or rename files and
c¢d — change working

chdir — change defauit

Is — list contents of

mkdir — make a

dcheck — file system

unlink — remove

pwd — working

mknod — make a

hp — RH-11/RP04, RPOS, RP06 moving-head
rk — RK-11/RK03 or RK05

rp — RP-11/RP03 moving-head
hs — RH11/RS03-RS04 fixed-head
rf — RF11/RS11 fixed-head

df —

du — summarize

mount, umount — mount and
prof —

hypot, cabs — euclidean

— find and insert literature references in
du,

reversi — a game of

graph —

arithmetic — provide

‘ pk — packet

pkclose, pkread, pkwrite, pkfail — packet

dump — incremental file system
od — octal

dumpdir — print the names of files on a

descriptor

- Xi -

datasink
data types
database operator
data-phone interface
date
date and time
date and time to ASCII
date last modifiedofa file
dbminit, fetch, store, delete, firstkey,.
dc — deskcalculator.
dcheck — file system directory consistency
dd - convert and copy a file
ddate — incremental dump format
debugger
DEC/mag tape formats
decode

defauit directory
definitionsforegn
deiete, firstkey, nextkey — database
deliver the last partofa file
deny messages
deroff — remove nroff, troff, tbi and eqn
DES encryption
descriptor

determine accessibility of file
determine filetype
device
df — diskfree
diff — differential file comparator
diff3 — 3-way differential file comparison
differential file comparator
differential file comparison
dir — format of directories
directories
directory
directory
directory e e e e e e e e e
directory
directory consistency check
directoryentry
directoryname

disk.

disk free

disk usage
dismount filesystem
display profiledata
distance
dn — DN-11 ACU interface
documents
dp — DU-11 201 data-phone interface
dramaticreversals
drawagraph e e e e
drilinnumberfacts, e
driver. LT

du — summarize disk usage
du, dp — DU-1! 201 data-phone interface
dump,
dump.
dump — incremental file systemdump
dump, ddate — incremental dump format
dump tape
dup, dup2 — dupiicate anopenfile
echo —echoarguments
ecvt, fcvt, gevt — output conversion

nuil(4)
types(5)
join(1)
du(4)
date(1)
time(2)
ctime(3)
touch(1)
dbm(3)
de(1)
dcheck (1)
dd(1)
dump(5)
adb(1)
tp(5)
crypt(1)
tc{4)
chdir(2)
egnchar(7)
dbm(3)
tail (1)
mesg(1)
deroff (1)
crypt(3)
dup(2)
dc(1)
access(2)
file(1)
ioctl(2)

- df(l)
diff (1)
diff3(1)
diff(1)
diff3(1)
dir(5)
mv(l)
cd(1)
chdir(2)
Is(1)
mkdir(1)
dcheck(1)
unlink (2)
pwd(1)
mknod(2)
hp(4)
rk(4)
rp(4)
hs(4)
rf(4)
dar(1)
du(l)
mount(1)
prof(1)
hypot(3)
dn(4)
refer(1)
du(4)
reversi(6)
graph(1)
arithmetic(6)
pk(4)
pkopen(3)
du(l)
du(4)
dump(1)
od(1)
dump(1)
dump(5)
dumpdir(1)
dup(2)
echo(1)
ecvt(3)

end, etext,

ed — text

sed — stream

a.out — assembler and link

grep,

crypt —

crypt, setkey,

makekey — generate

getgrent, getgrgid, getgrnam, setgrent,
getpwent, getpwuid, getpwnam, setpwent,
xsend, xget,

nlist — get

setgrent, endgrent — get group file
setpwent, endpwent — get password file
unlink — remove directory

execle, execve, execlp, execvp, exec, exece,

program

getenv — value for
eqnchar — special character definitions for
deroff — remove nroff, troff, tbl and

BOM . . it e e e e e e e e e e e e e e
errornumbers L. L. ... intro,
perror, sys_errlist, sys_nerr — system

errno — introduction to system calls and

spell, spellin, spellout — find spelling

pkon, pkoff —

end,

hypot, cabs —

for, case, if, while, break, continue, cd,

expr —

execl, execv, execle, execve, execlp, execvp,

/case, if, while, break, continue, cd, eval,

execv, execle, execve, execlp, execvp, exec,

at —

uux — unix to unix command

) acct —

sleep — suspend

sleep — suspend

monitor — prepare

profil —

exece, environ — executeafile execl,
/if, while, break, continue, cd, eval, exec,

logarithm, power, square root
frexp, Idexp, modf — split into mantissa and

exp, log, logl0, pow, sqrt ~

/while, break, continue, cd, eval, exec, exit,

ceilingfunctions
factor, primes —

true,

abort — generate IOT

ecvt,
fopen, freopen,
status inquiries

data base subroutines dbminit,
fclose,

StTeam e e e e getc, getchar,
gets,

grep, egrep,

access — determine accessibility of
acct - execution accounting

chmod — change mode of

chown — change owner and group of a
close — close a

core — format of core image

creat — create a new_

- xii -

ed —texteditor
edata — last locations in program
editor. e e e e e e e e e
editor. e
editoroutput e e e e e
egrep, fgrep — search a file for a pattern
encode/decode
encrypt — DESencryption
encryptionkey,
end, etext, edata — last locationsin
endgrent — get group fileentry
endpwent — get password fileentry
enroll —secretmail

entry. getgrent, getgrgid, getgrnam,
entry getpwent, getpwuid, getpwnam,
[£ Lo

environ — execute a file
environ — user environment
environmentname
BN . v ot it e e e e e e e e e e e e e e
QR CONSIIUCIS v v v v v v e v e et .
eqn, neqn, checkeq — typeset mathematics
eqnchar — special character definitions for
errno — introduction to system callsand
CITOL MESSAEES « . . .« & v v v v e o e e e e e e e
errornumbers L L. L L., intro,
BITOTS v it e e et e e e e e e ..
establish packet protocol
etext, edata — last locations in program
euclidean distance
eval, exec, exit, export, login, newgrp,/ sh,
evaluate arguments as an expression
exec, exece, environ — execute a file

exec, exit, export, login, newgrp, read,/

exece, environ —executeafile. execl,
execute commands at a latertime.
BXECULION e

execution accounting file
execution for an interval
execution forinterval
executionprofile
executiontimeprofile
execv, execle, execve, execlp, execvp, exec,
exit — terminate process
exit, export, login, newgrp, read, readonly,/
exp, log, logl0, pow, sqrt — exponential,
exponent e e e e e e
exponential, logarithm, power, square root
export, iogin, newgrp, read, readonly, set,/
expr — evaluate arguments as an expression
f17 — Fortran 77 compiler
fabs, floor, ceil — absolute value, floor,
factor a number, generate large primes
false — provide truth values
fault
fclose, fllush — close or flush a stream
fevt, gevt — output conversion
fdopen — openastream
feof, ferror, clearerr, fileno — stream

fetch, store, delete, firstkey, nextkey —

filush —~ close or flushastream

fgetc, getw — get character or word from
fgets — get a string from a stream
fgrep — search afileforapattern.
fille e

ed(1)
end(3)
ed(1)
sed(1)
a.out(5)
grep(l)
crypt(1)
crypt(3)
makekey(8)
end(3)
getgrent(3)
getpwent(3)
xsend (1)
nlist(3)
getgrent(3)
getpwent(3)
unlink(2)
exec(2)
environ(5)
getenv(3)
eqnchar(7)
deroff (1)
eqn(l)
eqnchar(7)
intro(2)
perror(3)
intro(2)
speli(1)
pkon{2)
end(3)
hypot(3)
sh(1)
expr(l)
exec(2)
sh(l)
exec(2)
at(l)
uux(1)
acct(5)
sleep(1)
sleep(3)
monitor(3)
profil(2)
exec(2)
exit(2)
sh(1)
exp(3)
frexp(3)
exp(3)
sh(1)
expr(1)
f77(1)
floor (3)
factor(1)
true(1)
abort(3)
fclose(3)
ecvt(3)
fopen(3)
ferror(3)
dbm(3)
fclose(3)
getc(3)
gets(3)
grep(1)
access(2)
acct(5)
chmod(2)
chown(2)
close(2)
core(5)
creat(2)

dd — convert and copy a

execvp, exec, exece, environ - execute a
group — group

hs — RH11/RS03-RS04 fixed-head disk
link — link to a

mknod — build special

mknod — make a directory or a special
passwd — password

pr — print

read — read from

rev — reverse lines of a

rf — RF11/RS11 fixed-head disk

’ size — size of an object

sum — sum and count blocks in a

tail — deliver the last part of a

touch — update date last modified of a
uniq — report repeated lines in a

write — write on a

diff — differential

diff3 — 3-way differential

umask — set

dup, dup2 — duplicate an open
getgrnam, setgrent, endgrent — get group
getpwnam, setpwent, endpwent — get password
grep, egrep, fgrep — search a

ar — archive (library)

split — split a

mktemp — make a unique

stat, fstat — get

mkfs — construct a

mount, umount — mount and dismount
mount, umount — mount or remove
dcheck —

dump — incremental

hier -

quot — summarize

restor — incremental

icheck —

mtab — mounted

filsys, flblk, ino — format of

utime — set

file — determine
basename — strip

feof, ferror, clearerr,

cmp — compare two

select or reject lines common to two sorted
find — find

rm, rmdir ~ remove (unlink)

sort — sort or merge

mv — move or rename

dumpdir — print the names of

col —
plot — graphics

.............. refer, lookbib —
find —
look —

ttyname, isatty, ttyslot —

lorder —

spell, spellin, spellout —

dbminit, fetch, store, delete,

hs — RH11/RS03-RS04

f — RF11/RS11

filsys,
..................... fabs,
fclose, fllush — close or

functions

ar — archive (library) file
arcv — convert archives to new

file
file — determine filetype
filecomparator
filecomparison.
file creation mode mask
file descriptor

fileentry getgrent, getgrgid,
fileentry getpwent, getpwuid,
file for a pattern
fileformat
fileintopieces
filename
filestatus.
file system
file system
filesystem
file system directory consistency check
filesystemdump.
file system hierarchy
file system ownership
filesystemrestore
file system storage consistency check
filesystemtable
filesystemvolume
file times
file type

files.

files and directories
fillesonadumptape
filsys, flblk, ino — format of file system
filter reverse linefeeds
filters
find—findfiles
find and insert literature references in
findfiles
find linesinasorted list
find nameofaterminal
find ordering relation for an object library
find spellingerrors
firstkey, nextkey — data base subroutines
fixed-head disk file.
fixed-head disk file
flblk, ino — format of file system volume
floor, ceil — absolute value, floor, ceiling
flushastream
fopen, freopen, fdopen — open a stream
fork — spawn new process
format
format

dd(1)
exec(2)
group(5)
hs(4)
link(2)
mknod(1)
mknod(2)
passwd(5)
pr(1)
read (2)
rev(l)
tf(4)
size(1)
sum(1)
tail(1)
touch(1)
uniq(1)
write(2)
file(1)
diff (1)
diff3(1)
umask(2)
dup(2)
getgrent(3)
getpwent(3)
grep(1)
ar(5)
split(1)
mktemp(3)
stat(2)
mkfs(1)
mount(1)
mount(2)
dcheck(1)
dump(1)
hier(7)
quot(1)
restor(1)
icheck (1)
mtab(5)
filsys(5)
utime(2)
file(1)
basename(1)
ferror(3)
emp(1)
comm(1)
find(1)
rm(1)
sort(1)
mv(1)
dumpdir(1)
filsys(5)
col(1)
plot(1)
find(1)
refer(1)
find(1)
look (1)
tiyname(3)
lorder(1)
spell(1)
dbm(3)
hs(4)
rf(4)
filsys(5)
floor(3)
fclose(3)
fopen(3)
fork (2)
ar(5)
arcv(l)

dump, ddate — incremental dump
core —

dir —

filsys, fibik, ino —

tbt —

roff —

tp — DEC/mag tape
scanf, fscanf, sscanf —
printf, fprintf, sprintf —
troff, nroff — text

ms — macros for

77 —

ratfor — rational

struct — structure

cookies, ching,
CONVEISION v v v v e e n printf,
stream e putc, putchar,
puts,

df — disk

allocator malloc,
fopen,

EXPOMENL e e e
scanf,

stat,

fseek,

time,

floor, ceil — absolute vaiue, floor, ceiling
intro — introduction to library

j0, j1, jn, y0, y1, yn — bessel

tan, asin, acos, atan, atan2 — trigonometric
sinh, cosh, tanh — hyperbolic

fread,

backgammon — the

checkers —

moo — guessing

bj — the

chess — the

reversi — a

wump — the

hangman, words — word

itom, madd, msub, muit, mdiv, min, mout, pow,
ecvt, fevt,

maze —

mkconf —

makekey —

abort —

factor, primes — factor a number,

ncheck —

rand, srand = random number

lex —

orword fromstream

identity getuid, getgid,
endgrent — getgroup fileentry

endpwent — get password fileentry

and groupidentity
getc, getchar, fgetc,

timeto ASCII ctime, locaitime,
setjmp, longimp — non-local

graph — draw a

plot —

plot: openpi et al. —

plot —

- XiV -

format dump(5)
format of core image file core(5)
format of directories dir(5)
format of file system volume filsys(5)
format tables for nroffortroff thi(1)
formattext., roff (1)
formats. tp(5)
formatted input conversion scanf(3)
formatted output conversion printf(3)
formatting and typesetting troff (1)
formatting manuscripts ms(7)
Fortran 77compiler f77(1)
Fortrandialect ratfor (1)
Fortran programs struct (1)
fortune — the book of changes and other ching(6)
fprintf, sprintf — formatted output printf(3)
fputc, putw — put character orwordona putc(3)
fputs — put astringonastream puts(3)
fread, fwrite — buffered binary input/output fread(3)
free daf(1)
free, realloc, calloc — main memory malloc(3)
freopen, fdopen —openastream. fopen(3)
frexp, ldexp, modf — split into mantissaand. frexp(3)
fscanf, sscanf — formatted input conversion scanf(3)
fseek, ftell, rewind — reposition a stream fseek (3)
fstat —getfilestatus ~ stat(2)
ftell, rewind — reposition astream fseek (3)
ftime — getdateandtime. time(2)
functions fabs, floor(3)
functions intro(3)
functions'. jo(3)
functions sin, cos, sin(3)
functions sinh (3)
fwrite — buffered binary input/output fread(3)
BRIMIE o i e e backgammon (6)
BAME e e e e checkers(6)
BAME e e e e e e moo(6)
gameofblackjack bj(6)
gameofchess L chess(6)
game of dramaticreversals reversi(6)
game of hunt-the-wumpus wump(6)
BBIMES i vt e e e e e e e words(6)
ged, rpow — multiple precision integer/ mp(3)
govt — outputconversion ecvt(3)
generate amazeproblem maze(6)
generate configuration tables mkconf (1)
generate encryptionkey makekey (8)
generate IOT fault abort(3)
generate large primes factor(1)
generate names from i-numbers ncheck (1)
ENErator e e e e e e rand (3)
generator of lexical analysis programs lex(1)
getc, getchar, fgetc, getw ~ get character getc(3)
getegid — get user and group identity getuid (2)
getenv — value for environmentname getenv(3)
geteuid, getegid — getuserandgroup getuid (2)
getgrent, getgrgid, getgrnam, setgrent, getgrent(3)
getlogin — getloginname e getlogin(3)
getpass — readapassword getpass(3)
getpid — get process identification getpid (2)
getpw — getnamefrom UID getpw(3)
getpwent, getpwuid, getpwnam, setpwent, getpwent(3)
gets, fgets — get a string from a stream gets(3)
getty — set typewritermode getty (8)
getuid, getgid, geteuid, getegid — getuser getuid(2)
getw — get character or word from stream getc(3)
gmtime, asctime, timezone — convert date and ctime(3)
BOtO e e setjmp(3)
graph graph(1)
graphicsfilters plot(1)
graphics interface plot(3)

graphicsinterface plot(5)

PALIEIN e e s e e e e e e e e e e e
chown, chgrp — change owner or
newgrp — log in to a new

getgrgid, getgrnam, setgrent, endgrent — get
. setuid, setgid — set user and

getgid, geteuid, getegid — get user and
chown — change owner and

make - maintain program

ioctl, stty,

moo —

wump — the game of
sinh, cosh, tanh —

setuid, setgid — set user and group

su — substitute user

getpid — get process

geteuid, getegid — get user and group
exit, export, login, newgrp,/ sh, for, case,
signal - catch or

core — format of core

dump, ddate —

dump —

restor —

ptx — permuted

stremp, strncmp, strcpy, stenepy, strien,

ttys — terminal

popen, pclose —

filsys, flbik,

clri — clear

scanf, fscanf, sscanf - formatted
ungetc — push character back into
fread, fwrite ~ buffered binary
stdio — standard buffered

ferror, clearerr, fileno — stream status
refer, lookbib — find and

cat — phototypesetter

dn — DN-11 ACU

du, dp — DU-11 201 data-phone
ht — RH-11/TU-16 magtape

plot: openpl et al. — graphics

plot — graphics

tm — TM-11/TU-10 magtape

tty — general terminal

spline —

pipe — create an

intro —

intro —

numbers intro, errno ~—

ncheck — generate names from
iostat — report
popen, pclose — initiate

abort — generate

isascii/ isalpha, isupper, islower, isdigit,
' ttyname,

/isdigit, isalnum, isspace, ispunct, isprint,

system —

ispunct, isprint, iscntrl, isascii/ isalpha,

ged, rpow — multiple precision integer/

bi — the game of black
i0, i1,

- XV -

grep, egrep, fgrep — searchafilefora
BIOUD & & v v v ot et s e e e e e e e e e e
BIOUD & & v o v v et i e e e e e e e e e
group —groupfile.
group fileentry getgrent,
groupID e
groupidentity getuid,
groupofafile
BIOUPS . & v v v i v e e e e e e e e e e
gtiy — controldevice
guessinggame,
hangman, words — wordgames
hier — filesystem hierarchy
hp — RH-11/RP04, RP0S, RP06 moving-head disk . .
hs — RH11/RS03-RS04 fixed-head disk file
ht — RH-11/TU-16 magtape interface
hunt-the-wumpus e e e e e e
hyperbolicfunctions
hypot, cabs — euclidean distance
icheck — file system storage consistency
ID .. e e e
idtemporarily
identification
identity getuid, getgid,
if, while, break, continue, cd, eval, exec,.
ignoresignals
imagefile.
incremental dumpformat
incremental filesystemdump
incremental file system restore
index e e
index, rindex — string operations /strneat,
indir — indirect systemcall
init, rc — process control initialization
initializationdata
initiate I/O to/fromaprocess
ino - format of file system volume
ienode L e
inputconversion,
inputstream
input/foutput,
input/output package
inquiries feof,
insert literature references in documents
interface
interface,
interface
interface
interface
interface
interface
interface
interpolate smoothcurve
interprocesschannel
introduction tocommands
introduction to library functions
introduction to system callsanderror.
i.mumbers
[/Ostatistics
I/Oto/fromaprocess
ioctl, stty, gtty — control device
iostat — report /O statistics
IOTfault
isalnum, isspace, ispunct, isprint, iscntel,, . . .
isatty, ttysiot — find name of a terminal
isentrl, isascii — character classification
issueashellcommand.
isupper, islower, isdigit, isalnum, isspace,.
itom, madd, msub, mult, mdiv, min, mout, pow, .

j0, j1, jn, y0, y1, yn — bessel functions
Jack . . L e
jn, y0, yl, yn — bessel functions

grep(1)
chown(l)
newgrp(1)
group(5)
getgrent(3)
setuid(2)
getuid(2)
chown(2)
make(1)
ioctl (2)
moo(6)
words(6)
hier(7)
hp(4)
hs(4)
ht(4)
wump(6)
sinh(3)
hypot(3)
icheck(1)
setuid(2)
su(l)
getpid (2)
getuid ()
sh(l)
signal(2)
core(5)
dump(5)
dump(1)
restor(1)
ptx (1)
string(3)
indir(2)
init(8)
ttys(5)
popen(3)
filsys(5)
clri(l)
scanf(3)
ungete(3)
fread(3)
stdio(3)
ferror(3)
refer(1)
cat(4)
dn(4)
du(4)
ht(4)
plot(3)
plot(5)
tm{(4)
tty(4)
spline(1)
pipe(2)
intro(1)
intro(3)
intro(2)
ncheck (1)
iostat(1)
popen(3)
ioctl(2)
iostat(1)
abort(3)
ctype(3)
ttyname(3)
ctype(3)
system(3)
ctype(3)
mp(3)
o3
bj(6)
j0(3)

ff"%

makekey — generate encryption

prejudice

integers and long integers
awk — pattern scanning and processing

bc — arbitrary-precision arithmetic

shift, times, trap, umask, wait — command

exponent
— find ordering relation for an object
ar — archive (

intro — introduction to

ar — archive and

col — filter reverse

comm - select or reject

uniq — report repeated

look — find

rev — reverse

In — make a

a.out — assembler and
link —

look — find lines in a sorted
nlist — get entries from name
nm - print name

Is —

refer, lookbib — find and insert

id -
convert date and time to ASCII ctime,
end, etext, edata — last

newgrp —
logarithm, power, square root

ac —
getlogin — get

/continue, cd, eval, exec, exit, export,
passwd — change

utmp, wimp -

setjmp,

references indocuments. refer,
objectlibrary

long integers

rpow — multiple precision integer/
tp — DEC/

ht — RH-11/TU-16

tm — TM-11/TU-10

xsend, xget, enroll — secret

malloc, free, realloc, calloc -
make —
ar — archive and library

mkdir —
mknod —
In —
mktemp -
banner —

allocator

- XVi -

join — relational database operator
Key . . . e e e e e
kill — send signaltoaprocess
kill — terminate a process with extreme
kmem —corememory
13tol, Itol3 — convert between 3-byte
language
language
language
Id -joader
Idexp, modf — split into mantissaand
lex — generator of lexical analysis programs
library
library) fileformat
library functions
library maintainer
linefeeds
lines commontotwosortedfiles
linesinafile
linesinasorted list
linesofafile.
link e
link - link to a file
link editor output

linktoafile
lint — a C program verifier
list

list contents of directory e e e e e e
literature references in documents
In — make a link
loader
localtime, gmtime, asctime, timezone —
locationsinprogram
lock — lock a process in primary memory
logintoanewgroup
log, logl0, pow, sqrt — exponential,
login — sign on
loginaccounting
loginmame,
login, newgrp, read, readonly, set, shift,/
loginpassword
loginrecords,
longimp — non-localgoto
look — find lines in a sorted list

lorder ~ find ordering relation foran
Is — list contents of directory
Iseek, tell — move read/write pointer
ltol3 — convert between 3-byte integersand
m4 — macro processor
macros for formatting manuscripts
macrostotypesetmanual
madd, msub, mult, mdiv, min, mout, pow, ged,
mag tape formats
magtape interface
magtape interface
mail e e e
mail — send or receive mail among users
main memory allocator

maintain program groups
maintainer e e
make — maintain program groups
makeadirectory,
make a directory or a special file
makealink
make a unique file name
makelongposters
makekey — generate encryptionkey
malloc, free, realloc, calloc ~ main memory
man — macros to typeset manual

join(1)
makekey(8)
kill(2)
kili(1)
mem(4)
13toi (3)
awk(1)
be(1)
sh(1)
1d(1)
frexp(3)
lex(1)
lorder(1)
ar(5)
intro(3)
ar(1)
col(1)
comm(l)
uniq(1)
look (1)
rev(l)
In(1)

- link(2)
a.out(5)
link (2)
lint(1)
look(1)
niist(3)
am(1)
1s(1)
refer(1)
In(1)
1d(1)
ctime(3)
end(3)
lock (2)
newgrp(1)
exp(3)
login(1)
ac(1)
getlogin(3)
sh(1)
passwd(1)
utmp(5)
setimp(3)
look(1)
refer(1)
lorder(1)
is(1)
Iseek(2)
13tol(3)
m4(1)
ms(7)
man(7)
mp(3)
tp(5)
ht(4)
tm(4)
xsend(1)
mail(1)
malloc(3)
make(1)
ar(1)
make(1)
mkdir(1)
mknod (2)
In(1)
mktemp(3)
banner(6)
makekey(8)
malloc(3)
man(7)

tp —

frexp, Idexp, modf - split into
man - print sections of this
man — macros to typeset

ms — macros for formatting
umask — set file creation mode
eqn, neqn, checkeq — typeset

precision integer/ itom, madd, msub, muit,
bed, ppt — convert to antique

lock — lock a process in primary
mem, kmem — core

malloc, free, realloc, cailoc — main
sort — sort or

perror, sys_errlist, sys_nerr — system error
precision/ itom, madd, msub, mult, mdiv,

chmod - change

getty — set typewriter
umask - set file creation
chmod — change

frexp, ldexp,

touch — update date last

mount, umount -
mount, umount —
SYSIBM e e e e e

mtab —

integer/itom, madd, msub, muit, mdiv, min,
mv —

Iseek, tell -~

hp — RH-11/RP04, RP0S, RP06

rp — RP-11/RPO3

- multiple precision integer/ itom, madd,
multiple precision integer/ itom, madd, msub,
getenv — value for environment

getlogin — get login
mktemp — make a unique file

pwd — working directory
tty — get terminal

getpw — get

nlist — get entries from
nm - print

ttyname, isatty, ttyslot — find
terminals — conventional
ncheck — generate

dumpdir — print the

eqn,

creat — create a

arcv — convert archives to
newgrp — log in to a

fork — spawn

trap,/ /cd, eval, exec, exit, export, login,
dbminit, fetch, store, delete, firstkey,

- Xvii -

man — print sections of this manual
manipulate tape archive
mantissaand exponent
manual,
manual e,

maze — generate a maze problem
mdiv, min, mout, pow, gcd, rpow — muitiple
media

MEMOLY . . . v v v v vt e et e e et e e e
MEMOLY . v & v v v vt e et e s e e e e e
memoryallocator
mergefiles

MESSAZES . . . v v v v e e e e e e e
min, mout, pow, gcd, rpow ~ multiple.
mkconf — generate configuration tables
mkdir - make adirectory
mkfs — construct a file system
mknod — build special file
mknod — make a directory or a special file
mktemp — make a unique filename
mode
mode
modemask
modeoffile
modf — split into mantissa and exponent
modifiedofafile.
monitor — prepare execution profile
moo — guessinggame.
mount and dismount filesystem
mount or remove filesystem
mount, umount — mount and dismount file
mount, umount — mount or remove file system . . .
mounted filesystemtable
mout, pow, ged, rpow — multiple precision
move or rename files and directories
move read/write pointer
moving-head disk
moving-head disk

‘ms — macros for formatting manuscripts.

msub, mult, mdiv, min, mout, pow, ged, rpow
mtab — mounted file system table
muit, mdiv, min, mout, pow, gcd, rpow — . ,
mv ~ move or rename files and directories
NAME i e e e

name J
namefromUID
namelist

NAMES vt e e e e e e e
names from i-numbers
names of filesonadumptape
ncheck — generate names from i-numbers
neqn, checkeq — typeset mathematics
newfile.,

NEW BTOUD i i i e e e e e e
NEW PFOCESS+ v v v v ot e e e e
newgrp — logintoanewgroup
newgrp, read, readonly, set, shift, times,
nextkey — data base subroutines
nice — set program priority
nice, nohup — run a command at low priority
nlist — get entries from name list.

man(l)
tp(1)
frexp(3)
man(1)
man(7)
ms(7)
umask(2)
eqn(l)
maze(6)
mp(3)

bed (6)
mem(4)
lock(2)
mem (4)
malloc(3)
sort(1)
mesg(1)
perror(3)
mp(3)
mkconf(1)
mkdir(1)
mkfs(1)
mknod (1)
mknod(2)
mktemp(3)
chmod(1)
getty(8)
umask (2)
chmod(2)
. frexp(3)
touch(1)
monitor(3)
moo(6)
mount(1)
mount(2)
mount(1)
mount(2)
mtab(5)
mp(3)
mv(l)
Iseek (2)
hp(4)
rp(4)
ms(7)
mp(3)
mtab(5)
mp(3)
myv(1)
getenv(3)
getlogin(3)
mktemp(3)
pwd(1)
tty(1)
getpw(3)
nlist{(3)
nm(1l)
ttyname(3)
term(7)
ncheck(1)
dumpdir(1)
ncheck (1)
eqn(l)
creat(2)
arcv(l)
newgrp(1)
fork(2)
newgrp(1)
sh(1)
dbm(3)
nice(2)
nice(1)
nlist(3)

~—

clri — clear i-

nice,

setimp, longimp —
troff,

tbl — format tabies for

deroff — remove.

arithmetic — provide drill in

factor, primes — factor a

rand, srand — random

atof, atoi, atol — convert ASCII to

— introduction to.system calls and error
ncheck — generate names from i-

size — size of an

lorder — find ordering relation for an
od —~

fopen, freopen, fdopen —

dup, dup2 — duplicate an

open —

plot:

strnepy, strien, index, rindex — string
join — relational database

stty — set terminal

lorder — find

a.out — assembler and link editor
fread, fwrite ~ buffered binary input/
ecvt, fevt, govt —

printf, fprintf, sprintf — formatted
stdio — standard buffered input/
chown — change

chown, chgrp — change

quot — summarize file system

pk —

pkopen, pkclose, pkread, pkwrite, pkfail —
pkon, pkoff — establish

tk —

getpass — read a

passwd — change login

passwd —

getpwuid, getpwnam, setpwent, endpwent — get
grep, egrep, fgrep — search a file for a

awk —

cc,
popen,
mesg —
ptx —
MESSALES . . + o & v v e e e e e e

addresses e e e e

vp — Versatec printer-
Iseek, tell — move read/write

banner — make long

itom, madd, msub, mult, mdiv, min, mout,
squareroot exp, log, logl0,
bed

e]

- Xviit -

nm - print name list
node e e e
nohup — run a command at low priority
non-localgoto
nroff — text formatting and typesetting
nroffortroff
nroff, troff, tbl and eqn constructs
null —datasink
numberfacts
number, generate large primes
number generator
numbers
numbers, intro, errno
numbers
objectfile.
objectlibrary
octaldump
open — open for readingor writing
openastream e e e e e e e
open filedescriptor
open for readingorwriting
openpl et al. ~ graphics interface
operations
operator

OPLIONS
ordering relation for an object library
output
OULDUL L e e e
output conversion
output conversion,
output package
owner and group of a file
owner or group
ownership
packet driver e e e e e e e e e e
packet driver simulator
packet protocol
paginator for the Tektronix 4014
passwd — change login password
passwd — password file
password
password,
password file
password file entry
PAttesn e e e e e e
pattern scanning and processing language
pause — stop until signal
pcc—Ccompiler
pclose — initiate I/0 to/fromaprocess.
permit or deny messages
permutedindex
perror, sys_errlist, sys_nerr — system error
phone interface e e e e e e
phototypesetter interface
photypesetter simulator
phys — allow a process to access physical
pipe — create an interprocess channel
pipefitting
pk — packetdriver
pkclose, pkread, pkwrite, pkfail — packet
pkoff — establish packet protocol
pkopen, pkclose, pkread, pkwrite, pkfail -
plot — graphics filters
plot — graphicsinterface
plot: openpl et al. — graphics interface
plotter
POINEET e e e e
popen, pclose — initiate I/0 to/from a
POSEETS i e e e e e e e
pow, gcd, rpow — multiple precision integer/
pow, sqrt — exponential, logarithm, power,
ppt — convertto antique media.

...... /strncat, stremp, strncmp, strepy, -

nm{(1)
clri(1)
nice(1)
setimp(3)
troff (1)
tbi(1)
deroff(1)
nuli(4)
arithmetic(6)
factor(1)
rand(3)
atof(3)
intro(2)
ncheck (1)
size(1)
lorder(1)
od(1)
open(2)
fopen(3)
dup(2)
open(2)
piot(3)
string (3)
join(1)
sity (1)
lorder(1)
a.out(5)
fread(3)
ecvt(3)
printf(3)
stdio(3)
chown(2)
chown(1)
quot(1)
pk(4)
pkopen(3)
pkon(2)
tk(1) .
passwd (1)
passwd(5)
getpass(3)
passwd (1)
passwd (5)
getpwent(3)
grep(1)
awk(1)
pause(2)
cc(l)
popen(3)
mesg(1)
ptx (1)
perror(3)
du(4)
cat(4)
te(1)
phys(2)
pipe(2)
tee(1)
pk(4)
pkopen(3)
pkon(2)
pkopen(3)
piot(1)
plot(5)
plot(3)
vp(4)
Iseek (2)
popen(3)
banner(6)
mp(3)
exp(3)
bed (6)

bc — arbitrary-

mdiv, min, mout, pow, gcd, rpow — mulitiple
monitor —

lock — lock a process in

primes — factor a number, generate large
types —

cat — catenate and

date —

cal —

pr —

nm -

man —

pstat —

dumpdir —-

vp — Versatec

CONVEISION i v v et it et e e e
nice, nohup — run a command at low
nice — set program

boot — startup

exit — terminate

fork — spawn new

kill — send signai to a

popen, pclose — initiate I/0 to/from a
wait — await compietion of

init, rc —

getpid — get

lock — lock a

ps —

times — get

phys — allow a

wait — wait for

' ptrace —

kill — terminate a

awk — pattern scanning and

m4 - macro

monitor — prepare execution
profil — execution time

prof — display

end, etext, edata — last locations in
units — conversion

cob—-C

make — maintain

nice — set

assert —

lint -aC

lex - generator of lexical analysis
struct — structure Fortran

pkon, pkoff — establish packet
arithmetic ~—

true, faise —

ungetc —
puts, fputs —
putc, putchar, fputc, putw

t

putc, putchar, fputc,

init,

getpass —
read —

- Xix -

pr — print file
precision arithmetic language
precision integer arithmetic /msub, muit,
prepare execution profile
Primary memory v u e e
PEMEeS e e e factor,
primitive system data types
print .
print and set the date
print calendar
print file
printnamelist
print sections of this manual
print system facts
print the names of files on a dump tape
printer-plotter
printf, fprintf, sprintf — formatted output
priority
priofity e
procedures e e e e e
PrOCESS & . & v v v e e e e e e e e e e
PIOCESS . . & o v o i e e e e e e e e e e e
PIOCESS & & & v v v e v e e e e e e e e e e
PEOCESS & .+ v v v e e e e e e e e e e e
PPOCESS .« . ¢ v v v v v et e e e e e e e
process control initialization . . .,
process identification.
process in primary memory
process status
PrOCess times i
process to access physical addresses
processtoterminate
PrOCESS Lracet e e e
process with extreme prejudice
processing language
PIOCESSOT v v i e e e e e e e e
prof — display profile data
profil — execution time profile
profile
profile
profiledata
program
program
program beautifier
program groups
programpriority N
program verification
program verifier
PrOIAMIS v v v i e e e e e e
PPOBIAMS v v v v v ettt e e e e
protocol
provide drill in number facts
provide truth values
ps — process status
pstat — print system facts
ptrace — processtrace
ptx — permutedindex.
push character back into input stream
putastringonastream
put character or word on astream
puts, fputs — put astringon astream
putw — put character or word on a stream
pwd —~ working directoryname
gsort — quickersort
quiz — test your knowledge
quot — summarize file system ownership
rand, srand — random number generator
ratfor — rational Fortran dialect
rc — process control initialization
read —readfromfile
read a password
read from file

...........................

..............
....................

pr(l)
be(l)
mp(3)
monitor(3)
lock(2)
factor(1)
types{(5)
cat(1)
date(1)
cal(1)
pr(l)
nm(1l)
man(1)-
pstat(1)
dumpdir(1)
vp(4)
printf(3)
nice(1)
nice(2)
boot(8)
exit(2)
fork (2)
kill(2)
popen(3)
wait(1)
init(8)
getpid (2)
lock (2)
ps(1)
times(2)
phys(2)
wait(2)
ptrace(2)
kill(1)
awk (1)
m4(1)
prof(1)
profil(2)
monitor(3)
profil (2)
prof(1)
end(3)
units(1)
cb(1)
make(1)
nice(2)
assert(3)
lint(1)
lex(1)
struct(1)
pkon(2)
arithmetic(6)
true(1)
ps(l)
pstat(1)
ptrace(2)
ptx(1)
ungetc(3)
puts(3)
putc(3)
puts(3)
putc(3)
pwd(1)
gsort(3)
quiz{6)
quot(1)
rand (3}
ratfor(1)
init(8)
read(2)
getpass(3)
read(2)

- XX -

/cd, eval, exec, exit, export, login, newgrp, read, readonly, set, shift, times, trap,/ sh(1)
open — open for readingorwriting . .. :................ open(2)

/exec, exit, export, login, newgrp, read, readonly, set, shift, times, trap, umask,/ sh(1)
Iseek, tell — move read/writepointer Iseek(2)

malloc, free, realloc, calloc — main memory allocator malloc(3)

mail — send or receive mailamongusers mail(1)

utmp, wtmp ~ login records utmp(5)

references indocuments refer, lookbib — find and insert literature refer(1l)
comm — select or reject lines common to two sorted files comm(1)

lorder — find ordering relation for an object library lorder(1)

join — relational database operator . . ., join(1)

strip — remove symbols and relocation bits L. strip(1)

calendar — reminderservice calendar(1)

unlink — remove directoryentry unlink (2)

mount, umount — mount or remove filesystem. mount(2)

deroff — remove nroff, troff, tbl and eqn constructs deroff(1)

strip — remove symbols and relocation bits strip(1)

rm, rmdir — remove (unlink) files rm(1)

mv - move or rename files and directories mv(l)

uniq -~ report repeated linesinafile unig(1)

jostat — report /O statistics iostat(1)

uniq -~ report repeated linesinafile uniq(1)

fseek, ftell, rewind — repositionastream fseek (3)

restor — incremental file system restore restor(1)

rev — reverse linesofafile. rev(l)

reversi — a game of dramatic reversals reversi(6)

col — filter reverselinefeeds col(1)

rev — reverselinesofafile rev(l)

reversi — a game of dramatic reversals reversi(6)

fseek, ftell, rewind — repositionastream fseek (3)

rf — RF11/RS11 fixed-head disk file rf(4)

hp — RH-11/RP04, RPOS5, RP06 moving-head disk hp(4)

hs — RHI11/RS03-RS04 fixed-head disk file hs(4)

ht = RH-11/TU-16 magtape interface ht(4)

strncmp, strepy, strncpy, strlen, index, rindex - string operations /strncat, stremp, string(3)

tk — RK-11/RK03 or RKO5disk rk(4)

rm, rmdir — remove (unlink) files rm(1)

roff — formattext. e roff(1)

sqrt — exponential, logarithm, power, square root exp, log, logi0, pow, exp(3)
rp — RP-11/RP03 moving-head disk rp(4)

hp — RH-11/ RPO4, RPOS, RP06 moving-head disk hp(4)

rp — RP-11/RP03 moving-head disk rp(4)

/madd, msub, mult, mdiv, min, mout, pow, gcd, rpow — muitiple precision integer arithmetic mp(3)
hs — RH11/ RS03-RS04 fixed-head disk file hs(4)

f — RF11/ RSl fixed-head disk file 1f(4)

nice, nohup — run a command at low priority nice(1)

sa, accton — system accounting sa(l)

brk, - sbrk, break — change core allocation brk(2)

conversion scanf, fscanf, sscanf — formatted input. scanf(3)
awk - pattern scanning and processing language awk (1)

alarm — schedule signal after specified time alarm(2)

grep, egrep, fgrep — searchafileforapattern grep(1)

xsend, xget, enroll — secretmail, xsend(1)

man — print sections of thismanual man(1)

sed — streameditor sed(1)

files., comm - select or reject lines common to two sorted comm(l)
mail — send or receive mail amongusers. mail(1)

kil — sendsignaltoaprocess kill(2)

ascii — map of ASCll character set ' .o .. ascii(7)

umask — set file creation mode mask umask (2)

utime — setfiletimes utime(2)

nice — setprogrampriority nice(2)

fexit, export, login, newgrp, read, readonly, set, shift, times, trap, umask, wait =/ sh(1)
stty — setterminaloptions stty (1)

tabs — setterminaltabs tabs(1)

date — printand setthedate date(1)

stime — settime stime (2)

getty ~ settypewritermode getty (8)

ffﬁ setuid, setgid — setuserandgroupID setuid(2)
L setbuf — assign buffering t0 a stream setbuf(3)
“ setuyid, setgid — setuserandgroupID setuid (2)

getgrent, getgrgid, getgrnam, setgrent, endgrent — get group fileentry getgrent(3)

Crypt,
getpwent, getpwuid, getpwnam,

cd, eval, exec, exit, export, login, newgrp,/
system — issue a

/export, login, newgrp, read, readoniy, set,

login —

pause — stop until

alarm — schedule

kill — send

signal — catch or ignore

pkread, pkwrite, pkfail ~ packet driver
tc — photypesetter

................

trigonometric functions

nult — data

spline — interpolate
gsort ~— quicker
tsort — topological

comm — select or reject lines common to itwo
look — find lines in a

fork —

alarm - schedule signal after

frexp, ldexp, modf —

printf, fprintf,

............... exp, log, logl0, pow,
rand,

scanf, fscanf,

stdio -

boot —

iostat — report 1/0

ps — process

stat, fstat — get file

feof, ferror, clearerr, fileno — stream

package
pause —

icheck — file system

subroutines dbminit, fetch,
strncpy, strien, index, rindex — string/
fclose, fllush — close or flush a

fopen, freopen, fdopen — open a

fseek, ftell, rewind — reposition a

fgetc, getw — get character or word from

gets, fgets — get a siring from a

fputc, putw —~ put character or word on a

puts, fputs — put a string on a

setbuf — assign buffering t0 a

ungetc — push character back into input

sed —

feof, ferror, clearerr, fileno —

gets, fgets — geta

puts, fputs — put a.

strcpy, strnepy, strien, index, rindex —

basename —
/strncat, strcmp, stracmp, strepy, strncpy,

ioctl,

store, delete, firstkey, nextkey — data base

- XXi -

setjmp, longimp — non-local goto
setkey, encrypt — DES encryption
setpwent, endpwent — get password file entry
setuid, setgid — set userand group ID
sh, for, case, if, while, break, continue,
shelicommand.

SIBRON
signal
signal — catch orignore signals
signal after specified time
signal to a process
signals

..........................

sin, cos, tan, asin, acos, atan, atan2 —
sinh, cosh, tanh — hyperbolic functions
sink., e e e e e e
size ~ size of anobject file
sleep — suspend execution for an interval
sleep — suspend execution for interval
smoothecurve
SOfL . . o . o e e e
SOTL e e e e
sort —sortormergefiles
sorted files
sorted list
SPAaWN NEW Process
specified time
speil, spellin, speillout — find spelling
spline — interpolate smooth curve
split — splita fileintopieces
split into mantissa and exponent
sprintf — formatted output conversion
sqrt — exponential, logarithm, power, square
srand — random number generator
sscanf — formatted input conversion
standard buffered input/output package
startup procedures
stat, fstat — getfilestatus,
statistics
status L. L e

.........

status inquiries
stdio — standard buffered input/output
stime —settime.
stopuntilsignal
storage consistencycheck
store, delete, firstkey, nextkey — database
strcat, strncat, strcmp, strncmp, strepy, L L . . .
stream
stream
stream
stream
stream
stream, putc, putchar,
stream
stream

stream status inquiries
string fromastream
stringonastream
string operations, . /strncat, stremp, strnemp,
strip — remove symbols and relocation bits
strip filename affixes
strien, index, rindex — string operations
struct — structure Fortran programs
Stty — set terminal options
stty, gtty — controldevice
su ~— substitute user id temporarily
subroutines

setimp(3)
crypt(3)
getpwent(3)
setuid(2)
sh(l)
system(3)
sh(1)
login(1)
pause(2)
signal{(2)
alarm(2)
kill(2)
signai(2)
pkopen{(3)
tc(1)
sin(3)
sinh(3)
null(4)
size(1)
sleep(1) -
sleep(3)
spline(1)
gsort(3)
tsort (1)
sort{1)
comm(1)
look(1)
fork(2)
alarm(2)
spell(1)
spline(1)
split(1)
frexp(3)
printf(3)
exp(3)
rand(3)
scanf(3)
stdio(3)
boot(8)
stat(2)
iostat(1)
ps(1)
stat(2)
ferror(3)
stdio(3)
stime(2)
pause(2)
icheck (1)
dbm(3)
string(3)
fclose(3)
fopen(3)
fseek(3)
getc(3)
gets(3)
putc(3)
puts(3)
setbuf(3)
ungetc(3)
sed(1)
ferror(3)
gets(3)
puts(3)
string(3)
strip(1)
basename(1)
string(3)
struct(1)
stty(1)
iocti(2)
su(l)
dbm(3)

su -~

du —

quot —

sync — update the

update — periodically update the
sync — update

sleep —

sieep —

strip — remove

MESSABES - v e perror,
mtab — mounted file system

mkconf — generate configuration

tbl — format

tabs — set terminal

functions sin, cos,
sinh, cosh,

dumpdir — print the names of files on a dump
tp — manipulate

tar —

tp — DEC/mag

deroff — remove nroff, troff,

tk - paginator for the

Iseek,

su — substitute user id

ttyname, isatty, ttysiot — find name of a
tys —

tty — general

tty — get

stty — set

tabs — set

wait — wait for process to
kill —
exit —

quiz —

roff — format

ed —

troff, nroff —

ttt, cubic —

alarm - schedule signal after specified
at — execute commands at a later
stime — set

time, ftime — get date and

profil — execution

gmtime, asctime, timezone — convert date and
times — get process

utime — set file

/login, newgrp, read, readonly, set, shift,

ctime, localtime, gmtime, asctime,

tsort —

ptrace — process
tr ~

- XXI1i -

substitute user id temporarily
sum — sum and count blocksinafile
summarize disk usage
summarize file system ownership c.
superblock
superblock
super<block
suspend execution for an interval
suspend execution for interval
swab —swapbytes
symbols and relocation bits
sync — update super-block
sync — update the superblock
sys_erriist, sys_nerr — systemerror
table
tables

@abs e e e
tail — deliver the last partof afile
tan, asin, acos, atan, atan2 — trigonometric
tanh - hyperbolic functions
@ape e e e e
tapearchive
tapearchiver
tapeformats
tar —~ tape archiver
tbl — format tables for nroffortroff
tbiandegnconstructs
tc — photypesetter simulator
tc — TC-11/TUS6 DECtape
tee —pipefitting
Tektronix 4014.
tell — move read/write pointer
temporarily
terminal L L L.
terminal interface
terminalname L L L L.
terminaloptions
terminaltabs L L L
terminals— conventionalnames
terminate
terminate a process with extreme prejudice
terminate process
test — conditioncommand
test your knowiedge
Xt . . . e e e e e
texteditor
text formatting and typesetting
tic-tac-toe
time

time — timeacommand
time, ftime — getdateand time
timeprofile.

timeto ASCII ctime, localtime,

HMES e e e e
times
times — getprocesstimes
times, trap, umask, wait — command language .
timezone — convert date and time to ASCIHI
tk — paginator for the Tektronix 4014
tm — TM-11/TU-10 magtape interface
topologicalsort
touch — update date last modified of afile
tp — DEC/magtapeformats
tp — manipulate tape archive
tr — translate characters
TACE . . . o v e e e e e e e e e e e

su(l)
sum(1)
du(l)
quot(1)
sync(1)
update(8)
sync(2)
steep(1)
sleep(3)
swab(3)
strip(1)
sync(2)
sync(1)
perror(3)
mtab(5)
mkconf(1)
tbi(1)
tabs(1)
tail (1)
sin(3)
sinh(3)
dumpdir (1)
tp(1)
tar(1)
tp(5)
tar(1)
tbl(1)
deroff(1)
te(1)
tc(4)
tee(1)

tk (1)
Iseek (2)
su(l)
ttyname (3)
ttys{(5)
tty (4)
tty(1)
stty(1)
tabs(1)
term(7)
wait(2)
kill{1)
exit(2)
test(1)
quiz(6)
roff (1)
ed{(1)
troff (1)
1t(6)
alarm(2)
at(1)
stime(2)
time(2)
time(1)
time(2)
profil(2)
ctime(3)
times(2)
utime(2)
times(2)
sh(1)
ctime(3)
tk(1)
tm(4)
tsort(1)
touch (1)
tp(S)
tp(1)
tr(1)
ptrace(2)
tr(1)

newgrp, read, readonly, set, shift, times,

sin, cos, tan, asin, acos, atan, atan2 —

tbl ~ format tables for nroff or

typesetting
deroff — remove nroff,

terminal

ttyname, isatty,

tm — TM-11/

ht — RH-11/

tc — TC-11/

file — determine file

types — primitive system data
man — macros to

eqn, neqn, checkeq —

.troff, nroff — text formatting and
getty — set

getpw — get name from

read, readonly, set, shift, times, trap,

mount,

mount,

SITBAMt e e e e e

mktemp — make a

cu — call

uux — unix to

uucp, uulog — unix to
uux —

uucp, uulog —

rm, rmdir — remove {

touch —

sync —

sync —

update — periodically

du — summarize disk

write — write to another

setuid, setgid — set

getuid, getgid, geteuid, getegid — get
’ environ —
su — substitute

mail — send or receive mail among
wall — write to ail

abs — integer absolute

fabs, floor, ceil — absolute

getenv —

true, false — provide truth

assert — program

lint — a C program

vp —

filsys, flbik, ino — format of file system

readonly, set, shift, times, trap, umask,

crash —
export, login, newgrp,/ sh, for, case, if,

- XXIiii -

trap, umask, wait — command language
trigonometric functions
troff
troff, nroff — text formatting and
troff, tbland egnconstructs
true, false — provide truth vatues
tsort — topologicalsort
ttt, cubic — tictactoe,
ity — general terminal interface
tty — getterminalname
ttyname, isatty, ttyslot — find nameofa
{tys — terminal initializationdata
ttyslot — find name of aterminal
TU-10 magtape interface
TU-16 magtape interface
TUS6DECtape0uoe ...
15771
19777
typesetmanual e
typeset mathematics
typesetting,
typewritermode
UD ...
umask — set file creation mode mask
umask, wait — command language /newgrp,
umount — mount and dismount file system
umount — mount or remove file system
ungetc — push character back into input
uniq — report repeated linesinafile
unique filename
units — conversion program
UNIX e e e e e e
unix command execution
UNEX COPY . - v v v e v v e e e e e e e e e e
unix to unix command execution
UNIX WO UNIX COPY o v e e e e e
unlink — remove directoryentry
unlink) files,
update -~ periodically update the super block
update date last modifiedofafile.
update super-block
update the super block
update the super biock
USABL © & v v v v e e e e e e e e e e e e
USBT & i vt e e e e e e e e e
userandgroupID,
user and groupidentity
userenvironment
useridtemporarily
USEIS o v v v v v h e e e e e e e e e e
USBTS & o i v e i v e e e e e e e e e

utmp, wtmp — loginrecords
uucp, uulog — unix tounixcopy
uux — unix to unix command execution
value
value, floor, ceiling functions
value for environmentname
values L.,

Versatec printer-plotter
volume
vp — Versatec printer-plotter
wait — await completion of process
wait — command language /newgrp, read,
wait — wait for process to terminate
wall — writetoallusers
we—wordcount
what to do when the system crashes
while, break, continue, cd, eval, exec, exit,
who — whoisonthesystem

sh(1)
sin(3)
tbi(1)
troff(1)
deroff(1)
true(l)
tsort(1)
1ttt (6)
tty(4)
tty(1)
ttyname(3)
ttys(5)
ttyname(3)
tm{4)
ht(4)
tc{4)
file(1)
types(5)
man(7)
eqn(l)
troff(1)
getty(8)
getpw(3)
umask (2)
sh(1)
mount(1)
mount(2)
ungetc(3)
uniq(1)
mktemp(3)
units(1)
cu(l)

uux (1)
uucp(1)
uux(1)
uucp(l)
unlink (2)
rm(1)
update(8)
touch(1)
sync(2)
sync(1)
update(8)
du(l)
write(1)
setuid (2)
getuid (2)
environ(5)
su(l)
mail(1)
wall(1)
utime(2)
utmp(5)
uucp(l)
uux{1)
abs{3)
floor(3)
getenv(3)
true(1)
assert(3)
lint(1)
vp(4)
filsys(5)
vp(4)
wait(l)
sh(1)
wait(2)
wall(1)
we(l)
crash(8)
sh(l)
who(1)

- XXiV -

WC— wordcounmt. we(l)

getchar, fgetc, getw — get character or word from stream getc, getc(3)
hangman, words — wordgames words(6)

putchar, fputc, putw — put characteror wordonastream putc, putc(3)
hangman, words —wordgames words(6)

cd — change workingdirectory cd(1)

pwd — working directoryname pwd (1)

write — writeonafile. write(2)

write — write to another user write(1)

write — writeonafile write(2)

Iseek, tell — move read/ writepointer Iseek (2)

wall — writetoaliusers wall(1)

write — writetoanotheruser write(1)

open — open for readingor writing e e e open(2)

utmp, wtmp ~ loginrecords utmp(5)

wump — the game of hunt-the-wumpus wump(6)

xsend, xget, enroll — secretmail xsend (1)

§0,jl,jn, yO0,yl,yn — bessel functions jo(3)

yacc — yet another compiler-compiler yacc(1)

INTRO(1) INTRO (1)

NAME
intro — introduction to commands
DESCRIPTION

This section describes publicly accessible commands in alphabetic order. Certain distinctions of
purpose are made in the headings:

1) Commands of general utility.
(1C) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-aided design.
(1IM) Commands used primarily for system maintenance.
The word ‘local’ at the foot of a page means that the command may not work on all machines;
‘PDP11’ means the description is peculiar to UNIX systems on that family of machines.
SEE ALSO
Section (6) for computer games.
How to get started, in the Introduction.

DIAGNOSTICS ;
Upon termination each command returns two bytes of status, one supplied by the system giving
the cause for termination, and (in the case of ‘normal’ termination) one supplied by the pro-
gram, see wait and exit(2). The former byte is 0 for normal termination, the latter is cus-
tomarily 0 for successful execution, nonzero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is called variously

‘exit code’, ‘exit status’ or ‘return code’, and is described only where special conventions are
involved.

7th Edition 1

AC(1IM) AC(IM)

NAME .
ac — login accounting

SYNOPSIS
ac{ —=wwtmpl [=p][—d][people]..

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of .
the current wrmp file. A total is also produced. —w is used to specify an alternate wimp file.
—p prints individual totals; without this option, only totals are printed. —d causes a printout
for each midnight to midnight period. Any people will limit the printout to only the specified
login names. If no wimp file is given, /usrladm/wtmp is used.

The accounting file /usr/adm/wtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting,
it should be created with length 0. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired should be collected and the file
truncated.

FILES
/usr/adm/wtmp

SEE ALSO
init(8), login(1), utmp(5).

®

7th Edition , 1

ADB(1) ADB(1)

NAME
adb — debugger

SYNOPSIS
adb [—w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for objfil is a.out. Corfil is assumed to be a core image file produced after executing
objfil, the default for corfil is core.

Requests to adb are read from the standard input and responses are to the standard output. If
the —w flag is present then both 0bjfil and corfil are created if necessary and opened for reading
and writing so that files can be modified using adb. A4db 1gnores QUIT; INTERRUPT causes
return to the next adbh command.

In general requests to adb are of the form
{address] [, count] [command] [;]

If address is present then dor is set to address. Initially dot is set to 0. For most commands
count specifies how many times the command will be executed The default count is 1. Address
and count are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subpro-
cess. For further details of address mapping see ADDRESSES.

EXPRESSIONS
The value of doz.

+ The value of dot incremented by the current increment.

-

The value of dor decremented by the current increment.

"

The last address typed.

integer An octal number if inreger begins with a 0; a hexadecnmal number xf preceded by #;
otherwise a decimal number.

integer fraction
A 32 bit floating point number.

‘cccc” The ASCII value of up to 4 characters. \ may be used to escape a ".

< name
The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corfil. The register names are r0 ... r5 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The value of the symbol is taken from the symbol table in objfil. An ini-
tial _ or ~ will be prepended to symbo/ if needed.

_ symbol

In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter
this name to disinguish it from internal or hidden variables of a program.

routine .name

7th Edition 1

ADB (1) ADB (1)

The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine.

(exp) The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
—exp Integer negation.

~“exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic operators.
el +e2 Integer addition.

el —e2 Integer subtraction.

el+e2 Integer multiplication.

el%e2 Integer division.

el&e2 Bitwise conjunction.

elle2 Bitwise disjunction.

el#e2 EI rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following

verbs are available. (The commands ‘?’ and ‘/° may be followed by ‘*’; see ADDRESSES for
further details.)

1 Locations starting at address in 0bjfil are printed according to the format f,
lf Locations starting at address in corfil are printed according to the format f.

=f The value of address itself is printed in the styles indicated by the format £ (For i for-
mat ‘?” is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format charac-
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dor is incremented temporarily by the amount given for each format
letter. If no format is given then the last format is used. The format letters available are as

follows.
e 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
O 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U4 Print long unsigned decimal.
f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b1 Print the addressed byte in octal.
[} Print the addressed character.
C1 Print the addressed character using the following escape convention. Character

7th Edition 2

ADB(1) ADB(1)

values 000 to 040 are printed as @ followed by the corresponding character in
the range 0100 to 0140. The character @ is printed as @@.

s n Print the addressed characters until a zero character is reached.

S n Print a string using the @ escape convention. n is the length of the string
including its zero terminator.

Y 4 Print 4 bytes in date format (see ctime(3)).

i n Print as PDP11 instructions. » is the number of bytes occupied by the instruc-
tion. This style of printing causes variables 1 and 2 to be set to the offset parts
of the source and destination respectively.

a 0 Print the value of dor in symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

local or giobal data symbol
local or giobal text symbol
local or global absolute symbol

[} “.¢\

Print the addressed value in symbolic form using the same rules for symbol
. lookup as a.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For exam-
ple, 8t moves to the next 8-space tab stop.

r 0 Print a space.

n 0 Print a newline.

"..." 0 Print the enclosed string.

Dor is decremented by the current increment. Nothing is printed.
Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

I+

newline
If the previous command temporarily incremented dor, make the increment permanent.
Repeat the previous command with a counr of 1.

[?2/11 value mask
Words starting at dor are masked with mask and compared with vaiue until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dor is unchanged; otherwise dor is set to the matched location. If mask is
omitted then —1 is used.

[2/1w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[2/1m b1 el fI12/]
New values for (b1, el, f1) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the ‘?’ or ‘/’ is followed by ‘¢’
then the second segment (b2,e2,/2) of the mapping is changed. If the list is ter-
minated by ‘?° or ‘/’ then the file (0bjfil or corfil respectively) is used for subsequent
requests. (So that, for example, ‘/m?” will cause ‘/’ to refer to 04jfil.)

>name Dot is assigned to the variable or register named.
! A shell is called to read the rest of the line following ‘!".
Smodifier

Miscellaneous commands. The available modifiers are:

<f Read commands from the file fand return.

>f Send output to the file £ which is created if it does not exist.

r Print the general registers and the instruction addressed by pe. Dot is set to pe.
f Print the floating registers in single or double length. If the floating point

7th Edition 3

ADB (1)

54.99-9(0‘@

smodifier

ADB(1)

status of ps is set to double (0200 bit) then double length is used anyway.

Print all breakpoints and their associated counts and commands.

ALGOL 68 stack backtrace. If address is given then it is taken to be the
address of the current frame (instead of rd). If count is given then only the
first count frames are printed.

C stack backtrace. If address is given then it is taken as the address of the
current frame (instead of r5). If Cis used then the names and (16 bit) values
of all automatic and static variables are printed for each active function. If
count is given then only the first counr frames are printed.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Reset integer input as described in EXPRESSIONS.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

Manage a subprocess. Available modifiers are:

be

k
YARIABLES

Set breakpoint at address. The breakpoint is executed count—1 times before
causing a stop. Each time the breakpoint is encountered the command c is exe-
cuted. If this command sets dot to zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com-
mand. An argument starting with < or > causes the standard input or output
to be established for the command. All signals are turned on on entry to the
subprocess.

The subprocess is continued with signal s ¢ s, see signal(2). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

. As for c except that the subprocess is single stepped count times. If there is no

current subprocess then objfil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub-
process.

The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not appear to
be a core file then these values are set from objfil.

b The base address of the data segment.

7th Edition

7N

ADB(1) ADB (1)

d The data segment size.
e The entry point.
m The ‘magic’ number (0405, 0407, 0410 or 0411).
S The stack segment size.
t The text segment size.
ADDRESSES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (47, el, f1) and (b2, e2, /2) and the
file address corresponding to a written address is calculated as follows.

bl <address<el => file address=address+ fl1—bl, otherwise,
b2< address<el2 => file address=address+2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I
and D space) the two segments for a file may overlap. If a ? or / is followed by an » then only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, b/ is set to 0, e/ is set to the maximum file size and
f1is set to 0; in this way the whole file can be examined with no address translation.

So that adb may be used on large files all appropriate values are kept as signed 32 bit integers.

FILES
/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(5), core(5)

DIAGNOSTICS
‘Adb’ when there is no current command or format. Comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or
returned nonzero status.

BUGS
A breakpoint set at the entry point is not effective on initial entry to the program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul up the accessing of
the external.

7th Edition 5

AR (1)

NAME

SYNOPSIS

AR (1)

ar — archive and library maintainer

ar key [poshame] afile name ...

DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibel. Afile is the archive file. The names are constituent files in the archive file. The mean-
ings of the key characters are:

d
r

FILES

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an
optional positioning character from the set abi is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in the ar-
chive are tabled. If names are given, only those files are tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved. '

Extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file.

Verbose. Under the verbose option, ar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with p, it precedes
each file with a name. :

Create. Normally ar will create gfile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

/tmp/v* temporaries

SEE ALSO

1d(1), ar(5), lorder(1)

BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

7th Edition

‘éﬁ/ﬁ?“

ARCV (IM) ARCV (IM)

NAME

arcv ~— convert archives to new format
SYNOPSIS
arcy file ...

DESCRIPTION
Arcv converts archive files (see ar(1), ar(5)) from 6th edition to 7th edition format. The
conversion is done in place, and the command refuses to alter a file not in old archive format.

Old archives are marked with a magic number of 0177555 at the start; new archives have
0177545.

FILES
/tmp/v*, temporary copy

SEE ALSO
ar(1), ar(5)

@

7th Edition : 1

AS (1) AS (1)

NAME
as — assembler

SYNOPSIS
as [=] [—o objfile] file ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument — is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used. It is exe-
cutable if no errors occurred during the assembly, and if there were no unresolved external

references.
FILES '
/lib/as2 pass 2 of the assembier
/tmp/atm(1-3]? temporary
a.out "~ object
SEE ALSO

1d(1), nm(1), adb(1), a.out(5)
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in pass 1 cause
cancelilation of pass 2. The possible errors are:

) Parentheses error

] Parentheses error

< String not terminated properly
. Indirection used illegally

Illegal assignment to .’

Error in address

Branch instruction is odd or too remote
Error in expression

Error in local (‘f or ‘b’) type symbol
Garbage (unknown) character

End of file inside an if

Multiply defined symbol! as label

Word quantity assembled at odd address
‘.’ different in pass 1 and 2

Relocation error

Undefined symbol

Syntax error

NJ:""QOB"'OQ"’OO‘““

BUGS
Syntax errors can cause incorrect line numbers in following diagnostics.

7th Edition PDP11 1

AT (1) AT (1)

NAME
at — execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as input to sh(1)
at a specified later time. A c¢d(l) command to the current directory is inserted at the
beginning, followed by assignments to all environment variables. When the script is run, it
uses the user and group ID of -the creator of the copy file.

The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word ‘week’ follows invocation is moved seven days further off. Names of months
and days may be recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command /usr/liblatrun from cron(8).
The granularity of at depends upon how often arrun is executed.

Standard output or error output is lost unless redirected.

FILES
/usr/spool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of year day ddd of year yy. uw is a unique number.
/usr/spool/at/lasttimedone contains hhhh for last hour of activity.
/usr/spool/at/past directory of activities now in progress
/usr/lib/atrun program that executes activities that are due
pwd(1l)

SEE ALSO
calendar(1), cron(8)

DIAGNOSTICS
Complains about various syntax errors and times out of range.

BUGS
Due to the granularity of the execution of /usr/lib/atrun, there may be bugs in scheduling things
almost exactly 24 hours into the future.

7th Edition 1

AWK (1) AWK (1)

NAME
awk — pattern scanning and processing language

SYNOPSIS
awk [=Fc] [prog] [file] ...

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a

Jfile matches the pattern. The set of patterns may appear literally as prog, or in a file specified as
~f file.

Files are read in order; if there are no files, the standard input is read. The file name ‘=’
means the standard input. Each line is matched against the pattern portion of every pattern-
action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form

pattern { action}
A missing { action } means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement)

while (conditional) statement

for ('expression ; conditional , expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, —, *, /, %, and concatenation (indicated by a blank). The C
operators ++, ——, +=_ —=_ *= /= and %= are also available in expressions. Variables
may be scalars, array elements (denoted x[il) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of
associative memory. String constants are quoted "...". :

The print statement prints its arguments on the standard output (or on a file if > file is present),
separated by the current output field separator, and terminated by the output record separator.
The printfstatement formats its expression list according to the format (see orintf(3)).

The built-in function lengrh returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer. substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintfifint, expr, expr, ...) formats the expressions according to the
printf(3) format given by finr and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, I, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep. Isolated regular expressions in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions.

7th Edition . 1

AWK (1) AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is per-
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop reguiar-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~ (for contains)
or !I” (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS #+= "¢" }
or by using the —Fc¢ option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default "%.6g").

EXAMPLES

Print lines longer than 72 characters:
length > 72

Print first two fields in opposite order:
{ print 82, 81 }

Add up first column, print sum and average:

{s +=91}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{for (i = NF;i > 0; ——1i) print $i)

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

SEE ALSO

BUGS

lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk — a pattern scanning and processing
language

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concatenate "" to it.

7th Edition ' 2

BAS (1) BAS (1)

NAME

bas — basic

SYNOPSIS

bas [file]

DESCRIPTION

Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the ter-
minal is read. Bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution.
They are stored in sorted ascending order. Non-numbered statements are immediately execut-
ed. The result of an immediate expression statement (that does not have ‘=" as its highest
operator) is printed. Interrupts suspend computation.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing
as described above.

comment ...
This statement is ignored. It is used to interject commentary in a program.
done
Return to system level.
dump
The name and current value of every variable is printed.
edit
The UNIX editor, ed, is invoked with the file argument. After the editor exits, this file is
recompiled.
for name = expression expression statement

for name = expression expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the
corresponding integer numbered statment. If executed from immediate mode, the inter-
nal statements are compiled first.

if expression statement
if expression

[else
o]

fi
The statement (first form) or group of statements (second form) is executed if the ex-
pression evaluates to non-zero. In the second form, an optional else allows for a group of
statements to be executed when the first group is not.

7th Edition ' 1

BAS (1) BAS (1)

list [expression [expression]] :
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by
" characters.) '

prompt list
Prompt is the same as print except that no newline character is printed.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call.
If no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expression]]
Save is like list except that the output is written on the file argument. If no argument is
given on the command, b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style,
and contains digits, an optional decimal point, and possibly a scale factor consisting of an
e followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expression ([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the
internal statements to be compiled. If the expression evaluates negative, a builtin func-
tion is called. The list of builtin functions appears below.

name [expression [, expression] ... |
Each expression is truncated to an integer and used as a specifier for the name. The
result is syntactically identical to a name. al1,2} is the same as al1}l{2). The truncated ex-
pressions are restricted to values between 0 and 32767.

The following is the list of operators:

= = is the assignment operator. The left operand must be a name or an array element.
The result is the right operand. Assignment binds right to left,

7th Edition 2

BAS (1) BAS (1)

& | & (logical and) has result zero if either of its arguments are zero. It has result one if
both its arguments are non-zero. | (logical or) has result zero if both of its arguments
are zero. It has result one if either of its arguments are non-zero.

K <= > >= == >
The relational operators (< less than, <= less than or equal, > greater than, >=
greater than or equal, == equal to, <> not equal to) return one if their arguments

are in the specified relation. They return zero otherwise. Relational operators at the
same level extend as follows: a>b>c is the same as a>b&b>c.

+ — Add and subtract.
.*/ Multiply and divide.

-

Exponentiation.

The following is a list of builtin functions:

arg(i) is the value of the / -th actual parameter on the current level of function call.
exp(x) is the exponential function of x.

log(x) is the natural logarithm of x.

sqr(x) is the square root of x.

sin(x) is the sine of x (radians).

cos(x) is the cosine of x (radians).

atn(x) is the arctangent of x. Its value is between —/2 and n/2.

rnd() is a uniformly distributed random number between zero and one.

expr()

is the only form of program input. A line is read from the input and evaluated as an
expression. The resultant value is returned.

abs(x) is the absolute value of x.
int(x) returns x truncated (towards 0) to an integer.

FILES
/tmp/btm? temporary
b.out save file
/bin/ed for edit
DlAGNOSTlCS

Syntax errors cause the incorrect line to be typed with an underscore where the parse failed.
All other diagnostics are self explanatory.
BUGS
Has been known to give core images.
Catches interrupts even when they are turned off.

7th Edition 3

BASENAME (1) BASENAME (1)

NAME

basename — strip filename affixes
SYNOPSIS

basename string [suffix]
DESCRIPTION

Basename deletes any prefix ending in */* and the suffix. if present in string, from string, and
prints the result on the standard output. It is normally used inside substitution marks ° in

shell procedures.
This shell procedure invoked with the argument /usr/src/cmdicar.c compiles the named file and
moves the output to carin the current directory:

cc $1
mv a.out ‘basename $1 .c’

SEE ALSO
sh(1)

7th Edition I

BC (1) BC(1)

NAME
bc — arbitrary-precision arithmetic language

SYNOPSIS
bel—=cll=1]I[file..]

DESCRIPTION =«
Bc is an interactive processor for a language which resembies C but provides unlimited preci-
sion arithmetic. It takes input from any files given, then reads the standard input. The =1 ar-
gument stands for the name of an arbitrary precision math library. The syntax for bc programs
is as follows; L means letter a-z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E) :
sgrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators
+ — */ % " (% is remainder; " is power)
++ —— (prefix and postfix; apply to names)
== <= >= = < >
= =t == =t =/ =g =
Statements
E
{S:..;8}
if CE)S
while (E) S

for(E;E;E)S
null statement
break
quit
Function definitions
define L (L,..,L) {

autoL, ..., L
S;...S
return (E)

}

Functions in —1 math library
s(x) sine
c(x) cosine
e(x) exponential
I(x) log
a(x) arctangent
j{n,x) Bessel function

7th Edition 1

BC(1) BC (1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Either semicolons or newlines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign-
ments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. ‘Auto’ variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables empty square
brackets must follow the array name.

For example

scale = 20
define e(x){
autoa, b,c, i, s
a=]
b=1
s =1
for(i=1; I==1; i+ +){
a = a*x
b = b*
¢ = a/b
if(c == 0) return(s)
s = s+

}

defines a function to compute an approximate value of the exponential function and
for(i=1; i<=10; i+ +) e(i)

prints approximate values of the exponential function of the first ten integers.

B is actually a preprocessor for dc(1), which it invokes automatically, unless the —¢ (compile
only) option is present. In this case the dc input is sent to the standard output instead.

FILES
/usr/lib/lib.b mathematical library

de(l) - desk calculator proper
SEE ALSO
de(1)
L. L. Cherry and R. Morris, BC — An arbitrary precision desk-calculator language)

BUGS .
No &&, |1, or ! operators.

For statement must have all three E’s.

Quit is interpreted when read, not when executed.

7th Edition 2

e

é“%
i

CAL(1) CAL (1)

NAME
cal — print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12.

The calendar produced is that for England and her colonies.
Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.

Beware that ‘cal 78’ refers to the early Christian era, not the 20th century.

7th Edition

CALENDAR(1) CALENDAR (1)

NAME

calendar — reminder service
SYNOPSIS

calendar [—]
DESCRIPTION

Calendar consults the file ‘calendar’ in the current directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
‘Dec. 7," ‘december 7,” ‘12/7," etc., are recognized, but not ‘7 December’ or ‘7/12’. On
weekends ‘tomorrow’ extends through Monday.

When an argument is present, calendar does its job for every user who has a file ‘calendar’ in
his login directory. and sends him any positive results by mail(1). Normally this is done daily in
the wee hours under control of cron(8).

FILES
calendar
/usr/lib/calendar to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal* ‘
egrep, sed, mail subprocesses

SEE ALSO
at(1), cron(8), mail(1)

BUGS
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.

7th Edition 1

CAT (1) ' CAT (1)

NAME)
cat — catenate and print

SYNOPSIS
cat [—ul file ...

DESCRIPTION
Catreads each file in sequence and writes it on the standard output. Thus

cat file
prints the file, and
cat filel file2 >file3
concatenates the first two files and places the resuit on the third.

If no input file is given, or if the argument ‘=’ is encountered, car reads from the standard
input file. Output is buffered in 512-byte blocks unless the standard output is a terminal or the
~=u option is specified.

SEE ALSO
pr(1), cp(1)

BUGS
Beware of ‘cata b >a’ and ‘cat a b >b’, which destroy the input files before reading them.

7th Edition , 1

CB(1) _ CB(1)

NAME

¢b — C program beautifier
SYNOPSIS

¢h
DESCRIPTION

Cb places a copy of the C program from the standard input on the standard output with spacing
and indentation that displays the structure of the program. .

BUGS

@

7th Edition 1

CcCc(l) CcCc(1)

NAME
¢cc, pcc — C compiler

SYNOPSIS
cc [option] ... file ...

pee [option] ... file ...

DESCRIPTION
Ccis the UNIX C compiler. It accepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled,
and each object program is left on the file whose name is that of the source with ‘.0’ substituted
for “.c’. The ‘.0’ file is normally deleted, however, if a single C program is compiled and

loaded all at one go.

In the same way, arguments whose names end with .5’ are taken to be assembly source
programs and are assembled, producing a ‘.0’ file.

The following options are interpreted by cc. See /d(1) for load-time options.

-c Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times each
routine is called; also, if loading takes piace, replace the standard startup routine by
one which automatically calls monitor(3) at the start and arranges to write out a
mon.out file at normal termination of execution of the object program. An execution
profile can then be generated by use of prof(1).

-f In systems without hardware floating-point, use a version of the C compiler which
handles floating-point constants and loads the object program with the floating-point
interpreter. Do not use if the hardware is present.

-0 Invoke an object-code optimizer.

-S Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed ‘5.

-P Run only the macro preprocessor and place the result for each ‘.¢’ file in a
corresponding *.i’ file and has no ‘#’ lines in it.

-E Run only the macro preprocessor and send the result to the standard output. The
output is intended for compiler debugging; it is unacceptable as input to cc.

-0 output
Name the final output file ourpur. If this option is used the file ‘a.out’ will be left
undisturbed.

=D name =def

=D name

Define the name to the preprocessor, as if by ‘#define’. If no definition is given, the
name is defined as 1.

-U name
Remove any initial definition of name.

—1dir ‘#include’ files whose names do not begin with ‘/° are always sought first in the
directory of the file argument, then in directories named in =1 options, then in
directories on a standard list.

~Bstring
Find substitute compiler passes in the files named string with the suffixes cpp, ¢0, cl
and c2. If string is empty, use a standard backup version.

7th Edition PDP11 1

cc(1) : cc (1)

—t[p012] .
Find only the designated compiler passes in the files whose names are constructed by a
~B option. In the absence of a =B option, the siring is taken to be ‘/usr/c/’.

Other arguments are taken to be either loader option arguments, or C-compatible object
programs, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

The major purpose of the ‘portable C compiler’, pcc, is to serve as a model on which to base
other compilers. Pcc does not support options —f, —E, —B, and =—t. It provides, in addition
to the language of cc, unsigned char type data and initialized bit fields.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporaries for cc
/lib/cpp preprocessor
/1ib/c01] compiler for cc

/usr/c/ocl012] backup compiler for cc

/usr/c/ocpp backup preprocessor

/lib/fcl01] floating-point compiler

/lib/c2 optional optimizer

/lib/ert0.0 runtime startoff

/lib/mert0.0 startoff for profiling

/lib/fert0.0 startoff for floating-point interpretation

/lib/libc.a standard library, see intro(3)
/usr/include standard directory for ‘#include’ files
/tmp/pc* temporaries for pcc
/usr/lib/ccom compiler for pec

SEE ALSO

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
D. M. Ritchie, C Reference Manual
monitor(3), prof(1), adb(1), 1d(1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader. Of these, the most mystifying are from the
assembler, as(1), in particular ‘m’, which means a multiply-defined external symbol (function
or data). '

BUGS
Pec is little tried on the PDP11; specialized code generated for that machine has not been well
shaken down. The —O optimizer was designed to work with cc; its use with pece is suspect.

7th Edition 2

CD (1) CD (1)

NAME
cd — change working directory

SYNOPSIS
cd directory
DESCRIPTION

Directory becomes the new working directory. The process must have execute (search) permis-
sion in directory.

Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh(1), pwd(1), chdir(2)

7th Edition 1

CHMOD (1) CHMOD (1)

NAME

chmod — change mode
SYNOPSIS

chmod mode file ...
DESCRIPTION

The mode of each named file is changed according to mode, which may be absolute or s&mbolic..
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see cAmod(2)
0400 read by owner

0200 write by owner .
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group

0007 read, write, execute (search) by others

A symbolic mode has the form;
[whol op permission {op permission] ...

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for ugo. If who is omitted, the default is a but the setting of the file creation
mask (see umask(2)) is taken into account.

Op can be + to add permission to the file’s mode, — to take away permission and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group id) and t (save text — sticky). Letters u, g or o indicate that permission is to be taken
from the current mode. Omitting permission is only useful with = to take away all permissions.

The first example denies write permission to others, the second makes a file executable:

chmod o—w file
chmod +x file

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
1s(1), chmod(2), chown (1), stat(2), umask(2)

7th Edition 1

CHOWN (1) CHOWN (1)

NAME
chown, chgrp — change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a decimal UID or a
login name found in the password file.

Chgrp changes the group-ID of the files to group. The group may be either a decimal GID or a
group name found in the group-1D file.

Only the super-user can change owner or group, in order to simplify as yet unimplememed
accounting procedures.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown(2), passwd(5), group(5)

7th Edition ' 1

CLRI(IM) CLRI(1M)

NAME
clri — clear i-node

SYNOPSIS
clri filesystem i-number ...

DESCRIPTION
Clri writes zeros on the i-nodes with the decimal i-numbers on the filesystem. After clri, any
blocks in the affected file will show up as ‘missing’ in an icheck(1) of the filesystem.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be taken
to track down the entry and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to that file. At that point removing the old entry will destroy
the new file. The new entry will again point to an unallocated i-node, so the whole cycle is
likely to be repeated again and again.

SEE ALSO
icheck(1)

BUGS
If the file is open, clriis likely to be ineffective.

7th Edition 1

CMP (1) CMP (1)

NAME
cmp — compare two files

SYNOPSIS
cmp [—1] [—s] filel file2

DESCRIPTION
The two files are compared. (If filel is ‘—, the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line

number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.

Options:
—1 Print the byte number (decimal) and the differing bytes (octal) for each difference.
—s Print nothing for differing files; return codes only.
SEE ALSO
diff(1), comm(1)
DIAGNOSTICS

Exit code 0 is returned for identical fiies, 1 for different files, and 2 for an inaccessible or miss-
ing argument.

7th Edition ' 1

COL (1) COL (1)

NAME

col — filter reverse line feeds

SYNOPSIS

col [—bfx]

DESCRIPTION

Col reads the standard input and writes the standard output. It performs the line overlays

implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds

(ESC-9 and ESC-8). Colis particularly useful for filtering multicolumn output made with the
‘.rt” command of nroffand output resulting from use of the bi(1) Preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full line boundary.
This treatment can be suppressed by the —f (fine) option; in this case the output from col may
contain forward half line feeds (ESC-9), but will still never contain either kind of reverse line
motion.

If the —b option is given, col assumes that the output device in use is not capable of backspac-
ing. In this case, if several characters are to appear in the same place, only the last one read
will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in
an alternate character set. The character set (primary or alternate) associated with each printing
character read is remembered; on output, SO and SI characters are generated where necessary
to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the —x option is given,
this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return, new-
line, ESC (033) followed by one of 789, SI, SO, and VT (013). This last character is an alter-
nate form of full reverse line feed, for compatibility with some other hardware conventions.
All other non-printing characters are ignored.

SEE ALSO

BUGS

troff (1), tbl(1), greek(1)

Can’t back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

7th Edition i

COMM (1) ' COMM (1)

NAME

comm - select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCII collating sequence, and produces
a three column output: lines only in filel; lines only in ﬁ1e2 and lines in both files. The
filename ‘—’ means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm —12 prints only
the lines common to the two files; comm =23 prints only lines in the first file but not in the
second; comm —123 is a no-op.

SEE ALSO
cmp(1), diff(1), uniq(1)

7th Edition 1

Cr(1) ‘ | CP(1)

- NAME

¢p — copy

SYNOPSIS .
cp filel file2

ep file ... directory

DESCRIPTION
Fitel is copied onto file2. The mode and owner of file2 are preserved if it already existed; the
mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.
Cp refuses to copy a file onto itself.

SEE ALSO
cat(1), pr(1), mv(1)

7th Edition 1

CRYPT (1) CRYPT (1)

NAME
crypt — encode/decode

SYNOPSIS
crypt [password }

DESCRIPTION :
Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. Cryprencrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.
Files encrypted by crypr are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; ‘sneak paths’ by which keys or clear-
text can become visible must be minimized.

Crypt impiements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing
ps(1) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

FILES
/dev/tty for typed key

SEE ALSO
ed(1), makekey(8)

BUGS
There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, as to the accuracy of the enclosed materials or as
to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor-
mation or documentation. .

7th Edition 1

CU (1C) | CU (1C)

NAME
cu — call UNIX

SYNOPSIS
cutelno [—=t] [—sspeed] [—aacu] [-1 line]

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an
interactive conversation with possible transfers of text files. Telno is the telephone number,
with minus signs at appropriate places for delays. The ~t flag is used to dial out to a terminal.
Speed gives the transmission speed (110, 134, 150, 300, 1200); 300 is the default value.

The —a and —1 values may be used to specify pathnames for the ACU and communications
line devices. They can be used to override the following built-in choices:

~a /dev/cual —1 /dev/cul0

After making the connection, cv runs as two processes: the send process reads the standard
input and passes most of it to the remote system; the receive process reads from the remote
system and passes most data to the standard output. Lines beginning with ‘~ have special
meanings.

The send process interprets the following:

-

terminate the conversation.

“EOT terminate the conversation
“<file send the contents of file to the remote system, as though typed at the
terminal.

-1 invoke an interactive shell on the local system.

“lemd ... run the command on the local system (via sh —c¢).
“Scemd ... run the command locally and send its output to the remote system.

“%take from [to] copy file ‘from’ (on the remote system) to file ‘to’ on the local system. If
‘to’ is omitted, the ‘from’ name is used both places.

“Y%put from [to]l copy file ‘from’ (on local system) to file ‘to’ on remote system. If ‘to’ is
omitted, the ‘from’ name is used both places.

*

vas send the line “7...".
The receive process handles output diversions of the following form:

> [>][1file

zero or more lines to be written to file

>

In any case, output is diverted (or appended, if ‘>>" used) to the file. If “’ is used, the

diversion is silent, i.e., it is written only to the file. If “:’ is omitted, output is written both to
the file and to the standard output. The trailing ‘*> terminates the diversion.

The use of “%put requires sy and car on the remote side. It also requires that the current
erase and kill characters on the remote system be identical to the current ones on the local
system. Backslashes are inserted at appropriate places.

The use of “%take requires the existence of echo and see on the remote system. Also, stty tabs
mode is required on the remote system if tabs are to be copied without expansion.

FILES .
/dev/cual g
/dev/cul0 %ﬁ
/dev/null

7th Edition 1

Cu(1C)

SEE ALSO
dn(4), tty(4)

DIAGNOSTICS
Exit code is zero for normal exit, nonzero (various values) otherwise.

BUGS
The syntax is unique.

7th Edition

Cu(1C)

[]

DATE(1) : DATE (1)

NAME
date — print and set the date

SYNOPSIS
date [yymmddhhmm [.ss]]

DESCRIPTION /
If no argument is given, the current date and time are printed. If an argument is given, the
current date is set. yy is the last two digits of the year; the first mm is the month number; dd is
the day number in the month; Ah is the hour number (24 hour system); the second mm is the
minute number; .ss is optional and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values
being the defaults. The system operates in GMT. Date takes care of the conversion to and
_ from local standard and daylight time.
FILES
/usr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS ,
‘No permission’ if you aren’t the super-user and you try to change the date; ‘bad conversion’ if
the date set is syntactically incorrect.

©

7th Edition 1

DC(1)

NAME

DC(1)

dc — desk calculator

SYNOPSIS

de [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be maintained.
The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, in-
put is taken from that file until its end, then from the standard input. The following construc-
tions are recognized:

number

SX

Ix

X

The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0-9. It may be preceded by an underscore _ to input a negative number. Numbers
may contain decimal points.

/' * % "

The top two values on the stack are added (+), subtracted (—), multiplied (*), divided
(/), remaindered (%), or exponentiated (). The two entries are popped off the stack;
the result is pushed on the stack in their place. Any fractional part of an exponent is ig-
nored.

The top of the stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is not altered. All registers
start with zero value. If the | is capitalized, register x is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P interprets
the top of the stack as an ascii string, removes it, and prints it.

All values on the stack and in registers are printed.

exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is popped
by that value.

treats the top element of the stack as a character string and executes it as a string of dc
commands.

replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ascii string onto the top of the stack.

<x >x =X

7th Edition

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation.

replaces the top element on the stack by its square root. Any existing fractional part of
the argument is taken into account, but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.
All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input. I
pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output.

DC(1)

=

.
P

DC(1)

pushes.the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplica-
tion, division, and exponentiation. The interaction of scale factor, input base, and out-
put base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack.with its length.

A line of input is taken from the input source (usually the terminal) and executed.
are used by bc for array operations.

An example which prints the first ten values of n! is

SEE ALSO

[tal +dsa*plal0>y]sy
0Osal
lyx

bc(1), which is a preprocessor for dc providing infix notation and a C-like syntax which imple-
ments functions and reasonable control structures for programs.

DIAGNOSTICS
‘x is unimplemented’ where x is an octal number.
‘stack empty’ for not enough elements on the stack to do what was asked.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

7th Edition

DCHECK (1M) , DCHECK (1M)

NAME

dcheck — file system directory consistency check
SYNOPSIS

dcheck [—i numbers] [filesystem]
DESCRIPTION

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The —i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a
directory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

FILES
Default file systems vary with installation.

SEE ALSO
icheck(1), filsys(5), ciri(1), ncheck(1)

DIAGNOSTICS
When a file turns up for which the link-count and the number of directory entries disagree, the
relevant facts are reported. Allocated files which have 0 link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links: if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They should
be removed. When there are more links than entries, or there is an allocated file with neither
links nor entries, some disk space may be lost but the situation will not degenerate.

BUGS)
Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

7th Edition 1

DD (1)

NAME

DD (1)

dd — convert and copy a file

SYNOPSIS

dd [option=value] ...

DESCRIPTION

Dd copies the specified input file to the specified output with possible conversions. The stan-
dard input and output are used by defauit. The input and output block size may be specified to
take advantage of raw physical 1/0.

option values

if= input file name; standard input is default

of= output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and obs; also, if no
conversion is specified, it is particularly efficient since no copy need be done

cbs=n conversion buffer size

skip=n skip n input records before starting copy

files=n copy n files from (tape) input

seek=n seek nrecords from beginning of output file before copying

count=n copy only n input records

conv=ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
Icase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
..» .. several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

Cbs is used only if ascii or ebedic conversion is specified. In the former case cbs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-
line added before sending the line to the output. In the latter case ASCII characters are read
into the conversion buffer, converted to EBCDIC, and blanks added to make up an output
record of size cbs. '

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape biccked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if=/dev/rmt0 of=x ibs==800 cbs=80 conv =ascii,lcase

Note the use of raw magtape. Dd is especially suited to 1/0 on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

To skip over a file before copying from magnetic tape do
(dd of=/dev/null; dd of =x) </dev/rmt0

SEE ALSO

cp(l), (1)

7th Edition ' 1

P
®
.

DD (1) DD (1)

DIAGNOSTICS
f+p records in(out): numbers of full and partial records read{written)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. The ‘ibm’ conversion, while less blessed as a standard, corresponds better to cer-
tain IBM print train conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is done only on conversion to
EBCDIC. These should be separate options.

7th Edition 2

DEROFF (1) DEROFF (1)

NAME

deroff — remove nroff, troff, tbl and eqn constructs
SYNOPSIS

deroff [—w] file ...
DESCRIPTION

Deroff reads each file in sequence and removes all nroff and troff command lines, backslash con-
structions, macro definitions, egn constructs (between *EQ’ and ‘.EN’ lines or between delim-
iters), and table descriptions and writes the remainder on the standard output. Deroff follows
chains of included files (*.s0’ and ‘.nx’ commands); if a file has already been included, a “.so’ is
ignored and a ‘.nx’ terminates execution. If no input file is given, deroff reads from the stan-
dard input file.

If the —w flag is given, the output is a word list, one ‘word’ (string of letters, digits, and apos-
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters ig-
nored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
troff (1), eqn(1), tbi(1)
BUGS

Deroff' is not a complete troff interpreter, so it can be confused by subtle constructs. Most er-
rors result in too much rather than too little output.

H

7th Edition 1

DF(1M) . DF (IM)

NAME
df — disk free

SYNOPSIS
df [filesystem] ...

DESCRIPTION
Df prints out the number of free blocks available on the filesystems. If no file system is
specified, the free space on all of the normally mounted file systems is printed.

FILES
Default file systems vary with installation.

SEE ALSO
icheck (1)

7th Edition 1

DIFF (1) DIFF (1)

NAME

diff — differential file comparator

SYNOPSIS

diff [—efbh] filel file2

DESCRIPTION

Diff tells what lines must be changed in two files to bring them into agreement. If file! (file2)
is ‘=", the standard input is used. If file!/ (file2) is a directory, then a file in that directory
whose ﬁle -name is the same as the file-name of file2 (filel) is used. The normal output con-
tains lines of these forms:

nl a n3, nd
nil,n2d n3
nl,n2 ¢ n3,nd

These lines resemble ed commands to convert file/ into file2. The numbers after the letters
pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical pairs where n/ = n2 or n3 = nd are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by * <,
then all the lines that are affected in the second file flagged by *>".

The —b option causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

The —e option produces a script of a, ¢ and d commands for the editor ed, which will recreate

file2 from filel. The —f option produces a similar script, not useful with ed, in the opposite

order. In connection with —e, the following shell program may help maintain multiple versions
of a file. Only an ancestral file ($1) and a chain of version-to-version ed scripts ($2.$3....)
made by diff need be on hand. A ‘latest version’ appears on the standard output.

(shift; cat $*; echo '1,8p") | ed — $I
Except in rare circumstances, difffinds a smallest sufficient set of file differences.

Option —h does a fast, half-hearted job. It works only when changed stretches are short and
well separated, but does work on files of unlimited length. Options —e and —f are unavailable
with —h.

FILES
/tmp/d??2??
/usr/lib/difth for —h
SEE ALSO
cmp(1), comm(1), ed(i)
DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.
BUGS

Editing scripts produced under the —e or —f option are naive about creating lines consisting of
a single *.’

7th Edition 1

DIEF3 (1) ' DIFF3 (1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3 | filel file2 file3

DESCRIPTION

FILES

Diffi3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

I
i
i
i

all three files differ

=== fitel is different
====a=) file2 is different
== file3 is different

The type of change suffered in converting a given range of a given file to some other is indicat-
ed in one of these ways:

finla Text is to be appended after line number n/ in file £ where f= 1, 2, or 3.
finl,n2c Text is to be changed in the range line n/ to line n2. If nl = n2, the range

may be abbreviated to n/.

The original contents of the range follows immediately after a ¢ indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

Under the —e option, djff3 publishes a script for the editor ed that will incorporate into file/ all

changes between file2 and file3, i.e. the changes that normally would be flagged ==== and
====3_ Option —x (—3) produces a script to incorporate only changes flagged ====
(====3). The following command will apply the resulting script to *filel".

(cat script; echo '1,$p") | ed — filel

/usr/lib/diff3

SEE ALSO

BUGS

diff(1)

Text lines that consist of a single *.” will defeat —e.
Files longer than 64K bytes won’t work.

7th Edition 1

DU (1) : DU (1)

NAME ‘
du — summarize disk usage
SYNOPSIS
du[=s][—a][name..]
DESCRIPTION

Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or file name. If nameis missing, ‘.’ is used.

The optional argument —s causes only the grand total to be given. The optional argument ~a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under —a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

T
-

G

7th Edition 1

DUMP (1M) ‘ DUMP (1M)

NAME -

dump — incremental file system dump

SYNOPSIS

dump [key [argument ...] filesystem]

DESCRIPTION

FILES

Dump copies to magnetic tape all files changed after a certain date in the filesystem. The key
specifies the date and other options about the dump. Key consists of characters from the set
0123456789fusd.

f Place the dump on the next argument file instead of the tape.

u If the dump completes successfuily, write the date of the beginning of the dump on file
‘/etc/ddate’. This file records a separate date for each filesystem and each dump level.

0—9 This number is the ‘dump level’. All files modified since the last date stored in the file
‘/etc/ddate’ for the same filesystem at lesser levels will be dumped. If no date is deter-
mined by the level, the beginning of time is assumed; thus the option 0 causes the entire
filesystem to be dumped.

s The size of the dump tape is specified in feet. The number of feet is taken from the next
argument. When the specified size is reached, the dump will wait for reels to be changed.
The default size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used
in calculating the amount of tape used per write. The default is 1600.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to
the default tape.

Now a short suggestion on how perform dumps. Start with a full level 0 dump
dump Ou

Next, periodic level 9 dumps should be made on an exponential progression of tapes. (Some-
times called Tower of Hanoi — 12131214 .. tape | used every other time, tape 2 used
every fourth, tape 3 used every eighth, etc.)

dump Su

When the level 9 incremental approaches a full tape (about 78000 blocks at 1600 BP! blocked
20), a level 1 dump should be made.

dump lu

After this, the exponential series should progress as uninterrupted. These level 9 dumps are
based on the level 1 dump which is based on the level 0 full dump. This progression of levels
of dump can be carried as far as desired.

default filesystem and tape vary with installation.
/etc/ddate: record dump dates of filesystem/level.

SEE ALSO

restor(1), dump(5), dumpdir(1)

DIAGNOSTICS

BUGS

If the dump requires more than one tape, it will ask you to change tapes. Reply with a new-
line when this has been done.

7th Edition 1

DUMP (IM) DUMP (1M)

Sizes are based on 1600 BPI biocked tape. The raw magtape device has to be used to approach
these densities. Read errors on the filesystem are ignored. Write errors on the magtape are
usually fatal. delim $3

/‘:-‘;E/'.“E

7th Edition 2/22/74 2

DUMPDIR (1M) DUMPDIR (IM)

NAME

dumpdir — print the names of files on a dump tape
SYNOPSIS

dumpdir [f filename]
DESCRIPTION

Dumpdir is used to read magtapes dumped with the dump command and list the names and
inode numbers of all the files and directories on the tape.

The f option causes filename as the name of the tape instead of the default.

FILES
default tape unit varies with installation
rst*

SEE ALSO
dump(1), restor(1)

DIAGNOSTICS
If the dump extends over more than one tape, it may ask you to change tapes. Reply with a
new-line when the next tape has been mounted.

BUGS .
There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately, dumpdir doesn’t use it.

7th Edition i

ECHO (1) ECHO (1)

NAME
echo — echo arguments
SYNOPSIS '
echo [—n] [arg]..
DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a newline on the standard out-
put. If the flag —n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on
pipes. To send diagnostics to the standard error file, do ‘echo ... 1 >&2".

7th Edition 1

ED (1)

NAME

ED (1)

ed — text editor

SYNOPSIS

ed[—1[—=x][name]

DESCRIPTION

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file; that is
to say, the file is read into ed’s buffer so that it can be edited. If —x is present, an x command
is simulated first to handle an encrypted file. The optional — suppresses the printing of charac-
ter counts by e, r, and w commands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the byffer:

Commands to ed have a simple and regular structure: zero or more addresses followed by a sin-
gle character command, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of
text to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized, all input is merely collected. Input mode is left by typing a period
*." alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of
strings of characters. A member of this set of strings is said to be marched by the regular
expression. In the following specification for regular expressions the word ‘character’ means
any character but newline.

1. Any character except a special character matches itself. Special characters are the regu-
lar expression delimiter plus \ [. and sometimes ~*§.

A . matches any character.
A\ followed by any character except a digit or () matches that character.

A nonempty string s bracketed [s] (or ["s]) matches any character in (or not in) s In
s, \ has no special meaning, and] may only appear as the first letter. A substring a—5,
with a and b in ascending ASCII order, stands for the inclusive range of ASCII charac-
ters.

5. A regular expression of form 1-4 followed by * matches a sequence of 0 or more
matches of the regular expression.

A regular expression, x, of form 1-8, bracketed \(x\) matches what x matches.

7. A\ followed by a digit » matches a copy of the string that the bracketed regular expres-
sion beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y
matches a match for x followed by a match for y, with the x match being as long as pos-
sible while still permitting a y match.

9. A regular expression of form 1-8 preceded by ~ (or followed by $), is constrained to
matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a
line.

11. An empty regular expression stands for a copy of the last regular expression encoun-
tered.

7th Edition 1

ED (1) ED (1)

Regular expressions are used in addresses to specify lines and in one command (see s below)
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular
expression metacharacters as an ordinary character, that character may be preceded by \’. This
also applies to the character bounding the regular expression (often ‘/’) and to °\’ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; however, the exact
effect on the current line is discussed under the description of the command. Addresses are
constructed as follows.

1. The character ‘.” addresses the current line.

2 The character ‘$’ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4 “x’ addresses the line marked with the name x, which must be a lower-case letter.

Lines are marked with the & command described below.

5. A regular expression enclosed in slashes ‘/° addresses the line found by searching for-
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the beginning of the
buffer.

6. A regular expression enclosed in queries ‘?’ addresses the line found by searching back-
ward from the current line and stopping at the first line containing a string that matches
the reguiar expression. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign ‘+’ or a minus sign ‘—> followed by a decimal
number specifies that address plus (resp. minus) the indicated number of lines. The
plus sign may be omitted.

8. If an address begins with ‘+’ or ‘—’ the addition or subtraction is taken with respect to
the current line; e.g. ‘—35’ is understood to mean ‘.—5".

9. If an address ends with ‘+’ or ‘—’, then 1 is added (resp. subtracted). As a conse-
quence of this rule and rule 8, the address ‘—’ refers to the line before the current line.
Moreover, trailing ‘+’ and ‘—" characters have cumulative effect, so ‘——" refers to
the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character ** in
addresses is equivalent to ‘—".

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma *,”. They may also be separated
by a semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the
next address is interpreted. This feature can be used to determine the starting line for forward
and backward searches (‘/°, ‘?°). The second address of any two-address sequence must

correspond to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
most commands may be suffixed by ‘p’ or by ‘I’, in which case the current line is either printed
or listed respectively in the way discussed below.

7th Edition 2

ED (1) ED (1)

(.)a
<text>

The append command reads the given text and appends it after the addressed line. .’ is
left on the last line input, if there were any, otherwise at the addressed line. Address ‘0
is legal for this command; text is placed at the beginning of the buffer.

(...¢c
<text>

The change command deletes the addressed lines, then accepts input text which replaces

these lines. ‘.’ is left at the last line input; if there were none, it is left at the line preced-
ing the deleted lines.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line originally after
the last line deleted becomes the current line; if the lines deleted were originally at the
end, the new last line becomes the current line.

e filename -
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.’ is set to the last line of the buffer. The number of characters
read is typed. ‘filename’ is remembered for possible use as a default file name in a subse-
quent r or wcommand. If ‘filename’ is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been
given since the last buffer aiteration.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given,
the currently remembered file name is changed to ‘filename’.

(1,8) g/regular expression/command list

In the global command, the first step is to mark every line which matches the given regu-
lar expression. Then for every such line, the given command list is executed with *. ini-
tially set to that line. A single command or the first of multiple commands appears on the
same line with the global command. All lines of a multi-line list except the last line must
be ended with \’. 4, / and ¢ commands and associated input are permitted; the °.’ ter-
minating input mode may be omitted if it would be on the last line of the command list.
The commands g and v are not permitted in the command list.

()i
<text>

This command inserts the given text before the addressed line. .’ is left at the last line
input, or, if there were none, at the line before the addressed line. This command differs
from the a command only in the placement of the text.

(.,.+1)j
This command joins the addressed lines into a single line; intermediate newlines simply

‘Y

disappear. ‘.’ is left at the resulting line.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-case

7th Edition 3

ED (1) ED (1)

letter. The address form *'x’ then addresses this line.
(.,)1

The list command prints the addressed lines in an unambiguous way: non-graphic charac-
ters are printed in two-digit octal, and long lines are folded. The / command may be
placed on the same line after any non-i/o command.

(.,.)ma v
The move command repositions the addressed lines after the line addressed by a. The
last of the moved lines becomes the current line.

(.,p
The print command prints the addressed lines. ‘.’ is left at the last line printed. The p
command may be placed on the same line after any non-i/o command.

(.,.)P
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as g, except that no diagnostic results when no w has been
given since the last buffer alteration.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and Sfcommands). The file name
is remembered if there was no remembered file name already. Address ‘0’ is legal for r
and causes the file to be read at the beginning of the buffer. If the read is successful, the
number of characters read is typed. ‘.’ is left at the last line read in from the file.

(., .) s/regular expression/replacement/ or,

(.,.)s/regular expression/replacement/g
The substitute command searches each addressed line for an occurrence of the specified
regular expression. On each line in which a match is found, all matched strings are
replaced by the replacement specified, if the global replacement indicator ‘g’ appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any character other than space or new-line may be used instead of */° to delimit the regu-

[3R

lar expression and the replacement. ‘.’ is left at the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the
regular expression. The special meaning of ‘&’ in this context may be suppressed by
preceding it by ‘\". The characters ‘\n’ where n is a digit, are replaced by the text
matched by the r-th regular subexpression enclosed between \(’ and \)’. When nested,
parenthesized subexpressions are present, nis determined by counting occurrences of ‘\(’
starting from the left.

Lines may be.split by substituting new-line characters into them. The new-line in the
replacement string must be escaped by preceding it by ‘\’.
(.,.)ta

This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0). .’ is left on the last line of the copy.

(.,.)u
The undo command restores the preceding contents of the current line, which must be
‘the last line in which a substitution was made.

(1, $) v/regular expression/command list
This command is the same as the global command £ except that the command list is exe-
cuted g with *." initially set to every line excepr those matching the regular expression.

7th Edition 4

ED (1) : ED (1)

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not .
exist, it is created mode 666 (readable and writable by everyone). The file name is
remembered if there was no remembered file name already. If no file name is given, the
remembered file name, if any, is used (see e and fcommands). ‘.’ is unchanged. If the
command is successful, the number of characters written is printed.

(1,$)W filename ;
This command is the same as w, except that the addressed lines are appended to the file.

X A key string is demanded from the standard input. Later r, ¢ and w commands will
encrypt and decrypt the text with this key by the algorithm of erypt(1). An explicitly
empty key turns off encryption.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!<shell command>
The remainder of the line after the ‘!’ is sent to sh(1) to be interpreted as a command.
*.” is unchanged.

(.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ‘. +1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed prints a ‘?’ and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char-
acters per file name, and 128K characters in the temporary file. The limit on the number of
lines depends on the amount of core: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the last newline.
It refuses to read files containing non-ASCII characters.

FILES
/tmp/e”®
ed.hup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, 4 Tutorial [ntroduction to the ED Text Editor
B. W. Kernighan, Advanced editing on UNIX
sed(1), crypt(1)

DIAGNOSTICS
‘?name’ for inaccessible file; ‘? for errors in commands; ‘?TMP’ for temporary file overflow.

To protect against throwing away valuable work, a g or e command is considered to be in error,
unless a w has occurred since the last buffer change. A second g or e will be obeyed regardless.

BUGS
The /command mishandles DEL.
A !/ command cannot be subject to a g command.

Because 0 is an illegal address for a w command, it is not possible to create an empty file with
ed.

7th Edition 5

XSEND, XGET, ENROLL (1) . XSEND, XGET, ENROLL (1)

NAME
xsend, xget, enroll — secret mail

SYNOPSIS
xsend person
xget
enroll

DESCRIPTION :
These commands implement a secure communication channel; it is like mai(1), but no one can
read the messages except the intended recipient. The method embodies a public-key cryptosys-
tem using knapsacks.

To receive messages, use enroll; it asks you for a password that you must subsequently quote in
order to receive secret mail.

To receive secret mail, use xger. It asks for your password, then gives you the messages.

To send secret mail, use xsend in the same manner as the ordinary mail command. (However,
it will accept only one target). A message announcing the receipt of secret mail is also sent by
ordinary mail.

FILES
/usr/spool/secretmail/*.key: keys /usr/spool/secretmail/*.[0-9]: messages

SEE ALSO
mail (1)

BUGS
It should be integrated with ordinary mail. The announcement of secret mail makes traffic
analysis possible.

7th Edition 1

EQN (1) EQN (1)

NAME
eqn, neqn, checkeq — typeset mathematics
SYNOPSIS _
eqn [—dxy] {—=pn] [=sn] [=] [file] ..
checkeq [file] ... :
DESCRIPTION

Egn is a troff(1) preprocessor for typesetting mathematics on a Graphic Systems photo-
typesetter, negn on terminals. Usage is almost always

eqn file ... | troff
neqn file ... | nroff

If no files are specified, these programs reads from the standard input. A line beginning with
*.EQ’ marks the start of an equation; the end of an equation is marked by a line beginning with
*.EN’. Neither of these lines is altered, so they may be defined in macro packages to get
centering, numbering, etc. It is also possible to set two characters as ‘delimiters’; subsequent
text between delimiters is also treated as egn input. Delimiters may be set to characters x and y
with the command-line argument —dxy or (more commonly) with ‘delim xy’ between .EQ and
.EN. The left and right delimiters may be identical. Delimiters are turned off by ‘delim off".
All text that is neither between delimiters nor between .EQ and .EN is passed through un-
touched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, newlines, braces, double quotes, tildes or
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character
like x could appear, a complicated construction enclosed in braces may be used instead. Tilde ~
represents a full space in the output, circumflex ~ half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes x;,
a sub i sup 2 produces a?, and e sup {x sup 2 + y sup 2} gives eX+.

Fractions are made with over: a over b yields %.

sqrt makes square roots: I over sqrt {ax sup 2 +bx+c} results in _—t)
Vax?+bx+c

n
The keywords from and to introduce lower and upper limits on arbitrary things: lim Zx,- is
0

n=—co

made with lim from {n—>> inf} sum from 0 to n x sub i.

Left and right brackets, braces, etc., of the right height are made with left and right: left [x sup

2
2 -+ y sup 2 over alpha right] ~="1I produces x2+%- = 1. The right clause is optional. Legal

characters after left and right are braces, brackets, bars, ¢ and f for ceiling and floor, and ™ for
nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, lIpile, cpile, and rpile: pile {a above b above c} pro-
a

duces b. There can be an arbitrary number of elements in a pile. Ipile left-justifies, pile and
c

cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: marrix { lcol { x sub i above y sub 2} ccol { 1 above 2}) pro-
x; 1
duces y'z 2 In addition, there is reol for a right-justified column.

7th Edition 1

EQN (1) ‘ EQN (1)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dor = f1)
baris x=f(t), y dotdot bar = =" n underis V= n,and x vec " =" y dyadis X = y.

Sizes and font can be changed with size » or size +n, roman, italic, beld, and font . Size and
fonts can be changed globally in a document by gsize » and gfont n, or by the command-line
arguments —sn and —fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this
may be changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define. define thing % replace-
ment % defines a new token called rhing which will be replaced by replacement whenever it ap-
pears thereafter. The % may be any character that does not occur in replacement.

Keywords like sum (3) int (f) inf (=0) and shorthands like >= (3) => (=), and = ()
are recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA.
Mathematical words like sin, cos, log are made Roman automatically. Troff{1) four-character
escapes like \(bs (@) can be used anywhere. Strings enclosed in double quotes "..." are passed
through untouched; this permits keywords to be entered as text, and can be used to communi-
cate with troff when all else fails.

SEE ALSO i’

BUGS

troff (1), tbi(1), ms(7), eqgnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics— User’s Guide
J. F. Ossanna, NROFF/TROFF User’s Manual

To embolden digits, parens, etc., it is necessary to quote them, as in ‘bold "12.3".

7th Edition | 2

EXPR (1) , EXPR (1)

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr arg ...

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence, with
equal precedence operators grouped.

expr| expr
yields the first expr if it is neither null nor ‘0°, otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or ‘0°, otherwise yields ‘0’.

expr relop expr
where relop is one of < <= = l= >= > yijeids ‘1’ if the indicated comparison is
true, ‘0’ if false. The comparison is numeric if both expr are integers, otherwise lexico-
graphic.

expr + expr
expr - expr
addition or subtraction of the arguments.

expr * expr
expr | expr
expr "o expr
muitiplication, division, or remainder of the arguments.

expr . expr .
The matching operator compares the string first argument with the regular expression
second argument; regular expression syntax is the same as that of ed(1). The \(...\)
pattern symbols can be used to select a portion of the first argument. Otherwise, the
matching operator yields the number of characters matched (‘0’ on failure).

(expr)
parentheses for grouping.

Examples:
To add 1 to the Shell variable a:
a='expr $a + I’

To find the filename part (least significant part) of the pathname stored in variable a, which
may or may not contain ‘/”:

expr $a : "*/A(*\) T $a
Note the quoted Shell metacharacters.

SEE ALSO
ed(1), sh(1), test(1)
DIAGNOSTICS
Expr returns the following exit codes:
S 0 if the expression is neither null nor ‘0°,
{ﬁf/’% 1 if the expression is null or ‘0’,
2 for invalid expressions.

7th Edition ' 1

F77(1) F17(1)

NAME

f77 — Fortran 77 compiler
SYNOPSIS

£77 [option] ... file ...
DESCRIPTION

F77is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with “.f* are taken to be Fortran 77 source programs; 'they are
compiled, and each object program is left on the file in the current directory whose name is that
of the source with ‘.0’ substituted for *.f".

Arguments whose names end with “.r’ or ‘.e’ are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with ‘.c’ or ‘.5’ are taken to be C or assembly
source programs and are compiled or assembled, producing a ‘.0’ file.

The following options have the same meaning as in cc(1). See /d(1) for load-time options.
-c Suppress loading and produce ‘.0’ files for each source file.

-p Prepare object files for profiling, see prof(1).

-0 Invoke an object-code optimizer.

-~S Compile the named programs, and leave the assembier-language output on correspond-
ing files suffixed ‘.s". (No *.0" is created.).

-f Use a floating point interpreter (for PDP11’s that lack 11/70-style floating point).

—o0 output
Name the final output file ourput instead of ‘a.out’.

The following options are peculiar to f77.

--onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops
are not performed at all if the upper limit is smaller than the lower limit.)

-u Make the default type of a variable ‘undefined’ rather than using the default Fortran
rules.

- Compile code to check that subscripts are within declared array bounds.

—-w Suppress all warning messages. If the option is ‘~w66, only Fortran 66 compatibility
warnings are suppressed.

-F Apply EFL and Ratfor preprocessor to relevant files, put the result in the file with the
suffix changed to *.f*, but do not compile.

=m Apply the M4 preprocessor to each ‘.r". or ‘.¢’ file before transforming it with the Ratfor
or EFL preprocessor.

—Ex Use the string xas an EFL option in processing ‘.¢’ files.
—Rx Use the string x as a Ratfor option in processing ‘.r" files.

Other arguments are taken to be either loader option arguments, or F77-compatible object pro-
grams, typically produced by an earlier run, or perhaps libraries of F77-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the ord-
er given) to produce an executable program with name ‘a.out’.

FILES

7th Edition 1

F77(1) F77(1)

file.[fresc] input file

file.o object file

a.out loaded output
/usr/lib/f77pass] compiler

/lib/cl pass 2

/lib/c2 optional optimizer

/usr/1ib/1ibF77.a intrinsic function library
/usr/lib/1ibl77.a Fortran 1/0 library
/lib/libc.a C library, see section 3

SEE ALSO
S. L. Feldman, P. J. Weinberger, 4 Portable Fortran 77 Compiler
prof(1), cc(1), 1d(1)

DIAGNOSTICS
The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages
may be produced by the loader.

BUGS
The Fortran 66 subset of the language has been exercised extensively; the newer features have
not.

7th Edition 2

FACTOR (1) FACTOR (1)

NAME
factor, primes — factor a number, generate large primes

SYNOPSIS
factor [number]

primes

DESCRIPTION
When facror is invoked without an argument, it waits for a number to be typed in. If you type
in a positive number less than 2°¢ (about 7.2x10%) it will factor the number and print its prime
factors; each one is printed the proper number of times. Then it waits for another number. It
exits if it encounters a zero or any non-numeric character. ‘

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to /n and occurs when 7 is prime or the square of a
prime. It takes 1 minute to factor a prime near 10'* on a PDP11.

When primes is invoked, it waits for a number to be typed in. If you type in a positive number
less than 2°¢ it will print all primes greater than or equal to this number.

DIAGNOSTICS
‘Ouch.’ for input out of range or for garbage input.

7th Edition 1

FILE (1) FILE(1)

NAME
file — determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument ap-
pears to be ascii, file examines the first 512 bytes and tries to guess its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

7th Edition I

FIND (1) FIND (1)

NAME

find — find files

SYNOPSIS

find pathname-list expression

DESCRIPTION

Find recursively descends the directory hierarchy for each pathname in the pathname-list (i.e.,
one or more pathnames) seeking files that match a boolean expression written in the primaries
given below. In the descriptions, the argument »n is used as a decimal integer where +n means
more than n, —n means less than nand » means exactly ».

—name filename , ‘
True if the filename argument matches the current file name. Normal Shell argu-
ment syntax may be used if escaped (watch out for *[’, *?” and **°).

—perm onum ,
True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum s prefixed by a minus sign, more flag bits (017777, see star(2))
become significant and the flags are compared: (Aags&onum)==onum.

—type ¢ True if the type of the file is ¢, where cis b, ¢, d or f for block special file, character
- special file, directory or plain file.

—~links n True if the file has » links.

~~user uname

True if the file belongs to the user uname (login name or numeric user ID).

—group gname
True if the file belongs to group gname (group name or numeric group ID).

—size n True if the file is 7 biocks long (512 bytes per block).
—inum n True if the file has inode number .
—atime n True if the file has been accessed in n days.

—mtime n
True if the file has been modified in n days.

=—exec command
True if the executed command returns a zero value as exit status. The end of the
command must be punctuated by an escaped semicolon. A command argument ‘{}’
is replaced by the current pathname.

~—ok command , :
Like —exec except that the generated command is written on the standard output,
then the standard input is read and the command executed only upon response y.

—print Always true; causes the current pathname to be printed.

—newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing pre-
cedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and
must be escaped).

2) The negation of a primary (‘!” is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-
maries).

7th Edition 1

FIND (1) FIND (1)

4) Alternation of primaries (‘=o' is the or operator).

EXAMPLE
To remove all files named ‘a.out’ or ‘*.0" that have not been accessed for a2 week:

find / \(—name a.out —o —name *.0’\) —atime +7 —exec rm {} \;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(1), test(1), filsys(5)

BUGS
The syntax is painful.

7th Edition 2

GRAPH (1G) GRAPH (1G)

NAME

graph — draw a graph

SYNOPSIS

graph [option] ...

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as abscissas and ordi-
nates of a graph. Successive points are connected by straight lines. The graph is encoded on
the standard output for display by the plor(1) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a la-
bel beginning on the point. Labels may be surrounded with quotes "...", in which case they may
be empty or contain blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

—-a Supply abscissas automatically (they are missing from the input): spacing is given by
the next argument (default 1). A second optional argument is the starting point for au-
tomatic abscissas (default 0 or lower limit given by —x).

-b Break (disconnect) the graph after each label in the input.

-c Character string given by next argument is default label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).
-1 Next argument is label for graph.

—m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected (de-
fault). Some devices give distinguishable line styles for other small integers.

-s Save screen, don’t erase before plotting.

-x[1]
If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x
limits. Third argument, if present, is grid spacing on x axis. Normally these quantities
are determined automaticaily.

-y l[1]
Similarly for y.
—h Next argument is fraction of space for height.
=w Similarly for width.
ol § Next argument is fraction of space to move right beforey plotting.
-y Similarly to move up before plotting.
-t Transpose horizontal and vertical axes. (Option —x now applies to the vertical axis.)
A legend indicating grid range is produced with a grid unless the —s option is present.
If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

BUGS

spline(1), plot(1)

Graph stores all points internally and drops those for which there isn’t room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

7th Edition 1

GREP (1) GREP (1)

NAME
grep, egrep, fgrep — search a file for a pattern

SYNOPSIS
grep [option] ... expression [file] ...

egrep [option] ... [expression] [file] ...
fgrep [option] ... [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output; unless the —h flag is used,
the file name is shown if there is more than one input file.

Grep patterns are limited regular expressions in the style of ed(1); it uses a compact nondeter-
ministic algorithm. Egrep patterns are full regular expressions; it uses a fast deterministic algo-
rithm that sometimes needs exponential space. Fgrep patterns are fixed strings; it is fast and
compact.

The following options are recognized.

-y All lines but those matching are printed.

- Only a count of matching lines is printed.

el | The names of files with matching lines are listed (once) separated by newlines.
-n Each line is preceded by its line number in the file.

-b Each line is preceded by the block number on which it was found. This is sometimes
useful in locating disk block numbers by context.

-s No output is produced, only status.
ad 1} Do not print filename headers with output lines.

-y Lower case letters in the pattern will also match upper case letters in the input (grep
only).

=@ expression
Same as a simple expression argument, but useful when the expression begins with a —.

~f file The regular expression (egrep) or string list (fgrep) is taken from the file.
-X (Exact) only lines matched in their entirety are printed (fgrep only).

Care should be taken when using the characters $* ["|? “" () and \ in the expression as they
are also meaningful to the Shell. It is safest to enclose the entire expression argument in single
quotes . :

Fgrep searches for lines that contain one of the (newline-separated) serings.

Egrep accepts extended regular expressions. In the following description ‘character’ excludes
newline:

A\ followed by a single character matches that character.

The character - ($)} matches the beginning’ (end) of a line.

A . matches any character.

A single character not otherwise endowed with special meaning matches that character.

A string enclosed in brackets [] matches any single character from the string. Ranges
of ASCII character codes may be abbreviated as in ‘a—z0—9". A] may occur only as
the first character of the string. A literal — must be placed where it can’t be mistaken
as a range indicator.

7th Edition i

GREP (1) GREP (1)

A regular expression followed by * (4, ?) matches a sequence of 0 or more (1 or
more, 0 or 1) matches of the regular expression.

Two regular expressions concatenated match a match of the first followed by a match of
the second.

Two regular expressions separated by | or newline match either a match for the first or a
match for the second. ‘

A regular expression enclosed in parentheses matches a match for the regular expres-
sion.

The order of precedence of operators at the same parenthesis level is {] then *+7? then con-
catenation then l and newline.

SEE ALSO
ed(1), sed(1), sh(1)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

BUGS
Ideally there should be only one grep, but we don’t know a single algorithm that spans a wide
enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

7th Edition 2

ICHECK (1M) r ICHECK (1M)

NAME

icheck — file system storage consistency check
SYNOPSIS

icheck [=s] [—b numbers] [filesystem]
DESCRIPTION

Icheck examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. If the file system is not specified, a set of
default file systems is checked. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and char-
acter special files.

The total number of blocks in use and the numbers of single-, double-, and triple-
indirect blocks and directory blocks.

The number of free blocks.
The number of blocks missing; i.e. not in any file nor in the free list.

The —s option causes icheck to ignore the actual free list and reconstruct a new one by rewrit-
ing the super-block of the file system. The file system should be dismounted while this is
done; if this is not possible (for example if the root file system has to be salvaged) care should
be taken that the system is quiescent and that it is rebooted immediately afterwards so that the
old, bad in-core copy of the super-block will not continue to be used. Notice also that the
words in the super-block which indicate the size of the free list and of the i-list are believed. If
the super-block has been curdled these words will have to be patched. The —s option causes
the normal output reports to be suppressed.

Following the —b option is a list of block numbers; whenever any of the named blocks turns
up in a file, a diagnostic is produced.

Icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks
at a time.

FILES
Default file systems vary with installation.

SEE ALSO
dcheck (1), ncheck(1), filsys(5), ciri(1)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the
difficulty, the i-number, and the kind of block involved. If a read error is encountered, the
block number of the bad block is printed and icheck considers it to contain 0. ‘Bad freeblock’
means that a block number outside the available space was encountered in the free list. ‘n dups
in free’ means that » blocks were found in the free list which duplicate blocks either in some
file or in the earlier part of the free list.

BUGS
Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.
It believes even preposterous super-blocks and consequently can get core images.

7th Edition 1

IOSTAT (1M) [OSTAT (IM)

NAME

iostat — report 1/0 statistics

SYNOPSIS

iostat [option] ... [interval [count]]

DESCRIPTION

FILES

lostat delves into the system and reports certain statistics kept about input-output activity. In-
formation is kept about up to three different disks (RF, RK. RP) and about typewriters. For
each disk, 10 completions and number of words transferred are counted; for typewriters collec-
tively, the number of input and output characters are counted. Also, each sixtieth of a second,

the state of each disk is examined and a tally is made if the disk is active. The tally goes into -

one of four categories, depending on whether the system is executing in user mode, in ‘nice’
(background) user mode, in system mode, or idle. From all these numbers and from the
known transfer rates of the devices it is possible to determine information such as the degree of
IO overlap and average seek times for each device.

The optional interval argument causes iostat to report once each interval seconds. The first re-
port is for all time since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

With no option argument iostat reports for each disk the number of transfers per minute, the
milliseconds per average seek, and the milliseconds per data transfer exclusive of seek time. It
also gives the percentage of time the system has spend in each of the four categories mentioned
above.

The following options are available:
—t Report the number of characters of terminal IO per second as well.

—i Report the percentage of time spend in each of the four categories mentioned above,
the percentage of time each disk was active (seeking or transferring), the percentage of
time any disk was active, and the percentage of time spent in ‘IO wait:’ idle, but with a
disk active.

-5 Report the raw timing information: 32 numbers indicating the percentage of time spent
in each of the possible configurations of 4 system states and 8 IO states (3 disks each
active or not).

-b Report on the usage of 10 buffers.

/dev/mem, /unix

7th Edition 1

JOIN (1) JOIN (1)

NAME
join — relational database operator
SYNOPSIS
join [options 1 filel file2
DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of file/ and
file2. 1f filel is ‘—’, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the ﬁelds on which
they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file/ and file2 that have identical join
fields. The output line normally consists of the common field, then the rest of the line from
Jfilel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, multiple separators count
as one, and leading separators are discarded.

These options are recognized:

—an In addition to the normal output, produce a line for each unpairable line in file »,
where nis 1 or 2.

—e s Replace empty output fields by siring s.
=jn m Join on the mth field of file n. If nis missing, use the mth field in each file.

=0 /ist Each output line comprises the fields specifed in /isr, each element of which has the
form n.m, where nis a file number and mis a field number.

—tc Use character ¢ as a separator (tab character). Every appearance of ¢ in a line is
significant.

SEE ALSO
sort(1), comm(1), awk(1)

BUGS
With default field separation, the collating sequence is that of sorr —b; with —t, the sequence is
that of a plain sort.

The conventions of join, sort, comm, uniq, look and awk(1) are wildly incongruous.

7th Edition) 1

KILL (1) KILL (1)

NAME
kill — terminate a process with extreme prejudice

SYNOPSIS
kill [—signo] processid ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. If a signal number preceded by ‘-’
is given as first argument, that signal is sent instead of terminate (see signa/(2)). This will kill
processes that do not catch the signal; in particular ‘kill -9 ...” is a sure kill.

By convention, if process number 0 is specified, all members in the process group (i.e.
processes resulting from the current login) are signaled.

The killed processes must belong to the current user unless he is the super-user. To shut the
system down and bring it up single user the super-user may use ‘kill —1 1°; see init(8).

The process number of an asynchronous process started with ‘&’ is reported by the shell. Pro-
cess numbers can also be found by using ps(1). .

SEE ALSO
ps(1), kill(2), signal(2)

:;",};f:;‘:;?

7th Edition 1

LD(1) UNIX Programmer’s Manual LD(1)

NAME
ld — loader

SYNOPSIS
1d [option] file ...

DESCRIPTION »
Ld combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and /d combines them, producing an
object module which can be either executed or become the input for a further /d run. (In the
latter case, the =r option must be given to preserve the relocation bits.) The output of /dis left
on a.out. This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argurnent is a library, it is searched exactly once at the point it is encountered in the
‘argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, and the library has not been
processed by ranlib(1), the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries may be important. If the first member of a
library is named ‘__.SYMDEF’, then it is understocd to be a dictionary for the library such as
produced by ranlib;, the dictionary is searched iteratively to satisfy as many references as possi-
bie.

The symbols _etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’ in C) are reserved. and if
referred to, are set to the first location above the program, the first location above initialized
data, and the first location above all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for —1, they should appear before the file names.

- ‘Strip’ the output, that is, remove the symbo.l table and relocation bits to save space
(but impair the usefuiness of the debugger). This information can also be removed by
strip(1).

-1 Take the following argument as a symbol and enter it as undefined in the symbol table.
This is useful for loading wholly from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first routine.

—lx This option is an abbreviation for the library name ‘/lib/libx.a’, where x is a string. If
that does not exist, /d tries ‘/usr/lib/libx.a’. A library is searched when its name is
encountered, so the placement of a =1 is significant.

- Do not preserve local (qon-.globl) symbols in the outpul symbol table; only enter
external symbols. This option saves some space in the output file.

—-X Save local symbols except for those whose names pegin with ‘L’. This option is used
by cc(1) to discard internally generated labels while retaining symbols local to routines.

=y Generate relocation bits in the output file so that it can be the subject of another Id run.
This flag also prevents final definitions from being given to common symbols, and
suppresses the ‘undefined symbol® diagnostics.

-d Force definition of common storage even if the =r flag is present.

-n Arrange that when the outputl file is executed. the text portion will be read-only and
shared among all users executing the file. This involves moving the data areas up (0
the first possible 4K word boundary following the end of the text.

- When the output file is executed, the program tlext and data areas will live in separate
address spaces. The only difference between this option and —n is that here the data
starts at location 0.

7th Edition revised 5/79 1

LD(1)

FILES

UNIX Programmer's Manual LD (1)

The name argument after —o is used as the name of the Id output file, instead of a.out.

The following argument is taken o be the name of the entry point of the loaded pro-
gram; location 0 is the default.

This is an overlay file, only the text segment will be replaced by exec(2). Shared data
must have the same layout as in the program overlaid.

The next argument is a decimal number that sets the size of the data segment.

/lib/1ib*.a libraries
/usr/lib/lib*.a more libraries

a.out
SEE ALSO

output file

as(1), ar(1), ce(1), ranlib(1)

BUGS

7th Edition

revised 5/79 2

LEARN (1) LEARN (1)

NAME

learn — computer aided instruction about UNIX
SYNOPSIS

learn [—directory] [subject [lesson [speed]]]
DESCRIPTION

Learn gives CAI courses and practice in the use of UNIX. To get started simply type ‘learn’.
The program will ask questions to find out what you want to do. The questions may be
bypassed by naming a subject, and the last /esson number that /earn told you in the previous ses-
sion. You may also include a speed number that was given with the lesson number (but
without the parentheses that learn places around the speed number). If lesson is ‘~°, learn
prompts for each lesson; this is useful for debugging.

The subjects presently handled are

editor
eqn

files
macros
morefiles
C

The special command ‘bye’ terminates a learn session.
The —directory option allows one to exercise a script in a nonstandard place.

FILES
/usr/learn and all dependent directories and files

BUGS
The main strength of learn, that it asks the student to use the real UNIX, also makes possible
baffling mistakes. It is helpful, especially for nonprogrammers, to have a UNIX initiate near at
hand during the first sessions.

Occasionally lessons are incorrect, sometimes because the local version of a command operates
in a non-standard way. Such lessons may be skipped, but it takes some sophistication to recog-
nize the situation.

Tth Edition) 1

LEX (1) LEX (1)

NAME
lex — generator of lexical analysis programs

SYNOPSIS
lex { —tvfn 1 [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (standard
input default) contain regular expressions to be searched for, and actions written in C to be ex-
ecuted when expressions are found.

A C source program, ‘lex.yy.c’ is generated, to be compiled thus:
cc lex.yy.c —1l

This program, when run, copies unrecognized portions of the input to the output, and executes
the associated C action for each regular expression that is recognized.

The following lex program converts upper case to lower, removes blanks at the end of lines,
and replaces multiple blanks by single blanks.

%%

[A—Z] putchar(yytext[0]+ a"—"A"):
[]+83

[1+ putchar(" *);

The options have the following meanings.

—t Place the result on the standard output instead of in file ‘lex.yy.c’.
-y Print a one-line summary of statistics of the generated analyzer.
-n Opposite of —v; —n is default.

—-f ‘Faster’ compilation: don’t bother to pack the resulting tables; limited to small pro-
grams.
SEE ALSO
yacc(1)

M. E. Lesk and E. Schmidt, LEX — Lexical Analyzer Generator

7th Edition . 1

~LINT (1) LINT (1)

NAME
lint — a C program verifier

SYNOPSIS
lint [—abchnpuvx | file ...

DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be bugs, or non-
portable, or wasteful. It also checks the type usage of the program more strictly than the com-
pilers. Among the things which are currently found are unreachable statements, loops not en-
tered at the top, automatic variables declared and not used, and logical expressions whose value
is constant. Moreover, the usage of functions is checked to find functions which return values
in some places and not in others, functions called with varying numbers of arguments, and
functions whose values are not used.

By default, it is assumed that all the files are to be loaded together: they are checked for mutual
compatibility. Function definitions for certain libraries are available to linr, these libraries are
referred to by a conventional name, such as ‘-Im’, in the style of /d(1).

Any number of the options in the following list may be used. The —D, —U, and —I options of
cc(1) are also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number ef heuristic tests to attempt to intuit bugs, improve style, and reduce
waste.

b Report break statements that cannot be reached. (This is not the default because, un-

fortunately, most lex and many yacc outputs produce dozens of such comments.)
Suppress complaints about unused arguments in functions.

Report variables referred to by extern declarations, but never used.
Report assignments of long values to int variables.
Complain about casts which have questionable portability.

B2 0 B M« =

Do not complain about functions and variables used and not defined, or defined and -
not used (this is suitable for running /int on a subset of files out of a larger program).

n Do not check compatibility against the standard library.
Exit(2) and other functions which do not return are not understood; this causes various lies.
Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments in the following func-
tion declaration. The data types of the first n arguments are checked; a missing 7 is
taken to be 0.

/*NOSTRICT*/
- shuts off strict type checking in the next expression.

/*ARGSUSED*/
turns on the =—v option for the next function.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused functions in this file.

7th Edition 1

LINT (1) . LINT (1)

FILES

/usr/lib/lint{12] programs
/usr/lib/1lib-lc declarations for standard functions
/usr/lib/1lib-port declarations for portable functions

SEE ALSO
ce(l)
S. C. Johnson, Lint, a C Program Checker

s,

7th Edition 2

LN (1) , | LN (1)

NAME

In — make a link

SYNOPSIS
In namel [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protec-
tion information, etc.) may have several links to it. There is no way to distinguish a link to a
file from its original directory entry; any changes in the file are effective independently of the
name by which the file is known.

Ln creates a link to an existing file namel. If name?2 is given, the link has that name; otherwise
it is placed in the current directory and its name is the last component of namel.
It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm(1)

@

7th Edition 1

LOGIN (1) LOGIN (1)

NAME

login — sign on
SYNOPSIS

login [username]
DESCRIPTION

The login command is used when a user initially signs on, or it may be used at any time to
change from one user to another. The latter case is the one summarized above and described
here. See ‘How to Get Started’ for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass-
word. Echoing is turned off (if possible) during the typing of the password, so it will not
appear on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence
of .mail and message-of-the-day files. Login initializes the user and group IDs and the working
directory, then executes a command interpreter (usually sh(1)) according to specifications
found in a passwerd file. Argument 0 of the command interpreter is ‘—~sh.

Login is recognized by s#(1) and executed directly (without forking).

FILES

/etc/utmp accounting

/usr/adm/wtmp accounting

/usr/mail/* mail

/etc/motd message-of-the-day

/etc/passwd password file
SEE ALSO

init(8), newgrp(1), getty(8), mail(1), passwd(1), passwd(5)
DIAGNOSTICS

‘Login incorrect,’ if the name or the password is bad. _
‘No Shell’, ‘cannot open password file’, ‘no directory’: consult a programming counselor.

7th Edition 1

LOOK (1) LOOK (1)

NAME
look — find lines in a sorted list

SYNOPSIS
look [—df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sort(1):

d ‘Dictionary’ order: only letters, digits, tabs and blanks participate in comparisons.
f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with collating sequence —df.

FILES
/usr/dict/words

SEE ALSO
sort(1), grep(1)

7th Edition ' 1

LOOKALL (1) LOOKALL (1)

NAME

lookall — look through all text files on UNIX
SYNOPSIS

lookall [=Cn]
DESCRIPTION

Lookall accepts keywords from the standard input, performs a search similar to that of refer(1),
and writes the result on the standard output. Lookall consults, however, an index to all the text
files on the system rather than just bibliographies. Only the first 50 words of each file (roughly)
were used to make the indexes. Blank lines are taken as delimiters between queries.

The -Cn option specifies a coordination level search: up to 7 keywords may be missing from the
answers, and the answers are listed with those containing the most keywords first.

The command sequence in /usr/dict/lookallimakindex regenerates the index.

FILES
The directory /usr/dict/lookall contains the index files.

DIAGNOSTICS
‘Warning: index precedes file ... means that a file has been changed since the index was made
and it may be retrieved (or not retrieved) erroneously.

BUGS
Coordination level searching doesn’t work as described: only those acceptable items with the
smallest number of missing keywords are retreived. :

22

L

7th Edition local : 1

LORDER (1) LORDER (1)

NAME
lorder — find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive (see ar(1)) files. The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external identifiers
defined in the second. The output may be processed by sorr(1) to find an ordering of a library
suitable for one-pass access by /d(1).

This brash one-liner intends to build a new library from existing ‘.0’ files.

Y

ar cr library "lorder *.0 | tsort

FILES
*symref, *symdef
nm(1), sed(1), sort(1), join(1)

SEE ALSO
tsort(1), 1d(1), ar(1)

BUGS
The names of object files, in and out of libraries, must end with *.0’; nonsense results other-
wise.

7th Edition 1

LPR (1) LPR(1)

NAME
- lpr, vpr — line printer spooler

SYNOPSIS
lpr [option] ... [file] ...
vpr [—b banner] [file] ...

DESCRIPTION
Lpr causes the files to be queued for printing on a line printer. If no files are named, the stan-
dard input is read. The following options are available:

-r Remove the file when it has been queued.

-C Copy the file to insulate against changes that may happen before brinting.
—m Report by mail(1) when printing is complete.

-n Do not report by mail. This is the default option.

Vpr is the program used by /pr when the online printer is a Versatec machine to insert an identi-
fying banner before the output, strip overstrikes, and, where possible, remove blank lines to
make 66-line pages fit on 64 lines. If the file Musr/adm/vpacct is writable, vpr places accouting
information on it.

FILES
/usr/spool/lpd/lock
/usr/spool/lpd/cf* data file
/usr/spool/lpd/df* daemon control file
/usr/spool/lpd/tf* temporary version of control file
/usr/bin/vpr for Versatec printer
/usr/adm/vpacct

SEE ALSO
opr(1), 1pd(8)

Tth Edition local 1

LS(1) LS(1)
NAME
Is — list contents of directory
SYNOPSIS
Is [—1tasdrucifg] name ...
DESCRIPTION

For each directory argument, /s lists the contents of the directory; for each file argument, /s re-
peats its name and any other information requested. The output is sorted alphabetically by de-
fault. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:

| List in long format, giving mode, number of links, owner, size in bytes, and time of
last modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers.

-t Sort by time modified (latest first) instead of by name, as is normal.
-3 List all entries; usually *." and “.." are suppressed.
-s Give size in blocks, including indirect blocks, for each entry.

-d If argument is a directory, list only its name, not its contents (mostly used with =1 to
get status on directory).

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.
—-u Use time of last access instead of last modification for sorting (—t) or printing (—1).

- Use time of last modification to inode (mode, etc.) instead of last modification to file
for sorting (—t) or printing (~1).

-i Print i-number in first column of the report for each file listed.

—-f Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off =, —t, —s, and —r, and turns on —a; the order is the
order in which entries appear in the directory.

—g Give group ID instead of owner ID in long listing.

The mode printed under the —1 option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory;

b if the entry is a block-type special file;

¢ if the entry is a character-type special file;
~ if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions: the next to permissions to others in the same user-group; and the last to all
others. Within each set the three characters indicate permission respectively to read, to write,
or to execute the file as a program. For a directory, ‘execute’ permission is interpreted to mean
permission to search the directory for a specified file. The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

el I

The group-execute permission character is given as s if the file has set-group-1D mode; likewise
the user-execute permission character is given as s if the file has set-user-ID mode.

7th Edition 1

LS (1) / LS(1)

The last character of the mode (normally ‘x’ or ‘=) is t if the 1000 bit of the mode is on. See
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed. '
FILES
- /etc/passwd to get user I1D’s for ‘Is —1I'.
/etc/group to get group ID’s for ‘Is —g’.

7th Edition 2

M4 (1) M4 (1)

NAME .
m4 — macro processor

SYNOPSIS
md [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of
the argument files is processed in order; if there are no arguments, or if an argument is ‘=,
the standard input is read. The processed text is written on the standard output.

Macro calls have the form
namef(argl,arg2, . .., argn)

The ‘(’ must immediately follow the name of the macro. If a defined macro name is not fol-
lowed by a ‘(, it is deemed to have no arguments. Leading unquoted blanks, tabs, and new-
lines are ignored while collecting arguments. Potential macro names consist of alphabetic
letters, digits, and underscore ‘_’, where the first character is not a digit.

Left and right single quotes (') are used to quote strings. The value of a quoted string is the
string stripped of- the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and
any commas or right parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection, the value of the
macro is pushed back onto the input stream and rescanned.

M4 makes availabie the following built-in macros. They may be redefined, but once this is
done the original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first
argument. Each occurrence of $# in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string.

undefine removes the definition of the macro named in its argument.

ifdef If the first argument is defined, the value is the second argument, otherwise the
third. If there is no third argument, the value is null. The word unix is predefined
on UNIX versions of m4.

changequote
Change quote characters to the first and second arguments. Changeguote without
arguments restores the original values (i.e., *").

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatena-
tion of the streams in numerical order; initially stream 0 is the current stream. The
divert macro changes the current output stream to its (digit-string) argument. Out-
put diverted to a stream other than 0 through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all diver-
sions if no argument. Text may be undiverted into another diversion. Undiverting
discards the diverted text.

divhnum returns the value of the current output stream.
dnl reads and discards characters up to and including the next newline.

ifelse has three or more arguments. If the first argument is the same string as the second,
then the value is the third argument. If not, and if there are more than four argu-
ments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is

7th Edition 1

M4 (1) M4 (1)

either the fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by 1. The value of the argument is
calculated by interpreting an initial digit-string as a decimal number.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Opera-
tors include +, —, =, /, %, * (exponentiation); relationals; parentheses.

len returns the number of characters in its argument.

index returns the position in its first argument where the second argument begins (zero

origin), or —1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a zero origin
number selecting the first character; the third argument indicates the length of the
substring. A missing third argument is taken to be large enough to extend to the
end of the first string.

translit transliterates the characters in its first argument from the set given by the second
argument to-the set given by the third. No abbreviations are permitted.

include returns the contents of the file named in the argument.

sinclude s identical to include, except that it says nothing if the file is inaccessible.
syscmd executes the UNIX command given in the first argument. No value is returned.
maketemp fills in a string of XXXXX in its argument with the current process id.

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all if no arguments
are given.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor

o

7th Edition . 2

MAIL (1) MAIL (1)

NAME
mail — send or receive mail among users

SYNOPSIS
mail person ...
mail [=r] [—q] [=p1 [—ffile]

DESCRIPTION
Mail with no argument prints a user’s mail, message-by-message, in last-in, first-out order; the
optional argument —r causes first-in, first-out order. If the —p flag is given, the mail is printed
with no questions asked; otherwise, for each message, mail reads a line from the standard input
to direct disposition of the message.

newline
Go on to next message.

d Delete message and go on to the next.
p Print message again.
- Go back to previous message.

sl file] ..
Save the message in the named files (‘mbox’ default).

wlfile] ...
Save the message, without a header, in the named files (‘mbox’ default).

m [person] ...
Mail the message to the named persons (yourself is default).

EOT (control-D)
Put unexamined mail back in the mailbox and stop.

q Same as EOT.
X Exit, without changing the mailbox file.
'command

Escape to the Shell to do command.
? Print a command summary.

An interrupt stops the printing of the current letter. The optional argument —q causes mail to
exit after interrupts without changing the mailbox.

When persons are named, mail takes the standard input up to an end-of-file (or a line with just
*.’) and adds it to each person’s ‘mail’ file. The message is preceded by the sender’s name and a
postmark. Lines that look like postmarks are prepended with “>". A person is usually a user
name recognized by login(1). To denote a recipient on a remote system, prefix person by the
system name and exclamation mark (see wucp(1)).

The —f option causes the named file, e.g. ‘mbox’, to be printed as if it were the mail file.

Each user owns his own mailbox, which is by default generally readable but not writable. The
command does not delete an empty mailbox nor change its mode, so a user may make it
unreadable if desired.

When a user logs in he is informed of the presence of mail.

FILES
/usr/spool/mail/* mailboxes
/etc/passwd tu identify sender and locate persons
mbox saved mail
/tmp/ma* temp file

7th Edition ‘ 1

MAIL (1) UNIX Programmer’s Manual MAIL (1)

dead.letter unmailable text
uux(1)

SEE ALSO
xsend(1), write(1), uucp(1)

BUGS

There is a locking mechanism intended to prevent two senders from accessing the same mail-
box, but it is not perfect and races are possible.

7th Edition 2

MAKE (1) MAKE (1)

NAME

make — maintain program groups

SYNOPSIS

make [—f makefile] [optien] ... file ...

DESCRIPTION

Make executes commands in makefile to update one or more target names. Name is typically a
program. If no —f option is present, ‘makefile’ and ‘Makefile’ are tried in order. If makefile is
‘=", the standard input is taken. More than one =—f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the tar-
get was last modified, or if the target does not exist.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a
blank-separated list of targets, then a colon, then a list of prerequisite files. Text following a
semicolon, and all following lines that begin with a tab, are shell commands to be executed to
update the target.

)

Sharp and newline surround comments.

The following makefile says that ‘pgm’ depends on two files ‘a.0’ and ‘b.o’, and that they in
turn depend on ‘.¢’ files and a common file ‘incl’.

pgm: a.o b.o

cc a.0 b.o —Im —o pgm
a.o: incl a.c

cC —c¢C a.c
b.o: inc! b.c

¢cc —cbec

Makefile entries of the form
string! == string2

are macro definitions. Subsequent appearances of $(stringl) are replaced by string2. If stringl is.
a single character, the parentheses are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For ex-
ample, a *.c’ file may be inferred as prerequisite for a ‘.0’ file and be compiled to produce the
‘.0’ file. Thus the preceding example can be done more briefly:

pgm: a.0 b.o
cc a.0 b.o —Im —o pgm
a.0 b.o: incl

Prerequisites are inferred according to selected suffixes listed as the ‘prerequisites’ for the spe-
cial name ‘.SUFFIXES’; multiple lists accumulate; an empty list clears what came before. Ord-
er is significant; the first possible name for which both a file and a rule as described in the next
paragraph exist is inferred. The default list is

SUFFIXES: out o.c.er.f.y.ls

The rule to create a file with suffix s2 that depends on a similarly named file with suffix s/ is
specified as an entry for the ‘target’ s/s2. In such an entry, the special macro $* stands for the
target name with suffix deleted, $@ for the full target name, $< for the complete list of prere-
quisites, and $? for the list of prerequisites that are out of date. For example, a rule for mak-
ing optimized ‘.0’ files from ‘.c’ files is

.co;¢cc —-c —0 —0 8@ $*.c

7th Edition 1

MAKE (1) MAKE (1)

Certain macros are used by the default inference rules to communicate optional arguments to
any resulting compilations. In particular, ‘CFLAGS’ is used for cc and f77(1) options,
‘LFLAGS’ and ‘YFLAGS’ for lex and yacc(1) options.

Command lines are executed one at a time, each by its own shell. A line is printed when it is
executed unless the special target ‘SILENT’ is in makefile, or the first character of the com-
mand is ‘@’.

Commands returning nonzero status (see intro(1)) cause make to terminate unless special tar-
get . IGNORE’ is in makefile or the command begins with <tab> <hyphen>.

Interrupt and quit cause the target to be deleted unless the target depends> on the special name
“ PRECIOUS".

Other options:
- Equivalent to the special entry “*.IGNORE:’.

-k When a command returns nonzero status, abandon work on the current entry, but con-
tinue on branches that do not depend on the current.entry.

-n Trace and print, but do not execute the commands needed to update the targets.
-t Touch, i.e. update the modified date of targets, without executing any commands.
et § Equivalent to an initial speciai entry *.SUFFIXES:” with no list.

-s Equivalent to the special entry . SILENT:". '

FILES
makefile, Makefile

SEE ALSO
sh(1), touch(1)
S. 1. Feldman Make — A4 Program for Maintaining Computer Programs

BUGS
Some commands return nonzero status inappropriately. Use —i to overcome the difficuity.
Commands that are directly executed by the shell, notably cd(1), are ineffectual across newlines
in make.

7th Edition 2

June 8,

1L (C) : MAIL (C)

Ending a Mail Seeeton

You can end a mail session with the quit (q) command. Messages
which have heen examined go to your mboz file unless they have been
deleted in which case they are discarded. Unexamined messages go
back to the post office. The ~f option causes mail to read in the con-
tents of your mboz (or the specified file) for processing; when you quit
mail writes undeleted messages back to this file. The -i option causes
matl to ignore interrupts.

Ueing Aliases and Dietribution Liets

It is also possible to create a personal distribution lists so that, for
. v . .

instance, you can send mail to ““cohorts” and have it go to a group of
people. Such lists can be defined by placing a line like

alias cohorts bill bob barry bobo betty beth bobbi

in the file .mailrc in your home directory. The current list of such
aliases can be displayed by the alias (a) command in mail. System-
wide distribution lists can be created by editing fusr/lib/mail/aliases,
see aliares{M); these are kept in a slightly different syntax. In mail
you send, personal aliases will be expanded in mail sent to others so
that they will be able to reply to the recipients. System-wide aliazee
are not expanded when the mail is sent, but any reply returned to the
machine will have the system-wide alias expanded.

Mail has a number of options which can be set in the .mailre file to

alter its behavior; thus ‘‘set askcc” enahles the ‘‘askce™ feature.
(These options are summarized below.)

Page 3

June 8, 1984

MAIL (C) MAIL (C)

Reading Mail

To read mail, invoke mail with no arguments, This will check your

. mail out of the system-wide directory so that you can read and dispose

of the messages sent to you. A message header is printed out for each
message in your mailbox The current message is initially the last num-
bered message and can be printed using the print command (which
can be abbreviated p). You can move among the messages much as
you move between lines in ed, with the commands 4+ and - moving
backwards and forwards, and simple numbers typing the addressed
message.

It new mail arrives during the mail session you can read in the new
messages with the restart command.

Diepoeing of Mail

After examining a message you can delete (d) the message or reply
(r) to it. Deletion causes the mail program to forget about the mes-
sage. This is not irreversible, the message can be undeleted (u) by
giving its number, or the mail session can be aborted by giving the
exit (x) command. Deleted messages will, however, usually disappear
never to be seen again.

Specifying Meeeages

Commands such as print and delete often can be given a list of mes-
sage numbers as argument to apply to 3 number of messages at once,
Thus "‘delete 1 2" deletes messages 1 and 2, while ‘‘delete 1-5"" deletes
messages 1 through 5. The special name “+" addresses all messages,
and “$" addresses the last message; thus the command top which
prints the first few lines of a message could be used in "‘top *'* to print
the first few lines of all messages. .

Replying to or Originating Masl

You can use the reply command to set up a response to a message,
sending it back to the person who it was from. Text you then type in,
up to a CNTRL-D defines the contents of the message. While you are
composing a message, mail treats lines beginning with a tilde () as
special. For instance, typing *“ 'm" (alone on a line) places a copy of
the current message into the response, right shifting it by one tabstop.
Other escapes set up subject fields, add and delete recipients to the
message, and allow you to escape to an editor to revise the message or
to a shell to run some commands. {These options are be given in the
summary below.)

June 8, 198

AMALL (C)

Summary

Each mail command is typed on a line by itself, and may take argu-
ments following the command word. The command need not be typed
in its entirety - the first command which matches the typed prefix is
used. For the commands that take message lists as arguments, if no
message list is given, then the next message forward that satisfies the
command’s requirements is used. If there are no messages forward of
the current message, the search proceeds backwards, and if there are
no good messages at all, mail types “No applicable messages” and
aborts the command.

- Goes to the previous message and prints it out. Il given
a numeric argument n, goes to the nth previous message
and prints it,

+ Goes to the next message and prints it out. If given a
numeric argument n, goes to the nth next message and
prints it.

RETURN Goes to the next message and prints it out.

? Prints a brief summary of commands.

! Executes the shell command which follows.

= Prints out the current message number.

. Prints out the first message,

$ Prints out the last message.

alias (a) With no arguments, prints out all currently-defined
aliases. With one argument, prints out that alias. With

more than one argument, adds the users named in the
second and later arguments to the alias named in the

first argument.

ed (¢) Changes the user's working directory to that
specified, if given. If no directory is given, then changes
to the user's login directory.

delete (d) Takes a list of messages as an argument and marks
them all as deleted. Deleted messages are not retained in
the system mailbox after a quit, nor are they available to
any command other than the undelete command.

dp Deletes the current message and prints the next message.
If there is no next message, mail says ‘‘at EOF."

echo path Expands shell metacharacters.

Page 4

AMAIL (C)

edit,

exit

file

forward

Forward

headers

hold

mbox

MAIL (C)

(e) Takes a list of messages and points the text editor at
each one in turn. On return from the editor, the message
is read back in.

{x} Effects an immediate return to the shell without
modifying the user's system mailbox, his mboz file, or his
edit file in -f .

{fi) Switches mailbox files to the file given by a filename
argument. (Not yet implemented.)

(f) Forwards the current message to the named users.
Current message is indented within forwarded message.

(F) Forwards the current message to the named users.
Current message is not indented within forwarded mes-
sage.

{(h) Lists the current range of headers, which is an 18
message group. Il a ““+' argument is given, then the
next 18 message group is printed, and if a2 =" argument
is given, the previous 18 message group is printed. Both
“+" and *-" may take a number to view a particular
window. If a message-list is given, it prints the specified
headers.

(ho) Takes a message list and marks each message
therein to be saved in the user’s system mailbox instead
of in mbez. Use only when the switch automboz is set.
Does not override the delete command.

Prints list of mail commands.

(1) Prints out each Bommwma in a message-list on :ﬁ line-
printer.

{m} Takes as argument lozin names and distribution
group names and sends mail to those people.

(mb) Marks messages in a message list so that they are
saved in the user mailbox-after leaving mail.

move meeg-liet meeg-num

next

print

June 8,

Places the messages specified in meeg-list after the mes- -
sage specified in meeg-num. If meeg-num is 0, meeg-lint
moves to the top of the mailbox.

(n like 4 or RETURN) Goes to the next message in
sequence and prints it. With an argument list, types the
next matching message.

(p) Prints out each message in a message-list on the ter-
minal display.

Page 5

MAIL(C) . MAIL (C)

quit {q} Terminates the session, retaining all undeleted,
unsaved messages in the system mailbox and removing
all other messages. Files marked with a star (s} are
saved; files marked with an “M" are saved 'in the user
mailbox. If new mail has arrived during the session, the
message ‘‘You have new mail" is given. If given while
editing a mailbox file with the —f flag, then the edit file is
rewritten. The user returns to the shell, unless the
rewrite of edit file fails, in which case the user can escape
with the exit command.

°

reply {r) Takes a message list and sends mail to each message
author. The default message must not be deleted.

Reply {R) Takes a message list and sends mail to each message
author and each member of the message just like the
mail command. The default message must not be

deleted.

restart Reads in messages that arrived during the current mail
session. - :

save {s) Takes a message list and a filename and appends cach

message in turn to the end of the file, The filename, in
quotation marks, followed by the line count and charac-
ter count is echoed on the user's terminal.

set (se) With no arguments, prints all variable values. Oth.
erwise, scts option. Arguments are of the form
“option==value' or “option"".

shell {sh) Invokes an interactive version of the shell.

size (si} Takes a message list and prints out the size in char-
acters of each message.

source {so) Reads mail commands from the file given as its only
argument.

string etring meag-list
Searches for etring in meeg-liet. It no meag-list is

specified, all undeleted messages are searched. Case is
ignored in search.

top (t) Takes a message list and prints the top few lines of
each. The number of lines printed is controlled by the
variable toplines and defaults to five.

undelete (u) Takes a message list and marks each one as not being
deleted.

unset (uns) Takes a list of option names and discards their
remembered values; the inverse of set .

Page 6

June 8, 1984

MAIL (C) MAIL (C)
visual {(v) Takes a message list and invokes vi on each message.

write filename
{w) Saves the body of the message in the named file.

Here is a summary of the compose escapes, which are used when com-

posing messages to perform special functions. Compose escapes are

only recognized at the beginning of lines.

“Tetring Inserts the string of text in the message prefaced by a
single tilde (7). If you have changed the escape character,
then you should double that character instead.

4 Prints out help for compose escapes.

-, Same as CNTRL-D on a new line,

“temd Executes the indicated shell command, then returns to
the message.

“lemd Pipes the message through the command as a filter, If

the command gives no output or terminates abnormally,
tetains the original text of the message.

_ mail-command
Fxecutes a mail command, then returns to compose

mode.
": matl-command

Executes a mail command, then returns to compose

mode,

alias Prints list of private aliases

“alias aliaename
Prints names included in private aliaename.

“Alias Prints list of private, then system-wide aliases for all
users named in the current To, Cc and Bee lists,

“Alias usere
Prinst list of private, then system-wide aliases for ueere,

“b name ... Adds the given names to the list of blind carbon copy
recipients.

"¢ name ... Adds the given names to the list of carbon copy reci-
picnts.

“ce name ... Same as "¢ above.

°d Reads the file dead.letter from your home directory into

the message.

June 8, 1984 Page 7

MAIL(C) MAIL (C)

e Invokes the text editor on the message collected so far.
After the editing session is finished, you may continue
appending text to the message.

“h Edits the message header fields by typing each one in
turn and allowing the user to append text to the end or
modify the field with the current terminal erase and kill
characters.

“m meag-liat
Reads the named messages into the message bufler,
shifted right one tab. If no messages are specified, reads
the current message,

M meeag-liat
Reads the named messages into the message buffer,
shifted right one tab. If no messages are specified, reads
the current message.

p Prints out the messages collected so far, prefaced by the
message header fields.

q Aborts the message being sent, copying the message to
dead.letter in your home directory if save is set.

“r filename Reads the named file into the message buffer.

"Return name
Adds the given names to the Return-receipt-to field.

s etring Causes the named string to become the current subject

field.
*t name ... Adds the given names to the direct recipient list.

Y Invokes a visual editor (defined by the VISUAL option)
on the message buffer. After you quit the editor, you
may resume appending text to the end of your message.

“w filename Writes the body of the message to the named file,

Options are controlled with the set and unset commands. An option
may be either a switch, in which case it is either on or ofl, or a string,
in which case the actual value is of interest. The switch options
include the following:

askee Causes you to be prompted for additional carbon
copy recipients at the end of each message. Respond-
ing with a newline indicates your satisfaction with
the current list.

asksubject Causes mail to prompt you for the subject of each
message you send. If you respond with simply a

June 8, 1 Page 8

MAIL (C) MAIL (C)

newline, no subject field is sent.

autombox Causes all examined messages to be saved in the user
mailbox unless deleted or saved.

autoprint Causes the delete command to behave like dp -
thus, after deleting a message, the next one will be
typed automatically.

chron Causes messages to be displayed in chronological
order.
dot Permits use of dot (.) as the end of file character

when composing messages.

ignore Causes interrupt signals from your terminal to be
ignored and echoed as at-signs {@).

mchron Causes messages to be listed in numerical order (most
recently received first), but displayed in chronological
order.

metoo Usually, when a group is expanded that contains the

sender, the sender is removed [rom the expansion.
Setting this option causes the sender to be included in
the group.

nosave Prevents aborted messages from being appended to
the file dead.letter in your home directory on receipt
of two interrupts (or a "q.)

prepend Causes messages saved in mboz to be prepended to
the end rather than appended.

quict Suppresses the printing of the version header when
first invoked.

The [ollowing options have string values:
EDITOR Pathname of the text editor to use in the edit com-

mand and "e escape. If not defined, then a default
editor is used.

SHELL Pathname of the shell to use in the ! command and
the ! escape. A default shell is used if this option is
not defined.

VISUAL Pathname of the text editor to use in the visual

command and “v escape.

escape If defined, the first character of this option gives the
character to use in the place of the tilde {7} to denote

CReapes.

June 8, 1984 Page 9

MALL (C) AL ()
. page=n Specifies the number of lines (n} to be printed in a
“page’ of text when displaying messages.
record Il defined, gives the pathname of the file used to
record all outgoing mail. If not defined, then outgo-
ing mail is not saved.
toplines If defined, gives the number of lines of a message to
be printed out with the top command; normally, the
first five lines are printed.
Files
[usr/spool/mail/s System mailboxes
[ust/name/dead.letter File where undeliverable mail is deposited.
Just/name/mbox Your old mail
Just/name/.mailre File giving initial mail commands
Just flib/mail/aliases System-wide aliases

[usr/lib/mail/aliases.hash System-wide alias database

Jusr/lib/mail/faliases Forwarding aliases for the local machine

Jusr/lib/mail/maliases Machine aliases

Just/lib/mailhelp.emd Help file

Just/lib/mailhelp.esc Help file
[usr/lib/mailhelp.set Help file

Jusr /lib/mail/mailre System initialization file
/bin/mail The mail command

June 8, 198

. Page 10

AMALL () MAIL (C)

Sce Also

aliases(M), alinshash{M)}, netutil(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Page 11

June 8, 1984

¢ & ¢HL® © © @

& € @

@

Mar 15 10217 1982 biurfo Page 1

From root Mon Har 15 08:24:13 1982

>From gordon Mon Mar 15 (8217222 1982 remote from microsoft

Jo: esufbic eulbobwm eulcbi eulchris eulconnie eulcox euldavem sul jeff eulka
guikiunder eulkonzen euliyle eulmark eulmarkd eulmikeo sulpaula
gulraoc eulrice eulsimonyi eulsteve eulsteveh eultandyt euttodd
hiro nishi

LR RS LSS EL LR L RS L LR L2

new mail
23 IZ T I T T E TR ET LT]

A new system mailer has been Instalied. It combines ithe best features
of the ¥7 and Berkeley majierss previous known as ®maii" and "Maii¥,
respectively.

The new mailer is Invoked as "mail®; "Mail” no longer existsa

Sending Maill
MBEBRB RS m LTI

The new mailer Is identical to old "Maii®:; and is a functional
superselt of oid "maii¥.

In order to standardize malfiingss the maller will always prompt
Sublect:
for each outgoing item. If you deliberately wish to omit a subject
fines, hit <return> in response to the prompt.

Since the new mpaller has a full alias capability las did old Maii)
users should never specify an expiicit path names but Just the recipientis
names; regardiess of their *home machine®.

Receiving Mail

System defauits have been setup so that receiving mail is almost
fdenticail to the procedure with the old "maiil® program. The first
difference is readily apparent: when you type mai! you see the
headers for the fast 18 messages in your mailbox. You can display
ftems by typing their number. Ors vou can view them sequentaiiiy via
the <return> command. The following commands are walids:

¥ - help list

{return> - see next message

* = g0 to higher {later) message number

- -~ g0 to iomer {sarliier) message number

s fname -~ save the curvrent mail enitry in *fname?’
d - deiete curreni message

a - exits updating maiilbox

® -~ gxite don®t change maiibox

Mole that Lhis iist ¥s deliberately simple; there are more commandss and
mosi Lake fists of messages as arguments. When a command is given without
a message number specificeds the one message referenced is effecteds.

Forwarding Mail

Mar 15 10317 1982 Dblurfo Page 2

The most significant change is in the forwarding of mail. The
*m® command no longer Just forwards the ftem to a recipients but
instead invokes a copy of *majl® to send a message to the named
reciplients It is convenients howevers to inserlt a copy of an incomming
mail dtem into that outgoing maiil, thus having the *forward?® effect

] wiith the added feature of bsing able to add pre- and post-commentarvye.
After you iype the *m* commands, as you are typing the messages a §ine
& starting with 7 indicates a special mail command. The command
g <numd?®
causes mail item *<num>? Lo be inserted iInto the outgoing mail you are
) creating. Thuss Lo foruward a message item to *bingo® with pre and

post commeniarys dot

& Xreturn>
<next item is shound>

.m bingo

& Subjects {you enter}
precommentiary goes here

) “m
posi commentary goes here
Kcii—-d>

£

-

] Mote that the special command *"p? causes mail to show you the

%g message thus fars so that you can see "how it looks®. Hany other
- special *7* commands are usefuls type '72% for a 1ist. Of courses
] *¥® commands are only valid when entering mails not in response to
the *_*% prompls

>

Advanced Usage

Documentation on the full features of the Berkeley mailer
is availablie. For the benefit of Lthose familiar with Berkeley Mails
two new ¥set® options have been added:

sel backwards
go through the mail ftems from oidest to newest

set notouch
do not auvtomaticaiiy *touch? mait ittems. They stay
in Lthe malibox uniess deleteds saved to a files oF
expiicitiy touched,

i

& These optionss together with
st ask
are being set on a sysiem global basiss iIf vyou don®t wani thems
] insert the appropriate

unset <option>
iines In your .malivre flle.

.

e

MAN (1) MAN (1)

NAME
man — print sections of this manual
SYNOPSIS)
man [option ...] [chapter] title ...
DESCRIPTION
Man locates and prints the section of this manual named tirle in the specified chaprer. (In this
context, the word ‘page’ is often used as a synonym for ‘section’.) The ritle is entered in lower
case. The chaprer number does not need a letter suffix. If no chaprer is specified, the whole
manual is searched for ritle and all occurrences of it are printed.
Options and their meanings are:
-t Phototypeset the section using troff(1).
-~n Print the section on the standard output using nroff(1).
-k Display the output on a Tektronix 4014 terminal using #of(1) and r(1).
~e Appended or prefixed to any of the above causes the manual section to be preprocessed
by negnor egn(l); —e alone means —te.
-wW Print the path names of the manual sections, but do not print the sections themselves.
(default)
Copy an already formatted manual section to the terminal, or, if none is available, act
as —n. It may be necessary to use a filter to adapt the output to the particular
terminal’s characteristics.
Further oprions, €.g. to specify the kind of terminal you have, are passed on to roff{1) or nroff.
Oprions and chaprer may be changed before each ritle.
For example:
man man
would reproduce this section, as well as any other sections named man that may exist in other
chapters of the manual, e.g. man(7).
FILES
/usr/man/man?/=
/usr/man/cat?/#
SEE ALSO
nroff(1), eqn(1), tc(1), man(7)
BUGS

The manual is supposed to be reproducible either on a phototypesetter or on a terminal.
However, on a terminal some information is necessarily lost.

7th Edition | ‘ 1

MESG (1) MESG (1)

NAME

mesg — permit or deny messages
SYNOPSIS

mesg [n][y]
DESCRIPTION

Mesg with argument n forbids messages via write(1) by revoking non-user write permission on
the user’s terminal. Mesg with argument y reinstates permission. All by itself, mesg reports the
current state without changing it.

FILES
/dev/tty*
/dev

SEE ALSO
write(1)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

7th Edition 1

MKCONF (1M) MKCONF (1M)

NAME
mkconf — generate configuration tables

SYNOPSIS
mkconf

DESCRIPTION
Mkconf examines a machine configuration table on its standard input. Its output is a pair of
files Lsand c.c. The first is an assembler program that represents the interrupt vectors located in
low memory addresses; the second contains initialized block and character device switch tables.

Input to mkconfis a sequence of lines. The following describe devices on the machine:

pc -~ (PCl1D)

Ip (LP1D)

rf (RS1D)

hs (RS03/RS04)
tc (TU56)

rk (RK03/RK05)
tm (TU10)

rp (RP03)

hp (RP04/5/6)
ht (TU16)

dc* (DC1D)

kl* (KL11/DL11-ABC)
dr* (DLI11-E)

dp* (DP1D)
dn* (DN11)
dh* (DHI11)
dhdm* (DM11-BB)
du* (DU1D)

The devices marked with * may be preceded by a number telling how many are to be included.
The console typewrite is automatically included; don’t count it as part of the KL or DL
specification. Count DN’s in units of 4 (1 system unit).

The following lines are also accepted.

rooet dev minor
The specified block device (e.g. hp) is used for the root. minor is a decimal number giv-
ing the minor device. This line must appear exactly once.

swap dev minor
The specified block device is used for swapping. If not given the root is used.

pipe dev minor
The specified block device is used to store pipes. If not given the root is used.

swplo number

nswap number
Sets the origin (block number) and size of the area used for swapping. By default, the
not very useful numbers 4000 and 872.

pack Include the packet driveg. By default it is left out.
mpx Include the multiplexor driver. By default it is left out.

) FILES
@

l.s, c.c output files

7th Edition 1

MKCONF (1M) MKCONF (1M)

SEE ALSO
‘Setting up Unix’, in Volume 2.

BUGS
The set of devices it knows about, the set of drivers included, and the set of devices on the
machine are mutually incomparable. Some handwork is certain to be necessary. Because of

floating vectors that may have been missed, It is mandatory to check the /s file to make sure it
corresponds with reality.

7th Edition 2

MKDIR (1) MKDIR (1)

NAME

mkdir — make a directory
SYNOPSIS

mkdir dirname ...
DESCRIPTION

Mkdir creates specified directories in mode 777. Standard entries, .’ for the directory itself,
and ‘..’ for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm(1)

DIAGNOSTICS

Mkdir returns exit code 0 if all directories were successfully made. Otherwise it prints a diag-
nostic and returns nonzero.

7th Edition 1

MKFS (1M) _ : MKFS (1M)

NAME
mkfs — construct a file system

SYNOPSIS
/etc/mkfs special proto

DESCRIPTION ‘

Mkfs constructs a file system by writing on the special file special according to the directions
found in the prototype file proto. The prototype file contains tokens separated by spaces or new
lines. The first token is the name of a file to be copied onto block zero as the bootstrap pro-
gram, see bproc(8). The second token is a number specifying the size of the created file sys-
tem. Typically it will be the number of blocks on the device, perhaps diminished by space for
swapping. The next token is the number of i-nodes in the i-list. The next set of tokens
comprise the specification for the root file. File specifications consist of tokens giving the
mode, the user-id, the group id, and the initial contents of the file. The syntax of the contents
field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the
file. (The characters —bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or — to specify set-user-id mode or
not. The third is g or — for the set-group-id mode. The rest of the mode is a three digit octal
number giving the owner, group, and other read, write, execute permissions, see chmod(1).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are
copied. ‘

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkfs makes the entries . and .. and then reads a list of names and (re-
cursively) file specifications for the entries in the directory. The scan is terminated with the to-
ken $.

If the prototype file cannot be opened and its name consists of a string of digits, mkfs builds a
file system with a single empty directory on it. The size of the file system is the value of proto
interpreted as a decimal number. The number of i-nodes is calculated as a function of the
filsystem size. The boot program is left uninitialized.

- A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d—-77731
usr d—-77731
sh —-—=755 31 /bin/sh
ken d—-—-75561 "
3

b0 b—=6443100
c0 c—=—6443100
$

SEE ALSO
filsys(5), dir(5), bproc(8)

7th Edition : 1

MKFS (1M)

BUGS
There should be some way to specify links.

7th Edition

MKFS (IM)

[89]

MKNOD (1M) MKNOD (1M)

NAME
mknod — build special file

SYNOPSIS
/etc/mknod name [¢] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the entry. The second is b if the
special file 'is block-type (disks, tape) or ¢ if it is character-type (other devices). The last two
arguments are numbers specifying the major device type and the minor device (e.g. unit, drive,
or line number).

The assignment of major device numbers is specific to each system. They have to be dug out
of the system source file confec.

SEE ALSO
mknod(2)

7th Edition ' 1

MOUNT (1M) MOUNT (1IM)

NAME
mount, umount — mount and dismount file system

SYNOPSIS
/ete/mount [special name [—r]]

/etc/umount special

DESCRIPTION
Mount announces to the system that a removable file system is present on the device special.
The file name must exist already; it must be a directory (unless the root of the mounted file
system is not a directory). It becomes the name of the newly mounted root. The optional last
argument indicates that the file system is to be mounted read-only.

Umounr announces to the system that the removable file system previously mounted on device
special is to be removed. '

These commands maintain a table of mounted devices. If invoked without an argument, mount
prints the table.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or not any explicit write is attempted.

FILES
/etc/mtab: mount table

SEE ALSO
mount(2), mtab(5)

BUGS
Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames invalid.

7th Edition 1

MV (1) | MV (1)

NAME
mv — move or rename files and directories

SYNOPSIS
mv filel file2

mv file ... directory

DESCRIPTION
My moves (changes the name of) file! to file2.

If file2 already exists, it is removed before filel is moved. If file2 has a mode which forbids
writing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if the
line begins with y, the move takes place; if not, mv exits.

In the second form, one or more files are moved to the direcrory with their original file-names.
My refuses to move a file onto itself.

SEE ALSO
cp(1), chmod(2)

BUGS
If filel and file2 lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship with
other files is lost.

Mv should take —f flag, like rm, to suppress the question if the target exists and is not writabie.

7th Edition local 1

7
@

NCHECK (1M) (NCHECK (1M)

‘NAME

ncheck — generate names from i-numbers
SYNOPSIS

ncheck [—inumbers] [—al [—s] [filesystem]
DESCRIPTION

Ncheck with no argument generates a pathname vs. i-number list of all files on a set of default
file systems. Names of directory files are followed by */.". The —i option reduces the report to
only those files whose i-numbers follow. The —a option allows printing of the names ‘.’ and-
*..", which are ordinarily suppressed. suppressed. The —s option reduces the report to special
files and files with set-user-ID mode; it is intended to discover concealed violations of security
policy.

A file system may be specified.
The report is in no useful order, and probably should be sorted.

SEE ALSO
dcheck (1), icheck(1), sort(1)

DIAGNOSTICS
When the filesystem structure is improper, ‘??° denotes the ‘parent’ of a parentless file and a
pathname beginning with *..." denotes a loop.

7th Edition 1

NEWGRP (1) : NEWGRP (1)

NAME

newgrp — log in to a new group
SYNOPSIS

newgrp group
DESCRIPTION

Newgrp changes the group identification of its caller, analogously to /ogin(1). The same person
remains logged in, and the current directory is unchanged, but calculations of access permis-
sions to files are performed with respect to the new group ID.

A password is demanded if the group has a password and the user himself does not.

When most users log in, they are members of the group named ‘other.” Newgrp is known to the
shell, which executes it directly without a fork.

FILES
/etc/group, /etc/passwd

SEE ALSO
login(1), group(5)

7th Edition 1

NICE (1) NICE (1)

NAME
nice, nohup — run a command at low priority

SYNOPSIS
nice [—number] command [arguments]

nohup command [arguments]

DESCRIPTION
Nice executes command with low scheduling priority. If the number argument is present, the
priority is incremented (higher numbers mean lower priorities) by that amount up to a limit of
20. The default number is 10.

The super-user may run commands with priority higher than normal by using a negative prior-
ity, e.g. *——10",

Nohup executes command immune to hangup and terminate signals from the controlling termi-
nal. The priority is incremented by 5. Nohup should be invoked from the shell with ‘&’ in
order to prevent it from responding to interrupts by or stealing the input from the next person
who logs in on the same terminal.

FILES
nohup.out standard output and standard error file under nohup

SEE ALSO
nice(2)

DIAGNOSTICS
Nice returns the exit status of the subject command.

7th Edition 1

NM (1) NM (1)

NAME

nm — print name list
SYNOPSIS

nm [—gnopru] [file ...]
DESCRIPTION

Nm prints the name list (symbol table) of each object file in the argument list. If an argument

is an archive, a listing for each object file in the archive will be produced. If no file is given,
the symbois in ‘a.out’ are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data segment symbol), B (bss segment

symbol), or C (common symbol). If the symbol is local (non-external) the type letter is in
lower case. The output is sorted alphabetically.

Options are:

-g Print only global (external) symbols.

—-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once.
-p Don’t sort; print in symbol-table order.

-r Sort in reverse order.

- u Print only undefined symbols.

SEE ALSO
ar(1), ar(3), a.out(s)

7th Edition

oD (1) . OD (1)

NAME

od — octal dump
SYNOPSIS

od [—bedox] [file] [[+ Joffset[.][b]]
DESCRIPTION

Od dumps file in one or more formats as selected by the first argument. If the first argument is
missing, —o is default. The meanings of the format argument characters are:

b Interpret bytes in octal.

¢ Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes: null=\0,
backspace =\b, formfeed =\f, newline=\n, return=\r, tab=\t; others appear as 3-digit octal
numbers.

d Interpret words in decimal.
o Interpret words in octal.
x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument is specified, the
standard input is used.

The offset argument specifies the offset in the file where dumping is to commence. This argu-
ment is normally interpreted as octal bytes. If ‘.’ is appended, the offset is interpreted in
decimal. If ‘b’ is appended, the offset is interpreted in blocks of 512 bytes. If the file argument
is omitted, the offset argument must be preceded * +’.

Dumping continues until end-of-file.

SEE ALSO
adb(1)

7th Edition 1

PASSWD (1) ' PASSWD (1)

NAME
passwd — change login password

SYNOPSIS
passwd [name]

DESCRIPTION
This command changes (or installs) a password associated with the user name (your own name
by default).

The program prompts for the old password and then for the new one. The caller must supply
both. The new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and
at least six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password: the owner must prove
he knows the old password.

FILES
/etc/passwd

SEE ALSO
login(1), passwd(5), crypt(3)
Robert Morris and Ken Thompson, Password Security: A Case History

7th Edition PDP11 1

PLOT (1G) PLOT (1G)

NAME

plot — graphics filters
SYNOPSIS

plot [=Tterminal [raster]]
DESCRIPTION

These commands read plotting instructions (see pilot(5)) from the standard input, and in gen-
eral produce plotting instructions suitable for a particular terminai on the standard output.

If no terminal type is specified, the environment parameter STERM (see environ(5)) is used.
Known terminals are:

4014 Tektronix 4014 storage scope.

450 DASI Hyterm 450 terminal (Diablo mechanism).
300 DASI 300 or GSI terminal (Diablo mechanism).
300S DASI 300S terminal (Diablo mechanism).

ver Versatec D1200A printer-plotter. This version of plor places a scan-converted image in
‘/usr/tmp/raster’ and sends the result directly to the plotter device rather than to the
standard output. The optional argument causes a previously scan-converted file raster
to be sent to the plotter,

FILES
/usr/bin/tek
/usr/bin/t450
/usr/bin/t300
/usr/bin/t300s
/usr/bin/vplot
/usr/tmp/raster

SEE ALSO
plot(3), plot(5)

BUGS
There is no lockout protection for /usr/tmp/raster.

7th Edition ' 1

PR(1) PR (1)

NAME

pr — print file
SYNOPSIS

prioption] .. [file] ..

DESCRIPTION

Pr produces a printed listing of one or more files. The output is separated into pages headed by
a date, the name of the file or a specified header, and the page number. If there are no file
arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:
-n Produce n-column output.

+n Begin printing with page n.
—h Take the next argument as a page header.

—wn For purposes of multi-column output, take the width of the page to be n characters
instead of the default 72.

=ln Take the length of the page to be n lines instead of the default 66.
~t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

—sc Separate columns by the single character c instead of by the appropriate amount of
white space. A missing c is taken to be a tab.

—m Print all files simultaneously, each in one column,

Inter-terminal messages via wrire(1) are forbidden during a pr.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(1)

DIAGNOSTICS .
There are no diagnostics when pr is printing on a terminal.

7th Edition 1

PREP (1) PREP (1)

NAME

prep — prepare text for statistical processing
SYNOPSIS

prep [—dio] file ...
DESCRIPTION

Prep reads each file in sequence and writes it on the standard output, one ‘word’ to a line. A
word is a string of alphabetic characters and imbedded apostrophes, delimited by space or punc-

tuation. Hyphented words are broken apart; hyphens at the end of lines are removed and the
hyphenated parts are joined. Strings of digits are discarded.

The following option letters may appear in any order:
-d Print the word number (in the input stream) with each word.

Take the next file as an ‘ignore’ file. These words will not appear in the output. (They
will be counted, for purposes of the —d count.)

-0 Take the next file as an ‘only’ file. Only these words will appear in the output. (All
other words will also be counted for the -d count.)

-p Include punctuation marks (single nonalphanumeric characters) as separate output
lines. The punctuation marks are not counted for the —d count.
Ignore and only files contain words, one per line.

SEE ALSO
deroff (1)

7th Edition

PROF (1) PROF (1)

NAME
prof — display profile data

SYNOPSIS
prof [=v][—a]l[=1]1[=lowl —highl] [file]

DESCRIPTION
Profinterprets the file mon.our produced by the monitor subroutine. Under default modes, the
symbol table in the named object file (a.out default) is read and correlated with the mon.out
profile file. For each external symbol, the percentage of time spent executing between that
symbol and the next is printed (in decreasing order), together with the number of times that
routine was called and the number of milliseconds per call.

If the —a option is used, all symbols are reported rather than just external symbols. If the —1
option is used, the output is listed by symbol value rather than decreasing percentage.

If the —v option is used, all printing is suppressed and a graphic version of the profile is pro-
duced on the standard output for display by the plot(1) filters. The numbers low and high, by
default 0 and 100, cause a selected percentage of the profile to be plotted with accordingly
higher resolution.

In order for the number of calls to a routine to be tallied, the —p option of cc must have been
given when the file containing the routine was compiled. This option also arranges for the
mon.out file to be produced automatically.

FILES
mon.out for profile
a.out for namelist
SEE ALSO

monitor(3), profil(2), cc(1), plot(1)

BUGS
Beware of quantization errors.

7th Edition PDP11 1

PS(1)

NAME

PS(1)

ps — process status

SYNOPSIS

ps [aklx] [namelist]

DESCRIPTION

FILES

Ps prints certain indicia about active processes. The a option asks for information about all
processes with terminals (ordinarily only one’s own processes are displayed); x asks even about
processes with no terminal; | asks for a long listing. The short listing contains the process ID,
tty letter, the cumulative execution time of the process and an approximation to the command
line.

The long listing is columnar and contains

F Flags associated with the process. 01: in core; 02: system process; 04: locked in core
(e.g. for physical 1/0); 10: being swapped; 20: being traced by another process.

S The state of the process. 0: nonexistent; S: sleeping; W: waiting; R: running; I: inter-
mediate; Z: terminated; T: stopped.

UID The user ID of the process owner.

PID The process ID of the process; as in certain cults it is possible to kill a process if you
know its true name.

PPID The process ID of the parent process.

CPU Processor utilization for scheduling.

PRI The priority of the process; high numbers mean low priority.

NICE Used in priority computation.

ADDR The core address of the process if resident, otherwise the disk address.
SZ The size in blocks of the core image of the process.

WCHAN
The event for which the process is waiting or sleeping; if blank, the process is running.

TTY The controlling tty for the process.
TIME The cumulative execution time for the process.
The command and its arguments.

A process that has exited and has a parent, but has not yet been waited for by the parent is
marked <defunct>. Ps makes an educated guess as to the file name and arguments given
when the process was created by examining core memory or the swap area. The method is
inherently somewhat unreliable and in any event a process is entitled to destroy this informa-
tion, so the names cannot be counted on too much.

If the k option is specified, the file /usr/sys/core is used in place of /dev/imem. This is used for
postmortem system debugging. If a second argument is given, it is taken to be the file contain-
ing the system’s namelist.

/unix system namelist

/dev/mem core memory

/usr/sys/core alternate core file

/dev searched to find swap device and tty names

SEE ALSO

kilt(1)

7th Edition PDPI1 ‘ 1

PS(1) PS (1)

BUGS

Things can change while ps is runnmg, the picture it gives is only a close approximation to real-
ity.
Some data printed for defunct processes is irrelevant

4 g“;f;‘ff;

7th Edition 2

PSTAT (1M) PSTAT (1M)

NAME

pstat — print system facts
SYNOPSIS

pstat [—aixptuf] [suboptions] [file]
DESCRIPTION

Pstar interprets the contents of certain system tables. If file is given, the tables are sought
there, otherwise in /dev/mem. The required namelist is taken from /unix. Options are

-a Under —p, describe all process slots rather than just active ones.
-i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
* locked

update time filsys(5)) must be corrected

access time must be corrected
_ file system is mounted here
"~ wanted by another process (L flag is on)

contains a text file

changed time must be corrected
CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which this inode resides.
INO I-number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and minor device of special file.

-X Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

aOHgg>cr

T ptrace(2) in effect

w text not yet written on swap device
L loading in progress

K locked

w wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of 512 bytes.
CADDR Core address, measured in multiples of 64 bytes.

SIZE Size of text segment, measured in multiples of 64 bytes.
IPTR Core location of corresponding inode.

CNT Number of processes using this text segment.

CCNT Number of processes in core using this text segment.

-D Print process table for active processes with these headings:
LOC The core location of this table entry.
S Run state encoded thus:

0 no process

1 waiting for some event

3 runnable

4 being created

7th Edition 1

PSTAT (IM)

PRI

PSTAT (1IM)

5 being terminated

6 stopped under trace

Miscellaneous state variables, or-ed together:
01 loaded

02 the scheduler process

04 locked

010 swapped out

020 traced

040 used in tracing
0100 locked in by lock(2).
Scheduling priority, see nice(2).

SIGNAL Signals received (signals 1-16 coded in bits 0-15),

UID
TIM
CPU
NI
PGRP
PID
PPID
ADDR

SIZE

Real user ID.

Time resident in seconds; times over 127 coded as 127.

Weighted integral of CPU time, for scheduler.

Nice level, see nice(2).

Process number of root of process group (the opener of the controlling terminal).
The process ID number.

The process ID of parent process.

If in core, the physical address of the ‘u-area’ of the process measured in multiples of
64 bytes. If swapped out, the position in the swap area measured in multiples of 512
bytes.

Size of process image in muitiples of 64 bytes.

WCHAN Wait channel number of a waiting process.

LINK
TEXTP
CLKT
-t
RAW
CAN
ouT
MODE
ADDR
DEL
CoL
STATE

7th Edition

Link pointer in list of runnable processes.
If text is pure, pointer to location of text table entry.
Countdown for alarm(2) measured in seconds.

Print table for terminals (only DH11 and DL11 handled) with these headings:

Number of characters in raw input queue.

Number of characters in canonicalized input queue.
Number of characters in putput queue.

See my(4).

Physical device address.

Number of delimiters (newlines) in canonicalized input queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:

waiting for open to complete

open

has special (output) start routine

carrier is on

busy doing output

process is awaiting output

open for exclusive use

hangup on close

Process group for which this is controlling terminal.

mXP»>WAWO g

print information about a user process; the next argument is its address as given by
ps(1). The process must be in main memory, or the file used can be a core image
and the address 0. ‘ .

Print the open file table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:

PSTAT (1IM)

R op‘en for reading
w open for writing
P pipe

CNT Number of processes that know this open file.

INO The location of the inode table entry for this file.

OFFS The file offset, see Iseek(2).

FILES

/unix namelist

/dev/mem default source of tables
SEE ALSO

ps(1), stat(2), filsys(S)

K. Thompson, UNIX Implementation
7th Edition

PSTAT (IM)

PTX (1) PTX (1)

NAME

ptx — permuted index
SYNOPSIS

ptx [option | ... [input [output]]
DESCRIPTION

Prx generates a permuted index to file input on file output (standard input and output default).
It has three phases: the first does the permutation, generating one line for each keyword in an
input line. The keyword is rotated to the front. The permuted file is then sorted. Finally, the

sorted lines are rotated so the keyword comes at the middle of the page. Px produces output
in the form: . :

XX "tail” "before keyword" "keyword and after" "head"

where .xx may be an nroffor troff(1) macro for user-defined formatting. The before keyword
and keyword and after fields incorporate as much of the line as will fit around the keyword when
it is printed at the middle of the page. Tuil and head, at least one of which is an empty string
", are wrapped-around pieces small enough to fit in the unused space at the opposite end of the
line. When original text must be discarded, /> marks the spot.

The following options can be applied:
-f Fold upper and lower case letters for sorting.
-t Prepare the output for the phototypesetter; the default line length is 100 characters.

—w n Use the next argument, n, as the width of the output line. The default line length is 72
characters.

—gn Use the next argument, n, as the number of charactgrs to allow for each gap among the
four parts of the line as finally printed. The default gap is 3 characters.

-0 only
Use as keywords only the words given in the only file.

-1{ ignore
Do not use as keywords any words given in the ignore file. If the -i and -0 options are
missing, use /usr/lib/eign as the ignore file.

—b break

Use the characters in the break file to separate words. In any case, tab, newline, and
space characters are always used as break characters.

-t Take any leading nonblank characters of each input line to be a reference identifier (as

to a page or chapter) separate from the text of the line. Attach that identifier as a Sth
field on each output line.

The index for this manual was generated using prx.

FILES
/bin/sort
/usr/lib/eign

BUGS
Line length counts do not account for overstriking or proportional spacing.

7th Edition

PUBINDEX (1) PUBINDEX (1)

NAME

pubindex — make inverted bibliographic index
SYNOPSIS

pubindex [file] ...
DESCRIPTION

Pubindex makes a hashed inverted index to the named files for use by refer(1). The files con-
tain bibliographic references separated by blank lines. A bibliographic reference is a set of lines
that contain bibliographic information fields. Each field starts on a line beginning with a ‘%’,
followed by a key-letter, followed by a blank, and followed by the contents of the field, which
continues until the next line starting with ‘%’. The most common key-letters and the
corresponding fields are: :

Author name

Title of book containing article referenced
City

Date

Alternate date

Editor of book containing article referenced
Government (CFSTI) order number

Issuer (publisher)

Journal

Other keywords to use in locating reference
Technical memorandum number

Issue number within volume

Other commentary to be printed at end of reference
Page numbers

Report number

Alternate report number

Title of article, book, etc.

Volume number

Commentary unused by pubindex

X<=HT WOVOZZTARA-—"QAMATA®>

Except for ‘A’, each field should only be given once. Only relevant fields should be supplied.
An example is:

%T 5-by-5 Palindromic Word Squares
%A M. D. Mcliroy
%J Word Ways

%V 9
%P 199-202
%D 1976
FILES
x.ia, x.ib, x.ic where x is the first argument.
SEE ALSO

refer(1)

7th Edition local 1

PWD (1)

NAME
pwd — working directory name

SYNOPSIS
pwd
DESCRIPTION
Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(1)

7th Edition

PWD (1)

i ;
Vé‘:gxﬁg L

QUOT (IM) QUOT (1IM)

NAME

quot — summarize file system ownership
SYNOPSIS

quot [option] ... [filesystem]
DESCRIPTION

Quor prints the number of blocks in the named filesystem currently owned by each user. If no
filesystem is named, a default name is assumed. The following options are available:

-n Cause the pipeline ncheck filesystem | sort +0n | quot —n filesystem to produce a list
of all files and their owners.

- Print three columns giving file size in blocks, number of files of that size, and cumula-
tive total of blocks in that size or smaller file.
-f Print count of number of files as well as space owned by each user.

FILES
Default file system varies with system.
/etc/passwd to get user names

SEE ALSO
Is(1), du(l)

BUGS
Holes in files are counted as if they actually occupied space.

7th Edition 1

RATFOR (1) RATFOR (1)

NAME

ratfor — rational Fortran dialect
SYNOPSIS

ratfor [option ...] [filename ...]

DESCRIPTION

Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Ratfor provides
control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement

decision-making:
if (condition) statement [else statement]
switch (integer value) {
case integer: statement

[defauit:] statement

}

loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement { until (condition)]
break [n]
next [n]

and some syntactic sugar to make programs easier to read and write:

free form input:
multipie statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)

returns expression to caller from function
define: define name replacement
include:

include filename

The option —h causes quoted strings to be turned into 27H constructs. =C copies comments
to the output, and attempts to format it neatly. Normally, continuation lines are marked with a
& in column 1; the option —6x makes the continuation character x and places it in column 6.

Ratfor is best used with f77(1).

SEE ALSO
f77(1)
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

P,
Y

7th Edition 1

RANLIB(1) UNIX Programmer’s Manual RANLIB(1)

NAME
ranlib — convert archives to random libraries

SYNOPSIS
ranlib archive ...

DESCRIPTION
Ranlib converts each archive to a form which can be loaded more rapidly by the loader, by
adding a table of contents named __.SYMDETF to the beginning of the archive. It uses ar(l)
to reconstruct the archive, so that sufficient temporary file space must be available in the file
system containing the current directory.

SEE ALSO
1d(1), ar(1)

BUGS
Because generation of a library by ar and randomization by ranlib are separate, phase errors are
possible. The loader /4 warns when the modification date of a library is more recent than the
creation of its dictionary; but this means you get the warning even if you only copy the library.

7th Edition | _ 1

REFER (1) REFER (1)

NAME

refer, lookbib — find and insert literature references in documents

SYNOPSIS

refer [option] ...
lookbib [file] ...

DESCRIPTION .

Lookbib accepts keywords from the standard input and searches a bibliographic data base for
references that contain those keywords anywhere in title, author, journal name, etc. Matching
references are printed on the standard output. Blank lines are taken as delimiters between
queries. .

Refer is a preprocessor for nroff or troff(1) that finds and formats references. The input files
(standard input default) are copied to the standard output, except for lines between .[and .]
command lines, which are assumed to contain keywords as for lookbib, and are replaced by
information from the bibliographic data base. The user may avoid the search, override fields
from it, or add new fields. The reference data, from whatever source, are assigned to a set of
troff strings. Macro packages such as ms(7) print the finished reference text from these strings.
A flag is placed in the text at the point of reference; by default the references are indicated by
numbers.

The following options are available:

—ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If ris omitted all
author names are reversed.

—b Bare mode: do not put any flags in text (neither numbers nor labels).

~~gestring
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in string.

—e Instead of leaving the references where encountered, accumulate them until a sequence
of the form ‘
[

SLISTS

J
is encountered, and then write out all references collected so far. Collapse references to
the same source.

=—kx Instead of numbering references, use labels as specified in a reference data line begin-
ning %x; by default xis L.

=im,n
Instead of numbering references, use labels made from the senior author’s last name and
the year of publication. Only the first m letters of the last name and the last » digits of
the date are used. If either m or ,n is omitted the entire name or date respectively is
used.

—=p Take the next argument as a file of references to be searched. The default file is
searched last.

=n Do not search the default file.

-=skeys
Sort references by fields whose key-letters are in the keys string; permute reference
numbers in text accordingly. Implies —e. The key-letters in keys may be followed by a
number to indicate how many such fields are used, with + taken as a very large number.
The default is AD which sorts on the senior author and then date; to sort, for example,
on all authors and then title use -sA+T.

7th Edition 1

REFER (1) REFER (1)

To use your own references, put them in the format described in pubindex(1) They can be
searched more rapidly by running pubindex(1) on them before using refer; failure to index
results in a linear search.

When refer is used with egn, neqn or tbl, refer should be first, to minimize the volume of data
passed through pipes.

FILES

fusrfdict/papers directory of default publication lists and indexes
fusrilibirefer directory of programs

SEE ALSO

7th Edition , 2

RESTOR (1M)

NAME

RESTOR (1M)

restor — incremental file system restore

SYNOPSIS

restor key [argument ...]

DESCRIPTION

Restor is used to read magtapes dumped with the dump command. The key specifies what is to
be done. Key is one of the characters rRxt optionally combined with f.

f
ror R

t

Use the first argument as the name of the tape instead of the default.

The tape is read and loaded into the file system specified in argument. This should not
be done lightly (see below). If the key is R restor asks which tape of a multi volume
set to start on. This allows restor to be interrupted and then restarted (an icheck —s
must be done before

Each file on the tape named by an argument is extracted. The file name has all ‘mount’
prefixes removed; for example, /usr/bin/lpr is named / bin/lpr on the tape. The file
extracted is placed in a file with a numeric name supplied by restor (actually the inode
number). In order to keep the amount of tape read to a minimum, the following pro-
cedure is recommended:

Mount volume 1 of the set of dump tapes.
Type the restor command.

Restor will announce whether or not it found the files, give the number it will name the
file, and rewind the tape.

It then asks you to ‘mount the desired tape volume’. Type the number of the volume
you choose. On a multivolume dump the recommended procedure is to mount the last
through the first volume in that order. Restor checks to see if any of the files requested
are on the mounted tape (or a later tape, thus the reverse order) and doesn’t read
through the tape if no files are. If you are working with a single volume dump or the
number of files being restored is large, respond to the query with ‘1° and restor will read
the tapes in sequential order.

If you have a hierarchy to restore you can use dumpdir(1) to produce the list of names
and a shell script to move the resulting files to their homes.

Print the date the tape was written and the date the filesystem was dumped from.

The r option should only be used to restore a complete dump tape onto a clear file system or to
restore an incremental dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

is a typical sequence to restore a complete dump. Another restor can be done to get an incre-
mental dump in on top of this.

A dump followed by a mkfsand a restor is used to change the size of a file system.

FILES

default tape unit varies with installation

rst*

7th Edition

RESTOR (1M) RESTOR (1M)

SEE ALSO
dump(1), mkfs(1), dumpdir(1)
DIAGNOSTICS
There are various diagnostics involved with reading the tape and writing the disk. There are

also diagnostics if the i-list or the free list of the file system is not large enough to hold the
dump.

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a
new-line when the next tape has been mounted.
BUGS

There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately, restor doesn’t use it.

f/fu?

5

7th Edition 2

REV (1) : REV (1)

NAME
rev — reverse lines of a file

SYNOPSIS
rev [file] ...

DESCRIPTION

Rev copies the named files to the standard output, reversing the order of characters in every
line. If no file is specified, the standard input is copied.

7th Edition PDP11 1

RM (1)

NAME

RM (1)

rm, rmdir — remove (unlink) files
SYNOPSIS

rm [—fri] file ...

rmdir dir ...
DESCRIPTION

SEE AL

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with ‘y’ the file is deleted, other-
wise the file remains. No questions are asked when the —f (force) option is given.

If a designated file is a directory, an error comment is printed unless the optional argument —r
has been used. In that case, rm recursively deletes the entire contents of the specified direc-
tory, and the directory itself.

If the —i (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory. ’

Rmdir removes entries for the named directories, which must be empty.

SO
unlink(2)

DIAGNOSTICS

Generally self-explanatory. It is forbidden to remove the file *.." merely to avoid the antisocial
consequences of inadvertently doing something like ‘rm —r .*’.

7th Edition 1

ROFF (1) ROFF (1)

NAME
roff — format text

SYNOPSIS
roff [+n] [=n]1[—-s][—h]fie..
nroff —mr [option] ... file ...
troff —mr [option] ... file ...

DESCRIPTION
Roff formats text according to control lines embedded in the text in the given files. Encounter-
ing a nonexistent file terminates printing. Incoming inter-terminal messages are turned off dur-
ing printing. The optional flag arguments mean:
+n Start printing-at the first page with number »n.
—n Stop printing at the first page numbered higher than ».
—s Stop before each page (including the first) to allow paper manipulation; resume on receipt

of an interrupt signal.
~h Insert tabs in the output stream to replace spaces whenever appropriate.
Input consists of intermixed sext /ines, which contain information to be formatted, and request
lines, which contain instructions about how to format it. Request lines begin with a dis-
tinguished control characrer, normally a period.
Output lines may be filled as nearly as possible with words without regard to input lineation.
Line breaks may be caused at specified places by certain commands, or by the appearance of an
empty input line or an input line beginning with a space.
The capabilities of roff are specified in the attached Request Summary. Numerical values are
denoted there by n or +n, titles by t, and single characters by c. Numbers denoted +n may be
signed + or —, in which case they signify relative changes to a quantity, otherwise they signify
an absolute resetting. Missing n fields are ordinarily taken to be 1, missing t fields to be empty,
and c fields to shut off the appropriate special interpretation.
Running titles usually appear at top and bottom of every page. They are set by requests like
.he 'partl’part2'part3’

Partl is left justified, part2 is centered, and part3 is right justified on the page. Any % sign in a
title is replaced by the current page number. Any nonblank may serve as a quote.
ASCII tab characters are replaced in the input by a replacement character, normally a space,
according to the column settings given by a .ta command. (See .tr for how to convert this char-
acter on output.)
Automatic hyphenation of filled output is done under control of .hy. When a word contains a
designated hyphenation character, that character disappears from the output and hyphens can be
introduced into the word at the marked places only.
The —mr option of nroff or rroff(1) simulates roffto the greatest extent possible.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

BUGS

Roff'is the simplest of the text formatting programs, and is utterly frozen.

7th Edition » 1

ROFF (1)

Request Break Initial Meaning

.ad yes
.ar no
.br yes
.bln yes
.bp +n yes
.cc¢ no
cen yes
.de xx no
.ds yes
ef t no
.€ht no
fi yes
fo no
hece no
het no
.hx no
.hyn no
.ig no
in +n vyes
ix +n no
din no
Ml+n no
Jds +n yes
.mln no
.m2n no
.m3n no
.mén no
.na yes
.nen no
.nn +n no
.nl no
.n2n no
.ni +n no
.nf yes
.nx file —
.of t no
.oht no
.pa +n yes
.pl +n no
.po +n no
.o no
sk n no
.spn yes
.88 yes
.tann..
tc¢ no
A4 +n yes
.tr cdef..no
uln no
7th Edition

ROFF (1)

" REQUEST SUMMARY

yes Begin adjusting right margins.
arabic Arabic page numbers.

- Causes a line break the filling of the current line is stopped.
- Insert of n blank lines, on new page if necessary.

n=1 Begin new page and number it n; no n means ‘+1’.
¢=. Control character becomes ‘c’.

- Center the next n input lines, without filling.

- Define parameterless macro to be invoked by request *.xx’ (definition ends on line

beginning ©..”).

no Double space; same as ‘.Is 2’.

= Even foot title becomes t.

= Even head title becomes t.
yes Begin filling output lines.

= All foot titles are t.

none Hyphenation character becomes ‘c’.

= All head titles are t.

- Title lines are suppressed.
n=1 Hyphenation is done, if n=1; and is not done, if n=0.
- Ignore input lines through a line beginning with °..’,

- Indent n spaces from left margin.

- Same as ‘.in’ but without break.

- Literal, treat next n lines as text.
=65 Line length including indent is n characters.

1 Line spacing set to n lines per output line.

2 Put n blank lines between the top of page and head title.
2

1
3

I

I

n blank lines put between head title and beginning of text on page.
n blank lines put between end of text and foot title.

n blank lines put between the foot title and the bottom of page.
Stop adjusting the right margin.

- Begin new page, if n output lines cannot fit on present page.

- The next n output lines are not numbered.

no Add 5 to page offset; number lines in margin from 1 on each page.
no Add 35 to page offset; number lines from n: stop if n=0.

n=0 Line numbers are indented n.

no Stop filling output lines.

Switch input to ‘file’.

t= (Odd foot title becomes t.

t=" Odd head title becomes t.

n=1 Same as ‘.bp’.

n=66 Total paper length taken to be n lines.

n=0 Page offset. All lines are preceded by n spaces.

arabic Roman page numbers.

- Produce n blank pages starting next page.

- Insert block of n blank lines, except at top of page.

yes Single space output lines, equivalent to .Is 1°.

- Pseudotab settings. Initial tab settings are columns 9 17 25 ..
space Tab replacement character becomes ‘c’.

I

D O35 553
i I

=3
o

- Temporarily indent next output line n spaces. f%’?//;
- Translate ¢ into d, e into f, etc. : /, ‘

- Underline the letters and numbers in the next n input lines.

SA(IM) ” SA(IM)

NAME

sa, accton — system accounting
SYNOPSIS »

sa [—abcjlnrstuv] | file]

/etc/accton | file]
DESCRIPTION

With an argument naming an existing file, accton causes system accounting information for

every process executed to be placed at the end of the file. If no arguemnt is given, accounting

is turned off. .

Sa reports on, cleans up, and generally maintains accounting files.

Sa is able to condense the information in /fusrladmfacct into a summary file /usrladmfsavacct

which contains a2 count of the number of times each command was called and the time

resources consumed. This condensation is desirable because on a large system acer can grow by

100 blocks per day. The summary file is read before the accounting file, so the reports include

all available information.

If a file name is given as the last argument, that file will be treated as the accounting file; sha is

the default. There are zillions of options:

a Place all command names containing unprintable characters and those used only once
under the name ****other.’

b Sort output by sum of user and system time divided by number of calls. Default sort is
by sum of user and system times.

c Besides total user, system, and real time for each command print percentage of iotal
time over all commands.

j Instead of total minutes time for each category, give seconds per call.

l Separate system and user time; normally they are combined.

m Print number of processes and number of CPU minutes for each user.

n Sort by number of calls.

r Reverse order of sort.

S Merge accounting file into summary file /usrladm/savacct when done.

t For each command report ratio of real time to the sum of user and system times.

u Superseding all other flags, print for each command in the accounting file the user 1D
and command name.

v If the next character is a digit #, then type the name of each command used » times or
fewer. Await a reply from the typewriter; if it begins with ‘y’, add the command to the
category “**junk**.” This is used to strip out garbage.

FILES

/usr/adm/acct raw accounting

/usr/adm/savacct summary

/usr/adm/usracct per-user summary

SEE ALSO

ac(1), acct(2)

7th Edition ' 1

SED (1) SED (1)

NAME

sed — stream editor
SYNOPSIS

sed [~n] [—escript] [—fsfile] [file] ...
DESCRIPTION

Sed copies the named files (standard input default) to the standard output, edited according to a
script of commands. The —f option causes the script to be taken from file sfile; these options
accumulate. If there is just one —e option and no —fs, the flag —e may be omitted. The —n
option suppresses the default output.

A script consists of editing commands, one per line, of the following form:
laddress [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pattern space (unless there is
something left after a ‘D’ command), applies in sequence all commands whose addresses select
that pattern space, and at the end of the script copies the pattern space to the standard output
(except under —n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a ‘$’
that addresses the last line of input, or a context address, */regular expression/’, in the style of
ed(1) modified thus:

The escape sequence ‘\n’ matches a newline embedded in the pattern space.
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that
matches the first address through the next pattern space that matches the second. (If the
second address is a number less than or equal to the line number first selected, only one line is
selected.) Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation -
function *!" (below).

In the following list of functions the maximum number of permissible addresses for each func-
tion is indicated in parentheses.

An argument denoted rext consists of one or more lines, all but the last of which end with *\” to
hide the newline. Backslashes in text are treated like backslashes in the replacement string of
an ‘s’ command, and may be used to protect initial blanks and tabs against the stripping that is
done on every script line.

An argument denoted rfile or wfile must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can be at most 10 dis-
tinct wfile arguments.

(1) a\
text
Append. Place rext on the output before reading the next input line.
(2) b label
Branch to the *:’ command bearing the label. If label is empty, branch to the end of the
script.)
(2) e\
rext &
Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address %

range, place rext on the output. Start the next cycle.

7th Edition 1

SED (1) SED (1)

(2)d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first newline. Start the next
cycle.

(2)g Replace the contents of the pattern space by the contents of the hold space.
(2) G Append the contents of the hold space to the pattern space.

(2)h Replace the contents of the hold space by the contents of the pattern space.
(2)H Append the contents of the pattern space to the hold space.

(Di\

text Insert. Place rexr on the standard output.

(2)1 List the pattern space on the standard output in an unambiguous form. Non-printing
characters are spelled in two digit ascii, and long lines are folded.

(2)n Copy the pattern space to the standard output. Replace the pattern space with the next
line of input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The
current line number changes.)

(2)p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the standard
output. :

(1)q - Quit. Branch to the end of the script. Do not start a new cycle.

(2)r rfile
Read the contents of rfile. Place them on the output before reading the next input line.

(2) slregular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of ‘/°. For a fuller description see ed(1).
Flags is zero or more of

g Global. Substitute for all nonoverlapping instances of the regular expression
rather than just the first one.

) Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label
Test. Branch to the ‘" command bearing the label if any substitutions have been made
since the most recent reading of an input line or execution of a ‘t". If label is empty,
branch to the end of the script.

() w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/stringlfstring2/
Transform. Replace all occurrences of characters in siring/ with the corresponding
character in srring2. The lengths of siring/ and string2 must be equal.

(2)! function
Don’t. Apply the funciion (or group, if function is ‘{*) only to lines nor selected by the
address(es).

(0) : label
This command does nothing; it bears a label for ‘b’ and ‘t’ commands to branch to.

7th Edition 2

SED (1) UNIX Programmer’s Manual SED (1)

(1) = Place the current line number on the standard output as a line.

(2){ Execute the following commands through a matching)’ only when the pattern space is
selected.

0) An empty command is ignored.

SEE ALSO
ed(1), grep(1), awk(1)

7th Edition ' 3

SH(1) SH(1)

NAME .
sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login, newgrp, read,
readonly, set, shift, times, trap, umask, wait — command language

SYNOPSIS
sh [—ceiknrstuvx] [arg]...-
DESCRIPTION

Shis a command programming language that executes commands read from a terminal or a file.
See invocation for the meaning of arguments to the shell.

Commands. ,

A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a
space). The first word specifies the name of the command to be executed. Except as specified
below the remaining words are passed as arguments to the invoked command. The command
name is passed as argument 0 (see exec(2)). The value of a simple-command is its exit status if
it terminates normally or 200+ starus if it terminates abnormally (see signa/(2) for a list of
status values).

A pipeline is a sequence of one or more commands separated by |. The standard output of each
command but the last is connected by a pipe(2) to the standard input of the next command.
Each command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, && or || and optionaily ter-
minated by ; or &. ; and & have equal precedence which is lower than that of && and |1, &&
and 11 also have equal precedence. A semicolon causes sequential execution; an ampersand
causes the preceding pipeline to be executed without waiting for it to finish. The symbol &&
(1) causes the list following to be executed only if the preceding pipeline returns a zero (non
zero) value. Newlines may appear in a /ist, instead of semicolons, to delimit commands.

A command is either a simpie-command or one of the following. The value returned by a com-
mand is that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed name is set to the next word in the for word list
If in word ... is omitted then in "8@" is assumed. Execution ends when there are no
more words in the list.

case word in [pattern [| pattern'1 ...) list ;3] ... esac
A case command executes the /lisr associated with the first pattern that matches word.
The form of the patterns is the same as that used for file name generation.

if list then list [elif list then list] ... [else fist] fi
The list following if is executed and if it returns zero the /ist following then is executed.
Otherwise, the list following elif is executed and if its value is zero the /ist following
then is executed. Failing that the else /isz is executed.

while list [do list] done
A while command repeatedly executes the while /ist and if its value is zero executes
the do /ist; otherwise the loop terminates. The value returned by a while command is
_that of the last executed command in the do /ist. until may be used in place of while to
negate the loop termination test.

(list) Execute listin a subshell.

{ list} listis simply executed.

The following words are only recognized as the, first word of a command and when not quoted.
if then else elif fi case in esac for while until do done { }

7th Edition 1

SH(1) SH(1)

Command substitution.
The standard output from a command enclosed in a pair of grave accents (") may be used as
part or all of a word; trailing newlines are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be
assigned values by set. Variables may be set by writing

name=vaiue | name=vatuel ...

8 { paramerer}

A parameter is a sequence of letters, digits or underscores (a name), a digit, or any of
the characters * @ # ? — $!. The value, if any, of the parameter is substituted. The
braces are required only when paramerer is followed by a letter, digit, or underscore that
is not to-be interpreted as part of its name. If paramerer is a digit then it is a positional
parameter. If parameter is * or @ then all the positional parameters, starting with $1,
are substituted separated by spaces. $0 is set from argument zero when the shell is
invoked.

$ { parameter —word)
If parameter is set then substitute its value; otherwise substitute word.

$ { parameter= word}
If parameter is not set then set it to word: the value of the parameter is then substituted.
Positional parameters may not be assigned to in this way.

$ { parameter ? word)
If paramerer is set then substitute its value: otherwise, print word and exit from the
shell. If wordis omitted then a standard message is printed.

S { parameter +word}
If parameter is set then substitute word: otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So that, for
example, echo ${d—'pwd'} will only execute pwd if dis unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.

Options supplied to the shell on invocation or by set.

The value returned by the last executed command in decimal.
The process number of this shell.

The process number of the last background command invoked.

N) S

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the cd command.

PATH The search path for commands (see execution).

MAIL If this variable is set to the name of a mail file then the shell informs the user
of the arrival of mail in the specified file.

PS1 Primary prompt string, by default '$.

PS2 Secondary prompt string, by default *> "

IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.

After parameter and command substitution, any results of substitution are scanned for internal
field separator characters (those found in SIFS) and split into distinct arguments where such
characters are found. Explicit null arguments (" or) are retained. Implicit null arguments
(those resulting from paramerers that have no values) are removed.

7th Edition 2

SH (1) SH(1)

File name generation.

Following substitution, each command word is scanned for the characters *, ? and [. If one of
these characters appears then the word is regarded as a pattern. The word is replaced with
alphabetically sorted file names that match the pattern. If no file name is found that matches
the pattern then the word is left unchanged. The character . at the start of a file name or
immediately following a /, and the character /, must be matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the characters enclosed. A pair of characters separated by —
matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination of a word
unless quoted.

; & () | < > newline space tab

A character may be quoted by preceding it with a \. \newline is ignored. All characters
enclosed between a pair of quote marks ("), except a single quote, are quoted. Inside double
quotes ("") parameter and command substitution occurs and \ quotes the characters \ * " and $.

"$*" is equivalent to "$1 '$2 ..." whereas
"$@" is equivalent to "$1" "$2"

Prompting.

When used interactively, the shell prompts with the value of PS1 before reading a command. If
at any time a newline is typed and further input is needed to complete a command then the
secondary prompt ($PS2) is issued.

Input output. .

Before a command is executed its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may pre-
cede or follow a command and are not passed on to the invoked command. Substitution occurs
before word or digit is used.

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not exist then it is
created; otherwise it is truncated to zero length.

>> word
Use file word as standard output. If the file exists then output is appended (by seeking
to the end); otherwise the file is created.

< < word
The shell input is read up to a line the same as word, or end of file. The resulting
document becomes the standard input. If any character of word is quoted then no
interpretation is placed upon the characters of the document; otherwise, parameter and
command substitution occurs, \newline is ignored, and \ is used to quote the characters
\ $ " and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2). Similarly for the
standard output using > .

< & — The standard input is closed. Similarly for the standard output using > .

If one of the above is preceded by a digit then the file descriptor created is that specified by the,
% digit (instead of the default 0 or 1). For example,

7th Edition 3

SH (1) : © SH(1)

e 2>&1
creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the empty
file (/dev/null). Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input output specifications.

Environment. :

The environment is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list; see exec(2) and environ(5). The shell interacts with the
environment in several ways. On invocation, the shell scans the environment and creates a
parameter for each name found, giving it the corresponding value. Executed commands inherit
the same environment. If the user modifies the values of these parameters Or creates new ones,
none of these affects the environment unless the export command is used to bind the shell’s
parameter to the environment. The environment seen by any executed command is thus com-
posed of any unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.)

The environment for any simpie-command may be augmented by prefixing it with one or more
assignments to parameters. Thus these two lines are equivalent

TERM =450 cmd args
(export TERM; TERM =450; cmd args)

If the =k flag is set, a/l keyword arguments are placed in the environment, even if the occur
after the command name. The following prints ‘a=b ¢’ and ‘c:

echo a=b ¢

set —k

echo a=bc¢

Signals.

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is
followed by &; otherwise signals have the values inherited by the shell from its parent. (But
see also trap.)

Execution.

Each time a command is executed the above substitutions are carried out. Except for the ‘spe-
cial commands’ listed below a new process is created and an attempt is made to execute the
command via an exec(2).

The shell parameter SPATH defines the search path for the directory containing the command.
Each alternative directory name is separated by a colon (:). The default path is :/bin:/usr/bin.
If the command name contains a / then the search path is not used. Otherwise, each directory
in the path is searched for an executable file. If the file has execute permission but is not an
a.out file, it is assumed to be a file containing shell commands. A subshell (ie., a separate pro-
cess) is spawned to read it. A parenthesized command is also executed in a subshell.

Special commands.
The following commands are executed in the shell process and except where specified no input
output redirection is permitted for such commands.

No effect; the command does nothing.
. file Read and execute commands from Jile and return. The search path $PATH is used to
find the directory containing file.
break [n]
Exit from the enclosing for or while loop, if any. If nis specified then break n levels.
continue [n}
Resume the next iteration of the enclosing for or while loop. If n is specified then

7th Edition : 4

SH(1) SH(1)

resume at the n-th enclosing loop.
cd [argl
Change the current directory to arg. The shell parameter SHOME is the default arg.
eval [arg ...]
The arguments are read as input to the shell and the resulting command(s) executed.
exec [arg ...]
The command specified by the arguments is executed in place of this shell without
creating a new process. Input output arguments may appear and if no other arguments
are given cause the shell input output to be modified.
exit []
Causes a non interactive shell to exit with the exit status specified by ». If nis omitted
then the exit status is that of the last command executed. (An end of file will also exit
from the shell.)
export [name ...}
The given names are marked for automatic export to the environment of subsequentiy-
executed commands. If no arguments are given then & list of exportable names is
printed. '
login [arg ...]
Equivalent to ‘exec login arg ...".
newgrp [arg ...]
Equivalent to ‘exec newgrp arg ...".
read name ...
One line is read from the standard input; successive words of the input are assigned to
the variables name in order, with leftover words to the last variable. The return code is
0 unless the end-of-file is encountered.
readonly [name ...]
The given names are marked readonly and the values of the these names may not be
changed by subsequent assignment. If no arguments are given then a list of all
readonly names is printed.
set [—eknptuvx [arg ...1]
=g If non interactive then exit immediately if a command fails.
=k All keyword arguments are placed in the environment for a command, not just
those that precede the command name.
—n Read commands but do not execute them.
—t Exit after reading and executing one command.
—u Treat unset variables as an error when substituting.
—v Print shell input lines as they are read.
=—x Print commands and their arguments as they are executed.
~— Turn off the —x and —v options.

These flags can also be used upon invocation of the shell. The current set of flags may
be found in $—.

Remaining arguments are positional parameters and are assigned, in order, to $1, $2.
etc. If no arguments are given then the values of all names are printed.

shift The positional parameters from $2... are renamed $1...
times Print the accumulated user and system times for processes run from the shell.

trap [argl [n] ...
Arg is a command to be read and executed when the shell receives signal(s) n. (Note
that arg is scanned once when the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. If arg is absent then all trap(s) »
are reset to their original values. If arg is the null string then this signal is ignored by
the shell and by invoked commands. If nis 0 then the command arg is executed on

7th Edition 5

SH (1) ' SH(1)

exit from the shell, otherwise upon receipt of signal » as numbered in signal/(2). Trap
with no arguments prints a list of commands associated with each signal number.

umask [2nn]
The user file creation mask is set to the octal value nnn (see umask(2)). If nnnis omit-
ted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n is not given then
all currently active child processes are waited for. The return code from this command
is that of the. process waited for.

Invocation.

If the first character of argument zero is —, commands are read from SHOME/. profile, if such a
file exists. Commands are then read as described below. The following flags are interpreted by
the shell when it is invoked.

=c string If the —c flag is present then commands are read from string .

- If the —s flag is present or if no arguments remain then commands are read from
the standard input. Shell output is written to file descriptor 2.
=i If the —i flag is present or if the shell input and output are attached to a terminal

(as told by gmy) then this shell is interactive. In this case the terminate signal
SIGTERM (see signal(2)) is ignored (so that ‘kill 0° does not kill an interactive
shell) and the interrupt signal SIGINT is caught and ignored (so that wait is inter-
ruptable). In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

FILES
$HOME/ .profile
/tmp/sh*
/dev/null

SEE ALSO -
test(1), exec(2),

DIAGNOSTICS
Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit
status. If the shell is being used non interactively then execution of the shell file is abandoned.
Otherwise, the shell returns the exit status of the last command executed (see also exit).

BUGS
If << is used to provide standard input to an asynchronous process invoked by &, the shell gets
mixed up about naming the input document. A garbage file /tmp/sh* is created, and the shell
complains about not being able to find the file by another name.

7th Edition v 6

SIZE (1) SIZE (1)

NAME

size — size of an object file
SYNOPSIS

size [object ...]
DESCRIPTION

Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in octal and decimal, of each object-file argument. If no file is specified, a.out is used.

SEE ALSO
a.out(5)

7th Edition ' ' 1

SLEEP(1) SLEEP (1)

NAME

sleep — suspend execution for an interval
SYNOPSIS

sleep time
DESCRIPTION

Sleep suspends execution for rime seconds. It is used to execute a command after a certain
amount of time as in:

(sleep 105; command)&
or to execute a command every so often, as in:

while true
do
command
sleep 37
done

SEE ALSO
alarm(2), sleep(3)

BUGS
Time must be less than 65536 seconds.

7th Edition 1

SORT (1) SORT (1)

NAME

sort — sort or merge files

SYNOPSIS

sort [—mubdfinrtx] [+pos! [—pos2]1]1... | —oname } [=T directory] [name] ...

DESCRIPTION

Sort sorts lines of all the named files together and writes the result on the standard output. The
name ‘—’ means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine
collating sequence. The ordering is affected globally by the following options, one or more of
which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d ‘Dictionary” order: only letters, digits and blanks are significant in comparisons.
f Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or
more digits with optional decimal point, is sorted by arithmetic value. Option n implies
option b.

r Reverse the sense of comparisons.
tx ‘Tab character’ separating fields is x.

- The notation +pos! = pos2 restricts a sort key to a field beginning at pos/ and ending just be-

fore pos2. Posl and pos2 each have the form m.n, optionally followed by one or more of the
flags bdfinr, where m tells a number of fields to skip from the beginning of the line and n tells
a number of characters to skip further. If any flags are present they override all the global ord-
ering options for this key. If the b option is in effect nis counted from the first nonblank in
the field; b is attached independently to pos2. A missing .n means .0; a missing = pos2 means
the end of the line. Under the —tx option, fields are strings separated by x; otherwise fields
are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

e Check that the input file is sorted according to the ordering rules; give no output unless
the file is out of sort.

m Merge only, the input files are already sorted.

0 The next argument is the name of an output file to use instead of the standard output.
This file may be the same as one of the inputs.

T The next argument is the name of a directory in which temporary files should be made.

] Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do
not participate in this comparison.

Examples. Print in alphabetical order all the unique spellings in a list of words. Capitalized
words differ from uncapitalized.

sort —u +0f +0 list
Print the password file (passwd(5)) sorted by user id number (the 3rd colon-separated field).

7th Edition 1

SORT (1) SORT (1)

sort —t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month day) entries. The op-
tions —um with just one input file make the choice of a unique representative from a set of
equal lines predictable.

sort —um +0 —1 dates

FILES
/ust/tmp/stm*, /tmp/*: first and second tries for temporary files

SEE ALSO
uniq(1), comm(1), rev(1), join(1)

DIAGNOSTICS
Comments and .exits with nonzero status for various trouble conditions and for disorder
discovered under option —c.

BUGS
Very long lines are silently truncated.

L

7th Edition 2

SPELL (1) | SPELL (1)

NAME

spell, spellin, spellout — find spelling errors

SYNOPSIS

spell [option] ... [file] ...
/usr/src/cmd/spell/spellin [list]
/usr/src/cmd/spell/spellout [—d] list

DESCRIPTION

FILES

BUGS

Spell collects words from the named documents, and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes or suffixes)
from words in the spelling list are printed on the standard output. If no files are named, words
are collected from the standard input.

Spell ignores most rroff, tbl and egn(1) constructions.

Under the —v option, all words not literally in the spelling list are printed, and plausible deriva-
tions from spelling list words are indicated.

Under the —b option, British spelling is checked. Besides preferring centre, colour, speciality,
travelled, eic., this option insists upon -ise in words like standardise, Fowler and the OED to the
contrary notwithstanding.

Under the —x option, every plausible stem is printed with ‘=" for each word.

The spelling list is based on many sources, and while more haphazard than an ordinary diction-
ary, is also more effective in respect to proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with their default
settings. Copies of all output are accumulated in the history file. The stop list filters out
misspellings (e.g. thier=thy —y-ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell Both expect a list of words, one per
line, from the standard input. Spellin adds the words on the standard input to the preexisting
list and places a new list on the standard output. If no /ist is specified, the new list is created
from scratch. Spellout looks up each word in the standard input and prints on the standard out-
put those that are missing from (or present on, with option —d) the hash list.

D =/usr/dict/hlist[ab]: hashed spelling lists, American & British
S=/usr/dict/hstop: hashed stop list

H=/usr/dict/spellhist: history file

/usr/lib/spell :

deroff (1), sort(1), tee(1), sed(1)

The spelling list’s coverage is uneven; new installations will probably wish to monitor the out-
put for several moenths to gather local additions.
British spelling was done by an American.

7th Edition 1

SPLINE (1G) SPLINE (1G)

NAME :

spline — interpolate smooth curve
SYNOPSIS

spline [option] ...
DESCRIPTION

Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It
produces a similar set, which is approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. Hamming, Numerical Methods for Scientists and
Engineers, 2nd ed., 349ff) has two continuous derivatives, and sufficiently many points to look
smooth when plotted, for example by graph(1).

The following options are recognized, each as a separate argument.

—a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

—k The constant k used in the boundary value computation

5= lof =k

is set by the next argument. By default k = 0.

~n Space output points so that approximately # intervals occur between the lower and upper x
limits. (Default n = 100.)

—p Make output periodic, i.e. match derivatives at ends. First and last input values should
normally agree.

—x Next 1 (or 2) arguments are lower (and upper) x limits. Normalily these limits are calcu-
lated from the data. Automatic abcissas start at lower limit (default 0).
SEE ALSO
graph(1)
DIAGNOSTICS

When data is not strictly monotone in x, spline reproduces the input without interpolating extra
points.

BUGS o
A limit of 1000 input points is enforced silently.

7th Edition 1

SPLIT (1) | SPLIT (1)

NAME

split — split a file into pieces
SYNOPSIS

split [—n] [file [name]]
DESCRIPTION

Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of
output files. The name of the first output file is name with aa appended, and so on lexicograph-
ically. If no output name is given, x is default.

If no input file is given, or if — is given in its stead, then the standard input file is used.

7th Edition 1

STRIP (1) STRIP (1)

NAME
strip — remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION

Strip removes the symbol table and relocation bits ordinarily attached to the output of the
assembler and loader. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the —s option of /.

FILES
/tmp/stm? temporary file

SEE ALSO
1d(1)

7th Edition 1

®

STRUCT (1) STRUCT (1)

NAME

struct — structure Fortran programs
SYNOPSIS

struct [option] ... file
DESCRIPTION

Struct translates the Fortran program specified by file (standard input default) into a Ratfor pro-
gram. Wherever possible, Ratfor control constructs replace the original Fortran. Statement
numbers appear only where still necessary. Cosmetic changes are made, including changing
Hollerith strings into quoted strings and relational operators into symbols (.e.g. *.GT.’ into
*>’). The output is appropriately indented.

The following options may occur in any order.

-s Input is accepted in standard format, i.e. comments are specified by a ¢, C, or * in
column 1, and continuation lines are specified by a nonzero, nonblank character in
column 6. Normally, a statement whose first nonblank character is not alphanumeric is
treated as a continuation.

-i Do not turn computed goto statements into switches. (Ratfor does not turn switches
back into computed goto statements.)

-8 Turn sequences of else ifs into a non-Ratfor switch of the form

switch {
case predl: code
case pred2: code
case pred3: code
default: code

}

The case predicates are tested in order; the code appropriate to only one case is exe-
cuted. This generalized form of switch statement does not occur in Ratfor.

—b Generate goto’s instead of multilevel break statements.
-n Generate goto’s instead of multilevel next statements.

—en If nis 0 (default), place code within a loop only if it can lead to an iteration of the loop.
If n is nonzero, admit code segments with fewer than n statements to a loop if other-
wise the loop would have exits to several places including the segment, and the seg-
ment can be reached only from the loop.

FILES
/tmp/struct*
Jusr/lib/struct/*

SEE ALSO
f77(1)

BUGS
Struct knows Fortran 66 syntax, but not full Fortran 77 (alternate returns, IF .THEN...ELSE,
etc.)
If an input Fortran program contains identifiers which are reserved words in Ratfor the struc-
tured version of the program will not be a valid Ratfor program.
Extended range DO’s generate cryptic errors.
Columns 73-80 are not special even when ~s is in effect.
Will not generate Ratfor FOR statements.

7th Edition 1

STTY (1) STTY (1)

NAME

stty — set terminal options
SYNOPSIS

stty [option ...]
DESCRIPTION

Sty sets certain 1/0 options on the current output terminal. With no argument, it reports the
current settings of the options. The option strings are selected from the following set:

even allow even parity
—even disallow even parity
odd allow odd parity
—odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
=raw negate raw mode
cooked same as ‘—raw’
cbreak make each character available to read(2) as received; no erase and kill
—chreak
make characters available to read only when newline is received
~-nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
—echo do not echo characters
lcase map upper case to lower case
—lcase do not map case
—tabs replace tabs by spaces when printing
tabs preserve tabs

ek reset erase and Kill characters back to normal # and @
erase ¢ set erase character to ¢. C can be of the form “X’ which is interpreted as a ‘control
X,

kill ¢ set kill character to ¢. “X’works here also.
cr0 crl cr2 cr3
select style of delay for carriage return (see ioct/(2))
nl0 nl1 nl2 ni3
select style of delay for linefeed
tab0 tabl tab2 tab3
select style of delay for tab
fi0 fl1 select style of delay for form feed
bsO bsl select style of delay for backspace
tty33 set all modes suitable for the Teletype Corporation Model 33 terminal.
tty37 set all modes suitable for the Teletype Corporation Model 37 terminal. :
vt05 set all modes suitable for Digital Equipment Corp. VTO0S terminal
tn300 set all modes suitable for a General Electric TermiNet 300
ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
hup hang up dataphone on last close.
—hup do not hang up dataphone on last close.
6 hang up phone line immediately
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb
Set terminal baud rate to the number given, if possible. (These are the speeds sup-
ported by the DH-11 interface).

7th Edition 1

STTY (1) STTY (1)

SEE ALSO
ioctl(2), tabs(1)

7th Edition 2

SU (1) ‘ | ' SU (1)

NAME . |
su — substitute user id temporarily

SYNOPSIS
su [userid]

DESCRIPTION :
Su demands the password of the specified userid, and if it is given, changes to that userid and

invokes the Shell s (1) without changing the current directory or the user environment (see
environ(5)). The new user ID stays in force until the Shell exits.

If no userid is specified, ‘root’ is assumed. To remind the super-user of his responsibilities, the
Shell substitutes ‘#’ for its usual prompt.

SEE ALSO
sh(1)

7th Edition

SUM (1) SUM (1)

NAME
sum — sum and count blocks in a file

SYNOPSIS
sum file
DESCRIPTION

Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of

blocks in the file. It is typically used to look for bad spots, or to validate a file communicated
over some transmission line.

SEE ALSO
wc(l)

DIAGNOSTICS
‘Read error’ is indistinuishable from end of file on most devices; check the block count.

7th Edition 1

SYNC (IM) | _ SYNC (1M)

NAME
sync — update the super block

SYNOPSIS
syne

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped, sync must be called to
insure file system integrity. See sync(2) for details.

SEE ALSO
sync(2), update(8)

7th Edition 1

TABS (1) TABS (1)

NAME

tabs — set terminal tabs
SYNOPSIS

tabs [—n] [terminal]
DESCRIPTION

Tabs sets the tabs on a variety of terminals. Various of the terminal names given in term(7)
are recognized, the default is, however, suitable for most 300 baud terminals. If the —n flag is
present then the left margin is not indented as is normal.

SEE ALSO
stty(1), term(7)

7th Edition

TAIL (1) TAIL (1)

/

NAME
tail — deliver the last part of a file

SYNQPSIS
tail [£number(ibe]] | file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is
named, the standard input is used.

Copying begins at distance - number from the beginning, or —number from the end of the
input. Number is counted in units of lines, blocks or characters, according to the appended
option 1, b or c. When no units are specified, counting is by lines.

SEE ALSO
dd(1)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.
Various kinds of anomalous behavior may happen with character special files.

7th Edition 1

TAR (1)

NAME

TAR (1)

tar — tape archiver

SYNOPSIS

tar [key] [name ...]

DESCRIPTION

Tar saves and restores files on magtape. Its actions are controlled by the key argument. The
key is a string of characters containing at most one function letter and possibly one or more
function modifiers. Other arguments to the command are file or directory names specifying
which files are to be dumped or restored. In all cases, appearance of a directory name refers to
the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

T
X

The named files are written on the end of the tape. The ¢ function implies this.

The named files are extracted from the tape. If the named file matches a directory
whose contents had been written onto the tape, this directory is (recursively)
extracted. The owner, modification time, and mode are restored (if possible). If no
file argument is given, the entire content of the tape is extracted. Note that if multiple
entries specifying the same file are on the tape, the last one overwrites all earlier.

The names of the specified files are listed each time they occur on the tape. If no file
argument is given, all of the names on the tape are listed. .

The named files are added to the tape if either they are not already there or have been
modified since last put on the tape.

Create a new tape; writing begins on the beginning of the tape instead of after the last
file. This command implies r.

The following characters may be used in addition to the letter which selects the function

desired.
0,...,7

v

7th Edition

This modifier selects the drive on which the tape is mounted. The default is 1.

Normally rar does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

causes tar to print the action to be taken followed by file name, then wait for user
confirmation. If a word beginning with ‘y’ is given, the action is performed. Any
other input means don’t do it.

causes tar to use the next argument as the name of the archive instead of /dev/mt?.
If the name of the file is ‘=, tar writes to standard output or reads from standard
input, whichever is appropriate. Thus, far can be used as the head or tail of a filter
chain Tar can also be used to move hierarchies with the command

cd fromdir; tar cf - . | (cd todir; tar xf -)

causes rar to use the next argument as the blocking factor for tape records. The
default is 1, the maximum is 20. This option should only be used with raw magnetic
tape archives (See f above). The block size is determined automatically when read-
ing tapes (key letters ‘x’ and ‘t’).

tells rar to complain if it cannot resolve all of the links to the files dumped. If this is
not specified, no error messages are printed.

tells tar to not restore the modification times. The mod time will be the time of
extraction.

TAR (1) | | TAR (1)

FILES
/dev/mt?
/tmp/tar”

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The current
magtape driver cannot backspace raw magtape. If the archive is on a disk file the b option
should not be used at all, as updating an archive stored in this manner can destroy it.
The current limit on file name length is 100 characters.

=
Ry
Ly
R

7th Edition 2

TBL (1) TBL (1)

NAME
tbl — format tables for nroff or troff

SYNOPSIS
thl [files] ...

DESCRIPTION
Thl is a preprocessor for formatting tables for nroffor troff(1). The input files are copied to the
standard output, except for lines between .TS and .TE command lines, which are assumed to
describe tables and reformatted. Details are given in the reference manual.

As an example, letting \t represent a tab (which should be typed as a genuine tab) the input

.TS

css

ccs

ccc

Inn.

Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville\t2018\t3.30
Bound Brook\t3425\t3.04
Branchburg\t1644\t3.49
Bridgewater\t7897\t3.81
Far Hills\t240\t3.19

.TE
yields
Household Population
Town Households
Number Size
Bedminster 789 3.26

Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04

Branchburg 1644 349
Bridgewater 7897 3.81
Far Hills 240 3.19

If no arguments are given, b/ reads the standard input, so it may be used as a filter. When it is
used with egn or negn the tbl command should be first, to minimize the volume of data passed
through pipes.

SEE ALSO
troff(1), eqn(1)
M. E. Lesk, TBL.

Tth Edition 1

TC(1) , TC(1)

NAME

tc — photypeseatter simulator
SYNOPSIS

tel —t] [—=sN][—pL]file]
DESCRIPTION

Tc interprets its input (standard input default) as device codes for a Graphic Systems photo-
typesetter (cat). The standard output of fc is intended for a Tektronix 4015 (a 4014 teminal
with ASCII and APL character sets). The sixteen typesetter sizes are mapped into the 4014’s
four sizes; the entire TROFF character set is drawn using the 4014’s character generator, using
overstruck combinations where necessary. Typical usage:

troff —t file | te

At the end of each page tc waits for a newline (empty line) from the keyboard before continu-
ing on to the next page. In this wait state, the command e will suppress the screen erase before
the next page; sN will cause the next N pages to be skipped; and !line will send line to the
shell.

The command line options are:
-t Don’t wait between pages; for directing output into a file.
-sN Skip the first N pages.

—pL Set page length to L. L may include the scale factors p (points), i (inches), ¢ (centime-
ters), and P (picas); default is picas.

'—{ w' Multiply the default aspect ratio, 1.5, of a displayed page by //w.

SEE ALSO
troff (1), plot(1)

BUGS
Font distinctions are lost.
The aspect ratio option is unbelievable.

7th Edition , 1

TEE{1) TEE (1)

NAME

tee — pipe fitting
SYNOPSIS

tee[—i] [—a][file]..
DESCRIPTION

Tee transcribes the standard input to the standard output and makes copies in the files. Option

—1{ ignores interrupts; option --a causes the output to be appended to the files rather than
overwriting them.

7th Edition

TEST (1)

TEST (1)
NAME
test — condition command
SYNOPSIS : u,\)
<+ (b
test expr Lyt shlig 18 gi\e/[Jav l_aé(p/ $. (/[om 'csl/\)

DESCRIPTION a1

test evaluates the expression expr, and if its value is true then returns' zero exit status; other-
wise, a non zero exit status is returned. ‘esf returns a non zero exit if there are no arguments.

The following primitives are used toconstruct expr.

—rfile true if the file exists and is readable.

—w file true if the file exists and is writable.

—ffile true if the file exists and is not a directory.

—d file true if the file exists and is a directory.

—s file true if the file exists and has a size greater than zero.
—t [fildes |

true if the open file whose file descriptor number is fildes (1 by default) is associated
with a terminal device.

—zsl true if the length of string s/ is zero.

—nsl true if the length of the string s/ is nonzero.
sl = 32 true if the strings s/ and s2 are equal.

sl != s2 true if the strings s/ and s2 are not equal.

sl true if s/ is not the null string.

nl —eqn2

true if the integers n/ and n2 are algebraically equal. Any of the comparisons —ne,
-~gt, —ge, —It, or —le may be used in place of —eq.

These primaries may be combined with the following operators:
! unary negation operator

-a binary and operator
-0 binary or operator

(expr)
parentheses for grouping.

—a has higher precedence than —o. Notice that all the operators and flags are separate argu-

ments to rest. Notice also that parentheses are meaningful to the Shell and must be escaped.
SEE ALSO

sh(1), find(1)

7th Edition

TIME (1) TIME (1)

NAME
time — time a command

SYNOPSIS
time command

DESCRIPTION .
The given command is executed; after it is complete, rime prints the elapsed time during the

command, the time spent in the system, and the time spent in execution of the command.
Times are reported in seconds.

The execution time can depend on what kind of memory the program happens to land in; the
user time in MOS is often half what it is in core.

The times are printed on the diagnostic output stream.

BUGS
Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

7th Edition 1

TK (1) | . TK (1)

NAME
tk — paginator for the Tektronix 4014

SYNOPSIS
tk [—t] [=N][—pLl|[file]

DESCRIPTION
The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on
the screen, divides the screen into N columns, and contributes an eight space page offset in the
(default) single-column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. Teletype Model 37 half- and reverse-line sequences are interpreted and plotted. At
the end of each page rk waits for a newline (empty line) from the keyboard before continuing

on to the next page. In this wait state, the command !command will send the command to the
shell.

The command line options are:

-t Don’t wait between pages; for directing output into a file.
=N Divide the screen into N columns and wait after the last column.
—pL Set page length to L lines.

SEE ALSO
pr(1)

Tth Edition 1

TOUCH (1) TOUCH (1)

NAME
touch — update date last modified of a file

SYNOPSIS
touch [—¢] file ...

DESCRIPTION
Touch attempts to set the modified date of each file. This is done by reading a character from
the file and writing it back.

If a file does not exist, an attempt will be made to create it unless the —c option is specified.

7th Edition 1

TP (1) TP (1)

NAME

tp — manipulate tape archive
SYNOPSIS

tp [key] [name ...]
DESCRIPTION

Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu-
ment. The key is a string of characters containing at most one function letter and possibly one
or more function modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases, appearance of a direc-
tory name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

T The named files are written on the tape. If files with the same names already exist,
they are replaced. ‘Same’ is determined by string comparison, so ‘./abc’ can never be
the same as ‘/usr/dmr/abc’ even if ‘/usr/dmr’ is the current directory. If no file argu-
ment is given, ‘.’ is the default.

u updates the tape. uis like r, but a file is replaced only if its modification date is later
than the date stored on the tape; that is to say, if it has changed since it was dumped.
u is the default command if none is given.

d deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

X extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. If no file argument is given, the entire contents

of the tape is listed.

The following characters may be used in addition to the letter which selects the function
desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, x is
default; for magtape ‘0’ is the defauit.

v Normally #p does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

c means a fresh dump is being created; the tape directory is cleared before beginning.
Usable only with r and u. This option is assumed with magtape since it is impossible
to selectively overwrite magtape.

i Errors reading and writing the tape are noted, but no action is taken. Normally,
errors cause a return to the command level.
f Use the first named file, rather than a tape, as the archive. This option is known to

work only with x.

w causes /p to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Response y means ‘yes’, so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is
being done. Response x means ‘exit’; the /p command terminates immediately. In
the x function, files previously asked about have been extracted already. With r, u,
and d no change has been made to the tape.

7th Edition deprecated 1

TP (1) TP(1)

FILES

/dev/tap?

/dev/mt?
SEE ALSO

ar(1), tar(l)
DIAGNOSTICS

Several; the non-obvious one is ‘Phase error’, which means the file changed after it was
selected for dumping but before it was dumped.

BUGS :
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by p difficult to carry to other
machines; rar(1) avoids the problem.

7th Edition . 2

TR (1) TR (1)

NAME
tr — translate characters

SYNOPSIS
tr [—cds] [stringl [string2 1]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected
characters. Input characters found in string! are mapped into the corresponding characters of
string2. When string2 is short it is padded to the length of stringl-by duplicating its last charac-
ter. Any combination of the options —cds may be used: —c complements the set of characters
in stringl with respect to the universe of characters whose ASCII codes are 01 through 0377
octal; —d deletes all input characters in stringl; —s squeezes all strings of repeated output char-
acters that are in string2 to single characters.

In either string the notation @ —5 means a range of characters from a to b in increasing ASCII
order. The character ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ASCII
code is given by those digits. A ‘\’ followed by any other character stands for that character.

The following example creates a list of all the words in ‘file]’ one per line in ‘file2’, where a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect \’
from the Shell. 012 is the ASCII code for newline.

tr —cs A—Za—z \012" <filel >file2

SEE ALSO
ed(1), ascii(7)

BUGS
Won’t handle ASCII NUL in string! or string2; always deletes NUL from input.

7th Edition 1

TROFF (1) TROFF (1)

NAME)
troff, nroff — text formatting and typesetting

SYNOPSIS
troff [option] ... [file] ...

nroff [option] ... [file] ..

DESCRIPTION
Troff formats text in the named files for printing on a Graphic Systems C/A/T phototypesetter;
nroff for typewriter-like devices. Their capabilities are described in the NrofffTroff user's manual.

If no file argument is present, the standard input is read. An argument consisting of a single
minus (=) is taken to be a file name corresponding to the standard input. The options, which
may appear in any order so long as they appear before the files, are:

—olist Print orily pages whose page numbers appear in the comma-separated /ist of numbers
and ranges. A range N—M means pages N through M. an initial —N means from
the beginning to page N; and a final N— means from N to the end.

~-nN Number first generated page N.

-sN Stop every N pages. Nroff will halt prior to every N pages (default N=1) to allow pa-
per loading or changing, and will resume upon receipt of a newline. Troff will stop
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and
resume when the typesetter’s start button is pressed.

—mname Prepend the macro file /usr/lib/tmac/tmac. name to the input files.
—raN Set register a (one-character) to N.

=i Read standard input after the input files are exhausted.
—-q Invoke the simultaneous input-output mode of the rd request.
Nroff only

~Tname Prepare output for specified terminal. Known names are 37 for the (default) Tele-
type Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or any termi- "
nal without half-line capability), 300S for the DASI-300S, 300 for the DASI-300, and
450 for the DASI-450 (Diablo Hyterm).

el Produce equally-spaced words in adjusted lines, using full terminal resolution.

=h Use output tabs during horizontal spacing to speed output and reduce output charac-
ter count. Tab settings are assumed to be every 8 nominal character widths.

Troff only ‘ ‘ ‘

-t Direct output to the standard output instead of the phototypesetter.

- Refrain from feeding out paper and stopping phototypesetter at the end of the run.

- Wait until phototypesetter is available, if currently busy.

-b Report whether the phototypesetter is busy or available. No text processing is done.

-g Send a printable ASCII approximation of the results to the standard output.

=N Print all characters in point size N while retaining all prescribed spacings and mo-
tions, to reduce phototypesetter elasped time.

-g Prep(ar)e) output for a GCOS phototypesetter and direct it to the standard output (see
gear(l)).

If the file fusr/fadm/tracct is writable, troff keeps phototypesetter accounting records there. The
integrity of that file may be secured by making troffa ‘set user-id’ program.

_7th Edition 1

TROFF (1) ' - TROFF (1)

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/ta* temporary file
/usr/lib/tmac/tmac.* standard macro files
/usr/lib/term/* terminal driving tables for nroff
/usr/lib/font/* font width tables for troff
/dev/cat phototypesetter
/usr/adm/tracct accounting statistics for /dev/cat
SEE ALSO

J. F. Ossanna, NroffiTroff user’s manual
B. W. Kernighan, 4 TROFF Tutorial
eqn(l), tbi(1) .

col(1), tk(1) (aroffonly)

tc(1), gcat(1l) (sroffonly)

7th Edition 2

TRUE (1) TRUE (1)

NAME
true, false — provide truth values

SYNOPSIS
true

false

DESCRIPTION

True does nothing, successfully. False does nothing, unsuccessfully. They are typically used in
input to s#(1) such as:

while true
do
command
done
SEE ALSO
sh(l)
DIAGNOSTICS

True has exit status zero, false nonzero.

7th Edition 1

TSORT (1) TSORT (1)

NAME

tsort — topological sort
SYNOPSIS

tsort [file]
DESCRIPTION -

Tsort produces on the standard output a totally ordered list of items consistent with a partial
ordering of items mentioned in the input file. If no file is specified, the standard input is
understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different
items indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

7th Edition 1

2%

s

TTY (1)

NAME
tty — get terminal name

SYNOPSIS
tty

DESCRIPTION
Ty prints the pathname of the user’s terminal.

DIAGNOSTICS
‘not a tty’ if the standard input fiie is not a terminal.

7th Edition

TTY (1)

UNIQ(1) UNIQ (1)

NAME

uniq — report repeated lines in a file
SYNOPSIS

uniq [—ude [+n][—=n 1] [input | output]]
DESCRIPTION

Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(1). If the —u flag is used, just
the lines that are not repeated in the original file are output. The —d option specifies that one
copy of just the repeated lines is to be written. The normal mode output is the union of the
—uand —d mode outputs.

The —c option supersedes —u and —d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(1), comm(1)

7th Edition , PDP11 1

®

%{:\ § .

UNITS (1) UNITS (1)

NAME
units — conversion program

SYNOPSIS
units

DESCRIPTION
Units converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch

You want: cm
* 2.54000e+00
/ 3.93701e—01

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 pounds force/in2
You want: atm

* 1.02069%+00

/ 9.79730e—01

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog-
nized, together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light

e charge on an electron

g acceleration of gravity

force sameasg

mole Avogadro’s number

water pressure head per unit height of water
au astronomical unit

‘Pound’ is a unit of mass. Compound names are run together, e.g. ‘lightyear’. British units
that differ from their US counterparts are prefixed thus: ‘brgallon’. For a complete list of units,
‘cat /usr/lib/units’.

FILES
/usr/lib/units

BUGS
Currency conversions are handled, but don’t base your financial plans on them.

7th Edition ‘ 1

UUCP (1C) ’ UUCP(1C)

NAME
uucp, uulog — unix to\unix copy

SYNOPSIS
uucp [option] ... source-file ... destination-file

uulog [option] ...

DESCRIPTION
Uucp copies files named by the source-file arguments to the destination-file argument. A file
name may be a path name on your machine, or may have the form

system-name!pathname

where ‘system-name’ is taken from a list of system names which wwcp knows about. Shell
metacharacters ?*(] appearing in the pathname part will be expanded on the appropriate system.

Pathnames may be one of

1 a full pathname;

(2) a pathname preceded by ~user, where user is a userid on the specified system and is
replaced by that user’s login directory;

3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system the copy will fail. If the
destination-file is a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and write per-
missions (see chmod(2)).

The following options are interpreted by uucp.

-d Make all necessary directories for the file copy.
- Use the source file when copying out rather than copying the file to the spool directory.
—m Send mail to the requester when the copy is complete.

Uulog maintains a summary log of wucp and wux(l) transactions in the file
‘/usr/spool/uucp/LOGFILE’ by gathering information from partial log files named
‘/usr/spool/uucp/LOG.*.?". It removes the partial log files.

The options cause uulog to print logging information:
—ssys Print information about work involving system sys.

—uuser
Print information about work done for the specified user.

FILES
/usr/spool/uucp - spool directory
/usr/lib/uucp/* - other data and program files

SEE ALSO
uux(1), mail(1)
D. A. Nowitz, Uucp Implementation Description

WARNING
The domain of remotely accessible files can (and for obvious security reasons, usuaily should)
be severely restricted. You will very likely not be able to fetch files by pathname; ask a respon-
sible person on the remote system to send them to you. For the same reasons you will prob-
ably not be able to send files to arbitrary pathnames. As distributed, the generally accessible
files are those whose names begin /usr/spool/uucp/users.

7th Edition 1

UUCP (1C) UUCP (1C)

BUGS
All files received by wucp will be owned by uucp.
The —m option will only work sending files or receiving a single file. (Receiving multiple files
specified by special shell characters ?*[} will not activate the —m option.)

7th Edition 2

Uux(1C) - UuX (1C)

NAME

uuxX — unix to unix command execution

SYNOPSIS

uux [—] command-string

DESCRIPTION

FILES

Uux will gather 0 or more files from various systems, execute a command on a specified system
and send standard output to a file on a specified system.

The command-string is made up of one or more arguments that look like a shell command line,
except that the command and file names may be prefixed by system-name!. A null system-
name is interpreted as the local system.

File names may be one of
(1) a full pathname;

(2) a pathname preceded by ~“xxx;, where xxxis a userid on the specified system and is
replaced by that user’s login directory;

(3) anything else is prefixed by the current directory.

The ‘=’ option will cause the standard input to the wux command to be the standard input to
the command-string.

For example, the command
unx "'diff usg!/usr/dan/f1 pwba!/ad/dan/f1 > 'fi.diff"

will get the f1 files from the usg and pwba machines, execute a djff command and put the
results in f1.diff in the local directory.

Any special shell characters such as < >3] should be quoted either by quoting the entire
command-string, or quoting the special characters as individual arguments.

/usr/uucp/spool - spool directory
/usr/uucp/* - other data and programs

SEE ALSO

uucp(1)
D. A. Nowitz, Uucp implementation description

WARNING

BUGS

7th Edition

An installation may, and for security reasons generally will, limit the list of commands
executable on behalf of an incoming request from wux. Typically, a restricted site will permit
little other than the receipt of mail via uux,

Only the first command of a shell pipeline may have a system-name!. All other commands are
executed on the system of the first command.

The use of the shell metacharacter * will probably not do what you want it to do.

The shell tokens < < and > > are not implemented.

There is no notification of denial of execution on the remote machine.

WAIT (1) ‘ WAIT (1)

NAME
wait — await completion of process

SYNOPSIS
wait
DESCRIPTION
Wait until all processes started with & have completed, and report on abnormal terminations.

Because the wait(2) system call must be executed in the parent process, the Shell itself exe-
cutes wait, without creating a new process.

SEE ALSO
sh(1)
BUGS

Not all the processes of a 3- or more-stage pipeline are children of the Shell, and thus can’t be
waited for.

7th Edition 1

WALL (1M) | WALL (1M)

NAME
wall — write to all users

SYNOPSIS
/ete/wall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message, preceded by
‘Broadcast Message ...", to all logged in users.

The sender should be super-user to override any protections the users may have invoked.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
mesg(1), write(1)

DIAGNOSTICS
‘Cannot send to ...” when the open on a user’s tty file fails.

‘ ’

7th Edition 1

wC(1) : WC (1)

NAME
wc — word count

SYNOPSIS
we [—lwe] [name ...]

DESCRIPTION :
Wc counts lines, words and characters in the named files, or in the standard input if no name
appears. A word is a maximal string of characters delimited by spaces, tabs or newlines.

If the optional argument is present, just the specxﬁed counts (lines, words or characters) are
selected by the letters I, w, or ¢

7th Edition 1

WHO (1) WHO (1)

NAME
who — who is on the system

SYNOPSIS
who [who-file] [am I]
DESCRIPTION

Who, without an argument, lists the login name, terminal name, and login time for each
current UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains a
record of all the logins since it was created. Then who lists logins, logouts, and crashes since
the creation of the wtmp file. Each login is listed with user name, terminal name (with ‘/dev/’
suppressed), and date and time. When an argument is given, logouts produce a similar line
without a user name. Reboots produce a line with ‘x’ in the place of the device name, and a
fossil time indicative of when the system went down.

With two arguments, as in ‘who am I’ (and also ‘who are you’), who tells who you are logged
in as.

FILES
/etc/utmp

SEE ALSO
getuid(2), utmp(5)

7th Edition 1

WRITE (1) WRITE (&l)

NAME

write — write to another user

SYNOPSIS

write user [ttyname]

DESCRIPTION

Write copies lines from your terminal to that of another user. When first called, it sends the
message

Message from yourname yourttyname...

The recipient of the message should write back at this point. Communication continues until
an end of file is read from the terminal or an interrupt is sent. At that point write writes ‘EOT’
on the other terminal and exits. i

If you want to write to a user who is logged in more than once, the t#tyname argument may be
used to indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command. At the outset Writ-
ing is allowed. Certain commands, in particular nroff and pr(1) disallow messages in order to
prevent messy output.

If the character ‘!’ is found at the beginning of a line, write calls the shell to execute the rest of
the line as a command.

The following protocol is suggested for using write: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis-
tinctive signal—(o) for ‘over’ is conventional—that the other may reply. (00) for ‘over and
out’ is suggested when conversation is about to be terminated.

FILES . .
/etc/utmp to find user
/bin/sh to execute ‘!’
SEE ALSO

mesg(1), who(1), mail(1)

7th Edition 1

YACC (1) YACC (1)

NAME
yacc — yet another compiler-compiler

SYNOPSIS
yacc [—vd] grammar

DESCRIPTION
Ya c converts a context-free grammar into a set of tables for a simple automaton which exe-
cutes an LR (1) parsing aigorithm. The grammar may be ambiguous; specified precedence rules
are used to break ambiguities. :

The output file, y.zab.c, must be compiled by the C compiler to produce a program yyparse.
This program must be loaded with the lexical analyzer program, yyiéx, as well as main and yyer-
ror, an error handling routine. These routines must be supplied by the user; Lex(1) is useful
for creating lexical analyzers usable by yacc.

If the —v flag is given, the file y.output is prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

If the —d flag is used, the file y.zab.h is generated with the define statements that associate the
yace-assigned ‘token codes’ with the user-declared ‘token names’. This allows source files other
than y.1ab.c to access the token codes.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files
/usr/lib/yaccpar parser prototype for C programs
/lib/liby.a library with default ‘main’ and ‘yyerror’
SEE ALSO
lex(1)
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC = Yet Another Compiler Compiler by S. C. Johnson.
DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a
more detailed report is found in the y.oumpur file. Similarly, if some rules are not reachable
from the start symbol, this is also reported.
BUGS

Because file names are fixed, at most one yacc process can be active in a given directory at a
time. '

7th Edition 1

INTRO(2) ' INTRO (2)

NAME

intro, errno — introduction to system calls and error numbers
SYNOPSIS

#include <errno.h>
DESCRIPTION

Section 2 of this manual lists all the entries into the system. Most of these calls have an error
return. An error condition is indicated by an otherwise impossible returned value. Almost
always this is —1; the individual sections specify the details. An error number is also made
available in the external variable errno. Errno is not cleared on successful calls, so it should be
tested only after an error has occurred.

There is a table of messages associated with each error, and a routine for printing the message;
See perror(3). The possible error numbers are not recited with each writeup in section 2, since
many errors are possible for most of the calls. Here is a list of the error numbers, their names
as defined in <errno.h>, and the messages available using perror.

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
tn its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to signal and prrace does not exist, or is already
dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO 1/0 error ,
Some physical I/0 error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice that does not exist, or beyond the limits of
the device. It may also occur when, for example, a tape drive is not dialled in or no
disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5120 bytes is presented to exec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number, see a.out(5).

9 EBADF Bad file number

Either a file descriptor refers to no open file, or a read (resp. write) request is made to
a file that is open only for writing (resp. reading).

7th Edition 1

INTRO (2)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

7th Edition

INTRO (2)

ECHILD No children
Wait and the process has no living or unwaited-for children.

EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any more
processes.

ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is able to sup-
ply. This is not a temporary condition; the maximum core size is a system parameter.
The error may also occur if the arrangement of text, data, and stack segments requires
too many segmentation registers.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory,
mounted-on file, active text segment).

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to chdir.

EISDIR Is a directory
An attempt to write on a directory.

EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown
signal in signal, reading or writing a file for which seek has generated a negative pointer.
Also set by math functions, see intro(3). '

ENFILE File tabie overflow
The system’s table of open files is fulil, and temporarily no more opens can be accepted.

EMFILE Too many open files
Customary configuration limit is 20 per process.

ENOTTY Not a typewriter
The file mentioned in sty or gty is not a terminal or one of the other devices to which
these calls apply.

ETXTBSY Text file busy
An attempt to execute a pure-procedure program that is currently open for writing (or

®

INTRO(2) : INTRO (2)

reading!). Also an attempt to open for writing a pure-procedure program that is being
executed.

27 EFBIG File too large
The size of a file exceeded the maximum (about 10° bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE lllegal seek
An Iseek was issued to a pipe. This error should also be issued for other non-seekable
devices. .

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 links to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition nor-
mally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within machine
precision.

SEE ALSO
intro(3)

ASSEMBLER
as /usr/include/sys.s file ...

The PDP11 assembly language interface is given for each system call. The assembler symbols
are defined in ‘/usr/include/sys.s’.

Return values appear in registers r0 and rl; it is unwise to count on these registers being
preserved when no value is expected. An erroneous call is always indicated by turning on the
c-bit of the condition codes. The error number is returned in r0. The presence of an error is
most easily tested by the instructions bes and bec (‘branch on error set (or clear)’). These are
synonyms for the bcs and bcc instructions.

On the Interdata 8/32, the system call arguments correspond well to the arguments of the C
routines. The sequence is:

fa %2,errno
1 %0,&callno
sve 0,args

Thus register 2 points to a word into which the error number will be stored as needed; it is
cleared if no error occurs. Register 0 contains the system call number; the nomenclature is
identical to that on the PDP11l. The argument of the svc is the address of the arguments, laid
out in storage as in the C calling sequence. The return value is in register 2 (possibly 3 also, as
in pipe) and is —1 in case of error. The overflow bit in the program status word is also set
when errors occur.

7th Edition 3

ACCESS (2) , ACCESS (2)

NAME
access — determine accessibility of file

SYNOPSIS
access(name, mode)
char *name;

DESCRIPTION
Access checks the given file name for accessibility according to mode, which is 4 (read), 2
(write) or 1 (execute) or a combination thereof. Specifying mode 0 tests whether the direc-
tories leading to the file can be searched and the file exists.

An appropriate error indication is returned if name cannot be found or if any of the desired ac-
cess modes would not be granted. On disallowed accesses —1 is returned and the error code is
in errno. 0 is returned from successful tests.

The user and group IDs with respect to which permission is checked are the real UID and GID
of the process, so this call is useful to set-UID programs.

Notice that it is only access bits that are checked. A ’directory may be announced as writable by
access, but an attempt to open it for writing will fail (although files may be created there): a file
may look executable, but exec will fail unless it is in proper format.

SEE ALSO
stat(2)

ASSEMBLER
(access = 33.)
sys access; name; mode

@

7th Edition 1

ACCT(2) ACCT (2)

NAME
acct — turn accounting on or off

SYNOPSIS
acct(file)
char *file;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it terminates.
This call, with a null-terminated string naming an existing file as argument, turns on account-
ing; records for each terminating process are appended to file. An argument of 0 causes
accounting to be turned off.

The accounting file format is given in acct(5).

SEE ALSO
acct(5), sa(l)

DIAGNOSTICS
On error —1 is returned. The file must exist and the call may be exercised only by the super-
user. It is erroneous to try to turn on accounting when it is already on.

BUGS
No accounting is produced for programs running when a crash occurs. In particular nonter-
minating programs are never accounted for. '
ASSEMBLER
(acct = 51.)
sys acct; file

7th Edition 1

'ALARM(2) | ALARM (2)

NAME
alarm — schedule signal after specified time

SYNOPSIS
alarm(seconds)
unsigned seconds;

DESCRIPTION
Alarm causes signal SIGALRM, see signal(2), to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is cancelled. Because the clock has a 1-second resolution, the signal may occur
up to one second early; because of scheduling delays, resumption of execution of when the sig-
nal is caught may be delayed an arbitrary amount. The longest specifiable delay time is 65535
seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
pause(2), signal(2), sleep(3)

ASSEMBLER
(alarm = 27.)
(seconds in r0)
sys alarm
(previous amount in r0)

7th Edition 1

BRK (2) | BRK (2)

NAME

brk, sbrk, break — change core allocation

SYNOPSIS

char *brk(addr)
char *sbrk (iner)

DESCRIPTION

Brk sets the system’s idea of the lowest location not used by the program (called the break) to
addr (rounded up to the next multiple of 64 bytes on the PDP11, 256 bytes on the Interdata
8/32, 512 bytes on the VAX-11/780). Locations not less than addr and below the stack pointer
are not in the address space and will thus cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via exec the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use break.

SEE ALSO

exec(2), malloc(3), end(3)

DIAGNOSTICS

BUGS

Zero is returned if the break could be set; —1 if the program requests more memory than the
system limit or if too many segmentation registers would be required to implement the break.

Setting the break in the rangé 0177701 to 0177777 (on the PDP11) is the same as setting it to
zero.

ASSEMBLER

(break = 17.)
sys break; addr

Break performs the function of brk. The name of the routine differs from that in C for histori-
cal reasons.

7th Edition 1

CHDIR (2) CHDIR (2)

NAME
chdir, chroot — change defauit directory

SYNOPSIS
chdir(dirname)
char *dirname;

chroot(dirname)
chgr *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chdir causes
this directory to become the current working directory, the starting point for path names not
beginning with */°.
Chroot sets the root directory, the starting point for path names beginning with ‘/’. The call is
restricted to the super-user.

SEE ALSO
cd(1)

DIAGNOSTICS . ’
Zero is returned if the directory is changed; —1 is returned if the given name is not that of a
directory or is not searchable.

ASSEMBLER
(chdir = 12.)
sys chdir; dirname

(chroot = 61.)
sys chroot; dirname

.

7th Edition 1

CHMOD (2) \ CHMOD (2)

NAME
chmod — change mode of file

SYNOPSIS
chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed to by name has its mode
changed to mode. Modes are constructed by ORing together some combination of the follow-
ing:

04000 set user ID on execution

02000 set group ID on execution

01000 save text image after execution

00400 read by owner

00200 write by owner

00100 execute (search on directory) by owner
00070 read, write, execute (search) by group

00007 read, write, execute (search) by others

If an executable file is set up for sharing (—n or —i option of /d(1)) then mode 1000 prevents
the system from abandoning the swap-space image of the program-text portion of the file when
its last user terminates. Thus when the next user of the file executes it, the text need not be
read from :he file system but can simply be swapped in, saving time. Ability to set this bit is
restricted to the super-user since swap space is consumed by the images; it is only worth while
for heaily used commands.

Only the owner of a file (or the super-user) may change the mode. Only the super-user can set
the 1000 mode.

SEE ALSO
chmod(1)

DIAGNOSTIC

Zero is returned if the mode is changed; —1 is returned if name cannot be found or if current
user is neither the owner of the file nor the super-user.

ASSEMBLER
(chmod = 15.)
sys chmod; name; mode

7th Edition 1

CHOWN (2) CHOWN (2)

NAME
chown — change owner and group of a file

SYNOPSIS
chown(name, owner, group) -
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to by name has its owner and
group changed as specified. Only the super-user may execute this call, because if users were
able to give files away, they could defeat the (nonexistent) file-space accounting procedures.

SEE ALSO
chown(1), passwd(5)

DIAGNOSTICS
Zero is returned if the owner is changed; —1 is returned on illegal owner changes.

" ASSEMBLER

(chown = 16.)
sys chown; name; owner; group

7th Edition 1

CLOSE (2) CLOSE (2)

NAME

close — close a file
SYNOPSIS

close(fildes)
DESCRIPTION

Given a file descriptor such as returned from an open, creat, dup or pipe(2) call, close closes the
associated file. A close of all files is automatic on exit, but since there is a limit on the number
of open files per process, close is necessary for programs which deal with many files.

Files are closed upon termination of a process, and certain file descriptors may be closed by
exec(2) (see ioctl(2)).

SEE ALSO

creat(2), open(2), pipe(2), exec(2), ioctl(2)
DIAGNOSTICS

Zero is returned if a file is closed; —1 is returned for an unknown file descriptor.
ASSEMBLER

(close = 6.)

(file descriptor in r0)

sys close

7th Edition 1

CREAT (2) CREAT (2)

NAME .
creat — create a new file

SYNOPSIS
creat(name, mode)
char *name;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process’s mode mask (see umask(2)). Also see chmod(2) for the construction of the mode
argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.
The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempts a creat, an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write(2), close(2), chmod(2), umask (2)

DIAGNOSTICS
The value —1 is returned if: a needed directory is not searchable; the file does not exist and the
directory in which it is to be created is not writable; the file does exist and is unwritable; the file
is a directory; there are already too many files open.

ASSEMBLER
(creat = 8.)
sys creat; name; mode
(file descriptor in r0)

7th Edition 1

DUP(2) DUP(2)

NAME
dup, dup2 — duplicate an open file descriptor

SYNOPSIS
dup(fildes)
int fildes;

dup2 (fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
Given a file descriptor returned from an open, pipe, or creat call, dup allocates another file
descriptor synonymous with the original. The new file descriptor is returned.

In the second form of the call, fildes is a file descriptor referring to an open file, and fildes2 is a
non-negative integer less than the maximum value allowed for file descriptors (approximately
19). Dup2 causes fildes2 to refer to the same file as fildes. If fildes2 already referred to an open
file, it is closed first.

SEE ALSO
creat(2), open(2), close(2), pipe(2)

DIAGNOSTICS
The value —1 is returned if: the given file descriptor is invalid; there are already too many
open files.

ASSEMBLER
(dup = 41.)
(file descriptor in r0)
(new file descriptor in rl)
sys dup
(file descriptor in r0)

The dup? entry is implemented By adding 0100 to fildes.

7th Edition 1

EXEC(2) EXEC(2)

NAME

execl, execv, execle, execve, execlp, execvp, exec, exece, environ — execute a file

SYNOPSIS

execl(name, arg0, argl, ..., argn, 0)
char *name, *arg0, *argl, ..., *argn;

execv(name, argy)
char *name, *argvl |;

execle(name, arg0, argl, ..., argn, 0, envp)
char *name, *arg0, *argi, ..., *argn, *envpl |;

execve(name, argv, envp);
char *name, *argvl |, *envpl I;

extern char **environ;

DESCRIPTION

Exec in all its forms overlays the dalling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

Files remain open across exec uniess explicit arrangement has been made; see ioct/(2). [gnored
signals remain ignored across these calls, but signals that are caught (see signa/(2)) are reset to
their default values. »

Each user has a rea/ user ID and group ID and an effective user ID and group ID. The real ID
identifies the person using the system; the effective ID determines his access privileges. Exec
changes the effective user and group ID to the owner of the executed file if the file has the
‘set-user-1D’ or ‘set-group-ID’ modes. The real user ID is not affected.

The name argument is a pointer to the name of the file to be executed. The pointers argl(0},
argll] ... address null-terminated strings. Conventionally argl0] is the name of the file.

From C, two interfaces are available. Exec!is useful when a known file with known arguments
is being called; the arguments to exec/ are the character strings constituting the file and the
arguments; the first argument is conventionally the same as the file name (or its last com-
ponent). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argvlargc] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an **="", and a null-terminated value. The array of pointers is ter-
minated by a null pointer. The shell sh(1) passes an environment entry for each global shell
variable defined when the program is called. See environ(5) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global cell environ, which
is used by execv and exec! to pass the environment to any subprograms executed by the current

7th Edition -1

EXEC(2) EXEC (2)

FILES

program. The exec routines use lower-level routines as follows to pass an environment expli-
citly:

execle(file, arg0, argl, . . ., argn, 0, environ);

execve(file, argv, environ);

Execlp and execvp are called with the same arguments as exec!/ and execv, but duplicate the
shell’s actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO

fork(2), environ(5)

DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5)), if maximum memory is exceeded, or if the arguments require too much space,
a return constitutes the diagnostic; the return value is —1. Even for the super-user, at least
one of the execute-permission bits must be set for a file to be executed.

If execvp is called to execute a file that turns out to be a shell command file, and if it is impossi-
ble to execute the shell, the values of argv/0/ and argv/~—1] will be modified before return.

ASSEMBLER

(exec = 11.)
SYs exec; name; argyv

(exece = 59.)
SYS exece; name; argv; envp
Plain exec is obsoleted by exece, but remains for historical reasons.

When the called file starts execution on the PDP11, the stack pointer points to a word contain-
ing the number of arguments. Just above this number is a list of pointers to the argument
strings, followed by a null pointer, followed by the pointers to the environment strings and then
another null pointer. The strings themselves follow; a 0 word is left at the very top of memory.

Sp— nargs
arg0
argn
0
env(

envm
0
arg0: <argO\0>
env0: < envO\0>
0

On the Interdata 8/32, the stack begins at a conventional place (currently 0xD0000) and grows
upwards. After exec, the layout of data on the stack is as follows.

int 0
arg0: byte

argp0: int arg0

7th Edition 2

EXEC(2) EXEC(2)

int 0
envpd: int envl
int 0
%2— space 40
int nargs
int argp0
int envp0

%3—
This arrangement happens to conform well to C calling conventions.

7th Edition 3

EXIT (2) ' EXIT (2)

NAME

exit — terminate process

SYNOPSIS
exit(status)
int status;

_exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a process. Exit closes all the process’s files and notifies
the parent process if it is executing a wait. The low-order 8 bits of status are available to the
parent process.

This call can never return.

The C function exit may cause cleanup actions before the final ‘sys exit’. The function _exit cir-
cumvents all cleanup.

SEE ALSO
wait(2)

ASSEMBLER
(exit = 1.)
(status in r0)
SYSs exit

7th Edition 1

FORK (2) FORK (2)

NAME
fork — spawn new process

SYNOPSIS
fork ()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller of fork. The only distinction is the fact that the value returned in the old (parent)
process contains the process ID of the new (child) process, while the value returned in the
child is 0. Process ID’s range from 1 to 30,000. This process ID is used by wait(2).

Files open before the fork are shared, and have a common read-write pointer. In particular,
this is the way that standard input and output files are passed and also how pipes are set up.

SEE ALSO ’
wait(2), exec(2)

~ DIAGNOSTICS

Returns —1 and fails to create a process if: there is inadequate swap space, the user is not
super-user and has too many processes, or the system’s process table is full. Only the super-
user can take the last process-table siot.

ASSEMBLER
(fork = 2.)
sys fork
(new process return)
(old process return, new process ID in r0)

The return locations in the old and new process differ by one word. The C-bit is set in the old
process if a new process could not be created.

7th Edition 1

GETPID (2) GETPID (2)

NAME
getpid — get process identification

SYNOPSIS
getpid()

DESCRIPTION)
Getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.

SEE ALSO
mktemp(3)

ASSEMBLER
(getpid = 20.)
sys getpid
(pid in r0)

7th Edition 1

GETUID (2) | GETUID (2)

NAME
getuid, getgid, geteuid, getegid — get user and group identity

SYNOPSIS
getuid()
geteuid()
getgid()
getegid()
DESCRIPTION
Getuid returns the real user ID of the current process, gereuid the effective user ID. The real
user ID identifies the person who is logged in, in contradistinction to the effective user ID;

which determines his access permission at the moment. It is thus useful to programs which
operate using the ‘set user ID’ mode, to find out who invoked them.

Getgid returns the real group ID, getegid the effective group ID.

SEE ALSO
setuid(2)

ASSEMBLER
(getuid = 24.)
sys getuid
(real user ID in 10, effective user ID in r1)

(getgid = 47.)
sys getgid -
(real group ID in 10, effective group ID in rl)

7th Edition 1

INDIR (2) ' ' INDIR (2)

NAME

indir — indirect system call
ASSEMBLER

(indir = 0.)

sys indir; call
The system call at the location call is executed. Execution resumes after the indir call.

The main purpose of indir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a
system call, indir returns error code EINVAL; see intro(2).

7th Edition

IOCTL (2) ' IOCTL (2)

NAME
ioctl, stty, gtty — control device

SYNOPSIS
#include <sgtty.h>

ioctl(fildes, request, argp)
struct sgttyb *argp;
stty (fildes, argp)
struct sgttyb *argp;
gtty(fildes, argp)
struct sgttyb *argp:
DESCRIPTION ,
loctl performs a variety of functions on character special files (devices). The writeups of vari-
ous devices in section 4 discuss how ioct/ applies to them.
For certain status setting and status inquiries about terminal devices, the functions sty and gry
are equivalent to

ioctl(fildes, TIOCSETP, argp)
iocti(fildes, TIOCGETP, argp)

respectively; see my(4).
The following two calls, however, apply to any open file:

ioctl(fildes, FIOCLEX, NULL);
ioctl(fildes, FIONCLEX, NULL);

The first causes the file to be closed automatically during a successful exec operation; the
second reverses the effect of the first.

SEE ALSO
stty(1), tty(4), exec(2)

DIAGNOSTICS
Zero is returned if the call was successful; —1 if the file descriptor does not refer to the kind of
file for which it was intended.

BUGS

Strictly speaking, since ioct/ may be extended in different ways to devices with different proper-

ties, argp should have an open-ended declaration like

union { struct sgttyb ...; ... } *argp;

The important thing is that the size is fixed by ‘struct sgttyb’.
ASSEMBLER

(ioctl = 54.)

sys ioctl; fildes; request; argp

(stty = 31.)

(file descriptor in r0)

stty; argp

{gtty = 32.)

(file descriptor in r0)
Sys gtty; argp

7th Edition 1

KILL (2) KILL (2)

NAME
kill — send signal to a process

SYNOPSIS
kill(pid, sig);

DESCRIPTION
Kill sends the signal sig to the process specified by the process number in r0. See signal(2) for
a list of signals.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user.

If the process number is 0, the signal is sent to all other processes in the sender’s process
group; see ny(4).

If the process number is —1, and the user is the super-user, the signal is broadcast universally
except to processes 0 and 1, the scheduler and initialization processes, see init(8).

Processes may send signals to themselves.

SEE ALSO
signal(2), kill(1)

DIAGNOSTICS
Zero is returned if the process is killed; —1 is returned if the process does not have the same
effective user ID and the user is not super-user, or if the process does not exist.

ASSEMBLER
(kill = 37.)
(process number in r0)
sys kill; sig

7th Edition 1

LINK (2) LINK (2)

NAME
link — link to a file

SYNOPSIS
link(namel, name2)
char *namel, *name2;

DESCRIPTION
A link to namel is created; the link has the name name2. Either name may be an arbitrary path
name.

SEE ALSO
In(1), unlink(2)

DIAGNOSTICS .
Zero is returned when a link is made; —1 is returned when namel cannot be found: when
nameZ already exists; when the directory of name2 cannot be written; when an attempt is made
to link to a directory by a user other than the super-user: when an attempt is made to link to a
file on another file system; when a file has too many links.

ASSEMBLER
(link = 9.)
sys link; namel; name2

7th Edition 1

LOCK (2) LOCK (2

NAME
lock — lock a process in primary memory

SYNOPSIS
lock (flag)

DESCRIPTION
If the flag argument is non-zero, the process executing this call will not be swapped except if it
is required to grow. If the argument is zero, the process is unlocked. This call may only be ex-
ecuted by the super-user. '

BUGS
Locked processes interfere with the compaction of primary memory and can cause deadiock
This system call is not considered a permanent part of the system.

ASSEMBLER
(lock = 53.)
sys lock; flag

7th Edition

LSEEK (2) LSEEK (2)

NAME
Iseek, tell — move read/write pointer

SYNOPSIS
long Iseek (fildes, offset, whence)
long offset;

long tell(fildes)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

If whence is 0, the pointer is set to offser bytes.
If whence is 1, the pointer is set to its current location plus offser.
If whenée is 2, the pointer is set to the size of the file plus offser.
The returned value is the resulting pointer location.
The obsolete function rell(fildes) is identical to Iseek(fildes, OL, 1).

Seeking far beyond the end of a file, then writing, creates a gap or ‘hole’, which occupies no
physical space and reads as zeros.

SEE ALSO
open(2), creat(2), fseek(3)

DIAGNOSTICS
—1 is returned for an undefined file descriptor, seek on a pipe, or seek to a position before the
beginning of file.

BUGS
Lseek is a no-op on character special files.

ASSEMBLER
(Iseek = 19.)
(file descriptor in r0)
sys Iseek; offsetl; offset2; whence

Offset! and offSer2 are the high and low words of offset; rO and rl contain the pointer upon re-
turn.

7th Edition - 1

MKNOD (2) MKNOD (2)

NAME
mknod — make a directory or a special file

SYNOPSIS
mknod(name, mode, addr)
char *name;:

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to by name. The
mode of the new file (including directory and special file bits) is initialized from mode. (The
protection part of the mode is modified by the process’s mode mask; see umask(2)). The first
block pointer of the i-node is initialized from addr. For ordinary files and directories addr is
normally zero. In the case of a special file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir (1), mknod(1), filsys(5)

DIAGNOSTICS
Zero is returned if the file has been made; —1 if the file already exists or if the user is not the
Super-user.

ASSEMBLER
(mknod = 14.)
sys mknod; name; mode; addr

7th Edition 1

MOUNT (2) MOUNT (2)

NAME

mount, umount — mount or remove file system

SYNOPSIS

mount(special, name, rwflag)
char *special, *name;

umount (special)
char *special;

DESCRIPTION

Mount announces to the system that a removable file system has been mounted on the block-
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings con-
taining the appropriate path names.

Name must exist already. Name must be a directory (unless the root of the mounted file system
is not a directory). Its old contents are inaccessible while the file system is mounted. '

The rwflag argument determines whether the file system can be written on; if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys-
tems must be mounted read-only or errors will occur when access times are updated, whether
or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

SEE ALSO

mount(1)

DIAGNOSTICS

Mount returns 0 if the action occurred; —1 if special is inaccessible or not an appropriate file; if
name does not exist; if special is already mounted; if name is in use: or if there are already too
many file systems mournted.

Umount returns 0 if the action occurred; —1 if if the special file is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.

ASSEMBLER

(mount = 21.)
sys mount; special; name; rwflag

(umount = 22.)
sys umount; special

7th Edition 1

MPX (2) MPX (2)

NAME
mpx — create and manipulate multiplexed files

SYNOPSIS
mpx(name, access) char *name;

join(fd, xd)
chan(xd)

extract(i, xd)
attach(i, xd)
detach(i, xd)
connect(fd, cd, end)
npgrp(i, xd, pgrp)
ckill(i, xd, signal)

##include <sys/mx.h>
mpxcall(cmd, vec)
int *vec;
DESCRIPTION
mpxcall{(cmd, vec) is the system call shared by the library routines described below. Cmd

selects a command using values defined in <sys/mx.h>. Vecis the address of a structure con-
taining the arguments for the command.

mpx(name, access)

Mpx creates and opens the file name with access permission access (see creat(2)) and returns a
file descriptor available for reading and writing. A —1 is returned if the fiie cannot be created,
if name already exists, or if the file table or other operating system data structures are full. The
file descriptor is required for use with other routines.

If name designates a null string, a file descriptor is returned as described but no entry is created
in the file system.

Once created an mpx file may be opened (see open(2)) by any process. This provides a form of
interprocess communication whereby a process B can ‘call’ process A by opening an mpx file
created by A. To B, the file is ordinary with one exception: the conrect primitive could be
applied to it. Otherwise the functions described below are used only in process A and descen-
dants that inherit the open mpx file.

When a process opens an mpx file, the owner of the file receives a control message when the
file is next read. The method for ‘answering’ this kind of call involves using attach and detach
as described in more detail below.

Once B has opened A’s mpx file it is said to have a channel to A. A channel is a pair of data
streams: in this case, one from B to A and the other from A to B. Several processes may open
the same mpx file yielding multiple channels within the one mpx file. By atcessing the
appropriate channel, A can communicate with B and any others. When A reads (see read(2))
from the mpx file data written to A by the other processes appears in A’s buffer using a record
format described in mpxio(5). When A writes (see write(2)) on its mpx file the data must be
formatted in a similar way.

The following commands are used to manipulate mpx files and channels.

Join— adds a new channel on an mpx file to an open file F. 1/0 on the new channel is
[/0 on F.
chan— creates a new channel.

7th Edition 1

MPX (2) MPX (2)

extract— file descriptor maintenance.

connect— similar to join except that the open file F is connected to an existing channel.
attach and detach— used with call protocol.

npgrp— manipulates process group numbers so that a channel can act as a control ter-
minal (see ry(4)).

ckill— send signal (see signal/(2)) to process group through channel.

A maximum of 15 channels may be connected to an mpx file. They are numbered 0 through
14. Join may be used to make one mpx file appear as a channel on another mpx file. A hierar-
chy or tree of mpx files may be set up in this way. In this case one of the mpx files must be
the root of a tree where the other mpx files are interior nodes. The maximum depth of such a
tree is 4.

An index is a 16-bit value that denotes a location in an mpx tree other than the root: the path
through mpx ‘nodes’ from the root to the location is expressed as a sequence of 4-bit nibbles.
The branch taken at the root is represented by the low-order 4-bits of an index. Each succeed-
ing branch is specified by the next higher-order nibble. If the length of a path to be expressed
is less than 4, then the illegal channel number, 15, must be used to terminate the sequence.
This is not strictly necessary for the simple case of a tree consisting of only a root node: its
channels can be expressed by the numbers O through 14. An index iand file descriptor xd for
the root of an mpx tree are required as arguments to most of the commands described below.
Indices also serve as channel identifiers in the record formats given in mpxio(5). Since -1 is not
a valid index, it can be returned as a error indication by subroutines that normally return
indices.

The operating system informs the process managing an mpx file of changes in the status of
channels attached to the file by generating messages that are read along with data from the
channels. The form and content of these messages is described in mpxio(5).

join(fd, xd) establishes a connection (channel) between an mpx file and another object. Fdis
an open file descriptor for a character device or an mpx file and xd is the file descriptor of an
mpx file. Join returns the index for the new channel if the operation succeeds and —1 if it
does not.

Following join, fd may still be used in any system call that would have been meaningful before
the join operation. Thus a process can read and write directly to fd as well as access it via xd. If
the number of channels required for a tree of mpx files exceeds the number of open files per-
mitted a process by the operating system, some of the file descriptors can be released using the
standard close(2) call. Following a close on an active file descriptor for a channel or internal
mpx node, that object may still be accessed through the root of the tree.

chan(xd) allocates a channel and connects one end of it to the mpx file represented by file
descriptor xd. Chan returns the index of the new channel or a —1 indicating failure. The
extract primitive can be used to get a non-multiplexed file descriptor for the free end of a chan-
nel created by chan.

Both chan and join operate on the mpx file specified by xd. File descriptors for interior nodes
of an mpx tree must be preserved or reconstructed with extract for use with join or chan. For
the remaining commands described here, xd denotes the file descriptor for the root of an mpx
tree.

Extract(i, xd) returns a file descriptor for the object with index i/ on the mpx tree with root file
descriptor xd. A —1 is returned by extract if a file descriptor is not available or if the arguments
do not refer to an existing channel and mpx file.

attach(i, xd)
detach(i, xd). If a process A has created an mpx file represented by file descriptor xd, then a
process B can open (see open(2)) the mpx file. The purpose is to establish a channel between

7th Edition 2

MPX (2) MPX (2)

FILES

A and B through the mpx file. Atach and Detach are used by A to respond to such opens.

An open request by B fails immediately if a new channel cannot be allocated on the mpx file, if
the mpx file does not exist, or if it does exist but there is no process (A) with a multiplexed file
descriptor for the mpx file (i.e. xd as returned by mpx(2)). Otherwise a channel with index
number /is allocated. The next time A reads on file descriptor xd, the WATCH control mes-
sage (see mpxio(5)) will be delivered on channel i A responds to this message with artach or
detach. The former causes the open to complete and return a file descriptor to B. The latter
deallocates channel /and causes the open to fail.

One mpx file may be placed in ‘listener’ mode. This is done by writing ioct/(xd, MXLSTN, 0)
where xd is an mpx file descriptor and MXLSTN is defined in /usr/include/sgtty.h. The semantics
of listener mode are that all file names discovered by open(2) to have the syntax
system!pathname (see uucp(1)) are treated as opens on the mpx file. The operating system
sends the listener process an OPEN message (see mpxio(5)) which includes the file name being
opened. Atrach and detach then apply as described above.

Detach has two other uses: it closes and releases the resources of any active channel it is applied
to, and should be used to respond to a CLOSE message (see mpxio(5)) on a channel so the
channel may be reused.

connect(fd, cd, end). Fdis a character file descriptor and cd is a file descriptor for a channel,
such as might be obtained via extmract(chan(xd), xd) or by open(2) followed by attach. Connect
splices the two streams together. If end is negative, only the output of fd is spliced to the input
of cd. If end is positive, the output of cd is spliced to the input of fd If endis zero, then both
splices are made.

npgrp(i, xd, pgrp). If xd is negative npgrp applies to the process executing it, otherwise / and
xd are interpreted as a channel index and mpx file descriptor and npgrp is applied to the process
on the non-multiplexed end of the channel. If pgrp is zero, the process group number of the
indicated process is set to the process number of that process, otherwise the value of pErp is
used as the process group number.

Npgrp normally returns the new process group number. If jand xd specify a nonexistant chan-
nel, npgrp returns —1.

ckill(i, xd, signal) sends the specified signal (see signa/(2)) through the channel specified by i
and xd. If the channel is connected to anything other than a process, ckill is a null operation. If
there is a process at the other end of the channel, the process group will be interrupted (see sig-
nal(2), kill(2)). Ckill normally returns signal. If ch and xd specify a nonexistent channel, ckill
returns —1.

/usr/include/sys/mx.h
/usr/include/sgtty.h

SEE ALSO

BUGS

mpxio(5)

Mpx files are an experimental part of the operating system more subject to change and prone to
bugs than other parts. Maintenance programs, e.g. icheck(1), diagnose mpx files as an illegal
mode. Channels may only be connected to objects in the operating system that are accessible
through the line discipline mechanism. Higher performace line disciplines are needed. The
maximum tree depth restriction is not really checked. A non-destructive disconnect primitive
(inverse of connect) is not provided. A non-blocking flow control strategy based on messages
defined in mpxio(S) should not be attempted by novices; the enabling ioct/ command should be
protected. The join operation could be subsumed by connect. A mechanism is needed for mov-
ing a channel from one location in an mpx tree to another.

7th Edition 3

NICE (2) : NICE (2)

NAME
nice — set program priority

SYNOPSIS
nice{incr)

DESCRIPTION '
The scheduling priority of the process is augmented by incr. Positive priorities get less service
than normal. Priority 10 is recommended to users who wish to execute long-running programs
without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to
the range —20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a privileged process to
return to normal priority from an unknown state, nice should be called successively with argu-
ments —40 (goes to priority —20 because of truncation), 20 (to get to 0), then 0 (to maintain
compatibility with previous versions of this call).

SEE ALSO
nice(1)

ASSEMBLER
(nice = 34.)
(priority in r0)
Sys nice

Tth Edition 1

OPEN (2) V OPEN(2)

NAME
open — open for reading or writing

SYNOPSIS
open(name, mode)
char *name;

DESCRIPTION :
Open opens the file name for reading (if mode is 0), writing (if mode is 1) or for both reading
and writing (if mode is 2). Name is the address of a string of ASCIH characters representing a
path name, terminated by a null character.

The file is positioned at the beginning (byte 0). The returned file descriptor must be used for
subsequent calls for other input-output functions on the file.

SEE ALSO .
creat(2), read(2), write(2), dup(2), close(2)

DIAGNOSTICS
The value —1 is returned if the file does not exist, if one of the necessary directories does not
exist or is unreadable, if the file is not readable (resp. writable), or if too many files are open.

ASSEMBLER
(open = 5.)
sys open; name; mode
(file descriptor in r0)

7th Edition 1

PAUSE (2) PAUSE(2)

NAME
pause — stop until signal

SYNOPSIS
pause()

DESCRIPTION
Pause never returns normally. It is used to give up control while waiting for a signal from
kill(2) or alarm(2). :

SEE ALSO
kill(1), kill(2), alarm(2), signal(2), setjmp(3)

ASSEMBLER
(pause = 29.)
Sys pause

i

=5

7th Edition 1

PHYS (2) PHYS(2)

NAME
phys — allow a process to access physical addresses

SYNOPSIS
phys(segreg, size, physadr)

DESCRIPTION
The argument segreg specifies a process virtual (data-space) address range of 8K bytes starting
at virtual address segregx8K bytes. This address range is mapped into physical address phy-

sadrx64 bytes. Only the first sizex64 bytes of this mapping is addressable. If size is zero, any
previous mapping of this virtual address range is nullified. For example, the call

phys(6, 1, 0177775);

will map virtual addresses 0160000-0160077 into physical addresses 017777500-017777577. In
particular, virtual address 0160060 is the PDP-11 console located at physxcal address 017777560.

This call may only be executed by the super-user

SEE ALSO
PDP-11 segmentation hardware

DIAGNOSTICS
The function value zero is returned if the physical mapping is in effect. The value —1 is re-
turned if not super-user, if segreg is not in the range 0-7, if size is not in the range 0-127, or if
the specified segreg is already used for other than a previous call to phys.

BUGS .
This system call is obviously very machine dependent and very dangerous. This system call is
not considered a permanent part of the system.
ASSEMBLER
(phys = 52.)
sys phys; segreg; size; physadr

7th Edition local |

PIPE (2) PIPE (2)

NAME
pipe — create an interprocess channel

SYNOPSIS
pipe(fildes)
int fildesl2];

DESCRIPTION
The pipe system call creates an I/0 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fildes(1] up
to 4096 bytes of data are buffered before the writing process is suspended. A read using the
descriptor fildes[0] will pick up the data. Writes with a count of 4096 bytes or less are atomic;
no other process can intersperse data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

SEE ALSO
sh(1), read(2), write(2), fork(2)

DIAGNOSTICS
The function value zero is returned if the pipe was created; —1 if too many files are already
open. A signal is generated if a write on a pipe with only one end is attempted.

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

ASSEMBLER
(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in rl) .

7th Edition . i

PKON(2) PKON (2)

NAME
pkon, pkoff — establish packet protocol

SYNOPSIS
pkon(fd, size)

pkoff(fd)

DESCRIPTION
Pkon establishes packet protocol (see pk(4)) on the open character special file whose file
descriptor is fd. Size is a desired packet size, a power of 2 in the range 32< size<4096. The size
is negotiated with a remote packet driver, and a possibly smaller actual packet size is returned.

An asynchronous line used for packet communication should be in raw mode; see 1y (4).
Pkoff turns off the packet driver on the channel whose file descriptor is fd.

SEE ALSO
pk(4), pkopen(3), tty(4), signal(2)

DIAGNOSTICS
Pkon returns —1 if fd does not describe an open file, or if packet communication cannot be
established.

Pkoff returns —1 for an unknown file descriptor.

Writing on a packet driver link that has been shut down by close or pkoffat the other end raises
signal SIGPIPE in the writing process.

7th Edition deprecated 1

PROFIL (2) PROFIL (2)

NAME
profil — execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION ;
Buyff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (60th second); offset is subtracted from
it, and the result multiplied by scale. If the resulting number corresponds to a word inside buff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
0177777(8) gives a 1-1 mapping of pc’s to words in buff: 077777(8) maps each pair of instruc-
tion words together. 02(8) maps all instructions onto the beginning of suff (producing a non-
interrupting core clock). '

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an exec is executed, but remains on in child and parent both
after a fork. Profiling may be turned off if an update in byf would cause a memory fault.

SEE ALSO

monitor(3), prof(1) .
ASSEMBLER

(profil = 44.)

sys profil; buff; bufsiz; offset; scale

7th Edition 1

PTRACE (2) PTRACE (2)

NAME

ptrace — process trace

SYNOPSIS

#include <signal.h>

ptrace(request, pid, addr, data)
int *addr;

DESCRIPTION

Prrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of break-
point debugging. There are four arguments whose interpretation depends on a request argu-
ment. Generally, pid is the process ID of the traced process, which must be a child (no more
distant descendant) of the tracing process. A process being traced behaves normally until it
encounters some signal whether internally generated like ‘illegal instruction’ or externally gen-
erated like ‘interrupt.’ See signal/(2) for the list. Then the traced process enters a stopped state
and its parent is notified via wait(2). When the child is in the stopped state, its core image can
be examined and modified using prrace. If desired, another pirace request can then cause the
child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process’s address space at addr is returned. If I and D space are
separated, request 1 indicates I space, 2 D space. Addr must be even. The child must be
stopped. The input daza is ignored.

3 The word of the system’s per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other mformatxon
about the process; its layout corresponds to the wser structure in the system.

4,5 The given dara is written at the word in the process’s address space corresponding to addr,
which must be even. No useful value is returned. If I and D space are separated, request
4 indicates I space, 5 D space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process’s system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

7 The dara argument is taken as a signal number and the child’s execution continues at loca-
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process’s image indicating which signal caused the stop. If addris (int *)1 then execu-
tion continues from where it stopped.

The traced process terminates.

Execution continues as in request 7; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the PDP-11 the T-bit is used and just one instruction is executed; on the
Interdata the stop does not take place until a store instruction is executed.) This is part of
the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wair call is used to determine when a process stops; in such a case the ‘termina-
tion’ status returned by wait has the value 0177 to indicate stoppage rather than genuine

7th Edition 1

PTRACE (2) PTRACE (2)

termination.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If
a traced process calls exec, it will stop before executing the first instruction of the new image
showing signal SIGTRAP.

On the Interdata 8/32, ‘word’ means a 32-bit word and ‘even’ means 0 mod 4.

SEE ALSO

wait(2), signal(2), adb(1)

DIAGNOSTICS

The value —1 is returned if request is invalid, pid is not a traceable process, addr is out of
bounds, or data specifies an illegal signal number.

BUGS)
On the Interdata 8/32, ‘as soon as possible’ (request 7) means ‘as soon as a store instruction
has been executed.’
The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use ‘ille-
gal instruction’ signals at a very high rate) could be efficiently debugged.
The error indication, —1, is a legitimate function value; errno, see intro(2), can be used to
disambiguate.
It should be possibie to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

ASSEMBLER

(ptrace = 26.)

(data in 10)

sys ptrace; pid; addr; request
(value in r0)

7th Edition 2

i

READ (2) | READ (2)

NAME
read — read from file

SYNOPSIS
read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup, or pipe call. Buffer is the
location of nbytes contiguous bytes into which the input will be placed. It is not guaranteed that
all nbytes bytes will be read; for example if the file refers to a typewriter at most one line will be
returned. In any event the number of characters read is returned.

If the returned value is 0, then end-of-file has been reached.

SEE ALSO :
open(2), creat(2), dup(2), pipe(2)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was other-
wise unsuccessful the return value is —1. Many conditions can generate an error: physical I/0
errors, bad buffer address, preposterous nbytes, file descriptor not that of an input file.

ASSEMBLER
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes
(byte count in r0)

7th Edition 1

SETUID (2) SETUID (2)

NAME
setuid, setgid — set user and group ID

SYNOPSIS
setuid (uid)

setgid(gid)
DESCRIPTION
The user ID (group ID) of the current process is set to the argument. Both the effective and

the real ID are set. These calls are only permitted to the super-user or if the argument is the
real ID. :

SEE ALSO
getuid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; —1 is returned otherwise.

ASSEMBLER
(setuid = 23.)
(user ID in r0)
sys setuid

(setgid = 46.)
(group ID in r0)
sys setgid

o

7th Edition 1

SIGNAL (2) SIGNAL (2)

NAME
signal — catch or ignore signals

SYNOPSIS
#include <signal.h>

(*signal(sig, func)) O
(*func) O ;

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at a typewriter (quit, in-
terrupt), by a program error (bus error, etc.), or by request of another program (kill). Normal-
ly all signals cause termination of the receiving process, but a signal call allows them either to
be ignored or to cause an interrupt to a specified location. Here is the list of signals with names
as in the include file.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* jllegal instruction (not reset when caught)
SIGTRAP 5* trace trap (not reset when caught)
SIGIOT 6* 10T instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe or link with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
16 unassigned

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termination,
sometimes with a core image. If func is SIG_IGN the signal is ignored. Otherwise when the
signal occurs finc will be called with the signal number as argument. A return from the func-
tion will continue the process at the point it was interrupted. Except as indicated, a signal is
reset to SIG_DFL after being caught. Thus if it is desired to catch every such signal, the catch-
ing routine must issue another signal call.

When a caught signal occurs during certain system calls, the call terminates prematurely. In
particular this can occur during a read or write(2) on a slow device (like a typewriter; but not a
file); and during pause or wait(2). When such a signal occurs, the saved user status is arranged
in such a way that when return from the signal-catching takes place, it will appear that the sys-
tem call returned an error status. The user’s program may then, if it wishes, re-execute the
call.

The value of signalis the previous (or initial) value of func for the particular signal.
After a fork(2) the child inherits all signals. Exec(2) resets all caught signals to default action.

SEE ALSO
kill(1), kill(2), ptrace(2), setimp(3)

DIAGNOSTICS

7th Edition 1

SIGNAL(2) SIGNAL (2)

The value (int) —1 is returned if the given signal is out of range.

BUGS
If a repeated signal arrives before the last one can be reset, there is no chance to catch it.

The type specification of the routine and its func argument are problematical.

ASSEMBLER
(signal = 48.)
sys signal; sig; label
(old label in r0)

If labelis 0, default action is reinstated. If labelis odd, the signal is ignored. Any other even
label specifies an address in the process where an interrupt is simulated. An RTI or RTT in-
struction will return from the interrupt.

7th Edition _ 2

STAT (2) STAT (2)

NAME
stat, fstat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

stat(name, buf)
char *name;
struct stat *buf;

fstat(fildes, buf)
struct stat *buf;
DESCRIPTION

Star obtains detailed information about a named file. Fszar obtains the same information about
an open file known by the file descriptor from a successful open, creat, dup or pipe(2) call.

Name points to a null-terminated string naming a file; bufis the address of a buffer into which
information is placed concerning the file. It is unnecessary to have any permissions at all with
respect to the file, but all directories leading to the file must be searchable. The layout of the
structure pointed to by buf as defined in <star.h> is given below. St mode is encoded accord-
ing to the ‘#define’ statements.

struct stat

dev_t st_dev;
ino_t st_ino;
unsigned short st_mede;
short st_nlink;
short st_uid;
short st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

I

#defineS_IFMT 0170000 /* type of file */

#define S_IFDIR 0040000 /* directory */

#define S_IFCHR 0020000 /* character special */

#define S_IFBLK 0060000 /* block special */

#define S_IFREG 0100000 /* regular */

#define S_IFMPC 0030000 /* multiplexed char special */

#define S_IFMPB 0070000 /* multiplexed block special */
#defineS_ISUID 0004000 /* set user id on execution */
#defineS_ISGID 0002000 /* set group id on execution */
#defineS_ISVTX 0001000 /* save swapped text even after use */
#defineS_IREAD 0000400 /* read permission, owner */
#defineS_IWRITE 0000200 /* write permission, owner */
#defineS_IEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).
The defined types, ino_t, off t time_t, name various width integer values; dev_r encodes major
and minor device numbers; their exact definitions are in the include file <sys/types.h> (see
wpes(5).

7th Edition 1

STAT (2) STAT (2)

When fildes is associated with a pipe, fstar reports an ordinary file with restricted permissions.
The size is the number of bytes queued in the pipe.

st_atime is the file was last read. For reasons of efficiency, it is not set when a directory is
searched, although this would be more logical. st_mtime is the time the file was last written or
created. It is not set by changes of owner, group, link count, or mode. st _ctime is set both
both by writing and changing the i-node.

SEE ALSQO
1s(1), filsys(5)

DIAGNOSTICS '
Zero is returned if a status is available; —1 if the file cannot be found.

ASSEMBLER
(stat = 18.)
sys stat; name; buf

(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

7th Edition 2

STIME (2) STIME (2)

NAME
) stime — set time

SYNOPSIS
stime(tp)
long *tp;

DESCRIPTION

Stime sets the system’s idea of the time and date. Time, pointed to by tp, is measured in
seconds from 0000 GMT Jan 1, 1970. Only the super-user may use this call.

SEE ALSO
date(1), time(2), ctime(3)

DIAGNOSTICS .
Zero is returned if the time was set; —1 if user is not the super-user.

ASSEMBLER
(stime = 25.)
(time in r0-r1)
sys stime

7th Edition ’ 1

SYNC(2) SYNC(2)

NAME
sync — update super-block

SYNOPSIS
sync()

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This in-
cludes modified super blocks, modified i-nodes, and delayed block 1/0.

It should be used by programs which examine a file system, for example icheck, df, etc. It is
mandatory before a boot.

SEE ALSO
sync(1), update(8)
BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

ASSEMBLER
(sync = 36.)
Sys sync

7th Edition 1

TIME (2) TIME (2)

NAME
time, ftime — get date and time

SYNOPSIS
long time(0)

long time(tloc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)

struct timeb *tp;

DESCRIPTION

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If doc is nonnull, the return value is also stored in the place to which tloc points.

The ftime entry fills in a structure pointed to by its argument, as defined by <sys#imeb.h> :

/* -
* Structure returned by ftime system call
*/
struct timeb {

time_t time;

unsigned short millitm;

short timezone;

short dstflag;
k
The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-
precise interval, the local timezone (measured in minutes of time westward from Greenwich),
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date(1), stime(2), ctime(3)

ASSEMBLER
(ftime = 35.)
sys ftime; bufptr

(time = 13.; obsolete call)
sys time
(time since 1970 in r0-rl1)

7th Edition 1

TIMES (2) TIMES (2)

NAME
times — get process times

SYNOPSIS
times (buffer)
struct tbuffer *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/HZ seconds, where HZ=60 in North
America.

After the call, the buffer will appear as follows:

struct tbuffer {
long proc_user_time;
long proc_system_time;
long child_user_time;
long child_system_time;
k
The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time(1), time(2)

ASSEMBLER
(times = 43.)
sys times; buffer

7th Edition « 1

UMASK (2) UMASK (2)

NAME

umask — set file creation mode mask
SYNOPSIS

umask (complmode)
DESCRIPTION

Umask sets a mask used whenever a file is created by crear(2) or mknod(2): the actual mode
(see chmod(2)) of the newly-created file is the logical and of the given mode and the comple-
ment of the argument. Only the low-order 9 bits of the mask (the protection bits) participate.
In other words, the mask shows the bits to be turned off when files are created.

The previous value of the mask is returned by the call. The value is initially 0 (no restric-
tions). The mask is inherited by child processes.)

SEE ALSO» .

creat(2), mknod(2), chmod(2)
ASSEMBLER

(umask = 60.)

sys umask; complmode

7th Edition 1

UNLINK (2) UNLINK (2)

NAME
unlink — remove directory entry

SYNOPSIS
unlink (name)
char *name;

DESCRIPTION
Name points to a null-terminated string. Unlink removes the entry for the file pointed to by
name from its directory. If this entry was the last link to the file, the contents of the file are
freed and the file is destroyed. If, however, the file was open in any process, the actual des-
truction is delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm(1), link(2)
~ DIAGNOSTICS
Zero is normally returned; —1 indicates that the file does not exist, that its directory cannot be
written, or that the file contains pure procedure text that is currently in use. Write permission

is not required on the file itself. It is also illegal to unlink a directory (except for the super-
user).

ASSEMBLER
(unlink = 10.)
sys unlink; name

7th Edition 1

UTIME (2) UTIME (2)

NAME
utime — set file times

SYNOPSIS
#include <sys/types.h>
utime(file, timep)
char *file;
time_t timepl2];

DESCRIPTION ‘
The utime call uses the ‘accessed’ and ‘updated’ times in that order from the timep vector to set
the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The mode-changed’ time of the file
is set to the currem time.

SEE ALSO
stat (2)
ASSEMBLER

(utime = 30.)
sys utime; file; timep

7th Edition 1

WAIT (2) WAIT (2)

NAME

wait — wait for process to terminate

SYNOPSIS

wait(status)
int *status;

wait(0)

DESCRIPTION

Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wair, return is immediate; if there are no children, return is
immediate with the error bit set (resp. with a value of —1 returned). The normal return yields
the process ID of the terminated child. In the case of several children several wair calls are
needed to learn of all the deaths.

If (int) srarus is nonzero, the high byte of the word pointed to receives the low byte of the argu-
ment of exit when the child terminated. The low byte receives the termination status of the
process. See signal(2) for a list of termination statuses (signals); 0 status indicates normal ter-
mination. A special status (0177) is returned for a stopped process which has not terminated
and can be restarted. See prrace(2). If the 0200 bit of the termination status is set, a core im-
age of the process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (pro-
cess ID = 1) inherits the children.

SEE ALSO

exit(2), fork(2), signal(2)

DIAGNOSTICS

Returns —1 if there are no children not previously waited for.

ASSEMBLER

(wait = 7.)

sys wait

(process ID in r0)
(status in rl)

The high byte of the status is the low byte of r0 in the child at termination.

7th Edition 1

WRITE (2) WRITE (2)

NAME
write — write on a file

SYNOPSIS
write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION :
A file descriptor is a word returned from a successful open, creat, dup, or pipe(2) call.

Buffer is the address of nbyres contiguous bytes which are written on the output file. The
number of characters actually written is returned. It should be regarded as an error if this is
not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary in the file
are more efficient than any others.

SEE ALSO

creat(2), open(2), pipe(2)
DIAGNOSTICS

Returns —1 on error: bad descriptor, buffer address, or count; physical 1/0 errors.
ASSEMBLER

(write = 4.)

(file descriptor in 10)
sys write; buffer; nbytes
(byte count in r0)

7th Edition 1

INTRO (3) INTRO (3)

NAME
intro — introduction to library functions

SYNOPSIS
#include <stdio.h>

#include <math.h>
DESCRIPTION
This section describes functions that may be found in various libraries, other than those func-

tions that directly invoke UNIX system primitives, which are described in section 2. Functions
are divided into various libraries distinguished by the section number at the top of the page:

(3) These functions, together with those of section 2 and those marked (3S), constitute li-
brary libc, which is automatically loaded by the C compiler cc(1) and the Fortran com-
piler /77(1). The link editor /d(1) searches this library under the ‘—Ic’ option. Declara-
tions for some of these functions may be obtained from include files indicated on the ap-
propriate pages.

(3M) These functions constitute the math library, /ibm. They are automatically loaded as need-
ed by the Fortran compiler f77(1). The link editor searches this library under the ‘—im’
option. Declarations for these functions may be obtained from the include file
<math.h>. ’

(3S) These functions constitute the ‘standard 1/0 package’, see stdio(3). These functions are
in the library libc already mentioned. Declarations for these functions may be obtained
from the include file <stdio.h>.

(3X) Various specialized libraries have not been given distinctive captions. The files in which
these libraries are found are named on the appropriate pages.

FILES
/lib/libc.a
/lib/libm.a, /usr/lib/libm.a (one or the other)

SEE ALSO
stdio(3), nm(1), Id(1), cc(1), f77(1), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2)) is set to the value EDOM or ERANGE. The values of

’ EDOM and ERANGE are defined in the include file <mari.h>.
ASSEMBLER

In assembly language these functions may be accessed by simulating the C calling sequence.
For example, ecvt(3) might be called this way:

setd

mov $sign,-(sp)
mov $decpt,-(sp)
mov ndigit,-(sp)
movf value,-(sp)
jsr pc,_ecvt
add $14..sp

7th Edition 1

ABORT (3) | \ ABORT (3)

NAME
abort — generate 10T fault

DESCRIPTION :
Abort executes the PDP11 10T instruction. This causes a signal that normally terminates the
process with a core dump, which may be used for debugging.

SEE ALSO
adb(1), signal(2), exit(2)

DIAGNOSTICS
Usually ‘10T trap — core dumped’ from the shell.

.

<

2

7th Edition 1

ABS (3) ABS (3)

NAME
abs — integer absolute value

SYNOPSIS
abs(j)

DESCRIPTION 7
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3) for fabs

BUGS
You get what the hardware gives on the largest negative integer.

7th Edition 1

ASSERT (3X) ' ‘ ASSERT (3X)

NAME
assert — program verification

SYNOPSIS
#include <assert.h>

assert (expression)

DESCRIPTION ’
Assert is a macro that indicates expression is expected to be true at this point in the program. It
causes an exirf(2) with a diagnostic comment on the standard output when expression is false (0).
Compiling with the cc(1) option =DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
‘Assertion failed:. file fline n.’ Fis the source file and » the source line number of the assert
statement.

7th Edition | 1

@

ATOF (3) . ATOF (3)

NAME
atof, atoi, atol — convert ASCII to numbers
SYNOPSIS

double atof(nptr)

char *nptr;

atoi (nptr)

char *nptr;

long atol(nptr)

char *nptr;
DESCRIPTION

These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of
digits optionally containing a decimal point, then an optional ‘e’ or ‘E’ followed by an optionally
signed integer.

Aroi and arol recognize an optional string of tabs and spaces, then an optional sign, then a string
of digits.

SEE ALSO
scanf(3)

BUGS
There are no provisions for overflow.

7th Edition ' 1

CRYPT (3) CRYPT (3)

NAME
crypt, setkey, encrypt — DES encryption

SYNOPSIS
char *crypt(key, salt)
char *key, *salt;

setkey (key)
char *key;

encrypt(block, edflag)
char *block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search. :

The first argument to crypr is a user’s typed password. The second is a 2-character string
chosen from the set [a-zA-Z0-9./]. The salr string is used to perturb the DES algorithm in one
of 4096 different ways, after which the password is used as the key to encrypt repeatedly a con-
stant string. The returned value points to the encrypted password, in the same alphabet as the
salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided intc groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit kéy which is set into the machine.

The argument to the encrypr entry is likewise a character array of length 64 containing 0’s and
1's. The argument array is modified in place to a similar array representing the bits of the argu-
ment after having been subjected to the DES algorithm using the key set by setkey. If edflag is
0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(1), passwd(3), login(1), getpass(3)

BUGS -
The return value points to static data whose content is overwritten by each call.

7th Edition i

CTIME (3) CTIME (3)

NAME

ctime, localtime, gmtime, asctime, timezone — convert date and time to ASCII

SYNOPSIS

char *ctime(clock)
long *clock;

#include < time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)

DESCRIPTION

Ctime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a
pointer to a 26-character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT,
which is the time UNIX uses. A4scrime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:
struct tm { /* see ctime(3) */

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

b
These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11),

day of week (Sunday = 0), year — 1900, day of year (0 365), and a flag that is nonzero if day-
light saving time is in effect.

When local time is called for, the program consults the system to determine the time zone and
whether the standard U.S.A. daylight saving time adjustment is appropriate. The program
knows about the peculiarities of this conversion in 1974 and 1975; if necessary, a table for
these years can be extended.

Timezone returns the name of the time zone associated with its first argument, which is meas-
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; e.g. in Afghanistan
timezone(—(60*4+30), 0) is appropriate because it is 4:30 ahead of GMT and the string
GMT +4:30 is produced.

7th Edition 1

CTIME (3)

SEE ALSO
time(2)

BUGS
' The return values point to static data whose content is overwritten by each call.

7th Edition

CTIME (3)

5

CTYPE (3) CTYPE (3)

NAME

isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii — character
classification

SYNOPSIS
#include <ctype.h>

isalpha(c)

DESCRIPTION

These macros classify ASClI-coded integer values by table lookup. Each is a predicate return-
ing nonzero for true, zero for false. [sasciiis defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF (see stdio(3)).

isalpha ‘cis a letter
isupper ¢ is an upper case letter
islower cis a lower case letter
isdigit cis a digit
isalnum ¢ is an alphanumeric character
isspace ' cisa space, tab, carriage return, newline, or formfeed
ispunct c is a punctuation character (neither contro!l nor alphanumeric)
isprint ¢ is a printing character, code 040(8) (space) through 0176 (tilde)
iscntrl c is a delete character (0177) or ordinary control character (less than 040).
isascii cis an ASCII character, code less than 0200
SEE ALSO
ascii(7)

7th Edition 1

DBM (3X) DBM (3X)

NAME

dbminit, fetch, store, delete, firstkey, nextkey — data base subroutines

SYNOPSIS

typedef struct { char *dptr; int dsize; } datum;
dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete (key)
datum key;

datum firstkeyQ;

datum nextkey(key);
datum key; N

DESCRIPTION |

These functions maintain key/content pairs in a data base. The functions will handle very large
(a billion blocks) databases and will access a keyed item in one or two filesystem accesses. The
functions are obtained with the loader option —ldbm.

Keys and contenrs are described by the darum typedef. A darum specifies a string of dsize bytes
pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data
base is stored in two files. One file is a directory containing a bit map and has ‘.dir’ as its suffix.
The second file contains all data and has ‘.pag’ as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the
files file.dir and file.pag must exist. (An empty database is created by creating zero-length
‘.dir’ and ‘.pag’ files.)

Once open, the data stored under a key is accessed by ferch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys in
a database may be made, in an (apparently) random order, by use of firstkey and nextkey. First-
key will return the first key in the database. With any key nextkey will return the next key in
the database. This code will traverse the data base:

for(key=firstkey(); key.dptr!=NULL; key=nextkey (key))

DIAGNOSTICS

BUGS

All functions that return an inr indicate errors with negative values. A zero return indicates ok.
Routines that return a datum indicate errors with a null (0) dpr.

The ‘.pag’ file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files can-
not be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subse-
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
512 bytes). Moreover all key/content pairs that hash together must fit on a single block. Store
will return an error in the event that a disk block fills with inseparable data.

Tth Edition 1

DBM (3X) DBM (3X)

Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function, not on any-
thing interesting.

7th Edition 2

ECVT(3) ECVT (3)

NAME
ecvt, fovt, gevt — output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gevt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored in-
directly through decpr (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fevt is identical to ecvr, except that the correct digit has been rounded for Fortran F-format out-
put of the number of digits specified by ndigits.

Gevt converts the value to a null-terminated ASCII string in dufand returns a pointer to buf. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

®

7th Edition 1

END (3) END (3)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION .
These names refer neither to routines nor to locations with interesting contents. The address

of erext is the first address above the program text, edata above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break coincides with end, but many functions reset the
program break, among them the routines of b&rk(2), malloc(3), standard input/output
(stdio(3)), the profile (—p) option of cc(1), etc. The current value of the program break is
reliably returned by ‘sbrk(0)’, see brk(2).

SEE ALSO
brk(2), malloc(3)

7th Edition 1

EXP (3M) EXP (3M)

NAME
exp. log, logl0, pow, sqrt — exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow(x, y)
double x, y;

double sqrt(x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; logl0 returns the base 10 logarithm.
Pow returns x’.
Sgrt returns the square root of x.

SEE ALSO
hypot(3), sinh(3), intro(2)

DIAGNOSTICS
Exp and pow return a huge value when the correct value would overflow; errno is set to
ERANGE. Pow returns 0 and sets errno to EDOM when the second argument is negative and
non-integral and when both arguments are 0.

Log returns 0 when x is zero or negative; errno is set to EDOM.
Sgrtreturns 0 when x is negative; errno is set to EDOM.

7th Edition 1

FCLOSE (3S) FCLOSE (3S)

NAME
fclose, fllush — close or flush a stream

SYNOPSIS
#include <stdio.h>

fclose(stream)
FILE *stream;

fllush(stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

Fclose is performed automatically upon calling exit(2).

Fflush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

SEE ALSO
close(2), fopen(3), setbuf(3)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data
cannot be transferred to that file.

7th Edition ‘ 1

FERROR (3S) FERROR (3S)

NAME
fe_of, ferror, clearerr, fileno — stream status inquiries

SYNOPSIS
#include <stdio.h>

feof (stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr{(stream)
FILE *stream

fileno(stream)
FILE *stream;

DESCRIPTION
Feof returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, other-
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.
Fileno returns the integer file descriptor associated with the stream, see open(2).
These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3), open(2)

7th Edition 1

FLOOR (3M) FLOOR (3M)

NAME
fabs, floor, ceil — absolute value, floor, ceiling functions

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double(x);

DESCRIPTION _
Fabs returns the absolute value | x|

Floor returns the largest integer not greater than x.
Ceilreturns the smallest integer not less than x.

SEE ALSO
abs(3)

7th Edition 1

FOPEN (3S) FOPEN (35)

NAME
fopen, freopen, fdopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION :
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

" n

r" open for reading

" "

w" create for writing

a" append: open for writing at end of file, or create for writing

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed. .

Freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The
type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be accessed.

BUGS |
Fdopen is not portable to systems other than UNIX.

7th Edition 1

FREAD (3S) FREAD (38)

NAME
fread, fwrite — buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread(ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

fwrite(ptr, sizeof (*ptr), nitems, stream)
FILE *stream;
- DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the named in-
put stream. It returns the number of items actually read.

Fwrite appends at most nitems of data of the type of *pir beginning at ptr to the named output
stream. It returns the number of items actually written.

SEE ALSO -
read(2), write(2), fopen(3), getc(3), putc(3), gets(3), puts(3), printf(3), scanf(3)

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

7th Edition . 1

FREXP (3) FREXP (3)

NAME

frexp, Idexp, modf — split into mantissa and exponent
SYNOPSIS

double frexp(value, eptr)

double value;

int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION

Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer n such that value = x*2** n indirectly through eptr. :

Ldexp returns the quantity value*2**exp.

Modf returns the positive fractional part of vaiue and stores the integer part indirectly through
iptr.

7th Edition 1

FSEEK (3S) FSEEK (3S)

NAME
fseek, ftell, rewind — reposition a stream

SYNOPSIS
#include <stdio.h>

fseek (stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind(stream)

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offser bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungerc(3).

Frell returns the current vaiue of the offset relative to the beginning of the file associated with
the named srream. lt is measured in bytes on UNIX; on some other systems it is a magic cook-
ie, and the only foolproof way to obtain an offser for fseek.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

SEE ALSO
Iseek(2), fopen(3)

DIAGNOSTICS
Fseek returns —1 for improper seeks.

7th Edition 1

GETC (3S) : GETC (3S)

NAME
getc, getchar, fgetc, getw — get character or word from stream

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input siream.

Getchar() is identical to getc(sidin).

Fgerc behaves like gerc, but is a genuine function, not a macro; it may be used to save object
text.

Gerw returns the next word from the named input stream. It returns the constant EOF upon
end of file or error, but since that is a good integer value, feofand ferror(3) should be used to
check the success of gerw. Gerw assumes no special alignment in the file.

SEE ALSO
fopen(3), putc(3), gets(3), scanf(3), fread(3), ungetc(3)

DIAGNOSTICS
These functions return the integer constant EOF at end of file or upon read error.

A stop with message. ‘Reading bad file’, means an attempt has been made to read from a
stream that has not been opened for reading by fopen.

BUGS
The end-of-file return from gerchar is incompatible with that in UNIX editions 1-6.

Because it is implemented as a macro, gerc treats a stream argument with side effects incorrectly.
In particular, ‘getc(*f++);’ doesn’t work sensibly.

XY

W

7th Edition 1

GETENV (3) GETENV (3)

NAME
getenv — value for environment name

SYNOPSIS
char *getenv(name)
char *name;

DESCRIPTION
Getenv searches the environment list (see environ(5)) for a string of the form rname= value and
returns value if such a string is present, otherwise 0 (NULL).

SEE ALSO
environ(3), exec(2)

@

7

7th Edition 1

GETGRENT (3) GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent();

struct group *getgrgid(gid) int gid;

struct group *getgrnam(name) char *name;
int setgrent(); '
int endgrent();

DESCRIPTION

Gergrent, gegrgid and gergrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

struct group { /* see getgrent(3) */
char *gr_name;
char *gr_passwd;
int gr_gid;
char **gr_mem;
h
The members of this structure are:

gr_name
The name of the group.
gr_passwd
The encrypted password of the group.
gr_gid The numerical group-ID.
gr_mem
Null-terminated vector of pointers to the individual member names.

Gergrent simply' reads the next line while gergrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered). Each routine picks up where the others leave off
- 80 successive calls may be used to search the entire file.

A call to sergrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

FILES
/etc/group

SEE ALSO , .

getlogin(3), getpwent(3), group(5)
DIAGNOSTICS _

A null pointer (0) is returned on EOF or error.

BUGS)
All information is contained in a static area so it rmust be copied if it is to be saved.

4

7th Edition 1

GETLOGIN (3) GETLOGIN (3)

NAME
getiogin — get login name
SYNOPSIS
char *getlogin();
DESCRIPTION '

Getlogin returns a pointer to the login name as found in /erc/utmp. 1t may be used in conjunc-
tion with getrpwnam to locate the correct password file entry when the same userid is shared by
several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to first call gerfogin and if it fails, to call
getpwuid.

FILES
/etc/utmp

SEE ALSO - '
getpwent(3), getgrent(3), utmp(5)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 1

GETPASS (3) ' GETPASS (3)

NAME
getpass — read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION
Getpass reads a password from the file /dev/nry, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompr and disabling echoing. A pointer
is returned to a null-terminated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 1

GETPW (3) ~ GETPW (3)

NAME
getpw — get name from UID
SYNOPSIS
getpw (uid, buf)
char *buf;
DESCRIPTION o
Getpw searches the password file for the (numerical) wid, and fills in buf with the corresponding
line; it returns non-zero if uid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO .
getpwent(3), passwd(S)

DIAGNOSTICS
Non-zero return on error.

7th Edition i

GETPWENT (3) GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent — get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent();

struct passwd *getpwuid(uid) int uid;

struct passwd *getpwnam(name) char *name;
int setpwent();

int endpwent();

DESCRIPTION
Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
“containing the broken-out fields of a line in the password file.

struct passwd { /* see getpwent(3) */
char *pw_name;
char *pw_passwd;

int pw_uid;
int pw_gid;
int pw_quota;

char *pw_comment;
char *pw_gecos;
char *pw_dir,

char *pw_shell;

R
The fields pw_quota and pw_comment are unused; the others have meanings described in
passwd(5).

Getpwent reads the next line (opening the file if necessary); serpwent rewinds the file; endpwent
closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or un-
til EOF is encountered).

FILES
/etc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition] : 1

GETS (3S) - GETS (3S)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(s)

char *s;

char *fgets(s, n, stream)

char *s;

FILE *stream;
DESCRIPTION

Gers reads a string into s from the standard input stream stdin. The string is terminated by a
newline character, which is replaced in s by a null character. Gers returns its argument.

Fgets reads n—1 characters, or up to a newline character, whichever comes first, from the
stream into the string 5. The last character read into sis followed by a null character. Fgers re-
turns its first argument.

SEE ALSO
puts(3), getc(3), scanf(3), fread(3), ferror(3)

DIAGNOSTICS _
Gers and fgers return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, fgers keeps it, ail in the name of backward compatibility.

7th Edition : 1

HYPOT (3M)

NAME
hypot, cabs — euclidean distance

SYNOQPSIS
#include <math.h>

double hypot(x, y)
double x, y:

double cabs(z)
struct { double x, y:} z;

DESCRIPTION
Hypot and cabs return

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO
exp(3) for sgrt

7th Edition

HYPOT (3M)

JO(3M) JO(3M)

NAME

jO, j1, in, y0, ¥1, yn — bessel functions
SYNOPSIS
#include <math.h>

double jO(x)
double x:

doubie j1(x)
double x;

double jn(n, x);
double x;

double y0(x)
double x;

double y1(x)
double x;

double yn(n, x)
double x:

DESCRIPTION .
These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.)

DIAGNOSTICS

Negative arguments cause y0, y/, and yn to return a huge negative value and set errno to
EDOM.

7th Edition 1

L3TOL (3) ' L3TOL (3)

NAME
13tol, itol3 — convert between 3-byte integers and long integers

SYNOPSIS
13tel(Ip, cp, n)
long *Ip;
char *cp;
Itol3(cp, Ip, n)
char *cp;
long *1p;
DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string pointed to by ¢p into
a list of long integers pointed to by /p.

Ltol3 performs the reverse conversion from long integers (/p) to three-byte integers (cp).
These functions are useful for file-system maintenance; disk addresses are three bytes long.

SEE ALSO
filsys(5)

7th Edition PDP11 1

MALLOC (3) MALLOC (3)

NAME

malloc, free, realloc, calloc — main memory allocator

SYNOPSIS

char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelen_l, elsize;

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package. Malloc returns a
pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc, this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space found in a circular search
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls sbrk
(see break(2)) to get more memory from the system when there is no suitable space already
free.

Realloc changes the size of the block pointed to by pi to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the 'esser of the new and old
sizes. .

Realloc also works if ptr points to a block freed since the last call of malloc, realioc or calloc,
thus sequences of fiee, malloc and realloc can exploit the search strategy of malloc to do storage
compaction.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
Zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

BUGS

Malloc, realloc and calloc return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block. Malloc may be
recompiled to check the arena very stringently on every transaction; see the source code.

When realloc returns 0, the block pointed to by pir may be destroyed.

7th Edition !

MKTEMP (3) ' MKTEMP (3)

NAME
mktemp — make a unique file name

SYNOPSIS
char *mktemp(template)
char *template;

DESCRIPTION
Mktemp replaces remplate by a unique file name, and returns the address of the template. The
template should look like a file name with six trailing X's, which will be replaced with the
current process id and a unique letter.

SEE ALSO
getpid(2)

7th Edition 1

MONITOR (3) ‘ - MONITOR (3)

NAME
monitor — prepare execution profile

SYNOPSIS
monitor (lowpc, highpc, buffer, bufsize, nfunc) -
int (*lowpe) (), (*highpe) ();
short bufferl |;

DESCRIPTION
An executable program created by ‘cc —p’ automatically includes calls for monitor with default
parameters; monitor needn’t be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions; buffer
is the address of a (user supplied) array of bufsize short integers. Monitor arranges to record a
histogram of periodically sampled values of the program counter, and of counts of calls of cer-
tain functions, in the buffer. The lowest address sampled is that of /lowpc and the highest is just
below highpc. At most nafinc call counts can be kept; only calls of functions compiled with the
profiling option —p of cc(1) are recorded. For the results to be significant, especially where
there are small, heavily used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext():

monitor((int) 2, etext, buf, bufsize, nfunc);
Ftext lies just above all the program text, see end(3).
To stop execution monitoring and write the resuits on the file mon.out, use

monitor{(0);
then profl1) can be used to examine the resuits.

FILES
mon.out

SEE ALSO
prof(1), profil(2), cc(1)

7th Edition 1

MP (3X) MP (3X)

NAME
itom, madd, msub, muit, mdiv, min, mout, pow, gcd, rpow — multiple precision integer arith-
metic

SYNOPSIS
typedef struct { int len; short *val; } mint;

madd(a, b, ¢
msub(a, b, ¢
mult(a, b, ¢
mdiv(a, b, q, 1)
min(a)

mout(a)

pow(a, b, m, ¢ -
ged(a, b, ©)
rpow(a, b, ¢)
msqrt(a, b, r)
mint *a, *b, *c, *m, *q, *r;

sdiv(a, n, q, 1) ~
mint *a, *q;

short *r;

mint *itom(n)

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored using
the defined type mint. Pointers to a mint should be initialized using the function itom, which
sets the initial value to n. After that space is managed automatically by the routines.

madd, msub, mult, assign to their third arguments the sum, difference, and product, respec-
tively, of their first two arguments. mdiv assigns the quotient and remainder, respectively, to its
third and fourth arguments. sdiv is like mdiv except that the divisor is an ordinary integer.
msqrt produces the square root and remainder of its first argument. rpow calculates a raised to
the power b, while pow calculates this reduced modulo m. min andmour do decimal input and
output.

The functions are obtained with the loader option -/mp.

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

Sl
i

2

7th Edition 1

NLIST (3) NLIST (3)

NAME
nlist — get entries from name list

SYNOPSIS
#include <a.out.h>
nlist(filename, nl)
char *filename;
struct nlist nil I;

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set to 0. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

7th Edition 1

PERROR (3) ‘ PERROR (3)

NAME
perror, sys_errlist, sys_nerr — system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlistil;

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error en-
countered during a call to the system from a C program. First the argument string s is printed,
then a colon, then the message and a new-line. Most usefully, the argument string is the name
of the program which incurred the error. The error number is taken from the external variable
errno (see intro(2)), which is set when errors occur but not cleared when non-erroneous calls
are made. : '

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2)

4

7th Edition ‘ 1

PKOPEN (3) PKOPEN (3)

NAME

pkopen, pkclose, pkread, pkwrite, pkfail — packet driver simulator

SYNOPSIS

char *pkopen(fd)

pkclose(ptr)
char *ptr;

pkread (ptr, buffer, count)
char *ptr, *buffer;

pkwrite(ptr, buffer, count)
char *ptr, *buffer;

pkfailQ)

DESCRIPTION

These routines are a user-level implementation of the full-duplex end-to-end communication
protocol described in pk(4). If fdis a file descriptor open for reading and writing, pkopen carries
out the initial synchronization and returns an identifying pointer. The pointer is used as the
first parameter to pkread, pkwrite, and pkclose.

Pkread, pkwrite and pkclose behave analogously to read, write and close(2). However, a write of
zero bytes is meaningful and will produce a corresponding read of zero bytes.

SEE ALSO

pk(4), pkon(2)

DIAGNOSTICS

BUGS

Pkfail is called upon persistent breakdown of communication. Pkfail must be supplied by the
user.

Pkopen returns a null (0) pointer if packet protocol can not be éstablished.
Pkreadreturns —1 on end of file, 0 in correspondence with a 0-length write.

This simulation of pk(4) leaves something to be desired in needing special read and write rou-
tines, and in not being inheritable across calls of exec(2). Its prime use is on systems that lack
pk.

These functions use alarm(2); simultaneous use of alarm for other puposes may cause trouble.

7th Edition 1

PLOT (3X) PLOT (3X)

NAME
plot: openpl et al. — graphics interface

SYNOPSIS
openpl()

erase()

label(s) char s I;
line(x1, y1, x2, y2)
circle(x, y, r)

arc(x, y, x0, y0, x1, y1)
move(x, y)

cont(x, y)

point(x, y)
linemod(s) char sl |;
space(x0, y0, x1, y1)
closepl()

DESCRIPTION .
These subroutines generate graphic output in a relatively device-independent manner. See

plot(5) for a description of their effect. Openpl must be used before any of the others to open
the device for writing. Closepl flushes the output.

String arguments to /abel and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different outpul devices. They are obtained by the
following /d(1) options:

~—lplot device-independent graphics stream on standard output for plor(1) filters
~1300 GSI 300 terminal

—1300s GS! 300S terminal

—1450 DASI 450 terminal

—14014 Tektronix 4014 terminal

SEE ALSO
plot(5), plot(1), graph(1)

7th Edition 1

POPEN (3S) POPEN (3S)

NAME
popen, pclose — initiate I/0 to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an I/O mode, either "r" for reading or "w" for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or read
from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and a type
"w" as an output filter.

SEE ALSO
pipe(2), fopen(3), fclose(3), system(3), wait(2)

DIAGNOSTICS

Popen returns a null pointer if files or processes cannot be created, or the Shell cannot be ac-
cessed.

Pclose returns —1 if stream is not associated with a ‘popened’ command.

BUGS
Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be forestalled by careful buffer flush-
ing, e.g. with flush, see fclose(3).

7th Edition : 1

PRINTF (3S)

NAME

PRINTF (3S)

printf, fprintf, sprintf — formatted output conversion

SYNOPSIS

#include <stdio.h>

printf(format [, arg] ...)
char *format;

fprintf(stream, format [, arg] ...)
FILE *stream;
char *format;

sprintf(s, format [, arg] ...)
char *s, format;

DESCRIPTION

Printf places output on the standard output stream stdour. Fprintf places output on the named
output stream. Sprinifplaces ‘output’ in the string s, followed by the character “\0’.

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The first argument is a character string which contains two types of ob-
jects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg printf.

Each conversion specification is introduced by the character %. Following the %, there may be

A field

an optional minus sign ‘—’ which specifies left adjustment of the converted value in the
indicated field; '

an optional digit string specifying a field width; if the converted value has fewer charac-
ters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width; if the field width be-
gins with a zero, zero-padding will be done instead of blank-padding;

A

an optional period *.” which serves to separate the field width from the next digit string;

an optional digit string specifying a precision which specifies the number of digits to ap-
pear after the decimal point, for e- and f-conversion, or the maximum number of char-
acters to be printed from a string;

the character 1 specifying that a following d, o, x, or u corresponds to a long integer
arg. (A capitalized conversion code accomplishes the same thing.)

a character which indicates the type of conversion to be applied.
width or precision may be “*’ instead of a digit string. In this case an integer arg sup-

plies the field width or precision.

The conversion characters and their meanings are

dox
f

7th Edition

The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

The float or double arg is converted to decimal notation in the style ‘[—]ddd.ddd’
where the number of d’s after the decimal point is equal to the precision specification
for the argument. If the precision is missing, 6 digits are given; if the precision is ex-
plicitly 0, no digits and no decimal point are printed.

The float or double arg is converted in the style ‘[~]d.ddde+dd’ where there is one di-
git before the decimal point and the number after is equal to the precision specification
for the argument; when the precision is missing, 6 digits are produced.

The float or double arg is printed in style d, in style f, or in style e, whichever gives full
precision in minimum space. ~

&

PRINTF (3S) PRINTF (3S)

c The character arg is printed. Null characters are ignored.

S Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters uptoa
null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 to 65535).
% Print a ‘%’ no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by printf
are printed by purc(3).

Examples

To print a date and time in the form ‘Sunday, July 3, 10:02’, where weekday and month are
pointers to null-terminated strings:

printf(“%s, %s %d, %02d:%02d", weekday, month, day, hour, min);
To print 7 to 5 decimals:
printf("pi = %.5f", 4*atan(1.0)):

SEE ALSO
putc(3), scanf(3), ecvt(3)

BUGS
Very wide fields (> 128 characters) fail.

A‘Fﬁ:r-z

7th Edition 2

PUTC (3S) PUTC (3S)

NAME

putc, putchar, fputc, putw — put character or word on a stream

SYNOPSIS

#include <stdio.h>

int pute(c, stream)
char c;
FILE *stream;

putchar(c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION

Purc appends the character ¢ to the named output stream. It returns the character written.
Purchar(c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather than a macro. It may be used to save
on object text.

Purw appends word (i.e. int) w to the output stream. It returns the word written. Purw neither
assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the output does not refer to a
terminal; this default may be changed by serbuf(3). The standard stream stderr is by default

unbuffered unconditionally, but use of freopen (see fopen(3)) will cause it to become buffered;

serbuf, again, will set the state to whatever is desired. When an output stream is unbuffered
information appears on the destination file or terminal as soon as written; when it is buffered
many characters are saved up and written as a block. FAush (see felose(3)) may be used to
force the block out early.

SEE ALSO

fopen(3), fclose(3), getc(3), puts(3), printf(3), fread(3)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, ferror(3)
should be used to detect purw errors.

Because it is implemented as a macro, putc treats a stream argument with side effects
improperly. In particular ‘putc(c, *f++):* doesn't work seasibly.

7th Edition 1

~—

PUTS (3S) PUTS (38)

NAME
puts, fputs — put a string on a stream

SYNOPSIS
#include <stdio.h>

puts(s)

char *s;

fputs(s, stream)

char *s;

FILE *stream;
DESCRIPTION

Puts copies the null-terminated string s to the standard output stream stdour and appends a new-
line character.

Fputs copies the null-terminated string s to the named output srream.
Neither routine copies the terminal null character.

SEE ALSO
fopen(3), gets(3), putc(3), printf(3), ferror(3)
fread(3) for fwrite

BUGS
Purs appends a newline, fputs does not, all in the name of backward compatibility.

7th Edition 1

RAND (3) RAND (3)

NAME
rand, srand — random number generator

SYNOPSIS
srand(seed)
int seed;

rand()

DESCRIPTION
Rand uses a multiplicative congruential random number generator with period 232 to return suc-

cessive pseudo-random numbers in the range from 0 to 2°—1,

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

7th Edition

QSORT (3) QSORT (3)

NAME
gsort — quicker sort

SYNOPSIS
gsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according as the first argument is to be considered less than, equal to, or
greater than the second.

SEE ALSO
sort(1)

7th Edition 1

SCANF (3S) SCANF (3S)

NAME

scanf, fscanf, sscanf — formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char *format;

fscanf(stream, format [, pointer | . . .)
FILE *stream;
char *format;

sscanf(s, format [, pointer] . ..)
char *s, *format:

DESCRIPTION
Scanf reads from the standard input stream sidin. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them ac-
cording to a format, and stores the results in its arguments. Each expects as arguments a con-
trol string format, described below, and a set of pointer arguments indicating where the convert-
ed input should be stored. :

The control string usually contains conversion specifications. which are used to direct interpre-
tation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.
2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppress-
ing character *, an optional numerical maximum field width. and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was indi-
cated by *. An input field is defined as a string of non-space characters: it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are
legal:

% asingle ‘%’ is expected in the input at this point; no assignment is done.
d adecimal integer is expected: the corresponding argument should be an integer pointer.
0 an octal integer is expected; the corresponding argument should be a integer pointer.

X a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating ‘\0’,
which will be added. The input field is terminated by a space character or a newline.

¢ a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case: to read the next non-space
character, try ‘%ls’. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.

a floating point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer 1o a floar. The input for-
mat for floating point numbers is an optionally signed string of digits possibly containing a
decimal point, followed by an optional exponent field consisting of an E or e followed by

-

7th Edition 1

SCANF (3S) SCANF (3S)

’

an optionally signed integer.

[indicates a string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not.circumflex ("), the input field
is all characters until the first character not in the set between the brackets: if the first char-
acter after the left bracket is °, the input field is all characters until the first character which
is in the remaining set of characters between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, o and x may be capitalized or preceeded by I to indicate that a
pointer to long rather than to int is in'the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by 1 to indicate a pointer to double rather than to float. The
conversion characters d, o and x may be preceeded by h to indicate a pointer to short rather
than to int.

The scanffunctions return the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. The constant EOF is returned upon
end of input; note that this is different from 0, which means that no conversion was done: if
conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name(50};
scanf("%d%f%s", &i, &x, name);

with the input line
25 54.32E~1 thompson
will assign to /the value 25, x the value 5.432, and name will contain ‘thompson\0'. Or,

int i; float x; char name[50};

scanf("%2d%f%*d%[12345678901", &i, &x, name);
with input

56789 0123 56a72

will assign 56 to /, 789.0 to x, skip ‘0123’ and place the string ‘56\0’ in name. The next call 10
gerchar will return ‘a’.

SEE ALSO
atof (3), getc(3), printf(3)

DIAGNOSTICS
The scanf functions return EOF on end of input, and a short count for missing or illegal data
items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

7th Edition

[}

SETBUF (3S) SETBUF (3S)

NAME
setbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION
Serbuf is used after a stream has been opened but before it is read or written. It causes the
character array bufto be used instead of an automatically allocated buffer. If bufis the constant
pointer NULL, input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:
char buf[BUFSIZ];

A buffer is normally obtained from malloc(3) upon the first gerc or purc(3) on the file, except
that output streams directed to terminals, and the standard error stream stderr are normally not
buffered. :

SEE ALSO
fopen(3), getc(3), putc(3), malloc(3)

7th Edition 1

SETIMP (3) SETIMP (3)

NAME
setjmp, longimp — non-local goto
SYNOPSIS
#include <setjmp.h>
setjmp(env)

jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program. '

Setjmp saves its stack environment in env for later use by longimp. 1t returns vaiue 0.

Longjmp restores the environment saved by the last call of seymp. It then returns in such a way
that execution continues as if the call of serjmp had just returned the value val to the function
that invoked setjimp, which must not itself have returned in the interim. All accessible data
have values as of the time longjmp was called.

SEE ALSO
signal(2)

i,
é 7

7th Edition 1

SIN (3M) SIN (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions -

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x, y)
double x, y:

DESCRIPTION
Sin, cos and ran return trigonometric functions of radian arguments. The magnitude of the ar-
gument should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range — /2 to /2.
Acos returns the arc cosine in the range 0 to .

Atan returns the arc tangent of xin the range — /2 to /2.
Aran2 returns the arc tangent of x/y in the range —= to .

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is set to
EDOM. The value of anat its singular points is a huge number, and errno is set to ERANGE.

BUGS
The value of tan for arguments greater than about 2**31 is garbage.

7th Edition . 1

SINH (3M) SINH (3M)

NAME
sinh, cosh, tanh — hyperbolic functions

SYNOPSIS ‘
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

7th Edition 1

SLEEP (3) SLEEP (3)

NAME
sleep — suspend execution for interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPTION ,
The current process is suspended from execution for the number of seconds specified by the ar-
gument. The actual suspension time may be up to 1 second less than that requested, because
scheduled wakeups occur at fixed 1-second intervals, and an arbitrary amount longer because of
other activity in the system. :

The routine is implemented by setting an alarm clock signal and pausing until it occurs. The
previous state of this signal is saved and restored. If the sleep time exceeds the time to the
alarm signal, the process sleeps only until the signal would have occurred, and the signal is sent
1 second later.

SEE ALSO
alarm(2), pause(2)

o
Ry

%3::\:;.
a2

7th Edition - . 1

STDIO (3S) STDIO (3S)

NAME

stdio — standard buffered input/output package

SYNOPSIS

#include <stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION

The functions described in Sections 3S constitute an efficient user-level buffering scheme. The
in-line macros gerc and purc(3) handle characters quickly. The higher level routines gers, fgets,
scanf, fscanf, fread, puts, fputs, printf, fprintf, fwrite all use getc and putc; they can be freely inter-
mixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined
type FILE. Fopen(3) creates certain descriptive data for a stream and returns a pointer to desig-
nate the stream in all further transactions. There are three normally open streams with con-
stant pointers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant ‘pointer’ NULL (0) designates no stream at all.

An integer constant EOF (—1) is returned upon end of file or error by integer functions that
deal with streams.

Any routine that uses the standard input/output package must include the header file
<stdio.h> of pertinent macro definitions. The functions and constants mentioned in sections
labeled 3S are declared in the include file and need no further declaration. The constants, and
the following ‘functions’ are implemented as macros; redeclaration of these names is perilous:
gelc, getchar, putc, putchar, feof, ferror, fileno.

SEE ALSO

open(2), close(2), read(2), write(2)

DIAGNOSTICS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized
with fopen, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

7th Edition . i

STRING (3) STRING (3)

NAME

strcat, strncat, stremp, strncmp, strepy, strncpy, strlen, index, rindex — string operations
SYNOPSIS

char *strcat(sl, s2)

char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;
stremp(sl, s2)

char *sl, *s2;
strnemp(sl, s2, n)

char *sl, *s2;

char *strepy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *si, *s2; :

strien(s)
char *s;

char *index(s, ¢)
char *s, c;

char *rindex(s, ¢)
char *s;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Strcat appends a copy of string s2 to the end of string sI. Swracar copies at most n characters.
Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as s/ is lexicographically greater than, equal to, or less than s2. Suzncmp makes the
same comparison but looks at at most n characters.

Strcpy copies string s2 to s/, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding s2; the target may not be null-terminated if the
length of s2is nor more. Both return si.

Strien returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character ¢ in string s, or zero if
c does not occur in the string.

BUGS

Strcmp uses native character comparison, which is signed on PDP11’s, unsigned on other
machines.

7th Edition 1

SWAB (3) SWAB (3)

NAME -
swab — swap bytes

SYNOPSIS
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION

Swab copies nbytes bytes pointed to by from to the position pointed to by fo, exchanging adja-
cent even and odd bytes. It is useful for carrying binary data between PDP11’s and other
machines. Nbytes should be even.

7th Edition 1

SYSTEM (3) | C SYSTEM (3)

NAME
system — issue a shell command

SYNOPSIS
system(string)
char *string; ,

DESCRIPTION) ,
System causes the string to be given to sh(1) as input as if the string had been typed as a com-
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen(3), exec(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn’t be executed.

L

7th Edition : 1

TTYNAME (3) " TTYNAME (3)

NAME
ttyname, isatty, ttyslot — find name of a terminal

SYNOPSIS
char *ttyname(fildes)

isatty (fildes)
ttyslot()

DESCRIPTION)
Twname returns a pointer to the null-terminated path name of the terminal device associated

with file descriptor fildes.
Isany returns 1 if fildes is associated with a terminal device, 0 otherwise.

Tyslot returns the number of the entry in the nys(5) file for the control terminal of the current
process.

FILES
/dev/*
/etc/ttys

SEE ALSO
ioctl(2), ttys(5)

DIAGNOSTICS
Tiyname returns a null pointer (0) if fildes does not describe a terminal device in directory

‘/dev’.
Twslot returns 0 if ‘/etc/ttys’ is inaccessible or if it cannot determine the control terminal.

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 1

UNGETC (3S) UNGETC (3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>

ungetc{c, stream)
FILE *stream;

DESCRIPTION :
Ungetc pushes the character ¢ back on an input stream. That character will be returned by the
next getc call on that stream. Ungerc returns c.

One character of pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered. Attempts to push EOF are rejected.

Fseek(3) erases all memory of pushed back characters.

SEE ALSO
getc(3), setbuf(3), fseek(3)

DIAGNOSTICS
- Ungetc returns EOF if it can’t push a character back.

Tth Editinn 1

CAT (4) CAT (4)

NAME
cat — phototypesetter interface

DESCRIPTION
Cat provides the interface to a Graphic Systems C/A/T phototypesetter. Bytes written on the
file specify font, size, and other control information as well as the characters to be flashed. The

coding will not be described here.
Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff (1)
Phototypesetter interface specification

7th Edition

DN (4) | DN (4)

NAME
dn — DN-11 ACU interface
DESCRIPTION :
The dn? files are write-only. The permissible codes are:
0-9 dial 0-9
: dial *
H dial #)
- 4 second delay for second dial tone
< end-of-number

The entire telephone number must be presented in a single write system call.
It is recommended that an end-of-number code be given even though not all ACU’s actually

require it.
FILES
/dev/dn0 connected to 801 with dp0
/dev/dnl not currently connected
/dev/dn2 not currently connected
SEE ALSO
dp(4)

7th Edition ‘ 1

DU (4) DU (4)

NAME
du, dp — DU-11 201 data-phone interface

DESCRIPTION
The dp0 file is a 201 data-phone interface. Read and write calls to dp0 are limited to a max-
imum of 512 bytes. Each write call is sent as a single record. Seven bits from each byte are
written along with an eighth odd parity bit. The sync must be user supplied. Each read call re-
turns characters received from a single record. Seven bits are returned unaltered; the eighth bit
is set if the bvte was not received in odd parity. A 10 second time out is set and a zero-byte
record is returned if nothing is received in that time.

FILES
/dev/dp0

SEE ALSO
dn(4)

BUGS
The name dp0 is a historical dreg.

7th Edition ' 1

HP (4) A HP (4)

NAME
hp — RH-11/RP04, RP0S, RP06 moving-head disk

DESCRIPTION
The octal representation of the minor device number is encoded idp, where / is an interleave
flag, dis a physical drive number, and p is a pseudodrive (subsection) within a physical unit. If
iis 0, the origins and sizes of the pseudodisks on each drive, counted in cylinders of 418 512-
byte blocks, are:

disk start length

0 0 23
1 23 21
2 0 0
3 0 0
4 4 386
5 430 385

6 44 367
7 4 771

If iis 1, the minor device consists of the specified pseudodisk on drives numbered 0 through
the designated drive number. Successively numbered blocks are distributed across the drives in
rotation.

Systems distributed for these devices use disk 0 for the root, disk 1 for swapping, and disk 4
(RP04/5) or disk 7 (RP06) for a mounted user file system.

The block files access the disk via the system’s normal buffering mechanism and may be read
and written without regard to physical disk records.

A ‘raw’ interface provides for direct transmission between the disk and the user’s read or write
buffer. A single read or write call results in exactly one 1/0 operation and therefore raw 1/0 is
considerably more efficient when many words are transmitted. The names of the raw files
conventionally begin with an extra ‘r." In raw I/0 the buffer must begin on a word boundary,
and raw 1/0 to an interleaved device is likely to have disappointing results.

FILES
/dev/rp?, /dev/rrp?
SEE ALSO
rp(4)
BUGS .
In raw 1/O read and wriwe(2) truncate file offsets to 512-byte block boundaries, and wrire

scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access raw
devices, read, write and Iseek(2) should always deal in 512-byte multiples.

Raw device drivers don’t work on interleaved devices.

7th Edition 1

HS (4) ‘ HS (4)

NAME
’ hs — RH11/RS03-RS04 fixed-head disk file

DESCRIPTION
The files hsO ... hs7 refer to RJSO3 disk drives 0 through 7. The files As8 ... hslJ5 refer to
RJS04 disk drives 0 through 7. The RJS03 drives are each 1024 blocks long and the RJS04
drives are 2048 blocks long.

The hs files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘raw’ inteface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one 1/0 operation and therefore raw I/O is considerably more
efficient when many words are transmitted. The names of the raw HS files begin with rhs. The
same minor device considerations hold for the raw interface as for the normal interface.

In raw 1/0 the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise Iseek calls should specify a multiple of 512 bytes.

FILES
/dev/hs?, /dev/rhs?

7th Edition 1

HT (4) HT (4)

NAME
ht — RH-11/TU-16 magtape interface

DESCRIPTION
The files mi0, mel, ... refer to the DEC RH/TM/TU16 magtape. When opened for reading or
writing, the tape is not rewound. When closed, it is rewound (unless the 0200 bit is on, see
below). If the tape was open for writing, a double end-of-file is written. If the tape is not to be
rewound the tape is backspaced to just between the two tapemarks.

A standard tape consists of a series of 512 byte records terminated by a double end-of-file. To
the extent possible, the system makes it possible, if inefficient, to treat the tape like any other
file. Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing
in very small units is inadvisable, however, because it tends to create monstrous record gaps.

The last octal digit of the minor device number selects the drive. The middle digit selects a
controller. The initial digit is even to select 800 BPI, odd to select 1600 BPI. If the 0200 bit is
on (initial digit 2 or 3), the tape is not rewound on close. Note that the minor device number
has no necessary connection with the file name, and in fact (1) turns the short name x into
‘/dev/mtx’. ‘

The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the ‘raw’ interface is appropriate. The associated files may be named
rmt0, ..., rmt7, but the same minor-device considerations as for the regular files still apply.

Each read or write call reads or writes the next record on the tape. In the write case the record
has the same length as the buffer given. During a read, the record size is passed back as the
number of bytes read, provided it is no greater than the buffer size; if the record is long, an
error is indicated. In raw tape I/0, the buffer must begin on a word boundary and the count
must be even. Seeks are ignored. A zero count is returned when a tape mark is read; another
read will fetch the first record of the next tape file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp(1)

BUGS »
The magtape system is supposed to be able to take 64 drives. Such addressing has never been
tried. :

Taking a drive off line, or running off the end of tape, while writing have been known to hang
the system.

If any non-data error is encountered, it refuses to do anything more until closed. In raw 1/0,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark explicitly.

7th Edition 1

MEM (4) MEM (4)

NAME
mem, kmem — core memory

DESCRIPTION ‘
Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system. Kmem is the same as mem except that
kernel virtual memory rather than physical memory is accessed.

Byte addresses are interpreted as memory addresses. References to non-existent locations re-
turn errors.

Examining and patching device registers is likely to lead to unexpected results when read-only
or write-only bits are present.

On PDP11!’s, the I/0 page begins at location 0160000 of kmem and per-process data for the
current process begins at 0140000.

FILES
/dev/mem, /dev/kmem

BUGS
On PDP11!’s, memory files are accessed one byte at a time, an inapproriate method for some
device registers.

7th Edition 1

NULL (4) NULL (4)

NAME
nuil — data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

;f‘;"? 2

7th Edition 1

PK (4) : PK (4)

NAME
pk _— packet driver

DESCRIPTION
The packet driver implements a full-duplex end-to-end flow control strategy for machine-to-
machine communication. Packet driver protocol is established by calling pkon(2) with a charac-
ter device file descriptor and a desired packet size in bytes. The packet size must be a power of
2, 32<s5iz¢e<4096. The file descriptor must represent an 8-bit data path. This is normally
obtained by setting the device in raw mode (see ioct/(2)).

The actual packet size, which may be smaller than the desired packet size, is arrived at by nego-
tiation with the packet driver at the remote end of the data link.

The packet driver maintains two data areas for incoming and outgoing packets. The output area
is needed to implement retransmission on errors, and arriving packets are queued in the input
area. Data arriving for a file not open for reading is discarded. Initially the size of both areas is
set to two packets. i

It is not necessary that reads and writes be muitiples of the packet size although there is less
system overhead if they are. Read operations return the maximum amount of data available
from the input area up to the number of bytes specified in the system call. The buffer sizes in
write operations are not normally transmitted across the link. However, writes of zero length
are treated specially and are reflected at the remote end as a zero-length read. This facilitates
marking the serial byte stream, usually for delimiting files.

When one side of a packet driver link is shut down by close(2) or pkoff (see pkon(2)), read(2)
on the other side will return 0, and write on the other side will raise a SIGPIPE signal.

SEE ALSO
pkon(2), pkopen(3)

7th Edition 1

RF (4) RF (4)

NAME
tf — RF11/RS11 fixed-head disk file

DESCRIPTION
This file refers to the concatenation of all RS-11 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file is
1024 x (minor+1) blocks. That is minor device zero is taken to be 1024 biocks long; minor
device one is 2048, etc.

The r/0 file accesses the disk via the system’s normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a ‘raw’ interface which pro-
vides for direct transmission between the disk and the user’s read or write buffer. A single read
or write call results in exactly one I/O operation and therefore raw 1/0 is considerably more
efficient when many words are transmitted. The name of the raw RF file is rr). The same
minor device considerations hold for the raw interface as for the normal interface.

In raw 1/0 the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes.

FILES
/dev/rf0, /dev/rrf0

BUGS .
The 512-byte restrictions on the raw device are not physically necessary, but are still imposed.

7th Edition ’ 1

RK (4) RK (4)

NAME
tk — RK-11/RKO03 or RKOS disk

DESCRIPTION
Rk? refers to an entire disk as a single sequentially-addressed file. Its 256-word blocks are
numbered 0 to 4871. Minor device numbers are drive numbers on one controller.

The rk files discussed above access the disk via the system’s normal buffering mechanism and
may be read and written without regard to physical disk records. There is also a ‘raw’ interface
which provides for direct transmission between the disk and the user’s read or write buffer. A
single read or write call results in exactly one I/0 operation and therefore raw 1/0 is consider-
ably more efficient when many words are transmitted. The names of the raw RK files begin
with rrk and end with a number which selects the same disk as the corresponding rk file.

In raw 1/0 the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a muitiple of 512 bytes.

FILES
/dev/rk?, /dev/rrk?

BUGS .
In raw 1/0 read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib-
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and Iseek(2) should always deal in 512-byte multiples.

7th Edition i

RP(4) RP(4)

NAME
rp — RP-11/RP03 moving-head disk

DESCRIPTION :
The files rp0 ... rp7 refer to sections of RP disk drive 0. The files 7p8 ... rpl5 refer to drive 1
etc. This allows a large disk to be broken up into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:
disk start length

0 0 81000
1 0 5000
2 5000 2000
3 7000 74000

4.7 unassigned

Thus rp0 covers the whole drive, while rpl, rp2, rp3 can serve usefully as a root, swap, and
mounted user file system respectively.

The rp files access the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a ‘raw’ interface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call results in exactly one 1/0 operation and therefore raw 1/0 is considerably more
efficient when many words are transmitted. The names of the raw RP files begin with rrp and
end with a number which selects the same disk section as the corresponding rp file.

In raw [/O the buffer must begin on a word boundary.

FILES
/dev/rp?, /dev/rrp?

SEE ALSO
hp(4)

BUGS
In raw 1/O read and write(2) truncate file offsets to 512-byte block boundaries, and wrire
scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access raw
devices, read, write and [seek(2) should always deal in 512-byte multiples.

7th Edition 1

TC (4) TC (4)

NAME

tc — TC-11/TUS56 DECtape

DESCRIPTION
The files tap0 ... tap7 refer to the TC-11/TU56 DECtape drives 0 to 7.

The 256-word biocks on a standard DECtape are numbered 0 to 577.

FILES
/dev/tap?

SEE ALSO
tp(1)

7th Edition ' :]

T™ (4) : T™M (4)

NAME

tm — TM-11/TU-10 magtape interface

DESCRIPTION
The files md0, ..., mt7 refer to the DEC TU10/TM11 magtape. When closed it can be rewound
or not, see below. If it was open for writing, two end-of-files are written. If the tape is not to
be rewound it is positioned with the head between the two tapemarks.

If the 0200 bit is on in the minor device number the tape is not rewound when closed.

A standard tape consists of a series of 512 byte records terminated by an end-of-file. To the
extent possible, the system makes it possible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create monstrous record gaps.

The m files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the ‘raw’ interface is appropriate. The associated files are named
rmt0, ..., rmt7. Each read or write call reads or writes the next record on the tape. In the write
case the record has the same length as the buffer given. During a read, the record size is
passed back as the number of bytes read, provided it is no greater than the buffer size; if the
record is long, an error is indicated. In raw tape I/0, the buffer must begin on a word boun-
dary and the count must be even. Seeks are ignored. A zero bytq count is returned when a
tape mark is read, but another read will fetch the first record of the new tape file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp(1)

BUGS
If any non-data error is encountered, it refuses to do anything more until closed. In raw 1/0,

there should be a way to perform forward and backward record and file spacing and to write an
EOF mark.

i
i
22

7th Edition ‘ ' 1

TTY (4) UNIX Programmer’s Manual ITY (4)

NAME
tty — general terminal interface

DESCRIPTION
This section describes both a particular special file, and the general nature of the terminal inter-
face.

The file /devittyis, in each process, a synonym for the control terminal associated with that pro-
cess. It is useful for programs that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used for programs that demand a file
name for output, when typed output is desired and it is tiresome to find out which terminal is
currently in use. ' :

As for terminals in general: ail of the low-speed asynchronous communications ports use the
same general interface, no matter ‘what hardware is involved. The remainder of this section
discusses the common features of the interface. '

When a terminal file is opened, it causes the process to wait until a connection is established.
In practice user’s programs seldom open these files; they are opened by init and become a
user’s input and output file. The very first terminal file open in a process becomes the control
terminal for that process. The control terminal plays a special role in handling quit or interrupt
signals, as discussed below. The control terminal is inherited by a child process during a fork.
even if the control terminal is closed. The set of processes that thus share a control terminal is
called a process group, all members of a process group receive certain signals together, see DEL
below and kill(2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Charac-
ters may be typed at any time, even while output is occurring, and are only lost when the
system’s character input buffers become completely choked, which is rare, or when the user has
accumulated the maximum allowed number of input characters that have not yet been read by
some program. Currently this limit is 256 characters. When the input limit is reached all the
saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. This means thal a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how many char-
acters are requested in the read call, at most one line will be returned. It is not however neces-
sary to read a whole line at once; any number of characters may be requested in a read, even
one, without losing information. There are special modes, discussed below, that permit the
program to read each character as typed without waiting for a full line. '

During input, erase and kill processing is normaily done. By default, the character ‘#’ erases
the last character typed, except that it will not erase beyond the beginning of a line or an EOT.
By default, the character ‘@’ kills the entire line up to the point where it was typed, but not
beyond an EOT. Both these characters operate on a keystroke basis independently of any back-
spacing or tabbing that may have been done. Either ‘@’ or ‘# may be entered literally by
preceding it by ‘\’; the erase or kill character remains, but the ‘\' disappears. These two charac-
ters may be changed to others.

When desired. all upper-case letters are mapped into the corresponding lower-case letter. The
upper-case letter may be generated by preceding it by ‘\’. In addition, the following escape
sequences can be generated on output and accepted on input:

for use
. \
I \!
- \"
{ \(
} \)

7th Edition ravised 5/79 !

TTY (4) UNIX Programmer’s Manual TTY (4)

Certain ASCII control characters have special meaning. These characters are not passed to a
. reading program except in raw mode where they lose their special character. Also, it is possible
to change these characters from the default; see below.

EOT (Control-D) may be used to generate an end of file from a terminal. When an EOT is
received, all the characters waiting to be read are immediately passed to the program,
without waiting for a new-line, and the EOT is discarded. Thus if there are no charac-
ters waiting, which is to say the EOT occurred at the beginning of a line, zero charac-
ters will be passed back, and this is the standard end-of-file indication.

DEL (Rubout) is not passed to a program but generates an interrupt signal which is sent to all
processes with the associated control terminal. Normally each such process is forced to
terminate, but arrangements may be made either to ignore the signal or to receive a
trap to an agreed-upon location. See signql(Z).

FS (Control-\ or control-shift-L) generates the quit signal. Its treatment is identical to the
interrupt signal except that unless a receiving process has made other arrangements it
will not only be terminated but a core image file will be generated.

DC3 (Control-S) delays all printing on the terminal until sométhing is typed in.
DC1 (Control-Q) restarts printing after DC3 without generating any input to a program.

When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) a hangup signal is sent to all processes with the terminal as control terminal. Unless other
arrangements have been made, this signal causes the processes to terminate. If the hangup sig- -
nal is ignored, any read returns with an end-of-file indication. Thus programs that read a termi-
nal and test for end-of-file on their input can terminate appropriately when hung up on.

When one or more characters are writien, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. Input characters are echoed by putting
them in the output queue as they arrive. When a process produices characters more rapidly
than they can be typed, it will be suspended when its output queue exceeds some limit. When
the queue has drained down to some. threshold the program is resumed. Even parity is always
generated on output. The EOT character is not transmitted (except in raw mode) to prevent
terminals that respond to it from hanging up.

Several ioctl(2) calls apply to terminals. Most of them use the following structure, defined in
< sgiy. h>:

struct sgttyb {

char sg_ispeed;

char sg_ospeed;

char sg_erase;

char sg_kill;

int sg_flags;
b .
The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according
to the following table, which corresponds to the DEC DH-11 interface. If other hardware is
used, impossible speed changes are ignored. Symbolic values in the table are as defined in

<sgtty.h>. ‘
BO 0 {hang up dataphone)
B50 1 50 baud -

B75 2 75 baud

B110 3 110 baud

Bi34 4 134.5 baud

B150 5 150 baud

[

7th Edition revised 5/79

TTY (4) UNIX Programmer’s Manual TTY (4)
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXTA 14 External A
EXTB 15 ExternalB

In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up
lines. Code conversion and line control required for IBM 2741’s (134.5 baud) must be imple-
‘mented by the user’s program. The half-dupiex line discipline required for the 202 dataset
(1200 baud) is not supplied; full-duplex 212 datasets work fine.

The sg_erase and sg_kill fields of the argument structure specify the erase and kill characters

respectively. (Defaults are # and @.)

The sg_flags field of the argument structure contains several bits that determine the system’s
treatment of the terminal: .

ALLDELAY 0177400 Delay algorithm selection

BSDELAY
BSO

BS1
VTDELAY
FFO

FF1
CRDELAY
CRO

CR1

CR2

CR3
TBDELAY
TABO
TABI
TAB2
XTABS
NLDELAY
NLO

NL1

NL2

NL3
EVENP
oDDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

0100000 Select backspace delays (not implemented):
0

0100000

0040000 Select form-feed and vertical-tab delays:

0

0100000

0030000 Select carriage-return delays:

0

0010000

0020000

0030000

0006000 Select tab delays:

0

0001000

0004000

0006000

0001400 Select new-line delays:

0 .

0000400

0001000

0001400

0000200 Even parity allowed on input (most terminals)
0000100 Odd parity allowed on input

0000040 Raw mode: wake up on all characters, 8-bit interface
0000020 Map CK into LF; echo LF or CR as CR-LF
0000010 Echo (full duplex)

0000004 Map upper case to lower on input

0000002 Return each character as soon as typed
0000001 Automatic flow control

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

7th Edition

(V3]

revised 5/79

ITY (4) , UNIX Programmer’s Manual TTY (4)

Backspace delays are currently ignored but might be used for Terminet 300's.
If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about .16 seconds and is suitable for the VTOS and the T1 700. Delay type 3 is
unimplemented and is 0. ‘

New-line delay type 1 is dependent on the current column and is tuned for Teletype model
37°s. Type 2 is useful for the VTOS and is about .10 seconds. Type 3 is unimplemented and is
0.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model
37. Type 3, called XTABS, is not a delay at all but causes 1abs 1o be replaced by the appropri-
ate number of spaces on output.

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

In raw mode, every character is passed immediately to the program without waiting until a full
line has been typed. No erase or kill processing is done; the end-of-file indicator (EOT), the
interrupt character (DEL) and the quit character (FS) are not treated specially. There are no
delays and no echoing, and no replacement of one character for another; characters are a full 8
bits for both input and output (parity is up to the program).

Mode 020 causes input carriage returns to be turned into new-lines: input of either CR or LF
causes LF-CR both to be echoed (for terminals with a new-line function).

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as
typed, instead of waiting for a fuil line, but quit and interrupt work, and output delays, case-
translation, CRMOD, XTABS, ECHO, and parity work normally. On the other hand there is
no erase or kill, and no special treatment of \ or EOT.

TANDEM mode causes the system to produce a stop character (default DC3) whenever the
input queue is in danger of overflowing, and a start character (default DC1) when the input
queue has drained sufficiently. It is useful for flow control when the ‘terminal’ is actually
another machine that obeys the conventions.

Several ioctl calls have the form:
#include <sgtty.h>
joctl(fildes, code, arg)

struct sgttyb *arg;

The applicable codes are:

TIOCGETP
Fetch the parameters associated with the terminal, and store in the pointed-to structure.

TIOCSETP ‘
Set the parameters according to the pointed-to structure. The interface delays until out-
put is quiescent, then throws away any unread characters, before changing the modes.

TIOCSETN
Set the parameters but do not delay or flush input. Switching out of RAW or CBREAK
mode may cause some garbage input.

With the following codes the argis ignored.

TIOCEXCL
Set ‘“‘exclusive-use’ mode: no further opens are permitted until the file has been
closed.

TIOCNXCL

7th Edition ' revised 5/79 4

ITY (4) UNIX Programmer’s Manual . TTY (4)

FILES

Turn off “‘exclusive-use’” mode.

TIOCHPCL
When the file is closed for the last time, hang up the terminal. This is useful when the
line is associated with an ACU used to place outgoing calls.

TIOCFLUSH |
All characters waiting in input or output queues are flushed.

The following codes affect characters that are special to the terminal interface. The argument is
a pointer to the following structure, defined in <sgny. h>:

struct tchars {

char t_intrc; " /* interrupt */

char t_quitc; /* quit */

char t_startc; /* start output */

char . t_stopc; /* stop output */

char t_eofc; /* end-of-file */ .

char t_brkc; /* input delimiter (like nl) */

ks

- The default values for these characters are DEL, FS, DC1, DC3, EQOT, and —1. A character

value of —1 eliminates the effect of that character. The ¢ brkc character, by default —1, acts
like a new-line in that it terminates a ‘line,’ is echoed, and is passed to the program. The ‘stop’
and ‘start’ characters may be the same, to produce a toggle effect. It is probably counterproduc-
tive to make other special characters (including erase and kiil) identical.

The calls are:

TIOCSETC ,
Change the various special characters to those given in the structure.

TIOCSETP
Set the special characters to those given in the structure.

/dev/tty
/dev/tty*
/dev/console

SEE ALSO

BUGS

getty(8), stty (1), signal(2), ioctl(2)

Half-duplex terminals are not supported.

The terminal handler has clearly entered the race for ever-greater complexity and generality.
It’s still not complex and general enough for TENEX fans.

7th Edition revised 5/79 5

TTY (4) TTY (4)

Speed cannot be changed on terminals attached to a KL-11; the UNIX console, whose special
use is described in boor(8), is such a terminal. Other terminals, called /dev/tty00, ldeviy0l, ...,
are attached to DH-11’s.

FILES
/dev/tty
/dev/tty*
/dev/console

SEE ALSO
getty(8), stty (1), signal(2), iocti(2)

BUGS
Half-duplex terminals are not supported. On raw-mode output, parity should be transmitted as
specified in the characters written.

3 ?'S

\Q~QJ

7th Edition 5

VP (4) UNIX Programmer’s Manual VP (4)

NAME
vp — Versatec printer-plotter

DESCRIPTION -
Vp0 is the interface to a Versatec D1200A printer-plotter with a Versatec C-PDP11(DMA) con-
troller. Ordinarily bytes written on it are interpreted as ASCII characters and printed. As a
printer, it writes 64 lines of 132 characters each on 11 by 8.5 inch paper. Only some of the
ASCII control characters are interpreted.

NL performs the usual new-line function, i.e. spaces up the paper and resets to the left
margin. It is ignored however following a CR which ends a non-empty line.

CR is ignored if the current line is empty but is otherwise like NL.
FF resets to the left margin and then to the top of the next page.
EOT resets to the left margin, advances 8 inches, and then performs a FF.

The ioctl(2) system call may be used to change the mode of the device. Only the first word of
the 3-word argument structure is used. The bits mean:

0400 Enter simultaneous print/plot mode.
0200 Enter plot mode.

0100 Enter print mode (default on open).
040 Send remote terminate.

020 Send remote form-feed.

010 Send remote EOT.

04 Send remote clear.

02 Send remote reset.

On open a reset, clear, and form-feed are performed automatically. Notice that the mode bits
are not encoded, so that it is required that exactly one be set.

In plot mode each byte is interpreted as 8 bits of which the high-order is plotted to the left; a
‘1’ leaves a visible dot. A full line of dots is produced by 264 bytes; lines are terminated only
by count or by a remote terminate function. There are 200 dots per inch both vertically and
horizontally.

When simultaneous print-plot mode is entered exactly one line of characters, terminated by
NL, CR, or the remote terminate function, should be written. Then the device enters plot
mode and at least 20 lines of plotting bytes should be sent. As the line of characters (which is
20 dots high) is printed, the plotting bytes overlay the characters. Notice that it is impossible to
print characters on baselines that differ by fewer than 20 dot-lines.

In print mode lines may be terminated either with an appropriate ASCII character or by using
the remote terminate function. :

FILES
/dev/vp0

SEE ALSO
opr(1)

7th Edition 1

ACCT (5) ACCT (5)

NAME
acct — execution accounting file

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Acct(2) causes entries to be made into an accounting file for each process that terminates. The
accounting file is a sequence of entries whose layout, as defined by the include file is:

typedef unsigned short comp_t;
/* "floating pt™: 3 bits base 8 exp, 13 bits fraction */

struct acct

char aé_comm[10]; /* command name */

comp_t ac_utime; /* user time */

comp_t ac_stime; /* system time */

comp_t ac_etime; /* elapsed time */

time_t ac_btime; /* beginning time */

short ac_uid; /* user ID */

short ac_gid; /* group ID */

short ac_mem; /* average memory usage */
comp_t ac_io; /* number of disk 10 blocks */
dev_t ac_tty; /* control typewriter */

char ac_flag; /* accounting flag */

I8 .

/* flag bits */
#define AFORK 01 /* has executed fork, but no exec */
#define ASU ‘02 /* used super-user privileges */

If the process does an exec(2), the first 10 characters of the filename appear in ac_comm. The
accounting flag contains bits indicating whether exec(2) was ever accomplished, and whether
the process ever had super-user privileges.

SEE ALSO
acct(2), sa(l)

7th Edition 1

A.OUT(5) ' A.OUT (5)

NAME
a.out — assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION ,
A.out is the output file of the assembier as(1) and the link editor /d(1). Both programs make
a.out executable if there were no errors and no unresolved external references. Layout infor-
mation as given in the include file for the PDP11 is;

struct exec { /* a.out header */

int a_magic; /* magic number */
unsigned a_text; /* size of text segment */
unsigned a_data; /* size of initialized data */
unsigned a_bss; /* size of unitialized data */

unsigned a_syms; /* size of symbol table */
unsigned a_entry; /* entry point */
unsigned a_unused; /* not used */

unsigned a_flag; /* relocation info stripped */
k
#define A_MAGIC1 0407 /* normal */ ‘
#define A_MAGIC2 0410 /* read-only text */
#define A_MAGIC3 0411 /* separated 1&D */
#define A_MAGIC4 0405 /* overlay */
struct nlist { /* symbol table entry */

char n_namel8]; /* symbol name */

int n_type; /* type flag */

unsigned n_value; /* value */

/* values for type flag */

#define N_UNDFOQ /* undefined */

#define N_ABS 01 /* absolute */

#define N_TEXT 02 /* text symbol */

#fdefine N_DATAOQ3 /* data symbol */

‘#define N _BSS 04 /* bss symbol */

#define N_TYPE 037

#define N_REG 024 /* register name */

#define N_FN 037 /* file name symbol */
#define N_EXT 040 /* external bit, or’ed in */
#define FORMAT "%060"/* to print a value */

The file has four sections: a header, the program and data text, relocation information, and a
symbol table (in that order). The last two may be empty if the program was loaded with the
‘—s’ option of /d or if the symbols and relocation have been removed by strip(1).

In the header the sizes of each section are given in bytes, but are even. The size of the header
is not included in any of the other sizes.

When an a.out file is loaded into core for execution, three logical segments are set up: the text

segment, the data segment (with uninitialized data, which starts off as all 0, following initial- gf;ﬁ
ized), and a stack. The text segment begins at 0 in the core image; the header is not loaded. If G

the magic number in the header is 0407(8), it indicates that the text segment is not to be

7th Edition 1

A.OUT(5) : A.OUT (5)

write-protected and shared, so the data segment is immediately contiguous with the text seg-
ment. If the magic number is 0410, the data segment begins at the first 0 mod 8K byte boun-
dary following the text segment, and the text segment is not writable by the program; if other
processes are executing the same file, they will share the text segment. If the magic number is
411, the text segment is again pure, write-protected, and shared, and moreover instruction and
data space are separated; the text and data segment both begin at location 0. If the magic
number is 04035, the text segment is overlaid on an existing (0411 or 0405) text segment and
the existing data segment is preserved.

The stack will occupy the highest possible locations in the core image: from 0177776(8) and
growing downwards. The stack is automatically extended as required. The data segment is only
extended as requested by brk(2).

The start of the text segment in the file is 020(8); the start of the data segment is 020+S, (the
size of the text) the start of the relocation information is 020+S +S,; the start of the symbol
table is 020+2(S +S,) if the relocation information is present, 020+S +S, if not.

The layout of a symbol table entry and the principal flag values that distinguish symbol types
are given in the include file. Other flag vaiues may occur if an assembly language program
defines machine instructions.

If a symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loader /d as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined exter-
nal symbol is exactly that value which will appear in core when the file is executed. If a word
in the text or data portion involves a reference to an undefined external symbol, as indicated by
the relocation information for that word, then the value of the word as stored in the file is an
offset from the associated external symbol. When the file is processed by the link editor and
the external symbol becomes defined, the value of the symbol will be added into the word in
the file.

If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the ‘relocation info stripped’ flag in the header
is on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associat-
ed with the relocation word:

000 absolute number

002 reference to text segment

004 reference to initialized data

006 reference to uninitialized data (bss)
010 reference to undefined external symbol

Bit 0 of the relocation word indicates, if 1, that the reference is relative to the pc (e.g. ‘clr x°);
if 0, that the reference is to the actual symbol (e.g., ‘clr *$x°).

The remainder of the relocation word (bits 15-4) contains a symbo! number in the case of
external references, and is unused otherwise. The first symbol is numbered 0, the second 1,
etc.

SEE ALSQO
as(1), 1d(1), nm(1)

@

7th Edition 2

AR (5) AR (5)

NAME
ar — archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION

The archive command ar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editor /4.

A file produced by ar has a magic number at the start, followed by the constituent files, each

preceded by a file header. The magic number and header layout as described in the include file
are:

#define ARMAG 0177545
struct ar_hdr {

char ar_name[14];
long ar_date;

char ar_uid,

char ar_gid;

int ar_mode;
long ar_size;

h
The name is a null-terminated string; the date is in the form of time(2); the user ID and group
ID are numbers; the mode is a bit pattern per chmod(2); the size is counted in bytes.

Each file begins on a word boundary; a null byte is inserted between files if necessary.
Nevertheless the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(1), 1d(1), nm(1)

BUGS
Coding user and group IDs as characters is a botch.

7th Edition 1

CORE(5) CORE (5)

NAME
. core — format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
signal(2) for the list of reasons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called ‘core’ and is written in the
process’s working directory (provided it can be; normal access controls apply).

The first 1024 bytes of the core image are a copy of the system’s per-user data for the process,
including the registers as they were at the time of the fault; see the system listings for the for-
mat of this area. The remainder represents the actual contents of the user’s core area when the
core image was written. If the text segment is write-protected and shared, it is not dumped;
otherwise the entire address space is dumped.

In general the débugger adb(1) is sufficient to deal with core images.

SEE ALSO
adb(1), signal(2)

7th Edition 1

DIR(5) - DIR (5)

NAME
dir — format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry see,
filsys(5). The structure of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ14
#endif

struct - direct

{

ino_t d_ino;
char d_name[DIRSIZ];
I

By convention, the first two entries in each directory are for ‘. and ‘..". The first is an entry
for the directory itself. The second is for the parent directory. The meaning of *..” is modified
for the root directory of the master file system and for the root directories of removabie file
systems. In the first case, there is no parent, and in the second, the system does not permit
off-device references. Therefore in both cases ‘..” has the same meaning as ‘.’

SEE ALSO
filsys(5)

7th Edition 1

DUMP (5) DUMP (5)

NAME
dump, ddate — incremental dump format

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>
include <dumprestor.h>

DESCRIPTION
Tapes used by dump and restor(1) contain:

a header record

two groups of bit map records

a group of records describing directories
a group of records describing files

The format of the header record and of the first record of each description as given in the in-
clude file <dumprestor.h> is:

#define NTREC 20
#define MLEN 16
#define MSIZ 4096

#define TS_TAPE 1

#define TS_INODE 2

#define TS_BITS 3

#define TS_ADDR 4

#define TS_END §

#define TS_CLRI 6

#define MAGIC (int)60011
#define CHECKSUM (int) 84446

struct spcl
{
int c_type;
time_t c_date;
time_t c_ddate;
int c_volume;
daddr_t c_tapea;
ino_t c_inumber;
int c_magic;
int ¢_checksum;
struct dinodec_dinode;
int c_count;
char c_addr[BSIZE],
} spel;

struct idates

{

char id_name[16];
char id_incno;
time_t id_ddate;

};
NTREC is the number of 512 byte records in a physical tape block. MLEN is the number of
bits in a bit map word. MSIZ is the number of bit map words.

7th Edition 1

DUMP (5) DUMP (5)

The 7S_ entries are used in the c_gpe field to indicate what sort of header this is. The types
and their meanings are as follows:

TS _TAPE Tape volume label

TS_INODE A file or directory follows. The c_dinode field is a copy of the disk inode and con-
tains bits telling what sort of file this is.

TS_BITS A bit map follows. This bit map has a one bit for each inode that was dumped.

TS_ADDR A subrecord of a file description. See c_addr below.

TS_END End of tape record.

TS_CLRI A bit map follows. This bit map contains a zero bit for all inodes that were empty
on the file system when dumped.

MAGIC All header records have this number in ¢_magic.

CHECKSUM
Header records checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.

¢_date The date the dump was taken.

c_ddate The date the file system was dumped from.

c_volume The current volume number of the dump.

c_tapea The current number of this (512-byte) record.

c_inumber The number of the inode being dumped if this is of type TS_INODE.

c_magic This contains the value MAGIC above, truncated as needed.

c_checksum
This contains whatever value is needed to make the record sum to CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system; see filsys(5).

c_count The count of characters in ¢_addr.

¢_addr An array of characters describing the blocks of the dumped file. A character is zero
if the block associated with that character was not present on the file system, other-
wise the character is non-zero. If the block was not present on the file system, no
block was dumped; the block will be restored as a hole in the file. If there is not
sufficient space in this record to describe all of the blocks in a file, TS_ADDR

records will be scattered through the file, each one picking up where the last left
off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume
ends with a TS_END record and then the tapemark.

The structure idates describes an entry of the file /erc/ddate where dump history is kept. The
fields of the structure are:

id_name The dumped filesystem is ‘/dev/id_nam’.
id_incno The level number of the dump tape; see dump(1).
id_ddate The date of the incremental dump in system format see types(5).

FILES
/etc/ddate

SEE ALSC
dump(1), dumpdir(1), restor(1), filsys(5), types(5)

7th Edition 2

ENVIRON (5) ENVIRON (5)

NAME

environ — user environment

SYNOPSIS

extern char **environ;

DESCRIPTION

An array of strings called the ‘environment’ is made available by exec(2) when a process be-
gins. By convention these strings have the form ‘name=value’. The following names are used
by various commands:

PATH The sequence of directory prefixes that sh, time, nice(1), etc., apply in searching for a
file known by an incomplete path name. The prefixes are separated by ‘. Login(1)
sets PATH =:/bin:/usr/bin.

HOME A user’s login directory, set by login(1) from the password file passwd(5).

TERM The kind of terminal for which output is to be prepared. This information is used by
commands, such as nroff or plot(1), which may exploit special terminal capabilities. See
term(7) for a list of terminal types.

Further names may be placed in the environment by the export command and ‘name=value’
arguments in sh(l), or by exec(2). It is unwise to conflict with certain Shell variables that are
frequently exported by ‘.profile’ files: MAIL, PS1, PS2, IFS.

SEE ALSO

exec(2), sh(1), term(7), login(1)

7th Edition 1

FILSYS (5) FILSYS (5)

NAME
filsys, flblk, ino — format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/flbk.h>
#include <sys/filsys.h>
#include <sys/ino.h>

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a com-
mon format for certain vital information. Every such volume is divided into a certain number
of 512-byte blocks. Block 0 is unused and is available to contain a bootstrap program, pack la-
bel, or other information.

Block 1 is the super block. The layout of the super .block as defined by the inciude file
< sysifilsys.h> is:

/* Structure of the super-block */
struct filsys {

unsigned short s_isize; /* first block not in i-list */

daddr_t s_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE]; /* free block list */

short s_ninode; /* number of i-nodes in s_inode */
ino_t s_inode[NICINOD]I; /* free i-node list */

char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag */

char s_ronly; /* mounted read-only flag */

time_t s_time; /* last super block update */

/* remainder not maintained by this version of the system */
daddr_t s_tfree; /* total free blocks*/

ino_t s_tinode; /* total free inodes */ .
short s_m; /* interleave factor */

short s_n; /e

char s_fnamel6]; /* file system name */

char s_fpackl[6]; /* file system pack name */

h

S_isize is the address of the first block after the i-list, which starts just after the super-block, in
block 2. Thus is i-list is s_isize—2 blocks long. S_fsize is the address of the first block not po-
tentially available for allocation to a file. These numbers are used by the system to check for
bad block addresses; if an.‘impossible’ block address is allocated from the free list or is freed, a
diagnostic is written on the on-line console. Moreover, the free array is cleared, so as to
prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free array contains, in s_free(1],

.., s_freels_nfree—1], up to NICFREE free block numbers. NICFREE is a configuration con-
stant. S_free[0] is the block address of the head of a chain of blocks constituting the free list.
The layout of each block of the free chain as defined in the include file < sys/fbik.h> is:

struct fblk

{
int df_nfree;
daddr_t df free[NICFREE], %
h '

7th Edition 1

FILSYS (5) FILSYS (5)

The fields df nfree and df free in a free block are used exactly like s_nffee and s_free in the
super block. To allocate a block: decrement s nfree, and the new block number is
s_freels_nfree]. If the new block address is 0, there are no blocks left, so give an error. If
s_nfree became 0, read the new block into s_nfree and s_free. To free a block, check if s_nfree is
NICFREE,; if so, copy s_nfree and the s_free array into it, write it out, and set s_nfree to 0. In
any event set s_freels_nfree] to the freed block’s address and increment s_nfree.

S_ninode is the number of free i-numbers in the s_inode array. To allocate an i-node: if s_ninode
is greater than 0, decrement it and return s_inodels_ninode]. If it was 0, read the i-list and place
the numbers of all free inodes (up to NICINOD) into the s_inode array, then try again. To free
an i-node, provided s_ninode is less than NICINODE, place its number into s_inodels_ninode]
and increment s_ninode. If s_ninode is already NICINODE, don’t bother to enter the freed i-
node into any table. This list of i-nodes is only to speed up the allocation process; the informa-
tion as to whether the inode is really free or not is maintained in the inode itself.

S_flock and s_ilock are flags maintained in the core copy of the file system while it is mounted
and their values on disk are immaterial. The value of s_fimod on disk is likewise immaterial; it
is used as a flag to indicate that the super-block has changed and should be copied to the disk
during the next periodic update of file system information. S_ronly is a write-protection indica-
tor; its disk value is also immaterial.

S_time is the last time the super-block of the file system was changed. During a reboot, s_time
of the super-block for the root file system is used to set the system’s idea of the time.

The fields s_tfree, s_tinode, s_fname and s_fpack are not currently maintained.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. I-nodes are 64 bytes long,
so 8 of them fit into a block. I-node 2 is reserved for the root directory of the file system, but
no other i-number has a built-in meaning. Each i-node represents one file. The format of an
i-node as given in the include file <sys/ino.h> is:

/* Inode structure as it appears on a disk biock. */
struct dinode
{
unsigned short di_mode:/* mode and type of file */
short di_nlink; /* number of links to file */

short di_uid; /* owner’s user id */
short di_gid; /* owner’s group id */
off t di_size; /* number of bytes in file */

char di_addr[40]; /* disk block addresses */
time_t di_atime; /* time last accessed */
time_t di_mtime; /* time last modified */
time_t di_ctime; /* time created */
hooo
#define INOPB 8 /* 8 inodes per block */

/#

* the 40 address bytes:

* 39 used; 13 addresses
* of 3 bytes each.

*/

Di_mode tells the kind of file; it is encoded identically to the sz_mode field of stat(2). Di_nlink is
the number of directory entries (links) that refer to this i-node. Di_uid and di_gid are the
owner’s user and group IDs. Size is the number of bytes in the file. Di_atime and di_mtime are
the times of last access and modification of the file contents (read, write or create) (see
times(2)); Di_ctime records the time of last modification to the inode or to the file, and is used
to determine whether it should be dumped.

7th Edition ' 2

FILSYS (5) FILSYS (5)

Special files are recognized by their modes and not by i-number. A block-type special file is
one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files, the di_addr field is occupied by
the device code (see yypes(5)). The device codes of block and character special files overiap.

Disk addresses of plain files and directories are kept in the array di_addr packed into 3 bytes
each. The first 10 addresses specify device blocks directly. The last 3 addresses are singly,
doubly, and triply indirect and point to blocks of 128 block pointers. Pointers in indirect blocks
have the type daddr_t (see types(5)).

For block b in a file to exist, it is not necessary that all blocks less than 5 exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the
corresponding block has never been allocated. Such a missing block reads as if it contained all
zero words.

Sl;:E ALSO
icheck(1), dcheck(1), dir(5), mount(1), stat(2), types(5)

7th Edition 3

GROUP (5) GROUP (5)

NAME
group — group file
DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have

general read permission and can be used, for example, to map numerical group ID’s to names.
FILES

/etc/group

SEE ALSO
newgrp(1), crypt(3), passwd(1), passwd(5)

7th Edition 1

MPXIO (5) MPXIO (5)

NAME

mpxio — multiplexed i/o

SYNOPSIS

#include <sys/mx.h>
#include <sgtty.h>

DESCRIPTION

Data transfers on mpx files (see mpx(2)) are multiplexed by imposing a record structure on
the io stream. Each record represents data from/to a particular channel or a control or status
message associated with a particular channel.

The prototypical data record read from an mpx file is as follows

struct input_record {
short index;
short count;
short ccount;
char datall;
I3
where index identifies the channel, and count specifies the number of characters in data. If count
is zero, ccount gives the size of data, and the record is a control or status message. Although
count or ccount might be odd, the operating system aligns records on short (i.e. 16—bit) boun-
daries by skipping bytes when necessary.

Data written to an mpx file must be formatted as an array of record structures defined as fol-
lows

struct output_record {
short index;
short count;
short ccount;
char *data;
h
where the data portion of the record is referred to indirectly and the other cells have the same
interpretation as in input_record.

The control messages listed below may be read from a multiplexed file descriptor. Théy are
presented as two 16-bit integers: the first number is the message code (defined in
<sys/mx.h>), the second is an optional parameter meaningful only with M_WATCH and
M_BLK.

M_WATCH — a process ‘wants to attach’ on this channel. The second parameter is
the 16-bit user-id of the process that executed the open.

M_CLOSE - the channel is closed. This message is generated when the last file
descriptor referencing a channel is closed. The detach command (see mpx(2)
should be used in response to this message.

M_EOT - indicates logical end of file on a channel. If the channel is joined to a type-
writer, EOT (control-d) will cause the M_EOT message under the conditions
specified in #y(4) for end of file. If the channel is attached to a process,
M_EOT will be generated whenever the process writes zero bytes on the chan-
nel.

M_BLK — if non-blocking mode has been enabled on an mpx file descriptor xd by exe-
cuting ioctl(xd, MXNBLK, 0), write operations on the file are truncated in the
kernet when internal queues become full. This is done on a per-channel basis:
the parameter is a count of the number of characters not transferred to the

7th Edition 1

MPXIO (5) MPXIO (5)

channel on which M_BLK is received.
M_UBLK - is generated for a channel after M_BLK when the internal queues have
drained below a threshold.

Two other messages may be generated by the kernel. As with other messages, the first 16-bit
quantity is the message code.

M_OPEN - is generated in conjunction with ‘listener’ mode (see mpx(2)). The uid of
the calling process follows the message code as with M_WATCH. This is fol-
lowed by a null-terminated string which is the name of the file being opened.

M_IOCTL - is generated for a channel connected to a process when that process exe-
cutes the ioct!(fd, cmd, &vec) call on the channel file descriptor. The M_IOCTL
code is followed by the cmd argument given to ioct! followed by the contents of
the structure vec. It is assumed, not needing a better compromise at this time,
that the length of vec is determined by sizeof (struct sguyb) as declared in
<sgtty.h>.

Two control messages are understood by the operating system. M_EOT may be sent through
an mpx file to a channel. It is equivalent to propagating a zero-length record through the chan-
nel; i.e. the channel is allowed to drain and the process or device at the other end receives a
zero-length transfer before data starts flowing through the channel again. M_IOCTL can also
be sent through a channel. The format is identical to that described above.

7th Edition 2

MTAB (5) MTAB(S5)

NAME
mtab — mounted file system table

DESCRIPTION
Mtab resides in directory /etc and contains a table of devices mounted by the mount command.
Umount removes entries.
Each entry is 64 bytes long; the first 32 are the null-padded name of the place where the special

file is mounted; the second 32 are the null-padded name of the special file. The special file has
all its directories stripped away; that is, everything through the last ¢/’ is thrown away.

This table is present only so people can look at it. It does not matter to mount if there are du-
plicated entries nor to umount if a name cannot be found. .

FILES
/etc/mtab

SEE ALSO
mount(1)

7th Edition 1

PASSWD (5) | PASSWD (5)

NAME
passwd — password file

DESCRIPTION
Passwd contains for each user the following information:

name (login name, contains no upper case)

encrypted password '

numerical user [D

numerical group ID

GCOS job number, box number, optional GCOS user-id
initial working directory

program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The GCOS field is used only when communicating with that system, and in other installations
can contain any desired information. Each user is separated from the next by a new-line. If
the password field is null, no password is demanded; if the Shell field is null, the Shell itself is
used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user ID’s to names.

FILES
/etc/passwd

SEE ALSO
getpwent(3), login(1), crypt(3), passwd(1), group(5)

7th Edition 1

PLOT (5)

NAME

PLOT (5)

plot — graphics interface

DESCRIPTION B
Files of this format are produced by routines described in piot(3), and are interpreted for vari-
ous devices by commands described in plot(1). A graphics file is a stream of plotting instruc-
tions. Each instruction consists of an ASCII letter usually followed by bytes of binary informa-
tion. The instructions are executed in order. A point is designated by four bytes representing

the

instruction becomes the ‘current point’ for the next instruction.

x and y values; each value is a signed integer. The last designated point in an 1, m, n, or p

e

Each of the following descriptions begins with the name of the corresponding routine in plor(3).

m
n

‘SEE ALSO

move: The next four bytes give a new current point.

cont: Draw a line from the current point to the point given by the next four bytes. See
plor(1).

point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the point given by the fol-
lowing four byte§.

label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a newline.

arc: The first four bytes give the center, the next four give the starting point, and the last
four give the end point of a circular arc. The least significant coordinate of the end point is
used only to determine the quadrant. The arc is drawn counter-clockwise.

circle: The first four bytes give the center of the circle, the next two the radius.
erase: Start another frame of output.

linemod: Take the following string, up to a newline, as the style for drawing further lines.
The styles are ‘dotted,” ‘solid,” ‘longdashed,’ ‘shortdashed,’ and ‘dotdashed.’ Effective only
in plot 4014 and plot ver.

space: The next four bytes give the lower left corner of the plotting area; the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as close-
ly as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters of plor(1). The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square; points outside may be displayable on dev-
ices whose face isn’t square.

4014 space(0, 0, 3120, 3120);

ver space(0, 0, 2048, 2048);
300, 300s space(0, 0, 4096, 4096);
450 space(0, 0, 4096, 4096);

plot(1), plot(3), graph(1)

7th Edition

TP(5) . TP (5)

NAME
tp — DEC/mag tape formats

DESCRIPTION E
The command p dumps files to and extracts files from DECtape and magtape. The formats of
these tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See bproc(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

struct {
char pathname([32];
int mode;
char uid;
char gid;

char unusedl;

char size[3];

long modtime;

int tapeaddr;

char unused2[16];

} int checksum; -

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte.
Mode, uid, gid, size and time modified are the same as described under i-nodes (see file system
filsys(5)). The tape address is the tape block number of the start of the contents of the file.
Every file starts on a block boundary. The file occupies (size+511)/512 blocks of continuous
tape. The checksum entry has a value such that the sum of the 32 words of the directory entry
is zero.

Blocks above 25 (resp. 63) are available for file storage.
A fake entry has a size of zero.

SEE ALSO
filsys(5), tp(1)

BUGS
The pathname, uid, gid, and size fields are too small.

7th Edition 1

TTYS(S) TTYS (5)

NAME
ttys — terminal initialization data

DESCRIPTION

The nys file is read by the inir program and specifies which terminal special files are to have a
process created for them which will allow people to log-in. It contains one line per special file.

The first character of a line is either ‘0’ or ‘1°; the former causes the line to be ignored, the
latter causes it to be effective. The second character is used as an argument to gery(8), which
performs such tasks as baud-rate recognition, reading the login name, and cailing login. For nor-
mal lines, the character is ‘0’; other characters can be used, for example, with hard-wired ter-
minals where speed recognition is unnecessary or which have special characteristics. (Gerny will
have to be fixed in such cases.) The remainder of the line is the terminal’s entry in the device
directory, /dev.

FILES
letc/ttys

SEE ALSO
init(8), getty(8), login(1)

2
.

7th Edition 1

TYPES (5) UNIX Programmer’s Manual TYPES (5)

NAME

types — primitive system data types
SYNOPSIS

#include <sys/types.h>

DESCRIPTION :
The data types defined in the include file are used in UNIX system code; some data of these
types are accessible to user code:

typedef long daddr_t; /* disk address */

typedef char * caddr_t; /* core address */

typedef unsigned int ino_t; /* i-node number */

typedef long time_t; /* a time */

typedef int label_t[6]; /* program status */

typedef int dev_t; /* device code */

typedef long off_t; /* offset in file */ \
/* selectors and constructor for device code */

#definemajor(x) (int) (((unsigned)x > >8))

#defineminor(x) (int) (x&0377)

#definemakedev(x,y) (dev_t) (x) < <8|(y))

The form daddr_t is used for disk addresses except in an i-node on disk, see fisys(5). Times
are encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation-dependent. Offsets
are measured in bytes from the beginning of a file. The label_t variables are used to save the
processor state while another process is running.

SEE ALSO
filsys(5), time(2), lseek(2), adb(1)

7th Edition 1

UTMP (S5) UTMP (5)

NAME
utmp, wtmp — login records
SYNOPSIS
#include <utmp.h> ,
DESCRIPTION ‘

The urmp file allows one to discover information about who is currently using UNIX. The file
is a sequence of entries with the following structure declared in the include file:

struct utmp |

char ut_line[8]; /* tty name */
char ut_namel8}]: /* user id */
long ut_time; /* time on */

This structure gives the name of the special file associated with the user’s terminal, the user’s
login name, and the time of the login in the form of rime(2).

The wrmp file records all logins and logouts. Its format is exactly like urmp except that a null
user name indicates a logout on the associated terminal. Furthermore, the terminal name ‘™
indicates that the system was rebooted at the indicated time; the adjacent pair of entries with
terminal names ‘" and *}* indicate the system-maintained time just before and just after a datre
command has changed the system’s idea of the time.

Wimp is maintained by login(1) and init(8). Neither of these programs creates the file, so if it
is removed record-keeping is turned off. It is summarized by ac(1).

FILES
/etc/utmp
/usr/adm/wtmp

SEE ALSO
login(1), init(8), who(1), ac(1)

Tth EAditinn 1

ARITHMETIC(6) | ARITHMETIC (6)

NAME

arithmetic — provide drill in number facts
SYNOPSIS

/usr/games/arithmetic [+~x/] [range]
DESCRIPTION :

Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the
answer is correct, it types back "Right!”, and a new problem. If the answer is wrong, it replies
"What?", and waits for another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; + —x/ respective-
ly cause addition, subtraction, multiplication, and division problems to be generated. One or
more characters can be given; if more than one is given, the different types of problems will be
mixed in random order; default is +—

Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and
quotients will be less than or equal to the value of range. Default rangeis 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respon-
dent makes a mistake, the numbers in the problem which was missed become more likely to
reappear.

As a matter of educational philosophy, the program will not give correct answers, since the
learner should, in principle, be able to calculate them. Thus the program is intended to provide
drill for someone just past the first learning stage, not to teach number facts de novo. For al-
most all users, the relevant statistic should be time per problem, not percent correct.

7th Edition 1

BACKGAMMON (6) BACKGAMMON (6)

NAME
backgammon — the game
SYNOPSIS
/usr/games/backgammon
DESCRIPTION

This program does what you expect. It will ask whether you need instructions.

7th Edition i

BANNER (6) BANNER (6)

NAME
banner — make long posters
SYNOPSIS
/usr/games/banner
DESCRIPTION
Banner reads the standard input and prints it sideways in huge built-up letters on the standard
output.

7th Edition 1

BCD (6) BCD (6)

NAME
bed, ppt — convert to antique media

SYNOPSIS
/usr/games/bed text

/usr/games/ppt

DESCRIPTION
Bced converts the literal rexr into a form familiar to old-timers.

Ppt converts the standard input into yet another form.

SEE ALSO
dd(1)

o

7th Edition 1

BJ (6)

NAME

bj —

SYNOPSIS

BJ(6)"

the game of black jack

/usr/games/bj

DESCRIPTION ,
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as
might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player ‘natural’ (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a ‘push’ (no money exchange).

If the dealer has an ace up, the player is allowed to make an ‘insurance’ bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if
the dealer does not.

If the player is dealt two cards of the same value, he is allowed to ‘double’. He is allowed
to play two hands, each with one of these cards. (The bet is doubled also; $2 on each
hand.)

If a dealt hand has a total of ten or eleven, the player may ‘double down’. He may dou-
ble the bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may ‘hit’ (draw a card) as long as his total is not over
twenty-one. If the player ‘busts’ (goes over twenty-one), the dealer wins the bet.

When the player ‘stands’ (decides not to hit), the dealer hits until he attains a total of
seventeen or more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times.
Each question is answered by y followed by a new line for ‘yes’, or just new line for ‘no’.

9

Insurance?

(means, ‘do you want a hit?’)

Double down?

Every time the deck is shuffled, the dealer so states and the ‘action’ (total bet) and ‘standing’
(total won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing
will be printed. ’

7th Edition

CHECKERS (6) CHECKERS (6)

NAME :
checkers — game
SYNOPSIS
/usr/games/checkers
DESCRIPTION
Checkers uses standard. notation for the board:
. BLACK
i 11 //// 2.\ /11 3 1/// 4
V11 /11/ 1117 /1117
St /711 6 | //1 7|17/ 8 (/1111
111/ 1 111/ 1117
i 9-{ /711 10 | //// 11 | //// 12
111/ 111/ i ’ i
13 | /747 14 | //// 15 { //// 16 | //1/
' 111/ 1117/ i 111/
111/ 17 {1117 18 | //// 19 | //1/ 20
11/ /111 11/ 1117
21 | 111/ 221 /111 23 1 1117 24 | /11
111/ 117/ 1117 i
111/ 25 1 111/ 26 | /111 27 | /111 28
111/ 111/ N 111/
29 | /41 30 | /717 31) /747 32 | /117
117/ 1117 111/ 111/
WHITE

Black plays first. The program normally plays white. To specify a move, name the square
moved from and the square moved to. For multiple jumps name all the squares touched.

Certain commands may be given instead of moves:

reverse Reverse roles; the program takes over your pieces.
backup Undo the last move for each player.

list Print the record of the game.

move Let the program select a move for you.

print Print a map of the present position.

' e
Ly,

7th Edition ' 1

CHESS (6) CHESS (6)

AME
chess — the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given either in standard

(descriptive) notation or in algebraic notation. The symbol ‘+’ is used to specify check; ‘0-0’
and ‘0-0-0’ specify castling. To play black, type ‘first’; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply.

FILES
 fusr/lib/book opening ‘book’
DIAGNOSTICS '
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.
WARNING

Over-use of this program will cause it to go away.

BUGS
. Pawns may be promoted only to queens.

7th Edition

CHING (6) ' ' CHING (6)

NAME

ching, fortune — the book of changes and other cookies

SYNOPSIS

/usr/games/ching [hexagram |
/usr/games/fortune

DESCRIPTION

The I Ching or Book of Changes is an ancient Chmese oracle that has beén in use for centuries
as a source of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each sym-
bolized by a particular arrangement of six straight (———) and broken (— —) lines. These
lines have values ranging from six through nine, with the even values indicating the broken
lines.

Each hexagram consists of two major sections. The Judgement relates specifically to the matter
at hand (E.g., "It furthers one to have somewhere to go.") while the Image describes the gen-
eral attributes of the hexagram and how they apply to one’s own life’ ("Thus the superior man
makes himself strong and untiring.").

- When any of the lines have the values six or nine, they are moving lines; for each there is an

appended judgement which becomes significant. Furthermore, the moving lines are inherently
unstable and change into their opposites; a second hexagram (and thus an additional judge-
ment) is formed.

Normally, one consults the oracle by fixing the desired question firmly in mind and then casting
a set of changes (lines) using yarrow— stalks or tossed coins. The resuiting hexagram will be
the answer to the question.

Using an algorithm suggested by S. C. Johnson, -the Unix oracle simply reads a question from
the standard input (up to an EOF) and hashes the individual characters in combination with the
time of day, process id and any other magic numbers which happen to be lying around the sys-
tem. The resulting value is used as the seed of a random number generator which drives a
simulated coin—toss divination. The answer is then piped through nroff for formatting and will
appear on the standard output.

For those who wish to remain steadfast in the old traditions, the oracle will also accept the
results of a personal divination using, for example, coins. To do this, cast the change and then
type the resulting line values as an argument.

The impatient modern may prefer to settle for Chinese cookies; try forrune.

SEE ALSO

It furthers one to see the great man.

DIAGNOSTICS

BUGS

The great prince issues commands,
Founds states, vests families with fiefs.
Inferior people should not be employed.

Waiting in the mud
Brings about the arrival of the enemy.

If one is not extremely careful,
Somebody may come up from behind and strike him.
Misfortune.

7th Edition 1

MAZE (6) MAZE (6)

NAME
maze — generate a maze problem

SYNOPSIS
/usr/games/maze/

DESCRIPTION .
Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

7th Edition 1

MOO (6) MOO (6)

NAME
moo — guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION .
Moo is a guessing game imported from England. The computer picks a number consisting of
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A ‘cow’ is a correct digit in an incorrect position. A ‘bull’ is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

7th Edition 1

QUIZ (6) ' ’ QUIZ (6)

NAME

quiz — test your knowledge

SYNOPSIS

/usr/games/quiz [—ifile] { —t] [categoryl category?]

DESCRIPTION

FILES

BUGS

Quiz gives associative knowledge tests on various subjects. It asks items chosen from category!
and expects answers from caregory2. If no categories are specified, quiz gives instructions and
lists the available categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter-
rupt, or when questions run out, gquiz reports a score and terminates.

. The —t flag specifies ‘tutorial’ mode, where missed questions are repeated later, and material is

gradually introduced as you learn.

The —i flag causes the named file to be substituted for the default index file. The lines of
these files have the syntax:

line = category newline | category *:’ line
category = alternate | category ¥ alternate
alternate = empty | alternate primary

primary = character| ‘[’ category ‘]’ | option
option = ‘{’ category ‘}’

The first category on each line of an index file names an information file. The remaining
categories specify the order and contents of the data in each line of the information file. Infor-
mation files have the same syntax. Backslash *\" is used as with sh(1) to quote syntactically
significant characters or to insert transparent newlines into a line. When either a question or its
answer is empty, guiz will refrain from asking it.

/usr/games/quiz.k/*

The construct ‘aab’ doesn’t work in an information file. Use ‘a{b}".

7th Edition ' I

REVERSI (6) REVERSI (6)

NAME

reversi — a game of dramatic reversals

SYNOPSIS

/usr/games/reversi [[—r] file]

DESCRIPTION

Reversi (also known as ‘friends’, ‘Chmese friends’ and ‘Othello’) is played on an 8x8 board us-
ing two-sided tokens. Each player takes his turn by placing a token with his side up in an emp-
ty square. During the first four turns, players may only place tokens in the four central squares
of the board. Subsequently, with each turn, a player musr capture one or more of his
opponent’s tokens. He does this by placing one of his tokens such that it and another of his to-
kens embrace a solid line of his opponent’s horizontally, vertically or diagonally. Captured to-
kens are flipped over and thus can be re-captured. If a player cannot outflank his opponent he
forfeits his turn. The play continues until the board is filled or until no more outflanking is
possible.

In this game, your tokens are asterisks and the machine’s are at-signs. You move by typing in
the row and column at which you want to place your token as two digits (1 8), optionally
separated by blanks or tabs. You can also type

c to continue the game after hitting break (this is only necessary if you interrupt the
machine while it is deliberating).

n to start reversi playing against itself for the next » moves (or until the break key is hit).
to stop printing the board after each move.
to start it up again.
to print the board regardless.
to quit (without dishonor).

w oa 9 e = m

to print the score.

Reversi also recognizes several commands which are valid only at the start of the game, before
any moves have been made. They are

f to let the machine go first.

hn to ask for a handicap of from one to four corner squares. If you're good, you can give

the machine a handicap by typing a negative number.

In to set the amount of lookahead used by the machine in searching for moves. Zero
means none at all. Four is the default. Greater than six means you may fall asleep
waiting for the machine to move.

tn to tell reversi that you will only need n seconds to consider each move. If you fail to
respond in the alloted time, you forfeit your turn.

If reversi is given a file name as an argument, it will checkpoint the game, move by move, by
dumping the board onto file. The —r option will cause reversi to restart the game from file and
continue logging.

7th Edition 1

22

25

TTT (6) TTT (6)

NAME
ttt, cubic — tic-tac-toe

SYNOPSIS
/usr/games/ttt
/usr/games/cubic

DESCRIPTION)
Tntis the X and O game popular in the first grade. This is a learning program that never makes

the same mistake twice.
Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are specified as a sequence
of three coordinate numbers in the range 1-4.

FILES
: /usr/games/ttt.k learning file

7th Edition 1

WORDS (6) | WORDS (6)

NAME
hangman, words — word games

SYNOPSIS
/usr/games/hangman [dict]

/usr/games/words

DESCRIPTION

Hangman chooses a word at least seven letters long from a word list. The user is to guess
letters one at a time.

The optional argument names an alternate word list. The special name ‘—a’ gets a particular
very large word list.

Words prints all the uncapitalized words in the word list that can be made from letters in string.

FILES
/usr/dict/words the regular word list
/crp/dict/web2 the the —a word list
DIAGNOSTICS
After each round, hangman reports the average number of guesses per round and the number
of rounds.
BUGS

Hyphenated compounds are run together.
UNIX software is distributed without the —a word list.

Tth Fditinn 1

WUMP (6) ’ WUMP (6)

NAME

wump — the game of hunt-the-wumpus
SYNOPSIS

/usr/games/wump
DESCRIPTION

Wump plays the game of ‘Hunt the Wumpus.” A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot-
tomless Pits. There are also Super Bats which are likely to pick you up and drop you in some
random room. :

The program asks various questions which you answer one per line; it will give a more detailed
description if you want. .
This program is based on one described in People’s Computer Company, 2, 2 (November 1973).

BUGS
It will never replace Space War.

Tth Edition 1

ASCII(7) ASCII (7)

NAME
ascii — map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION)
Asciiis a map of the ASCII character set, to be printed as needed. It contains:
000 nul|001 soh{002 stx{003 etx|004 eot|005 enq|006 ack|007 bel
010 bs [011 ht {012 nl {013 vt |014 np |015 cr {016 so |017 si
020 die|021 dcl{022 dc2|023 dc3|024 dc4|025 nak|{026 syn|027 etb
030 can{031 em |032 sub|033 esc|034 fs {035 gs [036 rs |037 us
040 sp [041 ! |042 " |043 # |044 $ 1045 % |046 & |047
050 ({051) |052 * |053 + |054 , {055 —]o0s6 . |057 /
060 O (061 1 |062 2 |063 3 {064 4 {065 S5 |066 6 |067 7
070 8 {071 9 |072 : |073 ; {074 < |075 = |076 > |077 *?
100 @ {101 A [102 B {103 C {104 D {105 E [106 F |107 G
110 H (111 I |112 J {113 K |[114 L |115 M]116 N |117 O
120 P 121 Q |122 R {123 S |124 T |125 U |126 V |127 W
130 X {131 Y |132 Z [133 [|134 \ [135] |136 ~ |137 _
140 ° |141 a |142 b |143 ¢ {144 d |145 e |146 f |147 ¢
150 h 151 i |152 j |153 k {154 1 {155 m |156 n |157 o
160 p (161 q |162 r 163 s {164 t |165 u |[166 v |167 w
170 x 171 y |172 z |173 { [174 | |175 } |176 ~ |177 del

FILES
/usr/pub/ascii

7th Edition 1

EQNCHAR (7) . EQNCHAR (7)

NAME
eqnchar — special character definitions for eqn

SYNOPSIS
eqn /usr/pub/eqnchar [files] | troff [options]

neqn /usr/pub/eqnchar | files | | nroff [options]

DESCRIPTION
Egnchar contains troff and nroff character definitions for constructing characters that are not
available on the Graphic Systems typesetter. These definitions are primarily intended for use
with egn and negn. It contains definitions for the following characters

ciplus ® I I square O
citimes ® langle (circle o
wig ~ rangle) blot 2
-wig = hbar fi bullet L]
>wig 2> ppd L prop «
< wig < <-> - empty 7}
. =wig = <=> < member €

star % | < nomem _ ¢
bigstar % [> > cup U
= dot = ang L cap n
orsign V rang L incl [y
andsign N\ 3dot subset c
=del A thf supset o
oppA Y quarter ' Isubset C
oppE = Jquarter Y Isupset 2
angstrom A degree °

FILES
/usr/pub/eqnchar

SEE ALSO

troff (1), eqn(1)

7th Edition 1

GREEK (7) GREEK (7)

NAME

greek — graphics for extended TTY-37 type-box
SYNOPSIS

cat /usr/pub/greek [| greek —Tterminal]
DESCRIPTION

Greek gives the mapping from ascii to the ‘shift out’ graphics in effect between SO and SI on
model 37 Teletypes with a 128-character type-box. These are the default greek characters pro-

duced by nrofff The filters of greek(1) attempt to print them on various other terminals. The
file contains:

alpha a A beta B B gamma v \
GAMMA r G delta 8§ D DELTA A W
epsilon e S zeta { Q eta n N
THETA ® T theta e O lambda A L
LAMBDA A E mu w M nu vy @
xi & X pi | PI n P
rho p K sigma o Y SIGMA z R
tau T 1 phi ¢ U PHI ® “F
psi v V PSI ¥ H omega w C
OMEGA Q Z nabla v I not -
partial o 1 integral f -

SEE ALSO
greek(1)
troff (1)

7th Edition 1

HIER (7) HIER (7)

NAME
hier — file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative directory hierarchy.

/ root
/dev/ devices (4)
console
main console, ry(4)
tty* terminals, fy(4)
cat phototypesetter car(4)
p* disks, rp, hp(4)
rrp* raw disks, rp, hp(4)

/bin/ utility programs, cf /usr/bin/ (1)
as assembler first pass, cf /usr/lib/as2
cc C compiler executive, cf /usr/lib/c[012]

/lib/ object libraries and other stuff, c¢f /usr/lib/
libc.a system calls, standard 1/0, etc. (2,3,3S)
libm.a math routines (3M)
libplot.a

plotting routines, plot(3)
libF77.a

Fortran runtime support
1ibl77.a

Fortran /O

aéZ second pass of as(1)
c[012] passes of cc(1)

/etc/ essential data and dangerous maintenance utilities
passwd password file, passwd(5)
group group file, group(5)
motd message of the day, login(1)
mtab mounted file table, mab(5)
ddate dump history, dump(1)
ttys properties of terminals, rys(5)
getty part of login, gety(8)
init the father of all processes, inir(8)
rc shell program to bring the system up
cron the clock daemon, cron(8)
mount mount(1)
wall wall(1l)

/tmp/ temporary files, usually on a fast device, cf /usr/tmp/
e* used by ed(1)
ctm* used by cc(1)

/usr/ general-pupose directory, usually a mounted file system

adm/ administrative information .

. f/.

wtmp login history, urmp(5) L
messages

7th Edition : 1

HIER (7)

/usr

7Tth Edition

/bin

tracct
vpacct

hardware error messages
phototypesetter accounting, troff(1)
line printer accounting lpr(1)

utility programs, to keep /bin/ small
temporaries, to keep /tmp/ small

tmp/

dict/

games/

»

stm
raster

used by sort(1)
used by pior(1)

word lists, etc.

words

principal word list, used by look(1)

spellhist

bj

history file for speli(1)

blackjack

hangman
quiz.k/ what quiz(6) knows

include/
standard #include files

a.out.h object file layout, a.ouz(5)
stdio.h standard 1/0, stdio(3)
math.h (3M)

lib/

sys/

index category index
africa countries and capitals

system-defined layouts, cf /usr/sys/h
acct.h process accounts, acct(5)
buf.h internal system buffers

object libraries and stuff, to keep /lib/ small

lint[12]

llib-1c
llib-Im
atrun
struct/

tmac/

font/

uucp/

suftab

subprocesses for /int(1)

dummy declarations for /lib/libc.a, used by /int(1)
dummy declarations for /lib/libc.m

scheduler for ar(1)

passes of struct(1)

macros for roff(1)
tmac.an

macros for man(7)
tmac.s macros for ms(7)

fonts for af(1)
R Times Roman
B Times Bold

programs and data for wucp(1)
L.sys remote system names and numbers
uucico the real copy program

table of suffixes for hyphenation, used by roff(1)

HIER (7)

HIER (7) HIER (7)

units conversion tables for unirs(1)
eign list of English words to be ignored by prx(1)
/ust/ man/
volume 1 of this manual, man(1)

man0/ general
intro introduction to volume 1, ms(7) format
XX template for manual page

manl/ chapter |
as.1
mount.lm

catl/ preprinted pages for manl/
' as.1
mount.lm

spool/ delayed execution files
at/ used by az(1)
Ipd/ used by ipr(1)
lock present when line printer is active
cf* copy of file to be printed, if necessary
df* daemon control file, jpd(8) .
tf* transient control file, while /pr is working
uucp/ work files and staging area for wucp(1)
LOGFILE
summary log
LOG.* log file for one transaction
mail/ mailboxes for maii(1)
uid mail file for user uid
uid.lock
lock file while wid is receiving mail
wd initial working directory of a user, typically wd is the user’s login name
.profile set environment for sh(1), .environ(5)
calendar
user’s datebook for calendar(1)
doc/ papers, mostly in volume 2 of this manual, typically in ms(7) format
as/ assembler manual
c C manual

sys/ system source.
dev/ device drivers
bio.c common code
cat.c cat(4)
dh.c DHI1l, ny(4)
tty 1y(4)

conf/ hardware-dependent code
mch.s assembly language portion
conf configuration generator

h/ header (include) files
acct.h accr(5)
stath swar(2)

7th Edition 3

HIER (7) ' HIER (7)

sys/ source for system proper
main.c
pipe.c
sysent.c
system entry points

/usr/ src/
source programs for utilities, etc.
cmd/ source of commands
as/ -assembler
makefile
recipe for rebuilding the assembler
asl?.s source of passl
ar.c source for ar(l)

troff/ source for nroff and troff(1)
nmake makefile for nroff
tmake makefile for roff
font/ source for font tables, /usr/lib/font/
ftR.c Roman

term/ ‘t.e;rminal characteristics tables, /usr/lib/term/
tab300.c
DASI 300

libe/ source for functions in /lib/libc.a
crt/ C runtime support
Idiv.s division into a long
Imul.s multiplication to produce long

csu/ startup and wrapup routines needed with every C program
crt0.s regular startup
mert0.s modified startup for cc —p
sys/ system calls (2)
access.s
alarm.s

stdio/ 's.t.andard 1/0 functions (3S)
fgets.c
fopen.c

gen/ other functions in (3)
abs.c :
atof.c

compall
shell procedure to compile libc
mklib shell procedure to make /lib/libc.a
1ibI77/ source for /lib/libl77
libF77/

7th Edition 4

HIER (7) : HIER (7)

games/ source for /usr/games
SEE ALSO
1s(1), ncheck(1), find(1), grep(1)
BUGS
The position of files is subject to change without notice.

@
4

7th Edition 5

MAN (7) MAN (7)

NAME
man — macros to typeset manual

SYNOPSIS
nroff —man file ...

troff ~man file ...

DESCRIPTION .
These macros are used to lay out pages of this manual. A skeleton page may be found in the
file /usr/man/man0/xx.

Any text argument ¢ may be zero to six words. Quotes may be used to include blanks in a
‘word’. If rexris empty, the special treatment is applied to the next input line with text to be
printed. In this way .I may be used to italicize a whole line, or .SM followed by .B to make
small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is
reset to default value upon reaching a non-indented paragraph. Default units for indents /are
ens.

Type font and size are reset to default values before each paragraph, and after processing font
and size setting macros.

These strings are predefined by —man:
*R ‘@ <(Reg)’ in nroff.
*S Change to default type size.

FILES

/usr/lib/tmac/tmac.an

/usr/man/man0/xx
SEE ALSO

troff(1), man(1)
BUGS

Relative indents don’t nest.
REQUESTS
Request Cause If no Explanation

Break Argument

B no =n.t.l.* Text ris bold.
Bl ¢ no r=n.t.I. Join words of ¢ alternating bold and italic.
.BR ¢ no r=n.t.l. Join words of talternating bold and Roman.
DT no. .5ili... Restore default tabs.

HP yes j=p.L* Set prevailing indent to /. Begin paragraph with hanging indent.
e no r=n.tl Text tis italic.

IB ¢ no r=n.t.l. Join words of ralternating italic and bold. -
IPxi yes x=" Same as .TP with tag x.

IR ¢ no r=n.t.l. Join words of ralternating italic and Roman.

LP yes - Same as .PP.

PD d no d=.4v Interparagraph distance is d.

.PP yes - Begin paragraph. Set prevailing indent to .5i.

.RE yes - End of relative indent. Set prevailing indent to amount of starting .RS.

.RB ¢ no t=n.t.l. Join words of ralternating Roman and bold.

Rl ¢ no r=n.tl. Join words of ralternating Roman and italic.

RS yes i=p.i Start relative indent, move left margin in distance /. Set prevailing indent to

.51 for nested indents.
SH ¢ yes r=n.tl. Subhead.

7th Edition 1

MAN (7) MAN (7)

SM ¢ no r=n.tl. Text ris small.
TH ncxyes - Begin page named n of chapter ¢; x is extra commentary, e.g. ‘local’, for

page foot. Set prevailing indent and tabs to .5i.

Set prevailing indent to i Begin indented paragraph with hanging tag given
by next text line. If tag doesn’t fit, place it on separate line.

* n.t.l. = next text line; p.i. = prevailing indent

TP i yes i=p.i.

&

7th Edition

MS (7) MS (7)

NAME

ms — macros for formatting manuscripts

SYNOPSIS
nroff —ms [options] file ...
troff —ms [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned formatting facility for tech-
nical papers in various formats. When producing 2-column output on a terminal, filter the out-
put through coi(1).

The macro requests are defined below. Many nroffand froff requests are unsafe in conjunction
with this package, however these requests may be used with impunity after the first .PP:

.bp beégin new page

.br break output line here

.Sp n insert n spacing lines

s n (line spacing) n=1 single, n=2 double space
.na no alignment of right margin

Output of the egn, negn, refer, and tbi(1) preprocessors for equations and tables is acceptable as
input.

FILES
/usr/lib/tmac/tmac.s

SEE ALSO
eqn(1), troff(1), refer(1), tbi(1)

REQUESTS
Request Initial Cause Explanation
Value Break

AC yes yes One column format on a new page.

.2C no yes Two column format.

.AB no yes Begin abstract.

AE - yes End abstract.

LAl no yes Author’s institution follows. Suppressed in TM.

AT no yes Print ‘Attached’ and turn off line filling.

.AUxy no yes Author’s name follows. x is location and y is extension, igniored except in TM.

Bx no no Print x in boldface; if no argument switch to boldface.

.B1 no yes Begin text to be enclosed in a box.

.B2 no yes End text to be boxed . print it.

BT date no Bottom title, automatically invoked at foot of page. May be redefined.

BX x no no Print xin a box.

CS x.. - yes Cover sheet info if TM format, suppressed otherwise. Arguments are number
of text pages, other pages, total pages, figures, tables, references.

.CT no yes Print ‘Copies to’ and enter no-fill mode.

DA x nroff no ‘Date line’ at bottom of page is x. Default is today.

.DE - yes End displayed text. Implies .KE.

.DS x no yes Start of displayed text, to appear verbatim line-by-line. x=I for indented
display (default), x=L for left-justified on the page, x=C for centered, x=B
for make left-justified block, then center whole block. Implies .KS.

.EG no - Print document in BTL format for ‘Engineer’s Notes.” Must be first.
.EN - yes Space after equation produced by egn or negn.
EQxy - yes Precede equation; break out and add space. Equation number is y. The option-

al argument x may be [to indent equation (default), L to left-adjust the equa-

7th Edition 1

MS(7)

.FE -
.FS no
.HO -
Ix no
JH no
IM no
Pxy no
KE -
KF no
.KS no
LG no
.LP yes
.MF -
.MH -
MR -
.ND date troff
NH~» -
.NL yes
.OK -
.PP no
PT pg #
PY -
.QE -
.QP -
Qs -
.R yes
.RE -
.RP no
.RS -
SG x no
.SH -
SM no
TA x.. §..
.TE -
.TH -
.TL no
IM x.. no
TR x -
IS x -
UL x -
UX -
.WH -
7th Edition

yes
no
no
no
no
no
yes
yes
yes

yes
no
yes

no

no

yes

no
yes
yes

no
yes
yes
yes
no

yes

yes

yes

yes
no
no
yes
yes
yes

yes
no
no

no

MS(7)

tion, or C to center the equation.

End footnote.

Start footnote. The note will be moved to the bottom of the page.

‘Belil Laboratories, Holmdel, New Jersey 07733".

Italicize x; if x missing, italic text follows.

‘Bell Laboratories, Naperville, Illinois 60540’

Print document in BTL format for an internal memorandum. Must be first.
Start indented paragraph, with hanging tag x. Indentation is y ens (default 5).
End keep. Put kept text on next page if not enough room.

Start floating keep. If the kept text must be moved to the next page, float later
text back to this page.

Start keeping following text.

Make letters larger.

Start left-blocked paragraph.

Print document in BTL format for ‘Memorandum for File.” Must be first.

‘Bell Laboratories, Murray Hill, New Jersey 07974°.

Print document in BTL format for ‘Memorandum for Record.” Must be first.
Use date supplied (if any) only in special BTL format positions; omit from page
footer.

Same as .SH, with section number supplied automatically. Numbers are mul-
tilevel, like 1.2.3, where n tells what level is wanted (default is 1).

Make letters normal size.

‘Other keywords’ for TM cover sheet follow.

Begin paragraph. First line indented.

Page title, automatically invoked at top of page. May be redeﬁned

‘Bell Laboratories, Piscataway, New Jersey 08854’

End quoted (indented and shorter) material.

Begin single paragraph which is indented and shorter.

Begin quoted (indented and shorter) material.

Roman text follows.

End relative indent level.

Cover sheet and first page for released paper. Must precede other requests.
Start level of relative indentation. Following .IP’s are measured from current
indentation. ,

Insert signature(s) of author(s), ignored except in TM. x is the reference line
(initials of author and typist).

Section head follows, font automatically bold.

Make letters smaller.

Set tabs in ens. Default is 5 10 15 ...

End table.

End heading section of table.

Title follows.

Print document in BTL technical memorandum format. Arguments are TM
number, (quoted list of) case number(s), and file number. Must precede other
requests.

Print in BTL technical report format; report number is x. Must be first.

Begin table; if xis H table has repeated heading.

Underline argument (even in troff).

‘UNIX’; first time used, add footnote ‘UNIX is a trademark of Bell Labora-
tories.’

‘Bell Laboratories, Whippany, New Jersey 07981°.

TERM (7) TERM (7)

NAME
terminais— conventional names
DESCRIPTION

These names are used by certain commands and are maintained as part of the shell environ-
ment (see sh(1),environ(5)).

1620 DIABLO 1620 (and others using HyType II)
1620—12 same, in 12-pitch mode

300 DASI/DTC/GSI 300 (and others using HyType I)
300—12 same, in 12-pitch mode

300s DASI/DTC 300/S

300s—12 same, in 12-pitch mode

33 TELETYPE® Model 33

37 TELETYPE Model 37

40—-2 TELETYPE Model 40/2

43 TELETYPE Model 43

450 DASI 450 (same as Diablo 1620)

450—12 same, in 12-pitch mode
450—12-8 same, in 12-pitch, 8 lines/inch mode

735 Texas Instruments TI735 (and TI725)
745 Texas Instruments TI745

dumb terminals with no special features

hp Hewlett-Packard HP264? series terminals
4014 Tektronix 4014

tn1200 General Electric TermiNet 1200

tn300 General Electric TermiNet 300

vt05 Digital Equipment Corp. VT0S

Commands whose behavior may depend on the terminal accept arguments of the form
—Tterm, where term is one of the names given above. If no such argument is present, a com-
mand may consult the shell environment for the terminal type.

SEE ALSO
stty (1), tabs(1), plot(1), sh(1), environ(5)
troff(1) for nroff
BUGS
The programs that ought to adhere to this nomenclature do so only fitfully.

7th Edition 1

BOOT (8) BOOT (8)

NAME
boot — startup procedures

DESCRIPTION
A PDP11/45 and PDP11/70 UNIX system is started by a two-stage process. The first is a pri-
mary bootstrap which is able to read in relatively small stand-alone programs; the second (called
boo?) is used to read in the system itself.

The primary bootstrap must reside in the otherwise unused block zero of the boot device. It
can be read in and started by the standard ROM programs, or if necessary by keying in a small
startup routine. This program is capable of loading type 407 executable files (not shared, not
separate I&D). The user types on the system console the name of the program wished, in this
case boot, followed by a carriage return; the named program is retrieved from the file system
that starts at block 0 of drive 0 of the boot device. No prompt is given, no diagnostic results if
the file cannot be found, and no provision is made for correcting typographical errors.

The second step, called boor, actually brings in the system. When read into location 0 and exe-
cuted, boor sets up memory management, relocates itself into high memory, and types a *:’ on
the console. Then it reads from the console a device specification (see below) followed
immediately by a pathname. Boot finds the corresponding file on the given device, loads that
file into memory location zero, sets up memory management as required, and calls the program
by executing a ‘trap’ instruction. Normal line editing characters can be used.

Conventionally, the name of the secondary boot program is ‘/boot’ and the name of the current
version of the system is ‘/unix’. Then, the recipe is:

1) Load block 0 of the boot device by fiddling with the console keys as appropriate for
your hardware. If you have no appropriate ROM, some programs suitabie for manual
use are given below.

2) Type boot.

3) When the prompt is given, type
hp(0,0) unix

or
rp(0,0) unix

depending on whether you are loading from an RP04/5/6 or an RP03 respectively. The

first 0 indicates the physical unit number; the second indicates the block number of the

beginning of the logical file system to be searched. (See below).

When the system is running, it types a ‘#’ prompt. After doing any file system checks and set-
ting the date (dare(8)) a multi-user system is brought up by typing an EOT (control-d) in
response to the ‘#’ prompt.

Device specifications. A device specification has the following form:
device (unit,offset)

where device is the type of the device to be searched, unitis the unit number of the device, and
offset is the block offset of the file system on the device. Device is one of the following

rp RPO3
hp RP04/5/6
rk RKO05

For example, the specification
hp(1,7000)
indicates an RPO3 disk, unit 1, and the file system found starting at block 7000 (cylinder 35).

7th Edition ' 1

BOOT (8) BOOT (8)

ROM programs. The following programs to call the primary bootstrap may be installed in read-
only memories or manually keyed into main memory. Each program is position-independent
but should be placed well above location 0 so it will not be overwritten. Each reads a block
from the beginning of a device into core location zero. The octal words constituting the pro-
gram are listed on the left.

RK (drive 0):

012700 mov $rkda,r0
177412
005040 clr —(r0) / rkda cleared by start
010040 mov 0, — (r0) .
012740 mov $5,— (r0)
000005
105710 1: tstb (r0)
002376 bge 1b -
005007 clr pc

RP (drive 0)
012700 mov $rpmr,r0
176726
005040 clr —(r0)
005040 clr —(r0)
005040 clr —(r0)
010040 mov 10, — (r0)
012740 mov $5,—(r0)
000005
105710 1 tstb (r0)
002376 bge 1b
005007 cir pc

FILES

/unix — system code

/usr/mdec/rpuboot, /usr/mdec/hpuboot — copies of primary bootstrap

/boot — second stage bootstrap

SEE ALSO

init(8) -

7th Edition 2

CRON(8) CRON (8)

NAME

cron — clock daemon

SYNOPSIS

/etc/cron

DESCRIPTION :

FILES

Cron executes commands at specified dates and times according to the instructions in the file
/usr/lib/crontab. Since cron never exits, it should only be executed once. This is best done by
running cron from the initialization process through the file /etc/rc; see init(8).

Crontab consists of lines of six fields each. The fields are separated by spaces or tabs. The first
five are integer patterns to specify the minute (0-59), hour (0-23), day of the month (1-31),
month of the year (1-12), and day of the week (1-7 with 1=monday). Each of these patterns
may contain a number in the range above; two numbers separated by a minus meaning a range
inclusive; a list of numbers separated by commas meaning any of the numbers; or an asterisk
meaning all legal values. The sixth field is a string that is executed by the Shell at the specified
times. A percent character in this field is translated to a new-line character. Only the first line
(up to a % or end of line) of the command field is executed by the Shell. The other lines are
made available to the command as standard input.

Crontab is examined by cron every minute.

/usr/lib/crontab

7th Edition 1

CRASH (8) CRASH (8)

NAME =
o crash — 'what to do when the system crashes
DESCRIPTION
This section gives at least a few clues about how to proceed if the system crashes. It can’t pre-
tend to be complete. :

Bringing it back up. If the reason for the crash is not evident (see below for guidance on ‘evi-
dent’) you may want to try to dump the system if you feel up to debugging. At the moment a
dump can be taken only on magtape. With a tape mounted and ready, stop the machine, load
address 44, and start. This should write a copy of all of core on the tape with an EOF mark.
Caution: Any error is taken to mean the end of core has been reached. This means that you
must be sure the ring is in, the tape is ready, and the tape is clean and new. If the dump fails,
you can try again, but some of the registers will be lost. See below for what to do with the
tape.

In restarting after a crash, always bring up the system single-user. This is accomplished by fol-
lowing the directions in b00#(8) as modified for your particular installation; a single-user system
is indicated by having a particular value in the switches (173030 unless you’ve changed init) as
the system starts executing. When it-is running, perform a dcheck and icheck(1) on all file sys-
tems which could have been in use at the time of the crash. If any serious file system problems
are found, they should be repaired. When you are satisfied with the health of your disks, check
and set the date if necessary, then come up multi-user. This is most easily accomplished by
changing the single-user value in the switches to something else, then logging out by typing an
EOT.

To even boot UNIX at all, three files (and the directories leading to them) must be intact. First,
the initialization program /etc/init must be present and executable. If it is not, the CPU will
loop in user mode at location 6. For init to work correctly, /dev/tty8 and /bin/sh must be present.
If either does not exist, the symptom is best described as thrashing. [nit will go into a fork/exec
loop trying to create a Shell with proper standard input and output. .

If you cannot get the system to boot, a runnable system must be obtained from a backup
medium. The root file system may then be doctored as a mounted file system as described
below. If there are any problems with the root file system, it is probably prudent to go to a
backup system to avoid working on a mounted file system.

Repairing disks. The first rule to keep in mind is that an addled disk should be treated gently; it
shouldn’t be mounted unless necessary, and if it is very valuable yet im quite bad shape,
perhaps it should be dumped before trying surgery on it. This is an area where experience and
informed courage count for much.

The problems reported by icheck typically fall into two kinds. There can be problems with the
free list: duplicates in the free list, or free blocks also in files. These can be cured easily with
an icheck —s. If the same block appears in more than one file or if a ﬁle contains bad blocks,
the files should be deleted, and the free list reconstructed. The best, way to delete such a file is
to use clri(1), then remove its directory entries. If any of the affected file§ is really precious,
you can try to copy it to another device first. oo

Dcheck may report files which have more directoty ‘entries thqn""'links. Such situations are
potentially dangerous; ciri discusses a special case of the problerh; All the directory entries for
the file should be removed. If on the other hand there are more links than directory entries,
there is no danger of spreading infection, but merely some disk space that is lost for use. It is
sufficient to copy the file (if it has any entries and is useful) then use: clrr on its inode and
remove any directory entries that do exist. ©odn Lo

T
o

7th Edition 1

CRASH (8) CRASH (8)

Finally, there may be inodes reported by dcheck that have 0 links and O entries. These occur on
the root device when the system is stopped with pipes open, and on other file systems when the
system stops with files that have been deleted while still open. A ciri will free the mode, and an
icheck -s will recover any missing blocks. :

Why did it crash? UNIX types a message on the console typewriter when it voluntanly crashes.
Here is the current list of such messages, with enough information to provide a hope at least of
the remedy. The message has the form ‘panic: ...”, possibly accompanied by other information.
Left unstated in all cases is the possibility that hardware or software error produced the message
in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as argument. Definitely
hardware or software error.

devtab ‘

Null device table entry for the major device used as_argument to getblk. Definitely
hardware or software error.

iinit o

An 1/0 error reading the super-biock for the root file system during initialization.

out of inodes ' ' ‘

A mounted file system has no more i-nodes when creatmg a ﬁle “Sorry, the device isn’t
available; the icheck should tell you.

no fs
A device has disappeared from the mounted-device table. Definitely hardware or software
error.

ro imt ..
Like ‘no fs but produced elsewhere.

no inodes o S
The in-core inode table is full. Try increasing NINODE in param.h. Shouldn’t be a
panic, just a user error.

no clock -
During initialization, neither the line nor programmable clock was found to exist.

swap error
An unrecoverable 1/0 error during a swap.- Really shouldn t be a panic, but 1t is hard to
fix.

unlink — iget
The directory containing a file being deleted can’t be found. Hardware or software

out of swap space
A program needs to be swapped out, and there is no more swap space. It has to be
increased. This really shouldn’t be a panic, but there is no easy fix.

out of text
~ A pure procedure program is being executed and the table for such thmgs is full. This
shouldn’t be a panic.

trap. , o
An unexpected trap has occurred within the system. This is accompanied by three
numbers: a ‘ka6’, which is the contents of the segmentation register for the area in which
the system’s stack is kept; ‘aps’, which is the location where the hardware stored the pro-
gram status word during the trap; and a ‘trap type’ which encodes which trap occurred.
The trap types are:

7th Edition : 2

CRASH (8) CRASH (8)

bus error

illegal instruction

BPT/trace

IOT

power fail

EMT

recursive system cail (TRAP instruction)
11/70 cache parity, or programmed interrupt
10 floating point trap

11 segmentation violation

N R WO

In some of these cases it is possible for octal 20 to be added into the trap type; this indicates
that the processor was in .user mode when the trap occurred. If you wish to examine the stack
after such a trap, either dump the system, or use the console switches to examine core; the
required address mapping is described below.

Interpreting dumps. All file system problems should be taken care of before attempting to look at
dumps. The dump should be read.into the file /usr/sys/core; cp(1) will do. At this point, you
should execute ps —alxk and who to print the process table and the users who were on at the
time of the crash. You should dump (0d(1)) the first 30 bytes of /usr/sysicore. Starting at loca-
tion 4, the registers RO, R1, R2, R3, R4, RS, SP and KDSA6 (KISA6 for 11/40s) are stored.
If the dump had to be restarted, RO will not be correct. Next, take the value of KA6 (location
022(8) in the dump) muitiplied by 0100(8) and dump 01000(8) bytes starting from there. This
is the per-process data associated with the process running at the time of the crash. Relabel the
addresses 140000 to 141776. RS is C’s frame or display pointer. Stored at (RS) is the old RS
pointing to the previous stack frame. At (R5)+2 is the saved PC of the calling procedure.

- Trace this calling chain until you obtain an RS value of 141756, which is where the user’s RS is
stored. If the chain is broken, you have to look for a plausible RS, PC pair and continue from
there. -Each PC should be.looked up in the system’s name list using.adb(1) and its > com-
mand, to get a reverse calling order. In most cases this procedure will gwe an idea of what is
wrong. A more complete discussion of system debugging is impossible here

SEE ALSO
- ¢lri(1), icheck(1), dcheck(1), boot(8)

e
o

7th Edition ' ' 3

GETTY (8) GETTY (8)

NAME

getty — set typewriter mode

SYNOPSIS

/etc/getty [char]

DESCRIPTION

Geny is invoked by init(8) immediately after a typewriter is opened following a dial-up. It reads
the user’s login name and calls Jogin(1) with the name as argument. While reading the name
gerty attempts to adapt the system to the speed and type of terminal being used.

Init calls gerty with a single character argument taken from the rmys(5) file entry for the terminal
line. This argument determines a sequence of line speeds through which gery cycles, and also
the ‘login:’ greeting message, which can contain character sequences to. put various kinds of ter-
minals i useful states. ,

The user’s name is terminated by a new-hne or carrtage-return character In the second case
CRMOD mode is set (see iocti(2)). ‘ ‘

The name is scanned to see if it contains any lower-case alphabetrc characters, if not, and if the
name is nonempty, the system is told to map any future upper-case characters into the
corresponding’ lower-case characters.

If the termxnal’ “‘break’ key is depressed, getty cycles to the next speed approprrate to the type
of line and prints the greeting message again. . - R e

Finally, login is called with the user’s name as argument e
The followmg arguments from the nys file are understood '

0. . Cycles through 300-1200-150-110 baud. Useful as a default for dxalup lrnes accessed by
‘g variety of terminals.

r

C - Intended for an on-line Teletype model 33 for example an operator s console

'Optrrntzed for a 150-baud Teletype model 37 . . .
Intended for an on-line 9600-baud terminal, for example the Textromx 4104

Starts at 1200 baud, cycles to 300 and back. Useful with 212 datasets where most ter-
minals run at 1200 speed.

5 Same as ‘3° but starts at 300.
4 Useful for on-line console DECwriter (LA36).
SEE ALSO

init(8), login(1), ioctl(2), ttys(5)

7th Edition _ 1

INIT (8) INIT (8)

NAME

init, rc — process control initialization

SYNOPSIS

/ete/init
/ete/re

M . Loe oo

DESCRIPTION S S L

Init is mvoked as the last step of the boot procedure (see boot(8)) Generally its role is to
create a process for each typewnter on whrch a user may log m ‘ ‘

When init first is executed the console typewnter Ideviconsole. 1s opened for reading and writing
and the shell is invoked xmmedxately This feature is used to bring np a single-user system. If
the shell terminates; init comes up multi- user and the process descrrbed below 1§ i$ started.

When init comes up multiuser, -it invokes'a shell, with input taken from the file /erc/rc. This
command file performs housekeeping liké removing temporary. files, mountmg file systems, and
starting daemons. .

Then init reads the ﬁle /etc/ttys and forks several times to create*a process for each typewriter
specified in the file, Each of these processes opens the appropriate typewriter for reading and
writing. These channels thus recexve file descriptors 0, 1 and 2, the standard input, output and
error files. Opening the typewnter will usually involve a delay, since the open is not completed

- until someone ‘is dialed up and carrier established on ‘the channel. ‘Then /etclgény is called with

.argument as specified by the last charactér of the rtys file line. * Getry reads the user’s name and

invokes login(1) to log in the.user and execute the shell.

- Ultimately the shell will terminate because of an end-of-file either typed exphcxtly or generated
" as a result of hanging up.. The main path of init, whrch has been waiting for such an event,
',wakes up and removes the approprxate entry from the file utmp, . whrch records current users,

FILES

and makes an entry in /usr/adm/wrmp, Wthh ‘maintains a history ot‘ logms and logouts. Then
the appropriate typewriter is reopened and gerty is reinvoked.

Init catches the hangup signal SIGHUP and. mterprets it to mean that the system should be
brought from multi user to single user. Use ‘krll -11to send the hangup sxgnal

_ /dev/tty?, /etc/utmp, /usr/adm/wtmp, /etc/ttys, / etc/ re

SEE ALSO

login(1), kill(1), sh(1), ttys(5), getty(8)

7th Edition L . .

LPD (8) . -UNIX Programmer’s Manual LPD (8)

NAME

Ipd - line printer daemon
SYNOPSIS

/etc/1pd

DESCRIPTION
Lpd is the daemon for the line printer. Lpd uses the dxrectnry /usr/spoal/lpd. The file lock in
that directory is used to prevent two daemons from beco:mng active. - After the program has

iy

,,,,,,

direttory is sea.nned for files begmnmg with df. Each such file is submxtted as a job. Each line
of a Job ﬁle must begm thh a key cha:acter to specxfy what tn do with the remainder of the

- line. -
L specxﬁesthattheremmnderofthehnexstobesentasahteral
,-B.n:;"specxﬁsthattherestofthehnexsaﬁlename. ,
w.'\-li;;_":nns;hesameasBexceptaform£eedxsprependedtntheﬁle
U specifies that the rest of the lme is a ﬁle name. After the JOb has been transmitted, the
- = : filesis unlinked. '
- M s followed by a user ID; after the;obnssent amessagexsmaxledtothe user via the

mail(1) command to verify the sending of the;ob

-_Any error encountered will cause the daemon 10 wm; and. stan over Thxs means that an
.improperly constructed df file may cause the same.job to be submitted repeatedly

Lpd is automatically initiated by the line printér command,’ jpr.

To restart Ipd (in the case of hardware or software malfunctxon), it is necessary to first kill the

~ old daemon (if still alive), and remove the lock file before initiating the new daemon. This is
done automatxcally when the system is brought up, by /etc/rc, in mse there were any jobs left in
the spooling du"ectnry when the system last went down '

FILES _
" /usr/spool/ Ipd/* spool area for line printer daemnn
/etc/passwd to get the user’s name
/dev/1p line printer device

SEE ALSO
Ipr(1)

7th Edition ' 1

MAKEKEY (8) | MAKEKEY (8)

NAME
makekey — generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION :
Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input, and
writes 13 bytes on its standard output. The output depends on the input in a way intended to
be difficuit to compute (i.e. to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, upper- and lower-case letters, and *.” and */’. The
salt characters are repeated as the first two characters of the output. The remaining 11 output
characters are chosen from the same set as the salt and constitute the ourput key.

The transformation performed is essentially the following: the salt is used to select one of 4096
cryptographic machines all based on the National Bureau of Standards DES algorithm, but
modified in 4096 different ways. Using the input key as key, a constant string is fed into the
machine and recirculated a number of times. The 64 bits that come out are distributed into the
66 useful key bits in the resuit.

Makekey is intended for programs that perform encryption (e.g. ed and crypr(1)). Usually its
input and output will be pipes.

SEE ALSO
crypt(1), ed(1)

7th Edition 1

UPDATE (8) _ : UPDATE (8)

NAME

update — periodically update the super block
S¥NOPSIS::

/etc/update
DESCRIPTION

Updaie is a program that executes the sync(2) primitive every 30 seconds. This insures that the
file system is fairly up to-date in case of ‘4 crash. This command should naet be executed
directly, but should be executed out of the mmahzatxon Sh\'" command file.
SEE ALSO-: * PR s
s__ync(2), sync(l)‘, init@®) T %
. BUGS : _
° With updare running, if the CPU is halted just as the sync is executed a file system' can be
‘damaged. This is partially due to DEC hardware that writes zeros when NPR requests fail. A

= 3

: tngger the execution of upa’ate Thxs would gnve 30°seconds grace to halt the CPU.

3

Tth Edition : L

fix would be to have sync(1) temporarily incremerit the system the by at least 30 seconds to

