

0

0

0

0

rO

C Compiler Reference

IBM Personal Computer ·

XENIX™ Software
Development System

Programming Family

--------- -- --- --�-- =�§:
Personal
Computer
Software

First Edition (December 1984)
The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you. ';,.__

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infonnation about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and
for technical information about IBM Personal Computer products should be made to your
authorized IBM Personal Computer dealer or your IBM Marketing Representative.

The following paragraph applies only to the United States and Puerto Rico: A Reader's
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C,
Boca Raton, Florida 33432. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligations whatever.

©Copyright International Business Machines Corporation 1984
©Copyright Microsoft Corporation 1983, 1984

0

0

0

IBM Personal Computer XENIX
Library Overview

The XENIXI System has three available products. They ate the:

o Operating System

o Software Development System

• Text Formatting System

The following pages outline the XENIX Software Development
System library.

1 XENIX is a trademark of Microsoft Corporation.

iii

XENIX Software Development System

iv

�� ��

XENIX
Software
Development
Guide

C Language Users

• , Creating language programs

• Invoking the C Compiler

'"" , + "''' ,,.Ptegfam' cheekers; , ,
maintainers, and d!lbuggers

• Using Scl;liles

• The C-Shell

A guide tot)ura:Vailable programming tools in the XENIX
·envtft:ijllii��f::�::�_:·:_':�'� �/,::-·--� ':· ·

XENIX
Programmer's
Guide To
Library Functions

I

•

•

•

•

•

Using stream functions

Screen processing

Process controls

Creating and using pipes

Using signals and system
resources

A reference to system calls, subroutines, and file formats.
Use with the XENIX Software Command Reference.

0

0

0

XENIX
C Compiler
Reference
Manual

For Experienced Language Users

•

•

•

Elements of the C
programming language

Preprocessor Directives

Declarations

• Expressions and Assignments

• Description of functions and
statements

A reference to the C programming language. Notational
conventions are described throughout the manual.

XENIX
Software
Command
Reference

• Software Development
commands (CP)

• Command definition
and syntax

• System calls and
subroutines (S)

• System call and library
function cross reference

A reference to Software Development System commands.
Describes system services in the Operating System kernel.

v

vi

() \ .. /

0

0

About This Book

This reference manual describes the C language. It is intended to
be a reference for programmers with experience in C or in
another language. You should have knowledge of programming
fundamentals.

This book is organized as follows:

Chapter 1 . Elements of C
Describes the letters, numbers and symbols you can use in
a C program. Also outlines the combinations of characters
having special meanings to the C compiler.

Chapter 2. Program Structure
Discusses the components and structure of C programs.
Explains how C source files are organized.

Chapter 3. Declarations
Discusses C declarations, which specify the attributes of C
variables, functions and user-defined types.

Chapter 4. Expressions and Assignments
Describes the operands and operators that make up C
expressions and assignments. Also discussed are the type
conversions and side effects that can accompany the
evaluation of expressions.

Chapter 5. Statements
Describes C statements. Shows how statements control the
flow of program execution.

Chapter 6. Fnnctions
Discusses the features of C functions; the form of a C
function, formal and actual parameters, and return values.

Chapter 7. Preprocessor Directives
Describes the instructions recognized by the C
preprocessor. The C preprocessor is a text processor that
is automatically invoked before compilation.

vii

Related ffiM Personal Computer XENIX
Publications

• ffiM Personal Computer XENIX Software Development
Guide

• ffiM Personal Computer XENIX Programmer's Guide to
Library Functions

• ffiM Personal Computer XENIX Software Command
Reference

• ffiM Personal Computer XENIX Assembler Reference

• ffiM Personal Computer XENIX Installation Guide

• ffiM Personal Computer XENIX Visual Shell

• ffiM Personal Computer XENIX System Administration

• ffiM Personal Computer XENIX Basic Operations Guide

• IBM Personal Computer XENIX Command Reference

viii

C)

0

0

Contents

Chapter 1. Elements of C • . . • • • • • . . . 1-1
Introduction . 1-3
Notational conventions . 1-3
The Character Set . 1-5

Letters and Digits . 1-5
Whitespace Characters . 1-5
Punctuation and Special Characters 1-6
Escape Sequences . 1-7
Operators . 1-8

Constants . 1-9
Integer Constants . 1-9
Floating-Point Constants 1-11
Character Constants . 1-12
String Constant . 1-12

Identifiers . 1-14
Keywords . 1-15
Comments . 1-15
Tokens . 1-17

Chapter 2. Program Structure • • • . • 2-1
Introduction . 2-3
Source Program . 2-3
Source Files . 2-5
Program Execution . 2-7
Directives . 2-9
Scope and Visibility . 2-10

Chapter 3. Declarations . . • • . • . • • 3-1
Introduction . 3-3
Storage Class Specifiers . 3-4

Automatic Class . 3-4
Register Class . 3-5
Static Class . 3-5
External Class . 3-6

Type Specifiers . 3-7
Fundamental Types . 3-8
Enumeration Types . 3-9

ix

Structure Types . 3-10
Union Types 3-12

Declarators . 3-13
Pointer Modifier 3-14
Array Modifier 3-15
Function Modifier 3-17
Complex Declarators . 3-17

Type Declarations . 3-20
Enumeration Declarations 3-21
Structure Declarations . 3-22
Union Declarations . 3-24

Variable Declarations . 3-26
Simple Variable Declarations 3-27
Array Declarations . 3-28
Structure Declarations . 3-30
Union Declarations . 3-31
Pointer Declarations . 3-33

Function Declarations . 3-35
Typedef Declarations . 3-36
Initialization . 3-38

Fundamental Types 3-38
Pointer Types . 3-39
Aggregate Types . 3-40
String initializers . 3-43

Visibility and Scope . 3-44
Global and External Variables 3-45
Static Variables . 3-46
Global and External Functions 3-4 7
Static Functions . 3-4 7
Type names . 3-48

Chapter 4. Expressions and Assignments 4-1
Introduction . 4-5

X

Operands . 4-6
Constants . 4-6
Identifiers . 4-6

Integral and floating point identifiers 4-6
Enumeration identifiers . 4-6
Structure and union identifiers 4-7
Pointer identifiers . 4-7
Array identifiers . 4-7
Function identifiers . 4-7

Strings . 4-8

--1
!

0

0

Function calls . 4-9
Subscript expressions . 4-10
Mel;Ilber Selection Expressions 4-13
Expressions . 4-14

Expressions with Operators 4-15
Type Cast Expressions . 4-15
Expressions in Parentheses 4-16
Constant Expressions . 4-16

Type Conversions . 4-17
Assignment Conversions . 4-18

Conversions from Signed Integer Types 4-18
Conversions from Unsigned Integer Types 4-20
Conversions from Floating Point Types , . 4-22
Conversions from Enumeration Type 4-24
Conversions from Structure and Union Types . . 4-24
Conversions from pointer types 4-24
Conversions from Void Type 4-24

Type Cast Conversions . 4-25
Operator Conversions . 4-25
Function Call Conversions . 4-26
Operators . 4-27
Complement Operators . 4-28

Arithmetic negation (-) . 4-28
Bitwise complement (�) 4-28
Logical not (!) . 4-28

Indirection and address of operators 4-29
Indirection (*) . 4-29
Address of(&) . 4-29

The sizeof Operator . 4-30
Multiplicative Operators . 4-31

Multiplication (*) . 4-31
Division (/) 4-31
Remainder (o/o) . 4-31

Additive Operators . 4-32
Addition (+) 4-32
Subtraction (-) . 4-33
Pointer and integer combinations 4-3 3
Overflow . 4-35

Shift operators . 4-35
Relational operators . 4-36
Bitwise Operators . 4-3 7

Bitwise AND(&) 4-37
Bitwise Inclusive OR (I) 4-37

xi

Bitwise Exclusive OR (A) 4-37
Logical Operators . .'. 4-38

Logical AND (&&) . 4-38
Logical OR (I I) . 4-39

Sequential Evaluation Operator (,) 4-40
The Conditional Operator(?:) 4-41
Assignment Operators , 4-42
Unary Increment and Decrement 4-44
Simple Assignment . 4-45
Compound Assignment . 4-46
Precedence . 4-4 7
Side Effects . 4-51

Chapter 5. Statements • • . • 5-1
Introduction . 5-3
Break statement . 5-5

xii

Syntax . 5-5
Execution . . . , . 5-5
Example: . 5-5
Exiting from Nested Statements 5-6

Compound statement . 5-7
Syntax . 5-7
Execution . 5-7
Example: . 5-8
Labeling Statements . 5-8

Continue statement . 5-9
Syntax 5-9
Execution . 5-9
Example: . 5-9

Do statement . 5-10
Syntax 5-10
Execution . 5-10
Example: . 5-10

Expression statement 5-11
Syntax 5-11
Execution 5-11
Example: . 5-11
Assignments and Function Calls 5-11

For statement . 5-12
Syntax . 5-12
Execution 5-12
Example: . 5-13

Goto and labeled statements . 5-14

0

0

0

Syntax . 5-14
Execution . 5-14
Example: . 5-14
Forming labels . 5-15

If statement . 5-15
Syntax : 5-15
Execution . 5-15
Example: . 5-15
Nesting . 5-16

Null statement . 5-17
Syntax . 5-17
Execution . 5-J 7
Example: . 5-17
Labeling a null statement 5-17

Return statement . 5-18
Syntax . 5-18
Execution . 5-18
Example: . 5-18
Omitting the retnrn statement 5-19

Switch statement . 5-20
Syntax . 5-20
Execution . 5-20
Examples: . 5-22
Labeling statements . 5-23

While statement . 5-24
Syntax . 5-24
Execution . 5-24
Example: . 5-24

Chapter 6. Functions • . 6-1
Introduction . 6-3
Function Definition . 6-4
Return Value Type . 6-5
Formal Parameters . 6-8
Function Body . 6-10
Function Declarations . 6-11
Static Functions . 6-13
Function Calls . 6-14
Actual Parameters . 6-15
Fundamental Types . 6-16
Arrays . 6-17
Structures and Unions . 6-18
Pointers . 6-19

xiii

Function Pointers . 6-21
Recursive Functions . 6-23

Chapter 7. Preprocessor Directives . . • 7-1
Introduction . 7-3
Define Directive . 7-4
Undefine Directive . 7-7
Include Directive . 7-8
If, Elif, Else, and Enclif Directives 7-9
If defined and Elif defined Directives 7-12
Ifdef and Ifndef Directives . 7-14
Line Control Directive . 7-15

Appendix A. Differences • • A -3

Appendix B. C Compiler Messages and Limits • • B-1
Introduction . B-1
Compiler Error Messages . B-1

Warning Messages B-1
Program Error Messages . B-7
Fatal Error Messages . B-21

Compiler Limits . B-23

Index • . • • • Index -1

xiv

l 1 Chapter 1. Elements of C

(\ ''-_,/ Contents

0

0

Introduction 1-3

Notational conventions o 0 o 1-3

The Character Set o 0 0 1-5
Letters and Digits 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 o 0 0 0 0 0 • 0 0 0 0 0 0 1-5
Whitespace Characters 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • • • • • 0 0 • 0 • • • 1-5
Punctuation and Special Characters . 0 • • • 0 0 • 0 • 0 0 • 0 0 • 1-6
Escape Sequences 0 • • 0 • • • • 0 0 • • • 0 • • • 0 0 • • • 0 0 0 • • • • • 1-7
Operators . . 0 • • • • 0 • • • 0 0 • 0 • • 0 • • • 0 • 0 0 • • 0 • 0 • • • 0 0 0 1-8

Constants o o 0 0 o o o 0 0 0 o o 0 o o o o 0 0 0 o o 0 o o o o 0 0 0 o o 0 0 0 o o 0 0 1-9
Integer Constants 0 • • • • 0 • • • • • 0 0 • • 0 • • • • • • • 0 1-9
Floating-Point Constants 0 . 0 • • 0 • • • • 0 • • 0 0 0 • • • 0 • • • 1-11
Character Constants 0 0 • • • • • 0 • • • 0 • 0 • • 0 0 • • • 0 0 0 • 0 0 1-12
String Constant 0 0 • • 0 • • • • 0 • 0 • • • • 0 • • • • 0 0 • • • 0 1-12

Identifiers o 1-14

Keywords o o o 0 o o o o 0 0 o o o 0 o o o o 0 0 o o o 0 0 o o o 0 0 0 o o 0 0 0 0 o o 1-15

Conunents o 1-15

Tokens 0 o o 0 0 o o o o 0 0 o o o 0 o o o o 0 o o o o 0 o o o o 0 0 o o o 0 0 o o o 0 1-17

l-1

1-2

n
\'-.._, __ /

0

0

Introduction

Tllis chapter describes the elements of the C programming
language. The elements of the language are the names, numbers,
and characters used to construct the statements and declarations
of a C program.

Notational conventions

The following notational conventions are used throughout thls
manual.

boldface

italics

I I

Boldface marks keywords in the text or in
syntax specifications. Keywords in
examples are not boldface.

Italics are used in syntax specifications and
in the text for general terms marking the
places where specific terms will appear in
an actual C program. For example, in:

goto name;

name is italicized to indicate that this is a
general form for the goto statement.

Italics may also be used for emphasis of
particular words in the text.

Brackets enclose optional portions in syntax
specifications. However, the C language
also uses brackets for array declarations
and subscript expressions. In discussions of
the syntax for array declarations and
subscript expressions, and in examples,
brackets have the meaning specified by C.

1-3

ellipses . . .

11 II

1-4

Thus,

return [expression] ;

indicates that expression can be omitted,
while

return (var[l]);

is an example indicating that the value of
the subscript expression var[l] is to be
returned.

Ellipses following an item indicate that
more items having the same form can
appear. Ellipses can be vertical or
horizontal. For instance,

= {expression [,expression . . .]}

indicates that one or more expressions
separated by commas can appear between
the braces, while

{
[declaration]

}

statement
[statement]

indicates that zero or more declarations,
followed by one or more statements, can
appear between the braces.

Quotation marks set off values and program
fragments within the text. Some C
constructs require quotation marks.

() -

0

0

The Character Set

C programs are constructed by combining the characters of the C
character set into meaningful statements. The C character set
consists of letters, digits, and punctuation marks. Each character
has an explicit meaning and can only be used as defined. The C
compiler generates error messages if a character is not used
correctly or if characters that do not belong to the C character set
are used.

The following sections describe the characters and symbols of the
standard C character set and explain how and when to use them.

Letters and Digits

The C character set contains the uppercase and lowercase letters
of the English alphabet and the ten decimal digits of the arabic
number system (0 through 9).

These letters and digits can be used to form the constants,
identifiers, and keywords described later in this chapter.

The C compiler treats uppercase and lowercase letters as distinct
characters. If a lowercase a is specified in a given item, you
cannot substitute an uppercase A in its place; you must use the
lowercase letter.

Wbitespace Characters

Space, tab, line feed, carriage return, form feed, vertical tab, and
newline characters are called whitespace characters because they
serve the same purpose as the spaces between words and lines on
a printed page. These characters separate user-defined items,
such as constants and identifiers, from other items within a
program, allowing the C compiler to distinguish between them. A
Ctrl-Z character (sometimes used for an end-of-file mark) is also
a whitespace character.

The C compiler typically ignores a whitespace character unless it
is used as a separator or as part of a constant. This means you

1-5

can use extra whitespace characters to make a program more
readable. Comments, described later in this chapter, are also
treated as whitespace.

Punctuation and Special Characters

The punctuation and special characters in the C character set are
used for a variety of purposes, from organizing the text of a
program to defining the tasks to be carried out by the compiler or
by the compiled program. The following table lists these
characters.

Character Name Character Name

comma $ dollar sign
period I vertical bar

semicolon I slash
colon \ backslash

? question mark - tilde

" single quotation # underscore
double quotation number sign

(left parenthesis % percent sign

) right parenthesis & ampersand
[left bracket A caret
l right bracket ' asterisk

{ left brace . hyphen; minus sign } right brace - equal sign

< left angle bracket + plus sign
> right angle bracket @ at sign
! exclamation mark accent

These characters have special meaning to the C compiler and can
only be used as described in later sections of this manual.

1-6

I �

(\.' _j

0

Escape Sequences

Escape sequences are special character combinations that
represent whitespace and non-graphic characters. Escape
sequences are used when creating strings for display on terminals
and printers. A sequence consists of a backslash followed by a
letter or combination of digits. The following table lists the C
language escape sequences.

Non-graphic Characters for Constants

Escape Sequence
\n
\I
\v
\b
\r
\f
\'
\ "

\ \
\ddd
\xdd

Name
newline
horizontal tab
vertical tab
backspace
carriage return
form feed
single quote
double quote
backslash
ASCII character in octal
ASCII character in hexadecimal

The sequences \ ddd and \ xdd, where d represents a digit, allow
any character in the ASCII character set to be given as a 3-digit
octal or a 2-digit hexadecimal character code. For example, the
backspace character can be given as \010 or \ x08 . The
ASCII null character can be given as \0 or \xO . Only octal
digits may appear in an octal escape sequence.

These sequences allow non-graphic control characters to be sent
to a display device. For example, the escape character, \033 , is
often used as the first character of a control command for a
terminal or printer.

Non-graphic characters should always be represented by escape
sequences. Placing a non-graphic character in a C program
usually has unexpected results.

1-7

Operators

Operators are special character combinations that specify
arithmetic, logical, and assignment operations. They are used
wheu forming expressions. The following tables list all the
operators of the C language.

Arithmetic and Logical Operators

Operator Name

! logical negation - bitwise negation
++ increment -- decrement
+ addition - subtraction, negative • multiplication, indirection I division % remainder
<< shift left
>> shift right

Assignment Operators

Operator

+-

1-
o/o=
>>
<<
&-

1-

Name

assign
increment and assign
decrement and assign
multiply and assign
divide and assign
modulus and assign
shift right and assign
shift left and assign
bitwise AND and assign
bitwise exclusive OR and assign
bitwise OR and assign

Operator Name

< less than
<- less than or equal
> greater than
>- greater than or equal == equal
!= not equal I bitwise OR
& bitwise AND, address
A bitwise exclusive OR
&& logical AND
I I logical OR

See Chapter 4, "Expressions and Assignments," for a complete
description of each operator.

1-8

0

0

Constants

A constant is a number, a character, or a string of characters used
as a value in a program. Since a constant's value does not change
from execution to execution, constants are typically used to
initialize program variables or to serve as fixed data, such as
filenames and test values.

The C language has four kinds of constants: integer, floating
point, character, and strings. The following sections define the
format and use of each.

Integer Constants

An integer constant is a decimal, octal, or hexadecimal number
that represents an integer value. A decimal constant has the
form:

digits

where digits is one or more decimal digits (0 through 9). An octal
number has the form:

Oodigits

where odigits is one or more octal digits (0 through 7). The
leading 0 is required. A hexadecimal number has the form:

Oxhdigits

where hdigits is one or more hexadecimal digits (0 through 9 and
either uppercase or lowercase a through f) . The leading Ox is
required. In all cases, whltespace characters must not be used
between the digits of the constant.

1-9

The following examples illustrate the form of constants.

Decimal Octal Hexadecimal

1 0 0 1 2 Oxa or OxA
132 0204 Ox84
32179 076663 Ox7db3 or Ox7DB3

Integer constants always specify positive values. If negative
values are required, the minus sign (-) can be placed in front of
the constant to convert its value to a negative value. The minus
sign is treated as an arithmetic operator.

Every integer constant is given a type based on its value. A
constant's type determines what conversions must be performed
when the constant is used in an expression or when the minus sign
(-) is applied. Decimal constants always have signed types. A
decimal constant in the range 0 to 127 has char type. In the range
128 to 32,767, the constant has short int type, and in the range
32,768 to 2,147,483,647, the constant has long type. Octal and
hexadecimal constants always have unsigned types. Constants in
the range 0 to 255 have unsigned char type. In the range 256 to
65,535, constants have unsigned short int type, and in the range
65,536 to 4,294,967,295, they have unsigned long type. Types are
described in Chapter 3, "Declarations"; conversions in Chapter 4,
"Expressions and Assignments".

You can direct the C compiler to force any integer constant to
have long type (signed or unsigned, depending on the constant) by
appending the letter I or L to the end of the constant as shown by
the following examples.

Decimal Octal Hexadecimal

10L 0!2L OxaL or OxAL
791 0 1 171 Ox4fl or Ox4Fl

1-10

I �

0

0

Floating-Point Constants

A floating-point constant is a decimal number that represents
signed real number, that is, a number whose value includes an
integer, a fraction, and an exponent. A floating-point constant
has the form:

[-] digits[.digits][E [-]digits]

where - is the optional minus sign, digits is one or more decimal
digits (0 through 9), and E is the exponent symbol (a lowercase e
can also be used). The integer in a floating point constant has the
same form as a decimal integer constant. If a fraction is given, it
must be immediately preceded by a decimal point (.), and if an
exponent is given, it must be immediately preceded by the
exponent symbol. Whitespace characters must not be placed
between the digits or characters of the constant. The following
examples illustrate the various forms.

15.75
1.575E1
1575e-2
-0.0025
-2.5e-3
25E-4

An alternate form of the floating-point constant allows a fraction
without a corresponding integer. The following examples
illustrate this form .

. 75

.0075e2
-.125
-.175E-2

Floating point constants, like integer constants, are always given a
type. All floating point constants receive double type unless the
value is clearly being assigned to a variable with float type. In
such cases, it is given float type.

1-11

Character Constants

A character constant is a letter, digit, or punctuation character
enclosed in single quotation marks(' '). The value of a character
constant is the character itself. Character constants consisting of
more than one character or escape sequence are not allowed.

A character constant has the form:

'c'

where c can be any character from the C character set (including
any escape sequence) except a single quotation mark ('), a
backslash (\), or a newline character. If you wish to use a single
quotation mark or backslash character as a character constant,
you must precede it with a backslash as shown in the following
examples.

Constant

'a'
'?'
'\ b'
' \ x l B'
'\ "
'\ \ '

Value

lowercase a
question mark
backspace
ASCII escape character
single quotation mark
backslash

Character constants have char type and consequently are
sign-extended in type conversions (see chapter 4, "Expressions
and Assignments" for more on type conversions).

String Constant

A string constant is a sequence of letters, digits, and symbols
enclosed in double quotation marks. A string constant has no
single value. Instead, it is treated as an array of character
constants with each element in the array equal to a single
character value.

1-12

0

A string constant has the form:

" Characters"

where characters is one or mote characters from the C character
set except the double quotation mark ("), backslash (\), and
newline character. If you wish to use the double quotation mark
or backslash character within a string constant, you must precede
it with a backslash as shown in the following examples.

"This is a string constant."
"Enter a number between 1 and 100 \ n Or press Enter"
"First\ OSecortd"
"\"Yes, I do,\" she said."

A string constant can contain any number of characters. If the
constant is longer than can fit on one line, you can break the
string into two by using the backslash followed by the newline
character. For example, the string constant

"Long strings can be broken\
into two pieces."

0 is identical to the string

0

"Long strings cau be broken into two pieces."

Each string in a program is considered to be a distinct item, so
even if there are two identical strings irt a program they each
receive distinct storage space.

String constants have the type char [] . This means a string is an
array whose elements have char type. The number of elements in
the array is the number of characters in the string constant plus
one, since the null character stored after the last character counts
as au array element.

1-13

Identifiers

Identifiers are the names that you supply for the variables and
functions used in a given program. You create an identifier by
declaring it with the associated variable or function. You use the
identifier in later statements within the program to refer to the
given item. (Declarations are described in Chapters 3 and 6).

An identifier is a sequence of one or more letters, digits, or
underscores (_) that begins with a letter or underscore. Any
number of characters are allowed in a given identifier, but only
the first 31 characters are used by the compiler. (Other programs
that read the compiler output can use fewer characters.) Use
leading underscores with care. Identifiers beginning with an
underscore may conflict with the names of hidden system routines
and produce errors.

The following examples illustrate the form of an identifier.

i
cut
templ
top_of _page
_skip12

Uppercase and lowercase letters are considered distinct characters
and can be used to to make distinct identifiers that otherwise have
the same spelling. For example, all of the following identifiers are
unique.

add
ADD
Add
aDD

The C compiler does not allow identifiers that have the same
spelling as a C language keyword. Keywords are described in the
next section.

The linker may further restrict the number and type of characters
for globally visible symbols.

1-14

0

0

0

Keywords

Keywords are predefined identifiers that have special meaning to
the C compiler. Keywords indicate actions to be taken or
attributes to be associated with given declared items. The
following are keywords.

asm double if strnct

auto else int switch

break ennm long typedef

case extern register union

char float return unsigned

continue for short void

default fortran sizeof while

do go to static

Two special identifiers near and far are reserved as keywords for
use in some implementations of the compiler.

A keyword cannot be redefined and cannot be used in any other
way than explicitly defined for it. However, you can specify text
to be substituted for keywords using C preprocessor directives.
See Chapter 7, "Preprocessor Directives."

Comments

A comment is a sequence of characters treated as a single
whitespace character by the compiler but otherwise ignored. A
comment has the form:

/* characters * /

1 -15

where characters can be any combination of characters including
newline characters but excluding the combination *I .

Use comments to document the statements and actions of a C
language source program. Comments can:

1. Appear anywhere a whitespace character is allowed.

2. Contain any combination of C keywords. These keywords
are ignored by the compiler.

3. Occupy more than one line.

The following examples illustrate the form of comments.

I* Comments can be used to separate identifiers. • I

I* Comments can contain keywords such as for and while. • I

/**
Comments can occupy several lines.

*****�***********************************/

Since all text within a comment is ignored, comments can be used
to suppress compilation of portions of a program. However,
comments cannot contain nested comments. For example, the
comment:

I* You cannot I* nest *I comments *I

causes an error since the comment stops at the the first *I
When using coinments to suppress compilation, nested comments
must be carefully removed. For suppression of a large portion of
a program, use the #if preprocessor directive (see Chapter 7,
"Preprocessor Directives").

C programmers generally rely on run-time libraries to perform a
number of tasks such as input and output, screen manipulation
and process control. The run-time library functions available for
use in C programs are discussed in the IBM Personal Computer
XENIX Programmer's Guide to Library Functions. The CC
chapter of the IBM Personal Computer XENIX Software

1-16

0

0

Development Guide describes how to compile and link C source
files. It also lists the command line options that are available.
The IBM Personal Computer XENIX Software Development Guide
also contains information specific to the implementation of C on
the IBM Personal Computer XENIX system.

Tokens

When the compiler processes a program, it breaks the program
down into groups of characters known as "tokens." A token is a
unit of program text that has meaning to the compiler and that
cannot be broken down further. The operators, constants,
identifiers, and keywords described in t!J.is chapter are examples
of tokens.

Tokens are delinJ.ited by whitespace characters and by other
tokens, such as punctuation symbols. To prevent the compiler
from breaking an item down into two or more tokens, w!J.itespace
characters are prohibited between the characters of identifiers,
multicharacter operators, and keywords.

When the compiler interprets tokens, it incorporates as many
characters as possible into a single token before moving on to the
next token. Because of this behavior, tokens not separated by
whitespace may not be interpreted in the way you expect. For
example, in the following expression, the compiler first makes the
longest possible operator (+ +) from the three plus signs, then
processes the remaining plus sign as an addition operator (+).

i+++j

This expression is interpreted as (i++)+(i), not (i)+(++i).
Use whitespace and parentheses to clarify your intent in such
cases.

1-17

1-18

Chapter 2. Program Structure

0 Contents
Introduction 2-3

0

0

Source Program . . • . 2-3

Source Files • . 2-5

Program Execution . • • . . • 2-7

Directives • • . . . • . . 2-9

Scope and Visibility • • 2-10

2-1

2-2

0

0

0

Introduction

This chapter describes the structure of C language source
programs and defines some of important terms used later in this
manual to describe the C language. In particular, it describes

• Source Programs

• Source Files

• Program Execution

• Directives

• Blocks and Visibility

This chapter describes features of the C language described in
detail in other chapters. In particular, the syntax and meaning of
directives are described in Chapter 7, "Preprocessor Directives".
The syntax and meaning of declarations and definitions are
described in Chapter 3, "Declarations", and Chapter 6,
"Functions".

Source Program

Syntax

[directives]
[declarations]
[definitions]

Description

A C source program is a collection of one or more directives,
declarations, and definitions. "Directives" are preprocessor
directives. These direct the C preprocessor to perform specific
actions on the text of the program, such as substitution of
identifiers and inclusion of text from files. "Declarations" are

2-3

type, variable, or function declarations. These define the names
and attributes of items used in a program. "Definitions" are
special declarations that define the initial values for the declared
variables or executable statements for the declared functions.

A source program can have any number of directives,
declarations, and definitions. Each must have have the
appropriate syntax as described in this manual. They can appear
in any order in the program. However, the order in which items
are declared or defined does affect how they can be used within
the program (see "Visibility and Scope" in Chapter 3).

A nontrivial program always contains at least one function
definition. This definition defines the action to be taken by the
program. Directives and other declarations are optional.

The following example illustrates a simple C source program.

Example

int x = 1;
int y = 2;

int z;
int w;

I* Variable definitions *I

I* Variable declarations *I

extern int printf(); I • Function declaration *I
main () I* Function definition for "main" *I
{

}

z = y + x; I* Executable statements *I
w = y- x;
printf("z= %d \n w= %d \n", z, w);

This source program defines four variables and two functions.
The variables x and y are defined with variable definitions; z and
w with declarations. Variable definitions assign initial values to
the variables. The function "printf" is defined with a function
declaration; "main" with a function definition. A declaration
defines just the name and return type; a function definition gives
the executable statements as well.

2-4

0

0

0

Source Files

A C source program can be divided into one or more source files.
A C source file is a text file that contains all or part of a C source
program. The C compiler reads C language source files and
compiles the statements found in them. Each compiled source file
is called an object file. The object files of a program can be
linked and executed using a suitable linker/loader.

Divide large source programs into several different source files.
This makes the program easier to develop, debug, and maintain.
Using several source files also promotes the creation of a library
of useful functions, declared in separate source files, that can be
used by any number of programs.

Follow these rules when creating C language source files:

1. A source file need not contain a complete C source program.
It can, for example, contain just a few of the functions
needed by the program. In this case, all source files that
make up the program must be compiled individually and then
linked, or inserted into the source before compilation by
using the include directive.

2. A source file need not contain a function declaration. It is
often useful to place variable definitions in one source file
and simply declare these variables in the source files that
must use them. This makes the definitions easy to find and
modify if necessary.

3. A source file must contain complete declarations. This
means the declaration of a function or other large items, such
as structures, must not be split between two files.

4.

5.

Directives in a source file apply to that source file only. If a
common set of directives are to be applied to a source
program, then all source files in the program must contain
these directives.

A source file must contain declarations for all functions
called from the file but defined in other source files. If the
function returns an int type value the declaration is optional.

2-5

6. A source file must contain declarations for all variables used
in the file but defined in other source files.

The following is an example of a C source program contained in
two source files. The "main" and "max" functions are assumed
to be in separate files. The main function is the program entry
point, that is, program execution starts here.

;***
Source fi l e 1 - mai n function

***/

extern i n t max() ; ;* External functi on decl aration
max i s assumed to be i n
another source fi l e . *;

mai n ()
{

}

!* Functi on defi n i ti on of mai n */

i nt x=l ,y=2 ,w=3 ,z ;

z = max (x ,y) ;
w = max (z ,w) ;

In this source file, the function "max" is declared to be an
externally defined function. This means its definition exists in
another source file. The function definition for "main" includes
function calls to "max".

2-6

0

0

0

!***
Source fi l e 2 - max function ***!

int max (a , b) /* Function defi n i ti on for max *I
i n t a , b ;
{

i f (a>b
return (a) ;

e l s e
return (b) ;

}
This source file contains the function definition for "max". This
definition satisfies the external declaration given in the first
source file. Once the source files are compiled, they can be linked
and executed as a single program.

Program Execution

Every program has a main program function. This function serves
as the starting point for program execution and usually controls
execntion of the program by directing the calls to other functions
in the program. A program usually stops executing at the end of
the main function, although it may stop at other points in the
program, depending on the execution environment.

Traditionally, the main program function is named "main," and
many operating systems require this name for the main function.
However, the C language does not explicitly define the name of
the main function and imposes no restrictions when naming it.

A source program usually has other functions if the main function
needs to perform one or more specific tasks several times. The
main function can call these functions and perform the task.
Calling a function causes execution to begin at the first statement
in that function. The function returns control when a return
statement or the end of the function is encountered.

All functions, including the main function, can have parameters.
Functions called by other functions receive values for the
parameters from the calling functions. Parameters of the main

2-7

function may receive values passed to the main function from
outside the program (for example, from the command line when
the program is executed.)

Traditionally, the first 2 parameters of the main function are
passed with the names argc and argv. The first parameter holds
the total number of arguments passed to the function, and the
second parameter is an array of pointers, each element of which
points to a string representation of an argument passed to the
main function. The operating system supplies values for the argc
and argv parameters, and the user supplies the actual arguments
to main. The argument-passing convention in use on a particular
system is determined by the operating system rather than by the
C language; see the IBM Personal Computer XENIX Basic
Operations Guide for details.

Formal parameters to functions must be declared when the
function is defined. Function definitions and declarations are
described in detail in Chapters 3 and 6.

2-8

'
'-<-

Directives

Directives in a source program perform special actions such as
inserting lines of program text from other places into the source

(\ program or replacing names with specific values. Directives are

�.) not a part of the C language. They are instead instructions to the
C language preprocessor that processes source programs before

0

0

any compilation begins. This means the action of a directive
takes place before compilation and never during execution of the
program.

Directives are often used to expand or modify a source program.
One cmrnuon action is to insert a collection of function
declarations from a standard place. Once inserted, these
functions are considered part of the original source program and
can be called from the main function or other explicitly defined
functions. For example, the following program contains an
include directive, which inserts declarations from the standard file
stdio.h.

#include <stdio.h>

main ()
{

}

printf("This program calls the printf\n") ;
printf("function of a standard input\n") ;
printf("and output library\n") ;

Directives can appear anywhere in the source program. The form
and action of each directive is described in detail in Chapter 7.

2-9

Scope and Visibility

A "block" is a clearly defined collection of C language
declarations and statements. A block can be a function body or a
compound statement. A function body is the declarations and
statements of a function definition. Compound statements are ',
declarations and statements enclosed in braces (see Chapter 5,
"Statements").

Blocks can be nested. Function bodies can contain nested
compound statements, and compound statements can contain
other compound statements. This creates "levels of nesting " in
C programs. There are two levels of nesting: global and block.

The "global level" includes declarations and statements in a
complete source file. All function definitions are at the global
level as well as all variable definitions and declarations not made
in any function. All blocks in the source file are nested within
this level.

The "block level'' includes the statements and declarations in a
function body or compound statement. There can be several
different block levels. All function bodies are at the first block
level. All compound statements within function bodies are at the
second level. Compound statements within compound statements
are at the third, and so on.

Blocks and nesting affect how and when functions and variables
can be used in a program. A variable or function is "visible" in a
function if its type and name are known in the block. Visibility
depends on where the declaration or definition appears in the
source file and in what blocks it appears.

In general, a variable or function is visible from the point it is first
declared or defined to the end of the block in which its
declaration or definition appears. If it is declared at the global
level, it is visible to the end of the source file. A variable or
function is also visible in all nested blocks within their visibility.
A variable or function is not visible in blocks that precede its first
declaration or definition, or in nested blocks which contain
declarations which redefine the variable's or function's name.

2-10

0

0

0

The following program example illustrates blocks, nesting, and
visibility of variables.

i nt i = l ; I* decl ared at gl obal l evel *I

mai n ()
{

}

I* It i s known to end of the source f i l e *I

int j ; I* j decl ared i n function body *I
I* It i s known to the end of the function *I

j i ; I* i i s v i s i b l e i n mai n *I

i nt i ; /* i redecl ared in nested b lock *I
I* gl obal l evel i i s no l onger v i s i b l e *I

i = j ; I* j i s v i s i b l e i n th i s b lock *I

I* nested i i s not v i s i b l e *I
I* beyond end of the block *I

I* J 1 s not v i s i b l e beyond the end */
I* of the functi on *I

Visibility does not extend outside a source file. However, there
are ways to access variables and functions declared and defined in
other source files by using implicit and explicit storage classes.

Visibility, storage classes, and scope (related to storage class) are
all described in more detail in the section "Visibility and Scope"
in Chapter 3 .

2-11

2-12

Chapter 3. Declarations

0 Contents

0

Introduction 3-3

Storage Class Specifiers . . . • • 3-4
Automatic Class . 3-4
Register Class . 3-5
Static Class . 3-5
External Class . 3-6

Type Specifiers • • . • . . . 3-7
Fundamental Types . 3-8
Enumeration Types . 3-9
Structure Types . 3-10
Union Types . 3-12

Declarators . . . " . • • • . . . 3-13
Pointer Modifier . 3-14
Array Modifier . 3-15
Function Modifier . 3-17
Complex Declarators . 3-17

Type Declarations • 3-20
Enumeration Declarations . 3-21
Structure Declarations . 3-22
Union Declarations . 3-24

Variable Declarations • • 3-26
Simple Variable Declarations . 3-27
Array Declarations . 3-28
Structure Declarations . 3-30
Union Declarations . 3-31
Pointer Declarations . 3-33

Function Declarations • • • 3-35

3-1

Typedef Declarations • • • . • •

Initialization • •
Fundamental Types . .
Pointer Types . .
Aggregate Types . .
String initializers . .

Visibility and Scope . •

Global and External Variables . .

Static Variables • • •

Global and External Functions . . • .

Static Functions • . • . . • • . . •

Type names • • . •

3-2

3-36

3-38
3-38
3-39
3-40
3-43

'\ _ "-

3-44

3-45

3-46

3-47

3-47

3-48

0

0

Introduction

This chapter describes the form and constituents of C
declarations for types, variables, and functions. All C
declarations have the form:

[sc-specifier] [type-specifier]declarator
[initializer]
[,declarator [initializer]] . . .

where sc->pecifier is a storage class specifier, type-specifier is the
name of a defined type, declarator is an identifier optionally
modified to declare a pointer, array or function, and initializer is a
value or sequence of values to be assigned to the variable being
declared.

This chapter describes each of the above declaration components.
In addition, it discusses the placement of declarations within a
program. The location of a declaration within the set of files that
constitute a program can affect the declared variable's "scope"
(the region of the program in which the variable is defined) and
"visibility" (the sections of the program that can use the
variable).

The topics of the chapter are as follows:

• Storage class specifiers

• Type specifiers

• Declarators

• Declarations

• h1itializations

• Scope and visibility

• Type names

Although function declarations are presented in this chapter,
function definitions are described in Chapter 6.

3-3

Storage Class Specifiers

A storage class specifier is a name for one of four possible storage
classes. A storage class determines how and when a given
variable is allocated storage as well as where in the program the
variable name can be used. The storage classes are :

automatic
register
static
external

The following sections describe these storage classes in detail.

Automatic Class

Syntax

auto

Description

The auto storage class specifies that storage will exist for the
duration of a function or compound statement. Variables with
automatic storage class have storage while execution remains in
the function or compound statement in which the variable is
declared, but lose this storage when execution leaves.

The auto storage class can only be used in declarations in a
function body or compound statement. It cannot be applied to
global or function declarations. The storage class does not affect
visibility (see the section "Visibility and Scope" later in this
chapter).

The auto storage class is the default storage class for all variables
declared within a function body or compound statement and for
all formal parameters.

3-4

Register Class

Syntax

register

0 Description

0

0

The register storage class specifies that storage will exist for the
duration of a function or compound statement and that this
storage will be heavily used. Variables with register storage class
sometimes have storage in CPU registers rather than in actual
memory in order to reduce the access time for the given variable
and to improve program execution time.

Storage allocation depends on available registers and on the
variable's type. Storage allocation in registers is only guaranteed
for int and pointer type variables. The number of available
registers is machine dependent. Variables not allocated in
registers have storage in memory.

The register storage class can only be used in declarations within a
function body or compound statement. It cannot be applied to
global or function declarations. It can be applied to formal
parameter declarations. The storage class does not affect
visibility (see the section "Visibility and Scope" later in this
chapter).

Static Class

Syntax

static

Description

The static storage class specifies that storage will exist for the
duration of the program. Variables with static storage class do
not lose their storage when execution leaves the function or
compound statement in which the variable is declared. Thus,

3-5

these variables guarantee access to the same storage for the
lifetime of the program. Static storage is initialized to zero if no
explicit initial value is given.

The static storage class does not affect the visibility of the
variable unless it is declared at a global level. In this case, the
visibility is restricted to the given source file (see the section
"Visibility and Scope" later in this chapter). '-

The static storage class can be applied to a function declaration.
In this case, the visibility of the function is restricted to the given
source file. The storage class has no other affect.

The static storage class can be used in declarations at any level. It
cannot be applied to formal parameter declarations.

External Class

Syntax

extern

Description

The extern storage class specifies that storage has been allocated
elsewhere in the program and that this storage will exist for the
duration of the program. Variables with external storage class
require a corresponding global definition, defining the actual
storage, somewhere in the program.

The extern storage class can be applied to a function declaration.
In this case, the function is assumed to be explicitly defined (using
the same name and return type) elsewhere in the program.

The extern can be used at any level in the program. It must not
be used with formal parameter declarations. This storage class
does not affect the visibility of the variable or function (see the
section "Visibility and Scope" later in this chapter).

3-6

0

0

0

Type Specifiers

A type specifier is a name for a data type. The C language
provides definitions for a number of basic data types, called the
"fundamental" types. They are:

char
short int
long int
unsigned char
unsigned short int
unsigned long int
float
double
void

The char, short int, and long int types, together with their unsigned
counterparts, are called "integral" types. Float and double are the
"floating point" types. The void type applies only to functions
that return no values.

In addition to the fundamental types, the user can declare
"enumeration," "structure," and "union" types. An enumeration
type defines a set of constant integer values and associates a name
with each element of the set. Structure and union types define
collections of variable values that can have different types.
Structure and union types, together with arrays (discussed later in
this chapter), are known as "aggregate" types.
You can declare additional type specifiers by using a typedef
declaration (see the section "Typedef Declarations" later in this
chapter).

3-7

Fundamental Types

The type specifier for each of the fundamental types consists of
the type name or an abbreviation of the type name. The type
specifiers and legal abbreviations for all fundamental types are
summarized in the following table.

Type specifier Abbreviation

char -
short int short

long int long

unsigned char -
unsigned short int unsigned short

unsigned long int unsigned long

float -
long float double

void -

The type specifier int is a legal abbreviation, but it may not be
portable, since int is equivalent either to a short int or a long int,
depending on the implementation. Similarly, unsigned and
unsigned int are equivalent either to the unsigned short or the
unsigned long type specifiers. Wherever the type specifiers int or
unsigned are used in defining features of the C language (for
instance, in defining an enum type), the definition of int and
unsigned int in a particular implementation determines the actual
storage.

3-8

0

The next table summarizes the storage associated with each
fundamental type and gives the range of values that can be stored
in a variable of each type. Since the void type refers to a function
returning no value, it has no associated storage or range.

Type Storage Range

char 1 byte ·128 to 127

short 2 bytes -32,768 to 32,767

long 4 bytes -1,073,741,824to 1 ,073,741,823

unsigned char 1 byte 0 to 255

unsigned short 2 bytes 0 to 65,535

unsigned long 4 bytes 0 to 2,1 47,483,648

float 4 bytes IEEE standard notation

double 8 bytes IEEE standard notation

void - -

The char type stores a letter, digit, or symbol belonging to the C
character set. The integer value of a character is the ASCII code
corresponding to that character. Since a variable of char type is
interpreted as a signed 1-byte integer, any value in the range -128
to 127 can be stored in a char variable, although only the values
from 0 to 127 have character equivalents.

[) Enumeration Types

0

An enumeration type defines a set of named, constant int values
(the enumeration set) and associates a name with each value of
the set. A variable belonging to an enumeration type stores any
one of the values defined by that enumeration type. Thus, the
storage associated with a variable of an enumeration type is the
storage required for a single int value. The name of an
enumeration constant is equivalent to its value and can be used
anywhere the value is required.

An enum type specifier has one of two forms:

enum [tag]{enum-list}
enum tag

The first form specifies the set of values for the enumeration type
with enum-list and optionally names that enumeration type with
tag.

3-9

An enumeration tag is simply an identifier used for naming an
enumeration type. An enum-list has the form:

identifier [= constant-expression]

Each identifier of the enum-list names a value of the enumeration
set; the optional "= constant-expression" clause
specifies a constant integer value to be associated with that
identifier. If the "= constant-expression" clause
is omitted, a default value is associated with the identifier.
Enumeration lists are discussed in more detail in the
"Enumeration Declarations" section later in this chapter.

Once an enumeration type has been named, the second form of
the enumeration type specifier can be used. In the second form, a
tag referring to a declared enumeration type follows the enum
keyword.

Structure Types

A structure type defines a sequence of variable values (called
"members" of the structure) that can have different types. A
variable belonging to a structure type holds the entire sequence
defined by that structure type.

A structure type specifier has one of two forms:

struct [tag]{ struct -decl-list}
struct tag

In the first form, the members of the structure are specified with
the struct-decl-list and the structure type is optionally named with
tag. A structure tag is simply an identifier used for naming a
structure type. A struct-decl-list is a list of declarations. The
declarations in the list can be variable declarations or bit field
declarations.

3-10

0

0

0

Variable declarations in a structure declaration list have the form:

type-specifier declarator[, declarator . . . };
Storage class specifiers must not appear in a structure declaration
list. Bit field declarations have one of two forms:

unsigned [identifier] : constant-expression;

Structure declaration lists, including bit field declarations, are
discussed in more detail in the "Structure Declarations" section
later in this chapter.

In the second form of the structure type specifier, a tag referring
to a structure type follows the struct keyword.

A variable of structure type is allocated storage by giving each of
its members appropriate storage for its type. Allocation of
storage proceeds in order from the first member in the structure
definition to the last. Thus, the first member has the lowest
memory address and the last member the highest.

The storage for each member of a structure begins on a memory
boundary appropriate to its type. Therefore, unnamed blanks can
occur between the members of a structure in memory. Bit fields
are not stored across int boundaries. Either a bit field is packed
into the space remaining in the previous int or it begins a new int.
An unnamed bit field with a length of 0 causes the member
following it in the declaration list to be aligned at an int boundary.

3-11

Union Types

A union type defines a collection of variable values (called
"members" of the union) tbat can have different types. A
variable belonging to a union type holds at most one of its
members at any given time.

A union type specifier has one of two forms:

union [tag]{union-dec/-list}
union tag

In the first form, the members of the union are specified with the
union-decl-list and the union type is named with tag. A union tag
is simply an identifier used for naming a union type. A
union-decl-list is a list of variable declarations. A variable
declaration in a union declaration list has the form:

type-specifier declarator [,declarator] . . . ;

Storage class specifiers can not appear in the union declaration
list. Union declaration lists are discussed in more detail in the
section "Union Declarations" later in this chapter.

In the second form of the union type specifier, a tag referring to a
union type follows the union keyword.

So that a variable of union type can accommodate any of its
members, the amount of storage associated with a union type is
the amount of storage required for the longest member of the
union.

3-12

l

0

I
l c

0

Declara tors

A declarator specifies the name of the type, variable, or function
being declared. It also modifies the given type-specifier, giving
that type an array, pointer, or function attribute. Declarators
have the following forms:

identifier
declarator[]
declarator[constant -expression]
* declarator
declarator()
(declarator)

A declarator has an identifier and zero or more modifiers. When
a declarator consists of an unmodified identifier, the item being
declared has an unmodified type. If the identifier has a preceding
asterisk (*), the type is modified to be a "pointer" type. If the
identifier has following brackets ([]), the type is modified to an
"array" type. If the identifier has following parentheses, the type
is modified to a "function returning" type.

Any declarator can be parenthesized. Parentheses specify a
particular interpretation of a "complex" declarator -- that is, a
declarator containing more than one kind of modifier.

The following sections describe the pointer, array, and function
modifiers. The last section describes the interpretation of
complex declarators and the use of enclosing parentheses.

3-13

Pointer Modifier

An identifier is declared a pointer by prefixing the identifier with
an asterisk:

*identifier
A pointer type is declared to "point to" an object of a given type.
For example, in the following declaration, the variable p is
declared as a pointer to a long :

long *p;

A pointer can point to any type but void. Thus, a pointer can
point to another pointer. For example:

long **q;

declares a pointer to a pointer to a long.

A variable declared as a pointer holds a memory address. The
storage associated with variable of pointer type depends on the
amount of storage required for a memory address on a given
machine.

3-14

\ '

0

0

0

Array Modifier

An identifier declared as an array has one of the following forms:

identifier [1
identifier [constant-expression 1

The constant expression in brackets, when it appears, specifies
the size of the array. The constant expression can be omitted
from an array declarator when:

1 . The declarator is followed by an initialization.
2. When a formal argument to a function is being declared.
3. It is an external declaration of an array.

The elements of an array have a given type.

3-15

For example:

float x[3];

declares "x" to be an array of three float values.

The elements of an array can be of any type, except that arrays of
functions are not allowed. An array can have elements of array ·•
type. For example:

float x[3][3][4];

declares "x" to be a three-dimensional array of float values, with
a total of 3 6 elements. Each element of "x" is a 3 x 3 x 4 array;
each element of x[3] is a 3 x 4 array; each element of x[3][3] is a
4-element array; and finally, each element of x[3][3][4] is a float.

When a multi-dimensional array is declared, the sizes of the
second and succeeding dimensions must be specified in all cases.

The storage associated with an array type is the storage required
for all of its elements. The elements of an array are stored in
contiguous and increasing memory locations from the first
element to the last. No blanks occur between the elements of an
array in storage. Arrays are stored by row.

3-16

0

0

Function Modifier

An identifier declared as a function has the following form:

identifier ();

A function is declared to return a value of a given type. For
example:

long f() ;

declares a function returning a long value. A function cannot
return an array or a function, though it can return a pointer to any
type. Thus, a construction such as long f() () is illegal.

Complex Declarators

Various combinations of the above modifiers can be applied to a
single identifier. Some combinations are illegal, since an array
cannot be composed of functions and a function cannot return an
array or a function.

In interpreting complex declarators, the array modifier [] and the
function modifier () have higher priority than * , and group left
to right. For example:

int *varl [S];

declares var I to be an array of five pointers to int values.

Parentheses can be used to group modifiers in a way that forces a
particular interpretation. For example, enclosing *varl in
parentheses alters the meaning of the above declaration:

int (*varl)[S];

Now var I is declared to be a pointer to an array of int values.

o Similarly:

long *var2() ;

3-17

declares var2 to be a function returning a pointer to a long, while:

long (*var2) () ;

declares var2 to be a pointer to a function returning a long.

3-18

\�

0

0

0

Although the elements of an array cannot be functions, they can
be pointers to functions. Expanding the above example:

long (*var2[])() ;

declares an array of pointers to functions returning long values.

A function cannot return an array, but it can return a pointer to
an array. Thus:

float (*var3()) [] ;

declares var 3 a function returning a pointer to an array of float
values.

A pointer can point to another pointer, and an array can contain
array elements. Thus:

int **var4[5][5];

declares var4 to be an array of five elements; each element is a
five-element array of pointers to pointers to int values.
Parentheses can override tins interpretation in various ways. For
example:

int (**var4)[5][5];

declares var4 to be a pointer to a 5 x 5 array of int values, while:

int (**var4[5])[5];

declares a five-element array of pointers to pointers to
five-element arrays of int values. Finally:

int *(*var4[5])[5];

declares a five-element array of pointers to five-element arrays of
pointers to int values.

3-19

Type Declarations

A type declaration defines the name, values, and members of an
enumeration, structure, or union type. The name of a declared
type can be used in variable or function declarations to refer to
that type. This is useful if many variables and functions have the
same type.

Enumeration, structure, and union types can also be declared
while declaring variables or functions. See the section "Variable
Declarations" for examples.
The following sections describe enumeration, structure, and union
declarations in detail.

3-20

Enumeration Declarations

An enumeration declaration has the form:

ennm [tag]{enum-list} ;

() The optional enumeration tag names the type being declared.

0

An enum-list has the following form:

identifier [=constant-expression]
[, identifier [= constant-expression]

Each identifier names a value of the enumeration set. If no "=
constant-expression"phrase appears in the enumeration
declaration, the first identifier names the value 0, the next
identifier names the value 1, and so on through the last identifier
appearing in the declaration.

The = constant-expression phrase overrides the usual sequence of
values. An identifier followed by = constant-expression is
associated with constant-expression, which must be an integer
constant. After one = constant-expression clause appears in the
declaration, the next identifier in the declaration names
constant-expression + I, unless it is explicitly given another value
with = constant-expression.

Each identifier in an enumeration list must be unique within tbat
list. It is not necessary for the identifiers in a list to be distinct
from ordinary variable names or from identifiers in other
enumeration lists.

3-21

The following is an example of an enumeration type declaration:

enum weather {
sunshine,
rain = 10,
snow = 20,
sleet,
hail

} ;

This enumeration type is named "weather". The value 0 is
associated with "sunshine" by default. The identifiers "rain" and
"snow" are given the values 1 0 and 20, respectively. "Sleet" and
"hail" have the values 2 1 and 22 by default. Each enumeration
identifier can be used anywhere a constant integer value is
expected.

Structure Declarations

A structure type declaration has the form:

struct [tag]{ struct -dec !-list} ;

The optional structure tag names the structure type being
declared.

The struct-decl-list is a list of one or more declarations that
specifies the members of the structure. A structure member may
be declared as a variable. Variable declarations within structure
declaration lists have the same form as the variable declarations
discussed later in this chapter, with three restrictions. The storage
class can not be specified for variables declared within a structure
declaration list; the type must be specified; and a variable cannot
be declared to have the type of the structure in which it appears
(although it can be a pointer to that structure type) .

A structure member can be declared as a bit field. The form of a
bit field declaration is:

unsigned [identifier] : constant-expression;

3-22

0

A bit field consists of the number of bits specified by
constant-expression. The constant expression must be a
non-negative integer value. Its maximum value is the number of
bits in an int for a given implementation. The optional identifier
names the bit field. Every bit field, named or unnamed, must be
declared unsigned. An unnamed bit field whose width is specified
as 0 has a special function: it guarantees that storage for the
member following it in the declaration list begins on an int
boundary.

Each identifier in a structure declaration list must be unique
within that list. It is not necessary for the identifiers in the list to
be distinct from ordinary variable names or from identifiers in
other structure declaration lists.

The following is an example of a structure type declaration:

struct sampl e {
i nt i , j , k ;
char c ;
float *pf ;
l ong l a[lO J ;
struct s ampl e *next;

} ;
The structure type is named sample. The members of the
structure are, in order, the int values "i", "j", and ''k"; a char
value; a pointer to a float valne; a 10-element array of long
values; and a pointer to the structure type sample.

Bit field members of a structure are useful for storing single bit
values such as flags.

3-23

For example, the structure type declared above can be modified
to include bit field members:

s truct newsamp l e {
i nt i , j , k ;
char c ;
u n s i gned f l a g 1
u n s i gned fl ag2
uns i gned fl ag3
uns i gned fl ag4
float *pf;
l on g l a[lO] ;

)

1 ; 1 ;
1 0 '
1 ;

Union Declarations

A union type declaration has the form:

union [tag]{union-decl-list} ;

The optional union tag names the union type being declared. The
union-decl-list is a list of one or more declarations specifying the
members of the union. The declarations of a union declaration
list are variable declarations. Variable declarations within union
declaration lists have the same form as the variable declarations
discussed later in this chapter, with three restrictions. The storage
class cannot be specified for variables declared within a union
declaration list; the type must be specified; and a variable cannot
be declared to have the type of the union in which it appears
(although it can be a pointer to that union type).

3-24

0

0

Each identifier in a union declaration list must be unique within
that list. It is not necessary for the identifiers in a list to be
distinct from ordinary variable names or from identifiers in other
union declaration list. The following is an example of a union
declaration:

union j ack {

} ;
char * a , b ;
fl oat f[20] ;

The name of the union type is jack. The members of the union
are, in order, a pointer to a char value, a char value, and an array
of float values. The storage associated with the union type jack is
the storage required for the 20-element array f, because f is the
longest member of the union.

3-25

Variable Declarations

The following sections describe the form and meaning of
declarations for variables. In particular, it describes declarations
for:

Simple variables

Arrays

Structures

Unions

Pointers

Single value variables with integral or
floating point type.

Variables composed of a collection of
elements that all have the same type.

Variables composed of a collection of
members that may have different types.

Variables composed of several members
of different types occupying the same
storage space.

Variables that point to other variables,
that is, variables that contain locations
(in the form of addresses) instead of
values.

The general form for all variable declarations is given in the first
section of this chapter. More than one variable can be defined in
a given declaration by giving more than one declarator. Each
declarator defines a unique variable that receives the same storage
class and type as the other variables defined in the declaration but
that has a unique name and attributes as defined by the
declarator. Examples of multiple declarations are given in each of
the following sections.

Storage classes in variable declarations are described later in this
chapter.

3-26

,,
\""-._

Simple Variable Declarations

Syntax

type-specifier identzfier ;

o Description

()

0

A declaration for a simple variable defines the variable's name
and type. The identifier is the variable's name and type-specifier
gives the type. The type-specifier mnst be an integral or floating
point type; no other types are allowed for simple variables.

Several variables can be defined in the same declaration by giving
a list of identifiers separated by commas (,) . In such cases, one
variable is defined for each identifier in the list. Variables in this
list will have the same type.

Examples

1 .

2.

int x;

Defines a simple variable x. This variable can be assigned any
value in the set defined by int type.

long reply, flag;

Defines two variables, reply and flag. Both variables have
long type and can be assigned any large integer value.

3. enum {first, second, third} order;

Defines a variable order that has an enumeration type. This
variable may be assigned the values first, second, or third
defined in the enumerated list.

3-27

Array Declarations

Syntax

type-specifier identifier [constant -expression 1 ;
type-specifier identifier [1 ;
Description

A declaration for an array defines the name of the array, the
number of elements in the array, and the type of each element. In
this declaration, the identifier is the array's name,
constant-expression defines the number of elements, and
type-specifier is the type of each element. The constant
expression must be enclosed in brackets ([]) . The type-specifier
can be an integral or floating point type.

Use the second form of array de'claration only:
1 . If the array is initialized (see the section

"Initializations" later in this chapter.)
2. If this is an external declaration of an array explicitly

defined in another source file of the same program.
3 . It is the formal argument to a. function. '

Arrays of arrays (or mnltiple dimensioned arrays) can be defined
by giving a list of bracketed constant-expressions. The list has the
form:

[constant-expression 1 [constant-expression 1 . . .
where each constant-expression defines the number of elements in
a given dimension. Two-dimensional arrays have two bracketed
expressions, three dimensional arrays have three, and so on.

Arrays of structures and arrays of unions can be defined by
combining the structure or union type with bracketed constant
expressions. Multi-dimensional arrays of structures and unions
can be defined by giving more than one set of brackets.

Arrays of pointers can be defined by combining one or more
bracketed constant expressions with the pointer modifier.
Multi-dimensional arrays of pointers can be defined by giving
more than one bracketed expression.

3-28

Note that array elements are stored in contiguous memory
locations. The first element is stored at the lowest memory
location, the last at the highest.

Examples

0 1. int scores[lO];

0

Defines a 10-element array named scores. Each element has
int type.

2. char prompt[20], reply[25];

Defines two arrays, prompt and reply. In this case, prompt has
20 elements and reply has 25.' The elements of both arrays
have char type.

3 . float matrix[10][15];

Defines a two-dimensional array named matrix. The array
has 150 elements, each having float type.

struct { int x,y; } complex[lOO];

Defines an array of structures. This array has 100 elements.
Each element is a structure containing two members.

5. union { char x; int y; long z; } slice[20] ;

Defines an array of unions. This array has 20 elements.
Each element is a union containing three members of
different types.

6. char *name[20];

Defines an array of pointers. The array has 20 elements.
Each element is a pointer to a char value.

3-29

Structure Declarations

Syntax

struct { member-declaration-list } identifier ;
struct tag { member-declaration-list} identifier ;
struct tag identifier ;

Description

A declaration for a structure defines the name of the structure,
the number of members, and the names and types of the
members. The identifier is the structure's name and the
member-declaration-list defines the members of the structure. If
tag is given but no member-declaration-list , the tag implies no
members unless it has been explicitly declared. The exact syntax
for member declarations and the meaning of the tag are described
in detail in the section "Structure Declarations" in this chapter.

Structure members are stored in the same order as they are
declared. The alignment and packing of structure members is
machine dependent.

Examples:

1 . struct { int x,y; } complex;

Defines a structure named complex. This structure
has two members, x and y. Both members have int
and can be assigned integer values.

2. struct record {
char name[20];
int id;
long class;

} employee;

Defines a structure named employee. The structure
has three members: name, id, and
class--where name is a 20 element array and
id and class are simple members with
int and long type,
respectively. The identifier record is the

3-30

structure tag. It can be used in another structure
declaration to refer to the same list of members
as given in this declaration.

3. struct record student, faculty, staff;

.0. Defines three structures: student,
_/ faculty, and staff.

0

Each structure has the same list of members. The members
are defined by the structure tag record that was defined
in the previous example. Thus, each structure has three
members: name, id, and class.

4. struct {
char icon;
unsigned color : 4;
l screen[25][80];

Defines a two-dimensional array of structures named screen. The
array contains 2000 elements, each element an individual
structure. Each structure in this array has two members,icon and
color. The icon is a simple char type member, but color is a bit
field containing a 4-bit unsigned integer value. The bit field saves
storage space when the array is allocated.

Union Declarations

Syntax

union { member-declaration-list} identifier ;
union tag { member-declaration-list} identifier ;
union tag identifier ;

Description

A declaration for a union defines the name of the union, the
number of members, and the names and types of the members.
The identifier is the union's name and the member-declaration-list
defines the members of the union. If tag is given but no
member-declaration-list , the tag defines the members of the union

3-31

instead. The exact syntax for member declarations and the
meaning of the tag are described in detail in the section "Union
Declarations" in this chapter.

All members of a union are stored in the same memory space and
start at the same address. The compiler allocates enough memory
space to store the largest member. This means there can be some
unused memory space in the union when smaller members are
being used. Since memory space is shared, only one member at a
time can have a value. Assigning a value to a new member
destroys the value of the previously assigned member.

Examples:

1.

u n i on {
i n t S ;
unsi gned U ;

number ;

Defines a union named number that has two members: S, a signed
integer, and U, an unsigned integer. These members allow the
current value of number to be stored as either a signed or an
unsigned value.

2.

u n i on names {
char first[1 5] , mi ddl e [15] , l ast[20 l ;

J empl oyee ;

Defines a union named employee. The structure has three
members, first, middle, and last. Each member is an array of char
type. The arrays can receive the same type of values, but not the
same number of elements: last has 20 elements; first and middle
have only 15. The identifier names is the union tag. It can be used
in another union declaration to refer to the same list of members
as given in this declaration.

3-32

0

0

3.

u n i on names student , facul ty , staff;

Defines three unions: student, faculty, and staff. Each union has
the same list of members. The members are defined by the nnion
tag names that is assumed to be defined in another union
declaration.

4.

uni on {
s truct {

char i con ;
uns i gned col or : 4 ;

J wi ndowl , wi ndow2 , wi ndow3 , wi ndow4 ;
J screen [2 5] [80l ;

Defines a two-dimensional array of unions named screen.
The array contains 2000 elements, each element an individual
union. Bach union in this array has four members, window I ,
window2, window3, and window4, where each member is a
structure. In this array, the entire screen is a composite of up to
four different windows. Bach element in the array has only one
of the possible four values at any given time.

Pointer Declarations

Syntax

type-specifier *identifier ;

Description

A pointer declaration defines the name of a pointer variable and
associates a type with the object to which the variable points.
The identifier defines the variable's name, and the type-specifier
gives the type of the object. The type can be any integral,
floating point, structure, or union type.

3-33

A pointer to an array can be defined by enclosing the asterisk (*)
and identifier in parentheses before giving the bracketed constant
expression. In this case, the identifier has the form:

(* identifier) [constant-expression] . . .

The same rules for constant-expression given above apply here.

Pointer declarations can also be used within the member
declaration list of a structure or union. Pointers can be used in
this way to create linked lists.

Pointers can be declared using forward structure references. A
forward structure reference is the use of a structure tag before it
has been declared. Such declarations define a pointer to a
structure whose members are declared later in the program.
Forward structure references let structures contain pointers to
themselves. See the fourth example given below.

Pointers contain addresses rather than values. The amount of
storage required for an address and the meaning of the address
depends on the given implementation of the compiler.

Examples:

1 . char *message;

Defines a pointer variable named message. It points to a
variable with char type.

2. int *pointers[l O] ;

Defines an array of pointers named pointers.
The array has 10 elements, each a pointer to a variable
with int type.

3. int (*pointer)(lO];

Defines a pointer variable named pointer.
It points to a ten element array. Each element in
this array has int type.

3-34

0

0\,

4. structure linked {
int token;
struct linked *next, *previous;

} list;

Defines a structure named list that contains two pointers
and an integer. The pointers, named next and previous,
point to structures that have the members defined by linked
that is the same form as the structure list.

Function Declarations

A function declaration defines the name, retnrn type, and storage
class of a given function. Function declarations, also called
forward declarations, do not define the function body or
parameters. Instead they permit the function name and retnrn
type to be known before the function is actually defined.
(Function definitions are described in detail in Chapter 6.)

Function declarations have the form:

[static I extern] type-specifier identifier() ;

The identifier is the function's name; the type-specifier gives the
function's return type. It can be any type. If no type is given, int
is assumed. The function's storage class can be static or extern. If
no storage class is given, extern is assumed, until an explicit
definition is given.

The return type can be modified by applying modifiers to the
function identifier. A function can return pointers, but it cannot
return arrays. Parentheses can be applied to the modifiers to
make complex return types.

Examples:

0 1 . int add();

This example defines a function add that retnrns an int type
valne. The storage class is assumed to be extern.

3-35

2. char *strfind();

This example defines a function strfind that returns a pointer
to a char value.

3 . static char test();

This example defines a function named test that returns a
char type value. This function has static storage class and is
known only within the source file in which it is defined.

4. extern a(), b(), c() ;

This example defines three functions a, b, and c. All three
functions have extern storage class. Since no return type is
explicitly given, int type is assumed.

Typedef Declarations

The form of a typedef declaration is:

typedef[type-specifier]declarator [,declarator . . .] ;

A typedef declaration is analogous to a variable or function
declaration except that the typedef keyword appears in place of a
storage class specifier. The declaration is interpreted exactly as
are variable and function declarations, except that the identifier,
instead of taking on the type specified by the declaration,
becomes a synonym for the type. For example:

typedef int whole;

declares whole to be a synonym for int. Thus:

whole i;

is equivalent to:

int i;

3-36

0

Typedef does not create types; it creates synonyms for existing
types or names for types that could be specified in other ways.
Thus, if j is declared as a whole , and k is declared as an int, j and
k are considered to have the same type. As a further example:

typedef s truct c l u b (
char name[30] ;
i nt s i z e , year;

} group ;

declares group to be a structure with three members. Since a
structure tag, club, was also specified, either the typedef name or
the structure tag can be used in declarations. The following
declarations are equivalent:

group x, *g;
struct club x, *g;

The variable x is declared to be a structure of the type declared
above, while g is a pointer to such a structure. Any type can be
declared using typedef, including pointer, function and array
types. For example, the declarations:

typedef void graphf();
typedef int (*pa)[];

provide the name graph[for a function returning no value and pa
for a pointer to an array of int values.

graphf box;
pa *P;

Here box is declared as a function returning no value; P is
declared as a pointer to a pointer to an array of int values.

3-37

Initialization

A variable is initialized (that is, set to an initial value) whenever
an initializer is applied to the variable's declarator in the
declaration. An initializer assigns the given initial value or values
to the variable being declared.

Initialization has the form:

declarator = initializer

Only variables can be initialized; functions cannot. Variables of
any type except union or void may be initialized. Variables with
extern or static storage class can be initialized if desired. If not
initialized, these variables are automatically initialized to 0.

Automatic and register variables can be initialized with constant
or variable values. If the initialization is omitted for an automatic
or register variable, the initial value of the variable is undefined.
Thus, automatic and register variables must either be initialized or
assigned to before they are used.

Initializers for fundamental, pointer, and aggregate types are
described in the following sections.

Fundamental Types

An initializer for a variable belonging to a fundamental types has
the form:

= expression

The value of expression is assigned to the variable. The
conversion rules for assignment apply. For example, the
following declaration initializes the variable x.

int x = 10;

3-38

\ '

I Pointer Types

0

0

0

A pointer variable is initialized in the same manner as a variable
of fundamental type. For instance:

int *px = 0;

initializes the pointer variable px to 0.

3-39

Aggregate Types

In its simplest form, an initializer for an aggregate type has the
form:

= {expression [,expression] . . . }

The values are assigned in order to the members of the aggregate.
The conversion rules for assignment apply. Only static variables
or variables declared outside functions may be initialized;
initializations of automatic and register aggregates are prohibited.
Union variables cannot be initialized. The initializers for
aggregate types must be constant expressions.

For example:

int P[]= { 2, 4, 6, 8, 10} ;

declares P as 5-element array and assigns the value 2 to the first
element of P, the value 4 to the second element, and so on
through the fifth element. When the size of the array is
unspecified, the size defaults to the number of values in the
initializer list. Since there are five initializer values, P is defined
to be a five-element array.

A brace-enclosed initializer list can appear within another
initializer list. This is useful for initializing aggregate members of
an aggregate. For example:

int P[][3] = {
{ 1 , 1 , 1 },
{ 2, 2, 2 },
{ 3, 3, 3 },
{ 4 , 4, 4 }

} ;

declares P as a 4 x 3 array and initializes the elements of its first
row to 1 , the elements of its second row to 2, and so on through
the fourth row.

If there is no embedded initializer list for an aggregate member,
values are simply assigned in order to each member of the
subaggregate.

3-40

0

0

0

Thus, the above initialization is equivalent to:

int P[4][3] = {
I , I , 1 , 2, 2, 2, 3 , 3 , 3 , 4, 4, 4

} ;

Here the values are simply assigned in increasing subscript order
to P. Since arrays are stored by row, initialization proceeds by
row.

Braces can appear around any initializer in the list. For instance:

fl oat x[3] • {
[1 } '
{2} ,
[3}

} ;

has the same effect as:

float x[3] = {
I , 2, 3

l ;

With fewer values in the initializer than there are members of the
aggregate type, the remaining members are initialized to 0. For
example, if the structure type list has been defined as:

struct list {

l ;

int i, j, k;
float x[2][3];

then a variable y can be declared and initialized as follows:

struct list y = {
I ,
2,
3 ,
{4, 4, 4}

l ;

3-41

The three int members of y are initialized to 1 , 2, and 3 ,
respectively; the three elements in the the first row o f x are
initialized to 4; and the elements of the remaining row of x are
initialized to 0 by default.

In the following example the first column of y is initialized:

struct list y = {
1 ,
2,
3,
{4},
{5}
} ;

The three int members are initialized as above; then the initializer
list { 4} is used to initialize the first row of x. Since only one value
appears in the list, the element in the first column is initialized to
4 and the remaining two elements in the row are initialized to 0,
by default. Similarly, the element in the first column of the
second row of x is initialized to 5, while the remaining two
elements in the row are initialized to 0.

More initializers than members in the aggregate type causes an
error.

3-42

I
\. �

0

0

0

String initializers

An array can be initialized with a string constant. For example:

char S[] = "abc";

initializes S as a four-element array of characters. The fourth
element is the null character that terminates all string constants.

If the array size is specified and the string is longer than the
specified size of the array, the extra characters are simply
discarded. The following declaration initializes S as a
three-element character array:

char S[3] = "abed";

In this case only the first three characters of the initializer are
assigned to S. The character 'd' and the null character are
discarded.

If the string is shorter than the specified size of the array, the
remaining elements of the array are initialized to 0.

3-43

Visibility and Scope

Visibility and scope are special attributes that apply to the
declared items of a C program. Visibility is the region within a
program in which an identifier is known and can be used. Scope
is the way in which storage is allocated for a variable during ''-
program execution. All declared items are subject to the rules of
visibility and scope.

The following sections describe how the rules of visibility and
scope affect variables and functions and how to modify or
override these rules to achieve special results.

3-44

c

0

Global and External Variables

Variable declarations and definitions at a sonrce file's global level
have special properties that affect how the variables can be
accessed. In particular, these declarations and definitions create
one or three types of variable: global, or external.

A "global variable" is defined with a variable definition at the
global level. Global variables have permanent storage for the
duration of the program and have initial values. Global variables
are special in that their storage is available for linking with
external variables.

An "external variable" is any variable declared with the extern
storage class at any level in a program. External variables have
no storage of their own. Instead, they are linked to the storage of
a global variable having the same name.

Global and external variables provide a way to access variables
not visible in a given block or source file. An external variable is
always linked to a global variable having the same name no matter
where the external declaration occurs and no matter what source
file contains the global variable definition.

A global variable must not be defined more than once in any
given set of source files. Any number of external declarations can
be given, but only one global definition is allowed for that
variable.

3-45

The following program example illustrates how an external
variable can provide access to a global variable that is not visible
in a given part of a program.

i nt i = l ; ;* •• ; •• i s a g l obal vari abl e */

mai n ()
{

}

printf(1 1%d \ n •' , i) ;
{

!* pri nts I */

i nt i = 2 ; !* 1 1 1 11 i s redefi ned ; the gl obal */
I* •• ; •• i s no l onger v i s i bl e */

pri ntf(11%d \ n 11 , i } ;
{

!* pri nts 2 *;

extern i n t i ; ;* external 11 i 11 l i nked */
;* to g l obal 1 11 11 */

pri ntf ("%d\n" , i) ; /* pri nts I */
} /* external 11 1 " no l onger v i s i bl e *;

pri ntf(1 1%d\n 11 , i) ; !* pri nts 2 *!

} /* 1 oca l " i 11 no 1 anger v i s i b 1 e *I

printf("%d \ n 11 , i) ; !* pri nts I */

Static Variables

A "static variable" is any variable declared with the static storage
class. Static variables are similar to global variables in that they
have permanent storage and an initial value, but static variables
cannot be linked to external variables. Static variables are
accessible only within the region of a program in which they are
visible.

3-46

\. �

0

I

0

Global and External Functions

A "global function" is any function that has an explicit function
definition in a source file of the program. An "external function"
is any function declaration that either has the extern storage class,
or has a corresponding global function definition in the same
source file or in another file. External functions are like external
variables in that they are linked to global functions having the
same name. This linking allows use of the global function in one
source file even though its definition is in another, or use in
blocks in which it is not visible.

Static Functions

A "static function" is any function that has been defined with the
static storage class. Static functions are like static variables in
that they cannot be linked to external functions. Static functions
can only be used in the blocks in which they are visible.

3-47

Type names

A "type name" specifies a particular data type. Type names are
used in two contexts: in type casts and in sizeof operations (see
Chapter 4).

The type names for fundamental, enumeration, structure and
union types are simply the type specifiers for those types.

A type name for a pointer, array or function type has the form:

type-specifier abstract-declarator

An abstract declarator is a declarator without an identifier.
(Declarators are discussed earlier in this chapter.) Thus, an
abstract declarator consists of pointer, array and/ or function
modifiers. Since the pointer modifier (*) always appears before
the identifier in a declarator, while array ([]) and function (())
modifiers appear after the identifier, it is possible to determine
where the identifier would appear in an abstract declarator and to
interpret the declarator accordingly.

3-48

\�

For example:

long *

is the type name for a pointer to a long, while:

Q float * ()

0

0

is the type name for a function returning a pointer to a float.

An abstract declarator can be complex, and parentheses can be
used within the declarator. For example:

int (*)[5]

names a pointer to an array of five int values, while:

int (*)()

names a pointer to a function returning an int.

The abstract declarator "()" is not allowed because it is
ambiguous. The implied identifier could appear within the
parentheses or before them, with a different result in each case.

3-49

3-50

Chapter 4. Expressions and Assignments

0 Contents
Introduction 4-5

Operands 4-6

Constants 4-6

Identifiers . 4-6
Integral and floating point identifiers 4-6
Enumeration identifiers . 4-6
Structure and union identifiers . 4-7
Pointer identifiers . 4-7
Array identifiers . 4-7
Function identifiers . 4-7

o Strings • . • • 4-8

Function caDs . . • . 4-9

0

Subscript expressions . 4-10

Member Selection Expressions . . • • 4-13

Expressions • . • 4-14
Expressions with Operators . 4-1 5
Type Cast Expressions . 4-15
Expressions in Parentheses . 4-16
Constant Expressions . 4-1 6

Type Conversions • . . • 4-17

Assigmnent Conversions . • 4-18
Conversions from Signed Integer Types 4-1 8
Conversions from Unsigned Integer Types 4-20
Conversions from Floating Point Types 4-22

4-1

Conversions from Enumeration Type 4-24
Conversions from Structure and Union Types 4-24
Conversions from pointer types 4-24
Conversions from Void Type . 4-24

Type Cast Conversions 4-25

Operator Conversions 4-25 '

Function Call Conversions • 4-26

Operators . • . 4-27

Complement Operators . . 4-28
Arithmetic negation (-) . . 4-28
Bitwise complement (-) . . 4-28
Logical not (!) . . 4-28

Indirection and address of operators • . . . • . . . 4-29
Indirection (*) . . 4-29
Address of (&) . . 4-29

The sizeof Operator . . 4-30

Multiplicative Operators . . 4-31
\._

Multiplication (*) . . 4-31
Division (/) . . 4-31
Remainder (%) . . 4-31

Additive Operators . . 4-32
Addition (+) . . 4-32
Subtraction (-) . . 4-33
Pointer and integer combinations 4-33
Overflow . . 4-35

Shift operators . • 4-35

Relational operators . . 4-36

Bitwise Operators • . • 4-37
Bitwise AND (&) . . 4-37
Bitwise Inclusive OR (I) . . 4-37
Bitwise Exclusive OR (") . . 4-37

4-2

Logical Operators o 4-38
Logical AND (&&) o o o o o o o o o o o o o o o o o o 0 o o o o o o o o o 4-38
Logical OR (I I) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 4-39

Sequential Evaluation Operator (,) o 4-40

O The Conditional Operator (?:) o o o o o o o o o o o o o 0 o o o o o o o o o 4-41

Assignment Operators o o o 0 0 0 0 0 0 o o o o o o o o o o 0 0 0 0 0 0 0 0 o o 4-42

Unary Increment and Decrement o 4-44

Simple Assignment o o o o o o 0 0 0 0 0 o o o o o o o o o o o 0 0 0 o 0 o o 0 o o 4-45

Compound Assignment o 4-46

Precedence 4-47

Side Effects 4-51

0

0

4-3

4-4

0

0

0

Introduction

This chapter describes how to form expressions and make
assignments in the C language. The topics covered in the chapter
are:

• Operands

• Type conversions

• Operators

• Assignments

• Precedence

• Side effects

An expression is a combination of operands and operators that
yields (or expresses) a single value. An operand is a constant or
variable value that is manipulated in the expression. Each
operand of an expression is also an expression, since it represents
a single value. An operator specifies how the operand or
operands of the expression are manipulated.

The type of an operand can be converted to a different type in
certain contexts. Type conversions can take place in assignments,
type casts, function calls, and operations.

In C, assignments are considered expressions. An assignment
yields a value: its value is the value being assigned. In addition to
the simple assignment operator (=), C offers a number of more
complex assignment operators that both transform and assign
their operands.

The "precedence" of operators affects the grouping of operands
in an expression. "Side effects" are changes that take place as a
result of an expression's evaluation.

4-5

Operands

A C operand can be a constant, an identifier, a string, a function
call, a subscript expression, or a member selection expression. An
operand can also be an expression. The type of value yielded by
each kind of operand is discussed below.

Constants

An operand that is a constant has the value and type of the
constant value. A character constant has int type. An integer
constant is signed; it can be either int or long, depending on its
size and how the value was specified. A floating constant is a
double.

Identifiers

An operand can be an identifier. An identifier is a name for a
variable, constant, or function. Every identifier has an associated
type; the value of an identifier depends upon its type, as follows.

Integral and floating point identifiers

Identifiers of integral and floating point types represent values of
the corresponding type.

Enumeration identifiers

An identifier of enum type represents one constant value of a set
of constant values. The value of the identifier is the constant
value; its type is int, by definition of the enum type.

4-6

Structure and union identifiers

An identifier of struct or union type represents a value of the
specified struct or union type.

0 Pointer identifiers

0

0

An identifier declared as a pointer represents a pointer to the
specified type.

Array identifiers

An identifier declared as an array represents a pointer whose
value is the address of the first element of the array. The type
addressed by the pointer value is the type of the first element of
the array. The address of an array's first element is a constant;
thus, the pointer value represented by an array identifier is a
constant.

Function identifiers

An identifier declared as a function represents a pointer whose
value is the address of the function. The type addressed by the
pointer is a function returning a value of some specified type.
The address of a function is a constant; thus, the value
represented by a function identifier is a constant.

4-7

Strings

An operand can consist of a string. A string is a list of characters
enclosed in double quotes:

' 'string''

A string expression represents a pointer whose value is the
address of the first character of the string. The type addressed by
the pointer is char. Since the address of the first character of the
string is a constant, the value represented by a string expression is
a constant.

The last character of a string is always the null character, \0 .
The null character is not visible in the string expression, but it is
present as the last position of the string in memory. Thus, the
string "abc" actually has 4 characters rather than 3.

4-8

0

0

0

Function calls

A function call has the form:

identifier (expression-list)

where identifier is the name of the function to be called, and
expression-list is a list of expressions whose values, the actual
arguments, are passed to the function. The expression list can be
empty. The number of expressions in the list depends on the
number of formal arguments specified in the function definition.
An error results if the number of expressions in an expression list
does not match the number of formal arguments in the function.

A function call expression has the value and type of the function's
return value. If the function's return type is void, the function call
expression also has void type. If control returns from the called
function without execution of a return statement, the value of the
function call is undefined.

When encountered iu a program, the function call evaluates the
expressions in the expression list, passes these values to the
function, then passes execution control to the first statement in
the function. The expressions in the expression list can be
evaluated in any order. However, the first expression in the list
always corresponds to the first formal argument of the function;
the second expression corresponds to the second formal
argument, and so on through the end of the list.

Certain type conversions are routinely performed in function
calls; see Function Call Conversions later in this chapter.
However, conversions do not take place between the actual
arguments to a function and the formal arguments of the function.
Type mismatches between actual and formal arguments can
produce unexpected results.

4-9

Subscript expressions

A subscript expression has the form:

operand[expression]

The operand may be any operand representing a pointer value.
The expression in brackets represents an integer value. Subscript
expressions refer to an element of an array; thus, the pointer
value is usually a pointer to an array.

To evaluate a subscript expression, the integer value is added to
the pointer value. According to the conversion rules of the
addition operator (discussed later in this chapter) the integer
value is converted to an address offset by multiplying it times the
length of the type addressed by the pointer. After conversion, an
integer value i expresses i memory positions of the length
specified by the pointer type. When added to the pointer value,
the result is a new pointer value expressing the address i positions
from the original address. The type addressed by the resulting
pointer value is the type addressed by the original pointer value.

If the resulting pointer value addresses an array, the result of the < ..
subscript expression is that pointer value. Otherwise, the
indirection (*) operator (discussed later in this chapter) is applied
to the pointer value to yield the value residing at that address.

Notice that a subscript expression such as:

A[O]

yields the value of the first element of A, since the offset from the
address represented by A is zero. Similarly, an expression such
as:

A[5]

refers to the element offset five positions from the address
represented by A or the sixth element of the array.

4-10

0

0

A subscript expression can be subscripted:

operand[expression][expression] . . .

Subscript expressions group left to right; the first subscript
expression is evaluated first, and the result is used as the operand
for the next subscript.

Expressions with multiple subscripts are used to refer to elements
of multi-dimensional arrays. A multi-dimensional array is an
array whose elements are arrays. If A is a 3-dimensional array,
the first element of A is an array with 2 dimensions. The integer
value ; is multiplied times the length of that 2-dimensional array
element to produce an address offset. This converted value is
added to the pointer value A to yield a pointer to the ith element
of A, which is a 2-dimensional array.

For example, if the array A is declared with 3 dimensions as
follows:

int A[3][4][6];

the first round in the evaluation of a subscript expression such as:

A[2][1][0];

is the evaluation of:

A[2]

The value of A[2] is the address of the third element of A. The
type of element addressed is 4 x 6 integer array.

The address yielded by the first subscript expression forms the
operand for the second subscript expression. The integer value
" 1 " is converted by multiplying it times the length of the 4 x 6
array element. The converted value is added to the pointer value
yielded by A[2]; the result is the address of the second element of
the 4 x 6 array. The type addressed by the pointer result is a
6-element array.

Finally, the pointer to the second one-dimensional array is added
to the final subscript operand, the value "0". The resulting

4-11

pointer addresses the first element of the 6-element array. The
last step in evaluating the expression A[2][1] [0] is applying the
indirection operator to the pointer value. The result is the int
element at that address.

The indirection operator is applied only when the final pointer
value addresses a non-array type. The expression A[2][1] is a
perfectly legal reference to the three-dimensional array A; the
result of the expression is a pointer value that addresses an array
with one dimension.

4-12

0

Member Selection Expressions

A member selection expression has one of two forms:

expression.identifier
expression-> identifier

Member selection expressions refer to a member of a structure or
union. The value of a member selection expression has the value
and type of the selected member.

For the form:

expression. identifier

expression must represent a value of struct or union type. The
identifier names a member of the specified structure or union. For
the form:

expression-> identifier

(--.\. expression must represent a pointer to a structure or union. The

�) identifier names a member of the structure or union pointed to.

0

The two forms of member selection expressions have a similar
effect. In fact, expressions involving "->" are shorthand versions
of expressions using "." in cases where the expression before the
period consists of the indirection (*) operator (discussed later in
this chapter) applied to a pointer value. Thus:

expression->identifier

is equivalent to:

(*expression). identifier

when expression is a pointer value.

4-13

Expressions

Any expression can form an operand of another expression. An
expression can consist of any one of the operands described
above. An expression can also consist of:

• One or more operands joined by an operator.

• A type cast conversion.

An expression in parentheses.

• A constant expression.

The general form for each kind of expression is outlined below.
Type cast conversions and the unary, binary, ternary and
assignment operators are discussed later in this chapter.

4-14

0

0

Expressions with Operators

An operand prefixed by a unary operator is an expression:

-operand
-operand
!operand
*operand
&operand
sizeof(operand)

An expression can consist of two operands joined by a binary
operator (binop):

operand binop operand

An expression can consist of three operands joined by the ternary
(? :) operator:

operand ? operand :operand

An expression can be an assignment expression having one of the
following forms:

operand+ +
operand-
++operand
--operand
operand= operand
operand compound-assignment-op operand

Type Cast Expressions

An expression can consist of a type cast, which has the form:

(type-name) operand

Type casts are discussed later in this chapter; type names are
discussed in Chapter 3.

4-15

Expressions in Parentheses

Any expression can be put in parentheses. The parentheses have
no effect on the type or value of the enclosed expression. For
example, in the expression:

(10+5)/5

the parentheses around 10+5 mean that the value of 10+5 is the
left operand of the I (division) operator. The result of (10+5)/5
is 3. Without the parentheses, 10+5/5 would evaluate to 1 1 .

Although parentheses affect the way operands are grouped in an
expression, they cannot guarantee a particular order of evaluation
for the expression.

Constant Expressions

A constant expression is an expression that evaluates to a
constant. The operands of a constant expression can be integer
constants, character constants, enumeration constants, type casts
to integral types, and other constant expressions. The operands
can be combined using operators, as above; however, certain
operators cannot be used in constant expressions. None of the "'.
assignment operators can be used; the binary sequential
evaluation operator (,) cannot be used; and the unary address of
(&) operator may be used ouly in the circumstances outlined
below. Constant expressions in preprocessor directives cannot
include sizeof expressions and e�umeration constants.

A few special allowances for the constant expressions are used to
initialize external and static variables. These constant expressions
can use floating point constants and type casts to any type. They
can also use the unary address of (&) operator with external and
static variables, or with external and static arrays subscripted with
a constant expression.

4-16

i '

0

0

0

Type Conversions

Type conversions take place when:

• A value is assigned to a variable of a different type .

A value is explicitly cast to another type.

An operator converts the type of its operand or operands
before performing the specified operation.

A value is passed as an argnment to a function.

The rnles governing each kind of conversion are outlined below.

4-17

Assignment Conversions

In assignment operations, the type of the value being assigned is
converted to the type of the variable receiving the assignment. C
allows you to perform conversions by assignment between most
types, even when the conversion entails loss of information. The
methods of carrying out the conversions depend upon the type, as
follows.

Conversions from Signed Integer Types

A signed integer is converted to a shorter signed integer by
truncating the high-order bits, and converting to a longer signed
integer by sign-extension. Conversion of signed integers to
floating point values takes place without loss of information,
except that some precision may be lost when a long value is
converted to a float. To convert a signed integer to an unsigned
integer, the signed integer is converted to the size of the unsigned
integer and the result is interpreted as an unsigned value.

4-18

0

0

0

From To Method
char short sig:1-extended

char long sign-extend to short; convert short to long

char unsigned char no clmnge in hit pattern; high-order hit loses
i\mction as sign bit

char unsigned short sign-extend to short; convert short to
unsigned short

char unsigned long sign-extend to long; convert long to unsigned
long

char float sign-extend to short; convert short to float

char double sign-extend to short; convert short to double

short char preserve low-order byte

short long sign-extend

short unsigned char preserve low-order byte

short unsigned short no change in bit pattern; high-order bit loses
function as sign bit

short unsigned long sign-extend to long; convert long to unsigned
long

short float no change in value

short double cor. vert to float; convert float to double

long char preserve low-order byte

long short preserve low-order word

long unsigned char preserve low-order byte

long unsigned short preserve low-order word

long unsigned long no change in bit pattern; high-order bit loses
function as sign bit

long float if the long value fits into a float, n.o change in
value occurs; otherwise, some loss of
precision occurs

long double convert to float; convert float to double

Note: The int type is equivalent either to the short type or to
the long type, depending on the implementation. Conversion
of an int value proceeds as for a short or a long, whichever is
appropriate.

4-19

Conversions from Unsigned Integer Types

An unsigned integer is converted to a shorter unsigned or signed
integer by truncating the high-order bits. An unsigned integer is
converted to a longer unsigned or signed integer by
zero-extending. Unsigned values are converted to floating point
values by first converting to a signed integer of the same size,
then converting that signed value to a floating point value.

When an unsigned integer is converted to a signed integer of the
same size, no change in the bit pattern occurs. However, the
value represented changes if the sign bit is set.

4-20

0

0

From To Method

unsigned char char no change in bit pattern;
high-order bit becomes sign bit

unsigned clH!T short zero-extend

unsigned char long zero-extend

unsigned char unsigned short zero-extend

unsigned cl1ar unsigned long zero-extend

unsigned char float convert to char; convert char to float

unsigned char float convert to char; convert char to double

unsigned short char preserve low-order byte

unsigned short short no change in bit pattern; high-order bit
becomes sign bit

unsigned short long zero-extend

unsigned short unsigned char preserve low-order byte

unsigned short unsigned long zero-extend

unsigned short float convert to short: convert short to float

unsigned short double convert to s!10rt; convert short to
double;

unsigned long char preserve low-order byte

unsigned long short preserve low-order word

unsigned long long no change in bit pattern; high-order bit
becomes sign bit

unsigned long unsigned char preserve low-order byte

unsigned long unsigned short preserve low-order word

unsigned long float convert to long; convert long to float

unsigned long double convert to long; convert long to double

Note: The unsigned int type is equivalent either to the
unsigned short type or to the unsigned long type, depending on
the implementation. Conversion of an unsigned int value
proceeds as for an unsigned short or an unsigned long,
whichever is appropriate.

4-21

Conversions from Floating Point Types

A float converted to a double undergoes no change in value; the
additional bits are filled with zeros. A double converted to a float
is represented exactly, if possible; if the value is too large to fit
into a float, precision bits are discarded; if the value is still too
large for the float, the result is undefined.

A floating point value is converted to an integer value by first
converting to float size, if necessary, then converting to a long.
Conversions to other integer types take place as for a long. The
decimal portion of the floating point value is discarded in the
conversion to a long; if the result is still too large to fit into a long,
the result of the conversion is undefined.

4-22

From To Method
float char convert to long;

co:nrert long to char

float short convert to long;
convert long to short.

floot long truncate at decimal point;
if result is too large to fit into a long,
result is undefined

float unsigned short convert to long;
convert long to unsigned short

float unsigned long convert to long
COJJVert long to unsigned long

float double no change in value;
additional bits zero-filled

dot1ble char convert to float;
conver1 float to char;

double short convert to float;
convert float to short;

double long cmwert to float;
convert float to long;

double unsigned short cor.vert to float;
convert float to unsigned short

double unsigned long COllVCfl to float;
convert float to unsigned long

double float if the double value cannot be represented

()
exactly as o float, loss of precision occurs; if
the value is still too large to be represented in
a floe�t, the result is undefined.

0

4-23

Conversions from Enumeration Type

An enum value is an int value, by definition of the enum type. The
size of an int is determined by the particular implementation.
Conversions to and from an enum value proceed as for the int
type.

Conversions from Structure and Union Types

A structure or union type may only be converted to the same
structure or union type.

Conversions from pointer types

A pointer value behaves like an unsigned integer value; the size of
a pointer depends on the implementation. Conversions to and
from a pointer type proceed as for an unsigned integer of the
appropriate size, except that pointers cannot be converted to
floating point types.

A pointer to one type of value can be converted to a pointer to a
different type. The result can be undefined, however, because of
the alignment requirements of different types in storage.

Conversions from Void Type

The void type has no value, by definition. Therefore it cannot be
converted to any other type, nor can any value be converted to
void by assignment. However, a value can be explicitly cast to
void -- see "Type casts", below.

4-24

Type Cast Conversions

C allows you to make explicit type conversions by means of a
type cast. A type cast has the form:

0 (type-name) operand

where type-name specified a particular type and operand is a value
to be converted to the specified type. (Type names are discussed
in Chapter 3.)

The conversion of value takes place as though it had been
assigned to a variable of the named type. Thus, the conversion
rules for assignments (discussed earlier) apply to type casts as
well. The type name void can be used in a cast operation, even
though a void value cannot receive an assignment.

perator Conversions

The conversions performed by C operators depend on the
operator and on the type of the operand or operands. However,
many operators perform similar conversions on operands of
integral and floating point types. These conversions are known as
"arithmetic" conversions because they apply to the types of
values ordinarily used in aritlnnetic. The arithmetic conversions
summarized below are called the "usual arithmetic conversions".
The discussion of each operator io the next section specifies
whether the operator performs the usual arithmetic conversions
and any additional conversions.

The usual arithmetic conversions proceed in order as follows:
1 . Any operands of float type are converted to double type.

Q 2. Any operands of char or short type are converted to int.

3. Any operands of unsigned char or unsigned short type are
converted to unsigned int type.

4-25

4. If one operand is of type long int, the other operand is
converted to long int.

5 . If one operand is of type unsigned long int, the other operand
is converted to unsigned long int.

6. If one operand is of type unsigned int, the other operand is
converted to unsigned int.

Function Call Conversions

The usual arithmetic conversions are performed independently on
each argument in a function call. Thus, a float value is converted
to a double; a char or short value is converted to an int; and an
unsigned char or unsigned short is converted to an unsigned int.

In C, arguments are passed by value, not by reference. A copy of
each actual argument is made before the function call, and the
copies are passed to the function. Thus, changes in the arguments
passed to a function are not reflected in the values from which the
copies were made.

The types of the formal arguments are not compared against the
types of the actual arguments in a function call. If type
mismatches occur, they can produce unexpected results.

4-26

0

0

0

Operators

C operators take one operand (unary operators), two operands
(binary operators) , or three operands (the ternary operator).

Unary operators prefix their operand and group right to left. C's
unary operators are:

-, ! negation operators

* & indirection and address of operators

size of size operator

Binary operators group left to right. The binary operators are:

* I %
+ -
< < > >
< > < =
>= = = !=
& I 1\
&& I I

multiplicative operators
additive operators
shift operators
relational operators

bitwise operators
logical operators
sequential evaluation operator

C has one ternary operator, the conditional operator (? :) . It
groups right to left.

4-27

Complement Operators

Arithmetic negation (-)

The unary operator - produces the twos complement of its
operand. The operand must be an integral or floating point value.
An operand of type char or short is converted to int. An unsigned
integer remains unsigned; the negative of an unsigned value is the
difference between the unsigned value and the maximum value of
an unsigned integer of that size.

Bitwise complement ("')

The unary operator - produces the bitwise complement of its
operand. The operand mnst be of integral type. An operand of
type char or short int is converted to int. The result has the type
of the operand after conversion.

Logical not (!)

The unary operator ! produces a value of 0 if its operand is true
(non-zero), and a value of 1 if its operand is false (zero). The
resulting value is of type int. The operand must be an integral,
floating point or pointer value.

4-28

0

0

Indirection and address of operators

Indirection (*)
The unary operator * yields the value residing at the address
specified by its operand. The operand must be a pointer value;
the result of the indirection operation is the value to which the
operand points. The type of the result is the type to which the
operand points. If the pointer value is 0, the result is
unpredictable.

Address of (&)
The unary operator & takes the address of its operand. The
operand can be any operand that can appear as the left-hand
value of an assigmnent operation. (Assignment operations are
discussed later in this chapter.) The result of the & operation is a
pointer to the operand; the type addressed by the pointer is the
type of the operand.

The address of operator cannot be applied to a bit field member of
a structure, nor can it be applied an identifier whose storage class
is register, since the identifier is assumed to refer to a register
rather than to addressable memory.

4-29

The sizeof Operator

The unary sizeof operator enables you to determine the amount of
storage associated with an identifier or a type. A sizeof
expression has the form:

sizeof(name)

where name is either an identifier or a type name. The type name
cannot be void. The value of a sizeof expression is the amount of
storage, in bytes, that is associated with the named identifier or
type.

When the sizeof operator is applied to an array identifier, the
result is the size of the entire array in bytes rather than the size of
the pointer represented by the array identifier.

When the sizeof operator is applied to a structure or union type
name, or to an identifier of structure or union type, the result is
the actual size in bytes of the structure or union, which can
include internal and trailing padding used to align the members of
the structure or union on memory boundaries. The result may not
correspond to the size calculated by adding up the storage \,
requirements of the members.

Example

buffer = cal l oc (l OO , s i zeof (i nt)) ;

With the sizeof operator you can avoid specifying
machine-dependent data sizes in your program. The above
example uses the sizeof operator to pass the size of an int , which
varies across machines, as an argument to a function named
calloc. The value returned by the function is stored in buffer.

4-30

Multiplicative Operators

� Multiplication (*) (_ I

0

The binary operator * specifies that its two operands are to be
multiplied. The operands must be integral or floating point
values, but their types can be different. The multiplication
operator performs the usual arithmetic conversions on its
operands. The type of the result is the type of the operands after
conversion.

Division (/)
The binary operator I specifies that its first operand is to be
divided by the second. The operands must be integral or floating
point values, but their types may be different. The division
operator performs the usual arithmetic conversions. The type of
the result is the type of the operands after conversion.

When two integers are divided, the result, if not an integer, is
truncated. If both operands are positive or unsigned, the result is
truncated toward zero. The direction of truncation when either
operand is negative can be either toward or away from zero,
depending on the implementation.

Remainder (%)
The result of the binary o/o operator is the remainder when its
first operand is divided by the second. The operands must be
integral values, but their types can be different. The remainder
operator performs the usual arithmetic conversions. The type of
the result is the type of the operands after conversion.

4-31

Examples

i nt i = 10 , j = 3 , n ;
doubl e x = 2 . 0 , y ;

1 . y = x * i ;

2 . n = / j ;

3 . n = % j ;

In the first example, x is multiplied times i to give the value 20.0.
The result has double type.

In the second example, 10 is divided by 3 . The result is truncated
toward zero, yielding the integer value 3 .

In the third example, n is assigned the integer remainder 1 when
10 is divided by 3 .

Additive Operators

Addition (+)
The binary operator + specifies that its two operands are to be
added. The operands can be integral or floating point values, in
which case the usual arithmetic conversions are performed. The
type of the result is the type of the operands after conversion.

One operand can be a pointer and the other an integer. The
integer value is converted by multiplying it times the length of the
type addressed by the pointer. After conversion, the integer value
i expresses i memory positions of the length specified by the
pointer type. When added to the pointer value, the result is a new
pointer value expressing the address i positions from the original
address. The type addressed by the resulting pointer value is the
type addressed by the original pointer value.

4-32

�''
"-··

Subtraction (-)

The binary operator - subtracts its second operand from the first.
The operands can be integral or floating point values. The usual
arithmetic conversions are performed, and the type of the result is
the type of the operands after conversion.

An integer value can be subtracted from a pointer value. As with
addition, the integer value is converted with respect to the type
addressed by the pointer. The result is the memory address i
positions before the original address, where i is the integer value
and each position is the length of the type addressed by the
pointer value. The pointer result points to the type addressed by
the original pointer value.

Two pointer values can be subtracted, if they point to the same
type. The difference between them is converted to a signed
integer value by dividing by the length of the type the pointers
address. The result represents the number of memory positions of
that type between the two addresses.

� Pointer and integer combinations u

0

Additive operations involving a pointer and an integer generally
yield meaningful results only when the pointer operand addresses
an array member and the integer value produces an offset within
the bounds of the same array. The conversion of the integer value
to an address offset assumes that only memory positions of the
same size lie between the original address and the address plus
offset. This assumption is valid for array members. An array is,
by definition, a series of values of the same type; its elements
reside ill contiguous memory locations. Storage of any types
except array elements is not guaranteed to be completely filled -
that is, there may be blanks between memory positions, even
positions of the same type. Adding to or subtracting from
addresses referring to any values but array elements yields
unpredictable results.

Similarly, the conversion involved in the subtraction of two
pointer values assumes that between the two addresses indicated
by the operands lie only values of the same type, with no blanks.
Since that assumption is only guaranteed to hold true for two

4-33

addresses referring to elements of the same array, subtracting two
addresses that refer to anything but members of the same array
yields unpredictable results.

Additive operations between pointer and integer values may not
be valid on machines with segmented architecture.

Examples

i nt i = 4 , j ;
fl oat x [lO J ;
fl oat *px ;

1 . px = & x [5 J + i ;

2 . j = &x[i] - &x [i -2] ;

In the first example, the integer operand i is added to the address
of the fifth element of x. The value of i is multiplied by the length
of a float and added to &x[S] . The resulting pointer value is the
address of x[9].

In the second example, the address of the third element of x
(x[i-2]) is subtracted from the address of the fifth element of x
(x[i]) . The difference is divided by the length of a float . The \,
result is the integer value -2.

4-34

0

0

0

Overllow

The conversions performed by the additive operators make no
provision for overflow conditions. Information is lost if the result
of an additive operation cannot be represented in the type of the
operands after conversion. However, the sign of the result is
preserved. For instance, if two large long values are added and
the result does not fit into a long, information is lost but the result
is guaranteed to be positive. Similarly, an additive operation
between two unsigned operands (after conversion) yields an
unsigned result.

Shift opera tors

The binary < < and > > operators shift their first operand left
(< <) or right (> >) by the number of positions the second
operand specifies. Both operands must be integral values. The
usual arithmetic conversions are performed; then, if necessary,
the second operand is converted to an int. The type of the result
is the type of the first operand after conversion.

For leftward shifts, the vacated right bits are filled with zeros.
The method of filling left bits in the case of a rightward shift
depends on the type (after conversion) of the first operand. If it
is unsigned, vacated left bits will be filled with zeros. Otherwise,
vacated left bits are filled with copies of the sign bit.

The result of a shift operation is undefined if the second operand
is negative or if it is greater than or equal to the number of bits in
the first operand.

Example

uns i gned i n t x , y , z ;

x � OxOOaa ;
y Ox5500 ;

z � (x « 8) + (y >> 8) ;

4-35

In the above example, x is shifted left by 8 positions and y is
shifted right 8 positions. The shifted values are added, giving
Oxaa55, and assigned to z.

Relational operators

The binary relational operators test their first operand against the
second to determine if the relation specified by the operator holds
true. The result of a relational expression is either 1 (if the tested
relation holds) or zero (if it doesn't). The type of the result is int.
The relations tested by the relational operators are the following:

< First operand less than second operand
> First operand greater than second operand
< = First operand less than or equal to second operand
> = First operand greater than or equal to second operand
= = First operand equal to second operand
!= First operand not equal to second operand

The operands of the relational operators can be of integral or

, ,
\'_

floating point type. For the equality (= =) and inequality (!=) "-
operators, one or both operands can be of enum type. The usual
arithmetic conversions are performed. The type of the result is
the type of the operands after conversion.

The operands of any relational operator may be two pointers to
the same type. For the equality (==) and inequality (!=)
operators the result of the comparison reflects whether the two
pointers address the same memory location. The result of pointer
comparisons involving the other operators (<, >, < =, > =)
reflects the relative position of two memory addresses. Since the
address of a given value is arbitrary, a comparison between the
addresses of two unrelated values is generally meaningless.
However, comparisons between the addresses of different
elements of the same array can be useful, since array elements are
guaranteed to be stored in order from the first element to the last.
The address of the first element will be less than the address of
the last element.

4-36

0

0

A pointer valne can also be compared for equality (==) or
inequality (!=) to the constant value 0. A pointer with a value of
0 does not point to memory location: it is considered a null
pointer. A pointer value is equal to 0 only if it has been explicitly
assigned that value.

Bitwise Operators

The binary operators &, I , and A perform bitwise AND, inclusive
OR, and exclusive OR operations, respectively. The operands of
bitwise operators must be of integral type, but their types can be
different. The usual arithmetic conversions are performed. The
type of the result is the type of the operands after conversion.

Bitwise AND (&)
The bitwise AND operator (&) compares each bit of its first
operand to the corresponding bit of the second operand. If both
bits are 1 s, the corresponding bit of the result is set to 1 .
Otherwise, the corresponding resnlt bit is set to 0.

Bitwise Inclusive OR (I)
The bitwise inclusive OR operator (I) compares each bit of its
first operand to the corresponding bit of the second operand. If
either of the compared bits is a 1 , the corresponding bit of the
result is set to 1 . Otherwise, both bits are Os, and the
corresponding result bit is set to 0.

Bitwise Exclusive OR (A)
The bitwise exclusive OR operator (A) compares each bit of its
first operand to the corresponding bit of the second operand. If
one of the compared bits is a 0 and the other bit is a 1 , the
corresponding bit of the result is set to 1 . Otherwise, the
corresponding resnlt bit is set to 0.

4-37

Examples �

short i = OxabO O ;
s hort j = Oxabcd ;
s hort n ;

1 . n = & j ;

2 . n = j ;

3 . n = ' j ;

The result assigned to n in the first example is the same as i ,
OxabOO. The bitwise inclusive OR in the second example results
in the value Oxabcd, while the bitwise exclusive OR in the third
example produces OxOOcd.

Logical Operators

The binary operators && and I I are logical AND and OR
operators, respectively. The operands of the logical operators

._

must be integral, floating point, or pointer values. These \'

operators do not perform the standard arithmetic conversions.
Instead, they evaluate each operand in terms of its equivalence to
0. A pointer has a value of 0 only if it has been explicitly set to 0.

The operands of logical AND and OR expressions are evaluated
left to right. If the value of the first operand is sufficient to
determine the result of the logical operation, the second operand
is not evaluated.

Logical AND (&&)
The logical AND operator produces the integer value 1 if both of
its operands have non-zero values. If either operand has a value
of 0, the result is 0. The type of the result is int.

If the first operand of a logical AND operation has a value of 0,
the second operand is not evaluated, since the result of the
operation is 0 when either operand is 0.

4-38

0

0

Logical OR (I I)
The logical OR operator performs an inclusive OR on its
operands. It produces the integer value 0 if both of its operands
have 0 values. If either operand has a non-zero value, the result
of the operation is 1 . The type of the result is int.

If the first operand of a logical OR operation has a non-zero
value, the second operand is not evaluated, since the result of the
operation is 1 when either operand is non-zero

Examples

i n t x , y ;

1 . i f (x < y && y < z)
pri ntf ("x i s l es s than z\n '') ;

2 . i f (X = = y I I X == z)
pri ntf ("x i s equal to ei ther y o r z\n ") ;

In the first example, the printf function is called to print a
message if x is less than y and y is less than z. If x is greater than
y, "y < z" is not evaluated and nothing is printed.

Iu the second example, a message is printed if x is equal to either
y or z. If x is equal to y, "x = = z" is not evaluated.

4-39

Sequential Evaluation Operator (,)

The binary operator (,) evaluates its two operands sequentially
from left to right. The result of the operation has the value and
type of the right operand. The types of the operands are
unrestricted. No conversions are performed.

The sequential evaluation operator evaluates two expressions in
contexts that allow only one expression to appear. For instance,
the optional third expression of a for statement · (discussed in
Chapter 5) might use the , operator to alter the values of two
variables instead of one:

for (i = j = I ; i + j < 20; i += i, j--) ;

When the third expression, i + = i, j--, is evaluated, each operand
is evaluated independently. The left operand, i += i, is evaluated
first, then j-- is evaluated.

The comma character in other contexts acts as a separator-- for
instance, between the arguments to a function. If you wish to use
the sequential evaluation operator in situations where it could be
misinterpreted, you must use parentheses to group expressions in ':.,_
an unambiguous way. For example, the function call:

f (x, y + 2, z) ;

passes three arguments to the called function: x, y + 2, and z,
while:

f ((x, y + 2), z) ;

passes two arguments. The first argument is the result of the
sequential evaluation operation (x, y + 2), which has the value
and type of the expression y + 2; the second argument is z.

4-40

The Conditional Operator (? :)

C has one ternary operator, the conditional (? :) operator. Its
form is:

0 operandi ? operand2 : operand3

0

The first operand is evaluated in terms of its equivalence to 0; it
must be an integral, floating point, or pointer value. If the first
operand has a non-zero value, the result of the expression is the
value of the second operand. If the first operand evaluates to 0,
the result of the expression is the value of the third operand.

The type of the result depends on the types of the second and
third operands, as follows:

• Both the second and third operands can be of integral or
floating point type. The usual arithmetic conversions are
performed, and the type of the result is the type of the
operands after conversion.

• Both the second and third operands may be of the same
structure, union, or pointer type. The type of the result is the
same structure, union, or pointer type.

• One of the second and third operands can be a pointer and
the other a constant expression with the value 0. The type of
the result is the pointer type.

The following is an example of a conditional expression:

i < 0 ? j = -i : j = i;

If i is less than 0, the value -i is assigned to j; if i is greater than or
equal to 0, i is assigned to j.

4-41

Assignment Operators

C's assignment operators are:

+ +

=
*=
I=
% =
+ =
-=
<<=
>>=
&=
I=

Unary increment operator
Unary decrement operator
Simple assignment operator
Multiplication assignment operator
Division assignment operator
Remainder assignment operator
Addition assignment operator
Subtraction assignment operator
Left shift assignment operator
Right shift assignment operator
Bitwise AND assignment operator
Bitwise inclusive OR assignment operator
Bitwise exclusive OR assignment operator

An assignment operation specifies that the value of the right-hand
operand is to be deposited in (assigned to) the storage location
named by the left-hand operand. Thus, the left-hand operand of
an assignment operation must be an expression referring to a
memory location. Expressions that refer to memory locations are
called !value expressions. A variable name is such an expression:
the name of the variable denotes a storage location, while the
value of the variable is the value residing at that location.
Constant values or expressions that refer to constant values (such
as array and function identifiers and string expressions) are not
!value expressions.

4-42

-I

I I ()

()

0

The C expressions that can be !value expressions are:

• Identifiers of character, integer, floating point, pointer,
enumeration, structure, or union type.

• Subscript ([]) expressions, except when a subscript
expression evaluates to a pointer to an array.

• Member selection expressions (-> and .), if the selected
member is one of the above expressions.

• Unary indirection (*) expressions.

• The !value expression in parentheses.

4-43

Unary Increment and Decrement

The unary assignment operators + + and -- increment and
decrement their operand, respectively. The effect of an increment
or decrement operation is to perform addition or subtraction
between the integer value I (which may be converted) and the . ·�
operand, then assign the new value back to the operand. The
operand must be an integral, floating point, or pointer value, and
must be an !value expression.

Operands of integral or floating point type are incremented or
decremented by the integer value 1 . The type of the result is the
type of the operand. An operand of pointer type is incremented
or decremented with regard to the size of the type it addresses.
An incremented pointer points to the next memory location; a
decremented pointer points to the previous memory location.

A + + or -- operator can appear either before or after its operand.
When the operator prefixes its operand, the result of the
expression is the incremented or decremented value of the
operand. When the operator postfixes its operand, the immediate
result of the expression is the value of the operand before it is
incremented or decremented. After that result is noted in .,
context, the operand is incremented or decremented.

Examples

1 . i f (c > 0)
pos++;

2 . i f (l i ne [-- i] ! = ' \n ')
conti nue ;

In the first example, the variable pos is incremented by one if c is
greater than zero. In this case, the increment operator can be
placed either before or after pos without changing the result.

In the second example, the variable i is decremented before the ith
element of line is compared to the character ' \n'.

4-44

0

0

Simple Assignment

The simple assignment operator (=) performs assigmnent. The
right operand is assigned to the left operand; the conversion rules
for assignment apply.

Example

doub l e x ;
i n t y ;

X = y ;

The value of y is converted to double type and assigned to x.

4-45

Compound Assignment

The compound assignment operators consist of the simple
assignment operator combined with another binary operator.
Compound assignment operators perform the operation specified
by the additional operator, then assign the result to the left "-
operand. A compound assignment expression such as:

expression] + = expression]

may be understood as:

expression] = expression] + expression]

However, the compound assignment expression is not equivalent
to the expanded version because the compound assignment
expression evaluates expression] only once, while in the expanded
version expression] is evaluated twice: in the addition operation
and in the assignment operation.

Each compound assignment operator performs the conversions
that the corresponding binary operator performs, and restricts the
types of its operands accordingly. The result of a compound ·"

assignment operation has the value and type of the left operand.

Example

#define MASK

n I = MASK;

Oxffff

In this example a bitwise inclusive OR operation is performed on
n and MASK and the result is assigned to n. The manifest
constant MASK is defined with a preprocessor directive,
discussed in Chapter 7.

4-46

0

Precedence

The precedence and associativity of C operators affect how
operands of an expression are gronped and evaluated. An
operator's precedence is meaningful only in the presence of other
operators having higher or lower precedence. Expressions
involving higher precedence operators are evaluated first.

Operands consisting of a constant, an identifier, a string, a
function call, a snbscript expression, a member selection
expression, or a parenthesized expression have higher precedence
than any operator, and group left to right. Type-cast conversions
have the same precedence and grouping as the unary operators.

An expression can contain several operators with equal
precedence. When several such operators appear at the same
level in an expression, evaluation proceeds according to the
associativity of the operator -- that is, either right to left or left to
right. The result of expressions involving multiple occurrences of
multiplication (*), addition (+) , or binary bitwise (&, I , A)
operators at the same level is indifferent to the direction of
evaluation. The compiler is free to evaluate snch expressions in
any order, even when parentheses in the expression appear to
specify a particular order.

The following list summarizes the precedence and associativity of
C operators. The operators are listed in order of precedence from
the highest to the lowest. Where several operators appear
together on a single line or in the same box, they have equal
precedence.

4-47

Kind Operator (highest precedence first) Grouping

expression () [l -> Expression operators Left to
right

unary ! "' ++ -- - (type) * & Unary operators Right

sizeof to Iefl

binary * I % Multiplicative operators Left to
right

binary + - Additive operators Left to
right

binary < < > > Shift operators Left to
right

binary < <- > > - Relational operators Left to
right

binary -- != Equality operators Left to
right

bi nary & Bitwise AND Left to
right

binary A Bitwise exclusive OR Left to
right

binary I Bitwise inclusive OR Left to
right

binary && Logical AND Left to
right

binary I I Logical OR Left to
right

ternary ? : Conditional operators Right
to left

binary = * = != %= += -= Simple and compound Right
< < = >>= &= != A = assignment to left

binary Sequential evaluation Left to
operator right

Only the sequential evaluation operator (,) and the logical AND
and OR operators (&& and I I) guarantee a particular order of
evaluation for the operands. The sequential evaluation operator
(,) always evaluates its operands from left to right.

The logical operators will also evaluate their operands left to
right. However, the logical operators evaluate the minimum
number of operands necessary to determine the result of the
expression. This means that some operands of the expression
may not be evaluated. For example, in the expression x && y++,
the second operand, y + + , is evaluated only if x is true
(non-zero). Thus, y is not incremented when x is false (zero).

4-48

Expression Defanlt Grouping

l . a & b l l c

2. a = b I I c

O 3 . q && r I I s- -

(a & b) I I c

a = (b I I c)

(q && r) I I s- -

0

4. p = = 0 ? p + = 1 : p += 2 (p = = 0 ? p + = 1 : p) + = 2

NOTE: Example 4 produces an error.

In the first example, the bitwise AND operator (&) has higher
precedence than the logical OR operator (I I) , so a & b forms
the first operand of the logical OR operation.

In the second example, the logical OR operator (I I) has higher
precedence than the simple assignment operator (=) , so b I I c
is grouped as the right-hand operand in the assignment. Notice
that the value assigned to "a" is either zero or one.

The third example shows a correctly formed expression that may
produce an unexpected result. The logical AND operator (&&)
has higher precedence than the logical OR operator (I I) , so q
&& r is grouped as an operand. Since the logical operators
guarantee evaluation of operands from left to right, q && r is
evaluated before s- - . However, if q && r evaluates to a
non-zero value, s- - is not evaluated. This means that " s" is not
decremented. To correct this problem, s- - should appear as the
first operand of the expression, or should be decremented in a
separate operation.

The fourth example shows an illegal expression that produces a
program error. In this example, the equality operator (= =) has
the highest precedence, so p = = 0 is grouped as an operand.
The ternary operator (? :) has the next highest precedence. The
first operand of the ternary operand is p = = 0 and the second
operand is p + = 1 . Notice that the compiler considers the
expression between the question mark (?) and the colon (:) to be
the second operand and evaluates it as a unit, even though the
compound addition operator (+ =) has lower precedence than the
ternary operator. However, the compiler considers the last
operand of the ternary operator to be " p" rather than p + = 2 .

4-49

This occurrence of p binds more closely to the ternary operator
than it does to tbe compound assignment operator. When the last
p is grouped with the ternary operator, a syntax error occurs
because + = 2 does not have a left-hand operand.

This example can be corrected and clarified through tbe use of
parentheses, as shown below.

(p == 0) ? (p += 1) : (p += 2)

4-50

-1
!

(1

0

c

Side Effects

Side effects are changes in the state of the machine that take
place as a resnlt of evaluating an expression. Thus, side effects
occur in any expression involving assigmnent. The order of
evaluation of side effects is implementation-dependent.

Assig1m1ent expressions must be used with care. For example,
side effects occur in the following function call:

add (i + I , i = j + 2)

The arguments of a function call can be evaluated in any order;
thus, "i + 1 " may be evaluated before "i = j + 2", or vice versa,
with different results in each case.

Unary increment and decrement operations involve assignments
and can cause side effects, as shown in the following example:

d=O ;
a = b++=c++=d++ ;

The value of a is unpredictable. The initial value of d(zero) could
be assigned to c, then to b, then to a before any of the variables a
re incremented. In this case, a would be equal to zero.

A second method of evaluating this expression begins by
evaluating the operand "c+ + =d++". The initial value of
d(zero) is assigned to c, then both d and c are incremented. Next,
the incremented value of c(l) is assigned to b and b is
incremented. Finally, the incremented value of b is assigned to a.
In this case, the final value of a is 2.

Since the C language does not define the order of evaluation of
side effects, both of these evaluation methods are correct and
either can be implemented. Statements that depend on a
particular order of evaluation for side effects produce
non-portable and unclear code.

4-51

4-52

Chapter 5. Statements

Q Contents

C: '

0

Introduction 5-3

Break statement . 5-5
Syntax . 5-5
Execution . 5-5
Example: . 5-5
Exiting from Nested Statements 5-6

Compound statement . 5-7
Syntax . 5-7
Execution . 5-7
Example: . 5-8
Labeling Statements . 5-8

Continue statement . 5-9
Syntax . 5-9
Execution . 5-9
Example: . 5-9

Do statement . 5-l 0
Syntax . 5-10
Execution . 5-10
Example: . 5-10

Expression statement . 5� 1 1
Syntax . 5-1 1
Execution . 5-1 1
Example: . 5 - 1 1
Assignments and Function Calls 5 - 1 1

For statement . 5-12
Syntax . 5- 1 2
Execution . 5-12
Example: . 5-13

5-1

Goto and labeled statements . .
Syntax . .
Execution . .
Example: . .
Forming labels .

If statement . .
Syntax . .
Execution . .
Example: . .
Nesting . .

Null statement . .
Syntax . .
Execution . .
Example: . .
Labeling a null statement . .

Return statement . .
Syntax . .
Execution . .
Example: . .
Omitting the return statement

Switch statement . .
Syntax . .
Execution . .
Examples: . .
Labeling statements . .

While statement . .
Syntax . .
Execution . .
Example: . .

5-2

5-14
5-14
5-14
5-14
5-15

5-15 \ .
5-15 '

5-15
5-15
5-16

5-17
5-17
5-17
5-17
5-17

5-18
5-18
5-18
5-18
5-19

\ ,,
5-20
5-20
5-20
5-22
5-23

5-24
5-24
5-24
5-24

0

0

0

Introduction

The statements of a C program control the flow of ·program
execution. In C, as in other programming languages, there are
several kinds of statements. This chapter describes C statements
in the following order:

break statement
compound statement
continue statement
do statement
expression statement
for statement
goto statement
if statement
null statement
return statement
switch statement
wbile statement

C statements consist of keywords, expressions, and other
statements. The keywords that appear in C statements are:

break
case
continue
default
do
else
for
go to
if
return
switch
while

The expressions in C statements are the expressions discussed in
Chapter 4. Statements appearing within C statements can be any
of the statements discussed in tins chapter. A statement that is a
component of another statement is called the "body" of the
enclosing statement.

5-3

C statements end with a semicolon. The only exception to this
rule is the compound statement, which is delimited by braces.
The right brace serves as the terminator for the compound
statement.

Any C statement can be prefixed with an identifying label
consisting of a name and a colon. Name labels are recognized
only by the goto statement and are therefore discussed with the
goto statement.

The effect of a C program's execution is that of the execution of
its statements in order of their appearance in the program, except
where a statement explicitly transfers control to another location.
To produce efficient code, the compiler can rearrange the actual
order of statement execution in any way that does not change the
program's effect.

5-4

Break statement

0 Syntax

0

break ;

Execution

The break statement terminates the execution of the do , for ,
switch or while statement in which it appears. Control passes to
the next statement in the program. If the break statement appears
in a nested statement, only the smallest enclosing do, for, switch
or while terminates with the break statement's execution.

Example:

swi tch (i) {
case 1 :

}

f (i) ;
break ;

case 2 :
g (i) ;
break ;

defaul t :
h (i) ;

In the example, break is used to exit from the switch after one case
labeled statement is executed. If i equals 1 , f(i) is executed, then
the break statement following it is executed, and control passes
out of the switch, bypassing the remaining lines of the switch
body. If i equals 2, g(i) is executed, then the break statement
following it is executed, and control passes out of the switch,
bypassing the default labeled statement. If i does not equal either
1 or 2, the default labeled statement is executed. Since the default

5-5

labeled statement is the last statement in the switch body, control
subsequently passes to the next statement in the program without
the execution of a break statement.

Exiting from Nested Statements

The break statement terminates only the do, for, switch or while
statement which immediately encloses it. Within a nested
statement this has the effect of transferring control to the level of
the next outermost statement. To transfer control out of the
nested structure altogether, you may want to use a return or goto
statement rather than a break.

5-6

()

Compound statement

Syntax

{

}

[declaration 1
[declaration 1

statement
[statement 1

c� Execution

0

The effect of a compound statement's execution is that of the
execution of its statements in order of their appearance, except
where a statement explicitly transfers control to another location.
To produce efficient code, the compiler can rearrange the actual
order of execution in any way that does not alter the statement's
effect.

5-7

Example:

A compound statement is typically used as the body of another
statement such as the if statement:

if (i > 0) {
A[i] = x;
x+ + ;
i--;

}

If i is greater than 0, the compound statement is executed: first x
is assigned to A[i], then x is incremented, then i is decremented.
If i is less than or equal to 0, none of the statements in the
compound statement are executed.

Labeling Statements

Like other C statements, each of the statements in a compound
statement can carry a label. Transfer into the compound
statement by means of a goto is therefore possible. However, it is
dangerous when the compound statement includes declarations
that initialize auto or register variables. Declarations in a
compound statement precede the executable statements;
transferring directly to an executable statement within the
compound statement bypasses the initializations, with
unpredictable results.

5-8

\ '

0

0

Continue statement

Syntax

continue;

Execution

The continue statement terminates the current iteration of the do,
for, or while statement body in which it appears. If the continue
statement is executed within a do or a while statement, execution
resumes starting with the re-evaluation of the do or while
statement's expression. If the continue statement is executed
within a for statement, execution resumes with the evaluation of
the for statement's third expression, if present, and proceeds with
the evaluation of the second expression (if present) and
subsequent termination or reiteration of the statement body.

Example:

wh i l e (i - - > 0) {
x = f(i) ;

}

i f (X == I)
conti nue ;

y ::: x * x ;

In the example, if i is greater than 0, execution of the statement
body begins. First, f(i) is assigned to x. Then, if x is equal to 1 ,
the continue statement executes. The last stateme11t in the body is
ignored and execution resumes with the evaluation of the
expression i-- > 0. If x does not equal 1 , the continue statement is
not executed. Control passes to the next statement in the body,
y = x * x; following its execution, the while statement is executed
again, starting with the evaluation of i > 0.

5-9

Do statement

Syntax

do
statement

while (expression) ;

Execution

The do statement executes its statement body one or more times,
depending on the value of its expression. First, the statement
body is executed. Then the expression is evaluated. If the
expression is false (0), the do statement terminates and control
passes to the next statement in the program. Notice that the body
of a do statement is executed at least once, even if the expression
is initially false. If the expression is tme (non-0), the statement
body re-executes and the expression is tested again. The do
statement continues to execute until the expression becomes false.

The do statement can also terminate with the execution of a
break, goto, or return statement within the statement body.

Example:

do {
y = f(x);
X--;

} while (x > 0);

In the example, the two statements y = f(x) and x-- are
executed. Then x > 0 is evaluated. If x is greater than 0, the
statement body is executed again, and x > 0 is re-evaluated. The
statement body is executed repeatedly as long as x remains
greater than 0. When x becomes 0 or negative, x > 0 is false, ,
and execution of the do statement terminates.

5-10

n �

Expression statement

Syntax

expression ;

Execution

The expression is evaluated.

Example:

X = 3.5;

The evaluation of x = 3 .5 results in the assignment of the value
3.5 to the variable x .

0 Assignments and Function Calls

0

In C, assignments are expressions; the value of the expression is
the value being assigned (sometimes called the right-hand value).
Most expression statements are assignments, for the simple
reason that you typically want to store the value of the expression
for later use.

Function calls are expression statements. To capture a value
returned by a function, the expression statement must incorporate
an assignment. A function whose return type is void returns no
value and no assignment is necessary.

5-11

For statement

Syntax

for ([expression]]; [expression2] ;[expression]])
statement;

Execution

The for statement initializes and modifies the value of a variable
or variables used in the repeated execution of the statement body.
Expression] is the initializing expression; the value of expression2
determines whether the statement body is executed; and
expression] allows for modification of values used in the statement
body. The first step in the execution of the for statement is the
evaluation of the first expression, if it is present. Next, the
second expression is evaluated. There are three possible results :

• The second expression is true (non-zero): first, the statement
body is executed; then the third expression, if present, is
evaluated; then the process begins again with the evaluation
of the second expression.

• The second expression is omitted: the second expression is
considered true; execution proceeds exactly as above. A for
statement lacking a second expression terminates only upon
the execution of a break, goto, or return within the statement
body.

• The second expression is false: execution of the for statement
terminates and control passes to the next statement in the
program.

A for statement can also terminate with the execution of a break,
return, or goto statement within the statement body.

5-12

()

0

Example:

for (i = space = tab = 0 ; i < MAX ; i ++) [
i f (l i n e[i] == ' \Ox20 ')

}

s pace++;
i f (l i ne[i] = = ' \ t ') [

tab++;
l i ne [i] = ' \ Ox20 ' ;

}

The above example counts space (\ Ox20) and tab (\ t) characters
in the array of characters named "line" and replaces each tab
character with a space. First i, space, and tab are initialized to
zero. Then i is compared to the constant MAX; if i is less than
MAX, the statement body is executed. Depending on the value of
line[i], the body of one or neither of the if statements is executed.
Then i is incremented and tested against MAX. The statement
body is executed repeatedly as long as i is less than MAX.

5-13

Goto and labeled statements

Syntax

goto name;

name: statement;

Execution

The goto statement transfers control directly to the statement
specified by name. The labeled statement is executed irmnediately
after the execution of the goto statement. An error results from
the execution of the goto if no statement with the specified label
resides in the same function or if the same label name appears
before more than one statement in the function.

A statement label is meaningful only to a goto statement. When a
labeled statement is encountered in any other context it is
executed without regard to its label.

Example:

if (errorcode > O)
goto exit;

exit:
return (errorcode);

5-14

0

0

0

Forming labels

Label names are constructed following the same rules that govern
the construction of identifiers. Each statement label mnst be
distinct from the other statement labels within the same function.

If statement

Syntax

if (expression)
statement];

[else
statement2;]

Execution

The if statement executes its statement body selectively,
depending on the value of its expression. First, the expression is
evaluated. If the expression is true (non-zero), the statement
irmnediately following the expression executes. If the expression
is false (zero) and there is no else clause, the trailing statement is
ignored, and control passes to the next statement in the program.
If the expression is false and there is an else clause, the statement
following the else is executed.

Example:

i f (i > O)
y x/i ;

e l s e
X = i ;

5-15

In the example, the value x/i is assigned to y if i is greater than 0;
if i is less than or equal to 0, i is assigned to x. Notice that both
the if and the else clauses end with semicolons.

Nesting

An if statement can appear in either the if clause or the else
clause of another if statement. In some cases, nested if
statements can produce ambiguity. If you freely nest if
statements with else clauses inside if statements without else
clauses (or vice versa), you may find it difficult to determine
which if is the antecedent of a particular else. Using braces to
group the statements and clauses into compound statements help
clarify your intent. In the absence of braces, C resolves
ambiguities by pairing each else with the most recent if lacking an
else.

Wi thout
braces

W i th
braces

i f (i

e l s e

i f (i

}
e l s e

X =

>

i f

>

i f

i . ,

0)
(j > i)

X = j ;

X = i ;

0) {
(j > i)

X = j ;

In the first version, the else is associated with the second if. If i is
less than or equal to 0, no part of the second if statement
executes, and nothing is assigned to x. If i is greater than 0, the
second if statement executes. The variable j is assigned to x if j is
greater than i. If j is less than or equal to i, i is assigned to x.

In the second version, the braces surrounding the second if
statement force the else to be considered part of the first if
statement. If i is less than or equal to 0, the else clause of the first
if is executed and i is assigned to x. If i is greater than 0, j is
assigned to x only if j is greater than i . If i is greater than 0 and j
is less than or equal to i, nothing is assigned to x.

5-16

0

0

Null statement

Syntax

Execution

A null statement is a statement containing only a semicolon that
may be used wherever a statement is expected. Nothing happens
when a null statement executes.

Example:

for (i " 0 ; i < 1 0 ; A [i ++ J " 0)

The syntax of statements such as do, for, if and while requires that
an executable statement appear as the body of the statement. The
null statement allows you to satisfy the syntax requirement neatly
in cases where you have no need for a substantive statement
body. In the example above, the for statement initializes the first
10 elements of A to 0. The third expression accomplishes the
purpose of the for statement by setting A[i], to 0, then
incrementing i. A null statement follows the expression list of the
for statement, since no further statements are necessary.

Labeling a null statement

The null statement, like any other statement, can be prefixed by
an identifying label. If you wish to label an item that is not a
statement, such as the closing brace of a compound statement,
you can insert and label a null statement immediately before the
item to get the same effect.

5-17

Return statement

Syntax

return [expression] ;

Execution

The return statement returns control from a function to the
function that called it. Execution of a return statement terminates
the execution of the function in which it appears. The calling
function resumes execution at the point just after the call. If the
return statement includes the optional expression, the value of the
expression is returned to the calling function.

Example:

mai n ()
[

}
s q (x)
i n t x ;

[

y sq (x) ;

return (x * x) ;
}

The statement y = sq(x) in main calls the function "sq" with the
argument x. The function body contains only a return statement,
which returns the value x * x to the main function. Execution of
main resumes at the assignment of the return value to y.

5-18

0

0

Omitting the return statement

If no return statement is encountered before the last statement of
a function executes, control automatically returns to the calling
function at the point just after the call. The return value of the
called function is undefined.

5-19

Switch statement

Syntax

switch (expression) {
[declaration]

}

Execution

case constant-expression
statement

[case constant-expression
statement]

[default :
statement]

[case constant-expression
statement]

The switch statement transfers control to a statement within its
body. The statement receiving control is the statement whose
case constant-expression matches the parenthesized expression .
Execution of the statement body begins at the selected statement
and proceeds through the end of the body or until a statement
transfers control out of the body.

The default statement is executed if no case constant-expression is
equal to the switch expression . If the default statement is omitted,
and no case match is found, none of the statements in the switch
body is executed.

5-20

0

0

The switch expression must be an integral or enum value. The
value of each case constant-expression must be unique within the
statement body.

The case and default labels of the switch statement body are
significant only in the initial test that determines the starting point
for execution of the statement body. Once execution of the
statement body begins, case and default labels do not affect
control flow. All statements appearing between the statement
where execution starts and the end of the body are executed
regardless of their labels, unless a statement transfers control out
of the body entirely.

Declarations may appear at the head of the compound statement
forming the switch body, but initializations included in the
declarations are not performed. The effect of the switch
statement is to transfer control directly to an executable
statement within the body, bypassing the Jines that contain
initializations.

5-21

Examples:

1 . swi tch (c) {

2 . swi tch

case ' A • :
capa++;

case ' a • :
1 ettera++;

defaul t
tota l ++ ;

}

(i) {
case -1 :

n++;
brea k ;

case 0
z++;
brea k ;

case 1
p++;
brea k ;
}

In the first example, capa, lettera, and total are incremented if c is
equal to the character "A". Lettera and total are incremented if c
equals "a". Only total is incremented if c is not equal to a or A .

The break statement is used in the second example to force an exit
from the switch after one statement in the body is executed. If i is
equal to - 1 , n is incremented and the break statement executes.
Control passes out of the switch body, bypassing the remaining
statements. Similarly, if i is equal to zero, z is incremented, and
the following break statement transfers control out of the switch
body. For consistency, the break statement is included after the
last case labeled statement in the body, although it is not strictly
necessary.

5-22

0

0

Labeling statements

A statement can carry multiple case labels. The syntax is:

case constant-expression :

case constant-expression : statement

Although any statement within the body of the switch statement
can be labeled, no statement is required to carry a label.
Statements without labels can be freely intermingled with labeled
statements. Keep in mind, however, that once the switch
statement passes control to a statement within the body, all
succeeding statements in the block are executed, regardless of
their labels.

5-23

While statement

Syntax

while (expression) statement;

Execution

The while statement executes its statement body 0 or more times,
depending on the value of its expression. The first step in the
while statement's execution is the evaluation of the expression. If
the expression is false (0), the while statement stops executing and
control passes to the next statement in the program. The body is
never executed if the expression is initially false. If the expression
is true (non-zero), the body of the statement executes. Following
each execution of the statement body the expression is
re-evaluated; if it is true, the body re-executes and the process
repeats, starting with the re-evaluation of the expression.

The while statement can also terminate with the execution of a ·"'
break, goto, or return within the statement body.

Example:

whi l e (i > = 0) (
A [i] = B [i] ;
i - - ;

)

If i is greater than or equal to 0, B[i] is assigned to A[i] and i is
decremented. As long as i is greater than or equal to 0, the
process repeats. When i reaches or falls below 0, execution of the
while statement terminates.

5-24

Chapter 6. Functions

c� Contents
Introduction 6-3

Function Definition • 6-4

Return Value Type 6-5

Formal Parameters 6-8

Function Body . • • • • . . 6-10

Function Declarations . . • . 6-1 1

Static Functions • • . 6-13

0 Function Calls . • 6-14

0

Actual Parameters • . . • • • • . . 6-15

Fundamental Types . . . • . 6-16

Arrays • . • • • . • • 6-17

Structures and Unions . • . 6-18

Pointers . . • . • • . . • • • 6-19

Function Pointers • • • . . . • . . 6-21

Recursive Functions • • • • . . 6-23

6-1

6-2

0

0

Introduction

A function is an independent collection of statements and
variables that performs a specific task. Every program has at
least one main function and can have any number of other
functions. All functions within a program must be defined. An
explicit function definition defines the name of the function and
the statements that define its action. A function declaration
implicitly or explicitly defines just the name and return type of a
function whose explicit definition is given later in the source file
or in another source file.

The following sections explain how to declare functions and how
to execute a function with a function call. In particular, the
sections describe:

• Function Definitions

• Return Values

• Formal Parameters

• Function Body

• Function Declarations

• Static Functions

• Function Calls

• Actual Parameters

• Recursive Functions

6-3

Function Definition

A function definition defines the name, statements, and variables
of a function. It also defines the function's formal parameters,
scope, and return value type. A function definition has the form:

[storage-class][type-specifier] declarator(parameter-list)
parameter-declarations
function-body

where storage-class defines the function's storage class (static or
extern), type-specifier is the function's return value type,
declarator is the function's name, a unique identifier, parameter-list
is a list of formal parameters to be used by the function,
parameter-declarations are declarations of the formal parameters,
and function-body is a compound statement containing the
statements and local variable declarations of the function. For
example, the following is a complete function definition:

int strfind(s, c)
char s[], c;
{

int i;

for (i=O; s[i] != c && s[i] != 0; i++)

return (i) ;
}

This function searches for a given letter in a string and returns the
position of that letter within the string. The function's name is
strfind. It returns a value with int type, and accepts two
parameters "s" and "c". These parameters are declared at the
beginning of the function body as an array of characters and a
character. The compound statement in the function body
contains a declaration for the integer variable i, used to keep the
current position. The for statement performs the search and the
return statement returns the result.

The following sections describe each part of the function
declaration in detail.

6-4

0

0

Return Value Type

The return value type defines the size and type of value to be
returned by a function. The return value type can be eJCplicitly
declared with the function name at the beginning of the function
declaration. The type declaration has the form:

[type-specifier] declarator

where type-specifier defines the type, and declarator defines the
function's name and other attributes. The type can be any
fundamental or aggregate type. If no type is given int is assumed.
For example, in the following program fragment, the function add
has the implied int type but addd has long.

add (x, y)
int x, y;

I* int return type by default *I

{
return (x+y);

}

long addd(x, y) I* long return type *I
long x, y;
{

return (x+y);
}

There are few restrictions on the type of value a function can
return. Although a function can only return a pointer to an array,
it can return an entire structure or union.

6-5

For example, in the following program fragment, the function
sortrec chooses and returns an entire record.

typedef struct {
char name[20];
int id;
long class;

} record;

record sortrec (a, b)
record a, b;
{

/* Return type is "record" *I

return ((a.id < b.id) ? a : b) ;
}

To return an array, the function must return a pointer to the first
element of the array. This means the return value type must
declare a pointer. For example, in the following program
fragment, the return value of the function smallstr is a pointer to
an array of characters.

char *smal l str(s l , s 2)
char s ! [] , s 2 [J ;
(

i nt i ;
i = O ;

!* Return type i s pointer t o char */

wh i l e (sl [i] ! = 0 && s 2 [i l ! = 0)
i++;

}

i f (s l [i] == 0)
return (s l) ;

e l s e
return (s 2) ;

In this example, the return value type is defined as:

char * smallstr

This means the function smallstr returns a pointer to a character
variable in an array of characters.

6-6

0

0

0

A function can also return pointers to other types of variables.
For example, the following function returns a pointer to a
structure.

typedef struct {
char name[20];
int id;
long class;

} record;
record *build(name, id, class)/*Return type is pointer to record* I
char name[] ;
int id;
long class;
{

l

int i;
static record rec;

i=O;
while (i<20 && name[i] != 0) {

rec.name[i] = name[i];
i++ ;

rec.id = id;
rec.class = class;

return (&rec) ;
l

In this example, the return value type is defined to be:

record *build

where record has been defined to be a type name defined by the
typedef declaration. This function returns a pointer to a structure
having the same members as record.

A function's return value type is only used when the function
returns a value. The function must contain a return statement
with an expression. The function evaluates the expression,
converts it to the return value type (if necessary), and returns it to
the point of call. If the function does not contain a return
statement or the statement has no expression, then the return
value type is not used.

6-7

Formal Parameters

Formal parameters are variables that receive values passed to a
function by a function call. The formal parameters must be
explicitly defined in a parameter list at the beginning of the
function declaration and can be declared in the declaration list at
the beginning of the function body.

The parameter list defines the names of the parameters and the
order in which they are assigned values from the function call.
The parameter-list has the form:

([identifier] [,identifier] . . .)

where identifier is a unique identifier that names the parameter.
There must be one identifier for each value to be passed to the
function. If no identifiers are given, no values can be passed to
the function. The enclosing parentheses are required.

The declaration list declares the type and size of value each
parameter can receive. There must be one declaration for each
identifier in the parameter list. Parameter declarations have the
same form as other variable declarations (see Chapter 3 ,
"Declarations"). Note that a parameter can only have auto or
register storage class. If no storage class is given, automatic
storage is assumed. If no type is given, int is assumed. A type is
required if no storage class is given. Formal parameters can be
declared in any order. If a formal parameter is given in the
parameter list but no declaration is given, the parameter is
assumed to have int type.

For example, in the following function fragment, one formal
parameter x is declared.

6-8

truth (x) I* S i ng l e parameter x . *I
i nt x ;
(

return (x&&l) ;
}

c�

0

In the next example, the formal parameters x and y are declared
together.

add (x ,y) !* Two parameters x and y . */
i nt X , Y ;
{

return (x+y) ;
}

There are few restrictions on the type of formal parameters that
can be declared. A formal parameter can be an array, structure,
or union as well as any variable with a fundamental type. For
exampl�, in the following program fragment, the function
"match" has both a structure pointer and a pointer to an array of
characters as formal parameters.

match (r , n)
struct record *r ;
char n [l ;
{

i nt i 0 ;

whi l e f r-•name [i l == n [i]) {

}

i f (r-•name == 0) return (r- • i d) ;
i++ ;

}
return (0) ;

A formal parameter cannot be a function, bnt it can be a pointer
to a function.

Do not declare ordinary local variables in the declaration list.
This list is reserved for the formal parameters defined in the
parameter list. Declare local variables within the function body.

6-9

Function B ody

The function body is simply a compound statement. The
compound statement contains the statements that define the
function's action and can also contain declarations for variables
used by these statements. The function body has the same form
as compound statements described in Chapter 5 , "Statements."
The following example illustrates a function body.

wai t (x)
i nt x ;
{

}

i n t i ;

for (i = O ; i < x ; i ++)

All variables declared in the function body have automatic storage
type unless otherwise specified. Their scope is restricted to the
function body.

When the function is called, storage space for the automatic
variables is created and any local initializations are performed,
then execution control passes to the first statement in the
compound statement. Execution continues sequentially until a
return statement or the end of the function body is encountered.
Control then passes back to the point of call. A return statement
is required only if the function must return a value. The end of
the function body can return control, but it cannot return a value.

6-1 0

0

Function Declarations

Function declarations define the name, return type, and storage
class of a given function. There are two types of function
declaration: forward declarations and implicit declarations.

Forward declarations counteract the compiler's implicit
declaration of a function. A forward declaration has the form
described for function declarations in Chapter 3 , "Declarations."
For example, in the following program fragment the forward
declaration:

long addd() ;

defines the return type of the function addd to be long, overriding
the compiler's implicit type.

long addd();

main ()
{

I* Forward declaration *I

o long x= l O, y=20;

0

addd(x,y) ; I* Function call to addd • I
l
long addd(a,b) I* Function definition * I
long a,b;
{

return (a+ b);
l

A forward declaration of a function can appear in the function
body of another function. This is allowed since no statements or
formal parameters are actually defined in the forward declaration.
Functions defined in tins way are still given external storage class;
automatic storage class for functions is not allowed.

An implicit declaration occurs whenever a function call used in an
expression or statement corresponds to no previously defined or
declared function. The C compiler implicitly declares the

6-1 1

function to have int return type. For example, in the following
program fragment, the function "add" is implicitly declared since
the function call appears before its formal declaration.

main ()
{

int x=l ,y=2;

add(x,y);
}

add (a, b)
int a, b;
{

return (a+b) ;
}

If a function has been implicitly declared, the formal declaration
must match the implied return type, otherwise an error results.

6-12

0

0

0

Static Functions

A function is normally known in the source file in which it is
defined and in source files in which it is declared to be external
(see the section "Visibility and Scope"). Functions default to
extern storage class. If desired, a function can be restricted to a
single source file by explicitly declaring the function with the
static storage class. Such a declaration causes the function's name
to be known only to the other functions in the same source file.
For example, in the following program fragment the function
"add" is known to the main function only. Other functions (in
other source files) cannot access "add".

static add();

main ()
{

int X= 1 ,y=2;

add (x+y);

static add (a, b)
int a, b;
{

return (a+b) ;
}

A function cannot have automatic or register storage class.

6-13

Function Calls

A function call is any C expression that passes control and
possibly one or more actual parameters to a function. A function
call has the form described in Chapter 4, "Expressions and
Assignments." \"'---

When encountered in a program, the function call evaluates the
expressions in the expression list, assigns these values to the given
function's formal parameters, then passes execution control to the
first statement in the function.

Care must be taken when making assignments in the expression
list since the order in which the arguments are evaluated is not
defined.

Examples

1 . add (2, i+3)

This example passes "2" and the value of the expression i+3
to the formal parameters of the function "add".

2. add (i+ l , i=i+2)

6-14

This example passes the value of the expressions j + 2 and
i + 1 . The assignment in the expression can have
unpredictable results.

0

0

Actual Parameters

Once an expression in a function call is evaluated, its value, called
the "actual parameter", is assigned to the formal parameter that
has the same place in the parameter list as the expression has in
the expression list. For example, if the function "add" is declared
as:

add (a, b)
int a, b;
[

return (a+b) ;
}

then the function call:

add(! , 2);

assigns 1 to the formal parameter "a" and 2 to the parameter "b".
The number of expressions given in the expression list must match
the number of formal parameters. The compiler does not check
this number and supplying too many or too few causes an error
during program execution.

There are few restrictions on the type, size, and number of actual
parameters that can be passed. Actual parameters can be
structures, unions, and pointers. Although entire arrays and
functions cannot be passed, pointers to these items can. The
following sections describe how a variety of variables are passed.

6-15

Fundamental Types

Actual parameters with fundamental type are passed by value. A
copy of the actual parameter is assigned to the corresponding
formal parameter and the function may use this copy without
affecting the variables from which it was originally derived. '(_
If the actual parameter has char type or is a bit field in structure,
the value is converted to an int type before being passed to the
function. The function, however, treats the value as the smaller
type.

If the actual parameter is a float type, it is converted to double
type and is treated as double type value by the function.

6-16

(!

0

Arrays

An actual parameter cannot be an entire array. However, it can
be a pointer to an array. Pointers to arrays are passed by address.
This means a pointer to the actual array is assigned to the
corresponding formal parameter. The formal parameter can then
be used to access the aetna! contents of the array.

For example, ili the following program fragment, the formal
parameter str in the function strfind is assigned the address of the
array "name" given in the function call in the main function.

mai n ()
[

i n t x ;
char name[20 l ;

x � strf i n d (name , ' a ') ;

strfi nd (str , c
c har s tr[J , c ;
[

}

i nt i ;

for (; � o ; s tr [i J ! � 0 i ++)
i f (s tr[i] �� c)

return (i) ;
return (-1) ;

No copy of the array "name" is made. Instead, str receives the
address of name, and, for all practical purposes, becomes name
since all subsequent access to the elements of str yields direct
access to the elements of name. Care must be taken when making
assignments to formal parameters that correspond to arrays since
changing an element in the formal parameter changes the original
element as well.

In the above example, str is declared as an array with no explicit
number of elements. This allows arrays of all sizes to be passed
as actual parameters to str. Even if an explicit number of

6-17

elements were given, the compiler still allocates only enough
space for the address of the array; it never allocates space for the
entire array.

Although arrays are passed through pointers, an element of an
array is always passed by value. This means a copy of the
element is assigned to the corresponding formal parameter and
subsequent access to that parameter does not affect the original \'-

element. For example, the function call:

strfind(name, name[3]) ;

assigns the value of the element name[3] to the second parameter
of strfind, but assigns the address of the array "name" to the first
parameter. If the element of an array is itself an array, it is passed
through a pointer.

Structures and Unions

Structures and unions are passed by value. This means a copy of
the entire contents of a structure or union is assigned to the <'-
corresponding formal parameter. The function can use this copy
in expressions and assignments without affecting the contents of
the structure or union from which it was originally taken.

The members of a structure or union are passed in the same way
as variables with similar type, that is, integral members are passed
by value and array members through pointers. Arrays of
structures and arrays of unions are passed through pointers.
However, elements of such arrays are passed by value.

6-18

0

0

Pointers

Pointers, which are passed by value, provide the only way to
access a simple variable, structure, or union directly from a
function. Since a pointer refers to the address of such a variable,
the function can use this address to access the contents of the
given variable. For example, in the following program fragment,
the function swap exchanges the values of the variables x and y in
the main function.

mai n ()
{

}

i nt x , y;

swa p (&x , &y) ;

swap (a , b)
i nt *a , *b;
{

}

i n t t ;

t = * a ;
* a * b ;
* b = t ;

In this case, the parameters a and b are declared as pointers to
integer variables.

6-19

The function call:

swap (&x, &y) ;

assigns the address of x to a and the address of y to b . This
means that references *a and *b in swap are, for all practical
purposes, references to x and y in main . Thus, the subsequent
assignments in swap change the contents of x and y directly. This
same technique can be applied to structures and unions. The
compiler automatically uses this technique when passing arrays.

If a formal parameter is declared to be a pointer, then any actual
parameter to be assigned to it must be a valid address and have a
pointer type. If the actual parameter does not have a pointer
type, the compiler displays a warning message. If the address is
not valid (for example, is not the address of a variable declared
within the program), an error can occur during execution of the
program.

6-20

0

0

0

Function Pointers

Although a function cannot be passed as an actual parameter, a
pointer to a function can. This means the address of a function,
like addresses of other items, can be passed to another function.
In such cases, the address is assigned to the corresponding formal
parameter which must be declared as a pointer to a function. The
function containing the formal parameter can use the address to
call the corresponding function.

For example, in the following program fragment, the main
function selects a function for execution, then calls the function
work, which actually calls the selected function.

rna i n ()
{

i nt l i ft() , step () , drop () ;
i nt sel ect , cou n t ;

work
i nt
i nt
{

}

(
n ;

sw itch (sel ect) {

}

n '

case 1 : work (coun t , l i ft) ;

case 2 :

case 3 :
defaul t :

func

brea k ;

wor k (coun t , s tep) ;
break ;

work (count , drop) ;

brea k ;

(*fun c) () ;

i nt i ;

for (i =0 ; i < n ; i++)
(*fun c) () ;

6-21

The formal parameter func in work is declared to be a pointer to a
function. The parentheses around the parameter name are
required since without them the declaration wonld define a
function which returns a pointer to an integer.

The function call:

work (count, lift);

in main passes an integer variable and the address of the function
lift. Only the name "lift" is given. An expression list and the
parentheses that would normally enclose this list must not be
given. This would cause the function lift to be called rather than
have its address passed as an actual parameter. To use a function
name in this way, a forward declaration for the function must be
given before the name is used. In this case, the forward
declaration is given at the beginning of the main function.

The function work calls the selected function by using the
function call:

(*func)();

The call consists of the formal parameter func to which an
expression list has been added. In this case, the expression list is
empty. If the given function had formal parameters, appropriate
actual parameters have to be supplied. If func is used by itself
(that is, without an expression list), it-refers to the address of the
selected function and does not generate a function call.

6-22

\

(!

0

0

Recursive Functions

All functions in a C program can be called recursively. This
means, for example, that a function can call itself. The C
compiler allows any number of recursive calls to a function. On
each call, new storage is allocated for the formal parameters, and
automatic and register variables so that their values in previous,
unfinished calls will not be overwritten. Furthermore, previous
parameters are inaccessible to all versions of the function except
the version in which they were created.

Although the C compiler defines no limit on the number of times
a function can be called recursively, there is a practical limit that
can be imposed by the operating environment. Since each
recursive call requires additional stack memory, too many
recursive calls can cause a stack overflow on computers with fixed
stacks.

6-23

6-24

Chapter 7. Preprocessor Directives

i Q Contents
Introduction 7-3

Define Directive • • 7-4

Undefine Directive • • • . . • . . . 7-7

Include Directive • . . . • • . 7-8

If, Elif, Else, and Endif Directives • 7-9

If defined and Elif defined Directives • 7-12

If def and lfndef Directives • • . . • . . • . 7-14

C Line Control Directive • . • • 7-15

c

7-1

7-2

0

0

Introduction

This chapter describes the C language preprocessor directives and
explains how to use these directives in C source programs. The
preprocessor directives direct the C preprocessor to perform
specific actions such as replace a given identifier with specified
text or insert the contents of a file in the source program. The
directives are typically used to make source programs easy to
modify and easy to compile for different execution environments.

The compiler ordinarily invokes the preprocessor in its first pass,
but the preprocessor can also be invoked separately to process
text without compiling.

There are the following preprocessor directives:

#define
#undef
#include
#if
#else
#elif
#elif defined
#endif
#if defined
#ifdef
#ifndef
#line

Each directive starts with a number sign (#) as the first
non-whitespace character in the line and may be followed by
arguments or values. Directives can appear anywhere in a source
file, but they apply only to the remainder of the source file in
which they appear. The following sections describe each directive
in detail.

7-3

Define Directive

Syntax

#define identifier[(parameter-list)] text

Description

The define directive replaces each subsequent occurrence of

identifier

with text . If a parameter-list is given, the define directive replaces
each subsequent occurrence of

identifier(argument-list)

with a modified version of text. In this form, the values in tbe
argument list replace the corresponding formal parameters in the
text.

The text may be any text,. such as keywords, constants, ot
complete statements. This text may also be empty, that is, have
no characters. If tbe text is longer than can fit on a line, a
backslash (\) can be used, escaping the newline character, to
continue tbe text on a new line. The text must be separated from
the identifier by at least one whitespace character.

The parameter-list , when given, must be en:c;losed in parentheses.
No spaces between tbe identifier and this list are allowed. The
parameter list may contain one or more fotrnal parameter names.
If several names are given, they must be unique within the list and
must be separated by commas (,). The formal parameter names
are used as placeholders in the text for values to be supplied later
in an argument list. The parameter names can appear anywhere
in the text. There is no limit to the number of formal parameters
that can be used.

Once defined, an identifier can be used anywhere in the source
program. When the program is processed, the identifier is
replaced witb its respective value. If an argument list is given
with the identifier, the text is modified so that all formal

7-4

0

parameters in the string are replaced with the corresponding
values given in the argument list. The number of arguments in the
list mnst exactly match the number of formal parameters. If the
text is empty, the identifier is removed from the source file unless
it appears in an if directive. In this case, it is assumed to have the
value 1 .

A warning is issued if an identifier that takes arguments does not
have an argument list. No warning is issued if the identifier
appears in an ifdef directive.

An identifier may be redefined if its first definition is removed
using the undef directive (described later in this chapter). If the
definition is not removed, the preprocessor issues a warning.
Redefining a directive to the same value causes no warning.

The define directive associates meaningful identifiers with
constants, keywords, and commonly used statements or
expressions. Identifiers that represent constants are called
"manifest constants." Identifiers that represent statements or
expressions are called "macros."

Examples

1 . #define WIDTH 80

This example defines the identifier WIDTH to be the integer
constant 80.

2. #define MESSAGE "No space available."

3 .

This example defines MESSAGE to be the string constant
"No space available."

#define LENGTH WIDTH + 10

This example defines LENGTH in terms of WIDTH and the
integer constant 10. Each occurrence of LENGTH is
replaced with WIDTH + 10 which is subsequently replaced
with the expression 80+ 10.

7-5

4. #define BOOLEAN char

This example defines BOOLEAN to be the keyword char.
This means BOOLEAN can be used as if it were the
keyword.

5. #define register

This example defines register , a keyword, to have no value.
A program containing this definition removes each
occurrence of register from the source file.

6. #define ADD(X,Y) X + Y

This example defines a macro named ADD. This macro is
replaced by the expression X + Y. For example, the
occurrence ADD(! ,2) is replaced with 1 + 2, and
ADD(i,s[i]) is replaced with i + s[i].

7. #define MAX(x,y) x>y?x:y

This example defines a macro named MAX. This macro is
easier to read and understand than the corresponding
expression, and therefore makes the source program easier to
read.

Macros often look and act like C language function calls. In fact,
carefully defined macros are frequently used in place of function
calls to perform specific tasks. Unlike function calls, however,
macros are replaced during preprocessing and do not appear in
the executable program. This can make execution of the program
faster since no call is actually performed, but it can make it harder
to locate problems when debugging the program.

7-6

0

U ndefine Directive

Syntax

#undef identifier

Description

The undef directive removes the current definition of identifier,
causing subsequent occurrences of the identifier to be ignored by
the preprocessor. Parameter lists are not allowed with the undef.
The previous definition cannot be restored.

The undef directive is typically paired with a define directive to
create a region in a source program in which an identifier has a
special meaning. This is useful if a specific C language function in
the source program has manifest constants that must take
enviromnent specific values that do not affect the rest of the
program. The undef directive is also used with the ifndef directive
(described later in tllis chapter) to conditionally control
compilation of regions within the source program.

Example

#define WIDTH 80
#define ADD(X,Y) X + Y

#undef WIDTH
#undef ADD

In this example, the undef directive removes both a manifest
constant and a macro. Note that only the identifier of the macro
is given. An argument list is not allowed. The undef directive can
also be used with identifiers that have no previous definition.
This ensures that they are undefined.

7-7

Include Directive

Syntax

#include "filespec"
#include < filespec >

Description

The include directive causes the file named filespec to be inserted
into the source program at the line containing the directive. The
preprocessor processes the new text and passes it, along with the
original source, to the compiler for compilation.

The filespec must name an existing file that contains appropriate
text. If the file specification is enclosed in double quotation
marks (' ') , the preprocessor searches for the file in the same
directory as the source program file first, then searches directories
specified in the compiler command line, and finally searches the
standard directories. If the file specification is enclosed in angle
brackets (< >), the preproce,ssor searches for the file in the
specified or standard directories only. The syntax of the file
specification and the locations of the standard directories depend
on the operating system on which the program is compiled.

The include directive adds the definitions of useful constants and
macros to a source program. The definitions can be collected in a
single "include file " and then added to any source program that
requires them by using an include directive.

The include directive can be nested. This means that the directive
can appear in files named by other include directives. Nested
include directives are processed after the file that contains them
has been inserted into the source program. The nested directive
causes the preprocessor to insert the contents of the given file
into the source program just as if the'directive were a part of the
original source program. The new file can also contain include
directives, and nesting can continue up to 10 levels.

7-8

0

0

0

Examples

1 . #include <stdio.h>

2. #include "lib/defs.h"

The first example adds the contents of the file named stdio.h to
the source program. The angle brackets cause the preprocessor to
search the standard directories for stdio.h.

The second example adds the file specified by "lib/defs.h" to the
source program. The double quotations marks cause the directory
containing the current source file to be searched first.

If, Elif, Else, and Endif Directives

Syntax

#if constant-expression
text

[#elif constant-expression
text]

[#elif constant-expression
text]

[#else
text]

#endif

Description

The #if directives, together with the #elif , #else , and #endif
directives, allow you to control compilation of portions of a
source file. The preprocessor selects one text block for further
processing, based on the value of the constant-expression following

7-9

each directive. The selected text is processed by the preprocessor
and passed to the compiler. The preprocessor ignores the
remaining text blocks and does not pass them to the compiler.

The preprocessor selects a text block by evaluating the
constant-expression following the #if directive. If the expression is
true (nonzero) , the text following the expression is selected. If
the expression is false (zero), the preprocessor evaluates the
constant-expression after the first #elif (else-if) directive. If that
expression is true, the preprocessor selects the corresponding text.
If not, it goes on to the next #elif directive and repeats the process
until it finds a constant-expression with a true value.

The preprocessor selects the text after the #else clause if no
constant-expression is true, or if there are no #elif directives. If the
#else directive is omitted, and no constant-expression in the #if
block is true, no text is selected.

Each text block is any text that has meaning to the compiler. It
may occupy more than one line.

Each constant-expression is formed following the rules for
constant-expressions discussed in Chapter 4, except that constant
expressions in preprocessor directives may not contain sizeof \'-
expressions, type casts, or enumeration constants.

Each #if directive must be matched by an #endif directive to mark
the end of the last text block. Any number of #elif directives
(including zero) may appear between the #if and the #endif
directives, but at most one #else directive is allowed. The #else
directive, if present, must be the last directive before #endif .

The #if , #elif , #else , and #endif directives can be nested in the
text portions of other #if directives. When nested, each #else ,
#elif , and #endif directive belongs to the closest preceding #if
directive.

7-10

Examples

1 . # i f DLEVEL > 5
d i s p l ay (debugptr) ;

#end i f

i f DLEVEL > 5

#el s e

#end i f

#define S IGNAL 1
i f STACKUSE == 1

#else

#endi f

#defi n e STACK 200

#defi ne STACK 100

#define S I GNAL 0
i f STACKUSE - - 1

#else

#end if

#defi ne STACK 100

#def i n e STACK 50

i f DLEVEL = = 0
#define STACK 0

#el i f DLEVEL == 1
#define STACK 100

#el i f DLEVEL > 5
d i s p l ay (debugptr) ;

#el s e
#define STACK 200

#end i f

The above examples assume a previously defined manifest
constant, DLEVEL . In the first example, the #if and #endif
directives control compilation of statements used for debugging.
The statement "display(debugptr)"is compiled only if the
expression DLEVEL > 5 evaluates to a nonzero (true) value.

The second example shows two sets of nested #if , #else , and
#endif directives. The first set of directives is processed only if
DLEVEL > 5 is true. Otherwise, the second set is processed.

7-11

In the third example, #elif and #else directives are used to make
one of four choices, based of the value of DLEVEL. The
manifest constant STACK is set to 0, 100, or 200, depending on
the definition of DLEVEL . If DLEVEL is not defined, "
display(debugptr) ; " is compiled and STACK is not defined.

If defined and Elif defined Directives

Syntax

#if defined (identifier)
text

#elif defined(identifier)
text

Description

The #if defined and #elif defined directives have the same function
as the #if and #elif directives, except that they test an identifier
instead of a constant expression . .If the given identifier is
currently defined, the condition is considered to be true
(nonzero). Otherwise, the condition is false (zero) . An identifier
defined as empty text is considered defined.

An #if defined directive may appear anywhere an #if directive
appears, and, like the #if directive, must be matched with an
#endif . Similarly, an #elif defined directive may appear anywhere
an #elif directive appears. This means that a block beginning with
#if or #if defined may contain both #elif and #elif defined
directives, as well as an #else directive.

The text block to be preprocessed and compiled is selected exactly
as outlined above for the #if directive.

7-12

Examples

1 . # i f defi ned (M_86)

#end i f

#defi ne SEG 67
#define OFFSET 0

C: 2 . #defi ne REG!
#defi ne REG2

reg i s ter
reg i s ter

0

0

i f defi ned (M_86)
#defi ne REG3
#defi ne REG4
#defi ne REG5

#el se

#end i f

#defi ne REG3 reg i s ter
i f defi ned (M_68000)

#defi ne REG4
#defi ne REG5

#end i f

regi ster
reg i ster

In the first example, SEG and OFFSET are defined only if
M_86 is previously defined.

The second example uses preprocessor directives to control the
meaning of register declarations in a portable source file. The
compiler assigns register storage to variables in the same order in
which the register declarations appear in the source file. If you
have more register declarations than the machine can
accommodate, the compiler honors earlier declarations over later
ones. This can result in a loss of efficiency if the variables
declared later are more heavily used.

With the definitions listed above, you can give priority to your
most important register declarations. REG 1 and REG2 are
defined as the register keyword to declare register storage for the
two most important variables in the program.

7-13

For example, in the following fragment, b and c have higher
priority than a or d.

foo (a)

REG3 a ;

{

}

REGl b ;
REG2 c ;
REG4 d ;

When you define M 86, the preprocessor removes the REG3
identifier from the file by replacing it with empty text. This
prevents "a" from receiving register storage at the expense of b
and c. When M 68000 is defined, all four variables are
declared to have register storage. When neither M 86 nor
M_68000 is defined, a, b, and c, are declared with register
storage.

Ifdef and Ifndef Directives

Syntax

#i fdef i denti f i er
#i fndef i denti fi er

Description

The #ifdef and #ifndef directives accomplish the same task as the
#if defined directive and may be used anywhere #if defined may
be used. These directives are provided only for compatibility with
previous versions of the language. The #if defined directive is
preferable for new code.

7-14

0

0

When the preprocessor encounters an #ifdef directive, it checks to
see whether the identifier is currently defined. If so, the condition
is true (nonzero). Otherwise, the condition is false (zero).

The #ifndef directive checks for exactly the opposite condition
checked by #ifdef . If the identifier has not been defined (or its
definition has been removed with #undef) , the condition is true
(nonzero). Otherwise, the condition is false (zero).

Line Control Directive

Syntax

#line constant ["filename"]

Description

The line directive canses the preprocessor to change the
compiler's internally stored line number and filename to the given
constant and filename. The compiler uses the internally stored line
nnmber and filename to refer to the location of any error
encountered during compilation. The line number normally refers
to the current input line; the filename refers to the current input
file. The line number is incremented after each line is processed.
Changing the line number and filename causes the compiler to
ignore the previous values and to continue processing with the
new values.

The constant can be any integer constant; the filename can be any
combination of characters. It must be enclosed in double
quotation marks (") . If no filename is given, the previous
filename remains unchanged. The current line number and
filename are always available using the predefined identifiers
" LINE " and " FILE " ' - -

7-15

The line directive is used by program generators, such as lex and
yacc, so that error messages refer to the original source file rather
than the file created by the generator. The " LINE " and
" FILE " identifiers insert error messagesabout the source
file into the program text. See the second example below.

Example

1 . #line 1 5 1 "copy.c"

2. #define ASSERT(cond) if(!cond) {printf("assertion \
error line %d, file(%s) \n", LINE , FILE) ; } \
else ;

- - - --

In the first example, the internally stored line number is set to 151
and the file name is changed to copy.c .

In the second example, the macro ASSERT uses the predefined
identifiers to create an error message about the source file. The
text extends to several lines.

7-1 6

0

0

0

Appendixes

Contents
Appendix A. Differences . A-3

Appendix B. C Compiler Messages and Limits B-1

Introduction • . . • B-1

Compiler Error Messages . . . • B-1
Warning Messages . B-2
Program Error Messages B-8
Fatal Error Messages B-21

Compiler Limits . B-23

A-1

A-2

0

0

Appendix A. Differences

This appendix outlines differences between IBM Personal
Computer XENIX C Compiler and the description of the C
language found in Appendix A of The C Programming Language,
by Brian W. Kernighan and Dennis M. Ritchie, published in 1978
by Prentice-Hall, Englewood Cliffs, New Jersey. The differences
are listed by the Kernighan/Ritchie section numbers.

2.2 Identifiers (including those used in preprocessor
directives) are significant to 3 1 characters. External
identifiers are also significant to 3 1 characters.

2.3 The identifiers asm and entry are no longer keywords.
New keywords are const, enum and void. (Notice that
const is not yet implemented but is reserved for future
use.) The identifiers near, far, pascal, fortran, huge and
module may be keywords, depending on whether the
corresponding options are enabled when a program is
compiled (see Chapter 2 in the IBM Personal Computer
XENIX Software Development Guide) The pascal, fortran
and huge options are not yet implemented.

2.4.1 Hexadecimal and octal constants are unsigned.

2.4.3 Hexadecimal bit patterns, consisting of a backslash (\),
the letter 'x', and up to two hexadecimal digits, are
permitted as character constants (for example, \x12).

There are two additional escape sequences. The sequence
\ v represents a vertical tab (VT), and the sequence \ "
represents the double quote character.

Character constants always have type char, with the
result that they are sign-extended in type conversions.

A-3

2.6 The short type is always 16 bits long, the long type 32
bits. The size of an int is machine dependent. On
8086/8088 processors, an int is 1 6 bits long, while on
68000 machines, it is 32 bits.

4

6.5

6.6

7.2

7.14

8.2

8.5

A-4

The char type is signed, with the result that a char value is
sign-extended in type conversions.

Two additional unsigned types are supported, unsigned
char and unsigned long .

There is au additional fundamental type, the enwn
(enumeration) type. The void type is defined as the
return type of functions that do not return a value.

The keyword unsigned may be applied as an adjective to
any integer type (char, int, short, or long). When
unsigned stands alone, it is taken to mean unsigned int.

The arithmetic conversions carried out by the IBM
Personal Computer XENIX C Compiler are outlined in
Chapter 4 of this reference. Although compatible with
the Kernighan/Ritchie conversions, the IBM Personal
Computer XENIX C Compiler conversions are spelled
out in greater detail, including the specific path for each
type of conversion.

In connection with the sizeof operator, a byte is defined
as an 8-bit quantity.

A structure may be assigned to another structure of the
same type.

The keywords enum and void are additional type
specifiers. Additional acceptable combinations are
unsigned char, unsigned short, unsigned short int, unsigned
long, and unsigned long int.

Bit fields must be declared unsigned .

The names of structure members are not required to be
distinct from structure tags or from the names of other
variables.

'
\..

There is no relationship between the members of two
different structure types.

8.6 Unions may be initialized by giving a value for the first
member of the union.

0 9.7 The expression of a switch statement has enum or integral
type. Each of the case constant-expressions is cast to the
type of the expression.

0

12

12.3

14.1

The pound sign (#) introducing the preprocessor directive
may be preceded by any combination of whitespace
characters, except for newline characters. There may also
be whitespace (not including newlines) between the
pound sign and the preprocessor keyword, and between
the keyword and the opening parenthesis, "(," when
arguments are present.

The new directive "#if defined (identifier)" is intended to
supplant the "#ifdef" and "#ifndef" directives. Use of
the latter directives is discouraged.

The new directive "#elif" (else-if) is designed for use iu
"#if" and "#if defined" blocks.

A structure may be assigned to another structure of the
same type. Structures may be passed by value to
functions and may be returned by functions.

In expressions involving "->," the expression before the
arrow must have the same type (or be cast to the same
type) as the structure to which the member on the
right-hand side of the arrow belongs.

1 7 The listed anachronisms are not recognized.

A-5

\

A-6

0

0

0

Appendix B. C Compiler Messages and
Limits

Introduction

This appendix lists the messages displayed by the cc command
when errors are encountered during compilation of a program. It
also lists the restrictions imposed by the compiler on the size and
complexity of program source files and statements within source
files.

Compiler Error Messages

The error messages produced by the C compiler fall into three
categories: warnings, program errors, and fatal errors. Warnings
alert you to problems that may cause errors during execution of
the program, but do not prevent compilation of your program.
Program errors identify problems that make successful
compilation of your program impossible. Fatal errors identify
problems that prevent cc from continuing execution. Whenever
the compiler encounters program or fatal errors, it terminates
operation before producing an object file.

The following sections explain the meaning of the compiler error
messages, and provide clues on how to solve the problem
indicated by these messages.

B-1

Warning Messages

The following is a complete list of compiler warnings messages.
The number in square brackets ([]) at the end of each message
gives the minimum warning level that must be set for the message
to appear. You can set the warning level by using the -W option
described earlier in this chapter.

warning: Address of frame variable taken, DS != SS [I]
Taking the address of a frame variable in a small
model program with separate data and stack
segments results in an incorrect address. The address
does not refer to the correct segment.

warning: 'identifier' : bad type (not integral) [1]
The given bitfield is converted to an unsigned integral
type.

waming: ' identifier' : bad type (not unsigned) [1]
The given bitfield is converted to an unsigned integral
type.

warning: cast of int expression to far pointer [I]
A far pointer represents a full segmented address.
Casting an integer value to a far pointer produces an
address with a meaningless segment value.

warning: Constant too big [1]
Information is lost because a constant value is too
large to be represented in the type to which it is
assigned.

warning: conversion lost segment [1]
The conversion of a far pointer (a full segmented
address) to a near pointer (a segment offset) results
in the loss of the segment address.

warning: Data conversion [3]

B-2

Two data items had different types, causing the type
of one item to be converted.

0

0

warning: 'operator' : different types [1]
The values specified in the operation have different
types.

warning: Float constant in a cross compilation [1]

warning:

Floating point constants are not portable because
therepresentation of floating point values differs
across machines.

'identifier' : formals ignored [1]
Formal arguments appeared in a function declaration
(for example, "extern int *f(a,b,c) ;"). The formal
arguments are ignored.

warning: 'identifier' : function as an argument [1]
A formal parameter to a function is declared to be a
function, which is illegal. The formal parameter is
converted to a function pointer.

warning: Function must return a value [2]
A function is expected to return a value unless it is
declared as void.

warning: function identifier too large for post-optimizer [0]
The named function was not optimized because
insufficient program space was available. To correct
this problem, reduce the size of the function by
breaking it down into two or more smaller functions.

warning: 'identifier' : has bad class [1]
The specified storage class cannot be used in this
context (for example, function parameters cannot be
given extern class). The default storage class for that
context is Used in place of the illegal class.

warning: -S has precedence over -L [1]
You cannot create both a disassembled listing (-S)
and an assembled listing (-L) with the same
command. The -L option is ignored and a
disassembled listing is created.

B-3

warning: Id truncated to 'identifier' [1]
Only the first 31 characters of an identifier are
significant.

warning: -C ignored (must also specify -P or -E or -EP) [1]
The -C option preserves comments in a preprocessed
listing and takes effect only when you create such a
listing with the -P, -E or -EP option.

warning: Ignoring unknown flag option [1]
The compiler does not recognize the given option and
ignores it.

warning: Illegal null char [1]
The single quotes delimiting a character constant
must contain one character. For example, the
declaration "char a = "" is illegal.

warning: 'operator' : illegal pointer combination [1]
A pointer to a given type is forced t o point to an
object with a different type.

warning: 'operator' : illegal with enums [1]
You may not use the given operator with enum \,_
values. The enum values are converted to int type.

warning: missing close paren after 'defined(id' [1]
The closing parenthesis is missing from an #if defined
directive.

warning: Mixed near I far pointers [1]
A pointer is assigned to a pointer with a different
size, resulting in the loss of a segment address from a
far pointer or the addition of a segment address to a
near pointer.

warning: Newline in string constant [1]
A newline character is not preceded by an escape
character (\) in a string constant.

warning: 'identifier' : no function return type [2] ,
A function declared to have void type returns a value.

B-4

0

c)

0

warning: No return value [2]
A function declared to return a value does not do so.

warning: Not enough parameters [1]
The number of aetna! arguments specified with an
identifier is less than the number of formal
parameters given in the macro definition of the
identifier.

warning: '&' on function/array, ignored [1]
The address of (&) operator is used incorrectly on a
function or array.

warning: Only one of -P/-E/-EP allowed, -P selected [1]
Each of the -P, - E and -EP options produces a
different kind of preprocessed listing; only one
option can be used at a time.

warning: overflow in constant arithmetic [1]
The result of an operation exceeds Ox7FFFFFFF.

warning: overflow in constant multiplication [1]
The result of an operation exceeds Ox7FFFFFFF.

warning: 'identifier' : overflows array bounds [1]
Too many initializers are present for the given array.
The excess initializers are ignored.

warning: Pointer mismatch. [1]
Pointers to different types of variables are used
interchangeably.

warning: Procedure too large, loop inversion optimization missed
but continuing [O]

Some optimizations for a function are skipped
because insufficient program space is available for
optimization. To correct this problem, reduce the
size of the function by breaking it down into two or
more smaller functions.

B-5

warning: Procedure too large, skipping branch sequence
optimization and continuing [0]

Some optimizations are skipped because insufficient
program space is available for optimization. To
correct this problem, reduce the size of the function
by breaking it down into two or more smaller
functions.

warning: Procedure too large, skipping cross jump optimization
and continuing [0]

Some optimizations for a function are skipped
because insufficient program space is available for
optimization. To correct this problem, reduce the
size of the function by breaking it down into two or
more smaller functions.

warning: Recoverable heap overflow in post optimizer - some
optimizations may be missed [0]

Some optimizations are skipped because insufficient
program space is available for optimization. To
correct this program, reduce the size of the function
by breaking it down into two or more smaller
functions.

warning: 'identifier' : redeclaration ignored [1]
The named formal parameter was previously defined.

warning: 'identifier' : redefinitiol;l [1]
The given identifier is redefined.

warning: 'register; oh ' identifier' ignored [1]
Only integral and pointer type variables may be
given register storage class.

warning: "-i" required on the command line, changing name
segment or group requires separate i and d. Setting -i aud
continuing. [1]

B-6

The text segment or group of a small model program
can be renamed (using -NT or -NGT) only if a
separate text segment is created using the -i option.

0

0

warning: requires parameters [1]
Formal parameters are given in the macro definition
of an identifier, but no argument list is given with the
identifier.

warning: Storage class class on ' identifier' changed to extern [1]
Items declared outside of functions must have static
or extern storage class.

warning: String too big, leading chars truncated [1]
Strings may not exceed 5 12 bytes.

warning: Strong type mis-match [2]
Two different but compatible types are used: for
example, a typedef type with a non-typedef type, or
two different bnt equivalent struct or union types.

warning: Too many parameters [1]
The number of actual arguments specified with an
identifier is greater than the number of formal
parameters given in the macro definition of the
identifier.

warning: Type following 'keyword' is illegal, ignored [1]
An illegal combination occurs (for example, unsigned
float.)

warning: identifier : undefined [1]
The given identifier is not defined. is not defined.

warning: 'identifier' : unknown array size [1]
The size of the named array is not specified.

warning: 'identifier' : unknown size [1]
The size of the named variable is not specified.

warning: unmatched close comment '*/' [1]
A comment was started (with '/*: ') but was not
closed (with '*/').

warning: 'identifier' : void type changed to int [1]
Only functions may b e declared t o have void type.

B-7

Program Error Messages

The following is a complete list of program error messages. After
printing a program error message, the compiler typically continues
to look for more errors, but will not create an object file.

'+': 2 pointers
Two pointers may not be added.

'identifier' : aggregate inits require curly braces
An initializer for an aggregate type has a syntax
error.

Array of functions
Arrays of functions are not allowed.

auto allocation exceeds 32KB
The space allocated for the local variables of a
function exceeds the limit of 32KB.

'identifier' : automatic struct/arrays

Bad call

Structures, arrays, and unions with auto storage class
cannot be initialized.

The expression before the parentheses in a function
call does not evaluate to a function pointer. For
example,

int *p;

(*p) () ;

'class' : bad class
The given storage class cannot be used in this
context.

operator : bad left operand

B-8

The left-hand operand of the given operator is an
illegal value.

0

Bad octal number 'n'
The character n is not a valid octal digit.

operator : bad right operand
The right-hand operand of the given operator is an
illegal value.

'identifier' : base type with near I far not allowed
Declarations of structure and union members may
not use the near and far keywords to override the
addressing convention for a member.

can't cast objects as 'far'
The near and far keywords may not be used in type
casts. For example, "(int far)foo" is illegal.

can't cast objects as 'near'
The near and far keywords may not be nsed in type
casts. For example, "(int near)foo" is illegal.

Case expression not constant
Case expressions must be integral constants.

Case expression not integral
Case expressions must be integral constants.

Case value 'n' already used
The case value n has already been used in this switch
statement.

cast of 'void' term to non-void
The void type may not be cast to any other type.

cast to array type is illegal
An object cannot be cast to an array type.

cast to function returning . . . is illegal
An object cannot be cast to a function type.

Compiler error (assertion): file filename, line n source=filename
The compiler consistency check failed. Try
rearranging your code. In this message, the first
filename identifies the compiler file producing the

B-9

error; the line number n refers to that file. The
second filename gives the name of the source file
being compiled.

Compiler error (code generation)
The compiler could not generate code for this
expression. Try rearranging the expression.

Compiler error (internal) :
The compiler consistency check failed. Try
rearranging your code.

Compiler limit: macro's actual parameter is too big
Arguments to preprocessor macros may not exceed
256 bytes.

Compiler limit: struct/union nesting
Nesting of structure and union definitions may not
exceed 5 levels.

Compiler limit: Too many actual parameters for macro
A macro definition may not take more than 8 actual
arguments.

compiler limitation: lnitializers too deeply nested
The compiler limit on nesting of initializers has been
exceeded. The limit ranges from 10 to 1 5 levels,
depending on the combination of types being
initialized. To correct this problem, simplify the data
type being initialized to reduce the levels or nesting,
or assign initial values in separate statements after
the declaration.

Constant expression is not integral
The context requires an integral constant expression.

#define syntax
A #define directive has a syntax error.

'identifier': definition too big
Macro definitions may not exceed 256 bytes.

B-10

0

0

'operator': different aggregate types

Divide by 0

'identifier':

Pointers to different structure or union types are not
allowed with the given operator.

The second operand in a division (/) operation
evaluates to zero (0).

ennm/ struct/ union type redefinition
The given identifier has already been used for an
enumeration, structure, or union tag in the same
scope.

expected '(' to foil ow 'identifier'
The context requires parentheses after the function
identifier.

Expected constant expression
The context requires a constant expression.

expected 'defined(id)'
An #if defined directive has a syntax error.

Expected exponent value, not 'n'
The exponent of a floating point constant is not a
valid number.

Expected preprocessor command, found 'c'.
The character following a number sign (#) is not the
first letter of a preprocessor directive.

'identifier' : field is an array/ptr
Bitfield members must have unsigned integral type.

'identifier' : field type too small for number of bits
The number of bits specified in the bitfield
declaration exceeds the number of bits in an unsigned
integer of the given size.

C'i 'identifier': fields only in structs
Only structure types may contain bitfields.

B-11

Function returns array
A function may not return an array. (It may return a
pointer to an array.)

Function returns function
A function may not return a function. (It may return
a pointer to a function.)

'identifier': Functions are illegal members
A function cannot be a member of a structure; use a
pointer to a function instead.

'string': ignored
The given text appeared out of context and was
ignored.

Dlegal aUocation of segment > 64KB

IUegal break

IUegal case

illegal cast

The space allocated for a single data item exceeds
the limit of one segment (64KB).

A break statement is legal only when it appears
within a do, for, while, or switch statement.

The case keyword may only appear within a switch
statement.

A type used in a cast operation is not a legal type.

IUegal continne
A continue statement is legal only when it appears
within a do, for, or while statement.

IUegal default
The default keyword may only appear within a switch
statement.

Illegal escape sequence

B-12

The character(s) after the escape character (\) do
not form a valid escape sequence.

'
""

'•"-_

0

IUegal expression
An expression is illegal becanse of a previous error.
(The previous error may not have produced an error
message.)

'operator' : illegal for struct/union
Structure and union type values are not allowed with
the given operator.

Illegal index, indirection not allowed
A subscript was applied to an expression that does
not evaluate to a pointer.

Illegal indirection:
The indirection operator ('*') was applied to a
non-pointer value.

IUegal initialization.
An initialization is illegal because of a previous error.
(The previous error may not have produced an error
message).

0 'operator': illegal pointer combination
Pointers that point to different types cannot be used
with the given operator

0

Illegal pointer subtraction.
Only pointers that point to the same type may be
subtracted.

#include expected a file name
An #include directive lacks the mandatory filename
specification.

'identifier': init of a function
Functions may not be initialized.

'identifier' is an undefined struct/union
The structure or union type of the given identifier is
not defined.

B-13

keyword 'enum' illegal
The enum keyword appears in a structure or union
declaration, or an enum type definition is not formed
correctly.

Label 'identifier' was undefined
The function does not contain a statement labeled
with the given identifier. '\,_

left of '->identifier' must have a struct/linion type
The expression before the member selection operator
'->' does not point to a structure or union type.

left of ' .identifier' must have a struct/union type
The expression before the member selection operator
' . ' does not have a structure or union type.

left of '->' specifies undefined struct/union 'identifier'
The expression before the member selection operator
'- >' points to a structure or union type that is not
defined.

left of ' . ' specifies undefined struct/ union 'identifier'
The expression before the member selection operator \,_
' .' has a structure or union type that is not defined.

operator: Left operand must be Ivai.
The left operand of the given operator must be an
I value.

#line expected a line number
A #line directive lacks the mandatory line number
specification.

'identifier': member of enum redefinition

B-14

The given identifier has already been used for an
enumeration constant, either within the same
enumeration type or within another enumeration
type in the same scope.

0

0

Missing '>'
The closing angle bracket ('>') is missing from an
#include directive.

Missing name folio wing '<'
An #include directive Jacks the mandatory filename
specification.

missing open paren after keyword 'defined'
Parentheses must surround the identifier to be
checked in an #if defined directive.

' identifier' : Missing subscript

Mod by 0

To reference an element of an array you must use a
subscript (for example, "A[6]").

The second operand in a remainder (%) operation
evaluates to zero (0).

More than one default
A switch statement contains too many default labels
(only one is aiiowed) .

'operator' needs !value.
The given operator must have an !value operand.

negative subscript
A value defining an array size was negative.

Newline in constant
A newline character in a character or string constant
must be preceded by the backslash escape character
(\) .

No closing single quote
A newline character in a character constant must be
preceded by the backslash escape character (\) .

No struct definition
A structure or union type is used in a declaration
without being defined.

B-15

Non-address expression
An attempt was made to initialize an item that is not
a !value. For example, the declaration " int i, j = 1 ; "

in the following example is illegal.

i nt i , j ::; i ;
mai n ()

}

The declaration occurs outside of all functions, so it
cannot be determined until link time (too late for
initialization) whether i is a reference to a global
variable defined and initialized elsewhere, or a
definition of a global variable (with a default initial
value of O) .

Non-constant offset
An initializer uses a non-constant offset. For
example, the declaration " int i, j, *p = &i + j; " in
the following example is illegal.

i nt i , j , *p = &i + j ;
mai n ()
{

}

The declaration occurs outside of all functions, so it
cannot be determined until link time (too late for
initialization) whether i and j are references to global
variables defined and initialized elsewhere, or
definitions of global variables (with default initial
values of 0) .

Non-integer switch expression
Switch expressions must be integral.

B-1 6

'
''-

0

Non-integral index
Only integral expressions are allowed in array
subscripts.

'identifier': not a function
The given identifier was not declared as a function
but an attempt was made to use it as a function. For
example,

i n t i ;

i () ;

'identifier': not a label
The identifier specified in a goto statement does not
correspond to a statement label.

'identifier': not struct/union member
The given identifier is used in a context that requires
a structure or union member.

'&' on bit field ignored
Bitfields cannot have their address taken.

'&' on constant
Only variables and functions can have their address
taken.

'&' on register variable
Register variables cannot have their address taken.

parameter has type void
Only functions have void type, and formal
parameters may not be functions.

pointer + non-integer
Only integral values may be added to pointers.

'operator': pointer on left. Needs integral right.
The left operand of the given operator is a pointer;
the right operand must be an integral value.

B-17

'+' 2 pointers
Two pointers may not be added.

Preprocessor command must start as first non-white
Non-whitespace characters appear before the
number sign (#) of a preprocessor directive on the
same line.

'identifier': redefinition
The given identifier was defined more than once in
the same scope.

'.' requires struct/union name
The expression before the member selection operator
'. ' is not the name of a structure or union.

'->' requires struct/union pointer
The expression before the member selection operator
'->' is not a pointer to a structure or union.

'-': right operand pointer
If the left-hand operand in a subtraction (-)
operation is not a pointer, the right-hand operand is
not permitted to be a pointer. \,_

Static procedure' identifier' not found
A forward reference was made to a missing static
procedure.

Structure/Union comparison illegal
You cannot compare a structure type to a union
type. (You can, however, compare individual
members of structure and unions).

Subscript on non-array

syntax error

B-18

A subscript was used on a variable that is not an
array.

This statement or the preceding statement is not
formed correctly.

0

0

'11': too big for char
The number n is too large to be represented as a
character.

Too many chars in constant
A character constant is limited to a single character.
(Multi-character character constants are not
supported).

Too many initializers
The number of initializers exceeds the number of
objects to be initialized.

Typedef specifies different enum
Two enumeration types defined with typedef are
used to declare an item, but the enumeration types
are different.

Typedef specifies different struct
Two structure types defined with typedef are used to
declare an item, but the structure types are different.

Typedef specifies different union
Two union types defined with typedef are used to
declare an item, but the union types are different.

'typedefs' both define indirection
Two typedef types are used to declare an item and
both typedef types have indirection. For example,
the declaration of p in the following example is
illegal.

typedef i n t *P_INT
'
typedef s hort *P_SHORT

P_SHORT P_INT p
I* t h i s decl aration i s i l l egal */

'identifier': undefined
The given identifier is not defined.

B-19

'c': unexpected in formal list
The character c is misused in a macro definition's list
of formal parameters.

'c': unexpected in macro definition
The character c is misused in a macro definition.

unknown character 'Oxn'
The given hexadecimal number does not correspond
to to a character in the C character set.

'identifier' : unknown size
A member of a structure or union has an undefined
size.

'void' illegal with all types
The void type cannot be used in operations with
other types.

'expression' was the use of the struct/union

B-20

An undefined structure or union type variable is used
in the given expression.

0

0

0

Fatal Error Messages

The following is a complete list of fatal error messages. After
printing a fatal error message, the compiler terminates processing
and returns control to the system.

fatal : Bad flag = option
The given option is illegal or inconsistent with
another option appearing on the same line.

fatal : Bad parenthesis nesting
The parentheses in a preprocessor directive are not
matched.

fatal : Bad preprocessor command 'string '
The characters following the number sign (#) do not
form a preprocessor directive.

fatal: Cannot open 'filename'
The compiler ran out of disk space, or the disk is
protected against writing.

fatal : Compiler limit : Macro expansion too big
The expansion of a macro exceeds the space
available for it.

fatal : Compiler limit : possibly a recursively defined macro
The expansion of a macro exceeds the space
available for it. Check to see whether the macro is
recursively defined.

fatal DGROUP data allocation exceeds 64KB
Long model allocation of variables to the default
segment exceeds 64KB.

fatal #if[n]def expected an identifier
You must specify an identifier with the #ifdef and
#ifndef directives.

fatal : expected '#endif'
An #if, #ifdef, #ifndef, or#if defined directive was not
terminated with an #endif directive.

B-21

fatal : only one memory model allowed
Co11flicting memory model options appear on the
command line.

fatal : Parser stack overflow, please simplify your program
Your program is cannot be processed because the
space required to parse the program exceeds a
compiler limit. To solve this problem, try to simplify
your program.

fatal : Too many include files
Nesting of #include directives exceeds the limit of 10
levels.

fatal unexpected '#elif'
The #elif directive is legal only when it appears
within an #if, #if defined, #ifdef, or #ifndef directive.

fatal unexpected '#else'
The #else directive is legal only when it appears
within an #if, #if defined, #ifdef, or #ifndef directive.

fatal unexpected '#endif'
An #endif directive appears without a matching #if,
#if defined, #ifdef, or #ifndef directive.

fatal : Unexpected EOF
The end of a file was encountered. This message
appears when you have insufficient space on the
default disk drive for the compiler to create the
temporary files it needs. The space required is
approximately three times the size of the source file.

fatal : Unknown configuration string 'string'
The configuration string given with the -M option
contains an unrecognized character.

fatal : Unknown model type

B-22

The configuration string given with the -M option
contains an unrecognized character.

Compiler Limits

The following list summarizes the limits imposed by the C
compiler. If your program exceeds any of these limits, an error

C'! message will inform you of the problem.

1 . Disk Space

Minimum disk space
for compilation 3 times sonrce file

size

2. Declarations

Maximum number of dimensions
in an array 5 dimensions

Maximum level of nesting for
structure/union definitions 5 levels

Maximum level of indirection 5 levels

0 Maximum level of nesting for
aggregate initializers 10- 1 5 levels

This depends on the combination of aggregate types; higher
levels of nesting are possible with array initialization than
with structure and union initialization.

3. Constants

Maximum length of a string,
inclnding the terminating null 5 1 2
character (\ 0) bytes

4. Identifiers

c
Maximum length of an identifier 3 1 characters

5 . Preprocessor Directives

Maximum size of a macro definition 5 12 bytes

B-23

Maximum number of actual arguments
to a macro definition 8 arguments

Maximum length of an actual
preprocessor argument 256 bytes

Maximum level of nesting for
#if, #ifdef, #ifndef, and 32 levels
#if defined directives

Maximum level of nesting for
include files 1 0 levels

The compiler does not set explicit limits on the number and
complexity of declarations, definitions, and statements in an
individual function or in a program. If the compiler encounters a
function or program that is too large or too complex to be
processed, it produces an error message to that effect.

B-24

0

0

0

Index

Special Characters

& operator 4-37
I operator 4-37
A operator 4-37
(&&)operator 4-38
(�) bitwise complement 4-28
(< <) operator 4-35
(+) addition 4-32
(1 !)operator 4-38
(&) operator 4-29
(!) logical not 4-28
(*) indirection 4-29
(*) multiplication 4-3 1
(-) arithmetic negation 4-28
(-) subtraction 4-33
(/) division 4-31
(%) remainder 4-3 1
(> >) operator 4-35
#if defined directive 7-12
#ifdef directive 7-14
#ifndef directive 7-14

A

addition (+) 4-32
additive operators 4-32
address of (&) operator 4-29
address of operators 4-29
angle brackets (< >) 7-8
argument list 7-5
arithmetic negation (-) 4-28
arithmetic operators 1-8

array declarations 3-28
array modifier 3-15
asm 1-15
assignment conversions 4-1 8
assignment operators 4-42
assigmnents 4-5
anto 1 - 15
automatic class 3-4

auto 3-4

B

bit field 3-23
bitwise AND operator 4-37
bitwise complement (�) 4-28
bitwise exclusive 0 R

operator 4-37
bitwise operators 4-37
bitwise OR operator,

exclusive 4-37
block level nesting 2-1 0
break 1 -15

c

case 1 -15
cast, type 4-25
char 1 -15
character

Index-1

digits 1-5
escape sequence 1-7
letters 1-5
non-graphic 1 -7
punctpation 1 -6
special 1-6
whitespace 1-5

character constants 1-12
character set 1-5
class,extern 3-6
class,register 3-5
class,static 3-5
comments 1-15
Compilation, controlling with

preprocessor directives 7-12
7-14

'

compiler limits B-23
compiler requirements B-23
complement,bitwise 4-28
complex declarators 3-17
compound assignment 4-46
constant expressions 4-16
constant types

char 1-10
long 1-10
short int 1-10
unsigned 1-10

constants 4-6
character 1-12
decimal 1-9
floating-point 1-1 1
hexadecimal 1-9
integer 1-9
manifest 7-5
octal 1-9
string 1-12

continue 1-15
conversions

assignment 4-18
from floating point

types 4-22
from pointer types 4-24

lndex-2

D

from signed integer
types 4-18

from structure and union
types 4-24

from unsigned integer
types 4-20

from void types 4-24
function call 4-26
operator 4-25
type 4-17
type cast 4-25

declarations 3-3
array 3-28
declarations,pointer 3-33
function 3-35
simple variable 3-27
structure 3-30
typedef 3-36
union 3-24, 3-31
variable 3-26
visibility and scope 3-44

declarators
array modifier 3-15
declarators,complex

declarators 3-17
function modifier 3-17
pointer modifier 3-14

default 1-15
define 7-3
definitions 2-3
directives 2-3, 2-9
division (/) 4-3 1
do 1-15
double 1-15
double quotation marks

(") 7-8

(!

c

E

elif 7-3
elif defined 7-3
elif directives 7-9
else 1-15 , 7-3
else directives 7-9
endif 7-3
endif directives 7-9
entry 1-15
enum 1-15
enumeration declarations 3-21
enumeratiOil types 3-9
error messages B-1
escape sequences 1-7
expressions 4-14

constant 4-16
parenthesized 4-16
type cast 4-15
with operators 4-1 5

extern 1-15
external class 3-6
external functions 3-4 7
external variables 3-45

F

float 1-15
floating-point constants 1 - 1 1
for 1 - 1 5
fortran 1-15
function 2-7

calling 2-7
main program 2-7

function call conversions 4-26
function calls 4-9
function declarations 3-35
function definition 2-4
function modifier 3-17

functions external 3-47
functions global 3-4 7
functions,static 3-47
fundamental types 3-8

G

global functions 3-4 7
global level nesting 2-10
global variables 3-45
goto 1-15

I

identifier 4-6
array 4-7
enumeration 4-6
floating point 4-6
function 4-7
integral 4-6
pointer 4-7
predefined 1-15
structure 4-7
union 4-7

if 1-15, 7-3
if defined 7-3
If defined directive 7-12
if directives 7-9
ifdef 7-3
Ifdef directive 7-14
ifndef 7-3
Ifndef directive 7-14
include 7-3
include directive 7-8
indirection (*) 4-29

lndex-3

indirection and address of
operators 4-29

initialization
aggregate type 3-40
fundamental type 3-38
pointer type 3-39
string type 3-4 3

int 1 - 15
integer and pointer

combinations 4-33
integer, unsigned (type

conversion) 4-20

K

keywords 1 - 1 5

L

left shift (< <) operator 4-35
letters and digits 1-5
limits, compiler B-23
line 7-3
line control directive 7-15
logical AND (&&) 4-38
logical not (!) 4-28
logical operators 1-8, 4-38
logical OR (I I) 4-39
long 1 - 1 5

lndex-4

M

macros 7-5
manifest constants 7-5
member selection
expressions 4-13

messages B-1
multiplication (*) 4-31
multiplicative operators 4-31

N

nesting,block 2-1 0
nesting,global 2-10
nontrivial program 2-4
notational conventions 1-3
null statement 5-17
number sign(#) 7-3

0

operands
constant 4-6
expressions 4-14
function calls 4-9
member selection

expressions 4-13
operands,identifiers 4-6
strings 4-8
subscript expressions 4-1 0

operator
additive 4-32
address of 4-29
address of (&) 4-29

0

0

arithmetic 1-8
assignment 1-8, 4-42
binary 4-27
bitwise AND (&) 4-37
bitwise exclusive OR 4-37
conditional 4-41
indirection (*) 4-2 9
left shift (< <) 4-35
logical 1-8, 4-38
logical AND (&&) 4-38
logical OR (I I) 4-39
negation 4-28
relational 4-36
right shift (>>) 4-35
sequential evaluation 4-40
shift 4-35
sizeof 4-30
ternary 4-2 7
unary 4-27

line control 7-1 5
undefine 7-7

Preprocessor directives, #if
defined 7-12

Preprocessor directives,
#ifdef 7-14

Preprocessor directives,
#ifndef 7-14

program execution 2-7

Q

quotation marks, double 7-8

operator conversions 4-25
operators 4-27 R
overflow 4-35

p

parameter-list 7-4
parenthesized expressions 4-1 6
pointer and integer

combinations 4-33
pointer declarations 3-33
pointer modifier 3-14
pointer, type conversion 4-24
precedence 4-4 7
preprocessor directives

define directive 7-4
elif 7-9
else 7-9
endif 7-9
if 7-9
include 7-8

register 1- 15
register class 3-5
relational operators 4-36
remainder (%) 4-3 1
return 1 - 1 5
right shift (> >) operator 4-35

s

scope 2-1 0
sequential evaluation

operator 4-40
shift operators 4-35
short 1- 15
side effects 4-5 1
simple assignment 4-45

Index-5

simple variable
declarations 3-27

sizeof 1-15
sizeof keyword 4-30
sizeof operator 4-30
source Files 2-5
source program 2-3
statements, null

statement 5-17
static 1-15
static class 3-5
static functions 3-4 7
static variables 3-46
storage class specifiers

automatic 3-4
external 3-4
register 3-4
static 3-4

string constant 1 -12
strings 4-8
struct 1 - 1 5
structure declarations 3-22,

3-30
structure types 3-10
subscript expressions 4-10
subtraction (-) 4-33
switch 1 - 1 5

T

the conditional operator 4-41
Tokens 1-17
type cast expressions 4-15
type conversions

assignment 4-18
floating point types 4-22
integer, unsigned 4-20
pointers 4-24
signed integer 4-18

Index-6

structure and union
types 4-24

unsigned integer 4-20
void 4-24

type declarations 3-20
type

declarations,enumeration 3-21
type

declarations,structure 3-22
type declarations, union 3-24
type names 3-48
type specifiers 3-7

char 3-7
double 3-7
enumeration 3-7
float 3-7
long int 3-7
short int 3-7
structure 3-7
type

specifiers,enumeration 3-9
type

specifiers,fundamental 3-8
type

specifiers,structure 3-10
type specifiers,union 3-12
union 3-7
unsigned char 3-7
unsigned long int 3-7
unsigned short int 3-7
void 3-7

typedef 1-15
typedef declarations 3-36

u

unary increment and
decrement 4-44

undef 7-3
undef directive 7-7

0

0

undefine directive 7-7
union 1-15
union declarations 3-24, 3-31
union types 3-12
unsigned 1-15
unsigned integer (type

conversion) 4-20

v

variable declarations 3-26
variable definitions 2-4
variable initialization 3-38
variables

external 3-45
global 3-45
static 3-46

visibility 2-10
nesting 2-10

visibility and scope 3-44
void 1-15
void, type conversion 4-24

w

while 1 -15

lndex-7

lndex-8

