
intJ

OVERVIEW OF THE
XENIX* 286 OPERATING SYSTEM

*XENIX is a trademark of Microsoft Corporation.

Copyright© 1984, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, Californi a 95051

Order N u m ber : 174385-00 1

OVERVIEW OF THE

XENIX* 286 OPERATING SYSTEM

Order Number: 174385-001

*XENIX is a trademark of Microsoft Corporation.

Copyright © 1984 Intel Corporation

I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors

that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information

contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is

subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) {9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

BITBUS im iRMX Plug-A-Bubble
COMMputer iMDDX iSBC PROMPT
CREDIT iMMX iSBX Prom ware
Data Pipeline Insite iSDM QUEST genius in tel iSXM

Que X
1 intelBOS Library Manager

Ripplemode i Intelevision MCS
I2ICE inteligent Identifier Megachassis RMX/80

ICE inteligent Programming MICROMAINFRAME RUPI

iCS Intellec MULTIBUS Seamless

iDBP Intellink MULTICHANNEL SLD

iDIS iOSP MULTIMODULE SYSTEM 2000
iLBX iPDS OpenNET UPI

Microsoft, MS-DOS, Multiplan, and XENIX are trademarks of Microsoft Corporation. UNIX is a trademark of Bell

Laboratories. CP/M is a trademark of Digital Research Incorporated. VAX is a trademark of Digital Equipment Corporation.

REV. REVISION ffiSTORY DATE

-001 Original issue 11/84

ii 8/84

TABLE OF CONTENTS

CONTENTS

CHAPTER 1
INTRODUCTION TO XENIX
Audience
Chapters
The Basic System and the Extended System

The Basic System
The Extended System

What Is an Operat ing System?
Hardware Devices
The Kernel
Utility Programs
A Com mand Interpreter

What Is the XENIX Operat ing 2 8 6 System?
The XENIX Kernel
Utility Programs
Co mmand Interpreters

Who Uses the XENIX Operating System?
The History of XENIX

UNIX
Microsoft's XENIX

New Microsoft Features in the Basic System
New Text Formatting Features
New Program ming Features

Berkeley Enhancements
Intel's Contribution to XENIX

CHAPTER 2
FILES AND FILE SYSTEMS
Ordinary Files

The Content of an Ordinary F ile
The Structure of an Ordinary File
The N arne of an Ordinary File
The Size of an Ordinary File

Directories
Login Directories
Subdirectories
Subtrees
The Parent Directory
The /usr Directory
Full Path Names
Relative Path Names
Moving fro m Directory to Directory
The Working Directory
The Root Directory

PAGE

1-1
1-1
1-2
1-2
1-3
1-4
1-4
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-9

1-10
1-10
1-12
1-12
1-13
1-13
1-14
1-1 5

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-5
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9

iii

Table of Contents

CONTENTS

Special F iles
Block Special Fi les
Character Special Files

File Access Permissions
Access Permissions for Ordinary Files

Read Permission for Ordinary F iles
Write Perm ission for Ordinary Files
Execute Perm ission for Ordinary Files
Set UID and G ID
Representing Per missions
Default Permissions

Access Permissions for Directories
Read Perm ission for Directories
Write Perm ission for Directories
Search Per mission for Directories

Access Permissions for Special F iles
Read Permission for Special F iles
Write Permission for Special F iles

Links to F iles
Working with Files
Logical Files and Physical Locations

Logical F iles
Finding the Physical Location of F ile Data

The Structure of a File System
Cylinder Groups
File Allocation
The R oot F ile System and the Root Directory

CHAPTER 3
RUNNING PROGRAMS
Programs and Processes

Programs
Processes

What Happens During System Startup
How You Gain Access to the System

The I etc/passwd File
What H appens During Login
The Login Shell

The Standard Input, Output, and Error Files
Default Variables Set by the Login Shell
The .profile Files

Executing Co m mands with the Shell
Executing Simple Com mands
Using Options

iv

Using Arguments
Using Metacharacters

The ? Metacharacter
The * Metacharacter
The [and] Metacharacters
The - Metacharacter
The ! Metacharacter

Redirecting Input and Output
P ipes
Filters

XENIX 286 Overview

PAGE

2-1 1
2-1 1
2-1 1
2-12
2-12
2-12
2-12
2-12
2-12
2-13
2-1 5
2-15
2 - 1 5
2 - 1 6
2 - 1 6
2-17
2-17
2 - 1 7
2 - 1 8
2-19
2-20
2-20
2-2 1
2-23
2-2 5
2-2 5
2-2 5

3-1
3-1
3-1
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-9
3-9

3-10
3-10
3-1 1
3-1 1
3- 1 1
3- 1 1
3-1 1
3-12
3-13

XENIX 286 Overview

CONTENTS

XENIX Shells
Bourne Shell
Restricted Shell
Visual Shell
C Shell

CHAPTER 4
TEXT PROCESSING
Tools for Text Processing

Tools for Creat ing a Draft Docu ment
Tools for Checking a Draft Docu ment
Tools for Revising a Docu ment
Tools for Producing the Final Version
Sum mary

CHAPTER 5
PROGRAMMING
C Program m ing Language
C Function Libraries
Supporting Tools
Shell Program ming
Modifying and Extending XENIX

APPENDIX A
BASIC SYSTEM COMMANDS
Basic Syste m Co m mands by Category
Alphabetical List of Com mands

APPENDIX B
TEXT FORMATTING COMMANDS
Text Formatting Co m mands

APPENDIX C
PROGRAMMING TOOLS
Program m ing Com mands
Standard C Libraries

The Standard C Library -- libc
The Standard Math Library -- libm
The Default lex Library -- libl
The Default yacc Library -- liby
The Terminal Capabilities Library -- libtermcap (libtermlib)
The Screen M anipulation Library -- libcurses
The Data Base Manage ment Library -- libdbm

Syste m Calls

APPENDIX D
RELATED PUBLICATIONS
Related Intel Publications
Suggested Readings

INDEX

Table of Contents

PAGE

3 - 1 5
3 - 1 5
3 - 1 5
3 - 1 5
3 - 1 5

4- 1
4-1
4-3
4-3
4-3
4-4

5-2
5-4
5-5
5-6
5-6

A-1
A-2

B-1

C- 1
C-2
C-3
C-5
C-6
C-6
C-6
C-6
C-6
C-7

D- 1
D-2

v

Table of Contents XENIX 286 Overview

FIGURES

FIGURE TITLE

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-1 1
2-12
2-13
2-14
2-1 5
2-16
2-1 7
2-18
2-1 9
2-2 0
2-2 1
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
4-7
A-1

vi

Hardware Devices
Sample Ordinary File
Sample Hierarchy of Login Directory without Subdirectories
Sample Contents of Login Directory without Subdirectories
Sam ple Hierarchy for Login Directory with Subdirectories
Sample Directory List
Sam ple Subtree
Sample /usr Directory with Subdirectories
Sample Path Names
P ath Names with Com mands
The Root Directory
Sample Device Names in the /dev Directory
Representing Permissions with Characters
Sample P ermissions for Ordinary Files
R epresenting Perm issions
Reading a Directory
Searching Directories
Links to a File
Sam ple File
Logical Files and Physical Locations
The Structure of a 40-Megabyte W inchester Disk
The Structure of a F ile Syste m
Creating a New Process with an exec or fork
Sample Entry in the I etc/passwd File
Sample .profile File
Shell M etacharacters
Com mon Filters
Sample nroff/troff Code
Sample Formatted Line
Sam ple Use of Macros
Sample Formatted List
Document Production Phases and Tools
Sample Docum ent with Formatting Instructions
Sample Formatted Docu m ent
Su m mary of Basic Syste m Co m m ands by Category

PAGE

1-4
2-1
2-4
2-4
2-5
2-5
2-6
2-7
2-8
2-9

2-10
2-1 1
2-13
2-13
2-14
2-16
2-1 7
2-18
2-2 0
2-22
2-2 3
2-24

3-2
3-5
3-7

3-10
3-14

4-2
4-2
4-3
4-2
4-4
4-5
4-6

A-1

Audience

CHAPTER 1

INTRODUCTION TO XENIX

This overview is intended for new XENIX users who want a basic knowledge of XENIX
and for experienced users who want a list of com mands and program ming tools. This
overview is the XENIX manual you should read first. It introduces you to the XENIX
operating syste m and to the full set of XENIX manuals. After you have read this
manual, you should understand what an operating syste m is, be familiar with basic
XENIX concepts and term inology, have an overall view of what is included in the
syste m, and understand what information is presented in each m anual in the set of
XENIX manuals.

Chapters

This overview has these chapters and appendixes:

1. Introduction to XENIX -- an introduction to the Overview of the XENIX 286
Operating System. It describes the book's intended audience and chapt ers,
presents operating syste m concepts, and briefly describes the history and features
of the XENIX operating syste m.

2. Files and File Systems -- description of ordinary files, directories for organizing
files, special files (devices), file protections, tools for working with files, and the
new file syste m.

3. Running Programs -- introduction to programs and processes. This chapter
explains what happens when you run programs, from syste m startup to login to
executing com mands.

4. Text Processing -- brief description of tools for people who prepare docum ents for
printing or typesett ing.

5. Programming -- introduction to XENIX program m ing concepts, including the C
program ming language, standard function libraries, syste m calls, supporting tools,
shell program ming, and custo mizing XENIX.

A. Basic System Commands -- brief definitions of the com mands in the B asic Syste m.

B. Text Formatting Commands -- brief definitions of the text formatting com m ands
in the Extended Syste m.

C. Programming Tools -- brief definitions of the com m ands, libraries, and syst e m
calls i n the Extended Syste m.

D. Related Publications -- a list of related Intel publications and suggested readings.

1 - 1

Introduction to XENIX XENIX 2 86 Overview

The Basic System and t he Exte n ded System

Intel has divided the XENIX operating syste m into two different products to satisfy
different user require ments. These products are the Basic System and the Extended
System.

The Basic System

The Basic Syste m is intended for all users. It has all of the things needed to run
application software and to administer the system. It also has general-purpose tools like
the ed and vi text editors, electronic com munications, and many co m m ands. These
manuals accompany the Basic Syste m:

• Overview of the XENIX 286 Operating System. This m anual is intended for all
XENIX users. It describes operating systems in general and XENIX in particular,
covering important concepts such as files and file syste ms, the shell, and
co m mands. Program m ing tools are introduced for progra m m ers, and t ext
processing features are described for WI"iters and text pi"ocessors.

• XENIX 286 Installation and Configuration Guide. This manual is foi" the syste m
administrator". It gives co mplete instructions for installing XENIX softwai"e fro m
5!-inch and 8-inch flexible disks. The section on configuration explains how to
add devices to the syste m and re move devices fro m it.

• XENIX 286 User's Guide. The user's guide is intended for all users of the syste m .
It has brief tutorials that introduce basic concepts and com mon co m m ands, and it
has full chapters on the ed text editor, vi text editor, electronic mail, Bourne shell
(sh), and be calculator.

• XENIX 286 Visual Shell User's Guide. This guide explains how to use the visual
shell, which is a user interface based on menus. The menus list com mon functions
and application software programs that the syste m adm inistrator has added.

• XENIX 286 System Administrator's Guide. This m anual is for the syste m
administrator. It describes the procedures that the syste m administrator perfor ms
on a regular basis, such as administering users, making back-up copies of files, and
monitoring syste m use.

• XENIX 286 Communications Guide. This manual is for the syste m adm inistrator.
It explains how to set up and ad minister a M icnet or uucp co m municat ions
network.

• XENIX 286 Reference Manual. This manual is intended for anyone who wants
technical information or a detailed list of options for different co m mands. It
su m marizes the syntax and options of each com mand in the Basic System. It also
has reference information about files and devices.

1-2

XENIX 286 Overview Introduction to XENIX

The Extended System

The Extended Syste m is made up of software development tools and text form atting
tools. The software development tools include utility programs, standard C libraries,
system calls, a C compiler, an assembler, a linker, a loader, a debugger, a lexical
analyzer, and a compiler-co mpiler (a program that generates a compiler). The text
formatting tools include .co m mands for improving writing, mm (m e morandu m) m acros,
and standard nroff and troff programs. The mm macros are codes that you use to
prepare me mos, letters, reports, and other docu ments. The nroff program form ats
documents for a printer, and the troff program formats docu ments and prints the m on a
phototypesetter.

These manuals are part of the Extended System:

• XENIX 286 Programmer's Guide. This m anual is int ended for applications
program mers. It describes these important program ming tools: cc (C compiler),
lint (C program checker), make (a program maintainer), SCCS (a source code
control syste m), adb (a program debugger), as (an asse mbler), lex (a lexical
analyzer generator), yacc (yet another compiler-compiler), and m4 (a m acro
processor). Appendixes discuss C language portability and give reference pages
for program ming commands.

• XENIX 286 C Library Guide. This manual is intended for program mers. It
describes syste m calls and standard libraries of C subroutines. It covers standard
I/0 functions, screen processing, character and string processing, process control,
pipes, signals, syste m resources, and error processing. Appendixes give reference
information such as the asse mbly language interface, program ming differences in
this release, and reference pages for individual subroutines, syste m calls, and file
formats.

• XENIX 286 Device Driver Guide. This manual is intended for a program mer who
writes device drivers. Chapters cover the kernel, si mple character device drivers,
term inal device drivers, block device drivers, instructions for adding drivers to the
configuration, designing and debugging hints, and drivers supplied with XENIX.
Appendixes give related reference information.

• XENIX 286 Text Formatting Guide. This manual is intended for writers who want
to prepare manuscripts for printing or phototypesetting. It gives an overview of
text processing, describes writ ing and editing tools, explains how to use m acros,
nroff, and troff, and shows how to format tables and mathe m atics.

1-3

Introduction to XENIX XENIX 2 86 Overview

What Is a n Operat ing Syste m?

An operating system is a set of programs that manage the hardware resources of a
computer and provide useful services. It has three basic co mponents: the kernel, a set
of utility programs, and a com mand interpreter.

When you want to work on a computer, you need to send data from one device to
another. For example, if you are writ ing a letter at your terminal, you need to store it
on a disk. Later, you may want to print it on a printer. To complicate/ m atters,
someone else may want to use the printer at the same t ime. Clearly, the resources of
the computer syste m have to be shared. These are som e of the reasons that the
computer has an operating syste m.

Hardware Devices

Since the operating system coordinates the activities of the hardware, it is useful to
identify the functions that different pieces of hardware perform.

A typical computer syste m has a CPU (central processing unit) plus several hardware
devices, such as terminals, disks, memory, printers, and tape drives (see Figure 1-1).

1-4

CPU

Fl exi b le
D i skette

1©©1
Tape

Figure 1-1 . Hardware Devices

Termi na l

F-0321

XENIX 286 Overview Introduction to XENIX

The hardware devices serve these functions:

• CPU. The CPU does all of the processing. It reads instructions one by one and
executes them, performs necessary logic operations, and makes mathe m atical
calculations.

• Terminal. The terminal is the device you use to com municate with the computer.
It has a keyboard so that you can enter information and a screen that displays
what you type.

• Disks. Disks store programs and data for fast and easy retrieval.

• Memory. Memory is an area where data is stored while it is processed.

• Printers. Printers produce a copy of data on paper.

• Tape drives. Tape drives store copies of programs and data on tape.

The Kerne l

The kernel is a software program that interacts directly with computer hardware. When
the system ad ministrator starts the computer, the kernel is loaded into memory from
disk storage. It re mains there as long as the computer is running and oversees all of the
activities of the computer syste m. When you give com mands or run applicat ion
software, these programs may use syste m calls to ask for services fro m the kernel. For
example, each time a program wants to read a file, it sends a read system call to the
kernel.

In a multiuser computer system, several people share memory, printers, and other
computer resources. It is the kernel that gives each person exclusive use of a resource
for a period of ti me. The kernel's function is to do this so effic iently that users are
unaware that the resources are being shared.

A kernel typically performs these functions:

• Mass storage manage ment. A computer syste m stores a large amount of data on
disks. The kernel maintains some form of file syste m on disks to keep track of all
this data so that it can be located and used.

• Process manage ment. In a co mputer system, m any processes may be running at
the same time. The kernel gives each process a share of processing t ime and
keeps track of each process.

• Memory manage ment. Any computer syste m has a certain amount of me mory and
that memory often has to be shared by several processes. The kernel gives each
process an area in memory and keeps one process from interfering with another. If
a process needs more memory than is available, the kernel temporarily moves the
process out of memory and onto disk until it is ti m e to bring it back into memory.
This technique is called swapping.

1-5

Introduction to XENIX XENIX 2 8 6 Overview

• Device m anage m e nt . Each device i n a c o m pu t e r syst e m h a s spe c i a l
characterist ics that the kernel has t o understand t o send inform ation to and from
devices. In the kernel, software programs called device drivers com municate with
devices. When a program uses a syste m call, the kernel selects the appropriate
device driver.

• Error checking. The kernel constantly checks the operation of the syst e m and
displays error messages when proble ms occur.

• Accounting. A multiuser operating system normally keeps some kind of records of
how resources have been used. These records may be the basis for billing for
computer t i me or for evaluating computer use.

Uti l i ty Prog rams

Some people speak of the kernel as the operating system, but the kernel is usually
acco mpanied by a set of utility programs that you can run to create files, copy files, and
perform other useful functions. Throughout this manual, these programs are considered
part of the operating system.

One type of program that comes with an operating system is a text editor, which is a
tool that you use to type programs, reports, and other text. A text editor has com mands
for adding, changing, and deleting lines of text.

Other programs that are usually available are program ming tools, such as standard
software libraries, compilers, linkers, loaders, and asse mblers. Tools for checking and
debugging code are so metimes included.

A Command Interpreter

You request services from the operating system by giving com mands. Every operating
system has at least one co m m and interpreter that takes your co m m ands so programs
can be executed.

1-6

XENIX 286 Overview Introduction to XENIX

What Is t he XENIX 286 Operat i n g System?

XENIX 286 is Intel's value-added version of the XENIX operat ing syste m released by
Microsoft Corporation. Microsoft's XENIX, in turn, is a value-added version of the
System III UNIX operating syste m developed by Bell Laboratories at AT&T. XENIX 286
also includes features developed by the University of California at Berkeley. XENIX
286 supports multiple users and mult iple tasks. It has all of the components of standard
operating syste ms--a kernel, ut ility programs, and a co m mand int erpreter--with
features that many others do not have.

The XENIX Kernel

The XENIX kernel performs all of the functions that a typical operating syste m kernel
performs. It manages mass storage, processes, memory, and devices, and it checks for
errors during operation. The syste m administrator can turn process accounting logs on
or off and clear the m as desired.

The XENIX kernel has these important features:

• Standard syste m calls. Program mers can use over 60 different syste m calls to
request services from the kernel. These syste m calls include all those provided by
UNIX System III.

• Speed. The speed of the kernel is driven by the speed of the processor, and the
XENIX 286 system runs on Intel's iAPX 286 m icroprocessor, which represents the
leading edge of microprocessor technology.

• Small size. The XENIX kernel has only 10,000 or so lines of code.

• High-level language. Most of the kernel is written in the C program m ing language
rather than in asse mbly language, so the operating syste m can run on many
different computers.

• Hierarchical file system. XENIX has a hierarchical file syste m so you can
organize your files of inform ation. Intel has redesigned the file system to increase
processing speed. Chapter 2 describes the new file system.

• Devices treated like files. You can send data to devices and take data from the m
just as if they were ordinary files. This is called device independence.

• Separate code and data. Program code and data are kept in separate areas of
memory, which is efficient since several users m ay share one copy of the code.

• Buffer manage ment. Buffers are areas where data is stored when it is brought
from a disk. With Microsoft's exported buffer manage ment technique, the kernel
has access to buffers that are outside its primary data segment. W ith Intel's
enhancements, programs are loaded directly into memory, and buffer contents are
left undisturbed. Programs are thus loaded faster and inform ation in the buffers
can continue to be used.

• Device drivers. Intel releases XENIX 286 with device drivers for terminals,
Winchester disks, flexible disks, and tapes, plus a guide to writing device drivers so
you can add appropriate hardware devices to your system.

1-7

Introduction to XENIX XENIX 2 8 6 Overview

Uti l ity Prog rams

Together, the Basic Syste m and the Extended Syste m offer over 200 utility programs.
You can create additional functions without writing C programs if you take advantage
of tools called pipes (they connect the output of one program with the input of another)
or write shell programs using a shell com mand interpreter.

The utility programs are all stored on a disk, and you run them by giving com mands to a
co mmand interpreter called a shell. In m any discussions of XENIX, the terms
"command", "program", and "utility" are used interchangeably.

The utility programs for the Basic System are listed in Appendix A, and the utility
programs for the Extended System are listed in Appendix B and Appendix C.

Comma nd Interp reters

A XENIX co m m and interpreter is called a shell. You co m municate with the operating
system by typing commands that the shell interprets. For example, if you want the
operating syste m to print a calendar, you give the cal co m mand and the shell responds
to it.

In some operating syste ms, the co m m and interpreter is part of the kernel and cannot be
changed easily, but in XENIX it is a separate C program that can be modified or
replaced by another C program. The Basic Syste m has three different shells: the
Bourne shell, restricted shell, and visual shell. The Extended Syste m adds the C shell.
These shells are discussed in Chapter 3 .

1-8

XENIX 286 Overview Introduct ion to XENIX

Who Uses t he XENIX Operat i n g System?

Everyone on the computer uses the operat ing system, but people work with it in
different ways. Users typically fall into one of these categories: users who run
application software, the syst e m adm inistrator, applicat ion program m ers, syste ms
program mers, and writers and text processors. XENIX 2 8 6 gives each of these types of
users tools to make their work easier and to improve their final products.

• Users who run application software. M any users run application software, such as
word processing or a spreadsheet program. These users may be aware of the
operating system only when logging on the computer (logging on is typing your
name and giving your password). This is especially true if you use a visual shell
that lists applications and functions on a menu. Users who run application
software often use XENIX's office tools, such as electronic m ail, personal
calendars, and a desktop calculator. These tools are in the Basic System.

• Syste m ad ministrators. The syste m administrator is the person responsible for
maintaining the computer and its software. The syste m adm inistrator needs to
understand system operations very well and to know how to install XENIX, add
devices, add users, monitor syste m use, make duplicate copies of data, t ailor the
environment, solve syste m proble ms, and set up co m municat ions net works.
Administering the system has been si mplified by new co m mands for adding users,
re moving users, making syste m backups, and other com m on tasks. Procedures for
the syste m ad m inistrator are outlined in the XENIX 286 Installati o n and
Configuration Guide, the XENIX 286 System Adm inistrator's Guide, and the
XENIX 286 Communications Guide. All of these manuals are in the Basic System.

• Application program mers. Application program mers write software such as
general ledgers and spreadsheets. Application program mers norm ally use the
operating system's text editors and com m ands for working with files. To do
program ming other than shell program m ing they need the Extended System, which
has co m m ands for developing software, libraries of standard functions, syste m
calls, and programming tools. Program mers who develop software o n one XENIX
syste m can usually put it on several machines with only minor changes.

• Syste ms program mers. Syste ms program mers change the operating syste m to
meet the require ments of a particular product. They add device drivers and add or
change utility programs. The XENIX 286 Device Driver Guide in the Extended
Syste m has instructions for writing device drivers plus examples of different
drivers.

• Writers and text processors. Writers and text processors produce docu ments such
as programs, memos, letters, and books. These users can create docu ments with
the XENIX text editors. They need the Extended Syste m to print or typeset
docu ments with standard features such as centering and holding.

1-9

Introduction to XENIX XENIX 2 86 Overview

The H istory of XENIX

XENIX has evolved over more than a decade and has been used successfully in many
different environments.

UNIX

The history of XENIX begins w ith the develop m ent of U NIX at AT&T's Bell
Laboratories.

In the late 1 96 0s, Ken Tho mpson and others at Bell Laboratories were part icipating in a
project that involved a large, sophist icated, mult iuser operating syste m called Multics
on a large mainframe co mputer fro m General Electric Corporation. When Bell
Laboratories left the project, Thompson want ed to move a part icular program called
Space Travel fro m the mainframe to a dedicated PDP-7 computer, so he created a new
operating syste m for it. Since the new operating syste m was for single users, it was
named UNIX as a play on the name Multics.

The first version of UNIX was written in assembly language. It was a personal effort by
a program mer who wanted a syste m that made it easy to write, test, and run programs.
He also favored elegance of design, and the li mited size of his develop m ent computer
encouraged econo my and elegance. By 1 9 7 1 , the new operating syste m w as being used
within Bell Laboratories on Digital Equipm ent Corporat ion's PDP- 7 and PDP-9
computers.

The second version of UNIX included software written in a program m ing language called
B. This language was used when UNIX was moved to Digital Equip ment Corporation's
PDP- 1 1/20 fam ily of minicomputers in 1 9 7 1 . The PDP-1 1/2 0 was purchased to support
the develop ment of a text formatting package.

The third version of UNIX came in 1 973. It was a complete rewrit ing of the operating
system in C, which was a revision of B. C was a good choice for an operat ing syste m
because i t was a high-level, structured language and yet it was able t o m anipulate small
units of data efficiently. This version incorporated mult iprogram ming, a technique that
keeps several programs in me mory at once so that the central processing unit is used to
advantage. The system ran on several co mputers in the PDP- 1 1 family.

Since C was a high-level language, UNIX could run on more than one computer. The
fourth version of UNIX elim inated all code that was specific to the PDP- 1 1 fam ily of
computers. This new version was produced in 1977 and was moved onto the Interdata
8/3 2 , which was quite different fro m the PDP-1 1s.

Through the 1 9 7 0s, UNIX was used mostly within Bell Laboratories, but by 1 9 7 5 AT&T
began to license it, and other research agencies began to work with it. M any colleges
have licenses to use UNIX, and many co mputer scientists have becom e familiar with it.

Today, several versions of UNIX are in circulat ion. The first UNIX syste m to be
licensed com mercially was Version 7 , a multiuser syste m released in 1 9 7 8. An update
was introduced in 1 9 8 1 as Syste m III. A subsequent version, Syste m V, was released in
1983. There was no System IV. The name UNIX re mains, even though the system now
supports mult iple users.

1-10

XENIX 2 8 6 Overview Introduction to XENIX

UNIX became popular at Bell Laboratories, then gained supporters in research centers
and universities, then attracted the attention of software developers and computer
manufacturers. It has beco me popular because of many valuable features, including

• Portability. One feature of UNIX that truly sets it apart fro m traditional
operating systems is portability. Most operating syste ms have been tied to a
specific computer or family of computers because they were written in asse mbly
language that only those computers could use. The UNIX operating syste m is
written almost entirely in C, a high-level language that can run on many different
computers. Application software developed on one computer can run on m any
computers. It is sometimes necessary to make minor changes to the software, but
it is not necessary to rewrite much of it.

• Multiuser support. UNIX is a multiuser system, which means that several users
can work on a system at one time.

• Multitasking system. UNIX is a multitasking syste m, which m eans that several
users can run processes si multaneously, and that an individual user can run several
processes in the background while working at the terminal. For example, you can
edit a program at the terminal while you print a report on the printer.

• UNIX tools. The UNIX philosophy is to provide m any small tools that can be
changed or combined to perform new functions. You can create new tools without
writing C programs by writing shell scripts (files of shell co m m ands, which can
include statements from the shell program ming language) or by using pipes. Pipes
are tools that connect the output of one program with the input of another.

• Office tools. Offic e t ools such as i ndividual calend ars, user- t o - u s e r
com munications, and a desktop calculator are all part o f the UNIX syste m.

• Program m ing tools. UNIX tools have evolved over time in response to specific
needs of program mers. As program mers have worked w ith the system, they have
corrected errors, added new features, and created new utility programs.

• Networking. Several UNIX syste ms can be linked together so that data, including
electronic mail, can be sent from one syste m to another.

• Access to status information. UNIX makes status information readily available so
any user can check who is on the syste m, what processes are running, and what
printers are busy.

• Groups. When people work on the same projects, they often need to share files.
With UNIX this is encouraged because files can be assigned to groups of users.

• Device independence. D evices, such as printers and terminals, are accessed like
files, so you can send data to a device just as you send it to any file. Likewise,
you can bring data from a device.

1 - 1 1

Introduction to XENIX XENIX 2 8 6 Overview

M icrosoft's XENIX

Microsoft's XENIX is an enhanced version of U NIX derived from UNIX Syste m III. In
earlier releases, valuable features such as interprocess com munication with se maphores,
performance improvements for m icroco mputers, and file locking were added. File
locking is important because it regulates changes to a file. If one user is changing a
part of a file, all other users can be locked out of the file until the change is complete.
These enhanc e m ents continue to be i m port ant to c o m m er c ial u s e rs and t o
manufacturers who use XENIX o n microcomputers.

Intel moved the previous release of XENIX from the 8086 microprocessor to the iAPX
286 m icroprocessor, and M icrosoft used the new product as the basis for its R elease 3 of
the operating system. Microsoft also added m any features that benefit the users who
run application software, syste m ad ministrators, application program m e rs, syste ms
program mers, and text processors.

New Microsoft Features in the Basic System

The current release of XENIX includes these new features:

• Micnet com munications. A new co m munications package called M icnet has been
integrated with a new mailer based upon the Berkeley mail program . With M icnet
you can send mail between local m achines over serial lines, execute remote
com mands, and transfer files fro m one machine to another. Although the
traditional uucp network is still available, this new M icnet network is intended to
replace ·uucp for local machine com munications.

• Syste m adm inistration co m mands. Several com mands have been added to make
syste m administration easier. For example, a new sysadmin com m and presents
options for copying and recovering data on a menu, and a ·new acctcom command
prints accounting information.

• Password adm inistration. A new com mand, pwadmin, has been added so the
syste m adm inistrator can force users to change their passwords at regular
intervals to reduce the chance that an unauthorized person c an d iscover
passwords. The pwcheck com mand has been added so the syste m ad m.inistrator
can check the etc/passwd file.

• Secure startup sequence. The startup sequence prevents a user from going into
single-user mode without knowing the syste m ad ministrator's passw ord.

• Visual shell. A new shell, called a visual shell, has been added for users who find it
easier to select menu options than to re me mber com mands. The most com mon
processes are listed on the menu, and the syste m administrator can add or change
menu selections. This user interface is si milar to the Mult iplan interface.

• Batch execution at a specified t i me. Earlier releases included the at com m and,
which you can use to place com mands in a queue and define when they are to be
executed. This release adds the atq co m mand so you can check the queue and the
atrm com mand so you can re move a com mand from the queue.

• Assignable devices. You can use the assign and deassign com mands to restrict a
device for your exclusive use. For example, you may insert a flexible disk in a
drive and prevent others fro m using the drive while it is inserted.

1-12

XENIX 286 Overview Introduction to XENIX

New Text Formatting Features

The Extended Syste m includes these new text formatting features from Microsoft:

• New macros •. Macros are codes that you can use to prepare docum ents for printing
or typesetting. The new mm me morandu m macros are superior to the ms macros
provided in an earlier release.

• New com mands. Writers and text processors can use several new com mands to
format t ext , catch for matting errors, and im prove the lit erary quality of
docu ments. They can prepare text with constant width for typesetting with the
cw and cwcheck com mands, cut out selected columns of text with cut, merge
selected colu m ns of t ext with paste, check co m m ands for typ e s e t t ing
mathe matical expressions with eqncheck, mark differences between text files with
diffmk, and locate awkward phrases with diction.

New Programming Features

The Extended Syste m includes these new program ming features from M icrosoft:

• Fixed stack analysis utilities. New utility programs analyze C programs to help
determine stack size requirements, which is useful for those who develop software
for fixed stack machines such as unmapped iAPX 86, iAPX 2 8 6, and some M 6 8 0 0 0
syste ms.

• MS-DOS file access ut ilities. Com mands that allow MS-DOS files and directories
to be read from and written to are available. These co m m ands will be useful to
those whose computers can operate both MS-DOS and XENIX. Access to IBM DOS
1. 1 and 2.0 form at disks is supported.

• Source code control system (SCCS). The new cdc com m and enhances the SCCS
syste m for controlling source code. You use source code control com mands to
monitor changes to source files. The cdc com mand changes the delta co m mentary
of an sees delta.

• Syste m calls. This release of the product has all of the syste m calls of the
previous release (which was based upon UNIX Version 7), all of those in U NIX
Syste m III, and several new ones.

These new syste m calls let unrelated processes share data: sdget, sdfree, sdgetv,
sdenter, sdleave, sdwaitv. The chsize syste m call truncates files to a given length,
which is important to efficient execution of so me FORTRAN write operations.
The nap syste m call lets a process sleep for less than one second, which is useful
for interactive, screen-oriented software.

• Language tools. This release has a new C compiler that has U NIX Syste m III
language extensions and supports large model processes (multiple data segments
and text segments). This compiler gives you the option of using the expanded
instruction set for the iAPX 286 microprocessor. The release also has cref and
xref com mands so you can generate cross-reference listings from C source code.

1 - 1 3

Introduction to XENIX XENIX 286 Overview

• Floating-point support. XENIX includes a floating-point emulator and support for
the 80287 floating-point hardware.

• Exported buffer manage ment. Buffers are areas in m e mory that hold data
temporarily while the kernel is waiting to use it. Computer systems use buffers to
make computer operation more efficient. Data can be kept ready and waiting so
that it can be used as soon as the CPU or some device is ready. M icrosoft
increased the a mount of buffer space available by giving the kernel access to
buffers in segments outside its own data segment.

Berkeley En han cements

Researchers at the University of California at Berkeley became involved with UNIX and
moved it onto the VAX computer created by Digital Equipment Corporation. As they
have worked with the product, they have added features to make UNIX easier to use or
to give it additional power. Microsoft's release of the XENIX 2 8 6 product has several
features developed by the University of California at Berkeley.

These Berkeley co m m ands are included in the Basic Syste m:

• finger- find infor mation about users

• head - print the first few lines of a file

• lc - list directory contents in colu mns (Berkeley's enhanced directory listing)

• mail - send, read, or dispose of mail

• more - display information one screen at a t ime

• tset - set term inal modes

• vi - invoke the screen-oriented text editor

These Berkeley co m mands and libraries for program mers are included in the Extended
System:

• csh - invoke the C shell

• ctags- create a tags file for the ex and vi editors

• curses- perform screen and cursor functions

• dbm- perform data base functions

• mkstr- create an error message file and change C source

• soelim - make word processing documents portable to other UNIX-based systems

• strings - find the printable strings in a file

• termcap - perform device-independent terminal functions

• xstr- extract strings from C programs to imple ment shared strings

1- 14

XENIX 286 Overview Introduction to XENIX

Inte l's Contribut ion to XENIX

Intel has entered the XENIX market as a technological leader. Intel invented the
microprocessor and offers XENIX on systems with the iAPX 2 86 microprocessor, one of
the fastest microprocessors on the market.

Intel gives its OEMs (original equipment manufacturers) the opportunity to put their
XENIX-based products on the best technology at every level of integrat ion--fro m
components to boards to co mplete syste ms.

Intel's goal is total performance--performance that is based on the latest technology,
the most effective software, and the most successful users:

• Latest technology. Intel's strategy is to co m bine the latest U N IX-based
technology with the latest silicon technology. Its iAPX 2 86 microprocessor is one
of the fastest microprocessors available and m e m ory manage m ent has been
integrated into the chip.

• Effective software. To improve software efficiency, Intel has created a new file
syste m that reduces the amount of t ime spent searching for data. It is described
in Chapter 2 .

Intel has rewritten the dump and restor programs so that they do more error
checking and give more options. The restor com mand now has an option that
verifies that files have been restored successfully. The dump co m mand has an
option that tells you when the last dumps were made and what the levels were.

• Successful users. Intel recognizes that users need a basic understanding of XENIX
plus specific information about functions they perform on their j obs. As a result,
the new manual set includes books that give the big picture as well as books that
are oriented toward particular users.

This manual atte mpts to help you understand the operating syste m and learn basic
concepts and terminology.

Three books give the syste m ad ministrator detailed information. The new XENIX
286 Installation and Configuration Guide walks the adm inistrator through installing
the syste m and adding and re moving devices such as printers, term inals, and disk
drives. The new XENIX 286 System Adm inistrator's Guide outlines a syste m
administrator's responsibilities and has how-to instructions for overseeing daily
operations and solving syste m proble ms. The XENIX 286 Communications Guide
explains how to set up and ad minister Micnet and uucp com municat ions networks.

The new XENIX 286 Device Driver Guide gives systems program m ers instructions
and examples so that they can create their own device drivers.

Intel has also simplified the installation process.

1-1 5

Ord i nary F i les

CHAPTER 2

FILES AND FILE SYSTEMS

All of the data that you and other users produce is kept in files. Technically, an
ordinary XENIX file is just a series of bytes stored on a m ass storage device under a
specific name. The bytes are regular ASCII text (letters, nu mbers, and characters such
as punctuation marks), or they are binary codes (codes representing inform ation in a
form that cannot be displayed directly on a screen).

The Content of an Ordi nary Fi l e

You create an ordinary file by using a text editor, compiling a program, o r running an
application program that creates files. It contains only what you put in it. For
example, an ordinary file may have a source program, an executable program, a letter,
or payroll data. XENIX does not keep record counts or use a special marker to show the
end of a file. Figure 2-1 has an example of an ordinary file. Notice that it has nothing
but text.

MEMO

TO
FROM
SU BJECT

Tea m
Mary
Revi sed Sched u les

Please g ive me your revi sed sched u l es by Fr iday.

Figure 2-1 . Sample Ordinary File

2-1

Files and F ile Systems XENIX 2 86 Overview

The Stru ctu re of an Ordi nary F i le

XENIX does not expect data to be stored in any particular form at. It is just text. When
you create a file, you may give it a format, then use that format when you write
programs. For example, the /etc/passwd file has one record for each user. The record
has seven fields of information and they are separated by colons. The sample line below
illustrates the format of the file. (If you are curious about the meaning of the fields,
see Chapter 3 .)

mary : j9Hz 1 FzBYSOVw:20 1 : 200: M Day, Rm 2 1 ,x5006,273-5543 :/usr/mary :/bi n/sh

The XENIX kernel is not aware of this format, but programs that read the /etc/passwd
file need to understand it.

The Name of an Ordi nary Fi le

These are the rules and conventions that apply to file names in XENIX:

• When you want to work with a file, you identify it by name. The kernel keeps
track of each file by assigning it a unique nu mber, called an inode number, but it is
not necessary for you to use the nu mber.

• The name of a file can have 1 to 14 characters.

• The name can include any keyboard character except a slash (/}. However, the
reco m m ended procedure is to avoid blanks, i nv i s ible charact ers such as
BAC KSPACE, and these special characters, which have a special meaning to the
com m and interpreter:

? * \

• Both uppercase and lowercase letters can be used, and they are different
characters. For example, "Me mo. to.Jack" is not the same as " m e mo. to.jack".

• If a file name begins with a dot, it will not appear on your list of files unless you
use a special option of the co m m and that lists files (Is -a).

• You m ay use dots in file names. For example, " m e mo. to. j ack" uses dots. To
XENIX, these dots in a name are just characters, but some characters with dots
are meaningful. XENIX uses several co mbinations of a dot and a character at the
end of a file name to identify a part icular kind of file. These combinations are
called suffixes. For example, program mers should use a " .c" suffix for programs
they write in the C program m ing language. These are som e of the suffixes that
are meaningful to XENIX:

2-2

.a A l i brary archive

.c A program written i n the C progra m m i ng l anguage

.h An i nclude f ile for the C progra m m i ng language

.I I nput for lex
.o The object code created by a com piler or assembler
. s A program written in assembly l anguage
.y I nput for yacc

XENIX 286 Overview Files and File Systems

• In any directory, a file name must be unique. For example, if you have a directory
named " memos", it can have only one file named " memo.to.j ack". However,
someone else could have a file named " memo.to.jack" in some other directory.
Directories will be explained in detail later in this chapter.

The S ize of an O rd i nary Fi le

When you create a file, you cannot define its maximum size. The file can continue to
grow up to a limit of four m egabytes as long as the disk has space for more data. The
system administrator can increase this maximu m size with the ulimit com m and built
into the Bourne shell, and anyone can decrease the maxi mum size with that com mand.

Directories

As the number of files increases, it beco mes important for you to have some way of
organizing them so that you can locate the m easily. The XENIX solution is to let you
organize your own files by creating a hierarchical structure of directories.

A directory is just a list of files and their unique file nu mbers, which are called inode
nu mbers. The organization of directories is discussed in this section. Inode nu mbers are
explained later in the chapter.

Log i n Di rectories

When the syste m administrator adds you to the system, a login directory is created for
you. This is the directory where you will begin each time you work on the com puter. It
is someti mes called the home directory.

Imagine that the syste m ad ministrator adds a new user named Kay, gives her the login
name "kay", and defines "kay" as her login directory. When she logs in, she is placed in
her "kay" directory.

You may place files of information in your login directory, or define subdirectories so
that you can organize your files, or both. For example, Kay expects to create few files
so she sees no reason to use subdirectories. Since she will have few files, she will keep
all of them in her login directory and scan the list when she wants to work with one.
Suppose that she creates two me mos, " m ary.4.6" and "sue.4.8", in her login directory.
Figure 2-2 shows what her hierarchy would look like. Figure 2-3 shows what Kay sees
when she uses the directory listing com mand (Is) to look at her login directory. The "$"
is a standard prompt that means you can give com mands.

A hierarchy is often referred to as a tree structure because it looks like an inverted tree
with branches.

2-3

Files and File Systems XENIX 286 Overview

$ Is
mary.4.6
sue.4.8
$

2-4

mary.4. 6 sue.4.8

F-0307

Figure 2-2. Sample Hierarchy of Login Directory without Subdirectories

Figure 2-3. Sample Contents of Login Directory without Subdirectories

XENIX 286 Overview Files and File Syste ms

Subd i rectories

If you have a large nu mber of files, you may use subdirectories to group related files. A
subdirectory is a directory within a directory. For example, i m agine that Mary plans to
create me mos, letters, and programs. She can create three separate directories,
"memos", "letters", and "programs" in her login directory, then place files in the
appropriate subdirectory. Figure 2-4 shows her hierarchy after she has created t wo
me mos, two letters, and a program called "fc.c". Figure 2-5 shows what Mary actually
sees when she uses the Is (list) com mand and the lc -R com mand to look at her login
directory. The Is co m mand shows only the contents of the directory you are in. The lc­
R command shows the contents of that directory plus the contents of each subdirectory.
Notice that the shorthand name (.) is used for the working directory.

team .5 .1 5
tea m .5 .20

Figure 2-4. Sample Hierarchy for Login Directory with Subdirectories

$ Is
l etters
memos
progra ms

$ 1c -R
l etters

./l etters :
a .jones

./memos :
team.5 . 1 5 .

./programs :
fc.c
$

memos progra ms

k. brown

team. 5 .20

Figure 2-5. Sample Directory List

F-0308

2-5

Files and File Syste ms XENIX 2 8 6 Overview

Subtrees

A subtree begins at a directory and includes all of the files and directories under it. For
example, imagine that Jack is added to the system and that he creates directories for
letters, memos, and newsletters. He wants to keep employee newsletters separate from
customer newsletters, so he creates subdirectories for the m under his "newsletters"
directory. F igure 2-6 shows the "newsletters" subtree of the "jack" hierarchy.

F-0309

Figure 2-6. Sample Subtree

The Parent D i rectory

The directory i m mediately above another directory is called its parent. For example, in
Figure 2-6, "jack" is the parent to the "newsletters" directory, and the "newsletters"
directory is the parent to the "employee" and "customer" directories. A shorthand name
for the parent of a directory is " •• ", which is pronounced "dot dot".

2-6

XENIX 2 8 6 Overview Files and File Systems

The /u sr D i recto ry

As you have seen, each user is allowed to organize files into meaningful hierarchies.
These user hierarchies, in turn, are part of a bigger hierarchy that begins with the root
directory (which is represented by /). Under root are several directories, including one
called /usr. The /usr directory is traditionally the parent of all user directories. Figure
2-7 shows a sample hierarchy for the /usr directory.

F-0 3 1 0

Figure 2-7. Sample /usr Directory with Subdirectories

Fu l l Path Names

Each file in the system has a path name that begins at root and goes through the full
path of directories to the file itself. For example, the full path name of Mary's letter to
A. Jones is

/usr/ma ry/letters/a .jones

Slashes separate the directories when you give a full path name.

Notice that both Mary and Jack have directories with the names "memos" and "letters".
In XENIX that is acceptable because each file has a different path name. W ithin a
directory, each name has to be unique. For example, Mary can have only one "a.jones"
file in her "letters" directory.

2-7

Files and File Syste ms XENIX 286 Overview

Relative Path Na mes

A full path name may see m like a lot to type. Fortunately, you usually do not have to
type the full path name. You can start where you are and give the remainder of the
path, which is called the relative path name. Figure 2-8 illustrates full and relative
path names.

Fu l l path name f rom root (/) : /usr/mary/l etters/a .jones

Rel ati ve path name from /: usr/mary/l etters/a .jones

Rel ative path name f rom /usr: mary/letters/a .jones

Rel at ive path name f rom /usr/mary: letters/a . jones

Relat ive path name from /usr/mary/l etters: a . jones

Figure 2-8. Sample Path Names

Movi n g from Di rectory to Di rectory

When you log in, you begin in your login directory. If you want to work on a file, you
have these choices:

• Give the full path name from root.

• Give the relative path name.

• Use the cd (change directory) com mand to go to the directory that has the file,
then give the file name.

For example, when M ary logs in, she is in her " mary" login directory. If she w ants to go
to her "letters" directory and use the ed line editor to edit the "a.jones" file, she can use
the com mands in Figure 2-9.

2-8

XENIX 286 Overview Files and File Systems

$ ed /usr/mary/letters/a .jones Fu I I path name

$ ed letters/a .jones

$ cd letters
ed a .jones

Rel at ive path name from /usr/mary

Change to l etters d i rectory
Invoke ed to ed it a .jones fi l e

Figure 2-9. Path Names with Com mands

The Worki ng D i rectory

The directory you are in is called your working directory or your current directory. For
example, when Mary goes to her "letters" directory to write a letter, "letters" is her
working directory.

If you forget what directory you are in, you can use the pwd {print working directory)
com mand. For example, if M ary uses the pwd com mand when she is in her "letters"
directory, this results:

$ pwd
/usr/ma ry/l etters

A shorthand name for the working directory is ".", which is pronounced "dot".

The Root D i rectory

Before leaving the subject of directories, you should be aware of the root directory (/),
which has these subdirectories and files:

• /bin

• /boot

• /dev

This directory has the XENIX com mands that users execute most •

This file has the code for a program that is needed to start the
system.

This directory contains special device files •

2-9

Files and File Systems

•

•

•

•

•

•

•

•

•

/etc

nost+found

/mot

/sys

/tmp

/usr

/xenix

/xenix.f

XENIX 2 86 Overview

This directory has com mands that are usually reserved for the
syste m administrator plus files that the syste m adm inistrator
uses.

This directory has libraries of subroutines •

This directory lists directories that are not linked into the file
syste m because of some problem. The entries are placed in this
directory automatically by the fsck com mand that the syste m
administrator uses regularly t o check the integrity o f the file
system.

This directory is normally used for file systems that are mounted
on the root file system.

This directory has the code for the XENIX kernel •

This directory is used for temporary files that are created by
programs. These files m ay be re moved during normal operations
and they are usually re moved each time the syste m is started.

This directory is used for all login directories. It is the ancestor
of all user files and directories.

This file has executable code for the XENIX kernel for the hard
disk syste m.

This file has executable code for the XENIX kernel for the
flexible disk syste m.

Figure 2-1 0 illustrates the contents of the root directory.

bi n boot dev etc l i b lost + fou nd mnt sys tmp usr xen ix xenix.f

F-03 1 1

Figure 2-1 0. The Root Directory

2-1 0

XENIX 286 Overview Files and File Systems

Special Fi les

In a XENIX system, every hardware device is accessed using a special file. Printers,
terminals, disks, tapes, and com municat ion lines are all regarded as files. The
significance of this is that you can send data to a device or read data from a device just
as you would read data from an ordinary file or write data to it. For program mers, this
is one of the most important features of XENIX.

Special files are contained in the /dev directory and only the syste m administrator can
add special files. Device names are fixed by the syste m adm inistrator, but they are
treated like the names of other files. Figure 2- 1 1 gives sample entries for the /dev
directory. Notice that even memory is included in the list of special files, although it is
rarely accessed as a file.

Devi ce Name

/dev/conso le
/dev/mem
/dev/kmem
/dev/nu l l
/dev/rwOa
/dev/rwOb
/dev/tty
/dev/ttya 1
/dev/ttya2

Descri ption

the system ad m i n i strator's term i na l
an i mage of physi ca l ma i n memory
an i mage of kernel data
a d u m my devi ce; output sent to it is d i scarded
a d i sk
a d i sk
a term i na l
a term i na l
a term i na l

Figure 2-1 1 . Sample Device Names in the /dev Directory

XENIX has two kinds of special files, block and character.

Bl ock Special Fi les

Block special files work with one block of data (1 , 024 bytes) at a t ime. Examples are
disks and tapes. A block special file may also be called a structured device. It often
has a character special interface, called a raw interface, which is used by programs that
perform syste m maintenance functions.

Character Special Fi les

A character special file is any special file that does not work with a block of data at a
t ime. Examples are terminals, com munication lines, printers, and m ain m e mory. A
character special file may also be called an unstructured device.

2-1 1

Files and File Syst e ms XENIX 2 8 6 Overview

F i le Access Per m issions

In XENIX, every file belongs to an owner and a group. The owner is the person who
creates the file, and the group is the group the owner belongs to when the file is
created. The owner can give or deny access to anyone except the syste m adm inistrator,
who has access to all files on the syste m. The owner or the syste m adm inistrator can
assign a file to a new owner.

Access Permissio n s fo r Ord i nary Fi les

For each file that you create, you can give or deny read, write, and execute permission
for three different categories of users: yourself, other me mbers of your group, and all
others.

Read Permission for Ordinary Files

Reading a file means looking at its contents. Displaying a file on the terminal, print ing
it, co mpiling it, and copying it are all examples of reading a file.

Write Permission for Ordinary Files

Writing a file means changing it in some way. Adding and changing inform ation are
examples of writing a file.

Execute Permission for Ordinary Files

Executing a file means running it as a program. Most executable files are compiled
programs, and you need execute per mission to run the m. So me executable programs are
shell scripts {programs using XENIX com mands and the shell program ming language).
You need read permission to execute a shell script. If you also have execute perm ission,
you can execute it with the program nam e. For example, you can run a shell script
named "check" with this co m m and if you have read and execute perm ission:

$ check

If you have read permission, but not execute per mission, you can run a shell script with
the sh co m m and. For example:

$ sh check

Set UID and GID

As a user, you have a user ID nu mber (UID) and a group ID number (GID). Whenever you
try to use a file, your IDs and permissions are checked. Occasionally you need someone
else's ID to use a file. For example, you need root's ID to change your password in the
/etc/passwd file, because only root can change that file. Set UID permission on the
passwd co m mand gives you root's ID when you use the com mand. Any executable file,
except a shell script, can set the UID or the GID so that anyone who executes the file
has the effective ID of the owner or the group owner.

2-1 2

XENIX 286 Overview Files and File Systems

Representing Permissions

For each file that you create, you can give or deny read, write, and execute per m ission
for three different categories of users: yourself, other me mbers of your group, and all
others. These permissions may be referred to as the file mode, protection bits, or
permission bits.

Permissions can be represented in two different ways. One way is to show the m with
characters: r for read permission, w for write permission, x for execute permission, s
for set UID or GID perm ission, and a dash (-) for perm ission denied. These permissions
are shown for the owner, other me mbers of the group, and all others. For example,
read, write, and execute permission for the owner, other m e mbers of the group, and all
others, are represented in Figure 2-12 . Permissions are often called the file mode.
Examples of perm issions are shown in Figure 2-13.

Fi l e Mode

r-x--x--x

rwxrwxr-x

rwxr-x---

rwsr-sr-x

r w x r w x r w x

Owner G ro u p Others

Figure 2-12 . Representing Permissions with Characters

Mean i n g

read a nd execute perm issi on for the owner
execute perm iss ion for the g rou p
execute permi ss ion for others

read , write, and execute perm i ssi on for the owner
read , write, and execute perm i ssi on for the grou p
read a nd execute permiss ion for others

read , write, and execute perm i ssi on for the owner
read a nd execute perm i ss ion for the grou p
no perm iss ion for others

read , write, a nd execute permission for the owner
owner's perm iss ions for anyone executi ng the fi l e
read perm issi on for the group
group's perm i ss ions for anyone executi ng the fi l e
read a nd execute perm iss ion for others

Figure 2-13 . Sample Permissions for Ordinary F iles

F-03 1 2

2-1 3

Files and File Systems XENIX 2 8 6 Overview

Permissions can also be represented with these octal numbers:

4 = read
2 = write
1 = execute
0 = deny perm iss ion

Octal nu mbers are part of a nu mber system whose base is 8 , just as decimal nu mbers are
part of a number system whose base is 10 . You add these octal nu mbers for per missions.
The total is 7 for read, write, and execut e perm ission. The total is 5 for read and
execute perm ission. The owner, others in the group, and all others have separate totals.
For example, 7 7 7 means full permissions for the owner, others in the group, and all
others.

If the UID or GID per mission is set, a fourth digit precedes the series. It has one of
these meanings:

4 = set U I D perm i ss ion
2 = set G I D perm ission
6 = set U I D and G I D perm i ssi on

For example, 6 7 1 1 gives UID and GID permission to anyone executing the file, gives full
permission to the owner, and denies permission to others in the group and all others.

Figure 2-14 shows how the two different methods represent the same perm issions.

Characters N u m bers

rwxr-xr-x 755

rwxr-x--- 750

r-x--x--x 5 1 1

rw-rw-rw- 666

rwsr-x--- 4750

2- 14

Mean i n g

read, write, a n d execute perm issi on for the owner
read a nd execute perm i ss ion for the grou p
read and execute perm iss ion for others

read , write, and execute perm iss ion for the owner
read and execute permission for the g roup
no permiss ion for others

read and execute perm iss ion for the owner
execute perm issi on for the group
execute perm issi on for others

read a nd write perm i ss ion for the owner
read and write perm i ss ion for the grou p
read a nd write perm iss ion for others

read , write, and execute perm iss ion for the owner
owner's perm i ssi on for anyone executi ng the fi l e
read and execute permiss ion for the gro u p
n o perm iss ion for others

Figure 2-14. Representing Permissions

XENIX 286 Overview Files and File Systems

Default Permissions

When you first receive your system, these permissions are defined for all ordinary files
created in the /usr directory:

rwxr-xr-x

These perm issions give read, write, and execute permission to the owner, read and
execute perm ission to the group, and read and execute permission to all others. They
are called default permissions because they will be assigned automatically each t ime
you create a file.

The defaults are set with the umask co m m and, which you use to define which
permissions are to be re moved fro m a base. The typical base is full perm ission for the
owner, others in the group, and all others. This is represented in octal nu mbers as 777 ,

and you subtract from 7 7 7 to get the appropriate defaults. For example, the original
default removes write permission for the group and others because this co m mand is in
the /etc/profile file:

$ umask 022

The resulting octal nu mber is 755 (777-0 2 2). It is often desirable to change the defaults.
For example, the system ad ministrator may change the default so files are created with
full permission for the owner, read and execute permission for others in the group, and
no perm ission for others. The octal representation for these permissions is 750 and the
default is created with this co m mand:

$ umask 027

The syste m ad ministrator may place the umask com mand in the /etc/profile file, or you
may place it in your own .profile file.

You can change permissions on your existing files with the chmod (change mode)
com m and. For example, when Mary creates her "a.jones" letter, it has the default
permissions. If she wants to include write permission for others in her group, she can
use this com mand:

$ chmod g + w a .jones

Access Permiss ions for D i rectories

Directories can be read, written, or searched.

Read Permission for Directories

Reading a directory means looking at the contents of the directory file itself. Since a
directory contains only a list of file names and their inode nu mbers, reading it m eans
using the ls com mand to look at the list. Figure 2-15 shows what kind of information is
available to you if you have read permission on a directory. The -i option of the 1s
com m and shows inode nu mbers and file names.

2-15

Files and File Systems

$ I s -i /usr/ma ry
450 l etters
460 memos
475 programs
$

Keep these rules in mind:

XENIX 2 8 6 Overview

Figure 2-15 . Reading a Directory

• Read permission on a directory does not give you access to the contents of the
files in the directory. You can only read the names of the files.

• If you know a file's name and have read per mission on it, you can see its contents
provided you have search perm ission on its directory. You do not need read
permission on its directory.

Write Permission for Directories

Writing to a directory means creating a new file (including a subdirectory) in it or
deleting a file fro m it. It may help to picture the actual contents of the directory file.
Writing to a directory means adding a name to the list of files or re moving a name from
the list.

Keep these rules in mind:

• You do not need write permission on a file to delete it. You just need write
permission on the directory. You will be warned if you try to delete a file without
having write permission, but you can st ill delete it.

• You can change the contents of a file if you have write permission on the file. You
do not need write permission on the directory.

Search Permission for Directories

Directories have search permission instead of execute permission. It is meaningless to
execute a directory, since it is not a program. The "x" is still used as the symbol for
search perm ission.

Searching a directory means going to the directory with the cd (change directory)
com m and or searching through its list of files when a file name is given. You cannot use
a file name successfully unless you have search permission for every directory in the
path. Figure 2 - 1 6 shows how directories are searched when the full path name is
"/usr/mary I me mos/team. 5. 2 0".

2-16

XENIX 286 Overview

Contents of
I (Root)

bi n
boot
dev
etc
l i b

usr
xen ix
xen i x .f

Contents of Contents of
I usr lusrlmary

jack l etters
kay
mary programs

Figure 2-16. Searching Directories

Access Permissi ons for Special F i les

Files and File Systems

Contents of
lusrlmarylmemos

tea m . 5. 1 5
team .5 . 20

F -0 3 1 3

Syste m owners, such as root and bin, own all of the special files. Others usually have
write perm ission for ter minals and printers and no permission for other devices.

Special files for ter minals are usually owned by root when they are not being used. When
you log in, you become the owner temporarily and can set the access perm issions on the
ter minal. When you log off, ownership reverts to root.

Trying to execute a special file is meaningless.

Read Permission for Special Files

Reading a special file means looking at its contents. For example, if you deny others
read permission for your term inal, they cannot read what you are typing. Read
perm ission for a printer is m eaningless.

Write Permission for Special Files

Writing a special file means sending data to it. For example, if you give others write
per mission on your ter minal, they can send messages to your screen. People usually
give others write permission on their terminals by using the mesg com mand to permit or
prevent m essages from reaching the terminal. The mesg y co m mand permits others to
send messages to your terminal and the mesg n com m and prevents others from sending
messages to your terminal.

2-17

Files and File Systems XENIX 2 8 6 Overview

Li n ks to F i les

A file exists so mewhere on a disk and you use its name to work with it. This name is for
your convenience and it is stored in the directory, not in the file itself. XENIX knows
each file by a unique nu mber called an inode number. These facts make it possible for
you to have names for a file in more than one directory and to give a file more than one
name. This is called linking.

Imagine that Mary and Jack are writing a joint letter to R. Smith. They both want to
list the file in their own directories so that they can use the short, relat ive path names.
They accomplish this by having Mary create the file and having Jack use the ln
com mand to create a link to it. He can use the same name for the file or use a
different name. Figure 2-17 illustrates links.

Contents of Mary's
l etters D i rectory

530 a .j ones
546 k .brown
575 r.sm ith
v

L These fi l es have the same i node
nu mber , wh i ch means they a re
the same fi l e .

Figure 2-17 . Links to a File

These rules apply to links:

Contents of Jack's
l etters D i rectory

575 r.sm ith
y

• You need search permission on a directory to link to files named in it.

• No one can link across file systems.

F-0 3 1 4

• All directories have at least two links, because they have the shortcut name " · " in
addition to their full name.

• If you delete a linked file from your directory, the file itself is not deleted unless
no links re main.

2- 1 8

XENIX 286 Overview Files and File Systems

Working with Fi les

XENIX offers many com mands for working with files. For example, XENIX gives you
com mands to

• Create files

• Edit files

• Compare files

• Identify file types

• Display files

• Display the first few or last few lines of a file

• Display a file one screen at a t i me

• Divide files

• Join files

• Sort files

• Copy files

• Encrypt files

• Rename files

• Delete files

• Move files to another directory

• Count the characters, words, and lines in a file

Appendix A includes a sum mary of the Basic Syste m's com mands for working with files.

2-19

Files and File Systems XENIX 286 Overview

Logica l Fi les a n d Physica l Locations

As a user, you work only with files and directories. You do not have to be concerned
with finding a place for the m on the disk or locating the m after they have been stored.
Those are proble ms that the kernel solves and it solves the m by imple menting a file
system.

A disk is a mass storage device that holds m illions of characters called bytes. A file
system is a physical partition of a disk. It treats the physical area of a disk as a series
of blocks (each block equals 1 , 0 2 4 bytes) and imposes a logical organization upon the m.
A file syste m stores data as efficiently as it can, then finds it as quickly as possible
when you want to use it.

Logical F i les

Logically, a file is a series of bytes, as illustrated in Figure 2- 1 8.

M E M O

TO
FROM
DATE
SUBJ ECT

Tea m
Mary
May 1 5
Revised Sched u l es

Pl ease g i ve me you r rev i sed schedu les by Fr iday.

Figure 2-18. Sample File

Notice that the file has nothing but the text of a me mo. It does not even have the file
name. You see it here as one continuous series of characters, but parts of a large file
are in different blocks on the disk.

It is the file syste m that makes the connection between the logical file that you create
and the physical blocks that it occupies on the disk.

2-2 0

XENIX 286 Overview Files and File Systems

Finding the Physica l Locati o n of F i le Data

The file system keeps several pieces of information that the kernel needs to find a file
on the disk:

• The name. You identify a file by name when you want to use it.

• The directory. When you give a file name, the kernel searches the directories
listed in your search path until it finds the file name. Along with the file name,
the directory has the inode nu mber that the kernel has assigned to identify the
file.

• The inode list. The kernel uses the inode number in the directory to find the inode
nu mber in the inode list, which has all of the inode numbers in the file system. For
each inode, an index entry gives this information about the file:

• File type. This identifies the file as an ordinary file, a directory, a special
file, a semaphore, or a named pipe. (Se maphores and named pipes are
discussed in the XENIX 286 C Library Guide.)

• Permissions. This identifies read, write, execute, and set UID and GID
perm issions.

• Owner. This gives the UID of the owner of the file.

• Group. This gives the GID of the group the file belongs to.

• Nu mber of links. This identifies the number of ti mes the file is listed in
directories.

• File size in bytes.

• Date the file was created.

• Date the file was last read.

• Date the file was last modified.

• Location of the file on the disk. This entry lists up to 13 blocks. The first
ten blocks of the file are listed here. Three additional entries give the
addresses of the blocks that tell where the rest of the file is located. For
example, if the file has more than ten blocks, an entry points to a block that
lists the next 1 2 8 blocks of the file. These blocks that point to other blocks
are called indirect blocks.

Figure 2 - 1 9 illustrates how the kernel uses the file name, directory, and inode list to
find file data when Mary goes into her "me mos" directory and asks to print "team. 5 . 1 5".
The kernel finds the name of the file in the directory, uses the inode nu mber to find the
file on the inode list, then uses the location in the inode list to find the file on the disk.

2-2 1

Files and File Syste ms

memos Di rectory

50 1 tea m . 5 . 1 5

520 team .5 .20

XENIX 286 Overview

l node L ist D isk

500 B lock 2443

50 1 B iock 2446 � B lock 2444

502 � B lock 2445

503 B lock 2446

F -0 3 1 5

Figure 2-19. Logical Files and Physical Locat ions

2-2 2

XENIX 286 Overview Files and File Systems

The Str u ct ure of a Fi le System

A file syste m is a partition of a disk. Each Winchester disk sold by Intel has one root
file system. If it has 2 0 megabytes or more, it also has a separate user file syste m for
all user files. Very large disks may have even more file syste ms. If the disk has fewer
than 20 megabytes, there is only one file system, the root file system, and the user files
are part of it.

Figure 2-2 0 illustrates the root file system and user file system as partit ions of a
40-megabyte Winchester disk.

Root F ile Swap User File
System Area System

L Boot
Track

Bad
T k rae l
Data

Alternate
Tracks

Diagnostic J
Track

F-03 1 6

Figure 2-20. The Structure of a 40-Megabyte Winchester Disk

Boot Track

Root File System

Swap Area

User File System

Alternate Tracks

Bad Track Data

Diagnostic Track

The boot track has a program that loads the XENIX kernel into
memory when the syste m adm inistrator starts the computer.

The root file system is the first file system on the disk.

The swap area always follows the root file system. It is the area
where processes can be placed while they wait for their turn to
execute.

A disk with more than 20 megabytes has a separate user file
system.

If a regular disk track is bad, an alternate is assigned.

If testing shows that a track is marginal, it is listed here as a bad
track. During disk formatting, the bad track information is read
and alternate tracks are assigned.

This is used for hardware diagnostics.

2-23

Files and File Systems XENIX 286 Overview

A file syste m is made up of a super block and a series of cylinder groups. These cylinder
groups are made up of a cylinder group block, inodes, and data. The nu mber of cylinder
groups depends on the size of the disk and the needs of the installation. You may check
the XENIX 286 Installation and Configuration Guide for details.

Figure 2-2 1 illustrates the structure of a file syste m.

Super
,_ Block

Cylinder
,_ Group

Block

I node

List

\

Super Block

Data

Cyl i nder
G ro u p

Cylinder Group Block

Inode List

Data

2-2 4

Cylinder
r--- Group

Block

I node

List
Data

Cyl i nder
Group

. . .

More Cyl i nder
G roups (optiona l)

Figure 2-2 1 . The Structure of a File System
F-03 1 7

The first block of a file syste m is the super block. It gives the
location of each cylinder group.

The cylinder group block gives the location of the inode blocks
and data blocks in the group. It includes a bit map that shows
which data blocks have been allocated and which ones have not.

The inode list has information for each file.

The data area is used for files.

XENIX 2 8 6 Overview Files and File Syste ms

Cyl inder G rou ps

Cylinder groups have been introduced to enhance the performance of the operating
system. How they work is not discussed in detail here because normally only the person
who installs the system is aware of the m. One of XENIX's assets is that most users do
not have to be aware of the physical organization of data.

What is i mportant to most users is that the kernel spends less t ime looking for file data
when the file system is divided into cylinder groups. This is because

• The inodes are closer to the data, so it takes less t ime to access data after the
inode is located.

• As much as possible, contiguous blocks are used for files. It is faster to access
blocks that are together than blocks that are scattered over the disk.

Fi l e Al l o cati o n

Each cylinder group block has a bit map that shows whether the data blocks in the
cylinder group have been allocated to a file. The map is a series of bits, one for each
block. If the block has been allocated, the bit is set to 0. If the block is free, the bit is
set to 1 .

In earlier versions o f the file syste m, a free list o f blocks was used instead o f a bit map.
When a block was needed, the first block on the list was allocated. When a block was no
longer used, it went to the top of the free list. The result was that the list of free
blocks became random eventually. It was unlikely that files would have contiguous
blocks because only one block was allocated at a time and the blocks were not in order
on the free list.

With the bit map, blocks are always listed in order and the kernel can more often find
contiguous blocks for a file. This leads to more consistent performance over t ime.

The Root Fi l e Syste m and the Root D i rectory

The root file system is not the same as the root directory. The root file syste m is a
physical partit ion of the disk. It is created by the syste m ad m inistrator during
installation, and it usually includes all of the system directories.

The root directory is the parent of all files. This means that even files in other file
systems have to have a path back to root to be used. For example, if you have a 40-
megabyte Winchester disk, you have two file systems, root and user, which occupy two
separate partitions of the disk. The user file system has to be attached to some empty
directory on root's hierarchy of directories before you can work with files in its file
syste m. Attaching file systems is called mounting the m and it is normally done when
the syste m adm inistrator starts the syste m.

2-2 5

Progr a ms a n d Processes

CHAPTER 3

RUNNING PROGRAMS

Programs and processes are two important concepts in XENIX. You use the computer to
run programs, and the computer runs the m by start ing processes. Running a program is
a matter of starting a process, but a process and a program are not the same. For
example, if four users execute the Is com mand, only one copy of the program is used,
but four different processes begin.

Prog rams

Programs are instructions that perform so me funct ion. They fall into several
categories:

• XENIX co m m ands. Most XENIX com mands are executable programs.

• Shell programs. A shell is a XENIX co m m and int erpret er. I t is also a
program m ing language with variables, argu ments, conditional stat e ments, case
statements, for statements, while statements, and com ments. You m ay write
shell programs that use both XENIX com mands and features of the shell
program ming language. These programs are called shell scripts.

• Source programs. A source program is a set of instructions that someone has
written in a high-level language such as C.

• Object programs. An object program is a source program that has been co mpiled
and is ready to be executed.

Executable programs are usually stored in the /bin directory, the /usr/bin directory, the
/etc directory, or a user's directory. Several different users may execute the same
program at the same t i me. For efficiency, only one copy of the program is brought into
memory to be executed.

Processes

Processes are programs being executed. Each time a program is executed, a process
begins. It is unique and is identified by a number called a PID (process ID). Like
directories, processes are organized into hierarchies. The first process (PID 1) begins
when the syste m administrator starts the system, and all processes descend fro m
process 1 in parent-child relationships. For example, when process 1 starts process 2 ,
process 1 i s the parent and process 2 i s the child.

3-1

Running Programs XENIX 286 Overview

A process begins as a result of an exec syste m call or a fork syste m call. An exec
replaces another process and takes its PID. It is used when one process is finished and
will not be needed again. A fork starts a child process and continues to let the parent
process run. The child process inherits all of the open files of the parent but is separate
fro m the parent and has its own PID. The parent process either waits until the child
process ends, or the parent continues to run while the child is running.

Figure 3-1 illustrates the hierarchical structure of processes and the difference between
an exec and a fork.

EXEC FO R K

PI D = 1 50
Parent P ID = 1 00 Before

PI D = 250
Parent P ID = 200

- - - - - - - - - - - - - -

After
PI D = 1 50
Parent P ID = 1 00

PI D = 280
Pa rent P I D = 250

P ID = 250
Parent P I D = 200

F-03 1 8

Figure 3-1. Creating a New Process with an exec or a fork

The kernel keeps track of all processes in a process table and a user table. The number
of processes that can run at one t ime depends on the size of the tables, and the size is
defined by the syste m ad ministrator during configuration.

3-2

XENIX 286 Overview Running Programs

What H a p pens D uri n g System Start u p

The syste m administrator starts the system by turning on the hardware and loading the
XENIX kernel. The kernel starts a program called init, which runs as process 1. Process
1 is at the top of the process hierarchy and it runs as long as the syste m is up. All
processes are its descendants.

The system administrator usually brings the syste m up in single-user mode, does syste m
maintenance, then puts the system i n multiuser mode. Several processes need t o be
started before users are allowed on the system.

First, a shell script called /etc/rc is executed. This script contains com mands to

• Mount file systems on the root directory tree.

• Clear te mporary files.

• Start dae mons. (Daemons are programs that run continuously. For example, lpd is
a dae m on for the line printer. It is always ready for a print com mand. Another
daem on, cron, checks the com mands in the /etc/crontab file and executes the m at
the assigned ti me.)

Next, the kernel checks the /etc/ttys file. This file has a list of terminals with these
seven characters that describe each terminal:

• One character that tells whether the terminal is enabled (1 for enabled, 0 for
disabled).

• One character that gives the terminal's characterist ics to a program called getty.

• Five characters that give the terminal name in the /dev directory (for example,
ttya1, ttya2).

A getty process is started for each enabled terminal. Once getty has initialized the
terminal characteristics and determined the correct baud rate (the rate at which
characters are transmitted), the getty process replaces itself with a login process. This
is an example of an exec. The getty process is no longer needed, so it is replaced by the
login process. This means that if the getty process had PID 5 in the process table, the
login process takes its place and has PID 5.

3-3

Running Programs XENIX 286 Overview

How You Gai n Access to t he System

You cannot do anything until the syste m adm inistrator has created an account for you
on the syste m. The system ad ministrator uses a com mand called mkuser, which prompts
for information about the account, places information in the etc/passwd file, and
creates files that you will need, such as a mail box for electronic mail and a .profile file
that has information about you and your terminal.

The /etc/passwd Fi l e

The /etc/passwd file controls the login procedure that you must complete to gain access
to the computer. The /etc/passwd file has this information:

• A login name. This is the name that you will type when you want to log on the
syste m. On many systems, it is your first name in lowercase letters.

• Your password in encrypted form. The system ad ministrator assigns a password
when you are added to the system, but you may change it at any time with the
passwd co m mand.

• A unique user ID nu mber (UID). This nu mber identifies you in the system. UIDs
for regular users start with 2 0 0 . Number 0 is reserved for root. Nu mbers 1 - 1 9 9
are reserved for special "users" who own system files. Examples are bin and cron.

• · A group ID nu mber (GID). If people at your installation need to share certain files,
the system ad m inistrator may define groups. You can be a member of several
groups, but you can work in only one group at a ti me. This nu mber identifies the
group you are in when you log on.

• A co m ment that can be used for reference infor mation. The finger com mand that
displays inform ation about users expects this field to have a user's full name,
office, phone extension, and horne phone nu mber. It is not nec.essary to include all
of these pieces of information, but if you do, separate the m · with co mmas, as
shown in Figure 3-2. Another name for this field is GCOS. (The initials have
historical significance only.)

• The name of your login directory. The login directory becomes your working
directory i m mediately after login.

• Your login shell. Your login shell is the co m m and interpreter you use. It can be
the Bourne shell, the C shell, the restricted shell, or the visual shell. It can even
be a specific program. For example, if you use the syst e m only for word
processing, the word processing program can be listed as your login shell so you
will go into it i m mediately after login. If no shell is specified, the Bourne shell is
used.

Each piece of information in the /etc/passwd file is separated by a colon. Figure 3-2

shows a sample entry fro m the file.

3-4

XENIX 286 Overview Running Programs

mary : j9Hz 1 FzBYSOVw : 20 1 : 200 : M Day, Rm 2 1 0 ,x5006, 273-5543 : /usr/mary :/bi n/sh

'-y-' ' v I � '-v---' '-y-'

� � Us:r G�o u p � � �
Logi n Encrypted 1 0 I D Com ment Logi n Log i n
Name Password (U I D) (G I D) (GCOS) Di rectory She l l

Figure 3-2. Sample Entry in the /etc/passwd File

What Ha p pens Du ri ng Logi n

F-03 1 9

Logging in is the procedure that you follow to gain access to the computer. It involves
typing a login name and giving a password.

You can log in when you see this prompt on the screen:

log i n :

You type the login name that the system administrator has given you. The screen
displays a prompt for the password, and you have about one minute to give your
password. The login process checks the /etc/passwd file for yovr login name, encrypts
the password you typed, and compares it to the encrypted password in the file.

If there is mail in your mail box, you are notified that you have mail when you log in.

The Log i n She l l

I f your login name and password are valid, the login process moves you to your login
directory and uses an exec to start your login shell. Since an exec is used, the shell has
the same PID that your login process had.

At the same t ime, the name of the login directory is stored in a variable called HOME
and the login name is stored in a variable called LOGNAME. Variables have values that
vary from user to user. Some variable names, like HOME, are predefined and are always
entirely in capital letters. Later in this chapter, some variables will be discussed in
more detail.

The login shell continues to run until you log off by pressing the CONTROL key and the
D key at the same ti me. This key combination is referred to as CONTROL-D.

The following discussion of the login shell is based upon the Bourne shell, which is
referred to simply as the shell. The C shell, restricted shell, and visual shell differ in
so me ways and are described later in this chapter.

3-5

Running Programs XENIX 286 Overview

The Standard Input, Output, and Error Files

When the login shell is started, several things happen internally. The term inal is opened
as the standard input file, the standard output file, and the standard error file. This
means that all input will co me from the term inal, all output will be displayed on the
terminal, and all error messages will be displayed on the term inal unless you specifically
open other files for the m. In XENIX, each open file has a number, called a file
descriptor, associated with it. The standard input is opened with file descriptor 0, the
standard output is opened with file descriptor 1, and the standard error is opened with
file descriptor 2.

Default Variables Set by the Login Shell

The shell is a program that you use to execute co m mands. It stores several pieces of
information that it needs in variables. The HOME variable, for example is defined at
login so that the shell will know your login directory. Other variables are given default
values when the login shell starts. A variable is always defined by giving the name of
the variable, an equal sign, and the value of the variable.

The variables set by the login shell and their values are defined below:

• PATH. When you give a com mand, the shell searches through the directories
named by the PATH variable until it finds the program to be executed. You define
a variable by giving its name, an equal sign, and its value. The default search path
is

PATH = lbi n : /usr/b i n : $ HOM E/bi n : .

The directories are separated by colons, so the search path is through the /bin
directory, then the /usr/bin directory, then the /bin directory in your working
directory (this /bin directory is opt ional), then your working directory (.) .
Programs for co mmands that most users can execute are usually stored in one of
these directories.

• PSl. PSl stands for pro mpt string 1 , which is the main prompt that the shell
displays when it is ready to accept co m mands. The default is

PS 1 = " $
I I

The pro mpt is shown in quotes here because it includes a space. When the pro mpt
itself appears on the screen, it is a dollar sign followed by a blank space. If you
want so me other pro mpt, you redefine the variable. For example, if you want to
be pro mpted with "Ready ", you use this definition:

PS 1 = " Ready "

• PS2. PS2 stands for prompt string 2, which is the prompt that the shell displays if
you need to give more information. The default is

PS2 = I I
>

I I

• IFS. IFS stands for internal field separators, which the shell recognizes as
characters that separate fields. The defaults are a space, a tab, and a newline
character. You should use this variable only if you are doing shell program ming.

3-6

XENIX 286 Overview Running Programs

The .profile Files

After the shell has set default variables, it reads the /etc/profile file, which has
information that applies to all users, then reads the .profile file in your login directory,
which has information that applies only to you. The information in your .profile file is
usually a combination of co m mands and definitions of variables that your login shell
needs each t ime it starts. It is placed in your login directory when the syste m
adm inistrator adds you t o the system, and you may change the information in the file at
any t ime. Sample entries in the .profile file are shown in Figure 3-3.

PATH = /bi n :/usr/bi n : $ H O M E/bi n : .
TE RM CAP = /etc/term ca p
TERM = h8020e
MAl L = /usr/spool/ma i II$ LOG NAM E
export TERMCAP T E RM PATH MAI L

Figure 3-3. Sample .profile File

In Figure 3-3, the PATH variable is being redefined. The new value replaces the default
value that the shell had set. Notice the $HOME/bin directory in the path. When the
nam e of a variable begins with a dollar sign, it means to use the value of the variable.
$HOME means to use the value of the HOME variable. I m agine that

HOM E = /usr/mary

In this case, the new search path is the /bin directory, the /usr/bin directory, the
"/usr/mary/bin" directory, and the working directory. The dot at the end of the path is
the shorthand name for the working directory.

Three other variables are usually defined in your .profile file:

• TERMCAP identifies the file that has descriptions of terminals. The default is
/etc/termcap, and the variable is rarely redefined.

• TERM identifies the terminal by a short code name. For example, h80 2 0e is the
name for the Hazeltine Executive model 2 0 .

• MAIL identifies the file that keeps your mail. When $LOGNAME is used as the
last part of the path name, it means to use the value of the LOGNAME variable.
If the LOGNAME were " m ary", the mail box would be the "/usr/spool/m ail/mary"
file.

You use the .profile file for commands that you want to execute at login as well as
variables that you want to define. The most com mon com mand in this file is the export
com mand. It is included so that the variables that are named will be defined in any new
shells that the login shell starts. Without the export com mand, the variables would be
defined only in the login shell.

3-7

Running Programs XENIX 286 Overview

Exec ut i n g Co m ma n ds with the She l l

When the shell i s ready for com mands, the shell prompt appears on the screen. This is a
dollar sign unless you have changed the PSl variable. When you give com mands, the
shell interprets the m and forks a new process to execute each one. The general term
for a program that does these things is a co m m and interpreter. So me operating systems
have only one co m mand interpreter because it is in the kernel. XENIX has several
different com mand interpreters to provide maxi mum flexibility. Each one is a C
program that can be changed or replaced with another C program.

Executing S imple Comma nds

At the shell pro mpt, you can type a com mand and press the RETURN key. For example,
if you want to see who is on the system, you can use this com mand:

$ who

This sequence of events follows:

• The shell interprets the com mand line.

• The shell searches for an execut able program with the sam e nam e as the
com mand. It looks in each directory listed in the search path defined by the PATH
variable. I magine that this is the search path:

/bi n : /usr/bi n : mary/bi n : .

The shell searches the /bin directory for the who program and finds it there.

• The shell forks a child process for the who process and waits.

• The child attempts to exec (load) the /bin/who program.

• The kernel finds these perm issions on the /bin/who file:

rwx--x--x

Mary belongs to the category of others, so she has execute per mission.

• The kernel executes the /bin/who program and the output is displayed on the
terminal. This sample display lists the users who are logged on and identifies their
terminals and login ti mes:

mary
j ack

ttya 1
ttya2

Ju l 1 2 1 0 : 1 5
J u l 1 2 1 1 : 03

• The kernel signals to the shell that the child process has finished executing the
/bin/who program.

• The shell wakes up and pro mpts for the next co m m and.

3-8

XENIX 286 Overview Running Programs

Using O ptions

Many com mands have options. For example, the Is co m mand can be used with or without
options. If you use it as a simple co m mand, the contents of your working directory are
displayed. For example, Is would produce this alphabetical list of files in Mary's
"memos" directory:

$ Is
team .5 . 1 5
team .5 .20
$

The Is co mmand has several options. The -1 option, for example, gives this information
about files: the permissions, nu mber of links, owner, group, size in bytes, and t ime of
last modification. When you use options, you give the m after the co m m and name. For
example:

$ ls -I
tota l 2
-rw- r--r--
-rw-r--r--
$

mary
mary

200
200

The total refers to the nu mber of blocks.

59 May 1 5 1 0 : 1 5 team .5 . 1 5
30 May 20 1 0 : 1 5 team . 5 .20

Another option, -s, shows the nu mber of blocks for each file:

$ Is -s
1 tea m . 5. 1 5
1 tea m . 5 .20
$

When a co m mand has several options, you can often use more than one at a t ime. For
example, this com mand uses two options, -1 and -s:

$ Is -Is
tota l 2
1 -rw-r--r--
1 -rw-r--r--
$

Usi ng Arg u ments

mary
mary

200
200

59 May 1 5 1 0 : 1 5 team .5 . 1 5
30 May 20 1 0 : 1 5 team .5 .20

With some com mands, you name the files or directories to be used. These files or
directories are called argu ments to the com mand and they appear on the co m mand line
after any options.

This is an example of the Is com mand with the "memos" directory as an argu ment:

$ Is memos
team . 5 . 1 5
tea m . 5 .20
$

3-9

Running Programs XENIX 2 86 Overview

This is an example of the Is co m m and with an option and an argu ment:

$ Is -s memos
tota l 2
1 team . 5 . 1 5
1 team. 5 .20
$

Using Meta cha ra cters

Before the shell sends co m mands, options, and argu ments to a program to be executed,
it interprets the m, paying special attention to special characters called metacharacters
or wildcards. These characters are described in Figure 3-4.

? Matches any one character

* Matches any str ing of characters

[1 Defi nes a set of characters

Defi nes a range of characters with i n a set

Negates a set of characters

Figure 3-4. Shell Metacharacters

The shell interprets these characters, generates co mplete file names, and sorts the m
alphabetically before it sends the argu ments to the program being executed. The
significance of this is that you can give files names that will let you take advantage of
metacharacters.

The ? Metacharacter

The ? metacharacter matches any one character. For example, suppose that you are
writ ing a book with five chapters. If you follow a pattern in nam ing files, such as
"Chapl", "Chap2", "Chap3", "Chap4", and "Chap5", you can use the ? metacharacter
when you want to print all five chapters:

$ 1pr chap?

The shell interprets the co m m and and generates complete file names before sending the
argu ments to the program, so the program never sees the metacharacters. It always
receives co mplete arguments. In this example, the shell generates these f ile names and
sends the m to the lpr program:

chap 1 chap2 chap3 chap4 chapS

3- 1 0

XENIX 286 Overview Running Programs

The * Metacharacter

The * metacharacter matches any string of characters. For example, this com mand
displays the contents of all of the files whose names begin with " memo" and end with
any series of characters:

$ cat memo*

The [and] Metacharacters

The [and] metacharacters define a set of characters. For example, this command
prints "chapl", "chap4", and "chap5":

$ lpr chap[1 45]

The com mand does not print "chap2" or "chap3" because they are not identified in the
set.

The - Metacharacter

The - metacharacter defines a range of characters. For example, this com mand prints
"chapl", "chap2", "chap3", and "chap4":

$ 1pr chap [1 -4]

The ! Metacharacter

The ! metacharacter defines the characters that are not included in a set. For example,
you can use this com mand to print all chapters except 1-4:

$ 1pr chap [! 1 -4]

Red irecti ng I nput and Output

All of the programs that you run assume that the input is coming from the standard
input and that the output is going to the standard output, so they do not have to be
concerned with input and output devices. If you want to take input from so me source
other than the terminal or send it to some other destination, you can have the shell
redirect input or output.

For example, if you use the Is command to print a list of files, the list appears on the
terminal. If you want to place the list in a file, you use an output redirection symbol (>)
to have the shell redirect it. This com mand places the list in a file called "list":

$ Is > l ist

If the file does not exist, it is created. If the file does exist, the new contents overwrite
it unless you use > > to add to the end of the file instead. For example, this com mand
adds the output of the Is co m mand to the end of the "list" file:

$ Is > > l ist

3-1 1

Running Programs XENIX 286 Overview

Input can also be redirected. The shell expects input to come from the term inal, but
you can use the input redirection symbol (<) to bring input from some other source. For �
example, when you use the mail com mand, the input (message) normally comes from the
terminal. If you want to send a message to Jack, for example, you use the mail
com mand with Jack's login name as an argument, then begin typing the message on the
next line. After you have completed the message, you go to a new line and press
CONTROL-D. This is an example:

$ mai l jack
Please send your draft proposa l to Mark.
CONTROL· D

The mail com mand also takes input fro m a file if you use input redirection. For
example, Jack can send his "proposal" file to Mark by giving this com mand:

$ ma i l mark < proposa l

Pi pes

You often need to perform more than one operation on data. For example, you may
want to get data, then sort it. You can do this most efficiently with a pipe, which is a
tool that connects the standard output of one com mand to the standard input of another
co m mand. The symbol for a pipe is 1 .

Suppose that you want a n alphabetical list o f users who are o n the syste m. The who
co m mand supplies a list of users who are logged on, but it lists the m by terminal,
beginning with the console, which is the system administrator's terminal. For example:

$ who
sarah
jack
mary

conso le
tty 1
tty2

June 29 09 : 25
June 29 1 0 : 1 5
J une 29 1 1 : 45

If you use a pipe, you can write one co m mand line that sends the output of the who
co m mand to the sort com mand and displays the sorted, alphabetical list on the term inal.
For example:

$ who I sort
jack
mary
sarah

tty 1
tty2
conso le

June 29 1 0 : 1 5
June 29 1 1 : 45
Ju ne 29 09 : 2 5

I f you want t o print the alphabet ical list o n a printer, you can add another pipe:

$ who I sort l l pr

In this case, the list does not appear on the terminal. It goes directly to the printer.

3-12

XENIX 2.86 Overview Running Programs

With pipes, you need fewer com mand lines because you do not have to create temporary
files and move data from one file to another. This series of com mands illustrates the
steps you would have to co mplete to print an alphabetical list of logins if you did not use
pipes:

$ who > logi ns
$ sort log ins > pri ntlog i ns
$ lpr printlog ins

The list of users logged on is redirected to the "logins" file, then the contents of the
"logins" file are sorted and redirected to the "printlogins" file, then the "printlogins" file
is printed. The sort com mand does not change the contents of the "logins" file itself. It
just takes those contents and sorts the m for the standard output. In this case, the
output is redirected to another file.

Fi lters

Some com mands take data from the standard input, use or change the data, and display
the result on the standard output. These co m m ands are called filters and they are often
used with pipes.

Suppose that you want to combine and sort two lists of names and phone nu mbers. The
easiest way is to use pipes and filters. The first list, "list 1", has these lines:

Mary 445 1
Jack 4452
Sharon 4563
Mark 544 1

The second list, "list2", has these lines:

Da n 7787
Jan 7733
Kent 6765

The cat com mand joins files and the sort command sorts them. This co mmand line
combines the lines of "file 1" and "file2", sorts them, and displays the output on the
terminal:

$ cat f i le1 fi le2 1 sort
Dan 7787
Jack 4452
Jan 7733
Kent 676 5
Mark 544 1
Mary 445 1
Sharon 4563

The input files, "file 1" and "file2", are unchanged.

Figure 3-5 lists the filters used most.

3-13

Running Programs

awk

dd

grep, egrep, fgrep

head

nl

sed

sort

ta i l

tr

u n i q

we

3- 14

XENIX 286 Overview

change l i nes that match patterns

convert and copy a fi l e (to process other systems' data)

sel ect l i nes that match or rej e ct patterns

pr i nt the fi rst few l i nes of a fi l e

a d d l i ne n u m bers t o a fi l e

ed i t a fi l e accord i ng to a scri pt of com m ands

sort a fi l e

pri nt the l a st part o f a fi l e

copy a n d tra nsl ate cha racters

rem ove repeated l i nes from a fi l e

cou nt the l i n es, words, and cha racters i n a f i l e

Figure 3-5. Com mon Filters

XENIX 286 Overview Running Programs

XENIX Shel ls

This chapter has explained how the standard Bourne shell interprets your com mands and
passes information to the programs you want to execute. The Bourne shell is powerful
and works well for many users. The Bourne shell is supple mented by the restricted shell,
visual shell, and C shell for this release so you can choose the com mand interpreter that
works best for you. Additional shells are available from other sources.

Bou rne Shel l

The shell that has been discussed in this chapter i s the standard Bourne shell {named
after its creator, S. R. Bourne). Its program name is sh and its standard prompt is a
dollar sign {$). The Bourne shell is able to redirect input and output, interpret
metacharacters, use pipes with filters, use variables, and serve as a program ming
language.

Restricted Shel l

The restricted shell i s a subset of the Bourne shell. Its program name is rsh. If your use
of the system is l imited, the system administrator may give you this shell and define the
com mands you can execute. The restricted shell has the features of the Bourne shell,
but it does not allow you to change directories with the cd com mand, define your own
search path, use any co m m and names that have slashes {typically com mands in the /etc
directory, which are reserved for the system administrator), or redirect output.

Visu a l Shel l

The visual shell i s a menu that lists the most com mon com mands plus the application
programs your installation uses. Its program name is vsh and it is similar to the user
interface for Microsoft's Mult iplan software. The syste m administrator m ay give you a
visual shell if you spend most of your t ime running application software.

C S h e l l

The C shell i s a variation of the Bourne shell developed at the University o f California
at Berkeley. Its program name is csh and its standard prompt is a percent sign {%). The
name is C shell because it has features in com mon with the C program m ing language.
Like the Bourne shell, the C shell is able to redirect input and output, interpret
metacharacters, use pipes with filters, and use variables. It also has these features:

• A history function that keeps a list of commands you have used recently {you
define the number to be kept) so that you can reuse the m without retyping the m

• Ability to process arrays

• An alias function that you can use to change com mand names and create new
com m ands

3- 1 5

Tools for Text Processi ng

CHAPTER 4

TEXT PROCESSIN G

•

XENIX has a full set of tools for working with text files. This is partly because
docu ment production programs were among the first tools developed for the U NIX
system and partly because program mers and writers use many of the same tools. XENIX
offers assistance at each of these stages of a typical writing project: create a draft,
check it, revise it, and produce a final version. You need the Extended Syste m to check
a do�ument and format it with standard options such as centering and holding.

Too l s for Creati ng a D raft Document

First you type a draft docu ment with a text editor. The vi editor is a popular choice
because you can work with an entire screen of material at a t ime when you use it, but
you can also use the ed or ex line editor and work with one line or a series of lines at a
time.

The text you type is a series of lines without paragraph divisions, centering, or other
features of a finished document. As you type the lines, or at some t ime before
producing the final version, you put formatting instructions in the docu ment. These
instructions are codes that tell how to treat text. For example, there are codes for
centering, for starting paragraphs, for holding words, and for creating lists.

The different code types are

• nroff/troff codes. The term nroff stands for new runoff, which refers to printing
on a print er, and troff stands for typeset runoff. Each nroff/troff code
accomplishes one specific thing, such as justifying a line, printing a page header,
printing multiple colu mns, numbering colu mns, setting the line length, or indenting
a line. The nroff codes format text for a printer and the troff codes format text
for a phototypesetter. The basic nroff and troff codes are the same, but troff has
some extra options, such as proportional spacing, different fonts (including roman,
italic, and bold), Greek and mathe matical characters, and different type sizes.

Each nroff/troff code begins with a dot and has lowercase letters. It goes on the
line above the text to be formatted ..

• mm macros. A macro represents a series of nroff or troff instructions that
accomplishes some routine function such as starting a paragraph or creating a list.
With the mm macros in the Extended System you can prepare letters, me mos, and
other office docu ments. You can also create your own macros.

4-1

Text Processing XENIX 286 Overview

• eqn/neqn codes. You use eqn/neqn codes for mathe matical equations. The eqn
program interprets the codes for a phototypesetter and the neqn program
interprets the m for a printer.

• tbl codes. You use tbl codes for tables.

The following figures illustrate nroff/troff codes and mm macros. Figure 4-1 illustrates
an nroff/troff code and Figure 4-2 illustrates the formatted line. Figure 4-3 illustrates
ho* mm macros can be used to produce a list with bullets and Figure 4-4 shows the
resulting list. Notice that the macros begin with a dot and are capitalized. The .BL
macro stands for bullets, the . LI macro marks each list item, and the .LE macro marks
the end of the list •

. ce
Th i s sentence wi l l be centered .

4-2

. BL

. LI
Th i s i s the fi rst item .
. LI
Th i s i s the second item .
. LE

Figure 4- 1 . Sample nroff/troff Code

Th i s sentence wi l l be centered .

Figure 4-2. Sample Formatted Line

Figure 4-3. Sample Use of Macros

• Th i s i s the fi rst i tem .

• Th i s i s the second item .

Figure 4-4. Sample Formatted List

XENIX 286 Overview Text Processing

Tools for Checking a D raft Docu ment

After you have created a docu ment, you can check it with several different XENIX
com mands. The spell com mand, for example, checks a document for spelling errors,
the diction com mand checks language usage, and the explain com mand recom mends
alternate phrasing to improve your style.

Tools for Revis ing a Docu ment

Since your docu ment is stored on a disk, you can use a text editor such as vi to bring it
into a work area, called a buffer, and change it. For example, you may add words,
delete words, change words, or move t ext from one place to another. When you are
finished, you save the docu ment on the disk again.

Other co m m ands, such as cut and paste, are useful if you want to move colum ns of t ext
and the awk co m mand is nice if you want to replace one word or phrase with another.
The awk co m mand is one whose name gives no clue to its function. It was nam ed after
the program mers who created it. Their last initials were a, w, and k.

In so me cases, you may decide to use the sed stream editor to run an entire series of
com mands on a docu m ent.

Tools fo r Prod u ci n g the F i n a l Version

In this step, the instructions in the text are used to format a docu ment. When you are
ready to print a docu ment on a printer, you use the mm com mand (or the nroff -mm
com mand) and redirect the output to another file or pipe it directly to a printer. The
mm com mand automatically executes the nroff com mand. For example, either of these
com mand lines causes the "a.jones" file to be formatted and printed on the line printer:

$ mm a .jones l l pr
$ nroff -mm a .jones l l pr

When you are ready to print a docu ment on a phototypesetter, you use the mmt
com mand (or the troff -mm com m and). For example, either of these com mand lines
causes the "a.jones" file to be for matted and printed on a phototypesetter:

$ mmt a .jones
$ troff -mm a .jones

If you have used tbl, neqn, or eqn codes in a docu ment, you include tbl, neqn, and eqn
co m mands in the co m mand line. The tbl com mand form ats tables, and the eqn com mand
formats mathe matical equations with special symbols for a phototypesetter. The neqn
com mand formats mathematical equations for a printer. These com m ands are often
called preprocessors because you format tables and equations before formatting the rest
of the docum ent. This sample command line formats a report with tables and equations
and prints the report on a printer:

$ tbl mathreport I neqn I n roff l l pr

4-3

Text Processing XENIX 286 Overview

Su m ma ry

Figure 4-5 su m marizes the phases of a docum ent production project and shows some of
the tools you can use.

Phase

Fi rst d raft

Check i ng

Revi s ions

Fi na l vers ion

4-4

Tools

ed , ex, vi

d ict ion
eqncheck
expla i n
hyphen
mmcheck
spe l l
sty le
we

ed , ex, vi
awk
sed
cut
paste

eqn
mm
neq n
nroff
troff
tbl
l pr
mmt

Pu rpose

Type a docum ent

Check l angu age usage
Check i nstructi ons for equati ons
Provide a lternative phrasi ng
Fi nd hyphenated words
Check use of mm macros
Check spel l i ng
Ana lyze style
Cou nt characters, words, l i nes

Ed i t a docu ment
Search for patterns and repl ace them
Ru n a batch of ed i ti ng com mands
Cut out se l ected fi e lds of each l i ne
Merge I i nes of fi I es

Format mathemati cal text for phototypesetter
Convert format i nstructi ons for pr i nter
Format mathemat ica l text for pri nter
Format document for pr i nter
Format docum ent and pri nt on phototypesetter
Format tab les
Pri nt document
Pri nt mm docu ments on phototypesetter

Figure 4-5. Docu ment Production Phases and Tools

XENIX 286 Overview

Figure 4-6 gives a sample docu ment with formatting instructions •

• ce
.B MEMO
.sp 2
.P

Text Processing

Please plan to attend a team meeting on Friday, October 19 . The agenda includes these
ite ms:
.AL 1
.LI
Introduction of new me mbers
.LI
Schedules
. LI
New equipment
.LI
Open items
.LE
.P
The meeting will begin at 9 A. M. and will last approximately one hour.

Figure 4-6. Sample Docu ment with Formatting Instructions

The docu ment has two nroff/troff codes:

• .ce Center the following text •

• .sp 2 Space down two lines •

The remaining codes are mm macros:

• . B Print the following text in boldface •

• • P Begin a new paragraph •

• • AL 1 Turn the following lines into a nu mbered list •

• • LI . Treat as a list it em •

• • LE End a list •

4-5

Text Processing XENIX 286 Overview

Figure 4-7 shows a document formatted according to the instructions in Figure 4-6.

MEMO

Please plan to attend a team meeting on Friday, October 19 . The agenda includes these
ite ms:

1. Introduction of new me mbers

2. Schedules

3. New equipment

4. Open ite ms

The meeting will begin at 9 A.M. and will last approxi mately one hour.

Figure 4-7. Sample Formatted Document

4-6

CHAPTER 5

PROGRAM M ING

This chapter describes how XENIX supports users writing programs. The XENIX
features described are included in the XENIX 286 Extended Syste m (except for the shell
sh) and are not provided with the XENIX 286 Basic Syste m. The shell sh is part of the
Basic Syste m. The XENIX program ming environment includes

• The C program ming language, a simple, flexible, efficient, and powerful tool for
writing portable programs.

• Standard function libraries that provide standard ways for C programs to handle a
variety of tasks, from 1/0 to co mplex computations.

• Supporting tools, a complete program m ing environment that includes a program
checker, and a debugger, and also tools for automated translation, version control,
and building new languages.

• XENIX shells that provide a structured program ming language that can use all the
shell's special capabilities for controlling files and processes.

• XENIX features that allow users to modify or extend XENIX to meet their special
require ments.

More information on these topics is contained in the following publications:

• The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie
describes C.

• XENIX 286 C Library Guide describes the standard function libraries, including all
kernel syste m calls.

• XENIX 286 Program mer's Guide describes the supporting tools for program mers
and the csh shell program.

• XENIX 286 User's Guide and XENIX 286 R eference Manual describe the sh shell
program.

• XENIX 286 Installation and Configuration Guide and XENIX 286 Device Driver
. Guide describe how users can modify and extend XENIX.

Appendix D gives ordering information for all these publications.

5- 1

Program ming XENIX 286 Overview

C Progra m m i n g La n g u age

This section describes the C program ming language, a si mple, flexible, efficient, and
powerful tool for writ ing portable programs. C and the UNIX operating syste m were
designed together; almost all of XENIX (and UNIX) is written in C. Before U NIX, most
operating syste ms were written in machine-dependent assembly language. Some widely­
used syste ms, such as CP/M-8 0, st ill are. C is a major reason for the relat ively high
quality of the XENIX and UNIX operating syste ms, and for the availability of XENIX or
UNIX on so many different processors.

A C program is largely made up of a nu mber of ' functions. A function takes zero or
more parameters and may return a result to its caller. Parameters or results can be
either values or addresses of variables in memory. For example, a function to compute
square roots would take a single value param eter and return the square root as a
resulting value. A function to search a string for an occurrence of a substring would
take two address parameters, the addresses of the string to be searched and the string
to be searched for; this function would return the address of the first occurrence of the
substring in the string being searched, or return a special NULL value if no occurrence
was found. A function can also have a variable nu mber of parameters. For example, a
function that writes for matted output can accept as parameters any number of values to
be formatted.

A very powerful but si mple feature of C is that it allows variables and parameters to
hold function addresses and to be used to call functions. For example, a plotting
function can be defined that draws a graph of som e other arbitrary function, e. g. , any
function with a single real argu ment and a single real result. The address of the
function to be plotted can be passed as a param eter to the plotting function.

C provides a range of data types including char (a single byte, often used to hold a
character), signed and unsigned integers of various lengths, single-precision and double­
precision floating-point nu mbers, and pointers to any other data type. A value that is a
pointer to another type either contains the address of a value of the other type or has
the special value NULL.

C data structures are constructed using pointers, arrays, unions, and structures. A
structure is a record containing a nu mber of fields. Each field has a dist inct name and
its own type. For example, a structure defining a data type "date" could include fields
named "year", " month", and "day", with types int, char, and char respectively. (The char
data type is used because only a byte of storage is needed for each of " month" and
"day".) A union can contain values of different types at different t i mes. For example, a
union can be defined that will contain either an integer or a floating-point value, but not
both at the sam e t im e.

An array in C contains a nu mber of ele ments of the sam e data type. All arrays are
indexed fro m 0 to (N- 1), where N is the nu mber of ele ments. An array reference in C
consists of the address of the beginning of the array; because of this, C functions
naturally can handle dynamic arrays (in which the number of ele ments is not known until
run-time) as well as static arrays (in which the nu mber of ele ments is known at compile­
time). However, C program mers should take care to check array operations to prevent
array addressing errors, as the C co mpiler does not generate such checking for you.
Array operations in C are very si mple and efficient because of the explicit use of
pointers to i mple ment arrays. For example, accessing all ele ments of an array in turn
can be done by simply incre menting a pointer that initially references the first element
of the array.

5-2

XENIX 286 Overview Program ming

C's control structures include if and switch conditional state ments (switch is s imilar to
the "case" state ment of so m e other languages), loops with tests at top or bottom of the
loop, and a for looping statement for more complex loops, such as those with index
variables. These structures provide complete support for "structured program ming"
methods. C also provides statements for exiting or continuing a loop from within a
nested statement. The goto stat e ment is also provided.

C provides many operators for forming expressions, one source of its power. Operators
include arithmetic, relational, and logical operators. Also provided are bit-wise Boolean
operators, left and right shift operators, and incre m ent and decrement operators.
Assignment is treated as an operator, allowing assign ments to be e mbedded in
expressions. A condit ional operator evaluates one of two expressions based on the value
of a third, eli minating the need for many conditional state ments and often generating
more efficient and more readable code.

Several capabilities are added to C by the C preprocessor, the first pass of a C
compiler, which allows the user to define symbolic constants and macros and to include
separate files of declarations or procedures. A macro can be used like a function but
generates faster (but pot ent ially space-consu m ing) " in-line" code rather than a
subroutine call when it is invoked.

Despite all these features, C is si mpler than many other high-level languages. A
comparison to one competing language, Pascal, may be of interest. C does not provide
the set structures, file structures, or variant records of Pascal, though equivalent
constructs can be created in C. C also does not provide built-in funct ions for
input/output, which are provided by Pascal. However, C does have several advantages.
C supports dynamic arrays. C supports independent compilation, not originally part of
Pascal. C 1/0, via library funct ions, is more flexible than Pascal's built-in 1/0 functions.
C supports syste m program ming with more flexible type conversions, low- level
operators, and more flexible manipulation of pointers. Finally, many aspects of C's
design enable C programs to be very efficient, including incre ment, decre ment, and
assignment operators; conditional expressions; and the use of pointers for array
operations. On the plus side for Pascal, its type checking is stricter, array operations
can be safer (if the co mpiler generates subscript-checking code), and it has a richer set
of data structures.

One goal of C is to support the writing of portable, m achine-independent programs.
However, some C features do behave differently on different machines. A style of C
program ming has evolved that i mposes a few restrictions in order to make C programs
much more portable. These restrict ions are described in "C Language Portability" in the
XENIX 286 Programmer's Guide.

C does not provide any built-in statements for input/output, dynamic storage allocation,
string manipulation, concurrency, or exception handling. However, all these capabilities
are provided by the XENIX libraries, described in the next section.

5-3

Program m ing XENIX 2 8 6 Overview

C F u nct io n Librar ies

The machine-independence provided by the C language would do little good if different
systems provided different functions for basic tasks such as input/output. In addition to
the definition of the C language, there is a standard 1/0 library that is provided as part
of almost every C language system. XENIX and UNIX provide these standard 1/0
functions that support opening, reading, writ ing, closing, and random access for files and
devices; formatted 1/0; and stream 1/0 that provides a level of buffering between the
program and the operating system.

Additional standard functions have been defined over a period of several years for UNIX
syste ms and are provided with XENIX as well. So me of these functions correspond to
syste m calls, functions i mple mented by calling the XENIX kernel. The syste m call
interface makes the transition between user code and privileged kernel code, for
sensit ive operations that involve processes, files, devices, or other obj ects managed by
the kernel. The details of the system call interface are not visible to the library user,
who uses a syste m call like any other C library function. Facilities other than I/0
provided by the function libraries include

• Process control operations

• File system operations

• lnterprocess com munication

• Exception-handling and error-handling operations

• Character and string functions

• Dynamic m e mory allocation

• Computation and nu meric formatting

• Screen operations, including window operations

• Encryption and decryption

• Data base record retrieval

• Searching and sorting

All these functions are described in the XENIX 286 C Library Guide.

5-4

XENIX 286 Overview Program ming

Su p porting Too ls

A programming language, compiler, and function libraries are only some o f the useful
programming tools provided by XENIX. Other tools of interest are

lint

adb

make

sees

lex, yacc

a e program checker. lint examines e source files and warns of
constructs that can cause run-t ime errors in e programs. Such
construc t s includ e u n k n o w n valu e s in v a r i ables , u n r e a c hable
statements, infinite loops, inconsistent types, and several others.

a simple machine-level debugger. You can use breakpoints or single
stepping to interrupt your program and read and write memory when
your program is stopped.

automates program creation (compiling, ass e mbling, l inking) using
"makefiles" that you create. A makefile lists the output files to be
created, the com mands that create the m, and the input files from
which to create the m. make can use such a makefile to update an
entire program ming proj ect with a single co m m and. make checks file
dates and only updates those files that must be changed.

Source Code Control Syste m. Controls multiple versions of programs
or other docu ments. Multiple versions can be stored in a single file,
with sees able to recreate any version on com mand.

tools for building language translators. lex builds a lexical analyzer
from user-supplied rules. yacc (yet another compiler-compiler) takes
as input a set of syntactic rules along with se mantic actions to be
performed on recognizing the associated syntactic construct. yacc
generates a parser to recognize the syntactic productions and perform
the appropriate se mantic actions. This yacc output is itself a language
compiler. A co mpiler- co mpiler is thus a program that generates a
compiler fro m a set of rules describing the language to be co mpiled.

All of these tools and the C compiler cc are described in the XENIX 286 Programm er's
Guide.

5-5

Programming XENIX 2 86 Overview

She l l Progra m m i n g

XENIX provides two , shell programs that incorporate program 1Tling capabilities, sh
(Bourne shell) and csh (C sh�ll). These shells give you a high-level procedural language
in which to com municate with XENIX, allowing you to easily perform tasks that are
difficult i n many operat ing syst e m.s. W ith the shell . program m ing capabil it ies,
co m mands can be

• Combined to form new co m mands

• Passed parameters

• Added or renam ed by the user

• Arranged in series, in conditional control structures, or in looping control
structures

The shells provide special support for pattern matching in file names (recognizing
patterns such as. "* .c"), for process control, and for I/0 control. Com mands can redirect
input and output to and from files, term inals, other devices, or other com mands. These
special shell capabilit ies often make it easier for you to write a co m mand as a shell
procedure instead of as a C program.

sh is described in the XENIX 286 User's Guide and the XENIX 286 Reference Manual.
csh is described in the XENIX 286 Programm er's Guide.

Mod ifyi n g a n d Exten d i n g XENIX

XENIX is designed as an "open system," one that allows users to include and exclude
modules and features with great flexibility. The only part of the syste m that cannot be ·

easily changed by a user is the XENIX kernel, which imple ments a standard set of
syste m calls that perfor m operating syste m tasks. System administrators can delete,
replace, or add co m m and programs on their systems. New co m mand programs can be
written using a shell, C, or some other program m ing language. Even the shell program
that com municates w ith users can be replaced, and XENIX users can choose between
different shells.

Though the kernel should not be changed directly, many aspects of the kernel are
configurable, as described in the XENIX 286 Installation and Configuration Guide. For
example, a new kernel can be created that allows for a lesser or greater nu mber of
various types of kernel objects, such as processes and locks, or that allows for a lesser
or greater nu mber of disk buffers in main memory.

Customers interfacing new hardware to XENIX syste ms can add device drivers, as
described in the XENIX 286 Device Driver Guide. XENIX defines a standard and
relatively simple functional interface for device drivers. As much of the work as
possible is done by the kernel, with the driver supplying the device-dependent functions
for init ialization, opening, reading, writ ing, closing, and interrupt-handling for the
device. The kernel also provides several ut ility rout ines that help the device driver
perform com mon tasks, such as buffering charact ers or sort ing disk requests to
mini mize access ti me.

5-6

APP E N DI X A

BASIC SYST E M CO M MAN DS

Basic System Com m a n ds by Category

The Basic Syste m has many com mands. These are organized by category in Figure A-1
and defined in the following pages.

SYSTEM SYSTEM SYSTEM FILE FILE PROGRA M OFFICE
ADMINISTRATION STATUS COMMU N ICATION DISPLAY MANAGEMENT EXECUTION TOOLS

acctcom atq cu banner cd at be

accton date netutil cat chgrp atrm cal

asktime finger rep hd chmod cron de

ch root ps remote head chown ech o learn

config pstat u ucp look copy env mail

dump una me u ulog more cp expr random

dumpdi r who u u x n l cpio false rmail

fsck whodo od crypt getopt units

grpcheck FILE peat dd kill w rite

haltsys DEVICES COMPARISON pr dirname line

instl tail file nice U S ER
mkfs assign bdiff find noh u p ACCESS
mknod deassign cmp FILE I rsh

mkuser devnm comm MANIPULATION lc sh id

ncheck df diff I n sleep login

pwadmin disable diff3 awk I s tee log name

pwcheck dtype di rcmp base name mkdir test newgrp

quot du egrep bfs mv true passwd

restor enable fgrep csplit pack vsh

rmuser format grep ed pwd wait

sddate lpr sdiff ex rm xargs

shutdown mesg uniq JO in rmdir yes

su mount what sed settime

sum setmnt sort touch

sync stty split umask

sysadmin tar tr u npack

wall tset vi we

tty

umount

F-0320

Figure A-1 . Su m mary o f Basic Syste m Com mands by Cat egory

A- 1

Basic Syste m Co m m ands XENIX 2 86 Overview

Alphabetica l List of Co m ma n ds

The commands in the Basic System are listed below in alphabetical order. Those
com mands that are new to this release are m arked with an asterisk (*).

acctcom*
accton
asktime
assign*
at
atq*
atrm*
awk
banner*
base name
be
bdiff*
bfs*
cal
cat
cd
chgrp
chmod
chown
chroot*
cmp
comm
copy
cp
cpio*
cron
crypt
csplit*
cu
date
de
dd

I

deassign*
devnm*
df
diff
diff3
dircmp*
dirname*
disable
dtype*
du
dump
dumpdir
echo
ed
egrep
enable
env*

A-2

search and print accounting files
turn syste m accounting on and off
set syste m date and t ime
assign a device to a user
execute com mands at a later t ime
examine the "at" job queue
re move a job fro m the "at" job queue
pattern scanning and processing language
print large letters
strip file nam e affixes
arbitrary-precision arithmetic language
compare very large files
scan big files
print calendar
concatenate and print files
change working directory
change group
change mode (change access perm issions)
change file owner
change the process root directory
compare two files (any type)
select or rej ect lines com mon to two sorted files
copy groups of files
copy
copy file archives in and out
execute co m mands at specified t i mes
encode or decode a file
split files according to context
call the XENIX syste m
print and s e t the date
desk calculator
convert and copy a file
deassign a device
identify device name
report the number of free disk blocks
co mpare two text files
co mpare three text files
co mpare directories
deliver the directory part of a path name
turn term inal use off
print disk type (such as xenix, msdos, tar)
su m m arize disk use
perform incre mental file syste m backup
print the names of files on a du mp tape
echo argu ments
invoke text editor (line editor)
search a file for a pattern
turn terminal use on
set or print the environm ent for com mand execution

XENIX 2 8 6 Overview Basic System Commands

ex
expr
false
fgrep
file
find
finger
format
fsck
get opt*
grep
grpcheck*
haltsys
hd*
head
id*
instl
join
kill
1
lc
learn
line*
In
login
logname*
look
lpr
Is
mail
mesg
mkdir
mkfs
mknod
mkuser
more
mount .
mv
ncheck
netutil*
newgrp
nice
nl*
nohup
od
pack*
passwd
peat*
pr
ps
pstat
pwadmin*
pwcheck*
pwd
quot

text editor (line editor)
evaluate argu ments as an expression
provide truth value by returning with a nonzero exit code
search a file for a pattern
determ ine file type
find files
find information about users
format a disk
check file syste m for consistency and repair if necessary
parse com mand options
search a file for a pattern
check group file
shut syste m down
give hex dump of a file
give first few lines of a file
print user and group ID and nam e
install XENIX
join two relations
terminate a process
list directory contents in long form (equivalent to ls -1)
list directory contents in colu mns
give co mputer-aided instruction about XENIX
read one line
make a link to a file
give access to the syste m
get login name
find files in a sorted list
send files to the line printer queue for printing
list the contents of a directory
send, receive, or dispose of mail
permit or deny messages sent to a terminal
make a directory
make a file syste m
make a special file
add a new user account
display a file one screen at a ti me
attach a file syst em to a directory on the root subtree
move or rename files and directories
generate path names from inode nu mbers
ad minister a mail network
log into a new group
run a co m m and at a different priority
add line nu mbers to a file
run background process after user logs off
display files in octal format
compress files
change login password
look at packed files
print a file
report process status
print syste m facts
administer aging of passwords
check the password file
print the name of the working directory
su m m arize file syste m ownership

A-3

Basic Syste m Com mands

random
rep*
remote*
restor
rm
rmail
rmdir
rmuser
rsh*
sddate
sdiff*
sed
setmnt*
settime
sh
shutdown
sleep
sort
split
stty
su
sum
sync
sysadmin*
tail
tar
tee
test
touch
tr
true
tset

tty
umask
umount
uname*
uniq
units
unpack*
uucp
uulog
uux
vi
vsh
wait
wall
we
what
who
whodo*
write
xargs*
yes

A-4

generate a random nu mber
copy files between machines
execute com mands on another machine
invoke incre mental file syste m restorer
remove a file
send mail among users
re move a directory
re move a user
invoke a restricted shell
print and set backup dates
compare two files side by side
invoke stream editor
establish a mount table (/etc/mnttab)
change file access and modification dates
invoke the Bourne shell
shut down the syste m
suspend execution for an interval
sort or merge files
split a file into pieces
set terminal options
make the user root or another user temporarily
calculate checksu m and count blocks in a file
update the super block
perform file syste m backup and restore
deliver last part of a file
archive files
create a tee in a pipe to save intermediate output
test conditions
update file access and modification t imes
translate characters
return with a zero exit value
set terminal type
get terminal name
set default file creation mask
detach a file system fro m the root directory
print the current XENIX name
report repeated lines in a file
convert units
unpack packed files
copy files fro m XENIX to XENIX
copy files fro m XENIX to XENIX
execute co m mands on re mote XENIX
invoke a screen-display editor based on ex
invoke the visual shell
wait for background jobs to finish
write to all users
count lines, words, and characters
identify files
list users currently logged on
show who is doing what
send a message to a user's terminal
construct argu ment lists and execute com mands
print string repeatedly

XENIX 2 8 6 Overview

APPENDIX B

TEXT FORMATTING COMM ANDS

Text Formattin g Com ma nds

This section has an alphabetical list of the com m ands that are part of the Text
Formatting package included in the Extended Syste m. Com mands that are new to this
release are marked with an asterisk (*).

col
cut*
cw*
cwcheck*
deroff
diction*
diffmk*
eqn
eqncheck*
hyphen*
mm*
mmcheck*
mmt*
neqn
nroff
paste*
prep
ptx
soelim*
spell
style*
tbl
troff

approxi mate vertical motions
cut out selected fields of each line
prepare constant-width text for troff
check cw macro text
re move nroff, troff, tbl, and eqn constructs
com ment on writing style
mark differences between two versions of a file
format m athe matical text for nroff or troff
check mathematical text for nroff or troff
find hyphenated words
print docu ments formatted with the mm m acros
check use of mm macros
typeset documents for troff
format mathematical text for nroff or troff
format text for a line printer or daisy wheel printer
merge lines of files
prepare text for statistical processing
generate a permuted index
expands nroff .so statements
find spelling errors
com ment on writing style
format tables for nroff or troff
print docu ment on a phototypesetter

B- 1

APPE N DI X C

PROG RAM M I N G TOO LS

Progr a m mi n g Com ma nds

This section has a n alphabetical list o f the com mands that are part o f the Software
Development package included in the Extended System. Commands that are new to this
release are marked with an asterisk (*).

adb
ad min
ar
as
cb
cc
cdc*
comb
cref*
csh
ctags
delta
doscat*
doscp*
dosdir*
dosls*
dosmkdir*
dosrm*
dosrmdir*
get
gets
hdr*
help
ld
lex
lint
lorder
m4
make
mkstr
nm
prof
prs
ranlib
ratfor
regcmp*
rmdel*
sact*

invoke a general-purpose debugger
create and administer sees files
maintain archives and libraries
invoke the XENIX asse mbler
beautify e programs
invoke the e co mpiler
change the delta com mentary of an sees delta
combine sees deltas
make a cross-reference list
invoke the e shell (a co m mand interpreter with C-like syntax)
create a tags file
make a delta (change) to an sees file
concatenate a file on an MS-DOS flexible disk
copy files to or from MS-DOS flexible disks
list the directory of an MS-DOS flexible disk
list the directory of an MS-DOS flexible disk
create an MS-DOS directory on an MS-DOS flexible disk
delete an MS-DOS file
delete an MS-DOS directory
get a version of an sees file
get a string from the standard input
display selected parts of obj ect files
ask for help about sees com mands
invoke the link editor
generate programs for lexical analysis
check e language usage and syntax
find ordering relation for an object library
invoke a macro processor
maintain, update, and regenerate groups of programs
create an error message file from e source
print a name list
display profile data
print an sees file
convert archives to rando m libraries
convert rational FO RTRAN into standard FORTRAN
compile regular expressions
remove a delta from an sees file
print current sees file editing act ivity

e- 1

Program ming Tools XENIX 2 8 6 Overview

sccsdiff
size
spline
stackuse*
strings
strip
time
tsort
unget
val
xref*
xstr
yacc

compare two versions of an sees file
print the size of an object file
interpolate a smooth curve
determine stack require ments for e programs
find the printable strings in a binary file
re move symbols and relocation bits from an object file
time a command
sort a file topologically
undo a previous get of an SC es file
validate an sees file
cross-reference e programs
extract strings from e programs
invoke a co mpiler-compiler (yet another compiler-compiler)

Sta n d ard C Li b rar ies

The following libraries are provided with the Extended System. In so me cases, versions
for small, middle, and large model programs are included, and in other cases only the
version for the small model is provided. These are the standard libraries:

libc

libm

libl

liby

libtermcap

libtermlib

libcurses

libdbm

This is the standard library that contains all system call interfaces,
standard 1/0 routines, and other general purpose services. Versions for
small, middle, and large models are provided.

This is the standard math library. Versions for small, middle, and large
models are provided.

This library is for use with programs produced by lex. A version for the
small model is provided.

This library is for use with programs produced by yacc. A version for
the small model is provided.

This library has routines for accessing the termcap data base of
term inal characteristics. Versions for small, middle, and large models
are provided.

This library is the same as libtermcap. Both libtermcap and libtermlib
link to the same file. Both names are kept for historical reasons.
Versions for small, middle, and large models are provided.

This library has routines for manipulat ing the screen and cursor.
Versions for small, middle, and large models are provided.

This library has data base managem ent routines. Versions for small,
middle, and large models are provided.

The functions provided with the standard C libraries are listed below. Those that are
new to this release are marked with an asterisk (*).

C-2

XENIX 286 Overview Program m ing Tools

The Stand a rd C li bra ry -- l ibc

This library also includes all system functions, listed separately at the end of this
appendix.

tolower
_toupper
a641*
abort
abs
asctime
assert
at of
atoi
atol
bsearch*
calloc
clearerr
crypt
ctermid*
ctime
cuserid*
defopen
defread
ecvt
encrypt
endgrent
endpwent
fclose
fcvt
fdopen
feof
ferror
ffiush
fgetc
fgets
file no
fopen
fprintf
fputc
fputs
fread
free
freopen
frexp
fscanf
fseek
ftell
fwrite
fxlist
gcvt
getc

convert to lowercase
convert to uppercase
convert base-64 ASCII to long integer
generate an lOT fault
integer absolute value
convert t ime data to ASCII
program verification
convert ASCII string to floating number
convert ASCII string to integer
convert ASCII string to long integer
binary search
allocate memory
clear error
DES (Data Encryption Standard) encryption
generate file name for term inal
convert t ime to ASCII string
character login name of user
open default parameter file
read default parameters
format conversion
DES (Data Encryption Standard) encryption
close group file
close password file
close a stream
format conversion
reopen a stream
test for end of file
test for error
flush a stream
get character from a stream
get a string from a stream
convert a stream number to a file descriptor
open a stream
formatted output routine
write a character to a stream
write a string to a stream
buffered input
free me mory
reopen a stream
return mantissa
formatted input conversion
seek within a stream
obtain file pointer position
buttered output
get name list entries fro m a file
format conversion
get a character from a stream

C-3

Program ming Tools

get char
getcwd*
getenv
getgrent
getgrgid
getgrnam
getlogin
get opt*
get pass
getpw
getpwent
getpwnam
getpwuid
gets
getw
gmtime
gsignal*
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
13tol
164a*
ldexp
local time
logname
longj mp
lsearch*
ltol3
malloc
mktemp
modf
monitor
nlist
pclose
perror
popen
printf
putc
put char
putpwent*
puts
putw
qsort
rand

C-4

get a character fro m a stream
get path name of current working directory
get a value for an environment variable
get group file entry
get group file entry
get group file entry
get login name
parse com mand line options
read a password
get a name fro m the user ID
get a password file entry
get a password file entry
get a password file entry
get a string from a stream
get a word fro m a stream
obtain Greenwich Mean Time information
raise a software signal
test for alphanu meric
test for alphabetic character
test for ASCII character
check for terminal
test for control character
test for digit
test for printing character
test for lowercase
test for printing character
test for punctuation
test for space
test for uppercase
test for hex digit
convert 3-byte integer to long
convert a long integer to base-64 ASCII
load exponent of floating point number
obtain local time information
get login name of a user
nonlocal goto
linear search and update
convert long to 3-byte integer
allocate memory
make a temporary file
return a fractional part
prepare an execution profile
get entries fro m the name list
close pipe to process
print syste m error messages
init iate 1/0 to or from a process
formatted output routine
write a character to a stream
write a character to a stream
write a password file entry
write a string to a stream
write a word to a stream
quick sort routine
random nu mber generator

XENIX 286 Overview

XENIX 286 Overview

realloc
regcmp
regex
rewind
scanf
setbuf
setfrent
setj mp
setkey
setpwent
sleep
sprintf
srand
sscanf
ssignal*
strcat
strchr*
strcmp
strcpy
strcspn*
strlen
strncat
strncmp
strncpy
strpbrk
strrchr*
strspn*
strtok*
swab
system
tmpfile*
tmpnam*

, toascii
tolower
toupper
ttyname
tzset*
ungetc
xlist

reallocate me mory
regular expression compile
regular expression execute
seek to the beginning of a file
formatted input conversion
assign buffering to a stream
rewind a group file pointer
nonlocal goto
DES (Data Encryption Standard) encryption
rewind password file pointer
suspend execution for an interval
formatted output routine
seed random nu mber generator
formatted input conversion
software signal
concatenate strings
find a character in a string
compare strings
copy strings
find the length of a substring
get string length
concatenate strings
co mpare strings
copy strings
find a string in a string
find a character in a string
find the length of a substring
find a token within a string
swap bytes
execute a shell command
create a temporary file
create a temporary file name
convert to ASCII
convert to lowercase
convert to uppercase
find the name of a terminal
set external t ime variables
push a character back onto a stream
get name list entries from a file

The Standard Math Library -- I ibm

a cos
as in
a tan
atan2
cabs
ceil
cos
cosh
exp
fabs
floor
fmod*

arc cosine function
arc sine function
arc tangent function
arc tangent function
Euclidean distance
ceiling value
cosine function
hyperbolic cosine
exponentiation
returns l x l
whole nu mber at or immediately below its argument
re mainder function

Program m ing Tools

C-5

Program m ing Tools

gam ma*
hypot
jO
jl
jn
log
loglO
pow
sin
sinh
sqrt
tan
tanh
yO
yl
yn

log gamma function
sqrt(x*x + y*y)
Bessel function
Bessel function
Bessel function
natural logarithm
log base 1 0

power function
sine function
hyperbolic sine
square root function
tangent function
hyperbolic tangent
Bessel function
Bessel function
Bessel function

The Defau l t lex Library -- l i b I {smal l model o n ly}

main
yyless
yywrap

lex program entry
lex routine to "unget" source characters
lex end of file routine

The Defau lt yacc Li brary -- l i by {smal l model o n ly}

main
yyerror

yacc program entry
yacc error handler

The Termi nal Capabi l it ies Library -- l i btermcap { l i bterml i b}

tgetent
tgetflag
tgetnum
tgetstr
tgoto
tputs

get term inal capability entry
test for presence of capability
get nu meric value of capability
get string value of capability
get cursor addressing string
decode padding information

The Screen Man i p u lation Li brary -- l i bcu rses

many screen and cursor manipulation routines

The Data Base M anagement Library -- l ibdbm

dbminit
delete
fetch
first key
next key
store

C-6

open data base
delete key in data base
access key in data base
get first key in data base
get next key in data base
store key in data base

XENIX 2 8 6 Overview

XENIX 286 Overview Program ming Tools

System Ca l ls

The Software Development package includes the following syste m calls. Those that are
new to this release are marked with an asterisk (*).

access
acct
alarm
chdir
chmod
chown
chroot
chsize*
close
creat
creatsem
dqoverlay*
programs
dup
dup2
execl
exit
fcntl*
fork
fstat
ftime
getegid
geteuid
getgid
getpgrp*
getpid
getppid
getuid
ioctl
kill
link
lock*
locking
lseek
mknod
mount
nap*
nice
open
opensem
pause
pipe
profil
ptrace
rdchk
read
sbrk

determine accessibility of a file
enable or disable process accounting
set a process's alarm clock
change working directory
change mode of a file
change the owner and group of a file
change the root directory
change the size of a file
close a file descriptor
create a new file or rewrite an existing one
create an instance of a binary se maphore
load overlay for U D I-bas ed (U n iversal D ev elop m ent I nt erface)

duplicate an open file descriptor
duplicate an open file descriptor
execute a file
terminate a process
file control
create a new process
get file status
get system time
get effective group ID
get effective user ID
get group ID
get process group
get process ID
get parent process ID
get real user ID
control device
send a signal to a process or a group of processes
link to a file
lock a process in memory
lock or unlock a file region for reading or writing
move a read/write file pointer
make a file
mount a file structure
sleep for a short time
change the priority of a process
open a file for reading or writing
open a semaphore
suspend process until signal
create an interprocess channel
execution time profile
process trace
check if there is data to be read
read from a file
change data segment space allocation

C-7

Program ming Tools

sdenter*
sdfree*
sdget*
sdgetv*
sdleave*
sdwaitv*
setgid
setpgrp*
setuid
shutdn
signal
sigsem
stat
stime
sync
time
times
ulimit*
umask
umount
uname*
unlink
ustat*
uti me
wait
waitsem
write

C-8

enter a shared data region
release a shared data region
attach to a shared data region
synchronize the use of shared data
leave a shared data region
synchronize use of shared data
set group ID
set process group ID
set user ID
flush block 1/0 and halt syste m
specify what t o do o n receipt o f a signal
signal a process waiting on a semaphore
get file status
set t ime
update the super block
get t ime
get process and child process t imes
get and set user li mits
get and set file creat ion mask
unmount a file syste m
get name o f current XENIX syste m
re move a directory entry
get file syste m statist ics
set file access and modification ti mes
wait for a child process to stop or terminate
wait for a semaphore
write on a file

XENIX 2 8 6 Overview

Related I ntel Pu blications

APP E N DI X D

R E LATE D PU B LI CATI O N S

Copies of the following publications can be ordered from

Literature Depart m ent
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 9 5 0 5 1

Overview of the XENIX 286 Operating System , Order Number 1 74385 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 Installation and Configuration Guide, Order Number 1 7 4386 -- how to install
XENIX on your hardware and tailor the XENIX configuration to your needs.

XENIX 286 User's Guide, Order Number 1 74387 -- a tutorial on the most-used parts of
XENIX, including terminal conventions, the file system, the screen editor, and the shell.

XENIX 286 Visual Shell User's Guide, Order Number 1 74388 -- a XENIX com mand
interface ("shell") that replaces the standard com mand syntax with a menu-driven
co m mand interpreter.

X EN IX 286 System Administrator's Guide, Order Number 1 7 4389 -- how to perform
syste m ad ministrator chores such as adding and re moving users, backing up file syste ms,
and troubleshooting syste m problems.

XENIX 286 Communications Guide, Order Number 1 7446 1 -- installing, using, and
administering XENIX networking software.

XENIX 286 R eference Manual, Order Number 1 74390 -- all com mands in the XENIX 286
Basic System.

XENIX 286 Programmer's Guide, Order Number 1 74391 -- XENIX 286 Extended Syste m
com m ands used for developing and maintaining programs.

XENIX 286 C Library Guide, Order Number 17 4542 -- standard subroutines used in
program ming with XENIX 2 86, including all syste m calls.

XENIX 286 Device Driver Guide, Order Number 1 74393 -- how to write device drivers
for XENIX 2 86 and add the m to your system.

XENIX 286 Text Formatting Guide, Order Number 1 74541 -- XENIX 286 Extended
Syste m com mands used for text formatting.

D-1

Related Publications XENIX 2 86 Overview

Suggested Read i n gs

The popularity of XENIX and other UNIX-like operating syste ms has caused m any new
books to appear in the bookstores. You m ay want to supple m ent the X E NI X
docu mentation with one o r more o f these books:

• Banahan, Mike, and Andy Rutter. The UNIX Book. New York: John Wiley & Sons,
Inc., 1 983.

• Bourne, S. R. The UNIX System . Reading, Mass.: Addison-Wesley Publishing
Company, 1982 .

• Christian, Kaare. The UNIX Operating System . New York: John Wiley & Sons,
Inc. 1 983.

• Groff, James R., and Paul N. Weinberg. Understanding UNIX: A Conceptual
Guide. Indianapolis, Indiana: Que Corporation, 1 983.

• Kernighan, Brian W., and Rob Pike. The UNIX Program m ing Environm ent.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1 984.

• Kernighan, Brian W ., and Dennis M. Ritchie. The C Programming Language.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978.

• McGilton, Henry, and Rachel Morgan. Introducing the UNIX System . New York:
McGraw-Hill Book Company, 1 983.

• Sobell, Mark G. A Practical Guide to the UNIX System. Menlo Park, California:
The Benjamin/Cu m mings Publishing Company, Inc., 1 9 84.

• Thomas, Rebecca, and Jean Yates. A User Guide to the UNIX System . Berkeley,
Calif. : OSBORNE/McGraw-Hill, 1982 .

• Yates, Jean, and Sandra L. Emerson. The Business Guide to the UNIX System .
Reading, M ass. : Addison-Wesley Publishing Company, 1 984.

D-2

Accounting, 1-6, 1-7
acctcom, 1-12
adb, 5-5
.AL, 4-5
Aliases, 3-15
Alternate tracks, 2-23
Application,

program mer, 1-9
software, 1-9, 1-1 1, 3-15

Argument, 3-9, 3-1 0
Array, 3-1 5 , 5-2, 5-3
ASCII, 2-1
Asse mbly language, 1-1 1 , 2-2, 5-2
assign, 1-12
at, 1-12
atq, 1-12
atrm, 1-12
Audience, 1-1
awk, 3- 14, 4-3, 4-4

B program ming language, 1-1 0
.B, 4-5
Background processing, 1-1 1
Bad tracks, 2-23
Basic System, 1-2, 1-8, 1-9, 2-19

commands, A -1 thru A -4
publications, 1-2

Batch execution, 1-12
Baud rate, 3-3
be, 1-2
Bell Laboratories, 1-7, 1-10, 1-1 1
Berkeley features, 1-7, 1-14, 3-1 5
bin, 2-17, 3-4
/bin, 2-9, 3-1 , 3-6
/bin/who, see who
Bit map, 2-24, 2-2 5
.BL, 4-2
Block(s), 2-2 0, 2-2 1

contiguous, 2-2 5
cylinder group, 2-24
indirect, 2-2 1
size, 2-2 0
super, 2-24

I N D EX

/boot, 2-9
Boot track, 2-23
Bourne shell, see shell
Buffer, 1-7 , 1-14, 4-3 , 5-6
Byte, 2-1

C,
compiler, 1-3, 5-2, 5-5
library, 1-3 , C-2 thru C-6
preprocessor, 5-3
program ming, 1-7, 1 - 1 0 , 1 - 1 1 , 2-2,

3-15 , 5-1 , 5-2, 5-5
shell, see shell

C alculator, 1-2, 1-1 1
Calendar, 1- 1 1
cat, 3-13
cc, 5-5
cd, 2-8, 2-16, 3-1 5
cdc, 1-13
.ce, 4-5
char, 5-2
Child process, 3-1 , 3-2, 3-8
chmod, 2-1 5
chsize, 1- 1 3
Com mand(s),

adding, 5-6
argument, 3-9, 3-10
Basic System, A- 1 thru A-4
execution, 3-8, 3- 1 5
interpreter, 1-6, 1-8, 3-4, 3-8
option, 3-9, 3-10
program ming, C-1, C-2
text formatting, B-1

Comment field, 3-4
Com munication,

line, 2-1 1
network, 1-2, 1-12
user-to-user, 1-1 1

Compiler, 1 -3 , 1-13
Compiler-co mpiler, 1-3 , 5-5
Configuration, 1-2 , 3-2, 5-6
Console, 2- 1 1 , 3- 1 2
Control structure, 5-3

Index-1

Index

CONTROL-D, 3-5 , 3-1 2
CPU, 1-4, 1-5, 1-14
cref, 1-13
cron, 3-3 , 3-4
csh, 1-14, 3 - 1 5 , 5- 1 , 5-6
ctags, 1-14
curses, 1-14
cut, 1-13 , 4-3 , 4-4
cw, 1-13
cwcheck, 1-13
Cylinder group, 2-24 , 2-2 5

Dae mon, 3-3
Data,

structure, 5-2
type, 5-2

dbm, 1-14
dd, 3-14
deassign, 1-1 2
Debugger, 5- 1
Delta, 1-13
/dev, 2-9, 2- 1 1 , 3-3
Device,

assignable, 1 - 1 2
driver, 1 - 3 , 1-7, 1-9, 5-6
du m my, 2 - 1 1
file, 2-9
hardware, 1-4, 1-5, 2 - 1 1
independence, 1-7 , 1 - 1 1 , 1 -14
manage ment, 1-6
null, 2-1 1
structured, 2 - 1 1
unstructured, 2- 1 1

Diagnostic track, 2-23
diction, 1 - 1 3 , 4-3, 4-4
diffmk, 1 - 1 3
Directory, 2-3, 2-2 1 , 3-8

/bin, 2-9, 3-1 , 3-6, 3-8
changing, 2-8, 2- 16 , 3- 1 5
current, 2-9
home, 2-3
links, 2-18
login, 2-3 , 2-4, 2-5 , 2-8 , 2 - 1 0 , 3-4,

3-7
parent, 2-6
root, 2-7 , 2-9, 2 - 1 0 , 2-25 , 3-3
/usr, 2-7
working, 2-5, 2-9, 3-6

Disk, 1-4, 1-5, 1-12, 2- 1 0 , 2-1 1 , 2-2 0 ,
2-2 3 , 2-2 5

Index-2

XENIX 2 8 6 Overview

Dot (.), 2-2, 2-6, 2-9, 2 - 1 8, 3-6
Dot dot (• .), 2-6
dump, 1- 1 5

ed, 1-2, 2-8, 2-9, 4-4
Editor, see text editor
egrep, 3-14
Electronic mail, see mail
encrypt ion, 5-4
eqn, 4-2 , 4-3, 4-4
eqncheck, 1 - 1 3 , 4-4
Equation formatti.ng, 4-2, 4-3, 4-4
Error,

checking, 1-6
handling, 5-4

/etc, 2-10 , 3-1 , 3- 1 5
/etc/crontab, 3-3
/etc/passwd, 1 - 1 2 , 2-2, 3-4, 3-5
/etc/profile, 2-15 , 3-7
/etc/rc, 3-3
/etc/termcap, 3-7
/etc/ttys, 3 -3
ex, 1-14 , 4-1 , 4-4
exec, 3-2, 3-3
Execute perm ission, 2-12, 2-13, 2-14,

3 -8
explain, 4-3 , 4-4
export, 3-7
Extended System, 1-2, 1-3, 1-8, 1-9,

1 - 1 2 , 4- 1 , 5-1
co m mands, B- 1 , C- 1 , C-2
publications, 1-3
standard C libraries, C-2 thru C-6
syste m calls, C-8

fgrep, 3-14
File(s), 2-1

access perm issions, 2- 1 2 thru 2 - 1 7
allocation, 2-2 5
block special, 2 � 1 1
character special, 2- 1 1
com mands for, 2 - 1 9 , A- 1
date created, 2-2 1
date last modified, 2-2 1 , 3-9
date last read, 2-2 1
delete, 2 - 1 8
descriptor, 3-6
format, 2-2
link, 2- 1 8, 3-9
location, 2-2 0 , 2-2 1 , 2-22

XENIX 286 Overview

locking, 1-12
logical, 2-2 0 , 2-22
mode, 2-13
name, 2-2, 2-1 1 , 2 -18 , 2-20 , 2-2 1 ,

3-10 , 5-6
open, 3-2 , 3-6
ordinary, 2-1 , 2-2, 2-3, 2-12 , 2-13
owner, 2-12 , 2-17 , 2-2 1 , 3-9
size, 2-3, 2-2 1 , 3-9
sorting, 3-13
special, 2-11 , 2-17
structure, 2-2
system, 1-5, 1-7, 2-10 , 2-18 , 2-20

thru 2-2 5, 3-3, 5-4
temporary, 2-1 0, 3-3, 3-13
text, 2-1 , 4-1
type, 2-2 1

Filter, 3-13 , 3-14
finger, 1-14, 3-4
Fixed stack analysis, 1-13
Floating-point

emulator, 1-14
number, 5-2

for, 5-3
fork, 3-2 , 3-8
Free list, 2-2 5
fsck, 2-10
Function, 5-2

GCOS, 3-4
getty, 3-3
GID, 2-12 , 2-13 , 2-14
goto, 5-3
grep, 3-14
Group, 1-11 , 2-12 thru 2-1 5 , 2-2 1 , 3-4,

3-9

Hardware,
device, 1-4, 1-5
diagnostics, 2-23

head, 1-14, 3-14
Hierar'chy,

directory, 2-3, 2-5, 2-7
process, 3-1 , 3-3

History function, 3-15
HOME, 3-5 , 3-6 , 3-7
hyphen, 4-4

iAPX 286 , 1-7, 1-13 , 1 -15
if, 5-3
IFS, 3-6
I node

list, 2-2 1 , 2-24

Index

nu mber, 2-2, 2-3, 2-15 , 2-2 1 , 2-24,
2-2 5

Installation, 1-2, 1-15
int, 5-2
Interprocess com munication, 1-12 , 5-4
1/0, 5-1, 5-3, 5-4, 5-6

Kernel, 1-3, 1-5, 1-6, 1-7, 1-8, 1-14, 2-2,
2- 1 0 , 2-2 0 , 2-2 1 , 2-25 , 3-2, 3-3,
3-8, 5-4, 5-6

lc, 1-14, 2-5
.LE, 4-2, 4-5
lex, 2-2, 5-5
Lexical analyzer, 5-5
.LI, 4-2, 4-5
/lib, 2-10
Library, 1-3, 1-6, 1-14, 2-2, 2-10 , 5-1 ,

5-3 , 5-4, 5-5, C-2 thru C-6
Link to a file, 2-18, 2-2 1 , 3-9
lint, 5-5
In, 2-18
Log off, 3-5
Log on, 1-9, 3-4, 3-5, 3-8, 3-1 2
Login,

directory, 2-3, 2-4, 2-5, 2-8, 2-10 ,
3-4, 3-5 , 3-7

name, 3-4, 3-5, 3-1 2
process, 3-3, 3-5
shell, 3-4, 3-5, 3-6
ti me, 3-8

LOGNAME, 3-5, 3-7
Loop, 5-3
/lost+found, 2-10
lpd, 3-3
lpr, 3-10 thru 3-13 , 4-3 , 4-4
Is, 2-5, 2-15 , 2-16 , 3-9, 3-1 1

Macro, 1-13 , 4-1 thru 4-4, 5-3
MAIL, 3-7
Mail, 1-1 1 , 1-12 , 1-14, 3-12
mail, 1-12 , 1-14, 3-12

Index-3

Index

make, 5-5
Makefile, 5-5
Mass storage,

device, 2-1 , 2-2 0
manage ment, 1-5

Memory, 1-4, 1-5, 2- 1 1
allocat ion, 5-4
manage m ent, 1-5

mesg, 2 - 1 7
Metacharacter, 3-1 0 , 3-1 1 , 3 - 1 5
Micnet, 1-2 , 1 - 1 2 , 1-15
Microsoft Corporation, 1-7 , 1 - 1 2 , 1-13
mkstr, 1-14
mkuser, 3-4
mm, 1-3, 1-13 , 4-1 thru 4-5
mmcheck, 4-4
mmt, 4-3, 4-4
/mnt, 2- 1 0
more, 1-14
Mounting file syste m, 2-2 5 , 3-3
Mult ics, 1 - 1 0
Mult iprogram m ing, 1- 1 0
Multitasking syste m, 1-1 1
Mult iuser syste m, 1-10 , 1- 1 1

nap, 1 - 1 3
neqn, 4-2, 4-3, 4-4
Network, 1-1 1
nl, 3-14
nroff, 1-3 , 4- 1 , 4-2, 4-3, 4-4, 4-5
NULL, 5-2

Octal representation of perm issions,
2-14, 2 - 1 5

Office tools, 1- 1 1
Operating system, 1-4
Operators, 5-3
Option, co m mand, 3-9, 3-1 0
Overview of the XENIX 286 Operating

System , 1-2, D- 1

.P, 4-5
Parent,

directory, 2-6, 2-7
process, 3-1 , 3-2

Pascal, 5-3
Password,

adm inistration, 1- 1 2
changing, 3-4

Index-4

encrypted, 3-5
entry, 3-5

XENIX 286 Overview

file, see I etc/passwd
passwd, 3-4
paste, 1-13 , 4-3, 4-4
PATH, 3-6
Path,

name, full, 2-7, 2-8
name, relative, 2-8, 2 - 1 8
search, 3 - 6 , 3-15

Perm issions, 2 - 1 2 thru 2 - 1 7 , 2 - 1 8, 2-2 1 ,
3-8

Phototypesetter/phototypesetting, 1-3 ,
4- 1 thru 4-4

PID, 3-1 , 3-2
P ipe, 1-8, 1 - 1 1 , 3 - 1 2, 3- 1 3

nam ed, 2-2 1
Pointer, 5-2, 5-3
Portability, 1 - 1 1 , 1- 14, 5-3
Printer, 1-4, 1 -5, 1-1 1, 2-1 1 , 2-17 , 4-3,

4-4
Process, 1-5, 1- 1 1 , 1-13 , 3-1 , 3-2, 3-3,

3-5, 3-8, 5-4, 5-6
.profile, 2-1 5 , 3-7
Program,

executable, 2 - 1 2 , 3-1, 3-8
shell, see shell script
source, 3 - 1

Program mer, 1 - 3 , 1 - 9
PSl, 3-6, 3-8
PS2, 3-6
Publications,

Basic Syste m , 1-2
Extended Syst e m, 1-3
Related, D-1
Suggested readings, D-2

pwadmin, 1 - 1 2
pwcheck, 1 - 1 2
pwd, 2-9

Raw interface, 2-1 1
Read perm ission, 2-12 , 2-13 , 2- r5, 2-16 ,

2-17
Redirection,

input, 3- 1 1 , 3-1 2 , 3- 1 5
output, 3 - 1 1 , 3-1 5, 4-3

Relative path name, 2-18
restor, 1-15
Restricted shell, see shell

XENIX 286 Overview

Root,
as owner, 2-17 , 3-4
directory, 2-7, 2-9, 2 - 1 0 , 2-2 5, 3-3
file system, 2-2 3 , 2-2 5

rsh, 3-1 5

sees, 1 - 1 3 , 5-5
sdenter, 1 - 1 3
sdfree, 1 - 1 3
sdget, 1-1 3
sdgetv, 1 - 1 3
sdleave, 1 - 1 3
sdwaitv, 1 - 1 3
Search,

path, 2 -2 1 , 3-6, 3 - 1 5
permission, 2-16

sed, 3-14, 4-3, 4-4
Se maphore, 1 - 1 2 , 2-2 1
Set GID, 2-12 , 2-13
Set UID, 2-12 , 2-13
sh , 1-2 , 2 - 1 2 , 3 - 1 5, 5-1 , 5-5 , 5-6
Shared data, 1 - 13
Shell,

Bourne, 1-2, 1-8, 3-4, 3-5, 3- 1 5, 5- 1 ,
5-6

C, 1-8, 1-14, 3-4, 3-5, 3-15 , 5-6
com m and interpreter, 1-8, 3-4, 3-8
login, 3-4 thru 3-7
metacharacters, 3-10 , 3-1 1
program m ing, see shell script
pro mpt, 3-6, 3-8
restricted, 1-8, 3-4, 3-5, 3-15
script, 1-1 1 , 2 - 1 2 , 3-1 , 3-3, 3-6
visual, 1-2, 1-8, 1 - 1 2 , 3-4, 3-5, 5-6,

D- 1
soelim, 1 - 1 4
sort, 3-12 , 3-13 , 3 - 1 4
Source Code Control Syste m (SCCS),

1-1 3
.sp, 4-5
spell, 4-3 , 4-4
Standard,

error, 3-6
input, 3-6, 3-1 1 , 3-12 , 3-13
libraries, 1-3, 5-1 , C-2 thru C-6
output, 3-6, 3- 1 1 , 3-1 2 , 3-13
prompt, 2-3 , 3-15

•
Startup, 1 - 1 2
Strings, 1-14, 5-4
style, 4-4
Subdirectory, 2-3, 2 -4, 2-5
Subtree, 2-5, 2-6
Suffix, 2-2
Swap,

area, 2-23
process, 1-5

switch, 5-3
/sys, 2-10
sysadmin, 1-12
System,

adm inistration, 1 - 1 2

Index

administrator, 1-2, 1-9, 1 - 1 2 , 1-1 5 ,
2-3 , 2-10 , 2- 1 1 , 2-12 , 2-2 5 , 3-2,
3-3 , 3-4, 3-7' 3-12 , 3-15 , 5-6

call, 1-5, 1-7, 1 - 1 3 , 5-4, 5-6

Table formatting, 4-2, 4-3, 4-4
Tags file, 1-14
tail, 3-14
Tape drive, 1-4, 1-5 , 2 - 1 1
tbl, 4-2, 4-3, 4-4
TERM, 3-7
TERMCAP, 3-7
termcap, 1-14
Terminal, 1-4, 1-5 , 1- 1 1 , 2 - 1 1 , 2 - 1 7 , 3-3,

3-6 , 3-8, 3-1 2
Text,

editor, 1-6, 4- 1
file, 2-1 , 4- 1
formatting, 1-3 , 1 - 1 0 , 4- 1
processing, 4-1
processor, 1-9, 1 - 1 3

/tmp, 2 - 1 0
tr, 3-14
Tracks, 2-23
Tree structure, 2-3
troff, 1-3 , 4-1 thru 4-5
tset, 1-14

UID, 2-12 , 2-13 , 2-14 , 3-4
umask, 2- 1 5
Union, 5-2
uniq, 3-14
UNIX, 1-7, 1-10, 1-12, 1-13, 4- 1 , 5-2

Index-5

Index

User,
file system, 2-23
table, 3-2
UID, 2-12, 2-13 , 2-14, 3-4
XENIX, 1-9

/usr, 2-10 , 2- 1 5
/usr/bin, 3-1 , 3-6
Utility programs, 1-6, 1-8
uucp, 1-2, 1-12 , 1 - 1 5

Variable,
function, 5-2, 5-5
shell, 3-5, 3-6, 3-8, 3-1 5

vi, 1-2, 1 - 1 4, 4-1, 4-3 , 4-4
Visual shell, see shell
vsh, 3-5, 3- 1 5

we, 3-14, 4-4
· who, 3-8, 3-12 , 3-13
Wildcard, 3-10
Window operations, 5-4
Word processing, 1-14
Working directory, 2-5 , 2-9, 3-6
Write permission, 2-12 , 2-13 , 2-16

XENIX,
extending, 5-1 , 5-6
history, 1- 1 0
modifying, 5-6
users, 1-9

Index-6

XENIX 286 Overview

/xenix, 2-10
XENIX 286 C Library Guide, 1-3 , 5-1 ,

5-4, D- 1
XENIX 286 Communications Guide, 1-2,

1-9, 1 - 1 5 , D-1
XENIX 286 Device Driver Guide, 1-3,

1-9, 1-15 , 5-6, D- 1
XENIX 286 Installation and

Configuration Guide, 1-2, 1-9,
1 - 1 5 , 5- 1 , 5-6, D- 1.

XENIX 286 Programmer's Guide, 1-3 ,
5-1 , 5-3 , 5-5, 5-6 , D- 1

XENIX 286 Reference Manual , 1-2 , 5- 1 ,
D- 1

XENIX 286 System Administrator's

Guide, 1-2, 1-9, 1-15 , D-1
XENIX 286 Text Formatting Guide, 1-3,

D- 1
XENIX 286 User's Guide, 1-2, 5-1 , 5-6,

D- 1
XENIX 286 Visual Shell User's Guide,

1-2, D- 1
/xenix.f, 2-10
xref, 1-13
xstr, 1-14

yacc, 2-2 , 5-5

Overview of the
X E N I X 286 Operati ng System

1 74385-00 1

REQU E ST F O R READ E R'S COM M E NTS

I ntel 's Techn ica l Pu bl i cations Departments attempt to provide publ i cations that meet the needs of a l l
I ntel prod uct users. Th i s form lets you parti c i pate d i rect ly i n the publ i cati on process. You r comments
wi l l hel p us correct a nd i mprove our pu bl i cations. Please take a few m inutes to respond.

Pl ease restri ct you r com ments to the usabi l i ty, accu racy, organ i zati on, and com pl eteness of th i s
pu bl i cation . I f you have any comments on the product that this pu bl i cati on descri bes, p lease contact
you r I ntel representative. If you wi sh to order pu bl i cations, contact the Literature Department (see
page i i of th i s manua l) .

1 . Please descri be any errors you fou nd i n this publ i cati on (i ncl ude page number) .

2 . Does th i s publ i cation cover the i nformation you expected or requ i red ? Please make suggesti ons
for i m provement.

3. Is th i s the right type of publ i cation for you r needs? Is it at the right l evel ? What other types of
publ i cati ons a re needed ?

4. Did you have any d i ffi cu lty u nderstand ing descri ptions or word i ng? Where?

5. Pl ease rate this publ i cation on a sca le of 1 to 5 (5 being the best rati ng).

NAM E ___ DATE

T ITLE

COM PANY NAM E/DEPARTM E NT
--

ADDRESS

CITY STATE
--

(CO U NTRY)

Please check here i f you req u i re a written reply . D

Z IP COD E
--

WE' D L I KE YO U R C O M M ENTS • . .

This docu ment i s o n e o f a series describing Intel prod ucts . Your comments o n the back o f this form wil l

help us p rod uce better manuals. Each reply wi l l be careful ly reviewed by the responsible person . All

com ments and suggestions become the property of Intel Corporation .

B U S I N ESS R E P LY MAI L
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAI D BY ADDRESSEE

I ntel Corporation
5200 N. E. Elam You ng Parkway.
Hi l lsboro, Oregon 971 23

ISO-N TECHNICAL PUBLICATIONS

I I I I NO POSTAGE

N ECESSARY

IF MAILED

IN U .S .A .

intef
I NTEL CORPO RATION, 3065 Bowers Avenue, Santa Clara, Cal i forn i a 9505 1 (408) 987-8080

Pri nted in U.S .A.

SOFTWARE

0026/ 44K/0984/0SPS

