
Microsoft®
BASIC Compiler
for the XENIX@ Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use. �

·� Copyright Microsoft Corporation, 1983, 1984, 1985, 1986

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft and the Microsoft logo are registered trademarks or Microsoft Corporation.

The High Performance Software is a trademark of Microsoft Corporation.

XENIX is a registered trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel 1s a registered trademark or Intel Corporation.

Document Number 290700003-570-R00-0686
Part Number 007-092-009

�

Contents

Part 1 - User's Guide

1

2

3

Introduction 1

1 . 1 Welcome 3
1 .2 Package Contents 3
1 .3 System Requirements 4
1 .4 Using This Manual 4
1 .5 Notational Conventions 6

Getting Started 9

2.1 Installing BASIC 1 1
2.2 Practice Session 13

Compiling a BASIC Program

3.1 Invoking the BASIC Compiler 17
3 .2 Compiling and Linking

a BASIC Source File 19
3.3 Compiling Several Source Files 20
3.4 Producing Object Files 20
3.5 Naming the Executable File 21
3.6 Producing a Source Listing File 21
3. 7 Producing a

Disassembly Listing 22
3.8 Producing a Map File 22
3.9 Generating Debugging

and Error-Handling Messages 23

15

3.10 Using Error-Handling Statements 24
3. 1 1 Writing Quoted Strings

to Disk Instead of Memory 24
3.12 Storing Arrays in Row Order 25
3.13 Using Assembly

Language Source Files 25
3. 14 Stripping the Symbol Table 26
3 .15 BASIC Compiler Messages 26

iii

Contents

4

5

6

Linking Object Modules 27

4.1 Id Command Syntax 29
4.2 Creating Executable

Programs From Object Files 30
4.3 Naming the Output File 30
4.4 Linking to Special Libraries 3 1
4.5 Producing a Map File 32

Working With Files and Devices

5. 1
5.2
5.3
5.4

5.5

Device-Independent Input/Output
Filenames and Paths 36
Handling Files 37
Data Files: Sequential,

Random Access, and ISAM 37
BASIC and Child Processes 69

Using Subprograms 71

6.1 Creating Subprograms 73
6.2 Calling Subprograms 75
6.3 Passing Variables with CALL 76
6.4 Passing Arrays with CALL 77
6.5 Passing Expressions with CALL 79
6.6 Accessing Parameters with SHARED
6.7 Passing Variables and

Arrays Between Modules 83
6.8 Error Handling 85
6.9 Using GOSUB .. RETURN 86
6.10 Variable Scoping Using SHARED and

CO:tv.IMON: An Extended Example
6.11 Common Errors 89

33

35

80

86

7 Interfacing With Other Languages 91

7 .1 Loading Assembly Language Files 93
7 .2 Calling Assembly Language Subroutines 93
7 . 3 The Run-Time Memory Map 100

Part 2 - Reference

iv

�

r--i

8 Language Elements 103

8.1 Character Set 105
8.2 The BASIC Linc 106
8.3 Data Types 109
8.4 Constants 1 10
8.5 Variables 1 1 2
8.6 Expressions and Operators 1 16
8. 7 Type Conversion 125

Contents

9 Compiler-Interpreter Language Differences 127

9.1 Dynamic and Static Arrays 129
9.2 Using Metacommands 132
9.3 New BASIC Statements and Functions 136
9.4 Compiler-Interpreter Differences 1 37
9.5 Enhanced Statements and Functions 144

10 Statement and Function
Reference 147

Part 3 -Appendixes

A ASCII Character Codes 34 7

B Microsoft BASIC Reserved Words 349

C Summary of Commands 351

C. l Compiler Options 353
C.2 Linker (Id) Options 354
C.3 XENIX BASIC Metacommands 355

D ISAM Reference

D.l Introduction 359

357

D.2 Writing an MS-ISAM Application 360
D.3 Parameters 363

v

Contents

D.4 MS-ISAM Subroutines 368
D.5 MS-ISAM Codes 381

E Rebuild 2.0 385

E.1 Introduction 387
E.2 Using Rebuild With Your Data Files 388
E.3 Invoking Rebuild 389
E.4 Definitions of Command Line Arguments 389
E.5 Using Rebuild as a Tool 391
E.6 Data Loss After a System Crash 394
E. 7 Adding and Deleting Indexes 395
E.8 Creating and Using

a dd (ASCII) Text File 401

F Error Messages 407

F.1 Invocation Errors 409
F.2 Compile-Time Errors 410
F.3 Run-Time Errors 416

Glossary 423

Index 427

vi

Figures

Figure 7 . 1

Figure 7.2

Figure 7.3

Stack Layout when CALL statement is activated

Stack Layout After ADD Statement Execution

XENIX BASIC Compiler Run-Time Memory Map

Figure E.1 Rebuild Interactive Mode Main Menu 398

95

97

101

vit

Tables

Locating Information 5

XENIX BASIC Compiler Options

Key Designation Assignments 54

18

Table 1 . 1

Table 3 . 1

Table 5. 1

Table 8 . 1

Table 8 .2

Table 8.3

Table 9.1

Table 9.2

Table 9.3

Table 9.4

Table 9.5

Table 9.6

Variable-Type Memory Requirements 1 1 5

Relational Operators and Their Functions

Values Returned by Logical Operations

120

1 22

Functions and Statements Described in This Chapter

XENIX BASIC Metacommands 132

Listing Format Commands 135

New BASIC Statements and Functions

Operational Differences 1 39

Statements and Functions
Not Accepted by the Compiler 1 43

Statements Requiring Modification 1 44

137

Table 9.7

Table 9.8

Table C. 1

Table C.2

Enhanced Statements and Functions 145

XENIX BASIC Compiler Options 353

XENIX Linker Options 354

Table C.3 XENIX BASIC Metacommands 355

Table D. 1

Table D.2

Table D.3

Table D.4

Table D.5

Table D.6

viii

Values Returned by Function IXSTAT

Open Mode Definitions 382

Seek Modes 382

ICONTROL Requests 382

Data Types 383

ILOCK Requests 383

381

129

Part 1
User's Guide

�

1 Introduction 1
2 Getting Started 9
3 Compiling a

BASIC Program 15
4 Linking Object Modules 27
5 Working With Files and Devices 33
6 Using Subprograms 71
7 Interfacing With

Other Languages 91

�

Chapter 1

Introduction

1.1 Welcome 3
1.2 Package Contents
1.3 System Requirements
1.4 Using This Manual

3

4
1.5 Notational Conventions

4

6

1

Introduction

1 . 1 Welcome

The .Microsoft.: XENIX-: BASIC Compiler is intended for users who are
familiar with BASIC, but want the size and speed advantages of compiled
programs. The XENIX BASIC compiler offers the following improvements
over interpreted BASIC:

• Large program capability. The compiler separates instruction
and data space, giving you 64K (kilobytes) of data space and 64K of
code space per module.

• Flexible array dimensioning. Dynamic arrays allow you to use
variables to dimension arrays, providing more efficient use of
memory.

• Support for alphanumeric labels. The compiler does not require
line numbers, and allows the use of alphanumeric line labels. With
alphanumeric labels, you can give your statements and subroutines
descriptive names. This improves program readability, and can pro
vide simpler debugging.

• Separately compiled subprograms. With the compiler, you can
create BASIC subprograms that perform common tasks, compile
them separately, and use them over and over in many different pro
grams.

1 . 2 Package Contents

Your XENIX BASIC Compiler package contains the following software,
stored on two floppy disks:

• The compiler software

• The libraries required by the compiler

• The XENIX linker, Id.
• The ISAM (Indexed Sequential Access Method) utilities and li

braries.

• A shell script, "msinstall" that installs the compiler and linker on
the system.

3

Microsoft XENIX BASIC Compiler

1.3 System Requirements

The XENIX BASIC Compiler requires:

• A computer with an INTELe 80286 microprocessor.

• Microsoft XENIX System 3 or IBM<!> XENIX Version 1 .0 or lat.er.

• 375K free disk space.

1.4 Using This Manual

Part I of this manual, the "User's Guide" explains how to set up the
XENIX BASIC Compiler, how to compile and run BASIC programs on your
system, and discusses how to use some of XENIX BASIC's new program
ming and language features. Ref er to the when you have questions about
compiling and linking, or about creating programs in general.

Part 2 of this manual, the "Reference" defines the BASIC language and pro- �
vides a complete alphabetical reference to the statements and functions
supported by the XENIX BASIC Compiler. It also describes the differences
between compiled and interpreted XENIX BASIC, and describes what you
need to do to compile programs originally written for the BASIC inter-
preter. Use the "Reference" when you have questions about the syntax and
use of the BASIC language.

Part 3 of this manual, the "Appendixes" contains additional information
you may find helpful, such as a table of ASCII character codes, a list of
BASIC reserved words, and explanations of the compiler, linker and run
time error messages.

Table I.I will help you find what you need to know to start using the

4

XENIX BASIC Compiler.

Table 1 .1
Locating Information

For This Information

How to install the compiler and
linker software

How to run the compiler

How to link a BASIC program

A list of devices supported by
BASIC

How to create random access
files

How to use the ISAM utility

How to create modular programs

How to use assembly-language
routines in your BASIC
programs

How to use alphanumeric labels

What changes you need to make
to your interpreted programs
before you can compile them

What metacommands are and
how to use them

A list of ASCII character codes

A list of BASIC reserved words

A summary of all the BASIC
Compiler options

A summary of all the BASIC
Compiler metacommands

A complete ISAM reference

How to use the Rebuild Utility
with ISAM files
Explanations of error messages
given by the compiler, the
linker, and the run-time system
An explanation of the terms
used in this manual

Introduction

See

Chapter 2, "Getting Started"

Chapter 3, "Compiling a BASIC Program"

Chapter 4, "Linking Object Modules"

Chapter 5, "Working With Files and Devices"

Chapter 5, "Working With Files and Devices"

Chapter 5, "Working With Files and Devices"

Chapter 6, "Using Subprograms"

Chapter 7, "Interfacing With Other Languages"

Chapter 8, "Language Elements"

Chapter 9, "Compiler-Interpreter Language
Differences"

Chapter 9, "Compiler-Interpreter Language
Differences"

Appendix A, "ASCII Character Codes"

Appendix B, "BASIC Reserved Words"

Appendix C, "Summary of Commands"

Appendix C, "Summary of Commands"

Appendix D, "ISAM Reference"

Appendix E, "Rebuild 2.0"

Appendix F, "Error Messages"

The glossary

6

Microsoft XENIX BASIC Compiler

1 .5 Notational Conventions

The following notational conventions are used in this manual:

Notation

Examples

KEYWORDS

command names

Apostrophes ' ' '

placeholders

6

Description

The typeface shown in the left column is used to
simulate the appearance of information that
would be printed on your screen. For example, the
following program statement is printed in this
special typeface:

I NPUT "What is your narne";A$

When discussing this statement in text, words
appearing in the statement, such as INPUT and
A$, also appear in the special typeface.

Bold capital letters indicate BASIC keywords.
These keywords are a required part of the state
ment syntax, unless they are enclosed in double
brackets as explained below. In programs you
write, you must enter keywords exactly as shown.
However, you can use uppercase (capital) letters
and/or lowercase letters.

In the following statement, IF and THEN are
BASIC keywords:

IF expression THEN statement

Bold type within the text indicates command
names, as in the following sentence:

It is not necessary to specify the library name on
the bascom command line.

An apostrophe is entered as a single right quota
tion mark { '), not a single left quotation mark (') .
Note that in the typeface used in examples, such
as 1 index variable, apostrophes look like
this: I•

Items in italics are placeholders for types
of information you must supply, such as a
filename. In the following statement, linelabel is
italicized to show that this is a general form for
the GOTO statement:

�optional itemsll

: choice1:choice2:

Repeating elements . . .

Introduction

GOTO linelabel

In an actual program statement, the placeholder
label must be replaced by a specific line label , as in
the following example:

GOTO fixup

Items inside double square brackets are optional.
The following statement, for example, shows that
entering an argument/isl is optional in the CALL
statement.

CALL name fi(argumentlist)D

Either of the following CALL statements is
correct:

CALL PROG2
CALL NEXTPROG (VALUES , I NDEX)

This syntax indicates that you have a choice
between two or more items. Braces enclose the
choices, and vertical bars separate the choices.
You must choose one of the items, unless all of the
items are also enclosed in double square brackets.
For example, the following is the syntax of the
RETURN statement:

RETURN [{ linenumbe�linelabelJ D

This indicates the arguments are optional, but if
you use an argument it must be either a line
number or a line label.

Three dots following an item indicate that more
items having the same form may appear. For
example, this is the syntax of the DATA state
ment:

DATA constantl[,constant.ej] .•.

'1

Microsoft. XENIX BASIC Compiler

Program

F ragment

KEY NAMES

Input text

Note

The dots following [constant!'� indicate you can
enter more arguments, provided the arguments
are separated by commas.

A column of dots is used in program examples to
show a portion of the program that has been
omitted. For example, in the following program
fragment, only two lines are shown:

SUB PROG2 STATIC

END SUB

Small capital letters are used for the names of
keys and key sequences, such as ENTER and
DELETE.

This type is used to indicate input you enter in
response to a prompt. In the following example,
"John" is entered in response to the "Enter your
name" prompt:

Enter your name : John

Bold type and italics are also used occasionally in the text for emphasis.

8

Chapter 2

Getting Started

2.1 Installing BASIC 11
2.2 Practice Session 13

9

Getting Started

The Microsoft BASIC Compiler must be installed on your hard disk before
you can use it to create executable programs. This chapter explains how t.o
install the compiler.

There is a brief Practice Session at the end of this chapter that demon
strates how to create, compile, link and run a sample program.

2 .1 Installing BASIC

Before you can use the compiler, you must install it and the related
software on your system. A shell program that performs the installation au
tomatically is included on the first compiler disk. This section explains how
to install the system on your hard disk.

You must have super-user privileges to install the BASIC compiler. To in
stall the software, follow the instructions below. If you have any problems
while you are installing the compiler, press DELETE to stop the installation,
and start again from Step 2.

1 . Log i n as root.

Do not install the BASIC compiler in system maintenance mode. If
you do, the compiler will not be installed in the correct file system.

2. Us the cd command to change your current directory to "/tmp" :

cd /tmp

Important

BASIC is distributed on 360K byte, double-sided 9-sector floppy
disks. You must determine the device name for your floppy disk
drive before you can proceed with the installation. On the IBM
AT the drive name is cc/dev/fd048ds9" . The name may be
different on your machine.

3 . Place the first disk (the disk labeled " 1 of 2") in the top floppy disk
drive and shut the drive door. Use the tar command to extract the
installation program, msinstall, from the disk:

11

Microsoft XENIX BASIC Compiler

tar xv f drive ms insta l l

For drive, use the name of your floppy disk drive.

4. If you have an IBM AT computer, when the system prompt returns
type

msinsta l l basic

If you are not installing BASIC on an IBM AT, type the following:

msinst a l 1 -d drive basic

Substitute the name of your floppy disk drive for drive. Press RE
TURN to execute the installation program.

The msinstal/ program extracts the files from the disk and places
them in the appropriate directories.

5. When you see the message:

Are you ready to begin the insta l l ation [y,n] ?

Type y and press return. The next prompt asks

F i rst disk?

If you removed the first disk from the drive, put it back in. Type y
and press RETURN.

6. You will be prompted to change disks as each disk is copied. When
the disk drive light goes out and you see the message:

Next disk [y , n] ?

insert the next disk, type y and press RETURN. Do this for each disk
in the package. When all the disks are installed, type n at the
"Next disk" prompt. When you see the message:

I nsta llation complete

go on to the next step.

7. Type
rm /tmp/msinsta l l

to delete the installation script.

The Microsoft XENIX BASIC Compiler is ready to use. Remove the last
disk from the drive and store the disks in a safe place. If your hard disk is
ever damaged or erased, you will need these disks to reinstall the compiler.

12

Getting Started

The installation may leave a file called "README.DOC" in "/tmp" . This
file, if present, contains important information about the compiler. It is
recommended that you move this file t.o a permanent. place and that you

� read it before you use the compiler.

2.2 Practice Session

This section shows you the steps involved in compiling and linking a pro
gram using the Microsoft XENIX BASIC compiler. By following these steps
you can produce and run an executable program file.

Note

The msinstall program places t.he compiler driver in /usr /bin. To run
the compiler, the PATH variable in your .profile file must include this
directory.

For the Practice Session, it is recommended that you not be logged in as
root. This way you can see if the compiler is working correctly for general
users.

Before you can begin compiling, you must create a BASIC source file.
Create your source file with any available text editor, or with the BASIC In
terpreter. (If you create your program with the interpreter, be sure you
save it with the " ,A" option.) It is recommended that you write a very sim
ple program, such as the one in the following example, so you can concen
trate on compiling and linking, instead of debugging the program.

I. Enter the following program and save it in a file called
"sample. bas:"

for a = 1 to 10
print "This is a samp le program"

next a

2. Once you have entered the program you are ready to compile and
link it. The bascom command compiles and links your program
with a single command. To create an executable program from the
source file you just. created, at the system prompt t.ypE>

bascom sample . bas

13

Microsoft XENIX BASIC Compiler

14

The bascom command controls the compiler and linker. Arguments
to bascom allow you to name the executable file, create additional
listing files, link with the ISAM library, and suppress linking. These
and other options are discussed in Chapter 3, "Compiling a BASIC
Program" and Chapter 4, "Linking Objed Modules."

3. After compilation, your program is automatically linked with the
BASIC library, BCOM.A. The executable file is placed in a file in
your current directory named "a.out."

4 . You can run your program as soon as the compiling and linking pro
cess is complete, and the XENIX system prompt reappears. To run
your program, type

a . out

and press RETURN. If the program you are using is the sample pro
gram listed above, the following message will appear on your screen
when you run the program:

This is a sample progra m.
This is a samp l e progra m.
This is a sample progra m.
This is a sample program .
This is a samp le program .
This is a samp le program .
This i s a sample program .
This is a samp le program .
This ls a samp le progr am .
This i s a samp le program .

Chapter 3

Compiling a
BASIC Program

3.1 Invoking the BASIC Compiler
3.2 Compiling and Linking

a BASIC Source File 19
3.3 Compiling Several Source Files
3.4 Producing Object Files 20
3.5 Naming the Executable File

17

20

21
3.6 Producing a Source Listing File 21
3.7 Producing a

Disassembly Listing 22
3.8 Producing a Map File 22
3.9 Generating Debugging

and Error-Handling Messages 23
3.10 Using Error-Handling Statements 24
3.11 Writing Quoted Strings

to Disk Instead of Memory 24
3.12 Storing Arrays in Row Order 25
3.13 Using Assembly

Language Source Files 25
3.14 Stripping the Symbol Table 26
3.15 BASIC Compiler Messages 26

16

Compiling a BASIC Program

This chapter explains how to use the bascom command. In particular, it
explains how to:

• Compile and link BASIC source files

• Interpret the error and warning messages produced by the compiler

• Use the compiler options to perform the functions described in
Table 3. 1

3.1 Invoking the BASIC Compiler

The bascom command is all you need to compile and link your BASIC
source files using the Microsoft BASIC Compiler. The bascom command
has the form

bascom [optionsD files

where each option is a command option, and each file specifies the file or
files to be processed. Files can be the names of BASIC source files, assembly
language source files, object files, or libraries. You can give more than one
option or filename, but you must separate each item by one or more spaces.
Table 3. 1 summarizes the bascom command options described in this
chapter.

Note

Compiler options are case-sensitive. Be careful to use the options exact
ly as listed below.

17

Microsoft XENIX BASIC Compiler User's Guide

Table 3.1
XENIX BASIC Compiler Options

Option Description

-A Includes a listing of the disassembled object code in the
source listing.

- c Suppresses linking.
-D Generates debugging code for run-time error checking

and enables the DELETE key.

-E Indicates the presence of ON ERROR GOTO with
RESUME linenumber statement.

-i Links with the ISAM library as well as the BASIC library.

-L Generates a source listing file.

-m Generates a linker map listing file.

-o Allows you to specify the name of the executable file.

-R Stores arrays in row order.

-s Causes the linker to strip local symbols out of the symbol
table when linking user object files with object files
generated by the compiler.

-S Writes quoted strings to .OBJ file instead of symbol table.

-X Indicates presence of ON ERROR GOTO with
RESUME, RESUME NEXT, or RESUME 0.

The bascom command invokes the compiler driver, /bin/ bascom, which
controls execution of the compiler files. When you give the bascom com
mand without options, it automatically performs both compilation and
linking to produce an executable program file. Using the bascom options,
you can control and modify the tasks performed by the command. For
example, you can direct bascom to create a disassembled object code list.
ing, or to write quoted strings to disk instead of memory.

An option consists of a dash (-) followed by a combination of one or more
letters that have special meaning to bascom. If you are using more than
one option, each individual option must be preceded by a dash.

When bascom processes the file, it looks at the filename extension to deter- �
mine whether it should start processing at the compiling, assembling, or
linking stage. Files needn't be at the same stage to be combined on a
baacom command line.

18

Compiling a BASIC Program

Many options are described in the following sections, and in Chapter 4,
"Linking Object Modules." For a complete summary of all the bascom
options, see Appendix C, "Command Summary."

3.2 Compiling and Linking
a BASIC Source File

You can use the bascom command to create executable programs from
BASIC source files. Source files must be in ASCII format. A file's contents
are identified by the filename extension, and BASIC source files must have
the extension ".bas" . Compile a BASIC source file by giving the name of
the file when you invoke the bascom command. The command compiles
the program in the file, links with the appropriate libraries, then copies the
executable program to the default output file a. out.

To compile a source program, type

bascom file

� where file is the name of the file containing the program.

For example, to compile a program stored in a file named "math.bas," type

bascom math.bas

The compiler compiles the program, then links the program with the stan
dard BASIC library. Finally, it copies the executable program to the file
a . out.

You can execute the new program by typing

a.out

19

Microsoft XENIX BASIC Compiler User's Guide

3.3 Compiling Several Source Files

Large programs are often split into several files to make them easier to
understand, update, and edit. You can compile such a program by giving
the names of all the files belonging to the program when you invoke the
bascom command. The command reads and compiles each file in turn,
then links all the object files together, and copies the new executable pro
gram to the file a.out.

To compile several source files, type

bascom filel file2 • . •

where each file is separated from the next by at least one space.

3.4 Producing Object Files

When source files are compiled, the bascom command creates object files
to hold the binary code generated for each source file. These object files are (",
then linked to create an executable program. Object files have the same
basename as their source files, but are given the 11 .o" file extension.

For example, when you compile the two source files math.bas and add.bas,
the compiler produces the object files math.o and add.o. The object files are
permanent files, i.e., the bascom command does not delete them after com
pleting its operation. Note that the bascom command creates an object file
even if only one source file is compiled.

You may want to save useful functions as object files, and use these object
files to create programs at a later time. Object files contain the compiled or
assembled instructions of your source file, so they save you the time and
trouble of recompiling the functions each time you need them. You can
create just an object file from a given source file by using the -c (compile)
option. This option directs bascom to compile the source file without
creating an executable program. Object files are produced for all files
named on the command line.

To make object files for the source files math.bas and add.bas type

bascom -c math.bas add.bas

This command compiles each file and writes the compiled source files to the

20

Compiling a BASIC Program

object files math.o and add.o. It does not link these files; no executable pro
gram is created.

3.5 Naming the Executable File

You can give the executable program file any valid filename by using the -o
option. The option has the following form:

-o file

file is the name of the executable program file.

For example, the command

bascom -o math math.o add.a

causes the compiler to create the executable program file math from the
object files math.o and add.o. You can execute this program by typing

math

The -o option does not create an a.out file, nor does it affect any existing
a.out file. This means that the bascom command does not change the
current contents of a.out if the -o option has been given.

3.6 Producing a Source Listing File

The -L option produces an a source listing file. The listing contains the
memory address of each line in your source file, the text of the source file,
its size, and any error messages produced during compilation. The option
has the following form:

-L

A listing file is produced for all subsequent source files. Each listing file is
given the basename of its source file and the filename extension ".I" , and
placed in the current directory.

21

Microsoft XENIX BASIC Compiler User's Guide

The following command produces a source listing file from the program
sample. bas:

bascom - L samp l e .bas

3. 7 Producing a
Disassembly Listing

You can direct the compiler to include a disassembly listing in your source
listing by using the -A option with the -L option. The -A option adds a
listing of the disassembled code, instructions, and addresses relative to the
start of the program or module to the source listing, and greatly increases
the length of the listing file. In the listing file, the first column contains the
line number of the source file (L) and internal labels (I) used by the code
generator. The asterisks are followed by the relative address of the instruc
tion, the opcode, and the operand.

Disassembly listing files are typically used

• To look for inefficient instruction sequences that can be improved
by changing the source file.

• To rewrite a routine in assembly language. You can write the rou
tine in BASIC first, create an assembly language source file, then
use the instructions as a basis for a more efficient assembler routine.

• To learn more about how the compiler works.

The -A option applies to source files only; the compiler cannot create an
assembly language listing file from an existing object file.

3.8 Producing a Map File

The -m option produces a linker "map" file. The map file shows the address
of every code and data segment in your program, relative to the start of the
program, and lists all the global symbols defined in an object file. The sym
bols are listed both alphabetically by symbol name, and sorted by symbol
address. The addresses of the global symbols are in frame: offset format,
showing the location relative to the starting address of the program or
module.

22

Compiling a BASIC Program

You can create a map file from either source or object files. The -m option
has the following form:

-m file

The link map is placed in file in the current directory.

3. 9 Generating Debugging
and Error-Handling Messages

The -D option forces the compiler to include code that generates debugging
and error-handling messages at run time. -D allows use of TRON and
TROFF in the compiled file. If -D is not set, TRON and TROFF are
ignored and a warning is issued.

The -D option causes the BASIC Compiler to generate larger and slower
code that checks the following:

• Arithmetic overflow

All arithmetic operations, both integer and floating-point, are
checked for overflow and underflow.

• Array bounds

All array references are checked to see if subscripts are within the
bounds specified in DIM statements.

• Line numbers

The generated binary code includes line numbers so that the run
time error listing can indicate on which line an error occurs.

• RETURN statements

Each RETURN statement is checked for a prior GOSUB
statement.

• CONTROl.rBREAK
After each line the compiler checks to see if the user has pressed
CONTROl.rBREAK. If CONTROL-BREAK is pressed, the following mes
sage appears and program execution stops:

•Break•

23

Microsoft. XENIX BASIC Compiler User's Guide

STOP in l ine n o f modu le m at address segment:olfset

If you don 't use the -D option, array bound errors, RETURN without
GOSUB errors, and arithmetic overflow errors do not generate error mes
sages at compile time or run time. The results may be unpredictable.

If a program is not compiled with the -D option, a user cannot exit the pro
gram by pressing Control-Break, except when entering data in response to
an INPUT statement prompt. In this case, to exit the program you must
restart your computer.

3.10 Using Error-Handling Statements

The -E option tells the compiler that the program contains an ON
ERROR GOTO ... RESUME line number construction. To trap errors
properly, the compiler must generate extra code for the GOSUB and
RETURN statements. The compiler also generates a line-number address
table (one entry per line number) in the binary file, so each run-time error
message can include the number of the line in which the error occurs. Do
not use this option unless the program contains an ON ERROR GOTO
statement.

The -X option tells the compiler that the program contains one or more
RESUME, RESUME NEXT, or RESUME 0 statements. If a
RESUME statement other than RESUME line number is used with the
ON ERROR GOTO statement, use the -X instead of the -E option.

3.11 Writing Quoted Strings
to Disk Instead of Memory

The -S option forces the compiler to write quoted strings that exceed four
characters in length to an object file on disk as they are encountered,
instead of retaining them in memory during the compilation of the pro
gram. If this option is not set, and the. program contains a large number of
long quoted strings, the program may run out of memory at compile time.

Although the -S option reduces the amount of memory used at compile
time, it may increase the amount of memory needed in the run-time
environment, since multiple instances of identical strings will exist in the
program. Without -S, references to multiple identical strings are combined

24

Compiling a BASIC Program

so that only one instance of the string is necessary in the executable pro
gram.

3.12 Storing Arrays in Row Order

The compiler normally stores arrays in column order. For example, the ele
ment ARRAY(2, 1) is followed by ARRAY(3,l). The -R option instructs the
compiler to store arrays in row order, where the element ARRAY(2, 1)
would be followed by ARRA Y(2,2). This option is useful if you are using
assembly-language routines that store arrays in row order.

The BASIC Interpreter stores and accesses arrays in column order.

3. 13 Using Assembly
Language Source Files

You can use the bascom command to create executable programs from a
combination of BASIC source files and 80286 assembly language source
files. Assembly language source files must contain 80286 instructions, and
must have the extension ".s" .

When assembly language source files are given, the bascom command
invokes the XENIX assembler to assemble the instructions and create an
object file. The object file can then be linked with object files created by
the compiler. For example, the command

bascom math.bas add.s

compiles the BASIC source file math.bas and assembles the assembly
language source file add.s. The resultant object files, math.o and add.o, are
then linked to form a single executable program, a.out.

When using assembly language routines with BASIC programs, be sure to
provide the correct i nterface for calls to and from BASIC language func
tions. BASIC functions require a specific calling and return sequence.
Assembly language functions that fail to call and return properly will cause
errors. For information about writing assembly language programs for use
with the BASIC compiler, see Chapter 7, "Interfacing With Other
Languages."

26

Microsoft XENIX BASIC Compiler User's Guide

3.14 Stripping the Symbol Table

The -s option forces the linker to strip the symbols from the symbol table.
This option is useful when when the program has been completely debugged
and local symbols are no longer required. Using the -s option produces a
smaller executable file.

3.15 BASIC Compiler Messages

The Microsoft BASIC Compiler generates error and warning messages to
help you locate potential problems in programs. Error messages are pro
duced for many syntactical and semantic errors. Warnings are produced for
some special cases, such as using an inappropriate option with the bascom
command. If an error is severe, the compiler displays a message and ter
minates the compilation. Otherwise, the compiler continues looking for
other errors, but creates no object file. If only warning messages are
displayed, the compiler completes compilation and creates an object fi le.

In addition to the compiler messages, the bascom command displays error
messages generated by the XENIX linker. There is a complete list of com
piler and linker error messages in Appendix F, "Error Messages."

26

Chapter 4

Linking Object Modules

4.1 Id Command Syntax 29
4.2 Creating Executable

Programs From Object Files 30
4.3 Naming the Output File 30
4.4 Linking to Special Libraries 31
4.5 Producing a :Map File 32

27

Linking Object Modules

The bascom command automatically links object modules with modules
from the XENIX BASIC library and creat.es an executable program file.
You can also invoke the XENIX linker separately with the Id command.
The Id command is useful if you want to link object files created by
separate compilations. This chapter explains how to start the linker and
options you can use with Id to:

• Create executable programs from object files.

• Give the executable program file a name other than a.out.
• Link to functions in libraries.

• Produce a map file.

4.1 Id Command Syntax

The Id command has the following form:

Id .p [·Ml[eUD [·F num] [-C] �-S num B [·sD [·o outputfueD [·m mapfileD
objectfiles [·I library] [-1 library •..]

where

Argument Description

-P Keeps segments defined in an assembly language or
compiled BASIC program separate. This argument
is required or the program will not run.

-Ml[e]

-F num

-C
-S num

-s

The -Ml portion of the argument creates a large
model program. The e portion of the argument is
required when using ISAM libraries; it permits
mixed model linking. You must use -Mle with
ISAM libraries.

Sets the size of the stack to num bytes.

Causes the linker to ignore the case of symbols.

Sets the maximum number of data segments to
num.

Strips local symbols from the symbol table.

29

Microsoft. XENIX BASIC Compiler User's Guide

-o outputfile

-m mapfile

objectfiles

-I library

assigns the name outputfile to the executable file.

produces a linker map file named mapfile.

are the names of the files being linked.

specifies other libraries to be linked.

The rest of this chapter explains some of the linker commands in detail.

4.2 Creating Executable
Programs From Object Files

To create an executable program, give the names of the object files you
wish to link. For example, if the file math.o contains calls to the subpro
grams add and mult (saved in the object files add.o and mult.o), you can
create an executable program by typing

ld math . o add . o mul t . o

In this case, math.o is linked with add.o and mult.o to create the executable
file a.out.

4.3 Naming the Output File

You can give the executable program file any valid filename by using the -o
option. The option has the following form:

-o file

file is the name of the executable program file.

For example, the command

ld -o math math . o add . o

causes the compiler to create the executable program file math from the ob
ject files math.o and add.o. You can execute this program by typing

math

80

Linking Object Modules

Note that the -o option does not create an a.out file, nor does it affect any
existing a.out file. This means that the Id command does not change Lhe
current contents of a.out if the -o option is given.

4.4 Linking to Special Libraries

If you wish to l ink to special libraries that are unique to your installation,
or to libraries that are not automatically l inked by Id, you can use the -I
option. This option directs Id to search the given library for the functions
called in the source file. If the functions are found, the linker links them to
the program file.

The -1 option can only be used with libraries in the / lib and / usr / lib direc
tories. Functions in libraries that are not in the directories /lib or /usr /lib
are linked when declared as arguments on the Id command line.

The option has the form

-1 name

The -I option takes as its argument a truncated filename. Actual library
filenames begin with the four letters "Slib," "l\1lib," or "Llib ," but are re-
f erred to in the -1 option by the letters that appear after this prefix and be
fore the filename extension. ("S," "M," and "L" stand for small, medium
and large model. XENIX BASIC only uses large model l ibraries.)

For example, the command

ld math. o - l term l ib

links the library /usr/lib/Llibtermlib.a (terminal handling routines) with the
source file math.o.

The Id command searches the libraries in the order they are given until all
references are resolved to functions not explicitly defined in your source file.
The order in which l ibraries appear on the command line is significant only
if they contain symbols with duplicate names.

31

Microsort. XENIX BASIC Compiler U11er'11 Guide

4. 5 Producing a Map File

The -m option produces a linker "map" file. The map file shows the address
of every code and data segment in your program, relative to the start of the
program, and lists all the global symbols defined in an object file. The sym
bols are listed both alphabetically by symbol name, and sorted by symbol
address. The addresses of the global symbols are in frame: offset format,
showing the location relative to the starting address of the program or
module.

To create a map file, use the -m option on the Id command line. You can
create a map file from both source and object files. This option has the fol
lowing form:

-mfilename

The link map is placed in filename in the current directory.

82

�

Chapter 5

Working With Files and Devices

5.1 Device-Independent Input/Output
5 .2 Filenames and Paths 36
5.2.1 Filename Specifications 36
5.2.2 Pathnames 37
5.2.3 Default Directory 37
5.3 Handling Files 37
5.4 Data Files: Sequential,

Random Access, and ISAM 37
5.4 . 1 Sequential Files 37
5.4.2 Random Access Files 41
5.4.3 ISAM Files 47
5.4.3.1 Updating an ISAM File 56
5.4.3.2 Searching in an ISAM File 62

35

5.4.4 Protecting Files in Multi-User Programs 65
5.4.4.1 Protecting Sequential And Random Files 65
5.4.4.2 Protecting ISAM Files 66
5.4.4.3 Sharing ISAM Files in XENIX 67
5.5 BASIC and Child Processes 69

33

Working With Files and Devices

This chapter discusses the way files and devices are used and addressed in
BASIC, and the way information is input and output through the system.

5.1 Device-Independent Input/Output

BASIC provides device-independent input/output that permits a flexible
approach to data processing. This generalized device 1/0 permits the user
to access "devices" other than disk files by using the same syntax that Mi
crosoft BASIC uses to access disk files.

This version of Microsoft BASIC supports the following devices:

SCRN:

KYBD:

You can open files for output to this device. The
data written to a file opened to SCRN: is directed to
the standard output device (the screen). You cannot
open a SCRN: file for input.

You can open files to this device for input. The data
read from a file opened under this device comes from
the standard input device (the keyboard). You can
not open a KYBD: file for output.

LPTl: You can open files for output to this device. The
data written to a file opened to LPTl: is directed to
the line printer.

PlPE:command You can use this device to open sequential files for
either input or output, or to open random access
files for both input and output. When this is done, a
pipe is opened, a process is forked, and a specified
child process is executed. The command parameter
is the command or process that input is piped from
or output is piped to.

For example

OPEN "P IPE : ls" FOR INPUT AS tn

permits the directory listing to be accessed as file # 1 .

For files opened to PIPE:, LOC{l} and LOF(l) both return 1 i f char
acters are ready to be read from the pipe. Ir no characters are ready,
they both return 0. EOF returns -1 (true) if no processes have the
pipe open for output and no data is available to be read from the pipe.
If the child process is still active, EOF returns 0 (false).

36

Microsoft. XENIX BASIC Compiler User's Guide

The following program opens a sequential input pipe to the XENIX
facility "who." The program checks for input before attempting to read
the data. This can prevent unexpected "Read past end" errors. Next ,
the output from "who" is stored in the array WHO$, which is then
printed on the screen in lines 100 to 130.

10 DIM WH0$ (20)
20 OPEN " P I PE : who" FOR I NPUT AS #1
30 I = 0
40 WH I LE NOT EOF {l)
50 I F LOF { l) = 0 THEN GOTO 90
60 L I NE I NPUT#l . WHO$ (!)
70 I = I + 1
80 WEND
90 I = 0
100 WHI LE LEN {WHO$ (I)) <> 0
1 10 PRI NT WHO$ (!)
1 20 I = I + 1
1 30 WEND
1 40 END

5.2 Filenames and Paths

BASIC uses the XENIX hierarchical directory structure, which allows files
to be accessed through their pathname.

5.2.1 Filename Specifications

Filename specifications follow XENIX naming conventions. All file
specifications can begin with a directory or device specification such as
/usr /Basic or LPTl: . If no device is specified, the current directory is
assumed. For example,

RUN " new fi l e . bas"
RUN "KYBD : new f i l e"

36

Working With Files and Devices

5.2.2 Pathnames

A pathname is a sequence of directory names followed by a simple filename.
� A slash (/) separates each component of the pathname from the next.

5.2.3 Def a ult Directory

When a file specification is given (in commands or statements such as
FJLES, OPEN, and LOCK), the default (current) directory is the direc
tory from which the BASIC compiler was invoked.

5.3 Handling Files

File 1/0 procedures for the beginning BASIC user are examined in this sec
tion. If you are new to BASIC, or if you are encountering file-related errors,
read through these procedures and program examples to make sure you are
using all the file statements correctly.

5.4 Data Files: Sequential,
Random Access, and ISAM

BASIC programs can create and use three types of data files: sequential,
random access, and ISAM (Indexed Sequential Access Method) files.

5.4.1 Sequential Files

Sequential files are the easiest to create, but are limited in flexibility and
speed when it comes to locating data. The data written to a sequential file
is a series of ASCII characters stored, one item after another (sequentially),
in the order sent. The data is read back sequentially, in the same order as
written.

The following statements and functions are used with sequential data files:

Statements

CLOSE
INPUT#

Functions

EOF
LOC

37

Microaoft. XENIX BASIC Compiler Uaer'a Guide

INPUT$
LINE INPUT#
LOCK
OPEN
PRINT#
PRINT USING#
UNLOCK
WIDTH
WRITE#

Creating a Sequential File

LOF

Program 1 creates a sequential file, "DATA," from information you input
at the keyboard.

Program 1-Create a Sequential Data File

10 OPEN "DATA" FOR OUTPUT AS # 1
20 LI NE I NPUT "NAME " : N$
30 I F N$ = "DONE " THEN CLOSE#l : END
40 L I NE I NPUT " DEPARTMENT" : DEPT$
50 L I NE I NPUT "DATE HIRED" ; HI REDATE$
60 PRI NT # l , N$; " , " : DEPT$: " , " : HI REDATE$
70 PRI NT
80 GOTO 20

When the program is executed, a sample session might look like this:

NAME ? SAM U E L GO LDWYN

DEPARTMENT? A U D IO/VISUAL AIDS

DATE HIRED? 0 1 !1 2!72
NAME ? MARVIN HARRIS

DEPARTMENT? R E S EARCH
DATE HIRED? 1 2/03:65

NAME ? D EXTER H O RTON

DEPARTMENT? ACCO U NTING

DATE HIRED? 04/27/81

NAME ? STEV E N S ISYPHUS

DEPARTMENT? MAINTENANCE

88

Working With Files and Devices

DATE HI RED? 08:1 6.'8 1
NAME ? D O N E

� As i llustrated in Program 1 , the following program steps are required to
create a sequential file:

1 . OPEN the file i n OUTPUT mode.

2. Write data to the file using the PRINT# statement. (WRITE#
can be used instead.)

3. CLOSE the file so that data can be written to it. You cannot read
data from a sequential file that is opened for output.

Reading Data From a Sequential File

Now look at Program 2. It accesses the file "DATA" that was created in
Program 1 and displays the name of everyone hired in 1 981 .

Program !!-Accessing a Sequential File

10 OPEN "DATA" FOR I NPUT AS # 1
15 WH I LE NOT EOF (l)
20 I NPUT# l , N$. DEPT$, HI REDATE$
30 I F RIGHT$ (HI REDATE $, 2) = "81 " THEN PRI NT NS
40 WEND
50 END

When the program is executed, the output might look like this:

DEXTER HORTON
STEVEN S I SYPHUS

Program 2 reads, sequentially, every item in the file, and prints the names
of employees hired in 1981. When all the data has been read, the program
exits the WHILE loop and displays the system prompt.

A program that creates a sequential file can also write formatted data to
the file with the PRINT# USING statement. For example, the state
ment

PRI NT#L USI NG"#### . ## . " : A . B , C . D

could be used to write numeric data to the file without the explicit comma
delimiter::i shown in the example. The commas at the end of the format
string separate the items in the file.

30

Microsoft XENlX BASIC Compiler User's Guide

If you want commas to appear in the file as delimiters between variables,
use the WRITE# statement. For example, the statement

WRI TE # l . A, 8$

can be used to write these two variables to the file with commas automati
cally separating them.

The LOO fundion , when used with a sequential file, returns the number of
records that have been written to or read from the file since it was opened.
A record is a 1 28-byte block of data.

Adding Data to a Sequential File

If you have a sequential file residing on disk and want to add more data to
the end of it, you cannot simply open the file in OUTPUT mode and start
writing data. As soon as you open an existing sequential file in the output
mode, you destroy its current contents.

Instead, use APPEND mode. If the file doesn 't already exist, the open
statement will work exactly as it would if output mode had been specified.

The following procedure can be used to add data to an existing file called
"FOLKS" :

Program 9-Adding Data to a Sequential File

110 OPEN "FOLKS" FOR APPEND AS # 1
120 REM ADD NEW ENTR I ES TO F I LE
1 30 L I NE I NPUT "NAME " ; N$
140 I F N$="" THEN 210 ' CAR.-q_IAGE RETURN EXITS I NPUT LOOP
1 50 LINE I NPUT "ADDRESS ? " :ADDR$
160 LINE I NPUT " BIRTHDAY? " ; BI RTHDATE$
1 70 PRI NT#l . N$
180 PRI NT# l , ADDR$
190 PRI NT# l , BIRTHDATE$
200 GOTO 1 20
210 CLOSE # 1
2 20 END

40

Working With Files and Devices

5.4.2 Random Access Files

Creating and accessing random access files requires more program steps
than creating and accessing sequential files. There are, however, advan
tages to using random access files. One advantage is that random access
files require less room on the disk, since BASIC stores them in a packed
binary format. (A sequential file is stored as a series of ASCIJ characters.)

The biggest advantage of using random access files is that data can be
accessed randomly, i.e., anywhere in the file. It is not necessary to read
through all the information from the beginning of the file, as with sequen
tial files. This is possible because the information is stored and accessed in
distinct units called records, each of which is numbered.

The following statements and functions are used with random access files:

Statements Functions

CLOSE CVD
FIBLD CVI
GET CVS

LOO MKD$

LOF MKS$
LSET MKI$
OPEN
PUT
RSET

Creating a Random Access File

To create a random access file, you must take certain steps that are not
required to create a sequential file, as shown in Program 4:

Program 4-Create a Random File

10 OPEN " F I LE " AS #1
20 F I ELD # 1 . 20 AS N$. 4 AS A$. 8 AS P$
25 LET CONTI NUE$ = "Y"
30 WH I LE LEFT$ (CONTI NUE$, 1) = "Y"
35 LINE I NPUT "2 -DIGIT CODE " ; CODE%
40 L l Nt l NPUT "NAME " ; PERSON$
SO L I NE I NPUT "AMOUNT" : AMOUNT

41

Microsoft. XENIX BASIC Compiler User's Guide

60 L I NE I NPUT "PHONE " : TELEPHONE $
65 PRI NT
70 LSET N$=PERSON$
80 LSET A$=MKS$ (AMOUNT)
90 LSET P$=TELEPHONE $
100 PUT # l , CODE%
110 LI NE I NPUT " Enter Another ? " CONTI NUE$
1 20 WEND
1 30 END

As illustrated in Program 4, the following program steps are required to
create a random access file:

I . OPEN the file for random access. The following example specifies
a record length of 32 bytes:

10 OPE N " F I LE " AS #1 LEN=32

2. Use the FIELD statement to allocate space in a random buffer for
the variables that will be written to the random access file:

20 F I E LD #1 , 20 AS N$, 4 AS A$, 8 AS P$

3. Use LSET to move the data into the random access buffer.
Numeric values must be made into strings when placed in the
buffer. To do this, use the "make" functions: MKI$ to make an
integer value into a string, MKS$ to make a single precision value
into a string, and MKD$ to make a double precision value into a
string:

70 LSET N$=PERSON$
80 LSET A$=MKS$ (AMOUNT)
90 LSET P$=TELEPHONE$

4. Write the data from the buffer to the file using the PUT statement.
You can use a variable to specify which number record you wish to
insert, as in this example:

100 PUT # l , CODE%

Program 4 takes information typed at the keyboard and writes it to a ran
dom access file. Each time BASIC executes the PUT statement, it writes a
record to the file. The two-digit code that is input in line 35 becomes the

42

Working With Files and Devices

record number.

Warning

Do not use a fielded string variable in an INPUT or LET statement.
Doing so causes that variable to be redeclared. BASIC will no longer
associate that variable with the file buffer, but with the new program
variable.

Accessing a Random Access File

Program 5 accesses the random access file FILE that was created in Pro
gram 4. By entering a three-digit code at the keyboard, you can display
and read the information associated with that code.

Program 5-Access a Random File

f""""\, 10 OPEN " F I LE " AS # 1 LEN=32
15 F I ELD # 1 , 20 AS N$. 4 AS A$. 8 AS P$
20 LET ANSWER$ = "YES"
25 WHILE LEFT$ (ANSWER$, l) = "Y"
30 LINE I NPUT " 2 -DIGIT CODE " ; CODE%
40 GET # 1 , CODE%
50 PRI NT N$
60 PRI NT USI NG II $$##ti . ## II : CVS (A$)
70 PRI NT P $: PR I NT
80 L I NE I NPUT "More? " , ANSWER$
90 WEND

As shown above, the following program steps are required to access a ran
dom access file:

I. OPEN the file in "R" mode. For example,

10 OPEN "F I LE " AS #1 LEN=32

2. Use the FIELD statement to allocate space in the random access
buffer for the variables that will be read from the file. For example,

15 F I ELD # 1 , 20 AS N$, 4 AS A$, 8 AS P$

43

Microsoft XENIX BASIC Compiler User•s Guide

Note

In a program that performs both input and output on the same
random access file, you can often use just one OPEN statement
and one FIELD statement.

3. Use the GET statement to move the desired record into the ran
dom access buffer. For example,

40 GET # 1 . CODE%

4. The data in the buffer can now be accessed by the program.
Numeric values that were converted to strings by the MKS$,
MKD$, or MKI$ statements must be converted back to numbers
using the "convert" functions: CVI for integers, CVS for single
precision values, and CVD for double precision values. The MKI$
and CVI processes mirror each other, the former converting a
number into a format for storage in random files, the latter convert
ing the random file storage into a format usable by the program.
� ��� �
50 PRI NT NS
60 PRI NT USI NG " $$##ti. # # " : CVS (A$)

When used with random access files, the LOC function returns the
"current record number." The current record number is the last record
number that was used in a GET or PUT statement. For example, the
statement

I F LOC (l) > 50 THEN END

ends program execution if t,he current record number in file number 1 is
greater than 50.

Random File Operations

Program 6 is an inventory program that illustrates random file access.

44

Working With Files and Devices

Program 6-/nventory

1 20 OPEN " I NVEN . DAT" AS #1 LEN= 39 : REM • Open the fi l e
1 25 F I ELD#l . l AS F$, 30 AS D$, 2 AS Q$, 2 AS R$, 4 AS P$

:REM• Set up Bu f fer
1 30 PRI NT : PR I NT "FUNCTI ONS : " : PR I NT
1 35 PRI NT " L I N I TIAL I ZE F ILE"
1 40 PRI NT " 2 , CREATE A NEW E NTRY"
150 PRI NT " 3 , DI SPLAY I NVENTORY fOR ONE PART"
160 PRI NT " 4 , ADD TO STOCK"
170 PRI NT " 5 , SUBTRACT FROM STOCK"
180 PRI NT "6 , DI SPLAY ALL ITEMS BELOW REORDER LEVEL"
190 PRI NT " 7 , E X I T PROGRAM"
2 20 PRI NT : PR I NT : LI NE I NPUT"Choice? " , FUNCTI ON
2 2 5 I F (FUNCTION < 1) OR (FUNCTI ON > 7) THEN PRI NT

"BAD FUNCTION NUMBER" : GOTO 1 30
2 30 ON FUNCTI ON GOSUB 900 , 250, 390, 480 , 560 . 680 . 1000
240 GOTO 2 20
250 REM * * BU I LD NEW ENTRY * *
260 GOSUB 840
270 IF ASC (F$) < > 255 THEN I NPUT "OVERWRITE " ; ADDR$: _

IF ADDR$<> "Y" THEN RETURN
280 LSET F$=CHR$ (0)
290 I NPUT "DESCRI PTI ON" : DESCRIPTI ON$
300 LSET D$=DESCRI PTI ONS
310 LI NE I NPUT "QUANTI TY I N STOCK" ; QUANTITY%
3 20 LSET Q$=MK I $ (QUANTI TY%)
3 30 L I NE I NPUT "REORDER LEVEL" ; REORDER%
340 LSET R$=MK I $ (REORDER%)
350 LINE I NPUT " UN I T PRI CE " ; PR I CE
360 LSET P$=MKS $ (PRI CE)
370 PUT#L PART%
380 RETURN
390 REM * * DI SPLAY ENTRY * *
400 GOSUB 840
410 I F ASC (F$) =255 THEN PRI NT "NULL ENTRY" : RETURN
420 PRI NT US I NG "PART NUMBER # # # " ; PART%
430 PRI NT D$
440 PRI NT USI NG "QUANTITY ON HAND ###IHI " ; CVI (Q$)
450 PRI NT USI NG "REORDER LEVEL ##### " ; CV I (R$)
460 PRI NT USI NG "UN I T PRI CE $$## . ## " ; CVS (P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 I F ASC (F$) =255 THEN PRI NT "NULL ENTRY" : RETURN
510 PRI NT D$: L I NE I NPUT "QUANTITY TO ADD " ; ADDITI ONAL%
520 Q%=CVI (Q$) +ADDITI ONAL%
530 LSET Q$-MKI $ (Q%)
540 PUT# l , PART%
550 RETURN
560 REM REMOVE FROM STOCK

46

Microeon. XENIX BASIC Compiler User's Guide

570 GOSUB 840
580 I F ASC (F $ } =255 THEN PRI NT "NULL ENTRY" : RETURN
590 PRI NT D$
600 L I NE I NPUT "QUANTI TY TO SUBTRACT" ; LESS%
610 Q%=CVI (Q$)
620 I F (Q%- LE SS%) <O THEN PRINT "ONLY" ; Q% ; " IN STOCK" : GOTO 600
630 Q%=Q%- LESS%
640 I F Q%=<CVI (R$) THEN PRI NT "QUANTITY NOW" : Q% ; _

" REORDER LEVEL" : CVI (R$)
650 LSET Q$=MK I $ (Q%)
660 PUT#L PART%
670 RETURN
680 REM DI SPLAY I TEMS BELOW REORDER LEVEL
690 FOR I =l TO 100
710 GET# l . I
720 IF CVI (Q$} <CVI (R$) THEN PRI NT D$: " QUANTITY" ; _

CVI (Q$) TAB (SO) "REORDER LEVEL" ; CVI (R$}
730 NEXT I
740 RETURN
840 LI NE I NPUT "PART NUMBER" : PART%
850 I F (PART%< l } OR (PART%>100) THEN PRI NT " BAD PART NUMBER" : _

GOTO 840 ELSE GET# l , PART% : RETURN
890 END
900 REM I NITIALIZE F ILE
910 L I NE I NPUT "ARE YOU SURE " ; CONF I RM$: I F CONFI RM$< > "Y" THEN RETURN
920 LSET F$=CHR$ (255)
930 FOR I =l TO 100
940 PUT#l , I
950 NEXT I
960 RETURN
000 REM •Exit Routine•
020 CLOSE
040 END

In this program, the record number is used as the part number. It is
assumed the inventory will contain no more than 100 different part
numbers. Lines 900-960 initialize the data file by writing CHR$ (255) as
the first character of each record. This is used later (line 270 and line 500)
to determine whether an entry already exists for that part number.

Lines 130-220 display the various inventory functions that the program per
forms. When you type in the desired function number, line 230 branches to
the appropriat«> i::ubroutine.

46

Working With Files and Devices

5.4.3 ISAM Files

ISAM files use the most sophisticated and powerful file organization pro
vided by Microsoft BASIC. These additional capabilities add additional
complexities. For this reason, we advise only experienced programmers to
attempt using ISAM files in their BASIC programs.

ISAM enables you to use records sequentially or randomly, and provides
you with the ability to quickly find all records that meet a desired criterion.
ISAM files enable you to produce complex database-type application pro
grams in Microsoft BASIC.

About the ISAM Utility

The ISAM software provided with this product is external to BASIC. It is
written in assembly language so that it can work with other Microsoft
language products, and each of the ISAM functions and statements are
accessed through assembly language calls. ISAM, like other assembly
language routines, cannot take advantage of any BASIC error trapping you
have designed for your programs. ISAM has its own routines to identify
possible errors and the status of procedure calls.

ISAM File Construction

Each ISAM file you use is actually two different files. The first is the data
file, the actual information you want to use. The second file is the "key
file."

Like BASIC random access and sequential files, an ISAM data file consists
of data records. Unlike a BASIC data file, however, an ISAM file has a
"data dictionary" at the beginning of the file. The data dictionary holds
coded information about the contents of the data file. The coded informa
tion tells BASIC the size and type of the fields in the data file.

The key file holds the index information about the data file: it is similar to
the index of a book. Each file record has a pointer in the key file, just as
each subject in a book has its own "listing" in the index. BASIC uses this
information to find records in the data file. You can use ISAM for speedy
database-type applications because you can "key" each record with an
identification or trait.

47

Microsoft XENIX BASIC Compiler User's Guide

Compare this with a sequential or random file. With a random file, if you
want to search for the first record with a certain attribute (Name = "Amal
gamated Transport" or Debt > 1000, for example) you perform series of
steps. You might build a test loop and check each record to see if it
matches the condition you are looking for. You could follow with a set of
statements to load the data into program variables.

On the other hand, with an ISAM file you create a key for any attribute
{possibly a field for company name or credit limit) you are going to search
tor. Then you tell ISAM to find a specific record or the first record that
matches your search criteria. The program needn't test each record to see
if it matches; you can use ISAM to select records for you. Because of the
information ISAM stores in the key file, BASIC can find specific records
more quickly than it can look at and test individual records. This process
is like using the table of contents to find a chapter in a book rather than
leafing through each page to look for the title.

Data File Record Types

There are two kinds of data records: segmented records and non-segmented
records. A data file can have one type or the other, but not both.

Non-segmented records contain key fields that are of uniform length. A
non-segmented record can have one variable length key field if, and only if,
the field is the last field in the record. Do not confuse a variable length key
with a variable length record.

Note

Use non-segmented records whenever possible. This makes file creation
and interfacing ISAM files with your BASIC programs much simpler.

A segmented record can have variable length fields. They are most fre
quently used for key fields that are strings, such as city names (you don 't
always know the length of the data), or in records requiring the most
efficient use of file space.

48

Working With Files and Devices

Keys

You use the ISAM key to uniquely identify a particular record in the file.
Once identified , you can quickly find a record in the ISAM file by specifying
the key.

There are two key forms: regular keys and split keys. A regular key is best
used when one field sufficiently identifies a record. An example of this is a
social security number. Only one person can have a given social security
number.

Split keys consist of non-contiguous fields that can be of different types.
They are best used when duplication might occur in a key field and unique
ness is important. For example, if you have a data file of major league ball
players, you could have a Reggie Smith, a Lonnie Smith, a Spectacular
Smith and an Ozzie Smith. You would want to have first names and last
names as separate data fields and have the pair of fields combine to be a
split key.

By having separate fields you can do alphabetical listings that require last
name and then first name, and mailing labels that require first name fol
lowed by last name. At the same time, by using a split key you can find a
specific bal l player because, while last and first names are separate fields,
they constitute one key.

It is useful to be able to quickly search a large data file and get the record
for the person you want. But in this file you can't merely search for a
record with last name field of "Smith" ; it could easily be the wrong Smith.
Searching by just first name has the same consequence.

As in the previous case, split keys contain more than one field. In the
preceding example, the split key includes two fields: the field you use for
first names and the one you use for last names. This combination of the
two fields, a split key, limits the number of erroneous Smiths that you read
from your data file.

Split keys can use fields that are either adjacent or not adjacent. The fields
can be of the same or different data types, and the fields can be either regu
lar keys or non-regular keys.

49

Microsoft XENIX BASIC Compiler User's Guide

Key Handles

Because more than one key field can be in a record, a program passing
information about a key to ISAM must identify the key. The key handle is
a number that identifies a particular key within a record. You use the key
handle in statements, for example, to find specific records.

You assign as many key handles as there are keys. Give split keys, regard
less of the number of fields that constitute the key, one key handle.

The key handle numbers needn't correspond to the order of key fields
within the data file: key handle 1 could be the third field in the record,
while key handle 2 could be the first field in the record.

Using ISAM Files in Your Programs

Writing applications that use ISAM files is very different from writing those
that use BASIC's sequential or random files. This section shows small
examples of Microsoft BASIC programs that use ISAM files. Each example
shows a cross section of the commands used to create and use ISAM files.
For a detailed and complete description of ISAM file topics, see Appendix
D, "ISAM Reference." You will probably want to consult the appendix as r-"-,
you follow the program examples.

Building a Program that Uses ISAM

Before you start writing code for a program that uses ISAM files, you
should completely define the contents, field sizes and keys you want to
create for the ISAM data file. What keys will you use? Will there be split
keys? Will the records be non-segmented or segmented?

Once your file design plan is polished, write a program that creates an
ISAM file.

Creating an ISAM File
The following BASIC program sets up the ISAM routines and then opens a
file by calling the !OPEN routine. When creating an ISAM data file, the
program must fully describe the attributes of both the record and the key.
After the program gives the descriptions to ISAM, it opens the file with the
IOPEN call. The !OPEN call specifies the address of the stored file name,
the file mode, the memory location at which the record description begins,
and the memory location at which the key description begins. It also con
tains a variable to which ISAM returns a number; that number is used by

60

Working With Files and Devices

ISAM to keep track of the file. The program then prompts for customer
information, which it stores in the ISAM file.

Program 1 - Creating an ISAM File

100 REM • • I nitia l ize • •
1 10 DEF I NT A-Z
1 1 5 LET F I LENO = 0
1 20 DIM RECDESCRIPTION (3) : DIM KEYDESIGNATION (9)
160 OPEN "/dev/nul l " AS #2 LEN = 68
170 F I ELD #2 . 4 AS CUSTOMERNO$, 20 AS CUSTNAME$. 20 AS ADDRESS$, _

15 AS CITY$, 5 AS ZIP$, 4 AS OWE$
180 REM • • Record Descriptor Set -up • •
200 LET RECDESCRIPTION (l) = 1 : REM• • This variable sets up # o f Keys .

220 LET RECDESCRIPTION (2) = 0 : REM" This declares record "non - segmented" .
230 LET RECDESCR IPTION (3) = 0 : REM' * Minimum a l l ocat ion .
240 LET FIELDNAME$ = "CUSTOMER NUMBER"'
260 REM • • Key Descriptor Set ·ups • •
280 REM • • The key is customer number • •
300 LET KEYDESIGNATION (l) = VARPTR (FI ELDNAME$ }
310 REM' ' Points to field name .
320 LET KEYDESIGNATION (2) = 0

330 REM * * Future feature . This must be set to 0 .

340 LET KEYDESI GNATION (3) = (0' 256) + 5
350 REM' ' F irst byte 0, second is 5 (data type=strin9)

360 LET KEYDESI GNATION (4) = l

370 REM' ' I f record is non· segmented , = 1 .

380 LET KEYDESIGNATION (S} = l
390 REM' * Position of f ield within record = 1 .
400 LET KEYDESICNATION (6} = 4
410 REM' ' Size of key in bytes . . .
420 LET KEYDESIGNATION (7) = l
430 REM' * Key Handle # . This is first . so #l
440 LET KEYDESIGNATION (8} = (0' 256) • l
450 REM' ' First byte is 0 , second is 1 .
460 LET KEYDESIGNATION (9) = 0
470 REM' * Future feature . This must be set to 0 .
480 REM • • Now give subject data file a name • •
500 LET FILENAME$ = "CUSTOMER . DAT"

600 LET RECORDSI ZE = 68
650 REM •• Open the fi le in Create Mode • •
890 CALL I OPEN (VARPTR (FI LENAME$) , 3 . VARPTR (RECDESCRIPTION (l)) , _

VARPTR (KEYOESIGNATION (l)) . FILENO)
900 REM • • Check F i le Status • •
920 I F IXSTAT < > 0 THEN PRINT "Fai led to open fi le" : END
940 REM • • Now prompt for data entry • •
980 L INE I NPUT 1'4-Digit Customer Number (' O ' to stop) " , CUSNO$
990 IF CUSN0$="0000"' OR CUSNO$="O" THEN GOTO 1640
1000 LSET CUSTOMERNO$ = CUSNO$

61

Microsoft XENIX BASIC Compiler User's Guide

1020 LINE INPUT "Customer Name " . CUSNM$
1040 LSET CUSTNAME$ = CUSNMS
1060 LINE INPUT "Street Address " , ADDRS
1080 LSET ADDRESS$ = ADDR$
1 100 LINE I NPUT "City & State " . POLIS$
1 1 20 LSET CITY$ = POLIS$
1 140 LINE I NPUT "Zip code " . ZC.:ODEs
1 160 LSET ZIPS = ZCODES
1 180 LINE I NPUT " Ba l ance Owed S '' , OWES !
1 200 LSET OWE$ = MKS$ (0WES !)
1400 REM • • Now try to write record • •
1460 CALL IWRITE (FILENO. SADD (CUSTOMERNOS) . RECORDSI ZE)
1470 IF I XSTAT = 0 THEN GOTO 940
1480 IF I XSTAT <> 13 THEN GOTO 1600
1500 PRINT "Customer # is dup l icate; reenter" ;
1 520 LINE I NPUT CUSNOS : LSET CUSTOMERNO$ = CUSNOS
1540 COTO 1400
1580 REM • • End o f Entry Loop • •
1600 REM
1601 REM • • Handle unexpected error • •
1605 PRINT "UNEXPECTED ERROR ON THE WRITE - - IXSTAT= " ; IXSTAT

1620 REM • • Now c l ose the new f i le • •
1640 CALL ICLOSE (FILENO)

1660 END

The following program shows a simple file creation using ISAM. It creates
an ISAM file with one key: customer number. Lines 1 20 to 170 dimension
the array variables that ISAM uses, and set aside an area of memory for the
field variables.

120 DIM RECDESCRIPTION (3) : DIM KEYDESIGNATION (9)
160 OPEN "/dev/n u l l " AS #2 LEN = 68
170 F IELD # 2 . 4 AS CUSTOMERNO$, 20 AS CUSTNAME$, 20 AS ADDRESS$, _

15 AS CITY$, 5 AS ZIP$, 4 AS OWES

ISAM requires the definition of heterogeneous fields-fields with different
sizes and types. BASIC1s strongest facility for doing this is the FIELD
statement. This sets aside an area that you can use to define your data
fields. To use the FIELD statement, you must first OPEN a file with that
number. The file in this case is /dev /null, because this file will never be
used as a file. It is being used so a FlELD can be defined for ISAM.

62

Working With Files a nd Devices

In lines 200 to 230, the program assigns values to three ISAM variables:

RECDESCRIPTION(1) .

RECDESCRIPTION(2)

RECDESCRIPTION(3)

tells ISAM how many keys the data file will
have.

tells ISAM whether the file is segmented or
non-segmented.

tells ISAM how many bytes to allocate for
the record. If this is set to 0, ISAM
allocates the default, 8 bytes per record .

Lines 300 to 470 assign values to the KEYDESIGNATION array. This
array describes information about the key to this file. Table 4 .1 describes
the significance of each array element. Seven of the nine array variables
contain one or two specific pieces of information about the key. Two of
them give no information, and you must set them to zero. The actual name
you use for the array is not important. ISAM locates the information
because the VARPTR (KEYDESI GNATION (1)) argument to the IOPEN
call in line 890 holds the pointer to the beginning of the array. ISAM
copies the entire array during the IOPEN call.

63

Microsoft XENIX BASIC Compiler User's Guide

Table 5 .1
Key Designation Assignments

Variable Description

KEYDESIGNATION(l) The memory location of the
field name.

KEYDESIGNATION(2) This spot is saved for future
use. For now, set it to zero.

KEYDESIGNATION(3) Two different things. The first
byte in this two-byte integer
variable is used for future
features. For now, you must set
it to zero. The second byte
describes the data type of the
field.

KEYDESIGNATION(4} The number of a segmented
field which holds the field. For
the usual form of ISAM file,
non-segmented, you always set
this to one.

KEYDESIGNATION(5) The offset from the beginning of
the segment to the beginning of
the key field in a segmented
record. For the usual form of
ISAM file, non-segmented, you
always set this to one.

KEYDESIGNATION(6) The number of bytes in the key
field. If you are using
segmented records with variable
length key fields, you should set
this number to zero.

KEYDESIGNATION(7) The number of the key's handle.

KEYDESIGNATION(S) Two different things. The first
byte in this two-byte integer
variable sets option Bags. The
second byte, the "low byte,"
tells if the field is part of a key
and whether or not the key is

� split or not.

KEYDESIGNATION(9) This spot is saved for future
use. For now, set it to zero.

54

Working With Files and Devices

See Appendix D, "ISA?\1 Reference," for details on each of the KEYDESIG
NA TION array variables.

Line 500 gets the pointer to a memory location that the IOPEN call uses
later. Line 600 assigns the size of the record:

500 LET F I LENAME$ = "CUSTOMER . DAT"
600 LET RECORDSI ZE = 68

Line 890 calls the ISAM routine, IOPEN:

890 CALL I OPEN (VARPTR (F! LENAME$) , 3 , VARPTR (RECDESCRI PTION (l)) . _
VARPTR (KEYDESIGNATI ON (l) } , F I LENO)

The arguments to IOPEN are

• The pointer to a variable that holds the pathname of the ISAM data
file.

• A number that represents the mode of the file. Modes include read
only, create-and-write-only, read-and-write, and create-and-read
and-write. In this case, the argument is 3, which is write.

• A pointer to the start of the record description.

• A pointer to the start of the key description.

• A variable that will hold a number. ISAM assigns a file number to
the file, and returns it here. The program needs it later to identify
the file. Notice that line 1 15 initializes the variable. You must ini
tialize a variable you will be using to take a function value.

Line 920 tests the ISAM status variable to check if the· file is actually open:

920 IF I XSTAT < > 0 THEN PRI NT "Fai led to open f i l e " : END

Lines 960 through 1200 are the data entry and size verification loop. The
operator exits this loop by entering 0000 as the customer number. Note
that the BASIC operations in the loop do not use the field variable names.
They use program variables that, when verified for proper size, are loaded

66

Microsoft. XENIX BASIC Compiler User's Guide

(LSET) into the field variables.

Lines 1400 to 1540 make the part of the loop that checks to see if a record
with the key exists. If it does already exist, the program prompts the user
to enter a new number:

1400 REM • • Now try to write record • •
1460 CALL IWRITE (F I LENO. SADD (CUSTOMERNO$) . RECORDSI ZE)
1470 Ir I XSTAT = 0 TiiEN GOTO 940
1480 IF IXSTAT < > 13 THEN GOTO 1600
1500 PRI NT "Customer II is dup l icate ; reenter " ;
1520 LINE I NPUT CUSNO$: LSET CUSTOMERNOS = CUSNO$
1540 GOTO 1400

Line 1640 closes the data file by calling ISAM's !CLOSE routine:

1640 CALL I CLOSE (F I LENO)

The program specifies a single argument when calling !CLOSE. The argu
ment is the file number that ISAM passed to the program at the IOPEN
call.

5.4.3.1 Updating an ISAM File

Once you have a data file, the next thing you are likely to do is update it.
You might want to add or delete records, or change information in an exist
ing record. Although the ISAM calls for these procedures differ from those
used to create ISAM files, the processes are similar.

You first open the old file using the IOPEN statement. Because you are
opening an existing file, some of the information passed in the IO PEN call
in the preceding program is unnecessary. The pointers to the beginnings of
tht> record description and key description are not required, because both
descriptions are already in the data dictionary in the ISAM data file.

Then you look for the record to be changed.

To search for records

To add records

To delete records

To change records

use the ISEEK call

use the !WRITE call (see Program)

use the !DELETE call

use the mEWRITE call

Internal ISAM procedures for writing new records are different than those
for changing existing records-just as changing a book index entry is

66

r"""i

Working With Files a nd Devices

different than adding a new entry.

The following BASIC program allows a user to update ISAM file records:

Program 2-Main Menu

100 REM • • Initial ize • •
105 DEFlNT A - Z
1 1 0 LET ZERO=O : LET f I LENO=O
120 LET F ILENAME'> = "CUSTOMER . DAT"
150 RECORDSIZE=68
160 OPEN "/dev/nu l l " AS 112 LEN = 68
180 F I ELD 11 2 . 4 AS CUSTOHERNOS . 20 AS CUSTNAMES , 20 AS ADDRESS$, _

15 AS CITY$, 5 AS ZIPS , 4 AS OWES
2 10 REM • • Open the file • •
2 20 CALL IOPEN (VARPTR (FI LENAME") , 2 , VARPTR (ZERO) , VARPTR (ZERO) , F I LENO)
2 30 I F I XSTAT < > 0 THEN PRINT "ERROR ON OPEN . I XSTAT=" : I XSTAT : COTO 4020
280 REM • • Provide a menu o ! update choices • •
300 LET CHOICE% = 0
320 WHILE (CHOICE% < 1 OR CHOICE% > 4)

340 CLS
360 PRINT " • • • • •Update Customer I n formation• • • • • " LOCATE 3 , 2 2 :

380 LOCATE 5 ,

400 LOCATE 6 ,

420 LOCATE 7 ,
440 LOCATE 8 .

2 2 :
2 2 :
2 2 :
2 2 :

PRINT " 1 . Add A Record"

PRINT 1 1 2. Delete A Record"

PRINT 11 3 . Change A Record"

PRINT " 4 . QUIT"

460 LOCATE 9 , 22 : LINE I NPUT "Enter the number (l . 2 , 3 or 4) o ! your choice " . CHOICE%

480 WEND
500 REM • • Route to appropr iate section of code• •
520 ON CHOICE% COTO 1000, 2000. 3000, 4000
560 REH • • End o f main
580 REM • • menu routine .

Program 2 has subroutines that show the three main updates to an existing
file: additions, deletions, and changes.

The main module first sets up a field buffer for the information. It does this
by opening a dummy file and using a FIELD statement:

160 OPEN "/dev/nul l " AS 112 LEN = 68
180 FIELD 112 , 4 AS CUSTOMERNO$, 20 AS CUSTNAME$, 20 AS ADDRESS$, _

15 AS CITY$. 5 AS ZIP$, 4 AS OWE$

Again, you use /dev/null as a dummy file, so you can use the convenient
FIELD st..at..ement.

67

Microsoft XENIX BASIC Compiler User's Guide

Then the program opens the ISAM file by calling the IOPEN routine:

2 20 CALL IOPEN (VARPTR (F I LENAME $) , 2 , VARPTR (ZERO) , VARPTR (ZERO) , FI LENO)

The arguments to IOPEN are

• The pointer to a variable that holds the pathname of the ISAM data
file.

• A number that represents the mode of the file. Modes include read
only, create-and-write-only, read-and-write, and create-and-read
and-write. In this case, the argument is 2, which is read-and-write.

• A pointer to the start of the record description. This is set to 0
with the variable VARPTR (ZERO) (the pointer to a variable that
holds a 0) , because you need this argument only when you create a
data file. Here, you are not creating a file, but using an existing
one.

• A pointer to the start of the key description. This is set to
VARPTR (ZERO) , for the same reason as the record description.

• A variable which will hold the file number ISAM assigns. The pro
gram needs it later to identify the file.

The program then gives a user a chance to add, delete or change records.

Program 2-Subroutine to Add a Record

1000 REM • • Thi s routine adds a record to the file • •
1020 LET C.:ONTINUE$ = "Y''

1040 WHI LE CONTINUE$ = "Y" OR CONTINUE$ = "y"

1060 C.:LS

1080 LINE INPUT "4-Digit Customer Number ('O ' to stop) " . CUSNO$

1 100 LSET CUSTOMERNO$ = CUSNOS
1 120 LINE INPUT "Customer Name " . CUSNM$

1 140 LSET CUSTNAME$ = CUSNM$

1 160 LINE INPUT " Street Address " . ADDR$

1180 LSET ADDRESS$ = ADDR$
1200 LINE INPUT "City & State " , POLIS$
1220 LSET CITY$ = POLIS$
1240 LINE INPUT "Zip code " . ZCODES
1260 LSET ZIPS = ZCODES
1 280 LINE I NPUT "Ba lance Owed s " . OWES !

1300 LSET OWES = MKSS (OWES !)
1 320 LET CONDITION% = (- 1)
1340 WHILE CONDI TION%

1 360 CALL IWRITE (FILENO. SADD (CUSTOMERNOS) . RECORDSI ZE)

1370 IF I XSTAT = 0 THEN DUPLICATE%=0 : GOTO 1440

68

�

Working With Files and Devices

1375 I F IXSTAT< > l 3 THEN PRI NT ''ERROR WRI TI NG A NEW REC:ORD . I XSTAT= " ; IXSTAT : GOTO 402C
1 380
1400
1420
1440
1460
1480
1 500
1520
1560

IF I XSTAT = 13 THEN DUPLI CATE% = (- 1) ELSE DUPLI CATE% = 0
IE" DUPLICATE% THEN PR INT "Customer # is dup l icate; reenter " ;
IF DUPLICATE% 'nlEN INPUT CUSNOS : LSET CUSTOMERNOS = CUSNOS
I F DUPLI CATE% = 0 THEN LET CONDI TION% = 0

WEND
REM • • Check for more • •

L I NE INPUT "Add Another (Y or N) ? " CONTINUES
WEND
GOTO 300

If the choice is to add records, program control transfers to the subroutine
that starts at line 1000. The routine collects the information and then
writes it to the file:

1 360 CALL I WR I TE (F I LENO . SADD (CUSTOMERNO$) . RECORDSI ZE)

The arguments to the !WRITE routine are

• The number of the file. The IOPEN routine returns this number.

• The memory location of the beginning of the key.

• The length of the data record.

The program then tests an ISAM variable, IXSTAT, to check if the
attempted write operation was stopped because the key duplicates an exist
ing record:

1380 I F I XSTAT = 1 3 THEN DUPLI CATE% = (- 1) ELSE DUPLI CATE% = 0

Program £-Subroutine to Delete a Record

2000 REM • • This rout ine deletes a record from the file • •
2020 LET CONTINUES = "Y"
2040 WH I LE CONTINUE$ = "Y" OR CONTINUE$ = "y"

2060 CLS
2080 LI NE I NPUT "Delete customer number #" , CUSNO$
2 100 LSET CUSTOMERNOS = CUSNO$
2 1 20 CALL ISEEK (F ILENO , l , SADD (CUSTOMERNO$) . 4 , 2)
2 1 2 5 IF IXSTAT = 0 THEN COTO 2 140
2 1 30 IF IXSTAT = 10 lliEN PRI NT "RECORD NOT FOUN D ; PLEASE RE- ENTER" : GOTO 2080
2 135 IF IXSTAT <> 10 lliEN PRINT _

" ERROR SEEKI NG RECORD TO DELETE , I XSTAT=" ; IXSTAT : GOTO 4020

2140 CALL I DELETE (FI LENO)
2 150 I F IXSTAT <> 0 THEN PRINT "ERROR DELETING RECORD- - IXSTAT=" ; IXSTAT : GOTO 4020
2160 PRINT "Deleted customer #11 ; CUSNO$; " record"
2180 L I NE INPUT "De lete another (Y or N) ? " . CONTINUE$

69

Microsoft XENIX BASIC Compiler User's Guide

2200 WEND
2240 GOTO 300

If the choice is to delete records, the program shifts control to the subrou
tine that starts at 2000. The subroutine prompts for the customer number
and then seeks the record specified:

2120 CALL I SEEK (FI LENO , l , SADD (CUSTOMERNOS) . 4 . 2)

The five parameters of the ISEEK routine are

• The file number. This is returned by the IOPEN routine.

• The key handle for your search. You assign the key handle
(number) when you create the ISAM file.

• The pointer to the buffer that holds the value of the key to search
for. In this program, ISEEK is aiming for the record specified in
CUSTOMERNO$.

• The size of the key in bytes.

• The seek mode. Seek modes include first-record-with-key, last
record-with-key, record-equal-to-key, record-greater-than-key and
key-grea ter-than-or-equ al-to-key.

When it finds the record, it then calls the ISAM routine for deletion:

2140 CALL IDELETE (FI LENO)

Program 2-Subroutine to Change a Record

3000 REM • • This routine changes a record in the file • •
3020 LET CONTINUES = "Y"
3040 WHILE CONTINUE$ = "Y" OR CONTINUE$ = "y"
3080 CLS
3 1 20 LOCATE 2, 1 2
3140
3150
3160
3165
3180
3185
3190
3195
3200

L I NE I NPUT "Change in fo on customer number #" . F I NDS
LSET CUSTOMERNOS = F I NDS

CALL ISEEK (F I LENO , l , SADD (CUSTOMERN0$) , 4 . 2)
IF IXSTAT = 0 THEN COTO 3195

I F I XSTAT=lO THEN BEEP : LOCATE 5 , 12
IF I XSTAT=lO THEN PRI NT F I NDS ; "Not Found . Try Again . " : GOTO 3120

PRINT "ERROR SEEKING RECORD TO CHANGE - - IXSTAT= " ; I XSTAT : GOTO 4020

CALL IREAD (FILENO, SADD (CUSTOMERN0$) , RECORDSIZE)
I F IXSTAT < > 0 THEN PRINT _

"ERROR READING RECORD - IXSTAT=" : IXSTAT : GOTO 4020
3260 CLS : LOCATE l , 1 2 : PRINT " • "Customer #" ; CUSTOMERNO$; " " • 11
J:.!t!O Y.l:U N'l' "Yress the return key to leave o l d info . "

60

Working With Files and Devices

3380 LINE INPUT "Change Customer Name (" ; CUSTNAMES ; ") to " CUSNMS
3400 IF CUSNMS <> " " THEN LSET CUSTNPJ'.ES = CUSNMS
3500 L I NE I NPUT "Change Street Address to " . ADDRS
3520 IF ADDRS <> " " THEN LSET ADDRESS$ = ADDRS
3580 LINE I NPUT "Change City & State to " . POLI S$
3700 I F POLISS <> " " TiiEN LSET CITYS = POLISS
3800 LINE I NPUT "Change Z.ip code to'' . ZCODEs
3810 IF ZCODES <> " " THEN LSET ZIPs = ZCODEs
3860 L I NE I NPUT "Ba l ance Owed s" . OWES !
3870 IF OWES ! < > 0 THEN LSET OWES = MKSs (OWES !)
3920 CALL lREWR I TE (FILENO. SADD (CUSTOMERNOs) . RECORDSI ZE)
3925 IF IXSTAT <> 0 THEN PRINT _

"UNEXPECTED ERROR DURil\C REWRITE- - I XSTAT=" ; I XSTAT : COTO 4020
3930 REM • • Check for more • •
3940 LINE INPUT ''Change Another (Y or NJ ? ". CONTI NUES
3950 WEllD

3970 GOTO 300

If the choice is to change information in existing records, the program
routes control to the subroutine that begins at line 3000. The program
prompts for the customer number and seeks the record:

3160 CALL I SEEK (F I LENO. l . SADD (CUSTOMERN0$) . 4 , 2)

Then it prompts for information on each field in the record . With the
updated information in the buffer, the program uses the !REWRITE func
tion to put in the new data:

3920 CALL IREWR I TE (F I LENO, SADD (CUSTOMERNO$) . RECORDS I ZE)

Whenever you change an existing record, use the !REWRITE function
and not the !WRITE function.

Program t-Program Exit Statements

4000 CLS
4020 CALL I CLOSE (FI LENO)
4040 END

The program closes the ISAM file before ending, using the !CLOSE rou
tine:

4020 CALL I CLOSE (FI LENO)

81

Microsoft XENIX BASIC Compiler User's Guide

5.4.3.2 Searching in an ISAM File

When you have an ISA1v1 file, it is probable that you want to access records
without updating them. This querying process is different from updating.

Use the IOPEN call (as in Program 2, you needn't describe the entire
record) . Then use the ISEEK call to find a record you want to look at. If
you are browsing through a file, you might want to look at the following or
preceding record. For these processes, use the IPREV and !NEXT calls.

Program 3 is an example of searching a data file one record at a time, going
to the next record or going to the previous record.

Program 9-Searching an ISAM File

100 REM ' ' I n i t i a l ize' '
110 DEF I NT A-Z

120 LET ZERO = 0
125 LET F I LENO = 0
130 LET F I LENAME$ = "CUSTOMER . DAT"
140 LET RECORDSI ZE=68

160 OPEN "/dev /nu l l " AS #2 LEN = 68

180 F I E LD # 2 . 4 AS CUSTOMERNO$, 20 AS CUSTNAME S . 20 AS ADDRESS$, _
15 AS C I TY$. 5 AS ZIPS . 4 AS OWES

200 REM • • Open the f i le • •
230 CALL 10PEN (VARPTR (FI LENAME$) , 2 , VARPTR (ZERO) . _

VARPTR (ZERO) . FI LENO)

235 IF IXSTAT < > 0 THEN PRINT "UNABLE TO OPEN" : END
236 REM • • Open the f i le & pos i t ion at !irst recor d .
237 CALL ISEEK (FILENO. 1 . ZERO. ZERO . OJ

238 CALL IPREV (FILENO. l)

240 LET CHOICE% = 0
260 WH I LE (CHOICE% < l OR CHOICE% > 4)

280 CLS
300

320

340
360
380
400

420

LOCATE 3 . 2 2 : PRINT " • • • • • Browse Customer I n formation • • • • • "
LOCATE 5 . 22 : PRINT " 1 . Seek A Speci fic Record"
LOCATE 6 . 2 2 : PRINT " 2 . Look a t Next Record"

LOCATE 7 . 2 2 : PRINT " 3 . Look at Previous Record "

LOCATE B . 2 2 : PRINT " 4 . QUIT"

LOCATE 9 . 2 2 : INPUT "Enter the number o! your choice " , CHOICE%

WEND
440 REM • • Route to appropr iate code • •
460 ON CHOICE% GOTO 1000, 2000 , 3000, 5000
500 REM • • End o ! ma in menu • •
1000 REM • • Subroutine for flnd in9 a spec i f ied record ' '
1020 CLS
1100 LOCATE 2. 12
1120 L I NE INPUT " " 'Find Customer # : " . F INDS

62

Working With Files a nd Devices

1 1 25
1 1 30
1 140
1 160
1 170
l l80
1 1 90
1200
1250 '
1260
1265 '
1 266 '
1270

LSET CUSTOMERNOS=FI NDS
PRI NT "F I NDS=" ; F I NDS
CALL ISEEK (FILENO , l , SADD (CUSTOMERNOS) , 4 , 2)

If IXSTAT = 0 THEN GOTO 1250
I F I XSTAT = 10 GOTO 1180 ELSE COTO 4500
PRINT F I NDS ; " Not Found . "
L I NE INPUT "Press return try again . " , A$
GOTO 1 1 20

Here we read the record we found with the !SEEK
CALL I READ (FILENO. SADD (CUSTOMERNOS) . RECORDS I ZE)

I f the read i s success ful . pr int i t to the screen .
Otherwise. go to an error handling routine .

I F IXSTAT = 0 THEN GOTO 4000 ELSE COTO 4500
2000 REM ' ' Th i s subroutine br ings in the next record • •
2020 CALL I NEXT (FILE NO . l)

2040 IF IXSTAT = 0 THEN GOTO 2 1 50
2050 IF IXSTAT <> 1 1 THEN GOTO 4500 ' Go tc error handler i f error is not EOF
2060 I NPUT "End o f f i le reached . Press RETURN to continue" . A$: COTO 240
2 1 50 CALL I READ (F I LENO, SADD (CUSTOMERNO$) . RECORDS I ZE)
2 160 I F IXSTAT = 0 GOTO 4000 ELSE COTO 4500
2170 ' • • I f the read was success ful . pr int it to the screen .
2180 ' Otherwise . go to an er ror handl ing routine .
3000 REM ' ' This subrout ine br ings in the previous record • •
3020 CALL IPREV (FILE NO , l)

3040 I F I XSTAT = 0 THEN COTO 3150
3050 IF I XSTAT< > l l THEN GOTO 4500 'Go to the error handler 1! error isn ' t EOF
3060 I NPUT "Beginning o f fi l e reached . Press RETURN to cont i nue" , AS : GOTO 240
3150 CALL I READ (FILENO, SADD (CUSTOMERNOS) . RECORDSI ZE)
3160 IF IXSTAT=O THEN GOTO 4000 ELSE GOTO 4 500
3170 ' • • I f the read was success ful , pr int it to the screen .
3180 ' Otherwise . go to the error handling routine .
4000 REM • • This subroutine displays a chosen record • •
4010 CLS : LOCATE 2 . 27 : PRINT" * " Customer I n format ion • . . "
4020 LET NUMBERS = CUSTOMERNO$

LOCATE 4 . 24 : PRINT "Number : " ; NUMBERS
LET TITLES = CUSTNAMES
LOCATE 6 . 24 : PRINT "Customer : " ; TI TLES
LET PLACES = ADDRESS$
LOCATE 8 . 34 : PRINT PLACES
LET CODES = C I TY$ • " " • ZIPS
LOCATE 10 , 34 : PR I NT CODES
LET DEBT! = CVS (OWE S)
LOCATE 1 2 . 34 : PR I NT "Owes us s " ; DEBT !
INPUT "Press return to continue" . CONTINUES

4040
4060
4080
4 1 00
4 1 20
4 140
4160
4180
4200
4220
4240 COTO 240 • • Loop back to select another customer number
4500 REM• • This is the error hand l ing routine
4510 PRINT "Unexpected error has occur r ed · - · IXSTAT= " . IXSTAT

5000 REM' ' Clean - up • •
5020 CALL I CLOSE (FILENO)
5040 END

63

Microsoft XENIX BASIC Compiler User•s Guide

Program 3 first opens the ISAM data file:

230 CALL I OPEN (VARPTR (F I LENAME$) . 2 . VARPTR (ZERO) , _
VARPTR (ZERO) , F I LENO)

It then sets the pointer to the first record in the file:

236 REM * * Open the fi l e & position at first record .
237 CALL I SEEK (F I LENO, l , ZERO , ZERO , 0)
238 CALL I PREV (F I LENO , 1)

Notice that i t moves the pointer so that INEXT will move to the first
record.

If the user selects a specific record, the program routes control to the sub
routine at line 1000. It seeks out the specified record and checks whether it
found the record:

1 140 CALL I SEEK (F I LEN0 , 1 . SADD (CUSTOMERN0$) , 4 , 2)
1160 IF I XSTAT = 0 THEN GOTO 1 2 50

If the user chooses to advance sequentially to the next record, the program
routes control to the subroutine at line 2000. It seeks the next record, and
checks to see if the end of the file was reached:

2020 CALL I NEXT (F I LEN0 , 1)
2040 I F I XSTAT = 0 THEN GOTO 2150
2050 I F I XSTAT <> 1 1 THEN GOTO 4500

If the user chooses to move sequentially to the previous record in the data
file, the program routes control to the subroutine at line 3000. It seeks the
previous record, and checks to see if the beginning of the file was reached:

3020 CALL I PREV (F I LENO , l)
3040 I F I XSTAT = 0 THEN GOTO 3150
3050 I F I XSTAT<>ll THEN GOTO 4500

This section has demonstrated creating, updating and searching through
ISAM files-only a handful of the most common ISAM functions. For
information on the entire range of ISAM capabilities, see Appendix F,
"ISAM Reference."

Working With Files and Devices

5.4.4 Protecting Files in Multi-User Programs

This version of BASIC provides additional commands and facilities for pro
gramming multi-user applications. Two design issues are critical for
multi-user programs: preventing simultaneous data changes by multiple
users, and avoiding the "deadly embrace/' in which each user must wait for
the other to release control of the other's dat,a.

BASIC uses variat,ions of the LOCK statement to protect data from other
users. Use LOCK on sequent,ial and random files, and the ISAM call
ILOCK on ISAM files. The following sections discuss the LOCK process.

5.4.4.1 Protecting Sequential And Random Files

The LOCK statement restricts access by other programs to any part of a
data file. If you use it on a random access file, LOCK can protect indivi
dual records or ranges of records.

Locks can be either partial or total. Total locking is the default for the
LOCK statement, and is applied to the file if you do not use the READ
keyword. Total locking prevents any access by another program to the
locked portion of the file.

Partial locking allows another program to read the file, but prevents that
program from modifying the locked portion of the file.

If another program has locked a portion of the file you want, you have two
options. The first is to return cont,rol to the program immediately with an
accompanying error message. All of BASIC's usual error handling routines
can trap and examine this error. If error trapping is not active, the error
message is "Permission denied." This is the default option.

The second option is to wait until the program that issued the original
LOCK unlocks the requested region of the file. The presence of the
WAIT keyword forces this second option. It is possible to i nterrupt this
wait by pressing DELETE; you can then continue the wait by entering
CONT.

It is possible to get into a deadlock situation when waiting for a LOCK
request. For example, a deadlock situation might occur when:

• A program has Filel open and locked.

86

Microsoft XENJX BASIC Compiler User's Guide

• A different program has File2 open and locked.

• The first program executes a LOCK request with the WAIT
option on File2.

• The second program executes a LOCK request with the WAIT
option on Filel .

If XENIX detects a deadlock, i t returns a "Deadlock" error message.

Multiple LOCK statements have a cumulative effect. That is, a record
that the program locked multiple times with different locking characteris
tics (READ or WAIT} retains the characteristics of the latest LOCK
statement.

The program unlocks locked records with the UNLOCK statement.

5.4.4.2 Protecting ISAM Files

You can lock and unlock individual ISAM records in an open ISAM file by
using the ILOCK routine. The ILOCK call requires two arguments: the
filenumber returned by ISAM in the IOPEN call, and the specific kind of
locking request.

ISAM has two forms of record locking: automatic and manual. Automatic
is the default and is suitable for most applications. Both forms of locking
are discussed in the following sections.

Automatic Locking

If you have ordered automatic locking on the ISAM file, the current record
is locked as you use it. In other words, as you move from record to record,
ISAM removes the old record lock and places one on the new current
record. Invoke automatic locking with the L_AUTO request to the
ILOCK call. Turn it off with another ILOCK call, with the
L_ RELEASE request.

Manual Locking

In manual mode, ISAM locks no record unless the program specifically
requests it with the L_ LOCK request to the Il..OCK call. When such a
request occurs, ISAM locks the current record. You may do this on several
records, locking multiple �ecords in the process. The L-RELEASE
request to an ILOCK call unlocks all records in the ISAM file.

66

Working With Files and Devices

Trying to Open a Locked Record

The ILOCK call comes with two options for programs trying to open a
locked record. The first is wait mode, in which your program waits for the
locked record to be unlocked before proceeding. You invoke wait mode
with the L_ WAIT request to the ILOCK call.

The second option is the no wait mode, in which the program returns an
error message explaining that the record is locked. You invoke no wait
mode with the L- NOW AIT request to the IOPEN call.

For complete details on the ILOCK call and its options, see Appendix D,
"ISAM Reference."

5.4.4.3 Sharing ISAM Files in XENIX

ISAM files are created with permissions limited to read and write by the
owner. The owner is the user id of the process that created the file. You
cannot change these permissions without risk of abnormal termination in
cases where multiple users attempt simultaneous file updates.

In order to have multiple users work with the same ISAM files, all users
must have the same user id. Use one of the following methods to establish
a common user id:

Multiple users of a common set of files can log in under the same name.
This name can be one user's identification, or a project identification.

Personal security issues can arise if you use one person's id to login: every
person in the project will know the user's password and can gain access to
all files-even those (such as mail) unrelated to the shared project. By
using a project identification for login, you can avoid these security
difficulties.

Assume, for example, that a number of people are updating inventory, and
all use the same set of files and programs. You can create an account for
the project, and have each person log in under a project account name,
such as "stock." By using the common project user id, each user can have
access to the program and the required files. Upon completing work on a
project, the user can log off, and log back in under his own user i d .

87

Microsoft XENIX BASIC Compiler User's Guide

Using the ishare Utility.

Microsoft provides a utility called ishare. This program changes the user id
of the program invoked by ishare to that of the owner of ishare.

To make use of ishare, have a common copy of ishare for each group work
ing with a set of ISAM files. Use ishare to invoke ms basic as follows:

lshare msbas lc

The system subsequently believes that the owner of ishare is the owner of
msbasic and any ISAM file accessed by this invocation of the interpreter. In
addition, random and sequential data files created or modified by this invo
cation of the interpreter are owned by the owner of ishare.

Each group sharing a set of programs and files should have a separate copy
of the ishare utility. This separate version should be accessible only to that
group.

To use the ishare utility, make a number of copies of ishare and distribute
them to each logical project directory. Each copy should have the project
as the owner of the ishare utility. The program is not large, so making
multiple copies won't significantly affect available storage.

To create a copy of ishare that only one project, "stock" ,for example, can
use:

1 . Log in as a user in the stock project:

2. Make a new copy of ishare:

cp /usr/l lb/lshare /usr/stock/bln/lsharel

3. Give isharcl "setuid" mode, that is:

chmod u+s /usr/stock/bln/lsharel

4. Give isharel group execute permission:

chmod g+x /usr/stock/bin/isharel

Users invoking isharel can access ISAM files owned by stock or other files
with permissions set for the stock project. To allow people outside the pro
ject to access these ISAM files, give execute privileges for isharel to others:

chmod o + x /usr/stock/bin/lsharel

08

Working With Files and Devices

5.5 BASIC and Child Processes

The XENIX Microsoft BASIC Compiler is able to use one of the most
powerful features of XENIX : the ability to create child processes. SHELL
enables you to run part of a BASIC program, temporarily exit to XENIX to
perform a specified function, and return to the BASIC program at the state
ment after the SHELL statement to proceed with the program.

This can be very useful when you want to use XENIX utilities instead of
coding new BASIC routines. For example, to sort a file of addresses by zip
code for mailing labels, you could use one BASIC routine to read the
records into memory, another to sort them, and a third to write the
updated file back to disk. It is easier, however, to use the XENIX sort com
mand through SHELL.

This version of BASIC offers two options. If you use the SHELL function,
sh executes the XENIX command you provide, and immediately resumes
execution of the BASIC program. For example,

1030 LET SORTLABELS$ = "sort -n del iveries . f > l abel . l is t "
1050 PROCESS ! = SHELL (SORTLABELS$)

The other option, the SHELL statement, is useful for starting shell
processes whose output you need later in the program. If you use the state
ment, the BASIC program resumes execution only when the XENIX process
is completed and control returns to BASIC. For example,

1030 LET SORTLABELS$ = "sort -n de l iveries . f > l abe l . l ist"
1050 SHELL (SORTLABELS$)

If you provide no argument to the SHELL statement (i.e., SHELL()) , a
child shell is created in which you can execute normal XENIX commands.
When you type Control-D you return to BASIC command level.

69

Chapter 6

Using Subprograms

6.1 Creating Subprograms 73
6.2 Calling Subprograms 75
6.3 Passing Variables ·with CALL 76
6.4 Passing Arrays with CALL 77
6.5 Passing Expressions with CALL 79
6.6 Accessing Parameters with SHARED 80
6.6.1 Sharing fom the l\1ain Program:

The SHARED Attribute 80
6.6.2 Overriding a SHARED Variable

with a STATIC Statement 81
6.6.3 Sharing from the Subprogram

Using the SHARED Statement 82
6.7 Passing Variables and

Arrays Between Modules 83
6.8 Error Handling 85
6. 9 Using GOSUB . . . RETURN 86
6.10 Variable Scoping Using SHARED and

COMMON: An Extended Example 86
6.11 Common Errors 89

71

Using Subprograms

Programs, especially large programs, arc easier to maintain and debug if
they are broken down into smaller parts. Creating your own functions with
the DEF FN statement is one way to break your programs into separate
pieces. BASIC provides another way to segment programs, the subprogram.
Subprograms are units of code, delimited by SUB and END SUB state
ments, that can be compiled separately and joined to the main body of the
program at link time. Subprograms are different from functions because
they do not return a value that is associated with the subprogram name
(and thus cannot be used in expressions), and they can be called before they
are defined. To distinguish between subroutines written in BASIC and sub
routines written in assembly language, in this chapter the word subprogram
defines an independently compilable segment of code used by another pro
gram (called the "main program.")

Using subprograms has three major benefits:

1 . Clarity. Each subprogram has a specific task i t performs on a
small number of arguments or common variables. This can make
the program much easier to understand .

2. Independence. Subprograms can be developed as independent un
its, permitting repeated use in many different.

3. Flexibility. Subprograms can be modified and rewritten without
affecting other programs.

For many programs, a single source file is adequate. However, in some cases
you can develop large programs more efficiently as a system of individual
source files that are compiled separately, then linked to form a single exe
cutable program. Using this approach, you can create separate source files
that perform specific tasks and use them over and over, in one program or
in many different programs. In this chapter, each such source file is called a
module.

6.1 Creating Subprograms

A subprogram is a unit of BASIC code that can be compiled independently,
then linked to the rest of the program. Subprograms are useful for coding
routines that are used over and over in programs; one subprogram can be
used in many different main programs. Subprograms are delimited by SUB
and END SUB statements. The SUB statement has the following form:

SUB subprogram-name ff(parameter-list)D STATIC

73

Microsoft. XENIX BASIC Compiler User's Guide

where

subprogram-name

parameter-list

STATIC

is a name up to 31 characters long. The name
cannot appear in any other SUB statement used
in the program.

contains variables and arrays that represent
corresponding variables and arrays passed from
the main program. Parameters are separated by
commas.

indicates that the subprogram is nonrecursive;
that is, it does not call itself, nor does it call
another subprogram that calls this subprogram.
Only nonrecursive subprograms are supported,
and a warning error is generated if STATIC is
omitted.

Variable types must correspond to the variable type being passed from the
main program. Arrays must be declared in the parameter list in the follow
ing form:

array-name (dim·num)

where

array-name

dim-num

is the name of the array.

is an integer representing the number of dimensions
in the array. One dimension is the default.

If your program is a single module, subprograms should be placed after the
END statement in the main program. The subprograms can appear in any
order. If the main program and subprograms are in separate modules, they
can be linked in any order.

All BASIC expressions are allowed within a subprogram, except the follow
ing:

'14

• User-defined functions.

• A SUB . . • SUB END block. Subprograms cannot be nested.

Using Subprogram11

Example

The following subprogram multiplies the values passed to it in an array
VALUES. The index value of the array is passed to the subprogram in vari
able S.

SUB MULT (VALUES (l) , S) STATIC
FOR I NDEX=l TO S

PRI NT VALUES (I NDEX) * 1 6
NEXT I NDEX

END SUB

6.2 Calling Subprograms

When the main program transfers execution to the subprogram, it "calls"
the subprogram with the CALL statement. The CALL statement can
invoke BASIC subprograms or assembly-language subroutines. This section
and the rest of this chapter apply only to CALL when it is used with sub
programs. Calling assembly-language routines is described in Chapter 7,
"Interfacing With Other Languages. "

The CALL statement has the following syntax:

CALL name [(argument-list)D

where

name

argument-list

is the name of the called subprogram. The name is
limited to 31 characters.

is a list of variables and array elements passed to
the called subprogram.

The number and type of the arguments in the CALL statement must
match the number and type of parameters in the SUB statement or stack
space will not be allocated correctly. Arguments and parameters must be
given in the same order. The compiler does not check to see if CALL
statement arguments and SUB statement parameters match, and no error

'16

Microsoft XENIX BASIC Compiler User's Guide

message is generated if they do not.

A complete subprogram call looks like this:

(main program)

CALL subprogram-name (argument-lis t)

(end o f main program)

SUB subprogram-name (parameter-list) STAT! C

(body o f subprogram)

END SUB

6.3 Passing Variables with CALL

Variables can be passed from the main program to subprograms through
the CALL statement argument list. The following example shows how a
CALL statement invokes a subprogram and passes variables A and B to it:

A=S : B=O
CALL SQUARE (A, B)
PRI NT "Main program variable values are " A " and " B
END

SUB SQUARE (X . Y) STATIC
Y=X• X
PRI NT " I n subprogram , Y =" Y

END SUB

The above example prints the results:

I n subprogram , Y = 25
Main program variable values are 5 and 25 .

The subprogram changes the value of variable B by assigning a new value
to the SUB statement's corresponding parameter, Y. When the subpro
gram SQUARE begins executing, the initial value of Y is 0. The subprogram

76

Using Subprograms

computes a new value for Y (in this case, 25) and stores it in the passed
parameter.

Variables passed using the above method are passed by reference, i.e., their
location in memory is passed to the subprogram. The subprogram acts on
the value in that location, and when control returns to the calling program,
the value in that location may be changed. When you don 't want the sub
program to change the value of a variable you must pass the actual value of
the variable. When an actual value is passed, the subprogram copies the
value into a temporary location for its own use and removes the temporary
location before control is returned to the calling program. The original
value is unchanged.

To pass a variable by value, enclose it in parentheses. For example, if you
change the CALL SQUARE statement in the above example to

CALL SQUARE (A. (B))

B is passed by value, which is 0. In the example, subprogram SQUARE can
not change the value of B. The subprogram can change the value of Y,
but this value is local to the subprogram and cannot be passed back to the
main program through variable B. The revised example prints:

I n subprogram Y = 25
Main program variable va lues are 5 and 0

Note that you can also pass expressions as parameters, as in the following:

CALL PROG2 (X . (Y+l} } STATI C

Expressions are passed by value.

6.4 Passing Arrays with CALL

Arrays can be passed to subprograms with the CALL statement. The
CALL statement with an array argument has the following form:

CALL subprogram (array-name())

where

77

Microsoft. XENIX BASIC Compiler User's Guide

Argument

subprogram

array-name

Description

is the name of the subprogram being called.

is the name of the array being passed.

Arrays use the same type matching rules as variables.

Example

The fol lowing example creates an array, then passes the array to a subpro
gram that multiplies each array element by 16:

DEF I NT 1 - L
OPTI ON BASE 1
LIMIT=4
DIM ARRAY (LIMIT)
FOR I NDEX=l TO LIMIT

ARRAY (I NDEX) =I NDEX
NEXT I NDEX
CALL MULT (ARRAY () , LIMIT)
END

SUB MULT (VALUES (l) , SUBSCRI PT) STAT I C
FOR ELEMENT=l TO SUBSCR I PT

PRI NT VALUES (ELEMENT) " times 1 6 is " VALUES (ELEMENT) -A 1 6
NEXT ELEMENT

END SUB

Passing Individual Array Elements

If a subprogram does not require an entire array, you can pass the values of
individual array elements instead. To pass separate elements of an array,
enclose their subscripts in parentheses. The statement in the following
example passes the value of the element in row 3, column 9 of ARRAYl to
PROGNAME:

CALL PROGNAME (ARRAY1 (3 , 9))

78

Using Subprograms

Using Array Bound Functions

The LBOUND and UBOUND functions, which are described in the
"Reference," are useful for determining the size of an array passed to a sub
program. The LBOUND function finds the smallest index value of an
array subscript; UBOUND finds the largest index value. They are espe
cially useful for passing dynamic arrays, because the calling program does
not have to pass the size of each dimension to the subprogram.

For instance, the subprogram in the first example uses LBOUND and
UBOUND instead of passing the upper bounds of the array explicitly. The
LBOUND statement initializes the variable r ow to the lowest subscript
value of a r r ay, and the UBOUND statement limits the number of times
the FOR loop executes to the number of elements in the array.

SUB PROG2 (ARRAY (2)) STATIC
FOR ROW=LBOUND (ARRAY , 2) TO UBOUND (ARRAY , 2)

The following example uses LBOUND and UBOUND to compute the
� l imits of the array, instead of a variable value as in the previous example.

OPTI ON BASE 1
DIM ARRAY (4}
FOR I NDEX=l TO UBOUND (ARRAY}

ARRAY (I NDEX) = I NDEX
NEXT I NDEX
CALL MULT (ARRAY ())
END

SUB MULT (VALUES (l)) STATIC
FOR I NDEX=LBOUND (VALUES) TO UBOUND (VALUES)

PRI NT VALUES (I NDEX) " times 1 6 i s " VALUES (I NDEX} • l6
NEXT I NDEX

END SUB

6.5 Passing Expressions with CALL

You can also pass expressions as arguments to subprograms. An argument
can be any valid BASIC expression except simple variables and array
element references, for example:

CALL PROG2 (VAR • l 6 , X) STATI C

79

Microsoft XENIX BASIC Compiler User's Guide

6.6 Accessing Parameters with SHARED

BASIC supports shared variables and provides two ways for their values to
be preserved across subprogram calls within a single module:

1 . The SHARED attribute to main program COMMON, DIM, and
REDIM statements permits the use of main program variables by
all subprograms within the module. This method is most useful if
all variables will be shared by all subprograms.

2 . The SHARED statement permits a subprogram to use variables
declared in a main program. This method is most useful when
different subprograms use different combinations of main program
variables.

Sections 6.6.1 and 6.6.2 discuss these two ways to pass parameters.

6.6.1 Sharing fom the Main Program:
The SHARED Attribute

You can access variables from the main program without passing them as
parameters to the CALL statement by using the SHARED attribute with
COMMON, DIM, or REDIM statements in the main program. Within a
module, subprograms can use all the main program variables declared with
the SHARED attribute. If all the variables in the main program are also
used by all the subprograms, this is easiest and most efficient way to share
variables. To use the SHARED attribute, place the word "SHARED"
directly after the keyword in a COMMON, DIM, or REDIM statement.

Note

80

The SHARED attribute and the SHARED statement, described in
Sections 6.6. 1 , 6.6.2, and 6.6.3 only share variables within a single com
piled module. They do not share variables with subprograms compiled
separately.

Using Subprograms

Example

The following statements declare variables shared across all subprograms
within a module:

COMMON SHARED a , b , c
COMMON SHARED /length/ short , medium , l ong
SHARED x , y
DIM SHARED array (10, 10)
REDI M SHARED a lpha (n%)

In the following module, the main program passes the value of A to subpro
gram PROG2. When thellexecutable program is run, it prints the number
" 10."

COMMON SHARED A ' var able A can be used by any
A=6+4 ' subprogram in this modu le
CALL prog2

SUB prog2 STATI C
PRI NT A ' prints 10

END SUB 1

Without the COMMON SHARED statement, the above program would
look like this:

A=6+ 4
CALL prog2 (A)

SUB prog2 (X) STATIC
PRI NT X

END SUB

The significance of the SHARED attribute becomes apparent when large
numbers of variables are being passed from the main program.

6.6.2 Overriding a SHARED Variable
with a STATIC Statement

Variables declared in the main program with the SHARED attribute are
global. Variables declared in subprograms are local to the subprogram. In a
subprogram you may occasionally need to use a local variable name that
has been previously declared a global variable. You can use the STATIC
statement to override global variables at the subprogram level.

81

Microsoft XENIX BASIC Compiler User's Guide

Note that when you use the STATIC statement with an array variable,
you must immediately dimension the array, as in the following example:

SUB PROG2 (x) STATI C
STATI C a r r ay% (1)
DIM array% (25)

END SUB

Example

The output of the following program i llustrates the effect of the STATIC
statement on a global variable.

FOR I = 1 to 10
X=X + 2 ' X i s a g l oba l variable
CALL PROG2
PRI NT "main program X =" X

NEXT I

SUB PROG2 STATI C
STATIC X ' dec l ares X l ocal t o the subprogram
PRI NT "subprogram X =" X

END SUB

The output of the program is:

subprogram X = 0
main pr ogr am x = 2
subprogram X = 0
main program x 4
subprogram X = 0

6.6.3 Sharing from the Subprogram
Using the SHARED Statement

Within a single module, use of the SHARED statement in a subprogram
allows the subprogram to use main program variables. The SHARED
statement has the form

SHARED variable [,variablesD

82

Using Subprograms

The argument variable is the name of any variable declared in the main pro
gram. A SHARED statement with array arguments has the form:

SHARED arrayname() �,arraynamem

Variables and arrays can bogh be used as arguments to a single SHARED
statement.

Example

To use variables A and D declared in the main program, the subprogram
must declare them in a SHARED statement before they are used, as in the
following example:

A=4 : D=6
CALL prog2

SUB prog2 STATIC
SHARED A, D
X=A+D
PRI NT X ' prints 10

END SUB

6. 7 Passing Variables and
Arrays Between Modules

If the main program and subprograms are in separate modules, use the
COMMON statement to share variables and arrays. The COMMON
statement has the form:

COMMON ltSHAREDD /blockname/ item·list

where

SHARED is an optional attribute. Use the SHARED attri
bute when you want to share all items in the item
list among all subprograms in the module.

/ blockname/ is any name up to 3 1 characters long. This name· is
used internally to identify a specific COMlviON
variable group. Use blockname when every subpro
gram does not share every COMlviON variable or

83

Microsoft XENIX BASIC Compiler User's Guide

item-list

array.

is a list of variables and arrays that will be used by
the subprograms. Arrays have the form:

array-name (dim-num)

Where array-name is the name of the array and
dim-num is the number of dimensions in the array.

The COMMON statement useful when there are many variables to be
shared, or when not all variables are shared by all subprograms.

Order is important in COMMON statements. If the main program's
COMMON statement looks like this:

COMMON a . d . e
a=S : d=8 : e=10

And the subprogram COMMON statement looks like this:

COMMON a , e , d

the order of the values is maintained; thus in the subprogram e=S and
d = l O.

Named COMMON

Named COMMON separates shared variables into groups that are
identified by their blockname. It is useful when subprograms need to share
specific groups of variables from the main program. The following example
calculates the volume and density of a 3-dimensional rectangle using data
supplied from the main program. Subprogram VOLUME only needs to
share the variables representing the lengths of the sides, in COMMON
block sides. Subprogram DENSITY needs variables representing the sides of
the rectangle and the weight.

' main program
DIM a (3)
COMMON /sides/ a ()
COMMON /weight/ c

c=52
a (l) =3 : a (2) =3 : a (3) =6
CALL volume
CALL density

84

' subprogr am VOLUME in separ ate module
DI M a (3)
COMMON SHARED /s ides/ a ()

� SUB volume STATI C
vol=l
FOR x = 1 TO 3

vol=a (x) i1 v o l
NEXT x
PRI NT "The v o l ume is " vol

E ND SUB

' subprogram DENSI TY in separate module
DIM a (3)
COMMON SHARED /s ides/ a ()
COMMON SHARED /weight/ w

SUB density STATI C
vol=l
FOR x = 1 TO 3

vol=a (x) i1vol
NEXT x
dens=w/vol
PRI NT "The density ls " dens

END SUB

6.8 Error Handling

Using Subprograms

Error handling subroutines must be located outside subprograms. Error
handling subroutines located inside SUB • • • END SUB blocks will cause SB
error messages, and may not return correctly. The correct structure for
error handling within a subprogram is:

SUB TEST STATI C

ON ERROR COTO 5000

END SUB

5000 : ' Error hand l ing routine begins here

86

Microsoft. XENIX BASIC Compiler User's Guide

(body o f routine)

RESUME

Error-handling routines in separately compiled modules apply only to that
module. In other words, if an error-handling routine is to apply to the
entire program, the entire program must be in a single source file.

6.9 Using GOSUB . . . RETURN

Subprograms are intended to be entirely independent of the main program.
To preserve this independence, it is recommended that subprograms be
entered only with the CALL statement, and exited only with the END
SUB statement. This ensures that the stack is maintained properly, and
prevents unexpected errors at run time. Entering and exiting subprograms
with GOTO, GOSUB, or RETURN linenumber statements is not recom
mended. Within a subprogram, the objects of GOTO and GOSUB state
ments should be located inside the subprogram. Improperly placed
GOTO, GOSUB, or RETURN linenumber statements will cause a "Sub-
routine error" message at run time. �

6.10 Variable Scoping Using SHARED and
C01\11\10N: An Extended Example

Unless specified otherwise, variables and arrays are considered local to the
subprogram or main program in which they are declared.

There are three different ways to share variables and arrays:

1 . Within a module,

2. Across all modules

3. Across selected modules

This section summarizes the different ways of passing parameters with
SHARED and COMMON.

86

Using Subprograms

In the following example, the array A is not shared by the main program
and the subprograms:

' main program
DIM A (10)
A (l) = 256
PRI NT A (l)
CALL progl
CALL prog2

'prints 256

' subprogram 1 in same modu l e
SUB progl STATIC

DIM A (10)
PRI NT A (l) ' pr ints 0

E ND SUB

' subprogram 2 in same modu l e
SUB prog2 STATIC

DIM A (10)
PRINT A (l) ' prints 0

END SUB

To share array A with both subfrograms in the module, (and thus give
A (1) the value 256 throughout add the SHARED attribute to the main
program's DIM statement. (You must also remove the DIM statements
from the subprograms or you will get a DD "Array Already Dimensioned"
error.) The SHARED attribute shares variables and arrays with all sub
programs called by that program.

' main program
D I M SHARED A (lO)
A {l) = 256
PRI NT A (1) ' prints 256
CALL progl
CALL prog2

' subprogram 1 in same module
SUB progl STATIC

PRINT A { l) ' pr ints 256
END SUB

' subprogram 2 in same modu le
SUB prog2 STATIC

PRI NT A (l } ' prints 256
END SUB

If only subprogram 2 needs to share array A with the main program, add
the SHARED statement to subprogram 2 instead. The SHARED state
ment allows the subprogram to share variables and arrays from the calling

81

Microsoft XENIX BASIC Compiler User's Guide

program. (If you compile the following program you will get a warning
error.)

' main program
DI M A (lO)
A (l) = 256
PRI NT A (l)
CALL progl
CALL prog2

' prints 256

' subprogram 1 in same modul e
SUB progl STATI C

PRI NT A (l) ' pr ints 0
END SUB

' subpr ogram 2 in same modu le
SUB prog2 STATIC

SHARED A ()
PRI NT A (l) ' pr ints 256

END SUB

If the main program is in one module, and the subprograms are in one or
more separate modules, use COMMON to share variables and arrays
among modules. There are two steps to using COMMON with subpro
grams in separate modules:

1 . The shared variables and arrays must be passed to each module
with a COMMON statement.

2 . The shared variables and arrays must be passed to each individual
subprogram by adding the SHARED attribute to the COMMON
statement at the beginning of each module, or by adding the
SHARED statement to each subprogram.

For example, in the following program A (1) is passed to module modl .bas,
but n.ot to sub�rogram progl . (If you compile modl .bas you will get a
warning error.)

' main progr am in fi l e main . bas
DI M A (10)
COMMON A ()

A (l) =256
PRI NT A (l)
CALL progl
END

' prints 256

' progl in fi l e mod l . bas

88

Using Subprograms

DIM A (10)
COMMON A ()

SUB progl STATIC
PRI NT A (l) 'prints 0

END SUB

There are two ways to pass array A to subprogram progl :

I . Add the SHARED attribute to the COMMON statement in
modi .bas:

DIM A (10)
COMMON SHARED A (lO)

SUB progl STATI C
PRI NT A (1) ' prints 256

END SUB

2. Add a SHARED statement to subprogram progl :

6 .11

DIM A (lO)
COMMON A ()

SUB progl STATI C
SHARED A ()
PR I NT A (1) 'prints 256

END SUB

Common Errors

Two errors are commonly made when calling subprograms:

• Mismatched argument and parameter lists

• Variable aliasing

Mismatched argument and parameter list errors are caused when the order,
type, or number of arguments passed to a BASIC subprogram do not
correspond to the parameters in the subprogram. The BASIC Compiler does
not check for this discrepancy, and no error message is generated. How
ever, noticeable side effects will probably occur.

89

Microsoft XENIX BASIC Compiler User's Guide

Example

In the following program, the main program passes a string to a subpro
gram that is expecting an integer. Although the program compiles and
links without errors, when the program is executed, it will eventually cause
a "String Space Corrupt" error.

A$=11This is a string"
CALL prog2 (A$)

SUB prog2 (X%) STATIC
X%=X%• X%

END SUB

A common mistake in long programs containing many variables is variable
aliasing. Variable aliasing occurs when more than one name refers to the
same location in memory. In modular programs, variable aliasing occurs
when an argument passed to a subprogram can be referenced in the subpro
gram in more than one way. This often happens when the same variable is
used twice as a parameter to CALL, or when a variable passed as a param
eter is also accessed by means of the SHARED statement or the
SHARED attribute. To avoid aliasing problems, pass arguments by value
and make minimal use of SHARED.

Example

The following is a simple example that i llustrates how unexpected variable
aliasing can occur.

COMMON SHARED A
A=4
CALL prog2 (A)

SUB prog2 (X) STATIC
PRI NT "Ha l f o f" ; X : "plus hal f o f" ; A; " is" ;
X=X/2
A=A/2
PRI NT (A+X)

END SUB

When run, this program displays the following message:

Ha l f o f 4 p l us ha l f o f 4 is 2

In the above example, A passed in the COMMON SHARED statement is �
the variable the subprogram references from the main program, and it is
considered global data. When the subprogram modifies X, it is in effect
modifying A, so when furt;her operations are performed on A with the
assumption A=4, the results are false.

90

Chapter 7

lnterf acing With
Other Languages

7 .1 Loading Assembly Language Files 93
7.2 Calling Assembly Language Subroutines 93
7.2. 1 Assembly Language Coding Rules 97
7.2.2 Calling FORTRAN Subroutines 99
7.2.3 Calling C Language Modules 99
7.3 The Run-Time Memory :Map 100

91

Interfacing With Other Languages

You may wish to incorporate assembly language, FORTRAN or C subrou
tines into your BASIC programs. This section describes the necessary pro
cedures and some special features of the .Microsoft BASIC Compiler.

� Under the XENIX operating system, memory space for BASIC is separated
into instruction and data space. Any subroutine will reside in the instruc
tion space and will use the data space.

7 .1 Loading Assembly Language Files

You can assemble and link assembly language source files with BASIC pro
grams on the bascom command line. The compiler automatically invokes
the assembler on files that have the ".s" extension. The assembly language
file can also be a previously assembled object file.

For example, the following command assembles the assembly language files
asml.s and asm2.s, and links them with the BASIC program math.bas:

bascom math . bas asml . s asm2 . s

7 . 2 Calling Assembly Language Subroutines

You can incorporate assembly language subroutines in your BASIC pro
gram using the CALL or CALLS statements. The CALL statement calJs
an assembly-language subroutine and passes the subroutine the unsegment
ed addresses of the statement arguments. The CALLS statement has the
same syntax and purpose as CALL, but passes the segmented addresses of
its argument. The syntax of the CALL statement is

CALL name [(argument-list)]

where

name

argument-list

The name of the assembly-language subroutine be
ing called. It is limited to 3 1 characters.

parameter contains the arguments you pass to the
subroutine.

93

Microsoft XENIX BASIC Compiler User's Guide

There is a detailed description of the CALL statement in the "Reference."

Invoking the CALL statement causes the following to occur:

• Arrays are passed by pushing an array descriptor on the stack.

• Array elements are passed by pushing a 2-byte pointer to the ele
ment onto the stack. Note that elements adjacent to the pointer are
not guaranteed to contain the values of adjacent elements of the ar
ray.

• Strings are passed by pushing a pointer to the string descriptor.

• For each non-array argument in the argument list, BASIC pushes
the 2-byte offset of the argument's location within the data segment
(DS) onto the stack.

• BASIC pushes the return address code segment (CS), and offset (IP)
onto the stack.

• BASIC transfers control to the subroutine.

Figure 7 . 1 i l lustrates the state of the stack at the time of the CALL state
ment. Figure 7 . 2 shows the condition of the stack during execution of the
called subroutine.

94

lnt.erfacing With Other Languages

high
addresses

I
I
I
I C

s 1 0
t l u
a l n
c i t
k l e

I r
I

v
low

addresses

argument 0
argument 1

Each argument
is a 2 -byte
pointer into

argument n memory

+ - +
I return segment address !

+ - +
return o f fset + - + < - - Stack pointer

(SP reg . contents)

==

Figure 7 .1 Stack Layout when CALL statement is activated

The subroutine now has control. The program can reference arguments by
moving the Stack Pointer (SP) to the Base Pointer (BP) and adding a posi
tive offset to (BP). For example,

push bp
mov bp , sp

You can calculate the offset of argument n, where n is a 2-byte variable, as
BP + 4. Argument n - 1 is at BP + 6. Locate any argument, k for exam
ple, by using the following formula, where k is the argument and n is the to
tal number of arguments made by the program:

Location k = BP + 4 + (2 * (n - k))

Calculate the location of argument 0 by using the fallowing formula:

Location of Argument 0 = BP + 4 + 2n

95

l\iicrosot\ XENIX BASIC Compiler U11er1a Gulde

If you have local variables, you should begin the assembly language pro
gram with language similar to the following:

push bp
mov bp , sp
add sp , space

mov sp , bp

The space argument is equal to two times the number of local variables in
the program.

You can calculate the location of local variable 0 with the following formu
la:

Location of local variable 0 = BP - 2

You can also calculate the locations of subsequent local variables. For each
variable, subtract an additional two bytes from BP. This gives you a for
mula to calculate the location of local variable k if you know n, the total
number of local variables.

Location of local variable k = BP - 2(n + 1)

Important

96

It is critical that your program clean up the stack before exiting the
called subroutine. Do this by popping BP, as in the following example:

push bp
mov bp , sp
add sp , space

mov sp , bp
pop bp
ret

Interfacing With Other Languages

high
addresses argument 0

argument 1

I
I \
I \
I }<- -Absent i f any
I I argument is

c
s 0
t u
a n
c t
k e

I / re ferenced within

r

argument n I a nested l ist
I + - +

I return segment address !
+ - +

return o f fset + - + < - - Stack pointer
I o l d stack marker I (SP reg . contents)

+ - + < - -New stack marker
I l oca l vari ab les I \
I (optiona l ly a l located I \
I by user routine) I }<- -Only needed in
I I I reentrant procedure
I I / + - +

You may use this I
space during I

procedure execut ion I
or for cal l ing I
other assembl er I

Stack pointer may
change dur ing
procedure execution

I
I

v
l ow

addresses

routines I
I
I
I

-- ------------�-----.=-==========

Figure 7 .2 Stack Layout After ADD Statement Execution

BASIC does not preserve case. Therefore, all entry point names must be
capitalized.

7 .2 .1 Assembly Language Coding Rules

r--., You must observe the following rules when coding a subroutine:

• The subroutine the program calls is permitted to destroy the AX,
BX, CX, and DX registers. It must preserve all other registers.

97

Microso� XENIX BASIC Compiler User•s Guide

• The called subroutine must know the number and length of the ar
guments the BASIC program passes to it. References to arguments
are positive offsets added to (BP) (assuming the called routine
moved the current stack pointer into BP; i .e., MOV BP,SP).

• The subroutine the program calls must perform an intersegment re
turn.

• BASIC receives returned values by including the variable name that
receives the result in the argument list.

• If the argument is a string, its offset points to 4 bytes called the
"string descriptor." The first 2 bytes of the string descriptor define
the length of the string, and the second two point to the actual
characters. See the following information about the floating point
accumulator for details about the string descriptor.

Important
If the argument is a string literal in the program, the string
descriptor points to program text. Be careful not to alter or
destror, your program this way. To avoid unpredictable results,
add + "' to the string literal in the program. For example,

20 A$ = " BAS I C" + " "

This forces BASIC to copy the string literal into string space.
Now the string can be modified without affecting the program.

• User routines can alter strings, but they must not change the length
of the strings. BASIC cannot correctly manipulate strings if their
lengths are modified by external routines.

The following sequence of assembly language demonstrates access of the ar
guments passed and storage of a return result in the variable C. BASIC
accesses this routine through a statement like

CALL ENTRY (A%, B$, C%)

98

�

Interfacing With Other Languages

The assembly language routine can appear as follows:

push bp
push si
push di
mov bp , sp : Get current stack position BP .
mov bx , S [bp) ; Get address o f B$ dope .
mov ex , [bx) ; Get l ength of B$ in CL .
mov dx , 2 [bx) : get address of B$ text in DX .

mov si , lO [bp) ; Get address o f ' A ' in SI .
mov di , G [bp) ; Get pointer to ' C ' in DI .
mo vs word : Store vari ab l e ' A ' in ' C ' •
pop bp
pop di
pop si
ret 6 ; Restore Stack , return .

Important
The subroutine that BASIC calls must know the variable type for
numeric arguments passed. In the above example, the instruction

movs word

copies only 2 bytes. This works out if variables A and C are integers.
You would have to copy 4 bytes if A and C were single precision and
copy 8 bytes if they were double precision.

7 .2 .2 Calling FORTRAN Subroutines

Use the OALLS statement to access FORTRAN subroutines. CALLS
works just like CALL, but each of the arguments on the stack is a 4-byte
pointer into memory, rather than a 2-byte pointer.

7 .2.3 Calling C Language Modules

If you want to call C language modules from your BASIC programs, you
must take into consideration the different calling conventions of the two
languages. BASIC uses a convention like the PL/M convention. Languages
using the PL/M calling convention expect the callee to remove parameters
pushed on the stack. Microsoft C uses its own convention, in which the

99

Mforosoft XENIX BASIC Complier User's Guide

caller is expected to clean the stack. This means that the order that
parameters are pushed onto the stack is different for each language. BASIC
pushes parameters in the order of occurrence; C pushes parameters on the
stack in reverse order. In BASIC, the called routine must clean up the stack
before returning; C expects the calling routine to clean up the stack.

As an example, look at the foil owing BASIC statement:

CALL AROUTINE (A% , B% , C%)

It is equivalent to the following assembly language code:

push
push
push
ca l l

o f fset ds : a
o ffset ds : b
o f fset ds : c
a routine

; Push addresses of arguments
; I n the order encountered

: Far Ca l l

The Microsoft C language convention expects parameters to be pushed in
the reverse of the order encountered. The C procedure definition to receive
the above CALL statement would be

aroutine (c , b , a)
short int •a , • b , • c :

C Data Representation

/* Note : parms in reverse order • /
/• BAS I C passes pointers t o data • /

Only short (16-bit) integers are certain to be in the same format in both
languages. Strings, single and double precision floating point data are
stored differently.

7.3 The Run-Time Memory Map

Figure 7 .3 shows the run-time memory map for programs linked to the
XENIX BASIC runtime libraries.

100

Interfacing With Other Languages

HIGH MEMORY
64K DGROUP boundary - - - - - - - - > • - • LH grows down

I Local Heap Space

F lexible boundary between the
Local Heap and String Space- - >

I contains FDBs and I
I Dynamic Array entries I
I I
1 /V\A/\/\/VV\/\/\/\/ I
I String Heap Space I
I contains variable I
I length string entries I
I I

BAS I C program data - - - +

+ - ·
I STACK
I I
I I

· - - - - - > 1 \/\/\/\/\/\/\/\/\/\/\/\ 1 I BC_DS I + - ·
1 ec_cN

· - ·
I BC_FT

I • - •
I 1 ec_oATA
1 - - - - - > + - ·

v

SS grows up
Stack grows
down

I I COMMON < - - preserved
• - - - - - > • - • across chain
· - - - - - > I FAR_BSS

· - +
I CONST (class CONST) I

C l ibrary data - - - - - - - - • · - ·

BASCOM runtime data - - +

I c_common I + - ·
• - - - - -> I _ess (class BSS)

• - - - - - > I CONST (class DATA)

I _ess (class DATA)
· - ·
I XENCON < - - preserved
• - • across CHAIN • - - - - - > I STARTUP_DATA + - ·

C l ibrary !nit data - - - - - - - - - > I XI ' XC' + - ·
BASCOM run -time data - - - - - - - - > IDATA I
Beginning o f OCR.CUP - - - - - - - - > • - •
BASCOM run -time init code - - - > I INIT_CODE I
BAS I C program code

FAR C l ibrary code

BAS I C run-time code

C l ibrary kernel

+ - +
- - - - - - > I •_CODE

· - ·
- - - - - - > I •_TEXT I + - ·
- - - - - - > I CODE I

+ - ·
- - - - - - > I TEXT + - ·

Kernel startup - - - - - - - - - - - - - - > I PREPROC_TEXT + - ·
LOW MEMORY

Figure 7 .3 XENIX BASIC Compiler Run-Time Memory Map

101

Part 2
Reference

8 Language Elements 103
9 Compiler-Int.erpreter Language Differences 127
10 Statement. and Function Reference 147

Chapter 8

Language Elements

8. 1
8.2

Character Set
The BASIC Line

105
106

8.2. 1 Using Line Labels 108
8.2. 2 Creating Lines

Longer than 255 Characters 108
8.3 Data Types 109
8.4 Constants 110
8.5
8.5. 1
8.5.2

Variables 112
Variable Names 1 13
Declaring Variable Types 114

8.5 .3 Array Variables 115
8.6 Expressions and Operators 1 16
8.6.l Hierarchy of Operations 1 17
8.6.2 Arithmetic Operators 1 18
8.6.2. 1 Integer Division 1 19
8.6.2.2 Modulo Arithmetic 119
8.6.2.3 Overflow and Division by Zero 1 19
8.6.3 Relational Operators 120
8.6.4 Logical Operators 121
8.6.5 Functional Operators 124
8.6.5 .1 Intrinsic Functions 124
8.6.5.2 User-Defined Functions 124
8.6.6 String Operators 124
8. 7 Type Conversion 125

103

Language Elements

This chapter presents the character set and the rules for the constants,
variables, expressions, and operators used by the Microsoft XENIX BASIC
language.

8.1 Character Set

The Microsoft XENIX BASIC character set consists of alphabetic charac
ters, numeric characters, and special characters.

The alphabetic characters in BASIC are the uppercase letters (A-Z) and
lowercase letters (a-z) of the English alphabet.

The BASIC numeric characters are the digits 0-9. The letters a-f and A-F
can be used as parts of hexadecimal numbers.

Special Characters

The following special characters are recognized by BASIC:

Character Name or Function

+

*

I

%

Blank

Equal sign or assignment symbol

Plus sign

lvfinus sign

Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponentiation symbol

Left parenthesis

Right parenthesis

Percent (suffix for integer data type)

Exclamation point (suffix for single-precision data type)

Number (or pound) sign (suffix for double-precision data
type)

106

Mjcrosort XENIX BASIC Compiler

$

I
J

&
?
<
>

\
@

RETURN

Dollar sign (suffix for string data type)
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At symbol
Underscore
Terminates input of a line

8.2 The BASIC Line

BASIC program lines have the following format:

Uline-identifierD statement ll: statement . • . D ficommentD

Program lines can contain a maximum of 255 characters, and must end
with a carriage return.

The XENIX BASIC Compiler supports two types of line- identifiers: line
numbers and alphanumeric line labels.

106

1 . A line number can be any combination of digits, from 0 to 65529.
XENIX BASIC accepts lines with no space between the line number
and the keyword. Spaces are allowed in line numbers, but the com
piler uses only the digits preceding the space as the line number.
The following are valid line numbers:

1
200
300PRI NT "he l l o "
65000
25 10

Language Elements

' 300 is the l i ne number

' The compi l er considers this l ine 25

Using line number 0 is not recommended. Although line number 0
is allowed, error trapping statements (such as ON ERROR
GOTO and ON event GOTO) interpret the presence of line
number 0 to mean that error trapping is disabled. For example, the
following statement will not branch to line 0 if an error occurs:
ON ERROR GOTO 0

Note that, if RESUME 0 is present in a program that also con
tains line number O, execution will not resume on line number 0, but
on the line where the error occurred.

2 . An alphanumeric line label can be any combination of from 1 to 40
letters and digits that ends with a colon. BASIC keywords are not
permitted. The following are valid alphanumeric line labels:
a lpha :
a16 :
SCREENsub :
1 2 3 :

Case is not significant in line labels. The following line labels are
equivalent:
a lpha :
Alpha :
ALPHA :

Line numbers and labels can begin in any column, as long as they are the
first nonblank characters on the line. Spaces are allowed between an al
phanumeric label and the colon following it. There cannot be more than
one line label on a line.

A BASIC statement can be either executable or nonexecutable. An execut
able statement tells your program what to do next (such as read input,
write output, open a file, or branch to another part of the program}. All
statements are executable, except the following:

107

Microsoft. XENIX BASIC Compiler

COMMON
DATA
DEF type
DIM (static arrays only)
OPT10N BASE
REM (includes metacommands)

A comment is a nonexecutable statement used to clarify a program's opera
tion and purpose. A comment is introduced by a single quote character ('),
or the REM statement.

More than one BASIC statement can be placed on a line, but each state
ment must be separated from the last by a colon (:).

8.2.1 Using Line Labels

The XENIX BASIC compiler does not require each line in a source program
to have a line number or label. You can mix alphanumeric labels and line
numbers in the same program, and you can use alphanumeric labels as ob
jects of any BASIC statement where line numbers are permitted, except as
the object of an IF . . . THEN statement. In IF • • • THEN statements, BASIC
permits only a line number, unless you explicitly use a GOTO statement.
For example, the following statement will compile and execute correctly:

I F A = 10 THEN 500

However, if the object of the IF • • • THEN statement is a line label, a
GOTO statement is required, as follows:

I F A = 10 THEN GOTO I NCOMEDATA

If you are trapping errors, the ERL function will return only the last line
number encountered before the error. Line labels or numbers are not re
quired with the RESUME and RESUME NEXT statements.

8.2.2 Creating Lines
Longer than 255 Characters

You can use the underscore character (-) to create "logical" lines of more �
than 255 characters. Using this feature, you can improve program structure
and readability.

108

Language Elements

Breaking lines is particularly effective with FIBLD statements, as in the
following:

F I ELD # 1 . 10 AS A$, _
10 AS B$, _
10 AS C$, _
10 AS D$_

8.3 Data Types

' name
' address
' zip code
' l icense number

Four data types exist in BASIC. They are described in detail below.

1. String
A string is a sequence of up to 32,767 characters. The codes for
these characters range from 0 to 127 for ASCII (American Standard
Code for Information Interchange) characters, and from 128 to 255
for non-ASCII characters (see Appendix A, "ASCII Character
Codes.").

2. Integer numeric
Integers are stored internally as signed (two's complement} 16-bit
binary numbers ranging in value from -32, 768 to 32, 767.

3. Single-precision floating-point numeric
Single-precision numbers are accurate to 7 decimal places, and have
approximate ranges of -1 .7E+38 to -2.9E-39 for negative values,
true zero, and 2.9E-39 to 1 .7E+38 for positive values.
Single-precision numbers are stored internally as 32-bit (or 4-byte)
binary numbers in sign-magnitude format. The number is negative
if the most significant bit (or MSB) of the third byte is set (that is,
if it is equal to 1). The number is positive if the MSB is clear (0).
The unsigned magnitude of the number is contained in 2 parts: a
24-bit binary fraction, known as the mantissa, and an 8-bit ex
ponent, or the power of 2 by which the mantissa must be multiplied
to get the single-precision value.
The mantissa is a normalized, unsigned fraction whose binary point
is located to the left of its MSB (since this fraction is normalized,
t.he MSB is implied). The remaining 23 bit.s of the mantissa
comprise the seven right-most bits of the third byte, plus the 16 bits
of the second and first bytes, respectively. The value of the mantissa
ranges from 0.5 (decimal) up to, but not including, 1 .
The exponent is the value contained i n the last (fourth) byte, minus

109

Microsoft XENIX BASIC Compiler

256 (80H). This is known as an "excess 256" representation. A zero
value is defined as a binary representation whose fourth byte is 0,
regardless of the contents of the other 3 bytes.

4. Double-precision floating-point numeric
Double-precision numbers have the same allowable ranges as
single-precision numbers, but are accurate to 15 decimal places. The
binary representation of a double-precision number has 58 bits to
accomodate this extra accuracy. The preceding discussion of single
precision numbers applies to double-precision numbers, with the fol
lowing differences:
The sign bit is the MSB of the seventh byte.
The mantissa consists of an implied 1 , the 7 right-most bits of byte
7, pl us bytes 6 through 1 , respectively.
The exponent is the eighth byte. A value of 0 in this byte implies a
value of 0 for the entire number.

8.4 Constants

Constants are predefined values that do not change during program execu
tion. There are two types of constants: string and numeric.

A string constant is a sequence of up to 32, 767 alphanumeric characters en
closed in double quotation marks. These alphanumeric characters can be
any of the characters whose ASCII codes fall within the range 32 to 127, ex
cept the double quote character (") . These are all valid string constants:

"HELLO"
"$25 . 000 . 000"
"Number of Empl oyees"

Numeric constants are positive or negative numbers. There are three types
of numeric constants: integer, fixed-point, and floating-point.

110

I . Integer constants
a. Decimal

One or more decimal digits (0-9), with an optional sign prefix (+
or -) . The range for decimal constants is -32, 768 to +32, 767.

Language Elements

b. Hexadecimal
One or more hexadecimal digits (0-9, a-f, or A-F) with the prefix
&H or &h. The range for hexadecimal constants is &HO to
&HFFFF.
Examples:

&H76
&H32F

c. Octal
One or more octal digits (0-7) with the prefix &O, &o, or &.
The range for octal constants is &00 to &017777.
Examples:

&0347
& 1 2 34

Integer constants do not contain decimal points.

2. Fixed-point constants

Positive or negative real numbers; that is, numbers that contain de
cimal points.

Example:

9 . 0846

3. Floating-point constants

Positive or negative numbers represented in exponential form (simi
lar to scientific notation). A single-precision floating-point constant
consists of an optionally signed integer or fixed-point number (the
mantissa) followed by the letter E and an optionally signed integer
{the exponent). The exponent is the power of ten by which the
mantissa is multiplied to get the value of the floating-point number.
Double-precision floating-point constants are denoted by the letter
D instead of E.

Examples:
2 35 . 988E- 7 = . 0000235988
2 359E6 = 2 359000000
4 . 350- 10 = . 000000000435

Fixed-point and floating-point numeric constants can be either single
precision or double-precision numbers. Single-precision numeric constants
are stored with six digits of precision (plus the exponent) and printed with
up to six digits of precision. Double-rrecision numbers are stored with 14
digits of precision (plus the exponent and printed with up to 14 digits of
precision. A single-precision constnnt is nny numeric const:i.nt th:i.t h:i.s one

111

Microsoft XENIX BASIC Compiler

of the following properties:

• Six or fewer digits with no "D" exponential character or trailing
"# "

• Exponential form denoted by "E"

• A trailing exclamation point ("!")

A double-precision constant is any numeric constant that has one of the fol
lowing properties:

• Seven or more digits with no "E" exponential character or trailing
" !"

• Exponential form denoted by "D"

• A trailing number sign ("# ")

The following are examples of numeric constants:

Single Precision

46 . 8
- l . 09E - 6
3489 . 0
2 2 . 5 !

Double Precision

345692811
- 1 . 094320-06.
3489 . 0#
765432 1 . 1 2 34

Numeric constants in BASIC cannot contain commas.

8. 5 Variables

Variables are named values that can change during the execution of a pro
gram, or from one execution of a program to the next. As with constants,
there are two types of variables: numeric and string. A numeric variable
can be assigned only a numeric value (either integer, single-precision, or
double-precision) ; a string variable can be assigned only a character-string
value. You can assign the following values to a variable:

112

1 . A constant value, as in the following example:

A = 4 . 5

Language Elements

2. The value of another variable, as in the following example:

6$ = "ship o f foo l s "
A$ = 6$

3. The value obtained by combining other variables and/or constants
with operators, as in the foi l owing example:

PI = 3 . 141593
CONVERS ION = 180/P I

For more information on combining variables and constants, see
Section 9.7, "Expressions and Operators."

In any case, the variable must always match the type of data (numeric or
string) assigned to it.

Note
Before a variable is assigned a value, its value is assumed to be zero (for
numeric variables) or null (for string variables).

8.5.1 Variable Names

A BASIC variable name can contain as many as 40 characters. The charac
ters allowed in a variable name are letters, numbers, the decimal point, and
the type-declaration characters %, !, # , and $ (see Section 9.6.2, "Declar
ing Variable Types"). The first character in a variable name must be a
letter. If a variable begins with FN, it is assumed to be a call to a user
defined function that has been defined with the DEF FN statement. A
variable name cannot be a reserved word, but embedded reserved words are
allowed.

For example, the following statement is illegal because LOG is a reserved
word:

10 LOG = 8

Reserved words include all BASIC commands, statements, function names,
and operator names (see A{>pendix B, "BASIC Reserved Words," for a com
plete list of reserved words).

113

Mjcrosoft XENIX BASIC Compiler

8.5.2 Declaring Variable Types

Variable names can be declared as either numeric values or string values.
String variable names are written with a dollar sign ($) as the last charac
ter, as in the following example:

A$ = " SALES REPORT"

The dollar sign is the type-declaration character for string variables; that
is, it "declares" that the variable will represent a string. Numeric variable
names can declare integer values (denoted by a "%" suffix), single-precision
values, (denoted by either a "!" suffix, or no suffix) , or double-precision
values (denoted by a "#" suffix). Computations with integer- and single
precision variables are less accurate than those with double-precision vari
ables. However, you may want to declare a variable to have a lower preci
sion type for one of the fol lowing reasons:

• Variables of higher precision use more memory.

• Arithmetic computation times are longer for higher precision
numbers: a program with repeated calculations runs faster with in
teger variables.

The def a ult type for a numeric variable is single precision.

The type-declaration characters for numeric variables and the memory re
quirements (in bytes) for storing each variable type are listed in Table 8. 1 .

114

Language Elements

Table 8.1
Variable-Type Memory Requirements

Declaration
Character

%

$

Variable
Type

Integer

Single precision

Double precision

String

Bytes
Required

2
4
8
4 bytes for descriptor
2 bytes for string backpointcr
1 byte for each character in string

The following are examples of BASIC variable names:

Variable Name

P I #

M I N I MUM !

LIMI T%

F I RSTNAME$

ABC

Variable Type

Double precision

Single precision

Integer

String

Single precision (default type)

The BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL
can be included in a program to declare the types for certain variable
names. By using one of these DEF type statements, you can specify that all
variables starting with a given letter or range of letters will be of a certain
variable type, without having to use the trailing declaration character. For
more information on the DEF type statements, see DEF type in Chapter 10,
"Statement and Function Reference."

8.5.3 Array Variables

An array is a group or table of values ref erred to by the same variable
name. The individual values in an array are called elements. Array ele
ments are also variables, and can be used in any BASIC statement or func
tion which uses variables. Declaring the name and type of an array and set
ting the number of elements in the array is known as dimenBioning the
array.

116

Microsoft XENIX BASIC Compiler

Each element in an array is referred to by an array variable that is sub
scripted with an integer or an integer expression (single- and double
precision expressions can be used as array subscripts; however, they are
truncated to integer values) . An array-variable name has as many sub
scripts as there are dimensions in the array. For example, V(lO) refers to a
value in a one-dimensional array, while T$ (1 ,4) refers to a value in a two
dimensional string array. The default maximum subscript value for any
array dimension is 10; this maximum value can be changed by using the
DIM statement. (See the reference pages for DIM in Chapter IO, "State
ment and Function Reference" for more information). The maximum
number of dimensions for an array is 63. The maximum number of ele
ments per dimension is 32, 768. The maximum amount of memory that can
be taken for an array is 64K.

Note
The array-variable T and the simple variable T in the following example
refer to two distinct variables:

DIM T (1 1)
T = 2 : T (O) = 1
FOR I % = 0 TO 10

T (I % + 1) = T ,. T (I %)
NEXT

' T is simple variable
' T (O) is e l ement o f array

Array elements, like nonarray variables, require a certain amount of
memory, depending on the variable type. See Table 8 . 1 for information on
the memory requirements for storing arrays.

8. 6 Expressions and Operators

An expression can be a string or numeric constant, a variable, or a single
value obtained by combining constants, variables, and other expressions
with operators. Operators perform mathematical or logical operations on
values. The operators provided by BASIC can be divided into four
categories, as follows:

116

Language Elements

1 . Arithmetic
2. Relational
3. Logical
4. Functional

8.6.1 Hierarchy of Operations

The BASIC operators have an order of precedence; that is, when several
operations take place within the same program statement, certain kinds of
operations will be executed before others. Operations are executed in the
following order:

A. Arithmetic Operators

1. Exponentiation

2. Negation

3. Multiplication and Division

4. Integer Division

5. Modulo Arithmetic

6. Addition and Subtraction

B. Relational Operators (=; > , < , < > , < =, and > =)
c. Logical Operators

1 . NOT
2. AND
3. OR and XOR
4. EQV
5. IMP

An exception to the order of operations listed above occurs when an expres
sion has adjacent exponentiation and negation operators; in this case, the
negation is executed first. For example, the following statement prints
.0625 (4'2), not -16 (-42):
print 4 � - 2

If the operations are of the same level, the left-most one is executed first,
the right-most last, as in the following example:

117

Microsoft. XENIX BASIC Compiler

A = 3 + 6 I 12 • 3 - 2 ' A = 2 . 5

The order of operations in this example is as follows:

t . 6 / i2
2 . 0.5 * 3
3. 3 + 1 .5
4. 4.5 - 2

8.6.2 Arithmetic Operators

Use parentheses to change the order in which arithmetic operations are per
formed. Operations within parentheses are performed first. Inside
parentheses, the usual order of operation is maintained. Here are some
sample algebraic expressions and their BASIC counterparts:

Algebraic Expression BASIC Expression

X-Y

z
(X-Y)/Z

XY -- X*Y/Z
z

X+Y
(X+Y)/Z ----

z
(X2)y (X"2rY

yZ
x X"(Y"Z)

X(-Y) X*(-Y)

Generally, two consecutive operators must be separated by parentheses.
Exceptions to this rule are * - , * +, " -, and " + ; therefore, the last
expression in the right-hand column above could also be written X*-Y.

118

Language Element.s

8.6.2.1 Integer Division

Integer division is denoted by the backslash (\) instead of the forward slash
(/), which indicates floating-point division. Before integer division is per
formed, operands are rounded to integers, and hence must be greater than
-32,768.5 and less than +32,767.5. The quotient of an integer division is
truncated to an integer.

Example

PRI NT 10\4 , 10/4 , - 32768 . 499\10 , - 32768 . 499/10

Output:

2 2 . 5 - 3276 - 3276 . 8499

8.6.2.2 Modulo Arithmetic

Modulo arithmetic is denoted by the modulus operator MOD. Modulo
arithmetic provides the integer value that is the remainder of an integer

� division.

Example

X% = 10 . 4\4
REMAI NDER% = I NT (l0 . 4) - 4 • X%
PRI NT REMAI NDER% , 1 0 . 4 MOD 4

Output:

2 2

' 10\4 = 2 , with remainder 2

8.8.2.3 Overflow and Division by Zero

If the evaluation of a numeric expression results in division by 0 (case 1), 0
being raised to a negative power (case 2), or overflow (case 3}, then one of
the following things will happen:

1 . I f the program was compiled with the Debug (/D) option, i t will
display a "Division by Zero" (case 1 or case 2) or "OverHow" (case
3) error message.

119

Microsoft. XENIX BASIC Compiler

a. If there is no error-trapping routine, the program ends.

b. If there is an error-trapping routine to handle the error, control
branches to the target label (see ON ERROR GOTO in
Chapter 10, "Statement and Function Reference." for more
information on error-trapping).

2. If the program was compiled without the Debug option, the error is
not detected.

8.6.3 Relational Operators

Relational operators are used to compare two values. The result of the com
parison is either "true" (nonzero) or "false" (0). This result can then be
used to make a decision regarding program flow.

Table 8.2
Relational Operators and Their Functions

Operator Relation Tested Expression

= Equalitya X = Y

< > Inequality X < > Y

< Less than X < Y

> Greater than X > Y

< = Less than o r equal to X < = Y

> = Greater than or equal to X > = Y

&The equal sign is also used to assign a value to a variable.

When arithmetic and relational operators are combined in one expression,
the arithmetic operation is always performed first. For example, the follow
ing expression is true if the value of X plus Y is less than the value of T
1 divided by Z:

X + Y < (T - 1) /Z

120

Language Elements

8.6.4 Logical Operators

Logical operators perform tests on multiple relations, bit manipulations, or
Boolean operations, and return a true (nonzero) or false (zero) value to be
used in making a decision.

Examples

IF D < 200 AND F < 4 THEN 80

WHI LE I > 10 OR K < 0

WEND

I F NOT P THEN PRI NT "Name not found"

There are six logical operators in BASIC; they are listed below in order of
precedence:

Operator

NOT
AND
OR
XOR
EQV
IMP

Operation Performed

Logical complement

Conjunction

Disjunction (inclusive or)
Exclusive or (same precedence as OR)
Equivalence

Implication

Each operator returns results as indicated in Table 8.3. A "T" indicates a
true value and an "F" indicates a false value. Operators are listed in order
of operator precedence.

121

Microsoft XENIX BASIC Compiler

Table 8.3
Values Returned by Logical Operations

x x x x x
NOT AND OR XOR IMP EQV

x y x y y y y y

T T F T T F T T

T F F F T T F F

F T T F T T T F

F F T F F F T T

In an expression, logical operations are performed after arithmetic and rela
tional operations. Logical operators convert their operands to 16-bit,
signed, two's complement integers in the range -32,768 to +32,767. (If the
operands are not in this range, an error results.) If both operands are sup
plied as 0 or -1 , logical operators return 0 or -1 , respectively, as in the fol
lowing example. (Note the similarity of the outfut from this program with
Table 8.3: "T" becomes -1 , and "F" becomes 0.

Example

PRINT II x
PRI NT
I = 10 :

y

J = 15
x = (I = 10) : y =
GOSUB TRUTHTABLE
x = (I > 9) : y =
GOSUB TRUTHTABLE

NOT

(J = 1 5)

(J > 15)

x = (I < > 10) : y = (J < 16)
GOSUB TRUTHTABLE
x = (I < 10) : y = (J < 15)
GOSUB TRUTHTABLE
END

TRUTHTABLE :

AND OR XOR I MP

' X is true (- 1) : y is true (- 1)

' X is true (- 1) : y is fa l se (0)

' X is fa l se (0) : y is true (- 1)

' X is fa l se (O) : y is fa l se (0)

EQV11

PRI NT x II
PRINT II
PRI NT

II y " II : NOT x " ti x AND y II ti x OR y :

RETURN

122

ti x XOR y II ti x I MP y " II x EQV y

�

Language Elements

Output:

x y NOT AND OR XOR IMP EQV

- 1 - 1 0 - 1 - 1 0 - 1 - 1

- 1 0 0 0 - 1 - 1 0 0

0 - 1 - 1 0 - 1 - 1 - 1 0

0 0 - 1 0 0 0 - 1 - 1

Logical operators compare each bit of the first operand with the
corresponding bit in the second operand to compute the bit in the result; in
these "bit-wise" comparisons, a 0 bit is equivalent to a "false" value (F) in
Table 8.3, while a 1 bit is equivalent to a "true,,

value (T).

It is possible to use logical operators to test bytes for a particular bit pat
tern. For instance, the AND operator can be used to mask all but one of
the bits of a status byte, while the OR operator can be used to merge two
bytes to create a particular binary value.

� Example

PRI NT 63 AND 16

PRI NT -1 AND 8

PRI NT 10 OR 9

PRI NT 10 XOR 10,

63 (binary 1 1 1 1 1 1)
' AND 16 (binary 10000)
· - - - - - - - - - - - - - - - - - -

1 6 (binary 10000)

-1 (binary 1 1 1 1 1 1 1 1 1 1111111)
' AND 8 (binary 1000)
· -

8 (binary

10 (binary 1010)
' OR 9 (binary 1001)
· -

1 1 (binary 101 1)

' Al ways 0

1000)

PRI NT NOT 10 , NOT 11 , NOT 0 ' NOT X = - (X + 1)

Output:

1 6
8
1 1

123

Mi croaon. XENIX BASIC Compiler

0 - 1 1 - 1 2 - 1

8.6.5 Functional Operators

A function is used in an expression to call a predetermined operation to be
performed on an operand. For example, SQR is a functional operator used
twice in the following assignment statement:

A = SQR (20 . 25) + SQR (3 7)

BASIC incorporates two kinds of functions: intrinsic and user-defined.

8.6.5.1 Intrinsic Functions

Functions perform operations on their operands and return values. BASIC
has many predefined functions built into the language. Examples are the
SQR (square root) and SIN (sine) functions.

8.6.5.2 User-Defined Functions

Functions can be defined by the user with the DEF FN statement. These
functions are defined only for the life of a given program, and are not part
of the BASIC language. In addition to DEF FN, the Microsoft XENIX
BASIC Compiler allows you to define subprograms. (For more information
on defining your own functions and subprograms, see the entries for DEF
FN and SUB • • • END SUB in Chapter IO, "Statement and Function Ref er
ence.")

8.6.6 String Operators

A string expression consists of string constants, string variables, and other
string expressions combined by string operators. There are two classes of
string operations: concatenation and string function.

The act of combining two strings is called concatenation. The plus symbol
(+) is the concatenation operator for strings. For example, the foil owing
program fragment combines the string variables A$ and B$ to produce the
value F I LENAME.

A$ = "FILE " : B$ = "NAME "
PRI NT A$ + B$
PRI NT "NEW " + A$ + B$

124

Language Elements

Output:

F I LENAME
NEW f I LE NAME

Strings can be compared using the following relational operators:

< > < > < = > =

Note that these are the same relational operators used with numbers.
String functions are similar to numeric runctions, except that the operands
are strings rather than numeric values. String comparisons are made by
taking corresponding characters from each string and comparing their
ASCII codes. If the ASCII codes are the same for all the characters in both
strings, the strings are equal. If the ASCII codes differ, the lower code
number precedes the higher. Ir the end of one string is reached during
string comparison, the shorter string is said to be smaller if they are equal
to that point. Leading and trailing blanks are significant. The following
are examples of true statements:

"AA" < "AB"
" F I LENAME " = "FILENAME "
" X&" > "X#"
"CL " > "CL"
"kg" > "KG"
" SMYTH" < "SMYTHE "
8$ < 119/12/78" ' where 8$ = "8/1 2/85"

Thus string comparisons can be used to test string values or to alphabetize
strings. All string constants used in comparison expressions must be
enclosed in quotation marks. See Appendix A, "ASCII Character Codes,"
for more inf or ma ti on on the ASCII collating sequence.

8. 7 Type Conversion

When necessary, BASIC will convert a numeric constant from one type to
another according to the following rules:

• If a numeric constant of one type is set equal to a numeric variable
of a different type, the numeric constant will be stored as the type
declared in the variable name, as in the following example:
A% = 23 . 42
PRI NT A%

126

Microsoft XENIX BASIC Compiler

126

Output:

23

However, if a string variable is set equal to a numeric value, or vice
versa, a "Type Mismatch" error message is generated.

• During expression evaluation, all of the operands in an arithmetic
or relational operation are converted to the same degree of preci
sion: that of the most precise operand. Also, the result of an arith
metic operation is returned to this degree of precision, as in this
example:

X% = 2 : Y ! = 1 . 5 : Z# = 100
PR I NT X% / Y ! � Z#
Output:

1 3 3 . 3 3 33 37 3069763

Although the preceding result is displayed in double precision,
(because of the double-precision variable Z#l, it has only single
precision accuracy, since the first operation X% / Y !) is calculated
with single-precision accuracy. This explains the nonsignificant
digits (7306976 3) after the fifth decimal place. Contrast this with
the output from the following example:

X% = 2 : Y# = 1 . 5 : Z# = 100
PRI NT X% / Y# • Z#

Output:

1 3 3 . 3 3 3 3 3 3 3 3 3 3 3 3 3

• Logical operators convert their operands to integers and return an
integer result. Operands must be in the range -32, 768 to +32, 767
or an "Overflow" error message is generated.

• When a floating-point value is converted to an integer, the frac
tional portion is rounded, as in this example:

TOTAL% = 55 . 88
PRI NT TOTAL%

Output:
5G

("".,

Chapter 9

Compiler-Interpreter
Language Differences

9.1 Dynamic and Static Arrays 129
9.2 Using Metacommands 132
9.2.1 Metacommand Syntax 133
9.2.2 Processing Additional

Source Files: $INCLUDE 133
9.2.3 Dimensioned Array Allocation:

9.2.4
9.2.5

9.2.6
9.2.7

$STATIC and $DYNAMIC 134
Source Listing Format: $LIST 134
Object Code Listing
Format: $0CODE 135
Controlling the Listing Format 135
Changing Internal Module
Names: $MODULE 136

9.3 New BASIC Statements and Functions 136
9.4 Compiler-Interpreter Differences 137
9.4.1

9.4.2
9.4.3
9.4.4
9.4.4.1
9.4.4.2
9.4.4.3

A Comparison of Compilation
and Interpretation 138
Source File Format 139
Operational Differences 139
Implementation Differences 139

Expression Evaluation 140
Integer Variables 141
Double-Precision Arithmetic Functions 141

127

9.4.4.4
9.4.4.5
9.4.4.6
9.4.4.7

Double Precision Loop Control Variables
String Size 142
String Space Implementation 142
Newline Character 142

9.4.4.8 Program Line Extension Character
9.4.5 Statements and Functions

Not Accepted by the Compiler 143
9.4.6 Statements Requiring Modification
9.5 Enhanced Statements and Functions

128

142

143
144

142

Compiler-Interpreter Language Differences

This chapter explains how to use some of the features added to XENIX
BASIC to create more efficient and useful programs. It also describes the
difference between interpretation and compilation, and lists the differences
between interpreted BASIC and the XENIX BASIC compiler. Even if you
are an experienced BASIC programmer, you should read this chapter to
learn about the new features, and to find out if you need to change any
source files created with the interpreter.

Table 9 . 1 lists the functions and statements covered in this chapter. See
Chapter 10, "Statement and Function Reference" for a complete descrip
tion of all the XENIX BASIC functions and statements.

Table 9.1
Functions and Statements Described in This Chapter

Enhanced in Compiler New to Compiled May Require Modifying
of Interpreter Programs

COMMON
DEF FN
END
ERASE
FOR • • • NEXT
FRE
GO SUB
GOTO
OPEN
RETURN
STOP

COMMAND$
LBOUND
LOCK
RED IM
SHARED
STATIC
SUB • • • END SUB
UBOUND
UNLOCK

CALL
CALLS
CHAIN
CLEAR
DEF type
DIM
FIELD
RESUME
RUN
USR

9.1 Dynamic and Static Arrays

The XENIX BASIC compiler supports two types of arrays: static arrays and
dynamic arrays. An array is static if space to hold its clements is allocated
at compile time; it is dynamic if allocation occurs at run time. Static arrays
occupy slightly less space in memory than dynamic arrays, and static array

r-".., elements can be accessed f astcr. However, dynamic arrays provide more
efficient use of memory because space for the array is not allocated until it
is needed, and can be released and reused.

129

Microsoft. XENIX BASIC Compiler

Arrays dimensioned with constant subscripts are considered static by
default; arrays dimensioned with variable subscripts are considered
dynamic. You can use the $STATIC and $DYNAMIC metacommands,
which are explained in Section 9.3.3, to override these defaults. Both static
and dynamic arrays are dimensioned with the DIM statement, which has
the same syntax in the compiler as in the interpreter.

Dynamic arrays can be redimensioned with the REDIM statement. The
REDIM statement changes the amount of space allocated to a dynamic
array. When a REDIM statement is executed, the array it refers to is deal
located, then reallocated with the new dimensions. The old array-element
values are lost. (Note that REDIM does not require a previous DIM state
ment, and thus can also allocate new arrays.) Static arrays cannot be real
located with REDIM.

The ERASE statement operates differently on static and dynamic arrays.
On a static array, ERASE sets all array elements to zero, or to null
strings. On a dynamic array, ERASE deallocates the array. The dynamic
array must be redimensioned with a DIM statement before it can be refer
enced again.

The syntax of the ERASE and REDIM statements is described in Chapter
10, "Statement and Function Reference. "

The following rules apply when dimensioning arrays with DIM:

130

I . Static arrays can only be dimensioned once. Dynamic arrays can be
redimensioned using the REDIM statement, or with an ERASE
array DIM array sequence.

2. DIM statements that allocate dynamic arrays are considered exe
cutable statements, and must appear after all COMMON state
ments in the program.

3. When a DIM statement that allocates a dynamic array is executed,
the array must be currently unallocated, otherwise a "Rcdimcn
sioned Array" error message appears.

Compiler-Interpreter Language Differences

Warning

Bounds checking is performed on arrays only when the program is com
piled with the -D option. Severe run-time errors may result when the
bounds of an array are exceeded in programs compiled without this
option. The upper bound of an implicitly dimensioned static array
defaults to 10.

Examples

The following example allocates space for a static two-dimensional array:

REM $STATIC
DIM A (lO, 20)

This example allocates space for dynamic arrays C and D:

10 I NPUT "how many ? " ; N
20 REM $DYNAMI C
30 DI M C (2 , 3 , 4)
40 DIM D (N)

Line SO sets all elements to 0 in static array A; line 60 erases dynamic
arrays C and D:

50 ERASE A
60 ERASE C , D

Line 70 redirnensions array C:

70 REDI M C (4 , 5 , 6)

131

Microsort XENIX BASIC Compiler

9.2 Using Metacommands

Metacommands tell the compiler to perform certain actions while it is com
piling the source file. XENIX BASIC metacommands can do the following:

• Read in and compile other BASIC source files at specific points dur
ing compilation ($INCLUDE)

• Control the allocation of dimensioned arrays ($STATIC and
$DYNAMIC)

• Change internal module names ($MODULE)
• Control the format of listing files

• Control what parts of the source file are included in a listing file

This section describes the metacommands available with the Microsoft
XENIX BASIC Compiler, and how to use them. Table 9.2 summarizes the
XENIX BASIC metacommands and their functions. Metacommands with
on/off switches are on by default.

Table 9.2
XENIX BASIC Metacommands

Name

$ DYNAMIC
$INCLUDE:' file'

$ LINESIZE:size
$LISTfi+H
$ MODULE:' name'
$ 0CODEfi+:-]
$ PAGE
$ P AGEIF: number

$ PAGESIZE:number
$ SKIPfi:number]
$ STATIC
$TITLE' title

132

Function

Causes dynamic allocation of arrays

Switches compilation from the current source file to
file.
Sets the width of the source code listing, in columns.

Turns on or off source listing. Errors are always listed.

Changes an internal module name passed to the linker.

Turns on or off listing of disassembled object code.

Skips to next page.

Skips to next page if number lines or less left on the
listing page.

Sets length of listing, in lines.

Skips number lines or to end of page.

Causes static allocation of arrays.

Sets the source listing page title.

Compiler-Interpreter Language Differences

9.2.1 Metacommand Syntax

Metacommands begin with a dollar sign ($) and are always enclosed in a
program comment. More than one metacommand can be given in one com
ment. Multiple metacommands are separated by the white-space charac
ters space, tab, or line feed. Metacommands that take arguments have a
colon between the metacommand and the argument:

REM $METACOMMAND: argument

String arguments must be enclosed in single quotation marks. White space
between the elements of a metacommand is ignored. The following are all
valid forms for metacommands:

REM $METACOMMAND1 $METACOMMAND2
REM $METACOMMAND1 : ' string argument ' $METACOMMAND2

Note that no space may appear between the dollar sign and the rest of the
metacommand.

To put metacommands in comments, place a character that is not a tab or
space before the first dollar sign on the line. For example, on the following
line both metacommands are ignored:

REM x$METACOMMAND1 $METACOMMAND2

9.2.2 Processing Additional
Source Files: $INCLUDE

The $INCLUDE metacommand instructs the compiler to switch process
ing from the current source file to the BASIC file named in the argument.
When end-of-file of the included source is reached, the compiler continues
processing the original file. Because compilation begins with the line
immediately following the line in which *1NCLUDE occurred,
$INCLUDE should be the last statement on the line. The following state
ment is correct:

999 DEF I NT I - N : REM $ I NCLUDE : ' COMMON . BAS '

r--.., The following restrictions must be observed:

1 . Variables in included files must match variables i n the main
program.

133

Microsoft XENIX BASIC Compiler

2 . Included files must not contain END statements, or GOTO state
ments to nonexistent lines.

3. Included files created with the interpreter must be saved with the ,A
option.

9.2.3 Dimensioned Array Allocation:
$STATIC and $DYNAMIC

The $STATIC and $DYNAMIC metacommands tell the compiler how to
allocate memory for arrays. If a $DYNAMIC or $STATIC metacom
mand is present, all subsequent array declarations in a DIM statement are
allocated accordingly, with one exception: implicitly dimensioned arrays
(arrays not dimensioned with the DIM statement) are considered static
even when the $DYNAMIC metacommand is present.

Ir the $STATIC metacommand is present, all subsequent arrays in a
source file are statically allocated.

Using $STATIC and $DYNAMIC with the DIM, REDIM, ERASE,
and COMMON statements is discussed in detail in Section 10. 1 .2, "Static
and Dynamic Arrays." r-".,

9.2.4 Source Listing Format: $LIST

The $LIST metacommand turns on and off source listing. The source list
ing gives you the hexadecimal address of each line in the program relative
to the start of the .EXE file, the hexadecimal offset from the start of the
data segment for any data values generated by the line, the program line
itself, and any warning and error messages generated during compilation.
Source code listing is turned on by default. To turn source code listing off
at any point in the program, add the following line:

REM $LI ST-

To turn source code listing back on, insert the following line:

REM $LI ST+

The $LIST met.a.r.omma.n c:I ha.s no effect. on whet.her or not. a. sourr.e r.oc:le �
listing is produced; it only affects what parts of the source code are placed
in the listing. A source code listing is produced only if you request it when
you start the compiler.

134

Compiler-Interpret.er Language Differences

9.2.5 Object Code Listing
Format: $0CODE

The $0CODE metacommand turns on and off disassembled object code
listing. In addition to the source code listing information, the listing pro
duced by $0CODE contains the assembly-language code that corresponds
to the program. The listing is produced only for the portion of the source
file between the $0CODE+ and $OCODE- metacommands.

The $0CODE metacommand has no effect on whether or not a source
code listing is produced; it only affects what parts of the source code a
disassembly listing is produced for. To produce a listing you still must give
the -L option on the bascom command line.

9.2.6 Controlling the Listing Format

The metacommands listed in Table 9.3 control the listing file format. Note
that there must be a colon between the metacomrnand and its argument.

Table 9.3
Listing Format Commands

Metacommand

$TITLE: title
$SUBTITLE: subtitle
$LINE SIZE: size
$ PAGESIZE:size
$PAGE
$PAGEIF:number

$ SKIPU: numberH

Effect

Sets listing title

Sets listing subtitle

Sets width of listing, in columns

Sets length of listing, in lines

Skips to next page

Skips to next page if there are
number lines or less left on listing
page

Skips number Jines or to end of page

136

Microsoft XENIX BASIC Compiler

9.2. 7 Changing Internal Module
Names: $MODULE

The $MODULE metacommand allows you to change the internal module
name that is passed to the linker. This is useful when you want the module
name to be different from that or the source file.

Ir you use the $MODULE metacommand, it must appear before the first
executable statement.

Ir each of the BASIC modules you link together does not have a unique
module name, the results will be unpredictable.

Note

The segment names generated by this compiler are different from previ
ous XENIX BASIC Compiler releases. These changes should not affect
any assembly-language routines linked with a BASIC application, but if
any problems arise, consult the memory map in Chapter 7, "lnterf acing
With Other Languages."

9.3 New BASIC Statements and Functions

The statements and functions in Table 9.4 are new to the XENIX BASIC
Compiler. They are described completely in Chapter 10, "Statement and

136

Compiler-Interpreter Language Differences

Function Reference.,,

Table 9.4
New BASIC Statements and Functions

Statement/Function

COMMAND$

LBOUND/UBOUND

LOCK/UNLOCK

RE DIM

SHARED

STATIC

SUB ... END SUB

Description

Returns elements of the command line used to
invoke the program, and the XENIX
environment.

Returns the lower and upper bounds for a
specified array dimension.

Controls access by other processes to all or part
of an opened file.

Changes the space allocated to a dynamic array.

Gives global access to variables.

Designates multiline function or subprogram
variables as local to the function or
subprogram.

Marks the beginning and end of a subprogram.

9.4 Compiler-Interpreter Differences

The BASIC language understood by the XENIX BASIC compiler is slightly
different from, but generally compatible with, the Microsoft XENIX BASIC
Interpreter. Effort has been made to preserve as much compatibility as pos
sible, but some changes are required because of internal differences between
the compiler and the interpreter. If you wish to compile programs originally
developed for the interpreter, you may need to modify the source code in
your interpreted BASIC program, or use a special compiler option, for one
of the following reasons:

1 . Your program would work more efficiently with some of the new or
enhanced statements and functions supported by the XENIX BASIC
Compiler.

2. Your program may contain stat.ements and funct.ions that work
differently in the compiler and the interpreter.

137

Microsoft XENIX BASIC Compiler

3. Your program may contain statements and functions, such as ON
ERROR GOTO, that require it be compiled with a special option.
(See Section 9.4.3, "Operational Differences," for a list of when spe
cial options are required.)

4 . Your interpreted BASIC program may use one of the statements or
functions not supported by the compiler.

The following sections describe these language differences and some rules
you should keep in mind when preparing source files for the compiler.

9.4.1 A Comparison of Compilation
and Interpretation

A microprocessor can execute only its own machine language instructions;
it cannot directly execute BASIC language statements. Before a program
can be executed, the BASIC program statements must be translated into
the machine language of the microprocessor. Compilers and interpreters arc
two types of programs that perform this translation. The following discus
sic!' �xplains the difference between the two translation processes.

When you run an interpreted BASIC program, the interpreter analyzes each � BASIC statement, translates it into machine language, and executes the
statement immediately. Statements that are executed repeatedly (inside a
FOR ... NEXT loop, for example) are translated before each execution of
the statement. The interpreter cannot look ahead in the program to see
what's corning up, or analyze the whole program and perform actions
related to such an analysis, such as size and speed optimizations. The com-
piler, on the other hand, translates the entire source program into machine
code before any individual program instruction is executed. It can examine
the entire program and generate machine code that executes as fast as pos-
sible.

Compiled programs execute faster than interpreted programs. The execu
tion time you save with the compiler depends on the content of your pro
gram, but in most cases, XENIX BASIC compiler programs execute 3 to 10
times faster than interpreted programs. If you make maximum use of
integer variables, program execution can be up to 30 times faster. Programs
with many input or output operations will not benefit as much because of
hardware speed limitations.

138

Compiler-Interpreter Language Differences

9.4.2 Source File Format

The compiler expects the source file to be in ASCII (American Standard
Code for Information Interchange) format. If you create a file with the
BASIC Interpreter, it must be saved with the ,A option; otherwise, the
interpreter encodes the text of your BASIC program in a special format
that the compiler cannot read. If this happens, reload the BASIC inter
preter and resave the file in ASCII format, using the ,A option. For exam
ple, the following interpreter command saves the file "MYPROG.BAS" in
ASCII format:

SAVE "MYPROG . BAS " , A

9.4.3 Operational Differences

If your program contains any of the statements listed in Table 9.5, you
must compile it with the options indicated.

Table 9.5
Operational Differences

Statement Option

ON ERROR GOTO -E
ON event GOSUB -E
RESUME -X
RESUME NEXT -X
RESUME D -X
TRON/TROFF -D

9.4.4 Implementation Differences

There are minor implementation differences between the compiler and the
interpreter. Differences related to the items listed below are described in
Sections 9 .4 .4 . l through 9.4 .4 .8:

• Floating-point calculations

• Expression evaluation

139

Microsoft. XENIX BASIC Compiler

• Use of integer variables

• Double precision arithmetic functions

• Double precision loop variables

• String size

• String space implementation

• Newline character

• Program line extension character

9.4.4.1 Expression Evaluation

During expression evaluation, the Microsoft XENIX BASIC Compiler con
verts operands of different types to the type of the more precise operand.

For example, the following expression causes J% to be converted to single
precision and added (in single precision) to A!:

X=J%+A ! +Q#

The sum of J% and A! is converted to double precision and added (in dou
ble precision) to Q# . The sum is then converted back to single precision
and assigned to X.

The BASIC compiler is more limited than the interpreter in handling
numeric overflow. For example, when run on the interpreter the following
statements yield 40000 for A!:

1 %=20000
J%=20000
A ! = I %+J%

The Microsoft BASIC Compiler, however, must make type conversion deci
sions during compilation. It cannot defer until actual values are known.
Thus, the compiler generates code to perform the entire operation in
integer mode and arithmetic overflow occurs. If the -D option is set, the
error is detected. Otherwise, an incorrect answer is produced.

With the compiler, 1% + J% yields the integer value -25536 which is then
converted to a floating-point value and saved in A!.

140

Compiler-Interpreter Language Differences

Besides the above type conversion decisions, the compiler performs certain
valid optimizing algebraic transformations before generating code. For
example, the following program could produce an incorrect result when run:

1 %=20000
J%= · 18000
K%=20000
M%=I %+J%+K%

If the compiler actually performs the arithmetic in the order shown, no
overflow occurs. However, if the compiler performs 1%+K% first and then
adds J%, overflow does occur. The compiler follows the rules of operator
precedence, and parentheses can be used to direct the order of evaluation.
No other guarantee of evaluation order can be made.

9.4.4.2 Integer Variables

To produce the fastest and most compact object code possible, you should
make maximum use of integer variables. (Integer variables occupy less
space than other types.) For example, the following program executes
approximately 30 times faster by replacing I , the loop control variable,

� with ! % or by declaring I an integer variable with DEFINT:

FOR I = 1 TO 10
A (I) = 0
NEXT I

It is especially advantageous to use integer variables to compute array sub
scripts. The generated code is significantly faster and more compact.

9.4.4.3 Double-Precision Arithmetic Functions

The XENIX BASIC Compiler allows you to use double precision floating
point numbers as operands for arithmetic functions, including all of the
transcendental functions (SIN, COS, TAN, ATN, LOG, EXP, SQR) . Only
single-precision arithmetic functions are supported by the interpreter.

If you are using the interpreter to develop a program with double-precision
arithmetic variables, but you plan to compile the final version, your pro
gram development strategy should be the following:

1 . Implement your :Microsoft BASIC program using single precision
operands for all functions that you later intend to be double preci
sion.

141

Microsoft. XENJX BASIC Compiler

2. Debug your program with the interpreter to determine the sound
n.ess of your algorithm before converting variables to double preci
sion.

3 . Declare aJl desired variables as double precision. Your algorithm
should be sound at this point.

4 . Compile and l ink your program. It should implement the algorithm
that you have already debugged with the interpreter, but with dou
ble the precision in your arithmetic functions.

9.4.4.4 Double Precision Loop Control Variables

The compiler, unlike the interpreter, allows the use of double precision loop
control variables. This allows you to increase the precision of the increment
or to increase the range of loops.

9.4.4.5 String Size

The compiler supports strings of up to 32767 characters. (The interpreter
supports strings of up to 128 characters.) Each string descriptor requires 4
bytes of memory.

9 .4.4.6 String Space Implementation

The compiler and interpreter differ in their implementation and mainte
nance of string space. Note that using either POKE with PEEK and
V ARPTR, or using assembly language routines to change string descrip
tors may cause a "String Space Corrupt" error message.

9.4.4. 7 Newline Character

XENIX BASIC terminates lines with the newline (linefeed) character (ASCII
code 10), instead of the carriage return (ASCII code 13).

9.4.4.8 Program Line Extension Character

The complier uses the underscore character (-) to create "logical" lines of
more than 254 characters. The interpreter uses the backslash (\) . The
underscore removes the significance of the line feed. Be sure to include a
space before the underscore, or as the first character on the next line.

142

Compiler-Interpreter Language Differences

9.4.5 Statements and Functions
Not Accepted by the Compiler

The statements and functions listed in Table 9.6 cannot be used in a com
piled program because they perform editing operations on the source file or
they interfere with program execution.

Table 9.6
Statements and Functions
Not Accepted by the Compiler

AUTO
CONT
CVDBCD
CVS BCD
DELETE
EDIT

LIST
LLIST
LOAD
MERGE
MKDBCD$

MKS BCD$
NEW
RENUM
SAVE
USR

9.4.6 Statements Requiring Modification

If your interpreter program contains any of the statements listed in Table
9.7, you will probably need to modify your source code before you can com·
pile the program. These statements are described in detail in Chapter 10,
"Statement and Function Reference."

143

Microsoft XENIX BASIC Compiler

Table 9.7
Statements Requiring Modification

Statement

CALL/CALLS

CHAIN

COMMON

DEF type

DIM

RESUME

RUN

Modification

The name argument is the name of the subroutine or subprogram being
called.

The compiler does not support the ALL, MERGE, DELETE or line
number options.

COMMON statements must appear before any executable statements.

DEF type statements should be moved to the beginning of compiled
programs.

All DIM statements declaring static arrays must appear at the
beginning of compiled programs.

If an error occurs in a single-line function, the compiler attempts to
resume program execution at the line containing the function.

The object of a RUN statement cannot be a .BAS file; it must be an
executable (.EXE) program. The interpreter R option is not
supported. However, RUN I linenumber l linelabelJ is supported in the
compiler; this restarts the program at the specified line.

9.5 Enhanced Statements and Functions

Increased functionality has been added to the functions and statements
listed in Table 9.8. The enhancements are described in detail in Chapter 10,
"Statement and Function Reference."

1-:f..t

Compiler-Interpreter Language Differences

Table 9.8
Enhanced Statements and Functions

Statement/Function Enhancement

COMMON Data can be shared between the main program and
subprograms.

DEF FN The compiler allows multiline functions as well as single
line functions.

END Ends multiline function definitions and subroutines as well
as BASIC programs.

ERASE For static arrays, ERASE resets array elements to null
strings or zeros; for dynamic arrays, ERASE clears arrays
from memory.

FOR • • • NEXT The compiler supports double-precision control values in
FOR ... NEXT loops.

FRE

GO SUB • • • RETURN

GOTO

OPEN

RESUME

FRE(-1) returns the size of the largest free block of large
numeric array space; FRE(numeric-expression) (where
numeric-expression ;z: -1) returns the size of the next Cree
block of string space; FRE(string-expression) returns the
size of the next free block ol' string space, after first
compacting Cree string space.

The compiler supports line labels as well as line numbers.

The compiler supports branching to line labels as well as
line numbers.

Controls access to opened files in a multiuser environment.

The compiler supports resuming at line labels as well as
line numbers.

146

Chapter 10

Statement and
Function Reference

147

Statement and Function Reference

Reference Format

Each sl.atement or statement in the alphabetical ref erenc<' that fol lows is
described using the following format,:

Heading

Syntax

Action

Remarks

See Also

Example

Compiler /Interpreter
Differences

Function

Gives the correct syntax for the statement
or function. Functions return a value of a
particular type and can be used wherever
an expression can be used; functions cannot
appear by themselves on a BASIC line.
Statements do not return a value, but I.he�
can appear by themselves on a BASIC pro
gram line.

Summarizes what the statement or function
does.

·

Describes arguments and options in detail,
and explains how to use the statement or
function.

Cross-references related statements and
functions. (This is an optional section that.
does not appear with every reference entry .)
Gives sample commands, programs, and
program segments that illustrate the use of
the given statement or function. (This is an
optional section that does not app«'ar wi th
every reference entry.)

Tells whether or not the compiler statement
or function is enhanced or different, from
the same statement in the interpreter.
(This is an optional section that does nol
appear with every reference entry.)

149

Microsoft XENIX BASIC Compiler

ABS Function

Syntax

ABS(:r)

Action

Rel.urns the absoluLe value of Ute expression x.

Example

PRl NT ABS (7 • (- 5))

Out.put:

35

150

Statement and Function Reference

ASC Function

Syntax

ASC(x$)

Action

Returns a numerical value that is the ASCII code for the first character of
the string x$.

See Also

CHR$

Example

The following example prints out the ASCII code of the first character in
X:f; ("T"):

10 X$="TEST"
20 PRI NT ASC (X$)

Output:

84

161

Microsoft. XENIX BASIC Compiler

ATN Function

Syntax

ATN(z)

Action

Returns the arctangent of x, or the angle whose tangent is x.

Remarks

The argunll'nt. "x" is a rational number.

The resul t. ol' ATN is in the range -ii /2 to ;; /2 radians, where ii =
3 . 141593.

This function is evaluated in double precision in the decimal version. In tlw
binary version, results are given in single precision when the argument "x"
is in single precision and in double precision when the argument is in dou
ble precision .

Example

10 LET X = 3
20 PR I NT ATN (X)

Output (in the decimal version) :
1 . 2490457723983

In other words, an angle of 1 .2490457723983 radians has a tangent of 3.

162

Statement. and Function Reference

CALL Statement

Syntax

CALL variable-name ff(argumentlistH

Action

Calls an assembly language subroutine or a compiled routine written in
another high-level language.

Remarks

The CALL statement is the only way to transfer program flow to an exter
nal subroutine.

To call an ISAM subroutine, you must use the - i option when invoking
MS-BASIC.

The variable-name is a double-precision variable that names the subroutine
being called. This variable must have the value 0, and contain an address
that is the starting point in memory of the subroutine. On the first invoca
tion of the CALL statement, MS-BASIC obtains the 32-bit entry point
address from the name list of the executing version of MS-BASIC. MS
BASIC then stores the 32-bit address in variable-name. (Since 32-bits of
precision require a double precision variable, "Type mismatch error" is
displayed if variable-name is any other variable type.)

The variable-name must be the name of an existing subroutine.

Note that certain language processors (such as the C compiler) create
names beginning with the underscore character (-). These are not legal
MS-BASIC variable names. Therefore, MS-BASIC searches for two entry
points. The preferred entry point is the same as variable-name. If this
entry point is not found, MS-BASIC will search for the entry point con
structed by using the underscore character. For example, if the variable
name called is XYZ, MS-BASIC will first search for XYZ. If it doesn 't find
this, it will search for _ XYZ, a C compiler-style name. If it finds this, it
will start execution at - XYZ. The value of this address is saved in
variable-name. Subsequent calls using the same variable-name will skip the
search task and start execution at the address in variable-name.

153

Microsoft. XENIX BASIC Compiler

MS-BASIC does not preserve case. Therefore, all entry point names must
be ent.irely in upper case letters.

The argument/isl contains the variables that arc passed to the external sub
routine. No previously unreferenced scalar variable may follow an array ele
ment in the argument/isl. If this happens, an "Illegal function call" error
will resu lt.

Invocation or the CALL statement causes the following results:

• For each argument in the argument/isl, the 2-byte offset of t.he
argument's location within the data segment (DS) is pushed onto
the stack.

• MS-BASlC's return address codE' segment (CS) , and offset (IP) are
pushed onto the stack.

• Control is transferred to the user's routine.

If the argument is a variable, the address of that variable is pushed on the
stack .

I f t.he argument. is a constant or an expression, BASIC evaluates i t. and the
result is stored in a temporary location. The address of the temporary is �
pushed on the stack. After the routine returns control to the BASIC pro-
gram, the temporary is thrown away. From the point of view of the BASIC
program� this process is identical to pass "by value." That is, changes to
the copy given to the called routine do not affect the original in the BASIC
program. Strings are handled somewhat differently (see information that
follows on passing strings) .

If the argument is numeric, the address of the data is passed . If the argu
ment is a string, the address of the string descriptor is passed. The first two
bytes of the string descrif,tor contain the length of the string (0 to 32, 767
alphanumeric characters , while the second two bytes are a pointer to the

164

Statement and F unction Refer1mcc

act.ual rharacters.

Warning

The subroutine must change neither the contents of any of the four
bytes of the string descriptor, nor any area outside of the string.

If the argument BASIC passes in argumentlist is a string variable or
constant, problems can arise. Wherever possible, BASIC copies string
descriptors instead of entire strings. Ir a string literal is assigned tu a
variable or passed to an assembly language routine, the string descrip
tor points to the program text. Look at an example:

10 LET A$ = " s ome text "

20 CALL OOF# (A$. " or other ")

If A$ is modified by OOF# , then both the program text on line 1 0 aud
the value of A$ are changed. This happens because A$'s string descrip
tor points to the program text. If OOF# modifies its second parame
ter, the program text. is modified. The next time MS-BASIC executes
line 20, the second argument to OOF# will be the changed value.

To avoid these problems, make a string expression of a string literal
you plan to pass. You can do this by concatenating "" to the string
literal in your program and assigning it to the variable, as in the follow
ing example:

10 LET A$ = "MYSTR I NG" + " "
2 0 CALL SUBRT# (A$)

This causes the string literal "MYSTRING" to be copied into string
· space, where the subroutine may safely change A$ without affecting th<.•
program text.

Alternatively, if you have the following code:

10 LET A$ = "MYSTR I NG"
20 CALL SUBRTtl (A$ + 11 11)

a copy of A$ is passed to the routine. Changes made by the subroutine
are made to the local copy only. A$ is unchanged by the called routine.

165

Microsoft XENIX BASIC Compiler

See Also

CALLS, V ARPTR

Example

This example calls the subroutine MYROUT and passes the variables I, J,
and K to i t :

1 20 CALL MYROUT# (I . J . K)

Compiler /Interpreter Differences

The CALL statement can be used with the compiler to trnnsfer program
control to one of the following:

I . A preassembled assembly language, C or FORTRAN '77
program that was compiled or assembled in lar·ge model .

2. A compiled Microsoft Pascal procedure.

3. A compiled Microsoft FORTRAN procedure without any param('
ters.

The syntax of the CALL statement is identical in the interpreter and the
compiler. However, the parameters have slightly in different meanings in
the compiler. The syntax of the CALL statement is:

CALL name �(argument-list)Il

In programs compiled with the XENIX BASIC compiler, the CALL state
ment takes the following arguments:

Argument

name

argument-list

166

Description

is the name of the subroutine being cal led. It is l im
ited to 3 1 characters. Assembly-language subrou
tine names must be PUBLIC symbols within the
subroutine (i .e., they must be recognized as global
symbols by the linker).
contains the variables or constants that CALL
paisiseis tu the isuuruutine.

Statement. and Function Reference

If you are calling an assembly-language subroutine that uses string argu
ments, you may need to recode it. Because the compiler allows strings of up
to 32767 characters in length, the string descriptor requires 4 bytes rather
than 3 as in the interpreter. The bytes are the low byte and high byte of
the length, followed by the low byte and high byte of the address.

Assembly language subroutines are FAR procedures; return to Microsoft
BASIC using an intersegment RET instruction. It is the responsibility of
the assembly language subroutine to preserve the value in the BP register.

The CALLS statement is used to call an assembly-language subroutine, or a
Microsoft FORTRAN procedure that has parameters. It has the same syn
tax as CALL, but CALLS passes the segmented addresses of arguments in
the argument-list, while CALL passes unsegmented addresses.

Example

The following program, "REC.BAS" , calls an assembly-language subpro
gram named "SORT" , which sorts the 50 integers ::;tored in array a() .

OPT! ON BASE 1
� DEF I NT a

DIM a (50)
OPEN " receipts" FOR I NPUT AS #1
FOR i = 1 TO 50

I NPUT #L a (i)
NEXT
CALL SORT (a () . 1 . 50}

END

In the CALL statement, the addresses of the first and last integers to be
sorted are passed to SORT. SORT was declared PUBLIC in the assembly
language source file by including the file name on the bascom command
line:

bascom rec . bas sor t . s

The bascom automatically calls the assembler (asJ to assemble files with a
".s" extension.

167

Microsoft. XENIX BASIC Compiler

CALLS Statement

Syntax

CALLS variablename [(argumentlt"st)D

Action

Calls an assembly language subroutine or a compiled routine written in
another high-level language.

Remarks

The CALLS statement works just like CALL, except that it passes the seg
mentE>d addresses of al l arguments. (CALL passes unsegment.ed addresses.)

You should use CALLS when accessing routines written with the FOR
TRAN cal ling convention. All FORTRAN parameters are cal l-by-referen('<'
segmented addresses.

168

Statement and Function Reference

CDBL Function

Syntax

CDBL(z)

Action

Converts :r to a double precision number.

Example

This example converts the single precision variable RADIUS ! to a double
precision number, then uses that value in a predefined formula to cal culatt>
the area of a circle:

10 RADI US ! = 1 3/7
20 RAD = CDBL (RADI US !)
30 PRI NT " S I NGLE PRECI S I ON = " : RADIUS !
40 PRI NT "DOUBLE PRECI S I ON = " : RAD
50 DEF FNAREA (R) = 3 . 141 59283# * R - 2
60 ROUND = FNAREA (RAD)
70 PRI NT : PRI NT "AREA = " ; ROUND

Output:

S I NGLE PREC I S I ON = 1 . 857143
DOUBLE PRECI S I ON = 1 . 857142806053162

AREA = 1 0 . 83528900146484

169

Microsoft XENIX BASIC Compiler

CHAIN Statement

Syntax

CHAIN fiMERGE Il/ilespecff,fiezpressionilfi,ALqfi,DELETE rangeilil

Action

Invokes another BASIC program and optionally passes variables to it from
the current program.

Remarks

The string expression filespe1· is the name of the program to be executed .

You may also use the COM.MO!'\ statement to pass variables ..

The numeric expression is a line number, or an expression that evaluates to
a line number, in the called program. It is the starting point for execution
of the called program. If it is omitted, execution begins at the first line. A
RENUM command does not affect expression.

With the ALL option, every variable in the cunent program is passed t.o
the called program. If you omit the ALL option, the current program must
contain COMMON statements to list the variables that are passed.

If you use the ALL option, but do not use expression, a comma must. hold
the plac1• of erpression. For example, the first example below is correct and
the s«>cond is incorrect:

CHA I N "NEX'I'PROG" , , ALL
CHAI N " NEXTPROG" , ALL

In the latter case, BASIC assumes that ALL is a variable name and evalu
ates it as a line number expression.

The MERGE option allows a subroutine tu be brought into the BASIC pro-
gram as an overlay. That is, the current program and the called program � are merged . If you want to merge the two programs, the called program
must be an ASCII file.

160

Statement. and Function Refcrcnec

After using an overlay, you should usually delete it so you can bring in a
new overlay. To do this, use the DELETE option.

The line numbers in range are affected by the RENUM command.

Note

The CHAIN statement with the 1v1ERGE option preserves the current
OPTION BASE setting.

CHAIN leaves files opened.

If you omit the :MERGE option, CHAIN does not preserve variable
types or user-defined functions for use by the chained program; that is,
you would have to restate in the chained program any DEFINT,
DEFSNG, DEFDBL, DEFSTR, or DEFFN statements containing shared
variables.

When using the 1v1ERGE option, you should place user-defined functions
in program lines that occur prior to

• any CHAIN 1v1ERGE statements

• the lowest-numbered lines that will be merged into this program
from another program

• the lowest-numbered lines that will be deleted from this pro
gram using the DELETE option

Otherwise, the user-defined functions will be undefined after the merge
is complete.

See Also

COlVIlvlON, 1v1ERGE

Example 1

This program demonstrates chaining using COMMON to pass variables.
When the main program, PROGi, gets to line 80, it chains to the chained
program, PROG2, which loads the string in B$. At line 85 of PROG2, con
trol chains back to the main program at line 90.

161

Microsol\ XENIX BASIC Compiler

You can observe this process by the text that is printed as the programs
execute.

Main Program:

10 REM THI S PROGRAM DEMONSTRATES CHAI NING
15 REM US I NG COMMON TO PASS VARI ABLES .
20 REM SAVE THI S MODULE ON DI SK
25 REM AS "PROGl " USING THE A OPTI ON .
30 DIM A$ (2) , B$ (2)
40 COMMON A$ () , B$ ()
50 A$ (1) = "VARIABLES I N COMMON MUST BE ASS I GNED"
60 A$ (2) ="VALUES BEFORE CHAI NING . II

70 B$ (1) =" : B$ (2) ="
80 CHAI N "PROG2 "
90 PR I NT : PR I NT B$ (1) : PRI NT : PRI NT 8$ (2) : PRI NT
100 END

Chained Program:

10 REM THE STATEMENT "DIM A$ (2) , B$ (3) "
15 REM MAY ONLY BE EXECUTED ONCE .
20 REM HENCE , I T DOE S NOT APPEAR IN THI S MODULE .
30 REM SAVE THI S MODULE ON THE DISK AS "PROG2"
35 REM US I NG THE A OPTI ON .
40 COMMON A$ () . B$ ()
50 PRI NT : PRI NT A$ (1) : A$ (2)
6 0 B$ (l) ="NOTE THAT SPECI FYI NG A STARTI NG LINE NUMBER"
70 B$ (2) ="WHEN CHAI N I NG AVOI DS THE DIMENS I ON STATEMENT"
80 BS (3) ="NEEDED I N PROGl "
85 CHAI N "PROGl " , 90
90 END

Example 2

This second example illustrates the MERGE, ALL, and DELETE options.
After the first program loads A$, control chains to line 1010 of the second
program. At the second program's line 1040 there is a chain to the third
program's line 1010. This passes all variables, but deletes the second
program's lines.

You can observe this process through the descriptive text that prints as the
programs execute.

162

Statement and Function Reference

10 REM TH I S PROGRAM DEMONSTRATES CHAI NING US I NG
1 5 REM THE MERGE . ALL , AND DELETE OPTIONS .
20 REM SAVE THI S MODULE ON THE DI SK AS "MAI NPRG" .
30 A$=="MAI NPRG"

� 40 CHAI N MERGE "OVRLAYl " , 1010 , ALL
50 END

1000 REM SAVE THI S MODULE ON THE DISK AS
1 005 REM "OVRLAYl " USI NG THE A OPTION .
1010 PR I NT A$; " HAS CHAI NED TO OVRLAYl . "
1020 A$= "0VRLAY1 "
1030 B$= " 0VRLAY 2 "
1 040 CHA I N MERGE "OVRLAY2 " , 1010 . ALL , DELETE 1 000- 1050
1050 END

1000 REM SAVE THI S MODULE ON THE DI SK AS
1 005 REM "OVRLAY2 " USING THE A OPTI ON .
1010 PRI NT A$; " HAS CHAI NED TO " : 8$; " . "
1020 END

Compiler /Interpreter Differences

The XENIX BASIC compiler does not support the ALL, MERGE, DELETE,
or line-number options to the CHAIN statement that are available in the
interpreter. For this reason you should use COMMON to pass variables
from one program to another. Note also that files are left open during
chaining.

Example

The following example converts a number in any base to a decimal number.
The base and the number are input in the main program, "main.bas" ,
which then chains to a second program, "digit.bas" . This second program
splits the number from the main program into separate digits, converts
those string values to numeric values, and stores the numeric values in an
array, a(). Control then chains to a third program, "dee.bas" , which actu
ally changes the number to a decimal number, deallocates (with ERASE}
the array in which the digits were stored, and prints the decimal number.
Control then chains back to the main program, which repeats the process,
as long as the value input for the base b is not zero. Note the use of COM
MON in all three programs to share variables.

REM * * This program is main . bas • •
COMMON a (l) , n$, b , l n

163

Microsoft. XENIX BASIC Compiler

I NPUT "base . number : " . b , nS
PRI NT
WHI LE b

l n = LEN (n$)
DIM a (l n)
CHAI N " digi t "

WEND
END

REM • • This program is digi t . bas • •
COMMON a (l) . n$. b . l n
m = l n - 1
FOR j = 0 TO m

a$ = MID$ (n$. j + l , l)
I F a$ < "A" THEN a (m - j) = VAL (a$)

ELSE a (m - j) = ASC (a $) - 55
NEXT
CHAI N "dee"

REM • • This program is dee . bas • •
COMMON a (l) , n$, b . ln
dee = 0
FOR i = 0 TO (l n - 1)

dee = dee + a (i) •bA i
NEXT
ERASE
PRI NT
PRI NT
CHAI N

a
" Decima l
" I nput 0
"ma in"

Sample output:

= " : dee : PRI NT
for ba se to end program . "

base . number : 16, 43E

Decima l # = 1086

I nput 0 for base to end progr am .
base . number : 0,

164

Stot.cmcnt and Function Reference

CHDffi Statement

� Syntax

CHDIR "pathname"

Action

Changes the current operating directory.

Remarks

The string expression pathname specifies the name of the directory which is
to be the current directory. The pathname must be a string of less than 128
characters.

See AJso

MKDIR, RMDIR

Examples

The following makes SALES the current directory:

CHOIR "SALES"

The following makes the directory "pteshoes" (which is in the directory
" . . /dancewear/shoes") the current directory:

CHDIR " . . /dancewear/shoes/pteshoes"

166

Microsoft. XENIX BASIC Compiler

Cllll$ Function

Syntax

OHR$ (code)

Action

Returns a string whose one character has the ASCII value given by code.

Remarks

CHR$ is commonly used when sending a special character to the screen or
to a device. For instance, you could send the ASCII code for the bell char
acter, CHR$(7), to cause the speaker to beep. You could also send a form
feed, CHR$ (1 2}, to clear the screen and return the cursor to the home posi
tion.

See Also

ASC

Example

The command

PR I NT CHR$ (77)

displays the following character:

M

166

Statement and Function Reference

CINT Function

f"I Syntax

CINT(x)

Action

Converts x to an integer by rounding the fractional portion.

Remarks

If x is not in the range -32768 to 32767, an "Overflow" error message is gen
erated.

CINT differs from FIX and INT in that CINT rounds the fractional part of
x, while FIX and INT truncate the fractional part.

The CDBL and CSNG functions are related to CINT. They convert
numbers to the double precision and single precision data types, respec
tively .

See Also

CDBL, CSNG, FIX, INT

Example

The command

PRI NT C I NT (45 . 67) , CI NT (- 45 . 5)

displays the following:

46 -46

167

Microsoft. XENIX BASIC Compiler

CLEAR Statement

Syntax

CLEAR ff, ll variable-space] [,stack-sizeHD [, total-mcmoryD

Action

The CLEAR statement performs the following actions:

• Allocates available memory for specified work areas.

• Closes all files.

• Clears all COMMON variables.

• Resets numeric variables and arrays to zero.

• Resets the stack and string space.

• Resets all string variables to null.

• Releases all disk buffers.

• Resets to null all DEF FN and DEFINT/SNG/DBL/STR state
ments.

Remarks

The total-memory parameter, the last one in the syntax, allocates how
much memory is to be reserved for BASIC, the stack, user code and data
space, and block storage that you can use to BLOAD, BSA VE or PEEK and
POKE assembly language routines.

The stack parameter allocates memory for use by BASIC's stack.

The variable-space argument allocates total-memory space minus the assem
bly language block storage space. If the CLEAR statement does not. expli
citly allocate variable-space, BASIC allocates the same amount of space
that it did for total-memory.

The default data segment size will vary, as ISAM and user data (from gen
eral CALL code) may or may not be in the data segment.

168

Statement and Function Reference

Example

Tliis sets all numeric variables to zero, all string variables to null and closes
all files opened by BASIC:

CLEAR

Compiler /Interpreter Differences

In the compiler, the stack-size and total-memory parameters are ignored.
Also, the compiler's CLEAR statement does not clear DEF type statements.
These declarations are fixed at compile time and cannot vary.

1 69

Microsol\ XENIX BASIC Compiler

CLOSE Statement

Syntax

CLOSE fifi# llfilenumberlfi, ll# Dfilenumber2 ... DD

Action

Concludes 1/0 to a file.

Remarks

The CLOSE statement is complementary to the OPEN statement.

The integer argument filenumber is the number with which the file was
opened. A CLOSE with no arguments closes all open files.

The association between a particular file and filenumber terminates upon
execution of a CLOSE statement. The fi le may then be reopened using the
same or a different filenumber; likewise, that filenumber can be reused to
open any file.

A CLOSE of a sequential output file writes the final buffer of output.

The END, SYSTEM, CLEAR, and RESET statements and the NEW com
mand always close all files automatically. (STOP does not close files.)

Example

CLOSE #1 , # 2

110

Statement and Function Reference

CLS Statement

Syntax

CLS

Action

Erases contents or the screen and sets the cursor position to the upper left
hand corner or the screen.

Example

10 FOR ! % = 1 TO 10
20 PRI NT "Line Number " : !%
30 NEXT ! %
4 0 I NPUT "Press return when ready " , READY$
50 CLS
60 PRI NT "The cursor is back at the top o f the screen . "

171

Microsoft. XENIX BASIC Compiler

COMMAND$ Function

Syntax

string-expression=COMMAND*

Action

Returns the command line used to invoke the program, then elements of
the XENIX environment.

Remarks

Only l,he main program in a chain is allowed to call COMMAND$.

COMMAND$ returns one command line parameter per call. At, the end of
the parameter list, the next COMMAND$ function returns an empty string.
Subsequent COMMAND$ functions return the elements of the XENIX
cnvironmeut in the order displayed by the set command.

172

Statement and Function Reference

COMMON Statement

r-\ Syntax

COMMON variable-list

Action

Passes variables to a chained program.

Remarks

The COMMON statement is used in conjunction with the CHAIN state
ment. You can put COMMON statements anywhere in a program, but it i�
a good idea to put them at the beginning; otherwise, they may not be read
due to changes in flow of control, and chained programs will then not work.

A particular variable can appear in only one COMMON statement. Array

� variables are specified by appending "()" to the variable name. If all vari-
' ·1 ables are to be passed, use CHAIN with the ALL option and leave out the

CO:M:MON statement.

Some versions of BASIC allow the number of dimensions in the arrav to be
included in the COMMON statement. This implementation of BASiC
accepts that syntax, but ignores the numeric expression itself. For exam
ple, the following statements are both valid and are considered equivalent:

COMMON A () COMMON A (3)

The number in parentheses is the number of dimensions, not the dimen
sions themselves. For example, the variable A(3) in the example above
might correspond to a DIM statement of DIM A(S,8,4).

Example

This fragment passes numeric variables (A, B, C}, a numeric array (D), and
a string variable (G$) to the chained program, PROG3:

100 COMMON A , B , C , D () , G$
1 10 CHAI N "PROC3" . 10

173

Microsoft XENIX BASIC Compiler

Compiler /Interpreter Differences

In the compiler, the COMMON statement has been enhanced to allow data
to be shared among program modules. The enhanced syntax is:

COMMON fiSHAREDD /blockname/ variable-list

SHARED is an optional attribute. Use SHARED to pass variables from a
main program to a subprogram within the same module; this way, you
don 't need the SHARED statement, or another CO.lvlMON statement ,
within the subprogram. You also need the SHARED attribute with COM
MON when the subprogram being called is in a separately compiled module.

The blockname is any valid BASIC identifier up to 31 characters long. Use
blockname when not every subprogram shares all variables in the variable
list. Items in a named CO:MMON statement are not preserved across a
chain to a new program.

The variable-list is a list of variables and arrays used by subprograms or
chained-to programs. The same variable cannot appear in more than one
C01\.1MON statement. Static array variables are specified by appending
" ()" to the variable name; dynamic array variables are specified by append
ing "(num)" to the variable name, where num is an integer constant indi
cating the number of dimensions in the array. Using COM1v10N with arrays
is described in Section X.X, "Referencing Arrays in Common Statements."

With the BASIC interpreter, you may put COMMON statements any
where in a program. With the compiler, however, the COI\.1MON statemen t
must appear in a program before any executable statements. All state
ments are executable, except the following:

• COI\.1MON

• DEF type
• DIM {for static arrays)

• OPTION BASE

• REM

• All metacommands

If you use static array variables in a C01\.1MON statement, then you must
declare them in a preceding DIM statement. If an array is dynamic, the
DIM statement follows the COMMON statement, since a DIM statement is
an executable statement when the array it dimensions is dynamic.

174

Statement and Function Reference

When you use C01'.1MON with CHAIN, both the chaining program and the
chained-to program require a COMMON sLatemcnt. With the XENIX
BASIC Compiler, the order of variables must be the same for all COMMON
statements communicating between chaining and chained-to programs. If
the size of the common region in the chained-to program is smaller than the
region in the chaining program, the extra COMMON variables in the cha.in
ing program are ignored. If the size of the common region in the chained-to
program is larger, the additional COMMON variables are initialized to
zeros and null strings.

To ensure that programs can share common areas, place COMMON dec
larations in a single "include" file and use the $INCLUDE metacommand in
each program. (See Chapter 6, "Using Metacommands," for a discussion of
the $INCLUDE statement.)

Example

This program fragment shows the use of an "include" file Lo share COM
MON statements among programs:

REM • • This fi le is menu . bas * *
� REM $ INCLUDE : ' comde f . bas !

CHAI N "progl "
END

REM * * This fi le is progl . bas * '
REM $I NCLUDE : ' comde f . bas '

E ND

REM * * This fi le is comde f . bas * *
DIM A (l00) , 8$ (200)
COMMON I . J . K . A ()
COMMON A$. B$ () . X . Y , Z
REM * * End comde f . bas • •

176

Microsoft. XENIX BASIC Compiler

COS Statement

Syntax

COS(:i:)

Action

Returns the cosine of x, where x is an angle measured in radians.

Remarks

To convert degrees to radians, multiply the degrees by ii /180, where ii =
3. 1 4 1 59:J (approximately).

The calculation of COS(x) is performed in double precision in lihe decimal
version, and in single precision in the binary version.

Example

1 0 X=2 • COS (. 4)
20 PRI NT X

Output. (in the decimal version):

1 . 84 2 1 2 1 980058

176

St.atement and Function Reference

CSNG Function

Syntax

CSNG(x)

Action

Converts x to a single precision number.

See Also

CDBL, CINT

Example

The following example converts the double precision value in A# to a sin
gle precision value:

10 A# = 975 . 342 1 1 1 4#
20 PRI NT A# : CSNG (A#)

Output:

975 . 3421114 975 . 3421

1 7 7

Microsoft XENIX BASIC Compiler

CVD, CVI, CVS Functions

Syntax

CVI(.e-bytc string)

CVS(4-byte string)

CVD(B-byte string)

Action

Converts random file buffer string values to numeric values.

Remarks

Numeric values read in from a random file must be converted from strings
back into numbers. CVI converts a 2-byte string to an integer. CVS con
verts a 4-byte string to a single precision number. CVD converts an 8-byte
string to a double precision number.

Note

Don't use these functions to convert program strings to numeric strings.
For that purpose, use the STR$ function.

See Also

MKI$, MKS$, MKD$, STR$

178

Statement and Function Refereflc("

Example

In the following example, the field widths from a random access file! r: I ,
are declared, and the first record obtained . Then the first field , N* , is con
verted to a single precision number and loaded into a variable, Y ! , that can
be used in the processing of data within a program:

70 f I ELD #1 , 4 AS N$, 1 2 AS B$
80 GET #L 1
90 Y ! =CVS (N$)

179

Microsoft. XENIX BASIC Compiler

DATA Statement

Syntax

DAT A constant-list

Action

Stores numeric and string constants accessed by the READ statement.

Remarks

DATA statements arc nonexecutable. You may place them anywhere in the
program. The READ statement will locate the first unused DATA state
ment, regardless of its location in the program.

A DATA statement may contain as many constants as will fit on a line
(separated by commas) .

You may use any number of DATA statements in a program. READ state
ments access DATA statements in order (by line number). You may think
of the data contained in DA TA statements as one continuous list of items,
regardless of how many items are on a line or where the lines are placed in
the program.

The constant-list parameter may contain numeric constants in any format;
i.e., fixed-point, floating-point, or integer. (No numeric expressions are
allowed in the list.) Items are separated by commas.

You needn't to put double quotation marks around string constants in
DATA statements, unless they contain commas, colons, or significant lead
ing or trailing spaces. Otherwise, quotation marks are not needed, but may
be used .

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the
RESTORE sLaLement.

180

Statement. and Function Reference

See Also

READ, RESTORE

Example

This example reads 12 numeric values into an array named A and then
three string expressions into string variables:

1 20 DI M A (1 5)
1 40 FOR I = 1 TO 1 2
1 6 0 READ A (I)
180 NEXT I
200 DATA 1 . 2 . 3 . 4 . 5 . 4 . 3 . 2 . 1 . 9 . 7 . 1 . Acme I nc • . "fort Dix , NJ" " 2 2 2 2 2 "
2 2 0 READ COMPANY$. C I TY$, ZIP$

181

Microsoft. XENIX BASIC Compiler

DATE$ Function

Syntax

DATE*

Action

Retrieves the current date.

Remarks

The DATE$ function returns a ten-character string in the form mm-dd
yyyy, where mm is the month (01 through 12), dd is the day (01 through
3 1) , and yyyy is the year.

See Also

TI.tv1E$

Example

In the following example, the current date is retrieved with the DA TE$
function and assigned to the string variable TODAY$:

10 LET TODAY$ = DATE$
20 PRI NT "Today ' s Date is " : TODAY$

Possible output:

Today ' s Date is 1 1 - 24 - 1985

182

Statement and Function Reference

DEF FN Statement

Syntax

DEF FN name [(parameter-liBt}D function-defirtition

Action

Defines and names a function written by the user.

Remarks

The name parameter must be a legal variable name. This name, preceded
by FN, becomes the name of the function.

The parameter-list is a list of parameter names, through which arguments
are passed to the function when it is called. The items in the list are
separated by commas.

The function-definition is an expression that performs the operation of the
function. It is limited to one logical line. A logical line may be extended
over more than one physical line by using the line continuation character
(\) at the end of a physical line. A variable name used in a function
definition may or may not appear in the parameter-list. If it does, the value
of the parameter is supplied when the function is called. Otherwise, the
current value of the variable is used.

Argument variables or values given in the function call replace the vari
ables in the parameter-list on a one-to-one basis.

DEF FN may define either numeric or string functions. If a numeric type
(e.g., double precision) is specified in the function name, the value of the
numeric expression in function-definition is forced to that type before it is
returned to the calling statement.

If the function type and the argument trpe do not match (i.e., one is a
string variable and the other is numeric), a "Type mismatch" error message
is generated .

You must define a function with a DEF FN statement before calling the
function. If a function is called before it has been defined, an 1'Undefined
user function" error message is generated. DEF FN is illegal in direct
mode.

183

Microsoft XENIX BASIC Compiler

Example

Line 10 defines the function FNAB. The fuuctiou i� called in line 20, with
the variables I and J replacing the parameters X and Y. The result of the
evaluation is assigned to the variable T:

5 LET I =SQR (lO) : J=2 2/7
10 DEf fNAB (X , Y) =X - 3/Y - 2
20 T=fNAB (l , J)
30 PRI NT I , J . T

Output:

3 . 1 6 2 278 3 . 142657

Compiler /Interpreter Differences

3 . 20148

The XENIX BASIC Compiler supports both single-line functions and multi
line functions. The syntax of compiled single-line functions is identical to
the interpreter syntax. The syntax of a mulLiline function is as follows:

DEF FN name Hparameter·lis tH

FN name = expression

�EXIT DEF�

END DEF

The name must be a legal variable name. This name, preceded by FN,
becomes the name of the function.

The parameter-list is a list of variable names, separated by commas. When
the function is called, it replaces these variables on a one-to-one basis with �
the values the program supplies.

184

SLntement. and Function Reference

The expression defines the value returned by th(' function. A multi linc funr.
tion ends with an END DEF statement.

The statement exits the function and returns to the calling program, but
does not define the end of the function. is used to exit the function if an
abnormal condition, such as an error, occurs.

Argument variables or values that appear in the function call replace the
variables in the parameter J ist on a one-to-one basis.

Warning

Your program must define a function with a statement before it can call
the function. If your program calls a function before it is defined, an
"Undefined user function" error occurs.

User-defined functions cannot appear i nside other multiline functions,
nor can they appear inside blocks.

Your program cannot contain recursive function definitions; that is, a
function cannot be defined in terms of itself.

The statement is not equivalent to Using a statement to exit a multiline
function will cause a severe unrecoverable error.

Example

The following example contains a function definition that converts an angle
measure in degrees, minutes, and seconds to an angle measure in radians.
{An angle must be given in radians for the trigonometric functions of
BASIC to return a meaningful answer.)
DEF FNdegrad {d , m , s)

pi = 3 . 14159263
d = d + m/60 + s/3600
FNdegrad = d * (pi/180)

END DEF
deg = 45 : min = 10
PRI NT TAB (S) : "Ang le measurement" : TAB (38) : "SINE"
PR I NT
FOR sec = 10 TO 50 STEP 10

PRI NT TAB (S) deg chr$ (248) min " ' " sec chr $ (34) :
rad = FNdegrad (deg , min , sec)
PRI NT TAB (35} S I N (rad)

186

Microsoft XENlX BASIC Compiler

NEXT
END

Output:

186

Ang l e measurement

45 • 10 ' 10"
45 • 10 ' 20"
45 • 10 ' 30"
45 • 10 ' 40"
45 • 10 ' 50"

S I NE

. 7091949

. 7092 291

. 7092632

. 7092974

. 709 3 316

Statement. and Function Reference

DEFINT, DEFSNG, DEFDBL, DEFSTR Statements

Syntax

DEFINT letter-range

DEFSNG letter-range

DEFDBL letter-range

DEFSTR letter-range

Action

Declares variables as integer, single precision , double precision, or string.

Remarks

� Any variable names beginning with the letters specified in letter-range arc
the type of variable specified by the last three letters of the statement, that
is, either INT (integer), SNG (single precision), DBL (double precision), or
STR (string). However, a type declaration character always takes pre
cedence over a DEF type statement.

If no type declaration statements are encountered , Microsoft BASIC
assumes that all numeric variables without declaration characters are dou
ble precision variables (for the decimal version) or single precision for tht!
binary version.

Examples

In the following example, all variables beginning with the letter A are desig
nated string variables:

10 DEFSTR A

187

Microsoft XENIX BASIC Compiler

In the following example, all variables beginn ing with the letters I, J, K. L,
M, N, W, X, Y, Z are designated integer variables:

10 DEF I NT I -N , W- Z

Compiler /Interpreter Differences

The interpreter and the compiler process DEF type statements somewhat
differently. The interpreter must scan a statement each time before it exe
cutes it. If the statement contains a variable that does not have an explicit
type (signified by !, # , $, or %), the interpreter determines the current
default type and uses it. In the example below, when the interpreter
encounters line 20, it determines that the current default type for variables
beginning with "i" is integer, based on the DEFINT statement in line 10.
Line 30 then changes this default type to single precision and loops back to
line 20. The interpreter must rescan line 20 in order to execute it and this
time "iftag" becomes a single-precision variable:

10 DEf I NT i
20 PR I NT i f l ag
30 DEF S NG i : GOTO 20

In contrast, the compiler scans the text only once. Therefore, once a vari
able occurs in a program line, its type cannot be changed. The compiler,
unlike the interpreter, does not allow you to circumvent a DEF type state
ment by directing program flow around it.

You can see these differences in the output from the program in the exam
ple in this section.

Note

188

I!, I# , 1$, and 1% are all separate and distinct variables; each one can
hold a different value. The effects of this are il lustrated in the following
example.

Statement and Function Reference

See Also

DEF FN

Example

The following program gives different results when you run it with the
interpreter and with the compiler. The interpreter assigns variable types
each time it scans a statement during program execution, so it allows the
program to redeclare the variable type inside the FOR • • • NEXT loop. On
the other hand, the compiler statically scans DEF type statements, assign
ing variable types at compile time, so line 1 60 applies only to occurrences of
"t'' variables in program lines after line 1 60.

100
110
1 20
1 30
140
1 50
1 60
1 70
180
190
200
2 1 0
2 20

test% = 1
test ! = 10
DEF I NT t

' integer type
' single-precis ion type

FOR i = 1 TO 3
PRI NT test
test = test + 20
DEFSNG t

NEXT
PR I NT
tes t = test + 100
PRI NT " test =" : test
PP.I NT " test% =" : test%
PRI NT " test ! = " ; test !

Interpreter output:

l
10
30

test = 150
tes t% = 2 1
test ! = 1 50

Compiler output:

1
2 1
4 1

test = 110
tes t% = 61
test ! = 110

189

Microsoft XENIX BASIC Compiler

DELETE Statement

Syntax

DELETE linenumber[-�

DELETE [linenumber 1l-linenumber!'

Action

Deletes program lines.

Remarks

Microsoft BASIC always returns to command level after executing a
DELETE. If linenumber does not exist, an "Illegal function call" error mes
sage is generated.

Examples

The following statement deletes line 40:

DELETE 40

The fol lowing statement deletes all lines from 20 through 30, inclusive:

DELETE 20- 30

The following statement deletes all lines up to and including line 10:

DELETE - 10

The following statement deletes all lines from 15 to the end of the program:

DELETE 1 5-

190

DII\1 Statement

,� Syntax

DIM subscripted-variable-list

Action

Statement a nd Function Rererencc

Specifies the maximum values for array variable subscripts and allocates
storage accordingly.

Remarks

If an array variable name is used without a DIM statement, the maximum
value of the array's subscript(s) is assumed to be 10. If a subscript greater
than the specified maximum is used, a "Subscript out of range" error mes
sage is generated. The minimum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE statement.

� The DIM statement sets the values of all elements of the specified arrays to
an initial value of zero. The maximum number of dimensions allowed in a
DIM statement is 255.

If the default dimension (10} has already been established for an array vari
able, and that variable is later encountered in a DIM statement, a "Redi
mensioned array11 error message is generated. Therefore, it is good pro
gramming practice to place DIM statements at t,he top of a program where
they wiJl be executed before any references are made to the dimensioned
variable.

191

Microsoft. XENIX BASIC Compiler

See Also

ERASE, OPTION BASE

Example

This example shows an array, A, being dimensioned to accept. subscript
values up to ten. These subscripted variables arc then assigned values with
a READ statement in the loop from statements 20 to 40.

10 DIM A (10}
20 FOR I =O TO 10
30 READ A (I }
40 NEXT I

1010 DATA 1 7 , 2 2 , 7 . 5 , 3 . 1 416 , 9 . 9 . 7 . 45 . 3 . 2 . 2

Compiler /Interpreter Differences

The DIM statement is similar to the DEFlype sta tement in t.hat it is
scanned rather than executed. That is, DIM takes effcd wl1cn it is encoun
tered at compile time and remains in effect until the end or the program; it
cannot be re-executed at runtime. Therefore, the practice or putting DIM
statements in a subroutine at the end of a program generates severe errors.
The compiler sees the DIM statement only H rter it h a� assigned the default
dimension to arrays declared earlier in the program. If the default dimen
sion (10) has already been established for an array variabk•, and that vari
able is later encountered in a DIM statement, an "Array Already Dimen
sioned" error results.

DIM statements should be placed at the top or a program where they will
be read before any references are made to the dimensioned variable.

192

Stutcment and Function Reference

END Statement

Syntax

END

Action

Terminates program execution, closes all files, and l'eturns control to com
mand level.

Remarks

You may place END statements anywhere in the program to stop program
cx<·c u I.ion.

Unlike the STOP statement, END does not cause a "Break in line mmm1"
error message to be printed.

An END statement at the end of a program is optional. Microsoft BASIC
returns to command level after executing an END.

See Also

CONT, STOP

Example

In this example, program execution terminates if K is greater than 1 ,000;
otherwise, the program branches to line 20:

520 If K>lOOO THEN 900 ELSE 20

� 900 END

193

Micro9oft. XENIX BASIC Compiler

Compiler /Interpreter Differences

The statement has been enhanced to end multiline function definitions and
subroutines, as well as a BASIC program. The enhanced syntax is:

END �I DEF : SUB } D

ends a multiline function definition; you must use with END SUB ends a
BASIC subroutine; you must use with

The compiler always assumes an statement at the conclusion of any pro
gram, so omitting an statement at the end of a program still produces
proper program termination.

194

EOF Function

� Syntax

EOF(lilenumber)

Action

Tests for the end-of-file condition.

Remarks

Statement and Function Reference

Returns - 1 (true) if the end of a sequential input file has been reached.
While reading data from a sequential input file, use EOF to test for end-of
file to avoid "Input past end" error messages.

When EOF is used with a random access file, it returns true (- I) if the last
GET statement was unable to read an entire record.

A file opened to KYBD: is at its end when you type a CONTROL-D.

For files opened to PIPE: , EOF returns - 1 (true) if no processes have the
pipe opened for output and no data is available to be read from the pipe. If
a child process is still active, EOF returns 0 (false) .

See Also

OPEN

196

Microsoft XENIX BASIC Compiler

Example

This example opens the sequential file named DATA for input (that is,
records from DATA are to be read into program variables) , ancl assigns i t.
the number I . The WHILE . . . WEND loop in lines 30-60 reads records from
DATA into the array M, until it reaches the end of the file:

5 DIM M (100)
10 OPEN " I " . 1 . "DATA"
20 C=O
30 WHI LE NOT EOF (l }
40 I NPUT # 1 , M (C)
SO C= C + 1
60 WEND

196

Statement and Function Reference

ERASE Statement

Syntax

ERASE array-list

Action

Eliminates arrays from memory.

Remarks

The array-list consists of array variable names, separated by commas.

Arrays may be redimensioned after they are erased, or the previously allo
cated array space in memory may be used for other purposes. If an attempt
is made to redimension an array without first erasing it, a "Redimensioncd
array" error message is generated.

Example

10 DIM A (10)
20 DIM 8 (10)

50 ERASE A, 8
60 DIM 8 (99)

Compiler /Interpreter Differences

In the XENIX BASIC Compiler, ERASE has the same effect as in the inter
preter; namely, it resets the elements of a static array to either zeros or null
strings, depending on the type specified by the arrayname. The syntax is
also the same in the compiler as in the interpreter.

197

Microsoft XENIX BASIC Compiler

However, executing ERASE on a dynamic array causes the array elements
to be deallocated. Before your program can refer to the dynamic array
again, it must first redimension the array iwth either a DIM or REDIM
statement. If you try to redimension an array without first erasing it, a
"Duplicate definition" error will occur.

198

Statement and Function Reference

ERR, ERL Functions

� Syntax

ERR

ERL

Action

Returns error status.

Remarks

When you are using an error handling routine in your program, the ERR
function returns the error code for the error and the ERL function returns
the number of the line in which the error was detected. The ERR and ERL
functions are usually used in IF . . . THEN statements to direct program How
in the error handling routine.

See Also

ERROR

Example

This example has an error-handling routine that starts at line 100. If the
error is the one the user has defined as 200 (file is empty) , then the routine
asks for a new file name for input, and resumes execution at line 30. If the
error is something else, BASIC prints the message "Unprintable error" :

10 ON ERROR GOTO 100
20 OPEN "PHONE" FOR I NPUT AS 1
30 I f LOF (l } = 0 THEN ERROR 200

90 END
100 REM * *ERROR HANDLING FRAGMENT* *
110 I F ERR = 200 THEN CONDITI ON% = - 1
1 20 I F NOT CONDITION% THEN ERROR ERR

199

Mi crosoft. XENIX BASIC Compiler

1 30 PRINT "Phone number fi le i s ernpty"
140 I NPUT 11Name o f fi le with in formation " ; F I L$
1 50 CLOSE #1

1 60 OPEN E'I L$ FOR I NPUT AS 1
170 LET CONDI TI ON% = 0

180 RESUME 30

200

ERROR Statement

� Syntax

ERROR integer-expression

Action

Stat.ernent and Function Reference

Simulates the occurrence of a Microsoft BASIC error, or allows user-defined
error codes.

Remarks

ERROR can be used as a statement (part of a program source line) or as a
command (in direct mode) .

The value of integer-expression must be greater than 0 and less than 256. If
the value of integer- expression equals an error code already in use by :Micro
soft BASIC (see Appendix B, "Error Codes and Error Messages") , the
ERROR statement simulates the occurrence of that error and the
corresponding error message is printed.

To define your own error code, use a value that is greater than any used by
Microsoft BASIC error codes. (Use the highest available values, so compati
bility may be maintained when more error codes are added to Microsoft
BASIC.) This user-defined error code may then be conveniently handled in
an error handling routine.

If an ERROR statement specifies a code for which no error message has
been defined, Microsoft BASIC responds with the "Unprintable error" error
message. An ERROR statement for which there is no error handling rou
tine prints the error message and halts execution.

See Also

ERR, ERL

201

Microsoft XENIX BASIC Compiler

Example

This example is part of a game program that allows you to make bets. The
program traps the error if you exceed the "house limit. " Note that the error
code is 2 10, which Microsoft BASIC doesn't use.

110 ON ERROR GOTO 400
120 I NPUT "WHAT I S YOUR BET" ; B
130 I F B > 5000 THEN ERROR 210

400 I F ERR = 210 THEN PRI NT "HOUSE LIMIT IS $5000 "
410 I F ERL 1 30 THEN RESUME 1 20

202

Statement and Function Reference

EXP Function

Syntax

EXP(z}

Action

Returns e (the base of natural logarithms) to the power of x, or e:i.

Remarks

If x is greater than 145, the e1overftow" error message is displayed, machine
infinity with the appropriate sign is supplied as the result , and execution
continues.

Example

20 PRI NT EXP (4)

Output:

54 . 59815

203

Microt1oft XENIX BASIC Compiler

FJELD Statement

Syntax

FIELD fl#]filenumber, fieldwidth AS string-variable . . .

Action

Allocates space for variables in a random file buffer.

Remarks

Before a GET statement or PUT statement. can be executed, a FIELD state
ment must be executed to format the random file buffer.

The filenumber parameter is the number under which the file is opened.
The fieldwidth parameter is the number of characters allocated to string
variable.

The total number of bytes that you allocate in a FIELD statement must. not
exceed the record length that you specified when opening the file. Other
wise, a "Field overflow" error message is generated. (The default record
length is 128 bytes.)

Any number of FIELD statements may be executed for the same file. All
FIELD statements that have been executed remain in effect at the same
time.

All field definitions for a file are removed when the file is closed.

Note

204

Do not use a fielded variable name in an INPUT or LET statement.
Once a variable name is fielded, it points to the correct place in lihe ran
dom file buffer. If a subsequent INPUT or LET staliemenli with that
variable name is execulied, lihe variable's point.er no longer refers to the
random record buffer, but, to string space.

Statement and Function Reference

See Also

GET, LSET, OPEN, RSET

Example 1

This example allocates the first 20 positions (bytes) in the random file
buffer to the string variable N$, the next 10 positions to ID$, and the next.
40 positions to ADD$. FIELD does not place any data in the random file
buffer.

F I ELD 1 . 20 AS N$. 10 AS I D$. 40 AS ADD$

Example 2

Example 2 illustrates a multiply-defined FIELD statement. In statcmenl
20, ·the 57-byte field is broken up into 5 separate variables for name,
address, city, state and zip code. In statement 30, the same field is assigned
entirely to one variable, PLIST$. Statements 60 through 90 check to se<' if
ZIP$, which contains the zip code, falls within a certain range; if it docs�

� the complete address string is printed by lines 75 and 80.

1 0 OPEN "R" . # 1 . "MAI LLI ST" . 57
20 F I ELD # 1 . 15 AS NAM$, 25 AS ADDR$, 10 AS CTY$.

2 AS ST$. 5 AS ZIP$
30 F I ELD # 1 . 57 AS PLI ST$
40 GET #L 1
50 WHI LE NOT EOF (l)
60 ZCHECK$ = ZIP$
70 IF (ZCHECK$ < "85700" OR ZCHECK$ >" 85800 ") THEN GOTO �O
75 I NFO$ = PLI ST$
80 PRI NT I NFO$
90 GET # 1
100 WEND

Example 3

This example shows the construction of a FIELD statement using an array
of elements of equal size:

10 FOR LOOP%=0 TO 7
20 F IELD # 1 . (LOOP%• 16) AS OFfSET$. 16 AS A$ (LOOP%)
30 NEXT LOOP%

205

Microsoft XENIX BASIC Compiler

The result is equivalent to the single declaration :

F I ELD 1 , 1 6 AS A$ (0) , 16 AS A$ (1) , 16 AS A$ (6) . 16 AS A$ (7)

Example 4

This example creates a field in the same manner as Example 3. However,
the element size varies with each element:

10 DIM S I ZE% (4) : REM ARRAY OF F I ELD S I ZES
20 FOR LOOP%=0 TO 4 : READ S I ZE% (LOOP%) : NEXT LOOP%
30 DATA 9 , 1 0 , 1 2 , 21 . 41
120 DIM A$ (4) : REM ARRAY OF F I ELDED VARI ABLES
1 30 OFFSET%=0
140 FOR LOOP%=0 TO 4
150 F I ELD # 1 , 0FFSET% AS OFFSET$, SI ZE% (LOOP%) AS A$ (LOOP%)
160 OFF SET%=0FF SE'I%+SI ZE% (LOOP%)
170 NEXT LOOP%

The equivalent declaration is:

F I ELD # l , S I ZE% (0) AS A$ (0) , S I ZE% (1) AS A$ (1) , . . .
S I ZE% (4%) AS A$ (4%)

Compiler /Interpreter Differences

When a FIELD statement is executed, the compiler associates all string
variables that reference random file fields with the specified file buffer.
Therefore, do not reference these string variables after the file is closed ,
even if it is reopened later. Instead, issue a new FIELD statement.

206

Statement and Function Reference

FILES Staternent

� Syntax

FILES �"filespec"Il

Action

Prints the names of files residing in a specified directory.

Remarks

The filespec parameter is a string expression that includes either t.he name
of a file (with directory pathname, if necessary) or the name of a directory
(with pathname). (See Section 4.2, "Filenames and Paths.") If you omit
filespec, all files in the current directory are listed. If you use filespec, all
fi les meeting that specification are listed.

Example 1

This shows all files in the current directory:

F I LES

Example 2

This either shows that the file TEST.BAS in the directory
.. /PROJ/EXAMPLES exists, or responds with a "File not found" error

F I LES II • • /PROJ/EXAMPLES/TEST . BAS "

207

Microsoft XENIX BASIC Compiler

FIX Function

Syntax

FIX(:r)

Action

Returns the truncated integer part of x.

Remarks

FIX(xl is equivalent to SGN(x)*INT(ABS(x)). The difference between FIX
and INT is that, for negative x, FIX returns the first negati\'c integer
greater than x, while INT returns the first negative integer less than x.

See Also

CINT, INT

Example 1

PRI NT F I X (58 . 75) . I NT (58 . 75)

Output:

58 58

Example 2

PR I NT F I X (- 58 . 75) . I NT (- 58 . 75)

Output:

- 58 - 59

208

Statement and Function Ref'crcncc

FOR . . . NEXT Statement

� Syntax

FOR counter = start TO end fiSTEP increm.entD

NEXT ficounterDfi,counter .•. n

Action

Allows a series of instructions to be performed in a loop a given number of
times.

Remarks

The FOR statement uses start, end, and increment as fixed numeric exp l'<'S·
sions, and counter as a counter. The expression start is the initial value of
the counter. The expression end is the final value of the counter. The pro·
gram lines following the FOR statement are executed until the NEXT state
ment is encountered. Then counter is adjusted by the amount specified by
STEP, and is compared with the final value, end. If counter is still not
great.er than end, then BASIC branches back to the statement after thl'
FOR statement. and the process is repeated. If it is greater, execution con
tinues with the statement following the NEXT statement. This is called a
FOR . . . NEXT loop.

If you do not specify STEP, the increment is assumed to be one. If STEP is
negative, the final value of the counter is set to be less than the initial
value. The counter is decreased each time through the loop. The loop iti
executed until the counter is less than the final value.

It is a good idea not to change the loop variable within the loop, since
doing so can make the program more difficult to debug.

Nested Loops

You may nest FOR . . . NEXT loops; that is, you may place a FOR . . . NEXT
loop within the context of another FOR . . . NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before that for the outside
loop.

209

Mjcrosoft XENIX BASIC Compiler

A NEXT statement that has the form,

NEXT I . J , K

is equivalent to the sequence of statements

NEXT I
NEXT J
NEXT K

If you omit the variable in a NEXT statement, the NEXT statement
matches the most recent FOR statement. If a NEXT statement is encoun
tered before its corresponding FOR statement, a "NEXT without FOR" er
ror message is generated and execution is terminated.

Example 1

1 0 FOR I = 5 TO 1 STEP - 1
20 FOR J= 1 TO I
30 PRI NT " * " :
40 NEXT J
50 PRI NT
60 NEXT I

Output:

* * * * *
• * * *
• • •
* *
•

Example 2

In this example, the loop does not execute because STEP is positive (+ 1),
and the initial value (1) exceeds the final value (0):

10
20
30
40

210

J=O
FOR I=l TO J

PRI NT I
NEXT I

St.at.ement. and Function Rcferencr

Compiler /Interpreter Differences

The syntax and use of FOR . . . NEXT is the same as i n the interpreter, but
the XENIX BASIC compiler supports double-precision control values in its
FOR . . . NEXT loops.

211

Microsoft XENIX BASIC Compiler

FRE Function

Syntax

FRE(n)

FRE(" ")

Action

FRE(n) returns the number of bytes in BASIC's memory space that are not
being used.

FRE(" ") also returns the number of bytes in BASIC's memory space that
are not being used. However, FRE(" ") differ·s from other forms of FRE in
that it compacts string space before it returns the number of bytes that are
free.

Example

PRI NT FRE (0)

Possible output:

1 45 4 2

Compiler /Interpreter Differences

Although the syntax is the same as in the intcrprcler, the FRE function has
a different use when used with the compiler.

In interpreted BASIC programs, FRE with a numeric argument returns the
number of bytes of memory not being used by BASIC. In compiled pro
grams, FRE with a numeric argument returns the size of the next free block
of string space.

In both compiled and interpreted BASIC programs, FRE with a string argu
ment returns the number of bytes in BASIC's mcmury :>pace that arc noL
being used. The string argument also causes FRE to compact free string
space into a single block before returning the number of free bytes.

212

Statement and Function Reference

GET Statement

Syntax

GET U# DfilenumberU, recordnumberD

Action

Reads a record from a random file into a random buffer.

Remarks

The filenumber is the number under which the file was opened.

The recordnum is the number of the recor� within the file. The largest pos
sible record number is 4 ,294,967,295 (or 2 - 1). The smallest record
number is 1 . If you omit recordnumber, the next record (after the last
GET) is read into the buffer.

After executing a GET statement, BASIC can use INPUT# and LINE
INPUT# to read characters from the random file buffer.

You may use EOF(filenumber) after a GET statement to check against

213

Microsoft XENIX BASIC Compiler

reading beyond the end-of-file.

See Also

INPUT# , LEN, LINE INPUT# , OPEN, PUT

Example

This program section opens a file, declares its field and, so long as the
operator answers "yes," gets specified records:

10 OPEN "R" . #1 . " f I LE " . 32
1 5 f I ELD # 1 , 20 AS N$. 4 AS A$. 8 AS P$
20 LET ANSWER$ = "YES "
25 WHILE LEfT$ (ANSWER$. l) = "Y"
30 I NPUT " 2 -DIGIT CODE " ; CODE
40 GET # 1 . CODE
50 PRINT N$
60 PRI NT U S I NG "$ $### . ## " ; CVS (A$)
70 PRINT P$: PR I NT
80 I NPUT "More? " , ANSWER$
90 WEND

214

GOSUB . . . RETURN Statement

r-'\, Syntax

GO SUB linen umber 1

RETURN �linenumber2�

Action

Branches to and returns from a subroutine.

Remarks

Statement. and Function Reference

The linenumber1 in the GOSUB statement is the first line of a subroutine,
where the program continues execution. A RETURN within the subroutine
returns control to the statement just following the GOSUB statement in
the program text. A subroutine can be called auy number of times in a pro
gram. A subroutine can also be called from within another subroutine.
Such nesting of subroutines is limited only by available memory.

A subroutine can contain more than one RETURN statement, should logic
dictate a return at different points in the subroutine.

The optional linenumber2 can be included in the RETURN statement to
return from the subroutine to a specific line number. You should use this
type of return with care, however, because any othe1· GOSUBs, WHILEs, or
FORs that were active at the time of the GOSUB will remain active, and
error messages such as "FOR without NEXT" can result.

Subroutines can appear anywhere in the program, but the subroutine
should be readily distinguishable from the main program. To prevent inad
vertent entry into the subroutine, precede it with a STOP, END, or GOTO
statement that directs program control around the subroutine.

216

Microsoft XENIX BASIC Compiler

Example

10 GOSUB 400
20 PRI NT " BACK FROM SUBROUT I NE "
30 END
400 REM • • PR I NT SUBROUTI NE
410 PR I NT "SUBROUT I NE " ;
420 PRI NT " I N " ;
4 30 PRI NT "PROGRESS"
440 RETURN

Output:

SUBROUT I NE I N PROGRESS
BACK FROM SUBROUTI NE

Compiler /Interpreter Differences

The GOSUB statement has been enhanced to support line labels as well as
line numbers. In addition, the compiler RETURN statement supports
RETURN line-number2 (or RETURN line-label2). The extended syntax is:

GOSUB { line-numberl : line-labellJ

RETURN ltl line-number2 I line-label2)]

The extended RETURN statement allows a RETURN from a GOSUB state
ment to the statement having the specified line number or label, instead of
a normal return to the statement fol lowing the GOSUB statement. Use this
type of return with care, however, because any other GOSUB, WHILE, or
FOR statements that were active at the time of the GOSUB will remain
active, and errors such as "FOR without NEXT" may result.

The first line of the subroutine is line-number1 in the GOSUB statement.

You can call a subroutine any number of times in a program. You can also
call a subroutine from within another subroutine. Such nesting of subrou
tines is l imited only by available memory.

A subroutine may contain more than one RETURN statement. Simple
RETURN statements {without the line-number2 option) in a subroutine
cause Microsoft BASIC to branch back to the statement following the most
recent GOSUB statement.

216

Statement. and Function Reference

Subroutines may appear anywhere in the program, but it is good progra m
ming practice to make them readily distinguishable from the main pro
gram. To prevent inadvertent entry into a subroutine, precede il with a
STOP, END, or GOTO statement that directs program control around the
subroutine.

Note

The preceding discussion of subroutines applies only to the targets of
GOSUB statements, not subroutines delimited by SUB . . . END SUB.

Example

The following example computes arcsine values for arguments between - I
and 1 . This is the inverse of the sine fundion, so the value returned wil l he
an angle whose measure is between ;; /2 radians and 3;; /2 radians (90 • to
270 °).

I NPUT "sine" : x
WHILE (x < - 1 OR x > 1)

PRI NT " I l lega l sine value . "
PRI NT "Sine m�st be >= - 1 and =< ! . "
I NPUT "sine" : x

WEND
pi = 3 . 141593
guess2 = pi/2 : guessl = 3 • (pi/2}
WHI LE abs (guessl - guess 2) > . 0000005

GOSUB newv a l
WEND
PRI NT "arcsin " : x : " = " ; temp
END

newval :
temp = (guessl + guess2) /2
I F S I N (temp) > x THEN guess2 = temp _

ELSE guess l = temp
RETURN

Sample output:

sine ? 3
I l lega l sine v a l ue .

217

Microsoft XENIX BASIC Compiler

S ine must be >= -1 and =< 1 .
sine? . 43
arcsin . 43 = 2 . 6971

That ist the angle whose sine is .43 has a measure of 2.6971 radians.

218

Statement and Function Reference

GOTO Statement

� Syntax

GOTO linenumber

Purpose

Branches unconditionally to the specified line number.

Remarks

If the statement that has linenumber is an executable statement, execution
continues with that statement.

If it is a nonexecutable statement, such as a REM or DATA statement, exP
cution proceeds at the first executable statement encountered after
linenumber.

It is good programming practice to use structured control
(IF . . . THEN . . . ELSE, WHILE . . . WEND, ON .. . GOTO) instead of GOTO state
ments as a way of branching, because a program with many GOTO stat.e
rtH'n ls can be difficult to read and debug.

Example

The following program fragment prints a two-column list, with circle radius
in the first column and circle area in the second:

10 READ R
20 PRI NT "R =" : R .
30 A=3 . 1 4 • R - 2
40 PRI NT "AREA =" ; A
5 0 GOTO 1 0
6 0 DATA 5 , 7 . 1 2

� Output:

R = 5
R = 7
R = 1 2
Out o f

AREA = 78 . 5
AREA = 153 . 86
AREA = 452 . 16

data in 10

219

Microsoft XENIX BASIC Compiler

Compiler /Interpreter Differences

The syntax of the GOTO statement is the same as in the interpreter, but
has been extended to allow branching to line labels, as well as line numbers.

For example, the following program prints the area of the circle that has
the input radius:

PRI NT " I nput 0 to end . "
start :

I NPUT r
I f r <= 0 THEN END
E LSE -

a = 3 . 14 * r A 2
PR I NT "Area =" ; a

GOTO start

Sample output:

I nput 0 to end .
7 5
Area = 78 . 5
? 7
Area = 153 . 86
7 12
Area = 452 . 16
7 0

220

Stutement and Function Reference

HEX$ Function

f"'.i Syntax

HEX$ (:r:)

Action

Returns a string that represents the hexadecimal value of the posi tive
decimal argument.

Remarks

The argument x is any numeric expression. It is rounded to an integer
before HEX$(x) is evaluated.

See Also

OCT$

Example

10 I NPUT X
20 A$=HEX$ (X)
30 PRI NT x "DECIMAL IS I I A$ "HEXADECIMAL"

Output:

? 32

32 DECI MAL I S 20 HEXADECIMAL

221

Microsoft XENIX BASIC Compiler

IF . . . THEN . . . ELSE, IF .. . GOTO Staten1ents

Syntax

IF expression THEN target fiELSE alternativeD

IF expression fiTHEND GOTO target fiELSE altemativeD

Action

Makes � decision regarding program flow based 011 t..he result returned by an
expression.

Remarks

The entire IF . . . THEN . . . ELSE statement must be on one logical line.

If the result of expression is true (or is not equal to zero) then target is exe
cuted. In the first syntax, the target consists of either a line number for
branching or one or more executable statements. In the second syntax,
GOTO is always followed by a line number.

If the result of expression is false (or is equal to zero) , target is ignored an<l
the ELSE alternative, if present, is executed. As is the case with
target, alternative is either a line number or one or more statements.

Nesting of IF Statements

IF . . . THEN .. . ELSE statements may be nested. Nesting is limited only by
the length of the line. For example, t..he following is a legal statement:

I F X>Y THEN PRI NT "GREATER" ELSE I F Y>X _
THEN PRI NT "LESS THAN" ELSE PRI NT "EQUAL"

If the statement does not contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest unmatched THEN. For
example,

I f A=b THEN I f B=C "l'Ht:N 1-'k ! NT "A=C.:."
ELSE PRI NT "A<>C"

prints "A< >C" only in the following case:

222

• A=B

• B< >C

� However, it does not print "A< > C" when

• A< > B

• B=C

Statement and Function Reference

Instead, the program simply continues with the next executable statement.
If you wanted the program to print "A< >C" when A< >B and B=C, then
the statement would look like this:

I f A=B THEN I F B=C THEN PRI NT "A=C" ELSE PRINT "A<>C"
ELSE IF B=C THEN PRI NT "A<>C"

If you enter a line number after an If . . . THEN statement in direct mode, an
"Undefined line" error message is generated unless you have pre,·iously
entered a statement wit.h t.he specified line number in indirect mode.

Example 1

This st.atement gets record number I if I is not zero:

1 200 I F I THEN GET#l , I

Example 2

In this example, a test determines if I is greater than 10 and less than 20. If
I is in this range, DB is calculated and execution branches to line 300. If I
is not in this range, execution continues with line 1 10:

100 I F (I < 20) AND (I >lO) THEN DB=l979 - I : GOTO 300
110 PRI NT "OUT OF RANGE "

Example 3

This statement causes printed output to go either to the screen or to the
printer, depending on the value of the variable IOFLAG. If IOFLAG is
zero, output goes to the printer; otherwise, output goes to the screen:

210 I F I OfLAG THEN PRI NT A$ ELSE LPRI NT A$

223

Microsol't. XENIX BASIC Compiler

Example 4

This last example shows the use of conditional variables. The IF statement
is true if the variable BONUS% has the value of +l and false if that valu('
is 0:

100 IF SCORE% >= 90 THEN BONUS% = 1 ELSE BONUS% = 0
1 20 f f BONUS% THEN PRI NT "You received a bonus this week . "
1 40 I F NOT BONUS% THEN PR I NT "No bonus th i s week . "

224

Stat.cmcnt and Function Rerercncc

INKEY$ Function

Syntax

IN KEY$

Action

Returns either a one-character string containing a character read from tht'
keyboard or a null string if no character is pending at the keyboard.

Remarks

No characters are echoed. All characters are passed through to the program
except for CONTROL-C, which terminates the program.

Example

This example is a subroutine that, for a given number of counts (TIME
LIMJT%), checks to see if there is input from the keyboard. If there isn 't,
it continues until TIMELHvDT% is exceeded. If there is, it checks to see if
the character is ASCH character 13, the carriage return. If it is, then
TIMEOUT% is set to zero and control is returned to the main program.

1000 REM TIMED I NPUT SUBROUTI NE
1010 RESPONSE$=='"'
1020 FOR I %=1 TO TIMELIMIT%
1030 A$=I NKEY$: I F LEN (AS) =O THEN 1 •)60
1040 I F ASC (A$) =1 3 THEN TI MEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$ +A$
1060 NEXT 1 %
1070 TIMEOUT%=1 : RETURN

226

Microsoft. XENIX BASIC Compiler

INPUT# Statement

Syntax

INPUT# filenumber, variable-list

Action

Reads data items from a sequential file and assigns them to program vari
ables.

Remarks

The filenumber is the number used when the file was opened for input. The
variable-list contains the variable names that will be assigned to the items
in the file. (The variable type must match the type specified by the variable
name.) If a comma is appended to INPUT# , then no question mark is
printed, just as with INPUT.

The data items in the file should appear just as they would if you were
entering data in response to an INPUT statement. Leading spaces, carriage
returns, and linefeeds are ignored with numeric values. The first character
encountered that is not a space, carriage return, or linefeed is assumed to
be the start of a number. The number terminates on a space, carriage
return, linefeed, or comma.

If BASIC is scanning the sequential data file for a string item, it will also
ignore leading spaces, carriage returns, and lincl'ccds. The first character
encountered that is not a space, carriage return, or linefeed is assumed to
be the start of a string item. If this first character is a quotation mark (") ,
the string item will consist of all characters read between the first quota
tion mark and the second. Thus, a quoted string may not contain a quota
tion mark as a character. If the first character of the string is riot a quota
tion mark, the string is an unquoted string, and will terminate on a comma,
carriage return, or linefeed (or after 255 characters have been read). If
end-of-file is reached when a numeric or string item is being INPUT, the
item is terminated.

226

St.at.emcnt. and Function Rerercnce

If an INPUT# statement attempts to read data from a sequential tile to
which access has been restricted by a LOCK statement, two options art•
available. The first is to return control to the program immediately with
an accompanying error message. All of BASIC's usual error handling rou
tines can trap and examine this error. If error trapping is not active the
error message is:

Permission denied

See Also

INPUT, LOCK

Example

In this example, the loop opens all the records in a tile, printing all the
names of employees hired in 1981:

10 OPEN "I " . # 1 . "DATA"
1 5 WHI LE NOT EOF (l)
20 I NPUT# 1 . N$. DEPT$, H I RE DATE $
30 IF RI GHT$ (HI RED/..TES . 2) = "81" THEH PRI NT N$
40 WEND

227

Microsoft XENIX BASIC Compiler

INPUT$ Function

Syntax

Action

Returns a string of x characters, read from file number y.

Remarks

If the file number is not specified, the characters are read from the key
board.

If the keyboard is used for input, no characters are echoed on the screen.
All control characters are passed through except CONTROJ,.C, which is used
to interrupt the execution of the INPUT$ function.

Example 1

The following example lists the contents of a sequential file in hexadecimal:

10 OPEN " I " , l , "DATA"
20 WHI LE NOT EOF (l)
30 PRI NT HEX$ (ASC (I NPUT$ (1 , # l))) ;
40 WEND
50 END

Example 2

The following example reads input from the keyboard. Depending on which
key the user presses ("P" or "S") , the program continues executing at line
500, or branches to line 700 to end:

100 PRI NT "TYPE P TO PROCEED OR S TO STOP"
110 X$=I NPUT$ (1)
1 2 0 I f X$="P" THEN 500
1 30 I F X$="S" THEN 700 ELSE 100

228

Statement a nd Function Reference

INPUT Statement

� Syntax

INPUT�" prompt-string" { ;:, } D variable-list

Action

Allows input from the keyboard during program execution.

Remarks

When the program encounters an INPUT statement,, it pauses in its execu
tion and prints a question mark to indical,e Lhat it is waiting for data. If
you include prompt-string, the string is printed before t.he question mark.
You then enter the required data at the keyboard.

If INPUT is immediately followed by a semicolon , then no new line is gen
erated after the prompt string is printed. This allows you to continue input
on the same line as the prompt.

You can use a comma instead of a semicolon after the prompt string to
suppress the 9uestion mark. For example, the stat.ement INPUT "ENTER
BIRTHDATE ' , B$ print.s the prompt with no question mark.

The data that is entered is assigned to the variables given in variable-list.
The number of data items that you supply must be the same as the number
of variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item that you
input must agree with the type specified by the variable name. Strings
input to an INPUT statement need not be surrounded by quotation marks.

Responding to INPUT with too many or too few items or with the wrong
type of value (e.g., string instead of numeric) causes the message

"?Redo from start" to be printed. No assignment of input values is made
until an acceptable response is given.

229

Micro!lort XENIX BASIC Compiler

Example 1

10 I NPUT X

2C PF. I NT X "SQUARED I S " x - 2
30 END

Output

? 5

5 SQUARED I S 25

Example 2

10 P ! =3 . 14
20 I NPUT "WHAT I S THE RADI US " : R
3 0 I F R=- 1 THEN END
30 A=Pl • R- 2
40 PRI NT "THE ARE/, OF THE CI RCLE I S " : A
50 PRINT
60 GOTO 20

Output

WHAT I S T"riE RADI US? 7 . 4
THE AF.EA OF THE CIRCLE I S 171 . 946
WHAT IS THE RADI US? -1

230

St.ntement and Function Reference

INSTR Function

Syntax

INSTR(llstart,ft:u't,y$)

Action

Searches for the first occurrence of string y $ in string x$, and returns the
position at which the match is found.

Remarks

The optional offset start sets the position for starting the search.

If start is greater than the number of characters in :r:, that is, if start is
greater than LEN(x$} , then INSTR returns O. INSTR also returns 0 when
x$ is null or when y$ cannot be found.

� If y$ is null, INSTR returns start or 1 .

The arguments x$ and y$ can be string variables, string expressions, or
string literals.

Example

This example searches for the first occurrence of the letter "B" in the string
11ABCDEB" , and then prints the number of that position, first starting at
the beginning of the string (no start), then starting at the fourth letter of
the string (start = 4) :
10 X$="ABCDEB"
20 Y$="B"
30 PRI NT I NSTR (X$, Y$} : I NSTR (4 . X$. Y$ }

Output:

2 6

231

Microsoft XENIX BASIC Compiler

INT Function

Syntax

INT(x)

Action

Returns the largest integer less than or equal to x.

Remarks

The argument x is a numeric expression.

See Also

CINT, FIX

Example 1

PRI NT I NT (99 . 89)

Output:

99

Example 2

PRI NT I NT (- 1 2 . 11)

Output (since - 13 < - 12 . 1 1):

- 1 3

232

Statement and Function Reference

KJLL Statement

� Syntax

KILL "filespec"

Action

Deletes a file from disk.

Remarks

If a KILL command is given for a file that is currently OPEN, a ((File
already open" error message is generated. The filespec argument is any
legal file name.

Example

� This deletes the file named "MailLabels" in the current directory:

200 K I LL "Ma i lLabe l s "

233

Microsoft XENIX BASIC Compiler

LBOUND Function

Syntax

LBO UND(array[, dimensionll)

Action

Returns the lower bound (smallest available subscript) for the indicated
dimension of an array. It is used with the UDOUND function to determine
the size of an array.

Remarks

LBOUND takes the following arguments:

Argument

array
dimension

Description

The name of the array being dimensioned.

An integer from 1 to the number of dimen
sions in array.

In the array ACCOUNT (A , B , C , D) , A is dimension 1: B is dimension 2, C
is dimension 3, and D is dimension 4. So the following statment:

LBOUND (ACCOUNT , l)

finds the smallest subscript in dimension A,

LBOUND (ACCOUNT , 2 }

finds the smallest subscript in dimension B, and so on.

The default lower bound for any dimension is either 0 or 1, depending on
the setting of the OPTION BASE statement. If OPTION BASE is O, the
default lower bound is O, and if OPTION BASE is I , the default lower
bound is 1 .

You can use the shortened syntax LBOUND(array) for one-dimensional
arrays, since the default value for dimension is I .

234

Stuterncnt. and Function Rererencc

Use the UBOUND function to find the upper limit of an array dimension.

See Also

UBOUND

Example

LBOUND and UBOUND can be used together to determine the size of an
array passed to a subprogram, as in the following program fragment:

CALL PRNTMAT (ARRAY ())

SUB PRNTMAT (A (2)) STATI C
FOR 1 % = LBOUND (A. 1) TO UBOUND (A. 1)

FOR J% = LBOUND (A. 2) TO UBOUND (A. 2)
PRI NT A (I % . J%) ; " " :

NEXT J%
PRI NT : PR I NT

� NEXT 1 %
E ND SUB

235

Microsoft XENIX BASIC Compiler

LEFT$ Function

Syntax

LEFT:Ji (x* ,n)

Action

Returns a string containing the leftmost n characters of x$.

Remarks

The argument n is a numeric expression that returns a decimal number
that rounds to an integer in the range 0 to 32, 767. (This argument is
rounded to an integer before LEFT$ is evaluated.) If n is greater than the
number of characters in x$, the entire string (z$) 1s returned. If n = O, the
null string (a string with no characters) is returned.

See Also

MID$, RIGHT$

Example

10 A$=" BAS I C"
20 B$=LEFT$ (A$. 3 }
30 PRI NT 8$

Output:

BAS

236

LEN Function

� Syntax

LEN(rl)

Action

Returns the number of characters in x$.

Remarks

Statement and Function Reference

Nonprinting characters and blanks are counted .

Example

10 X$="PORTLAND. OREGON"
20 PRI NT LEN (X$)

Output:

16

237

Microsoft XENIX BASIC Compiler

LET Statement

Syntax

fiLET Dvariable=expression

Action

Assigns the value of an expression to a variable.

Remarks

Notice that the word LET is optional; that is, the equal sign is sufficient for
assigning an expression to a variable.

Example 1

The following two program fragments work identically:

110 LET D=l 2
1 20 LET E=l r 2
1 30 LET F=1 2 � 4
1 4 0 LET SUM=D+E +F
150 PR I NT D , E , F , SUM

1 1 0 0=1 2
1 20 E=lr 2
1 30 F=l r 4
140 SUM=D+ E + F
150 PRI NT D . E . F . SUM

Output:

1 2

238

144 207 36 20892

Stal.emenl. and Function Reference

Example 2

The following fragment assigns string expressions to string variables, then

� prints those variables:

10 LET T$="THOUGHT FOR THE DAY : "
20 LET A$="Judgment comes from exper ience . "
30 LET B$=" Experience , however , o f ten comes from poor j udgment . "
40 PRINT T$: PR I NT : PR I NT A$ + B$

Output:

THOUGHT FOR THE DAY :

Judgment comes from exper ience . Expe r ience , however . o ften comes
from poor j udgment .

239

Microsoft XENIX BASIC Compiler

LINE INPUT# Statement

Syntax

LINE INPUT# /ilenumber,stririg-variable

Action

Reads an entire line, regardless of delimiters, from a sequential data file to
a string variable.

Remarks

The filenumber is the number under which the file was opened. The string
variable is the variable name to which the line will be assigned.
LINE INPUT# reads all characters in the sequential file up to a newline. It
then skips over the newline. The next LINE INPUT# reads all characters
up to the newline. (If a newline is encountered, it is preserved; that is it is
preserved as part of the string.)

LINE INPUT# is especially useful if each line of a data file has been bro
ken into fields, or if a BASIC program saved in ASCII format is being read
as data by another program.

If a LINE INPUT# statement attempts to read data from a sequential file
to which access has been restricted by a LOCK statement, two options are
available. The first is to return control to the program immediately with
an accompanying error message. All of BASIC's usual error handling rou
tines can trap :ind examine this error. If error trapping is not active the
error message is:

Permiss ion denied

See Also

LINE INPUT, LOCK, SA VE

240

St.atement and Function Reference

Example

This example shows the use of both the LINE INPUT and LINE INPUT�
statements:

10 OPEN "0" , 1 , "LI ST"
20 L I NE I NPUT "CUSTOMER I NFORMATI ON ? " : C$
30 PRINT # L C$
40 CLOSE 1
50 OPEN " l " , 1 , " L I ST"
60 LINE I NPUT # 1 . C$
70 PRINT C$
80 CLOSE 1

This will first prompt for input with the following:

CUSTOMER I NFORMATION?

If you enter the following data:

CUSTOMER I NFORMATION ? LI NDA JONES 234 , 4

the output looks like this:

L I NDA JONES .2 34 . 4 MEMPHI S

MEMPHIS

241

Microsoft XENIX BASIC Compiler

LINE INPUT Statement

Syntax

LINE INPUTll;Il [" prompt-string";Il string-variable

Action

Inputs an entire line to a string variable without the use of delimiters.

Remarks

The prompt-string is a string literal that BASIC prints on the screen before
input is accepted. Unlike INPUT, LINE INPUT does not print a question
mark unless it is part of prompt-string. All input from the end of prompt
string to the new line is assigned to string-variable.

If LINE INPUT is immediately followed by a semicolon, then the newline
that you enter to end the input line does not echo on the screen.

You can abort a LINE INPUT statement by typing CONTROL-C, causing
BASIC to return to the command level. Entering CONT resumes execution
at the LINE INPUT.

Example

See example under LINE INPUT# .

242

LOC Function

� Syntax

LOCUilenumber)

Actions

Statement and Function Rcfercnc('

With random files, LOC returns the record number of the last record read
or written.

With sequential files, LOC returns the number of records read from or writ
ten to the file since it was opened.

Remarks

LOC uses filenumber as the number under which the file was opened .

Wh<'ll a file is opcn<'d for sequential input, BASIC reads the first record of
the lilc, so LOC will return a 1 even bef orc any input from the file occurs.

With files opened to KYBD:, LOC returns the value 1 if any charact.crs are
ready to be read from the standard input. Otherwise it returns 0.

With files opened to PIPE:, LOC returns the value l if any characters arP
ready to be read from the pipe. Otherwise, it returns 0.

See Also

OPEN

Example 1

If # 1 is a sequential file, this example will stop program execution if more
than 50 records have been read from or written to since file # 1 was opened:

200 I F LOC (l) >SO THEN STOP

243

Microsoft XENIX BASIC Compiler

Example 2

Ir 3 was opened as a random file, the following language loads to the vari
able "CURRENT" the record number of the random file record most
recently read or written:

3010 LET CURRENT = LOC (3)

Example 3

The following fragment checks whether the operator has pressed a key
before continuing the program:

300 OPEN "KYBD : " FOR I NPUT AS # 1
3 1 0 CLS : PRINT TAB (lO) : "PRESS AN Y KEY TO BEGIN"
320 WHI LE LOC { l) = 0
3 30 REM * * * DO NOTHING UNTI L KEY PRESSED * * *
340 WEND

244

Statement and Function Reference

LOCK Statement

r-"'.. Syntax

LOCK ll# Ilfilenum n ,READil n 'WAITD n ' firerordnumDll TO recordnumDD

Action

Restricts access by other processes t.o all or part of a file.

Remarks

The filenum is the number with which the file was opened.

The recordnum is the number of the recor� within the file. The largest pos
sible record number is 4,294,967,295 (or 2 - 1). The smallest record
number is 1 .

LOCK will restrict access by other programs to filenum i n the recordnum
range, or for the entire file. If you open filenum for sequential input or out
put, then BASIC locks the entire file and any range specifications result in
an error. If you open filenum in random access mode, then BASIC allows
you to specify an inclusive range of records to be locked. If you don't
specify a starting recordnum", then record number 1 is assumed. You must.
specify a final recordnum whenever requesting a range of locked records.

Locks can be applied in two different ways: part.ial and total. Total locking
is the default for the LOCK statement and is applied to the file by not
using the READ keyword. Total locking prevents any access by another
program to the locked portion of the file.

Partial locking allows another program to read the file, but prevents that
program from modifying the locked portion of the file. Partial locking is
applied to the file by specifying the READ keyword in the statement.

In the case where another program has locked a portion of the requested file
region, two options are available. The first is to return control to the pro
gram immediately with an accompanying error message. All of BASIC's
usual error handling routines can trap and examine this error. If error
trapping is not active the error message is:

246

Microsoft XENJX BASIC Compiler

Permission denied

This is the default option . It is chosen if the WAIT keyword has not been
specified in the LOCK statement.

The second option is to wait until the program that issued the original
LOCK unlocks the requested region of the file. The presence of the WAIT
keyword will force this second option. It is possible to interrupt this wait by
pressing CONTROL-C.

A deadlock situation can occur when waiting for a LOCK request. An
example of this "deadly embrace" follows:

• A program has Filel open and locked.

• A different program has File2 open and locked.

• The first program executes a LOCK request with the WAIT option
on Fi le2.

• The second program executes a LOCK request with the WAIT
option on Filel .

XENIX will attempt to detect any deadlock situations. If il does detect one,
it returns a "Deadlock" error message.

Mul tiple LOCK statements have a cumulative effect. Locking records 1
through 3 and then locking records 10 through 100 will leave both ranges
locked. Locking a record which is already locked will have no effect.; the
record remains locked and no error is generated. A record locked multiple
times with different locking characteristics (READ or WAIT) retains the
characteristics of the latest LOCK statement.

I t. is recommended that a file not be opened simultaneously on multiple
channels. However, if it becomes necessary to do so, the fol lowing informa
tion is important. Locks applied using a different channel number against a
single file will act in the same way as multiple LOCK statements issued
against the same file. For example,

100 OPEN "R" , L " Emp l oyees "
1 20 OPEN "R" , 2 , " Empl oyees "
140 LOCK #1 . l TO 3
160 LOCK # 2 , READ, 2 TO 5

leHves records 1 through 5 of Employees locked. In 11.ddition, records 2
through 5 are locked in the READ mode. The first channel closed releases
all locks against the file. That is, if the next line of the previous program
fragment closes # 2, then both locks will be released.

246

St.ot.cmcnt. and Function Reference

Records are locked based on their size and position within the file. If a fi le
is opened multiple times with different spt�rified record sizes, and locks a re
applied to records, then portions of records can become locked.

The LOCK statement is complementary to the UNLOCK statement.

See Also

UNLOCK

Example 1

The following applies a total lock to records 1 through 32 of file number 4:

500 LOCK #4. 1 TO 3 2

Example 2

The following fragment opens a file and locks it. It then allows an opcni
tor to update information. When the operator is done, the program
unlocks the locked records. (Unlocking the locked records allows other peo
ple to work with the file.)
1000 OPEN "monitor " AS tll LEN = 59
1020 F I ELD #L 15 AS PAYER$. 20 AS ADDRESS$. 20 AS PLACE $, 4 AS OWF. $
1 040 LET CONTINUES = "YES"
1060 WH I LE LEfT$ (CONTI NUE$, l) = "Y"
1080 CLS : LOCATE 10 , 10
1100 I NPUT "Customer Number ? # " : NUMBER%
1 1 20 GET # 1 , NUMBER%
1140 LOCK # 1 . READ, NUMBER%
1160 LET DOLLARS ! = CVS (OWE S)
1180 LOCATE 1 1 . 10 : PRI NT "Customer : " : PAYER$
1 200 LOCATE 1 2 . 10 : PRI NT "Address : " : ADDRESS$
1 2 20 LOCATE 1 3 , 10 : PRI NT "Curren t l y owes : S " : DOLLARS !
1 240 LOCATE 15. 10 : I NPUT "Change (+ or -) " . CHANGE !
1 260 LET DOLLARS ! = DOLLARS ! + CHANGE !
1 280 LSET OWE$ = MKS$ (DOLLARS !)
1 300 PUT # 1 , NUMBER%
1 3 20 UNLOCK # 1 , NUMBER%
1 340 LOCATE 1 7 , 10 : I NPUT " Update another ? " CONTI NUE$
1 360 WEND

247

Microsoft. XENIX BASIC Compiler

LOF Function

Syntax

LOF(/ilenumber)

Action

Returns the length of the named file in bytes.

Remarks

LOF (or the Length-Of-File function) is valid for any file.

Files opened to SCRN:, KYBD:, or LPTl : always return the value 0.

For files opened to PIPE:, LOF returns 1 if any characters are ready to be
read from the pipe. If there are no characters, it returns 0.

See Also

OPEN

Example

In this example, the variables REC and RECSIZ contain the record number
and record length, respectively. The calculation determines whether the
specified record is beyond the end-of-file.

110 IF REC•RECSI Z>LOF (1) THEN PRI NT " I NVAL I D ENTRY"

248

Statement and Function Reference

LOG Function

� Syntax

LOG(.r)

Action

Returns the natural logarithm of x.

Remarks

The natural logarithm is the logarithm of x
to the base e. (The number e is approximately equal to 2.7 1 8282.)

The decimal number x must be greater than zero.

LOG delivers a double precision result in the decimal version of BASIC, and
a single precision result in the binary version .

Example 1

PRINT LOG (45/7)

Output (in the decimal version):

1 . 860752 340149

Example 2

100 E = 2 . 718282
110 FOR I = 1 TO 4
1 20 PRI NT LOG (E - I)
1 30 NEXT I

� Output:

1 2 3 4

249

Microsoft XENIX BASIC Compiler

LPOS Function

Syntax

LPOS(x)

Action

Returns the current column position of the device LPTI : .

Remarks

The argument x is a dummy argument.

LPOS does not necessari ly give the physical position of the print head.

Example

This example forces a carriage return (CHR*(1 3)) when the current. line
printer column exceeds 60:

100 If LPOS (X) >60 THEN LPR I NT Ctffi$ (1 3)

260

St.at.ement. and Fuuct.ion Reference

LPRINT, LPRINT USING State1nents

Syntax

LPRINT UexpreEsion-listH

LPRINT USING string-exp; expression-lis t

Action

Prints on the line printer.

Remarks

ThE' expression-list contains the string expressions or numeric expressions
that are to be printed, separated by semicolons.

The string- exp is a string literal (or variable) composed of special format
ting characters. These formatting characters determine the field and tin·
format of the printed strings or numbers.

LPRINT and LPRINT USING are the same as PRINT and PRINT USING,
except that output always goes to the line printer with LPRINT and
LPRINT USING.

LPRINT causes output to be "spooled" , or piped to the lpr command for
later printing. Output is piped to the lpr command. No output is printed
until one of the END, CLEAR, or SYSTEM statements is executed.

Another way to produce line printer output is to open a file to "LPTl : " and
to subsequently PRINT to it. Output to this file is sent to the printer when
LPT: is closed.

See Also

LPOS, PRINT, PRINT USING

251

Microson XENIX BASIC Compiler

Examples

See examples in PRINT and PRINT USING.

262

Statement and Function Reference

LSET, RSET Statements

Syntax

LSET bu!ferstring=�

RSET bufferstring=:#f

Action

Moves data from memory to a random file buffer in preparation for a PUT
statement; also, justifies data in a string.

Remarks

If x$ requires fewer bytes than were fielded to buff erstring, LSET lefl
justifies x$ in the field, and RSET right-justifies x$. {Spaces are used to
pad the extra positions.) If the string is too long for the field, characters are
dropped from the right. end of the string. Numeric values must be con
verted to strings before they are LSET or RSET.

LSET or RSET can also be used with a nonfielded slring variable to left
j ustify or right-justify a string in a given field.

See Also

MJ(D$, lvlKI$, :MKS$

Example 1

This example left-justifies three variables into fielded strings preparatory to
loading them into a random file:

150 LSET A$;MKS$ (AMT)
1 60 LSET D$=MKD$ (DESC (4))

� 1 70 LSET E $= TOTAL$

263

Microsort XENIX BASIC Compiler

Example 2

This example illustrates how RSET can be used to format ou tput.:

100 LET S$ = SPACE S (20)
1 20 PRI NT " 1 2 345678901 2 34567890"
140 LET AS = " 3 . 1416"
160 PRI NT A$
1 80 RSET S$ = A$
200 PRI NT S$

Output:

1 2 345678901 2 34567890
3 . 1416

3 . 1416

264

St.at.ement. and Function Reference

MID$ Function

Syntax

Syntax

MID$ (x1$,nff,mD = x�

Action

The function returns a string of length m charactE'rs from x$, beginning
with the nth character.

The statement replaces a portion of x1$ with all or part of x�.

Remarks

The values n and m are numeric expressionR returning decimal numbers
that round to integers in the range I to 32, 768. (These arguments are
rounded to integers before MID$ is evaluated.)

In the function syntax, if m is omitted or if there a1·e fewer than m charac
ters to the right of the nth character, all rightmost characters, beginning
with the nth character are returned. If n is greater than the number of
characters in x$ (that is, if n is greater than LEN(x:�)), then MID$ returns a
null string.

In the statement syntax, n and m are integer expressions, while xJ$ and x2:f:
are string expressions. The characters in x1$, beginning at position n, are
replaced by the characters in x2$. The optional m refers to the number of
characters from x2$ that will be used in the replacement. II' m is omitted ,
all of x2$ is used. The replacement of characters never exceeds the original
length of x1$.

266

Microsoft XENIX BASIC Compiler

Example 1

This is an example of the l\110$ function. It returns a string of length i ,
starting at the 9th position o f B$ (or t,he first "E" i n "EVENING"):

10 LET AS= "GOOD "
20 LET BS="MORNI NG EVENING P.fTERNOON"
30 PRI NT AS : MI D$ (8$. 9 , 7)

Output:

GOOD EVENI NG

Example 2

This is an example of the l\110$ statement. It replaces the "MO" in A*
with "KS" :

10 A$= "KANSAS CITY . MO"
20 MID$ (A$. 14) ="KS"
30 PRI NT AS

Output:

KANSAS CITY . KS

266

Statement and Function Reference

l\.1KD$, MKI$, l\.1KS$ Functions

Syntax

MKI$ (integer-expression)

MKS$ (single-precision-expression)

MKD$ (double-precision-expression)

Action

Converts numeric values to string values for insertion into random file
buffers.

Remarks

Any numeric value placed in a random file buffer with an LSET or RSET
statement must be converted to a string. MKI$ converts an integer to a 2-
byte string. MKS$ converts a single precision number to a 4-byte string.
MKD$ converts a double precision number to an 8-byte string.

Note

Don't use these functions to convert numbers that are later assigned to
string variables. For that purpose, use the STR$ function.

267

Microsoft. XENIX BASIC Compiler

See Also

CVD, CVI, CVS, LSET, RSET

Example 1

The :MKD$ statement in line 1 10 converts a numeric variable, AMT, into a
string to be stored in file # 1 :

90 AMT= (K +T)
100 f I ELD # 1 . 8 AS D$, 20 AS N$
110 LSET D$=MKS$ (AMT)
1 20 LSET N$=A$
1 30 PUT # 1

Example 2

This example opens the file " checks" as a random access file, and converts
the variables CHECK% (integer) , ACCTNO! (single precision) , and AMT#
(double precision} to string values. These string values are then lefl
justified in buffer-strings and loaded into the file with a PUT statement:

1000 OPEN "checks" AS #1 LEN=34
1020 f I ELD # 1 , 2 AS CHECKNO$, 20 AS PAYEE S . _

4 AS ACCOUNT$, 8 AS AMOUNTS

1 200 LSET CHECKNO$ = MK I $ (CHECK%)
1 2 20 LSET PAYEE$ = OWEDTOS
1 240 LSET ACCOUNTS = MKS$ (ACCTNO !)
1 260 LSET AMOUNTS = MKD$ (AMT#)
1 280 PUT # 1 , CHECK%

268

Statement and Function Reference

MKDIR Statement

� Syntax

MKDIR 11 pathname"

Action

Creates a new directory.

Remarks

The string expression pathname specifies the name of the directory which is
to be created. The pathname must be a string of less than 128 charackrs.

See Also

CHDffi, RMDIR

Examples

The following creates the new directory SALES within the current direc
tory:

MKDI R "SALES"

The following creates the new directory "proofreaders" within the directory
" .. /publ ications/editorial" :

MKDI R " . . /publ ications/editor la I/proo freaders"

269

Microsoft XENIX BASIC Compiler

NAME Statement

Syntax

NAME old-filename AS new-filename

Action

Changes the name of a file.

Remarks

The old-filename must exist and new-filename must not exist; otherwise, an
error will result. These may be any legal filenames.

A file may not be renamed with a new device designation. If this is
attempted, an error message is be generated. After a NAME command, the
file exists on the same disk, in the same area of disk space, but with the
new name.

Example

In this example, the file that was formerly named ACCTS is now named
LEDGER:

NAME "ACCTS " AS "LEDGER"

260

NEXT Statement

� Syntax

NEXT UvariableJ]U,variable2 • • •]

Action

Statement and Function Reference

Allows a series of instructions to be performed in a loop a given number of
times.

Remarks

See "FOR. . . NEXT" for a discussion of the use of NEXT.

261

Microsoft XENIX BASIC Compiler

OCT$ Function

Syntax

OCT$ (x)

Action

Returns a sLring that represents the octal value of the decimal argument.

Remarks

The argument x must be a positive decimal number. It is rounded to an
integer before OCT$(x) is evaluated.

See Also

HEX$

Example

PR I NT OCT$ (24) , OCT$ (10 . 34) . OCT$ (7 . 84)

Output:

JO 1 2 10

262

Statemcmt and Function Reference

ON ERROR GOTO Statement

Syntax

ON ERROR GOTO linenumber

Action

Enables error handling and specifies the first line of t,he error handling rou
tine.

Remarks

Once error handling has been enabled, all errors detected, including direct
mode errors (for example, syntax errors) , will cause a jump to the specified
error handling routine. If linenumber does not exist, an "Undefined line"
error message is given.

The RESU:tv:IE statement is required to continue program execution.

To disable error handling, execute an ON ERROR GOTO 0. Subsequent
errors will print an error message and halt execution. An ON ERR.OR
GOTO 0 statement that appears in an error handling routine causes BASIC
to stop and print the error message for the error that caused the trap. I t is
recommended that all error handling routines execute an ON ERROR
GOTO 0 if a program encounters an error for which there is no recovery
action.

Note

If an error occurs during execution of an error handling routine, that
error message is printed and execution terminates. Error trapping does
not occur within the error handling routine.

263

Microsoft XENIX BASIC Compiler

See Also

ERL, ERR, ERROR, RESU:ME

Example

This example shows an error-handling routine. Line 10 directs the program
to line 1000 when any errors are detected ; if the error is of the type defined
by the programmer (ERROR 230, "Null string in INS$"), and the line in
which the error occurs is line 1 10, then line 1000 causes the message "Try
Again" to be printed on the screen, and program execution resumes at line
100:

10 ON ERROR GOTO 1000

100 I NPUT " I nsurance Coverage" : I NS$
110 I F I NS$ = 1 1 11 THEN ERROR 230

1000 I F ERR = 2 30 AND ERL = 1 10 _
THEN PRI NT "Try Again" : RESUME 100

264

Statement and Function Rercrcnce

ON ... GOSUB, ON . . . GOTO Statements

� Syntax

ON expression GOSUB linenumber·lis t

ON expression GOTO linenumber·list

Action

Branches to one of several specified line numbers, depending on the value
returned when an expression is evaluated.

Remarks

The value of expression determines which line number in the list will be
used for branching. For example, if the value is three, the third line
number in the list is the destination of the branch. If the value is a nonin-

r---... teger, the fractional portion is rounded.

If the value of expression is zero or greater than the number of items in the
list (but less than or equal to 255}, BASIC continues with the next execu t
able statement. If the value of expression is negative or greater than 255,
an "Illegal function call" error message is generated.

Example

In this example, the operator's response, ITEM, is used to direct program
flow to subroutines at lines 150, 300, 320, or 390 depending on whether the
user answers 1, 2, 3 or 4:

60
70
80

LET I TEM = 0
WHI LE (I TEM < 1) OR (I TEM > 4)

I NPUT "Which i tem do you want" : ITEM
90 WEND
1 00 ON ITEM GOSUB 150, 300 , 320 . 390

266

Microsoft XENIX BASIC Compiler

OPEN Statement

Syntax

OPEN "/i/enamc"flFOR modelll AS fl# Dfilcnumber flLEN=record-length�

OPEN " modc!?", fl# Dfilcnumbcr,filenamc fl, record-lcngth�

OPEN "PIPE:command" flFOR modeSD AS ll#]filenumber

Action

Allows 1/0 lo a file, device, or process.

Remarks

A file must be opened before any 1/0 operation can be performed on that
file.

In the first two syntaxes, OPEN associates a filcnumbcr with a filename.
The filenumber is an integer expression whose value is between I and 255.
The number is used to refer other 1/0 statements to the file, and is associ
ated with the file for as long as it is OPEN. The filename is a string expres
sion containing the name of a file or device.

For the first syntax, model is one of the following string expressions:

OUTPUT
INPUT

APPEND

Specifies sequential output mode.
Specifies sequential input mode.
Specifies sequential output mode and sets the file pointer
at the end of file. A PRINT# or WRITE# statement
will then extend (append to) the file.

If model is omitted, the default random access mode is assumed. Note
that, in this statement syntax, you cannot explicitly specify the random
input/output mode.

266

Statement and Function Reference

For the second syntax, mode!! is one of the following:

0 Specifies sequential output mode.
Specifies sequential input mode.

R Specifies random input/output mode.
A Specifies sequential output mode and sets the file pointer at

the end of file. A PRINT# or WRITE# statement will then
extend (append to} the file.

The record-length cannot exceed 32, 767 bytes. If the record- length. option is
not used, the default length is 128 bytes.

The third syntax, OPEN "PIPE: command" , allows your BASIC program to
open sequential files for output to, or input from, the child process specified
by command. For example

OPEN "P I PE : grep ' A l l ah ' koran" FOR I NPUT AS ff 2

executes the XENIX process "grep." The output from this process - all lines
containing "Allah" in the file named "koran" - is then stored in file
number 2. In this syntax, modes is one of the following:

OUTPUT
INPUT

Specifies sequential output mode.
Specifies sequential input mode.

You can also open files to PIPE: for random 1/0. This allows your BASIC
program to interact with a child process, sending output to the process,
and redirecting input from the process back to BASIC. (See Example 4 .)

In random 1/0 to a pipe, there is no field buffer. lustead, characters are
sent directly to and from a child process. Since there is no buffer with
OPEN PIPE: , the LEN option is ignored in this syntax. In addition,
FIELD, PUT, and GET statements are not allowed, and there is no field
overflow error.

For files opened to PIPE:, LOC{ l } and LOF(l } both return I if any charac
ters are ready to be read from tbe pipe. If there are no characters, they
both return 0. EOF returns - 1 (true) if no processes have the pipe opened
for output and no data is available to be read from the pipe. If the child
process is still active, EOF returns 0 (false).

You can also open XENIX pipes with syntax 2; once again, if you try to
specify the record-length option, it will be ignored, since there is no field
buffer to a pipe. For more information on pipes and the OPEN

267

Microsoft. XENIX BASIC Compiler

"PIPE: command" , sec Section 4 . 1 , "Device Independent Input/Output."

Note

A file may be opened under more than one file number if that file is ran
dom access or sequential input. However, if a sequential file is being
opened for output, it may be opened under only one file number assign
ment at a time.

Example 1

This example opens the file named MAILING.DAT, assigns it the number I ,
and allows data to be added to it without destroying its current contents.
10 OPEN "MAI L I NG . DAT" FOR APPEND AS 1

Example 2

This example opens the file named INVEN for sequential input as file
number 2:

10 OPEN " I " , 2 , " I NVEN "

Example 3

This opens MAILERS.DAT for input from the keyboard:
10 OPEN "KYBD : MAI LERS . DAT" FOR I NPUT AS 6

288

Statement and Function Reference

Example 4

The following program fragment opens a PIPE: to the XENIX fgrep com
mand, sends it data from the array PHONELIST$, then stores the output
from fgrep in the array CODE$.
100 REM * PHONELI ST$ I S A L I ST OF NAMES AND PHONE NUMBERS .
1 10 REM * THI S PROGRAM EXTRACTS THE NAME & PHONE NUMBER OF
1 20 REM * EVERY PERSON LIVING I N AREA CODE 301 . AND STORES
1 30 REM * THI S I NFORMATI ON IN THE Af:{RAY CODE$.
140 DI M PHONELI ST$ (1000)
150 OPEN "PIPE : fgrep ' (301) ' " AS # 1
160 J = 0
170 FOR I = 0 TO 1000
1 80 PRI NT# l . PHONELI ST$ (1)
190 I F LOC (l) = 0 THEN 300
200 L I NE I NPUT#l . CODE$ (J)
2 1 0 J = J + 1
2 20 NEXT I
300 CLOSE # 1

269

Microsoft. XENIX BASIC Compiler

OPTION BASE Statement

Syntax

OPTION BASE n

Action

Declares the minimum value for array subscripts.

Remarks

The argument n must be either 0 or 1 .

This statement determines whether array subscripts may have values less
than one. If n is I , then 1 is the lowest value possible; if n is 0, then 0 is the
lowest possible value. The default base is 0.

If a program includes an OPTION BASE statement, that statement must
execute before any arrays are defined or used.

Frequently, a program is built to find an inserted array item based on the
order in which the array was filled. If the option base is O, the array item
that was the nth loaded would exist as array item n- 1 . However, if the
option base is 1 , the nth item loaded into the array would exist as array
item n.

Example 1

Linc I O in the following program fragment overrides the default value of
zero, so the lowest value a subscript in an array may have in this program
is I :
1 0 OPTION BASE 1
20 D I M A (3)
30 FOR 1 %=1 TO 3 : A (I%) = ! % : NEXT
40 FOR J%;::1 TO 3 : PR I NT "A (" : J% : ") = " : A (J%) : NEXT

Output:
A (1) = 1
A (2) 2
A (3) 3

270

Statement and Function Reference

Example 2

The following example is similar to Example 1 , except that now the default
base, 0, is the lowest array subscript:

10 DIM A (3)
20 FOR I%=0 TO 2 : A (I%) = I% + l : NEXT
40 FOR J%=0 TO 2 : PRINT "A (" : J% : ") = " :A (J%) : NEXT

Output:

A { 0) = 1
A (1) = 2
A (2) = 3

271

Microsoft XENIX BASIC Compiler

PEEK Function

Syntax

PEEK(n)

Action

Returns the byte (a decimal integer in the range 0 to 255) read from the
indicated memory location (n).

Remarks

The returned value is an integer in the range 0 to 255. The argument (n)
must be in the range 0 to 65535 (provided you have requested a full seg
ment of memory with CLEAR).

BASIC generates an "Il legal function call" error if (n) is outside of BASlC's
user-readable data space. This space includes BASIC's variables and stack ,
the user's program, variables and strings.

PEEK is the complementary function of the POKE statement.

See Also

POKE, VARPTR, CLEAR

Example

This example retrieves the byte stored in memory location H5AOO:
A=PEEK (&HSAOO)

272

Stntement and Function Reference

POKE Statement

� Syntax

POKE address, byte

Action

Stores byte in memory location address.

Remarks

The arguments address and byte are integer expressions. The expression
address represents the address of a memory location; byte is the data bytt!,
in the range 0-255. The address must be in the range 0 to 65535 (providNl
you have requested a full segment of memory with CLEAR) .

The complementary function to POKE is PEEK. The argument to PEEK is
an address from which a byte is to be read.

Warning

Use POKE carefully. Altering system memory can cause
unpredictable-and frequently fatal-system errors.

See Also

CLEAR, PEEK, VARPTR

Example

This example stores the hexadecimal number HFF in memory location
5AOO:
10 POKE &HSAOO , &HFF

273

Microsoft XENIX BASIC Compiler

POS Function

Syntax

POS(n)

Action

Returns the current horizontal (column) position of the pointer for the
screen device SCRN: .

Remarks

The leftmost screen position is I .

The argument n is a dummy argument, and has no significance.

See Also

LPOS

Example

This example causes the speaker to beep if the pointer is past column 60:
IF POS (X) >60 THEN PRI NT CHR$ (7)

274

Statement and Function Reference

PRINT# , PRINT# USING Statements

� Syntax

PRINT# /ilenumber,[USING string-exp;D expression-list

Action

Writes data to a sequential file.

Remarks

The filenumber is the number used when the file was opened for output.
The string-exp consists of formatting characters as described in "PRINT
USING." The expressions in expression-list arc the numeric or string expres
sions that will be written to the file.

PRINT# does not compress data. An image of the data is written to th(•
file, exactly as it would be displayed on the terminal screen with a PRINT
statement. For this reason, you should be careful to delimit the data so it
will appear correctly in the file.

In the list of expressions, you should delimit numeric expressions with semi
colons. For example,
PRI NT# l , A : B : C : X : Y : Z

(If you use commas as delimiters, the extra blanks that. are inserted
between print fields will also be written to the file.)

You must separate string expressions in the list. To format the string
expressions correctly in the file, use explicit delimiters in the list of expres
sions.

For example, let A$ ="CAMERA" and B$="93604-1 " . The statement
PRINT# 1 ,A$;B$ would write CAMERA93604-l to the file. Because
there are no delimiters, this could not be input as two separate strings. To
correct the problem, insert explicit delimiters into the PRINT statement. as
follows: PRINT# 1 ,A$;" ," ;B$ The image written to the file is
CAMERA,93604- 1 . This can be read back into two string variables.

276

Microsoft. XENIX BASIC Compiler

If the strings themselves contain commas, semicolons, significant leading
blanks, carriage returns, or linef eeds, then write the quotation marks to the
file using CHR:j;(34).

If a PRINT# statement attempts to write data to a sequential file to which
access has been restricted by a LOCK statement, two options are available.
The first is to return cont.rol to the program immediately with an accom
panying error message. All usual error handling routines can trap and
examine this error. If error trapping is not active the error message is:
Permission denied

See Also

CHR$, LOCK, PRINT, PRINT USING, WRITE#

Example 1

A$=" CAMERA. AUTOMATI C"
8$=" 9 3604 - 1 "
PR I NT# l . A$: BS

Output to file:
CAMERA . AUTOMATI C 93604 - 1

The statement
I NPUT# l . AS . BS

would then input "CAMERA" to A$ and "AUTOMATIC 93604- 1" to B$.

Example 2

As you can see from Example 1 , the comma embedded in A$ caused the
INPUT statement to read part of A$ into rn . To separate these strings
properly in the file, write double quotation marks to the file image using
CHR$(34):

PRI NT# 1 . CHR $ (34) ; A$; CHR$ (34) ; CHR$ (34) ; B$: CHR$ (34)

This writes the following image to the file:
"CAMERA. AUTOMATIC"

And the statement

I NPUT# 1 , A$. 8$

276

"93604 - 1 "

Statement and Function Reference

inputs "CAMERA, AUTOMATIC" to A$ and " 93604-1" to B$.

Example 3

The PRINT# statement may also be used with the USING option to con
trol the format of the file. The following example writes the variables J, K,
and L to file number 1 . The variables are written with two decimal places
of accuracy, a dollar sign to the immediate left, and a comma at the end
(see PRINT USING for an explanation of the symbols):
PRI NT# ! , USI NG " $$ # ## . ## . " : J : K : L

277

Microsoft XENIX BASIC Compiler

PRINT Statement

Syntax

PRINT �expression-listD

Action

Outputs data on the screen.

Remarks

If expression-list is omitted, a blank line is printed. If eXJJression-lisl is
included, the values of the expressions are printed on the screen. The
expressions in the list may be numeric or string expressions. (String con
stants must be enclosed in quotation marks.)

Note that when writing program lines, you may use a question mark (?) as a
synonym for PRINT. When you list a line where you have used the ques-
tion marks as a shorthand way of writing "PRINT," BASIC will substitute �
the word "PRINT." This can be a time-saving shorthand tool, especially 1 1
when entering long programs with many consecutive PRINT statements.

Punctuation Marks and Print Positions

The position of each printed item is determined by the punctuation used to
separate the items in the list. In the list of expressions, a comma causes the
next value to be printed at the beginning of the next print zone, while a
semicolon causes the next value to be printed immediately after the last
value. Typing one or more spaces between expressions has the same effect
as typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing accordingly.

If the list of expressions terminates without a comma or a semicolon, a car
riage return is printed at the end of the l ine. If the printed line is longer
than the line width as set by the WIDTH statement, BASIC goes to the �
next physical line and continues printing.

278

Statement a n d Function Reference

Printed numbers are always followed by a space. Positive numbers are pre
ceded by a space. Negative numbers are preceded by a minus sign.

A single precision number with 7 or fewer digits is represented in the un�
caled format, as long as the unscaled format is as accurate as the scaled for
mat. For example, IE-7 is output as .0000001 (unscaled format), but
1 .2E-7 is output as 1 .2E-O'i (scaled format).

A double precision numlJ1�r wit.Ii 16 or fewr.r digits is represented in the uns
caled format, as long as the unscaled format. is as accurate as the scaled for
mat. For example, 10-16 is output as .0000000000000001 , but 1 .30-16 is
output as 1.30-16.

See Also

PRINT# , PRINT USING, WRITE

Example 1

In this example, the commas in the PRINT statement cause each value to
be printed at the beginning of the next print zone:

10 X=S
20 PRI NT X • 5 . X - 5 . X • (- 5) . x - 5
30 END

Output:
10 0

Example 2

- 25 31 25

I n this example, the semicolon at the end of l ine 20 causes the values in
l ines 20 and 30 to be printed on the same line. Line 40 causes a blank l inl'
to be printed before the next prompt:
10 I NPUT X
20 PRI NT X " SQUARED I S " x- 2 "AND" ;
30 PRI NT X "CUBED I S " x - 3
4 0 PRI NT

r-". 50 GOTO 10

Output
? 9

9 SQUARED I S 81 AND 9 CUBED I S 729

279

Mjcrosoft XENIX BASIC Compiler

7 2 1
2 1 SQUARED I S 441 AND 2 1 CUBED I S 9261

Example 3

In this example, the semicolons in the PRINT statement cause each value
to be printed immediately after the preceding value. (A number is always
followed by a space, and positive numbers are preceded by a space.) In line
40, a question mark is used instead of the word PRINT. When the line is
listed , however, the question mark is replaced with the word PRINT:
10 J = 0 : K = O
20 FOR X = 1 TO 5
30 J = J+S
40 K = K+ lO
50 ?J ; K ;
60 NEXT X

Output:
5 10 10 20 15 30 20 40 25 50

280

Statement and Function Reference

PRINT USING Statement

Syntax

PRINT USING string·ezp;ezpression-list

Action

Prinlis st.rings or numbers using a specified format.

Remarks

The expression-list contains the st.ring expressions or numeric expressions
that are to be printed, separated by semicolons.

The string-exp is a string literal (or variable) composed of special format
t.ing characters. These formatliing characters determine the field and the
format of the printed strings or numbers.

Formatting Characters: String Fields

When PRINT USING is used to print strings, one of three formatting char
acters may be used to format the st.ring field:

\ n spaces\

&

Specifies that only the first. character in the given string is
to be printed.
Specifies that 2 + n characters from the string are lio be
printed. If the backslashes are typed with no spaces, two
characters will be printed; with one space, three charac
ters will be printed, and so on. If the string is longer than
the field, the extra characters are ignored. If the field is
longer than the string, the string is left-justified in the
field and padded with spaces on the right.
Specifies a variable length string field . When the field is
specified with the ampersand (&), the st.ring is output.
without modification.

Here is an example of how the three string formatting characters (! ,\ \ ,&)
affect printed output:

281

Microsoft. XENIX BASIC Compiler

10 AS="LOOK" : BS=" OUT"
30 PR I NT US I NG " ! " : AS : BS
40 PRI NT US I NG "\ \ " : AS ; BS
50 PRI NT US I NG "\ \" : AS : BS : " ! ! "
60 PRI NT US I NG " ! " : AS :
70 PRI NT USI NG "&" : BS

Output:
LO
LOOKOUT
LOOK OUT ! !
LOUT

Formatting Characters: Numeric Fields

When PRINT USING is used to print numbers, the following special char
acters may be used to format t.he numeric field:

Example 1

A number sign is used to represent each digit position. Digi t
positions are always filled. If the number to be printed has
fewer digits than positions seecifit>d, the number will be right
justified (preceded by spaces) in the field.
A decimal point may be inserted at any position in the field. 1f
the format string specifies that a digit is to precede the
decimal point, the digit will always be printed (as 0, if neces
sary). Numbers arc rounded as necessary.

PRI NT US I NG " # # . ## " : . 78
0 . 78

PRI NT US ING " # # # . #W' : 987 . 654
987 . 65

PRI NT USI NG " # # . ## " : 10 . 2 . 5 . 3 . 66 . 789 . . 234
1 0 . 20 5 . 30 66 . 79 0 . 2 3

In the last example above, three spaces were inserted at the end of the for
mat string to separate the printed values on the line.

Example 2

PRI NT USI NG " +# # . ## " : - 68 . 95 . 2 . 4 . 55 . 6 . - . 9
- 68 . 95 + 2 . 40 +55 . 60 -0 . 90

PR I NT US I NG " # # . ## -
282

" : - 68 . 95 . 2 2 . 449 . - 7 . 01

Statement and Function Heferr.nce

66 . 95-

+

2 2 . 45 7 . 01 -

Example 3

A plus sign at the beginning or end of the format string causes
the sign of Lhe number (plus or minus) to be printed before 01·
after the number.
A minus sign at the end of the format field causes negative
numbers to be printed with a trailing minus sign.

PRI NT USING " • • # . # " : 1 2 . 39 . -0 . 9 . 765 . l
• 1 2 . 4 • - 0 . 9 765 . 1

PRINT USI NG " $$### . ## " ; 456 . 78
$456 . 78

PRI NT USI NG " • • $# # . ## " ; 2 . 34
• • • $ 2 . 34

* *

.1· 1 :j:

Example 4

A double asterisk at the beginning of the format string causes
leading spaces in the numeric field to be filled with asterisks.
The double asterisk also specifies positions for two more digits.
A double dollar sign causes a dollar sign to be printed to th<'
immediate left of the formatted number. The * * specifies two
more digit positions, one of which is the dollar sign.
The double asterisk dollar sign combines the effects of the dou
ble asterisk and double dollar sign symbols. Leading spaces
are asterisk-filled and a dollar sign is printed before the
number. u$ specifies three more digit positions, one of which
is the dollar sign.
The exponential format cannot be used with *** · When nega
tive numbers are printed, the minus sign will appear immed i
ately to the left of the dollar sign.

PRI NT US I NG " #### . ## . " ; 1 2 34 . 5
1 2 34 . 50 ,

PRINT USI NG "#### . . # # " ; 1 2 34 . 5
1 . 234 . 50

PRINT USI NG " ## . ## - - - - 11 ; 2 34 . 56
2 . 35E+02

283

Microsoft. XENIX BASIC Compiler

PRI NT USI NG " . #ff ff tt · · · · - 11 : - 888888
. 8889E +06-

PR I NT USING " + . t1 t1 · - - - u : l 2 3
+ . 1 2E +03

PRI NT USING "_ ! ## . ##_ ! " : 1 2 . 34
! 1 2 . 34 !

PRI NT USI NG " ## . tl# " : l l l . 2 2
%1 1 1 . 2 2

PRI NT USI NG II . #*I " : . 999
%1 . 00

%

284

A comma to the left of the decimal point in a formatting st.ring
causes a comma to be printed to the left of every third digit to
the left of the decimal point. A comma at the end of the for
mat string is printed as part of the string. A comma specifies
another digit position. The comma has no effect if used with
exponential (• • • ·) format.
Four carets (or up-arrows) may be placed after the digit posi
tion characters to specify exponential format. The four carets
allow space for E+xx to be printed. Any decimal point posi-
tion may be specified. The significant digits are left-justified, �
and the exponent is adjusted. Unless a leading + or trailing +
or - is specified, one digit position will be used to the left of
the decimal point to print a space or a minus sign.
An underscore in the format string causes the next character
to be output as a literal character.
The literal character itself may be an underscore by placing
" - - " in the format string.
If the number to be printed is larger than the specified numeric
field, a percent sign is printed in front of the number. If
rounding causes the number to exceed the field, a percent sign
will be printed in front of the rounded number.
If the number of digits specified exceeds 24, an "Illegal func
tion call" error results.

Statement and Function Reference

PUT Staternent

Syntax

PUT fi# Dfilenumber[, record-numberD

Action

Writes a record from a random buffer to a rant.lorn access file.

Remarks

The filenumber is the number under which the file was opened. If record
number is omitted, the record will assume the next available record number
(after the last PUT). The largest possible record number

is 4 ,294, 967 ,295 (or 232
- 1). The smallest record number is I .

You may use PRINT# , PRINT# USING, and WRITE# to put characters
in the random file buffer before executing a PUT statement. Generally, this
buffer is filled with FIELD, LSET and RSET statements.

In the case of WRITE# , Microsoft BASIC pads the buffer with spaces up to
the carriage return. Any attempt to read or write past the end of the buffer

286

Microsoft XENIX BASIC Compiler

causes a "Field overflow" error.

See Also

GET, PRINT# , WRITE#

Example

This example illustrates the steps needed to prepare data for a PUT state
ment like the one found in line 100:

10 OPEN "R" , # 1 , " F I LE " , 3 2
20 F I ELD #1 , 20 AS N$, 4 AS A$, 8 AS P$
30 I NPUT " 2 -DIGIT CODE " : CODE%
40 I NPUT "NAME " : PERSON$

70 LSET NS=PERSON$

100 PUT # 1 , CODE%
1 1 0 GOTO 30

286

RANDOIY.1IZE Statement

� Syntax

RANDOMIZE Uexpressionll

Action

Reseeds the random number generator.

Remarks

Stotemcnt and Function Reference

This statement reseeds the random number generator with expression, if
given, where expression is an integer between -32768 and 32767. If exprr.s·
sion is omitted, Microsoft BASIC suspends pl'Ogram execution and asks for
a value before randomizing by printing: "Random Number Seed (-32768 to
32767)?"

To reseed the random number generator, place a RANDOMIZE statement
at the beginning of the program and change the argument with each run. If
the random number generator is not reseeded, the RND function returns
the same sequence of random numbers each time the program is run.

Different random number seeds produce different sequences of random

2R7

Microsol't. XENIX BASIC Compiler

numbers.

See Also

RND

Example

10 RANDOMIZE
20 FOR I =l TO 3
30 PRI NT RND:
40 NEXT I

This displays the following (user enters 3 in response to the prompt):
Random Number Seed (- 32768 to 3 2767) ? 3

Possible output (in the decimal version):
. 26 3 347 26810455 . 88974887132645 . 97605919837952

288

Statement and Function Rererenee

READ Statement

Syntax

READ variable-tut

Action

Reads values from a DATA statement and assigns them to variables.

Remarks

You must always use a READ statement in conjunction with a DATA state
ment. READ statements assign DATA statement values to variables on a
one-to-one basis. READ statement variables may be numeric or string, and
the values read must agree with the variable types specified. If they du not
agree, a

"Syntax error" is generated.

A single READ statement may access one or more DA TA statements (they
will be accessed in order) , or several READ statements may access the same
DATA statement. If the number of variables in variable-list exceeds the
number of elements in the DA TA statements, an "Out of data" error mes
sage is printed. If the number of variables specified is fewer than the
number of elements in the DATA statements, subsequent READ statements
will begin reading data at the first unread element. If there are no subst>
quent READ statements, the extra data is ignored.

289

Microaoft XENIX BASIC Compiler

To reread DATA statements from the start, use the RESTORE statement.

See Also

DATA, RESTORE

Example 1

This program segment reads the values from the DATA statements into the
array A. After execution, the value of A(l) is 3.08, the value of A(2) is 5. 1 9,
and so on:
80 FOR I =l TO 10
90 READ A (I)
100 NEXT I
110 DATA 3 . 08 . 5 . 1 9 , 3 . 1 2 , 3 . 98 . 4 . 24
1 20 DATA 5 . 08 , 5 . 55 . 4 . 00 , 3 . 1 6 . 3 . 37

Example 2

The following program reads string and numeric data from the DA TA
statement in line 30:
10 PR I NT "CITY" , "STATE " , " ZIP"
20 READ C$. S$, Z
30 DATA "DENVER , " , COLORADO . 80211
40 PR I NT C$, S$, Z

Output:
CITY
DENVER ,

290

STATE
COLORADO

ZIP
80211

REDilvi Statement

r---, Syntax

Statement and Function Rcrcrcnce

REDIM �SHAREDD arravname(subscripts) �arravname (subscripts) ... D

Action

Changes the space allocated to an array that has been declared dynamic

Remarks

REDIM takes the following arguments:

Argument

SHARED

arrayname
subscripts

Description

Allows you to share variables among all the su h
programs in a compiland; must appear in a
REDIM statement at the main program level .
The name of the array you want to redimension
The new dimensions of the array

The REDIM statement c mges the space allocated to an array that has
been declared dynamic, E er as the result of a $DYNAMIC metacommand
or as the result of a varia.,.� in a DIM statement. Static arrays cannot
appear in a REDIM statement.

When a REDIM statement is compiled, all arrays declared in the statement
are treated as dynamic. At run time, when a REDIM statement is executed,
the array is deallocated (if it is already allocated) and then reallocated with
the new dimensions. Old array element values art> lost because all numeric
elements are reset to O, and all string elements are reset to 1 1 11 1 1 strings.

291

Microsoft. XENIX BASIC Compiler

Note

While it is possible to change the size of an array's dimensions with
REDIM , it is not possible to change the number of dimensions. For
example, the following statements are legal:
I $DYNAMI C

D I M A (SO , 50)
ERASE A
REDIM A (20, 15) 'A sti l l has 2 dimens ions

However, the following statements are not legal, and will produce an
"Array Already Dimensioned" compile-time error:
I $DYNAMI C
DIM A (S0 , 50)
ERASE A
REDIM A (S , 5 , 5) ' Changed number o f dimens ions from 2 to 3

See Also

DIM, ERASE

Example

The following program fragment shows a subroutine that deletes a record
from a random-access file; this subroutine uses RED I M to allocate a tem
porary string array (STORE$) to hold the records rrom STOCK . DAT. After
the records are stored in STORE $, STOCK • DAT is closed, deleted, then reo
pened , and the values in STORE $ are put back into the file. After this is
done, the ERASE statement deallocates STORE $.

GOSUB OPENF I LE
TOTAL% = LOF (l) /50
MAI N :

292

PRI NT " 1) Add a record"
PRI NT " 2) Update a record"
PRI NT " 3) Del ete a record"
PRI NT "4) End program"
PRI NT : I NPUT "What is your choice" ; BRANCH
ON BRANCH GOSUB ADDAREC, UPDATEREC: , DELETEREC . ENDPROG
GOTO MAIN

Statement and Function Reference

OPENf l LE : ' Open STOCK . DAT and a l l ocate r andom- fi l e bu f fo r s
OPEN " STOCK . DAT" E'OR RANDOM AS # 1 LEN=SO
F I ELD # 1 , SO AS RECORD$ ' Mu l tipl y - de fined fie l d
E' I ELD # 1 , 10 A S PART$, 3 5 AS DESC$, 5 AS QTY$

RETURN

DELETEREC :
I NPUT "Record number to del ete : " , REC%
GET # 1 . REC% : PR I NT DESC$
I NPUT " I s this the correct record " : CH$
I F CH$ < > "y" THEN GOTO DELETEREC
GET # 1 , TOTAL% ' Put the l ast record where
PUT # 1 . REC% ' the del eted record was
TOTAL% ::: TOTAL% - 1
REDIM STORE $ (TOTAL%) ' A l l ocate temporary a r ray
FOR 1% = 1 TO TOTAL% ' Store STOCK . DAT in array

GET # 1 . 1 %
STORE$ (! %) = RECORD$

NEXT
CLOSE # 1 : K I LL "STOCK . DAT" ' E rase STOCK . DAT
GOSUB OPENF I LE ' Reopen STOCK . DAT
FOR 1 % = 1 TO TOTAL% ' Put STORE$ a rr ay va l ues

("'.. LSET RECORD$ = STORE $ (! %) ' in STOCK . DAT
PUT # 1 . 1 %

NEXT
ERASE STORE$ ' Erase array STORE$

RETURN

293

Microsoft XENIX BASIC Compiler

REM Statement

Syntax

REM remark

Action

Allows explanatory remarks to be inserted in a program.

Remarks

REM statements are nol executed but are output exactly as entered when
the program is listed.

A GOTO or GOSUB statement can branch into a REM statement. Execu
tion will continue with the first executable statement after the REM state
ment.

You can add remarks to the end of a line by preceding the remark with a
sing)(> quotation mark instead of REM.

Warning

294

REM should not be used in a DATA statement, since it will be con
sidered legal data.

Statement and Function Reference

Example

Each of the following program segments shows a different way to add a
remark to a program:

1 20 REM • •Ca l cu l ate Average Ve l ocity • •
1 30 FOR I =l TO 20
1 40 SUM=SUM + V (I)
150 NEXT I

or
1 20 FOR I=l TO 20
1 30 SUM=SUM+V (I)
1 40 NEXT I

' CALCULATE AVERAGE VELOCI TY

296

Microsoft. XENIX BASIC Compiler

RESTORE statement

Syntax

RESTORE UlinenumberD

Action

Allows DATA statements to be reread from a specified line.

Remarks

After a RESTORE statement with no specified line number is executed, the
next READ statement accesses the first item in the first DATA statement in
the program. If linenumber is specified, the next READ statement accesses
the first item in the specified DATA statement.

See Also

DATA, READ

Example

RESTORE in this example allows the two READ statements in lines 10 and
30 to read the same DATA statement:
10 READ A , B , C
20 RESTORE
30 READ D, E . F
40 DATA 57 . 68 , 79
50 PRI NT A , B , C , D . E . F

Output:
57 68

206

79 57 68 79

RESUME Statement

r--,, Syntax

RESUME illinenumberD

RESUME D

RESUME NEXT

Action

St.atement a nd Function Reference

Continues program execution after an error recovery procedure ha!'I bee11
performed.

Remarks

Any one of the four syntaxes shown above may be used, depending upon
where execution is to resume:
RESU:ME or RESU:ME O

RESU!vfE NEXT

RESU!vfE linenumber

Execution resumes at the statement
that caused the error.
Execution resumes at the statement
immediately following the one that
caused the error.
Execution resumes at linenumber.

A RESUME statement that is not in an error handling routine causes a
"RESUME without error" error message to be printed.

Example

In this example, program execution resumes at line 80 after the error
handling routine is executed:

� 10 ON ERROR GOTO 900

900 IF (ERR=2 30) AND (ERL=90)
THEN PRI NT "TRY AGAIN" : RESUME 80

297

Microsoft XENIX BASIC Compiler

Compiler /Interpreter Differences

Interpreted BASIC programs that contain RESUME statements may
require modification before they are compiled . In the compiler, if' an error
occurs in a single-line function, both RESUME and RESUME NEXT
attempt to resume program execution at the line containing the function.

Under the compiler, the RESUME statement accepts both line number and
line label arguments.

Note

Statements containing error-handling routines should be compiled with
either the -E or -X compiler opt.ions.
Considerable extra code is required to support RESUME, RESU:tvIB 0
and RESUME NEXT statements. If you can rewrite your programs so
they contain RESUME linenumber : linelabel statements instead, you
can compile with the -E option, making the executable file significantly
smaller.

In the compiler , if an error occures in a single-line function, both RESUME
and RESU:tvIB NEXT attempt to resume program execution at the line con
taining the function. In the interpreter, RESUME NEXT attempts to
resume execution at the line following the one that caused the error.

298

St.otcmcnt ond Function Reference

RETURN Statement

r""".. Syntax

RETURN filinenumberD

Action

Returns execution control from a subroutine.

Remarks

The linenumber in the RETURN statement acts as it does with a GOTO:
that is, the program branches unconditionally to linenumber. If no

·

linenumber is given, execution begins with the statement immediately fol
lowing the last executed GOSUB statement.

See Also

GO SUB

Example

10 PRI NT "The Beginning"
40 GOSUB 100
60 PRI NT "The end ! " : END

100 REM • •Progr am execution wi l l now return to l ine 60 • •
1 10 RETURN

299

Mforosot\ XENIX BASIC Compiler

RIGHT$ Function

Syntax

RIGHT$ (:tli ,n)

Action

Returns the rightmost n characters of striug x$.

Remarks

The argument n is a numeric expression that returns a decimal number
that rounds to an integer in the range 0 to 32,767. (This argument is
rounded to an integer before RIGHT$ is evaluated.)

If n is greater than or equal to the number of characters in LEN(x$),
RIGHT$ returns x$. If n = 0, it returns the null string (length zero) .

See Also

LEFT$, MID$

Example

10 A$="DISK BAS I C "
2 0 PR I NT R l GHT$ (A$, S)
30 PRI NT RI GHT$ (A$, 2 }

Output:
BAS I C
I C

800

Statement and Function Reference

RrvIDIR Statement

Syntax

RMDIR "pathname"

Action

Removes an existing directory.

Remarks

The string expression pathname specifies the name of the directory which is
to be deleted. The pathname must be a string of less than 128 characters.

The pathname to be removed cannot be the working directory (.) or the
parent directory (..).

� See Also

CHDIR, MK.DIR

Examples

The following example deletes the directory SALES within the current
directory:
RMDI R "SALES"

The following example deletes the directory "proof1eaders" from the direc
tory " . . /publications/editorial" :
RMDI R " . . /publ ications/editor i a l /proo freaders"

301

Microsoft XENIX BASIC Compiler

RND Function

Syntax

RND Hx)D

Adi on

ket.ums a random number between 0 and 1 .

Remarks

The same sequence of random numbers is generated each time the program
is run unless the random number generator is reseeded with RANDOMIZE.

x < 0 always restarts the same sequence for any given x.

x > 0 or x omitted generates the next random number in the sequence.

x = 0 repeats the last number generated.

The values produced by the RND function vary with different implementa
tions of Microsoft BASIC.

See Also

RANDOMIZE

Example

This fragment generates three random 2-digit integers:
10 FOR I =l TO 3
20 PRI NT I NT (RND• l OO) ,
30 NEXT

Possible output:
24 30 1 1

302

St.at.cmcnt. and Function Reference

RSET Statement

Syntax

RSET s tring-variable=string-ezpre86ion

Action

Moves data from memory to a random file buffer in preparation for a PUT
statement.

Remarks

See "LSET" for a discussion of both LSET and RSET.

803

Microsoft XENIX BASIC Compiler

RUN Statement

Syntax

RUN filinenumberB

RUN /i/enamefi,RD

Action

Executes either the program currently in memory, or the program specified
by filename.

Remarks

If linenumber is specified, execution begins on that line. Otherwise, execu
tion begins at the lowest line number. BASIC always returns to command
level after executing a RUN statement.

With the second form of the syntax, the named file is loaded from a device
into memory and run. If there is a program in memory when the command
executes, the original program is no longer in memory.

In the second syntax, the filename must be that used when the file was
saved.

RUN closes all open files and deletes the current contents of memory before
loading the designated program. However, with the "R" option, all data
files remain open.

Example 1

This example executes the program currently in memory:
RUN

304

Statement. and Function Reference

Example 2

This example runs the program "NEWFIL," keeping open any files that
were open :
RUN "NEWF I L" , R

Example 3

This example runs the program currently in memory, starting with line 950:

RUN 950

Compiler /Interpreter Differences

RUN is used to invoke executable files created by the compiler, or by other
languages; unlike interpreted programs, compiled programs cannot directly
execute ".BAS" source files.

The syntax is the same as in the interpreter, however the XENIX BASIC
Compiler does not support the interpreted BASIC "R" option, which allows
all opened data files to remain open. If you want to run a new file, yet leave
all data files open, use CHAIN instead of RUN .

305

Microsoft XENIX BASIC Compiler

SADD Function

Syntax

SADD(�'li)

Action

Returns the address of the specified string expression, x$.

Remarks

You should use this function with care, since strings in string space can
move at any time if a string garbage collection is performed, such as when
you use the FRE function.

See Also

FRE

Example

This example prints the address of the string expression A$:
10 A$ = "New Arr iva l s "
2 0 PRI NT SADD (A$)

306

SGN Function

Syntax

SGN(:r)

Action

Indicates the value of x, relative to zero.

Remarks

If x > O, SGN(x) returns 1 .
I f x=O, SGN(x) returns 0.
If x<O, SGN(x) returns -J .

Example

Statement and Function Reference

� This fragment causes program execution to branch to line 100 if X is nega
tive, line 200 if X is O, and line 300 if X is positive:
50 ON SGN (X) + 2 GOTO 100 . 200 , 300

307

Microeon. XENIX BASIC Compiler

SHARED Statement

Syntax

SHARED variable ff,variable .•. u

Action

Gives a subprogram access to variables declared in the main program
without having to pass them as parameters.

Remarks

The argument. variable is either a variable name or an array name followed
by () .
By using either the SHARED statement in a subprogram, or the SHARED
attribute with CO?v!MON or DIM at the main program level, you can usP
variables in a subprogram without passing them as parameters. The
SHARED attribute shares variables among all subprograms in a module,
while the SHARED statement affects variables within a single subprogram.

Note

The SHARED statement only shares variables within a single compill'd
module. It does not share variables with modules compiled separately.
then linked.

The SHARED statement must appear only within a named subprogram; if
SHARED occurs outside a subprogram, a subroutine error occurs. See
"SUB . . . END SUB Statement."

308

Statement. and Function Reference

See Also

COMMON, DIM, SUB . . • END SUB

Example

The following program calls a subprogram CONVERT that converts the
input decimal number to its string representation in the given new base.
The string N $ is shared by the subprogram and the main program.
DEE" I NT A-Z
START :

I NPUT "Dec ima l number (input 0 to quit) : " , DECIMAL
If DECIMAL <= 0 THEN END
I NPUT "New base : 11 , NEWBASE
N$ = " "
PRI NT DECIMAL "base 1 0 equals " •
WHI LE DECI MAL

CALL CONVERT (DECIMAL . NEWBASE)
DECIMAL = DECI MAL\NEWBASE

WEND
PR I NT N$ " base" NEWBASE
PRI NT
GOTO START

SUB CONVERT (D, NB) STATI C
SHARED N$
R = D MOD NB
I F R < 10 THEN DIGIT$ = STR$ (R) ELSE DI GIT$ = CHR$ (R + 55)
N$ = RIGHT$ (DIGIT$, l) + N$

END SUB

Sample output:
Decima l number {input 0 to quit) : 238
New base : 15

2 38 base 10 equa l s lOD base 15

Decimal number (input 0 to quit) : 88
New base : 3

88 base 10 equals 10021 base 3

Decimal number (input 0 to quit) : 0

309

Microsoft. XENIX BASIC Compiler

SHELL Statement and Function

Function Syntax

z = SHELL(string·ezpression)

Statement Syntax

SHELL(string·e:tpression)

Action

Starts a child process.

Remarks

A process run under a SHELL command is called a "child process." With
the function syntax, this child process is run in background mode and is
executed by the XENIX command processor, sh, which executes the com
mand given by string-expression. In contrast, the SHELL statement exe
cutes string-expression and returns control to BASIC only when the child
process dies.

With the SHELL statement, if no argument is included, a shell is executed
that waits for commands from the standard input. Only a CONTROl.rD will
terminate this child shell.

In the function, BASIC starts an asynchronous process. The ident.ification
number of this system process is assigned to the numeric variable x. This
child process executes sh, which in turn executes the command passed in
string-expression. BASIC resumes execution immediately without waiting
for the child process to terminate.

Example 1

In this example, control passes to sh and the sort executes. Control returns f"""i
to BASIC only when the sort process is complete:
10 A$="sort -n de l iveries . fi l e >temp . fi l e "
20 SHELL (A$)

310

Statement and Function Reference

Example 2

In the following example, the SHELL function st.arts the execution of a sys
tem process, loaded to a string EXTERNAL$. Then it stores the process
identification in PROCESS! and prints it.
10 PROCESS ! = SHELL (EXTERNAL$)
20 PRI NT "Process I . D . - - > " ; PROCESS !

311

Microeol't XENIX BASIC Compiler

SIN Function

Syntax

SIN(z)

Action

Returns the sine of x, where x is in radians.

Remarks

To chane;
e degrees to radians, multiply the number of degrees by

3 . 14159/180.

COS and SIN are related by this formula:
COS(x) = SIN(x+3.14159/2).

See Also

COS, TAN

Example

PRI NT S I N (1 . 5)

Output (in the binary version of MS-BASIC):
. 9974951

312

SPACE$ Function

� Syntax

SPAC&�(n)

Action

Returns a string of spaces of length n.

Remarks

St.atement. and Function Reference

The numeric expression n must return a decimal number that rounds to an
integer in the range 0 to 32, 767. {The decimal number returned is rounded
to an integer before SPACE$ is executed.)

See Also

SPC

Example

10 FOR I =l TO 5
20 X$=SPACE$ (I)
30 PRI NT X$; I
40 NEXT I

Output:
1

2
3

4
5

313

Microsoft XENIX BASIC Compiler

SPC Function

Syntax

SPC(n)

Action

Generates n spaces in a PRINT statement.

Remarks

You may use SPC only with PRINT and LPRINT statements.

The numeric expression n must return a decimal number that rounds to an
integer in the range 0 to 32,767. (The decimal number returned is rounded
to an integer before SPC is executed.)

A semicolon (;) suppressing generation of a newline is assumed to follow the
SPC(n) function.

See Also

SPACE$, TAB

Example

PRI NT "OVER" SPC (lS) "THERE "

Output:
OVER THERE

3 1 4

Statement and Function Reference

SQR Function

Syntax

SQR(z)

Action

Returns the square root of x.

Remarks

The argument x must be a nonnegative number.

SQR returns a double precision value in the decimal version.

Example

� 10 fOR X=S TO 15 STEP 5
20 PRI NT X , SQR (X)
30 NEXT X

Output (in the decimal version of BASIC):
5

10
15

2 . 2 360679774998
3 . 1 6 2 2776601684
3 . 8729833462074

315

Microsoft XENIX BASIC Compiler

STATIC Statement

Syntax

STATIC variable fi,variable . .. D

Action

Designates simple variables or arrays as local to a function definition or
subprogram, and preserves their values when the subprogram or function is
exited and then reentered

Remarks

The argument variable is either a variable name or an array name followed
by an integer constant in parentheses. This integer constant represents the
number of dimensions in the array, not the actual value of the dimensions.

The STATIC statement can appear only within a named subrout.ine or mul-
tiline function definition; if the statement occurs outside either one of �
these, a subroutine error (SB) occurs (see SUB . . . END SUB and DEF FN).

Normally, simple variables or arrays that are declared or ref erred to in a
subprogram are considered local to that program, with initial values of zero
or null string assumed. However, if the subprogram is exited and then
reentered, the values contained in the variables may have changed. By
declaring the variables in a STATIC statement, you guarantee that subpro-
gram variables will retain their previous values.

Simple variables or arrays declared within a STATIC statement override
any shared variables or arrays with the same name.

Usually, variables used in multiline function definitions (DEF FN) are glo
bal; however, you can use the STATIC statement inside DEF FN to declare
a variable as local to that function only.

816

St.atcment and Function Rerercnce

Note

I""., Do not confuse the STATIC statement with the STATIC that is part of
the SUB ... END SUB syntax or with the $STATIC metacommand. The
STATIC attribute in SUB . . . END SUB shows that the subprogram is
nonrecursive, while $STATIC statically allocates memory for arrays.

See Also

DEF FN, SHARED, SUB ... END SUB

Example 1

This example contrasts the STATIC and SHARED statements within a sub
program, AUGMENT. The variables R and R are both local to this subpro
gram, while the variables REP and NUM are shared between the main pro
gram and the subprogram. The STATIC R , N statement ensures that R
and N retain the last values assigned to them each time the main program
calls the subprogram.
REP = 0 : NUM = 0
PRI NT "Be fore l oop . rep = " : REP ; " , num = " : NUM:
PR I NT " . r = " : R : " . n = " : N
FOR I = 1 TO 10

CALL AUGMENT
NEXT
PRI NT "After l oop . rep = " : REP : " . num
PRI NT " . r = " : R : " . n = " : N
END

" : NUM:

SUB AUGMENT STATIC
SHARED REP . NUM
STATI C R , N
R = R + 1

' SHARED WITH MAIN PROGRAM
' NOT SHARED WITH MAI N PROGRAM
' BOTH R & N I N I TI ALLY EQUAL 0

N = N + 2
REP = R
NUM = N

END SUB

I"""'.. The output from the above example is:
Be fur e l oop . rel> '"' 0 , num 0 , r '"' 0 , n = 0
A fter l oop , rep = 10 , num = 20 , r = 0 , n = O

317

Microsoft XENIX BASIC Compiler

Example 2

The following program searches for every occurrence of a certain string
expression (stored in the variable OLD$) in the specified file and replaces
that string with the string stored in NW$. The name of the file with these
changes is the old filename with the extension " .NEW" .

The program also prints the number of substitutions and the number of
lines changed.
I NPUT "Name o f fi l e" : f l $
I NPUT " String to repl ace" : OLDS
I NPUT "Repl ace with" : NW$
REP = 0 : NUM = 0
M = LEN (OLD$)
OPEN F l $ FOR I NPUT AS # 1
CALL EXTENSI ON
OPEN F2$ FOR OUTPUT AS # 2
WHI LE NOT EOF (l)

LI NE I NPUT # 1 , TEMP$
CALL SEARCH
PRI NT # 2 , TEMP$

WEND
CLOSE
PR I NT "There were " : REP : " substitutions in " : NUM ; " l ines . "
PR I NT " Subs t i tutions are in fi le " ; F 2 $
END

SUB EXTENSI ON STATIC
SHARED F l $, F 2 $
MAR K = I NSTR (Fl$, " . ")
I F MARK = 0 THEN

F 2 $ = Fl $ + " . NEW"
ELSE

F2$ = LEFT$ (Fl$, MARK - 1) + " . NEW"
END I F

END SUB

SUB SEARCH STATIC

318

SHARED TEMP $, OLD$, NW$, REP, NUM , M
STATI C R
MARK = I NSTR (TEMP$, OLD$)
WHI LE MARK

PART1 $ = LEFT$ (TEMP$, MARK - 1)
PART2 $ = M I D$ (TEMP$, MARK + M)
TEMP$ = PART1$ + NW$ + PART2$
R = R + 1
MARK = I NSTR (TEMP$. OLD$)

WEND
I F REP = R THEN

EXIT SUB

Statement and Function Reference

ELSE
REP R
NUM = NUM + l

END I F
E ND SUB

The output from the above example might look like this:
Name o f fi l e? CHAPl . S
Str ing to replace ? CHAPTER 1
Rep l ace with ? INTRODUCTI ON
There were 2 3 substitutions in 1 9 l ines .
Substituti ons are in fi l e CHAP l . NEW

The file CHAP l . NEW now contains every line in CHAP l . S, with each
occurrence of the string CHAPTER 1 replaced by INTRODUCTI ON.

319

Microsoft. XENIX BASIC Compiler

STOP Statement

Syntax

STOP

Action

Terminates program execution and returns lo comman<l level.

Remarks

You may use STOP statements anywhere in a program to terminate execu
tion. STOP is often used for debugging.

When a STOP is encountered, the message "Break in l ine nnnnn" . 1s
printed.

The STOP statement does not close files.

BASIC always returns to command level after executing a STOP.

Example

In line 130 of this fragment, program execution stops if the value -1 has
been assigned to DEBUG:

20 LET DEBUG=l

130 I F DEBUG THEN STOP

320

Statement and Function Rcrcrcnce

STR$ Function

� Syntax

STR$ (z)

Action

Returns a string representation of the value of' x.

Remarks

The argument x can be any numeric expression.

If x is positive, the string returned by STR$ contains a leading blank (the
space reserved for the plus sign).

� See Also

VAL

Example

10 DATA - 5 . 6 , 789 , 1 . 09 . 2 3
1 5 FOR I = 1 TO 4
20 READ A
30 LET A$ = STR$ (A)
40 PRI NT A$. LEN (A$)
30 NEXT

Output:
- 5 . 6

789
1 . 09
2 3

4
4
5
3

321

Microsoft. XENIX BASIC Compiler

STRING$ Function

Syntax

STRINGlfi (m,n)

STRINGlli (m,�'!:)

Action

The first syntax returns a string of length m whose characters all have
ASCII code n.

The second syntax returns a string of length m whose characters are all the
first character of x$.

Remarks

The numeric expression m
must return a decimal number that rounds to an integer in the range 0 to

32,767. (The decimal number returned is rounded to an integer before
STRING$ is executed.)

Example

10 X$ = STR I NG$ (10 . 45)
15 Y$ = "ABCDE "
20 ZS = STR I NG$ (5 . Y$)
20 PRI NT XS ; "MONTHLY REPORT" ; X$
25 PRI NT 2$

Output:
- - - - - - - - - -MONTHLY REPORT- - - - - - - - -
AAAAA

322

St.at.cmcnt and Function Reference

SUB . . . END SUB Statements

� Syntax

SUB global-namell(parameter-list)] STATIC

llEXIT SUB]

END SUB

Action

Marks the beginning and end of a subprogram

Remarks

SUB takes the following arguments:

Argument

global-name

parameter-list

Description

A variable name up to 31 characters long. This name.•
cannot appear in any other SUB statement in the saml'
program or the user library. If duplicate names are
present, the linker will bind to the local subroutine in
the user library, and no error message will appear.

Contains the names of simple variables and arrays
passed to the subprogram by a CALL statement in the
main program; each name is separated from a preced
ing name in the list by a comma. Note that these vari
ables and arrays are passed by reference, so any change
to an argument's value in the subprogram also changes
its value in the calling program.
An array name in a SUB statement is followed by an
integer constant in parentheses. This integer constant
represents the number of dimensions in the array, not
the actual value of the dimensions.

323

Microsoft XENIX BASIC Compiler

STATIC Shows that the subprogram is nourecursive; that is, it
does not contain an instruction that causes the subpro
gram to call itself, or call a second subprogram, which
in turn calls the first subprogram. This version of
BASIC supports only nonrecursive subprograms, and
generates an error if you omit STATIC.

A subprogram is similar to a multiline function. However, unlike a multi
line function, a subprogram does not return a value associated with its
name, and therefore cannot appear as part of an expression.

SUB and END SUB mark, respectively, the beginning and end of a subpro
gram. You can use the EXIT SUB statement to exit a subprogram under
abnormal conditions such as an error. Because EXIT SUB does not define
the end of the subprogram, it should not be used to exit a subprogram
under normal conditions.

Subprograms are called by a CALL statement. When a subprogram is
exited and later reentered, the value in a particular subprogram variable
may be affected by another part of your program. To guarantee that the
variable retains its assigned value upon reentry to the subprogram, use the
STATIC statement.

Any subprogram variables or arrays are considered local to that subpro
gram, unless they are explicitly declared as shared variables in a SHARED
statement.

User defined functions are not permitted inside a SUB . . . END SUB block.

Note

You cannot use GOSUB, GOTO, or RETURN to enter or exit a subpro
gram

See Also

CALL, SHARED, STATIC

324

Statement and Function Reference

Example

In this example, the main program calls a subprogram, L I NE SEARCH,
which searches for the given string, P $, in each line of input from file F $.
When the subprogram finds P$ in a line, iL prints the line, along with the
number of the line.
I NPUT " F i l e to be searched" ; f$
I NPUT "Pattern to search for " ; P$
OPEN f$ FOR I NPUT AS #1
WH I LE NOT EOF (l)

L I NE I NPUT #1 . TEST$
CALL L I NESEARCH (TEST$, P$)

WEND

SUB L! NESEARCH (TEST$. P$) STATI C
STATI C NUM
NUM =- NUM + 1
X = I NSTR (TEST$. P$)
I f X "' C • THEN

E X I T SUP.
ELSE I F X > 0 THEN

PRI NT "Line # " ; NUM : " : " : TEST$
END I f

END SUB

The output from the above example might look like this:
f i l e to be searched? search . bas
Pattern t o search for ? sub

Output:
Line # 9 : SUB LINESEARCH (TEST$, P$) STATI C
Line # 14 : EXI T SUB
Line # 18 : END SUB

325

Microsoft. XENIX BASIC Compiler

SVV.A.:P Statement

Syntax

SW AP variablel, variablef

Action

Exchanges the values of two variables.

Remarks

Any type variable (integer, single precision, double precision, string) may
be swapped, but the two variables must be of the same type or a "Type
mismatch" error results.

If the second variable is not already defined when SWAP is executed, an
"Illegal function call" error will be generated.

This statement is quite useful and efficient in sorting routines. Instead of
storing a lesser value to a temporary variable, transferring the greater
value to the lesser's old variable, and then storing the temporary variable's
value to the greater's old variable, one can simply SWAP the two variables'
values. This turns a three-step process into a one-step process.

Example

10 A$= " ONE " : 8$=" ALL "
20 PRI NT A$ C$ 8$
30 SWAP A$, 8$
40 PRI NT A$ C$ B$

Output:
ONE FOR ALL
ALL FOR ONE

326

C$="FOR"

Statement and Function Reference

SYSTEM Statement

Statement Syntax

SYSTEM

Action

Closes all open files, and exits BASIC.

Remarks

When a SYSTEM command is executed, all open files are closed and control
returns to the operating system.

327

Microsoft XENIX BASIC Compiler

TAB Function

Syntax

TAB(n)

Action

Moves the print position to column n.

Remarks

The numeric expression n must return a decimal number that rounds to an
integer in the range 0 to 32, 7 67. (The decimal number returned is rounded
to an integer before TAB is executed.)

Ir the current print position is already beyond space n, TAB goes to thal
position on the next line. Space 1 is the leftmost position, and the right
most position is the width minus one.

You may use TAB only in PRINT and LPRINT statements.

A semicolon (;) suppressing generation of a newline is assumed to follow the
TAB(ri) function.

See Also

PRINT, SPC

Example

10 PR I NT "NAME " : TAB (25) : "AMOUNT" PRI NT
20 READ A$, B$
30 PR I NT A$; TAB (25) ; B$
40 DATA "G . T . JONES" . " $ 25 . 00"

Output:
NAME AMOUNT

G . T . JONES $ 25 . 00

328

Statement. and Function Reference

TAN Function

Syntax

TAN(x)

Action

Returns the tangent of x.

Remarks

The argument x should be given in radians, where l radian = 180 degr<'e::;.
To convert degrees to radians, multiply degrees by 3 .14159/180.

If TAN overflows, the "Overflow" error message is displayed, machine
infinity with the appropriate sign is supplied as the result, and execution
continues.

See Also

COS, SIN

Example

10 PRI NT TAN (9)

Output (in the decimal version of BASIC):
- • 45231565944189

329

Microaol't XENIX BASIC Compiler

TIME$ Function

Function Syntax

TIME$

Action

Retrieves the current time.

Remarks

The TIME$ function returns an eight-character string in the form where hh
is Lhe hour (00 through 23}, mm is minutes (00 through 59}, and ss is
seconds (00 Lhrough 59).

Example

This example puts the value of the clock in a variable, then prints that
variable:
10 CHRONOS$ = TIME$
20 PRI NT CHRONOS$

Possible output:
00 : 2 3 : 46

830

Statement and Function Rercrcncc

TRON, TROFF Statement

Syntax

TRON

TROFF

Action

Traces the execution of program statements.

Remarks

As an aid in debugging, the TRON statement (executed in either direct or
indirect mode) enables a trace flag that prints each line number of the pro
gram as it is executed. The numbers appear enclosed in square brackets.
The trace flag is d isabled with the TROFF statement (or when a NEW com
mand is executed) .

Examples

These two examples achieve similar results: the first one enables TRON
with a statement in direct mode; the second includes TRON and TROFF in
the body of the program.
10 K=lO
20 FOR J=l TO 2
30 L= K + 10
40 PRI NT J : K : L
50 K= K + 10
60 NEXT J
70 END

In direct mode, enter
TRON
RUN

331

Microsoft XENIX BASIC Compiler

Output (the three lines of numbers enclosed in brackets show the order of
program execution - twice through the loop - and the two lines to the right
are the output from the PRINT statement in line 40):
[10] (20] (30] (40] 1 10 20
(50] [60] (30] [40] 2 20 30
[50] [60] [70]

TRON and TROFF statements inside a program give the same result:
5 TRON
10 K=lO
20 FOR J=l TO 2
30 L= K + 10
40 PR I NT J ; K : L
50 K= K + 10
60 NEXT J
65 TROFF
70 END

Output:
(10) (20] (30] (40] 1 10 20
(50] (60] (30] (40] 2 20 30
(50) (60) [65)

332

Statement and F unction Reference

UBOUND Function

Syntax

UBO UND(array�,dimensionil)

Action

Returns the upper bound (largest available subscript} for the indicated
dimension of an array.

Remarks

!'he argument dimension is an integer from 1 to the number of dimensions
m array.

In the array "ACCOUNT (A , B , C , D) ," A is dimension 1, B is dimension 2, C
is dimension 3, and D is dimension 4. So the function
UBOUND (ACCOUNT , l)

finds the largest subscript in dimension A, the function
UBOUND (ACCOUNT , 2)

finds the largest subscript in dimension B, and so on.

You can use the shortened syntax UBOUND(array) for one-dimensional
arrays, since the default value for dimension is 1 .

333

Microsoft XENIX BASIC Compiler

Use the LBOUND function to find the lower limit ol' an array dimension.

See Also

LBOUND

Example

LBOUND and UBOUND can be used together to determine the size of an
array passed to a subprogram, as in the following program fragment:
CALL PRNTMAT (ARRAY ())

SUB PRNTMAT (A (2)) STATIC
FOR I % = LBOUND (A. 1) TO UBOUND (A, 1)

FOR J% = LBOUND (A, 2) TO UBOUND (A , 2)
PRI NT A (!%. J%) : " " ;

NEXT J%
PRINT : PRI NT
NEXT l%

END SUB

334

Statement a nd F unction Rererencc

UNLOCK Statement

Syntax

UNLOCK ll# Ofilenumber RrecnumlD UTO recnu�

Action

Releases access restrictions to specified portions of a file.

Remarks

The filenumber is the number with which the fi le was opened.

The expressions recnuml and recnum2 are record nuy;.ibers in the file. Tht•
largest possible record number is 4,294, 967 ,295 (or 2 - I) . The smallest
record number is I.

UNLOCK releases locks applied to the specified file. If recnuml or a rangt>
of record numbers are specified and the file is concurrently open in random
mode, only the records in the range are unlocked.

Note

The UNLOCK statement is complementary to the LOCK statement .

See Also

LOCK

Example

This unlocks records 1 through 32 in file number 4:
650 UNLOCK #4 . 1 TO 3 2

836

Microsoft XENIX BASIC Compiler

VAL Function

Syntax

VAL(�)

Action

Returns the numerical value of string x$.

The VAL function strips leading blanks, tabs, and linefeeds from the argu
ment string. For example, VAL{" -3") returns the numeric value -3.

Do not use VAL to convert random file strings into numbers. For that pur
pose, use the CVI, CVS and CVD functions.

See Also

STR$, CVI, CVS, CVD

Example

This example shows string zip code values being turned into numbers so
they can be tested for location:
10 READ NAME $, CITY$, STATE $, ZIP$
20 IF VAL (ZIP$) < 90000 OR VAL (ZIP$) > 96699 _

THEN PRI NT NAME$ TAB (25) "OUT OF STATE "
30 I F VAL (ZIP$) >= 90801 AND VAL (ZIP$) <= 90815

THEN PRI NT NAME $ TAB (25) "LONG BEACH"

336

Statement and Function Refcrm1cc

V ARPTR Function

� Syntax

V ARPTR(variable-name)

V ARPTRl/ilenumber)

Action

Returns the address of the first byte of data identified by variable-name or
the start of a file data buffer.

Syntax 1 Remarks

The program must assign a value to variable-name before it executes
V ARPTR; otherwise, BASIC generates an Illegal function call error message.

You can use any type of variable (numeric, string, or array) within a
V ARPTR function. For string variables, the address of the first byte of the
string descriptor is returned. (See Section 5.2.3, "Assembly Language Cod
ing Rules," for more information about the string descriptor.) The address
returned is a number in the range 0 to 4,294,967 ,295.

This form of VARPTR is most often used to obtain the address of a vari
able or array so that it can be passed to an assembly language subroutine.
A function call of the form V ARPTR(A(O)) is usually used when passing an
array, so that the element with the lowest address in the array is returned.

Note

All simple variables should be assigned before calling V ARPTR for an
array element because the addresses of the arrays change whenever a
new simple variable is assigned.

337

Microsoft XENIX BASIC Compiler

Syntax 2 Remarks

This second form of VARPTR is generally used to obtain the address of a
file data buffer so that it may be passed to an assembly language subrou
tine.

This function should immediately precede the place in a program where it,s
resulting value is to be used. This is because closing another file may move
the memory location of the file data buffer associated with filenumber.

See Also

PEEK, POKE

Example

This obtains t,he starting address of the data buffer for the file opened as
number 1 , then assigns that address to the variable X:
100 X = VARPTR (l)

338

Statement and Function Referencl'

WlfilE . . . WEND Statement

� Syntax

WHILE ezpression

UstatementsD

WEND

Action

Executes a series of statements in a Joop as long as a given condition is
true.

Remarks

If the expression is true (or it evaluates to a non-zero number), then stall!·
ments are executed until the WEND statement is encountered . BASIC thl?n
returns to the WHILE statement and checks expression. If it is st.ill true,
the process is repeated. If it is not true (or if it is equal to zero) , execution
resumes with the statement following the WEND statement.

WHILE ... WEND loops may be nested to any level. Each WEND will matcli
the most recent WHILE. An unmatched WHILE statement causes a
"WHILE without WEND" error message to be generated, and an
unmatched WEND statement causes a "WEND without WHILE" error mes
sage to be generated.

Warning
Do not direct program flow into a WHILE ... WEND loop without enter
ing through the WHILE statement, as this wiJl confuse BASIC's struc
turing of control flow.

339

Microsoft XENIX BASIC Compiler

Example

The following fragment performs a bubble sort on the array A$. Line 100
makes FLIPS true by assigning it a non-zero value; this forces one pass
through the WHILE . . . WEND loop. When there are finally no more swaps,
then all the elements of A$ will be sorted, FLIPS will be false (that is, equal
to zero) , and the program will continue execution with the line following
150:
90 REM • • BUBBLE SORT ARRAY A$ WHICH HAS J ELEMENTS • •
100 FLI PS=l ' FORCE ONE PASS THROUGH LOOP
1 1 0 WHI LE FLIPS
1 1 5 FLI PS==O
1 20 FOR I =l TO J - 1
1 30 I F A$ (l) >A$ (l + l) THEN SWAP A$ (I) . A$ (I + l) : FLI PS=l
140 NEXT I
1 50 WEND

340

Statement and Function Reference

WIDTH Statement

� Syntax

WIDTH Uoutput-device,D UnD

WIDTH # filenumberU,nD

Action

Sets the printed line width in number of characters for any output device.

Remarks

The output-device may be SCRN: , COMI: or LPTl: , and if not specified is
assumed to be SCRN:.

The integer n is the length of the output line for the given device. How
ever, the position of the pointer or the print head, as given by the POS or
LPOS function, returns to zero after position 255. The default line width
for the screen is 255 (infinite) .

A WIDTH statement for a device that is already open will have no effect on
the line width for that device until that device is closed and subsequenUy
reopened.

If n is 255, the line width is "infinite" ; that is, BASIC never inserts a new
line.

Valid width for all devices is I to 255 characters, inclusive. Any value out
side these ranges results in an "Illegal function call" message, and the pre
vious value is retained.

The filenumber is a numeric expression assigned to a file. This is the
number of the file that is to have a new width assignment.

If the device is specified as SCRN:, the line width is set at the screen.

If the output device is specified LPTI :, the line width is set for the line
printer.

341

Microsoft XENIX BASIC Compiler

When files are first opened, they take the device width as their default
width . The width of opened files may be altered by using the second
WIDTH syntax shown above.

See Also

LPOS, LPRINT, POS, PRINT, TAB

Example 1

In this example, the width of the line printer is set to 1 20 columns:

100 WI DTH " LPTl : " . 1 20

Example 2

In this example, the width of the standard output device is set to 60:
1 00 WIDTH . 60

Example 3

In this example, the record width in file # 1 is set to 40 columns:

100 WI DTH # 1 . 40

342

Statement and Function Reference

WRITE# Statement

� Syntax

WRITE# /ilenumber,ezpression-list

Action

Writes data to a sequential file.

Remarks

The filenumber is the number under which the file was opened for OUTPUT
or APPEND in the OPEN statement. The expressions in the expression-list
are string or numeric expressions. They must be separated by commas.

The difference between WRITE# and PRINT# is that WRITE# inserts
commas between the items as they are written to the file and delimits
strings with quotation marks. Therefore, it is not necessary for you to put
explicit delimiters in the list. A newline is inserted, once the last item in
the list has been written to the file.

If a WRITE# statement attempts to write data to a sequential file to
which access has been restricted by a LOCK statement, two options are
available. The first is to return control to the program immediately with
an accompanying error message. All of BASIC's usual error handling rou
tines can trap and examine this error. If error trapping is not act.ive the
error message is:
Permiss ion den ied

See Also

OPEN, LOCK, PRINT# , WRITE

� Examples

These two short programs, and their output, illustrate the difference
between WRITE# and PRINT# statements:

10 A$="TELEV I S I ON . COLOR" : B$="$599 . 00"
20 OPEN "O" , l . "PRICE S "

843

Microsoft XENIX BASIC Compiler

30 PRI NT # l , A$. B$
40 CLOSE # 1
50 OPEN " I " . L "PR ! CES"
60 I NPUT #l . A$. B$
70 PRI NT A$; TAB (25) : B$

Output:

TELEVI SION

Substituting the following line

30 WR I TE # l , A$. B$

COLOR

in the previous program gives this output:

TELEVI S I ON . COLOR $599 . 00

344

$599 . 00

Stntcment a nd Function Rcfcrcmcc

WRITE Statement

Syntax

WRITE �express"ion-listD

Action

Outputs data to the screen.

Remarks

If expression-list is omitted, a blank line is output. If expression- list is
included, the values of the expressions are output to the screen. The
expressions in the list may be numeric or string expressions, and must l>{·
separated by commas.

When the printed items are output, each item is separated from the last by
a comma. Printed strings are delimited by quotation marks. After the last
item in the list is printed, BASIC inserts a newliue.

WRITE outputs numeric values using the same format as the PRINT state
ment.

Example

This example shows the difference between PRINT and WRITE statements:
1 0 A = 80 : B = 90 : C$ = "THAT ' S ALL"
20 WR I TE A , B , C:$
30 PR I NT A , B . C$

Output:

80 . 90 , "THAT ' S ALL"
80 90 THAT ' S ALL

345

Part 3

�
Appendixes

A ASCII Character Codes 347
B :Microsoft BASIC

Reserved Words 349
c Summary of Commands 351

D ISAM Reference 357

E Rebuild 2.0 385
F Error Messages 407

Appendix A

ASCil Character Codes

Dec Hex CHR Dec Hex CHR

000 OOH NUL 031 IFH us
001 OlH SOH 032 20H SPACE
002 02H STX 033 21H !
003 03H ETX 034 22H ..
004 04H EOT 034 22H
005 05H ENQ 035 23H #
006 06H ACK 036 24H
007 07H BEL 037 25H %
008 08H BS 038 26H &
009 09H HT 039 27H '
010 OAH LF 040 28H � 01 1 OBH VT 041 29H
012 OCH FF 042 2AH *
013 OOH CR 043 2BH +
014 OEH so 044 2CH
015 OFH SI 045 20H
016 IOH OLE 046 2EH
017 l lH OCI 047 2FH I
018 12H OC2 048 30H 0
019 13H DC3 049 31H 1
020 14H DC4 050 32H 2
021 15H NAK 051 33H 3
022 16H SYN 052 34H 4
023 17H ETB 053 35H 5
024 18H CAN 054 36H 6
025 1 9H EM 055 37H 7
026 lAH SUB 056 38H 8
027 lBH ESCAPE 057 39H 9
028 lCH FS 058 3AH
029 lOH GS 059 3BH j
030 lEH RS 060 3CH <

347

Microso� XENIX BASIC Compiler

Dec Hex CHR Dec Hex CHR

06I 3DH = 094 5EH
062 3EH > 095 5FH -
063 3FH ? 096 60H t
064 40H @ 097 6IH a
065 4 IH A 098 62H b
066 42H B 099 63H c
067 43H c 100 64H d
068 44H D IOI 65H e
069 45H E 102 66H f
070 46H F I03 67H g
071 47H G 104 68H h
072 48H H 105 69H i
073 49H I 106 6AH j
074 4AH J 107 6BH k
075 4BH K 108 6CH I
076 4CH L 109 6DH m
077 4DH M uo 6EH n
078 4EH N I l l 6FH 0
079 4FH 0 I 12 70H p
080 50H p I 13 71H q
081 51H Q 114 72H r � 082 52H R 1 15 73H s
083 53H s 1 16 74H t
084 54H T 1 17 75H u
085 55H u 1 18 76H v
086 56H v 1 19 77H w
087 57H w 120 78H x
088 58H x 121 79H y
089 59H y 122 7AH z
090 SAH z 123 7BH I
091 5BH

�

124 7CH 1
'

092 SCH 125 7DH
1,

093 5DH 126 7EH l
128 7FH DEL

Dec=decirnal, Hex=hexadecirnal �H), OHR= character.
LF=Line Feed, FF=Forrn Feed, R=Carriage Return, DEL=Rubout

�

348

�

r---..

Appendix B

Microsoft BASIC
Reserved Words

The following reserved words are used in Mcrosoft BASIC. If you attempt
to use these words as variable names, a syntax error is generated.

ABS DIM LEN PUT
AND EDIT LET RANDOMIZE
APPEND ELSE LINE READ
AS END LOC REM
ASC EOF LOCATE RESTORE
ATN EQV LOCK RESUME
BASE ERASE LOF RETURN
CALL ERL LOG RIGHT$
CALLS ERR LPOS RMDIR
CDBL ERROR LP RI NT RND
CHAIN EXP LSET RSET
CH DIR FIELD MID$ RUN
CHR$ FILES MKD$ SADD
CINT FIX MKDIR SGN
CLEAR FN MKI$ SHELL
CLOSE FOR MKS$ SIN
CLS FRE MOD SPACE
COMMON GET NAME SPC
cos GOSUB NEXT SQR
CSNG GOTO NOT STEP
CVD HEX$ OCT$ STOP
CVI IF ON STR$
CVS IMP OPEN STRING$
DATA INKEY$ OPTION SWAP
DATE$ INPUT OR SYSTEM
DEF INPUT, OUTPUT TAB
DEFDBL INPUT; PEEK TAN
DEFINT INSTR POKE THEN
DEFSNG INT POS TIME$
DEFSTR KILL PRINT TIMER
DELETE LEFT$ PRINT# TO

849

Microsoft BASIC Compiler

TROFF
TRON
UNLOCK
USING

850

USR
VAL
VARPTR
WAIT

WEND
WHILE
WIDTH
WRITE

WRITE#
XOR

Appendix C

Summary of Commands

C. l Compiler Options 353
C.2 Linker (Id) Options 354
C.3 XENIX BASIC Metacommands 355

361

Summary of Commands

C. l Compiler Options

The bascom command compiles and links BASIC source and assembly
language source files to create an executable program. The bascom com
mand has the following form:

bascom n optionsD Jiles

Table C. l summarizes the options available on the bascom command line.
The options are described in detail in Chapter 3, "Compiling a BASIC Pro
gram."

Table C.1
XENIX BASIC Compiler Options

Option Description

-A

-c

Includes a listing of the disassembled object code in the
source listing.
Suppresses linking.

-D Generates debugging code for run-time error checking
and enables the DELETE key.

-E Indicates the presence of ON ERROR GOTO with
RESUME linenumber statement.

-i Links with the ISAM library as well as the BASIC library.
-L Generates a source listing file.
-m Generates a linker map listing file.
-o Allows you to specify the name of the executable file.
-R Stores arrays in row order.
-s Causes the linker to strip local symbols out of the symbol

table when linking user object files with object files
generated by the compiler.

-S Writes quoted strings to .OBJ file instead of symbol table.
-X Indicates presence of ON ERROR GOTO with

RESUME, RESUME NEXT, or RESUME 0.

868

XENIX BASIC Compiler

C.2 Linker (Id) Options

The XENIX linker can be invoked separately with the ld command. The
command has the following form:

Id -P ll-MlffeDD [-FnumD [-CD [-SD [-sD ff-ooutputfileD ll-mmapfileD objectfiles
[-I librar11D ll-1 library ... D

Table C.2 summarizes the ld options. The options are described in detail in
Chapter 4, "Linking Object Modules."

Table C.2
XENJX Linker Options

Option

-C
-F num
-1 library
-m mapfile
-MlffeD

-o outputfile
-P

-S
-s

864

Description

Causes the linker to ignore the case of symbols.

Sets the size of the stack to num bytes.

Specifies other libraries to be linked.

Produces a linker map file named mapfile.
The -Ml portion of the option creates a large
model program. The e portion of the option is
required when using ISAM libraries; it permits
mixed model linking. You must use -Mle with
ISAM libraries.

Assigns the name outputfile to the executable file.

Keeps segments defined in an assembly language
or compiled BASIC program separate. This
argument is required or the program will not run.

Sets the maximum number of data segments.

Strips local symbols from the symbol table.

Summary of Commands

C.3 XENlX BASIC Metacommands

Metacommands tell the compiler to perform certain actions while it is com
piling the source file. Table C.3 summarizes the XENIX BASIC compiler
metacommands. The metacommands are described in detail in Section 9.2,
"Using Metacommands"

Table C.3
XENIX BASIC Metacommands

Name

$DYNAMIC
$1NCLUDE:'fi/e'

$ LINESIZE: size
$LISTHl-D
SMODULEz'name'
$ 0CODEU+:-D
$PAGE
$PAGEIFrnumber

$PAGESIZE1number
$ SKIPllrnumberD
$ STATIC
$TITLE' title

Function

Causes dynamic allocation of arrays

Switches compilation from the current source file to
file.

Sets the width of the source code listing, in columns.

Turns on or off source listing. Errors are always listed.

Changes an internal module name passed to the linker.

Turns on or off listing of disassembled object code.

Skips to next page.

Skips to next page if number lines or less left on the
listing page.

Sets length of listing, in lines.

Skipsnumber lines or to end of page.

Causes static allocation of arrays.

Sets the source listing page title.

366

Appendix D

ISAM Reference

D.1 Introduction 359
D.2 Writing an MS-ISAM Application
D.3 Parameters 363
D.4 MS-ISAM Subroutines 368
D.5 MS-ISAM Codes 381

360

367

ISAM Reference

D.1 Introduction

Microsoft MS-ISAM is a library of subroutines that allows access to files,
both sequentially and by index. You can use MS-ISAM whenever you want
to access data based on the contents of records. If, for example, you want
to read the record that contains information about product number 34056-
J, delete any records with information on employee T. R. James, or update
the record containing information on the price and availability of marble,
MS-ISAM provides a fast way to do so.

Each MS-ISAM file is physically two files: a data file and a key file. A key
is a data field that has been identified and described to MS-ISAM. Both
files must be present to use MS-ISAM.

The maximum length of a file name (without extension) is 10 characters;
the maximum length with the extension is 14 characters. Conventionally,
data file names end with a ".dat" extension. Key file names, which are
created by MS-ISAM, always end with a ".key" extension.

The data file consists of data records and, usually, a data dictionary. The
data dictionary, which resides at the beginning of the data file, contains

� binary descriptions of records in the file. Whenever you create an MS-ISAM
file, you will give MS-ISAM information about how your data is formatted ,
such as where data fields start and end, what type of data is contained in a
field, and whether it is acceptable to have the same value in a given field of
more than one record. This information is stored in the data dictionary.

The key file contains the indexing information that MS-ISAM uses to access
the data in the data file. MS-ISAM gets this information (where the fields
are, what type of data they containHrom the data dictionary in the data
file. The indexing is in the form of �trees. B-trees are a special kind of in
dex that point to the records in the data file. There is one tree in the key
file for each key that you specify.

Fields containing employee numbers or names, product codes, or zip codes
are examples of fields that you might want to use as key fields.

There is a special type of key, called a split key, that contains more than
one field. Components of a split key can be adjacent or non-adjacent fields,
of the same or different data types, and may or may not be keys themselves.
Split keys are explained further under "Split Keys" in Section 0.3, "Param
eters."

869

Microsoft XENIX BASIC Compiler

There are two types of MS-ISAM data records: non-segmented and seg
mented. Non-segmented records contain key fields that have fixed sizes.
They may, however, contain one field which is variable in length, as long as
that field is the last field in the record.

The other type of record is called a segmented record. It supports key fields
that can vary in size, and is usually used to contain strings. You can also
use variable length strings in non-segmented records by making sure that
your fixed-length field is long enough to hold the longest string that you
will use. It is strongly recommended that you use only segmented records if
it is very important to minimize the amount of storage space used for
variable-length fields. Segmented records are described in Section D.3,
"Parameters."

Record types cannot be mixed in one file.

D.2 Writing an MS-ISAM Application

The MS-ISAM interface has been designed to make access to MS-ISAM files
as simple as possible. In general, MS-ISAM file access is similar to random � 1/0 procedures. Specific MS-ISAM subroutines are called to open and close
MS-ISAM files, to find records within a file, and to read, write, delete, or
rewrite data.

There are four basic steps in MS-ISAM applications:

1 . open an MS-ISAM file
2 . seek to (search for) some location i n the file
3. operate upon the data
4. close the MS-ISAM file

The next four sections briefly describe each step. For detailed information
on each MS-ISAM subroutine, refer to the alphabetical list of subroutines in
Section D.5, "MS-ISAM Subroutines."

380

ISAM Reference

Opening a File

Before reading or writing to an existing MS-ISAM file, or creating a new
MS-ISAM file, you must open the file. Use the MS-ISAM subroutine IOPEN
to open files.

Seeking a Record

For any specified key, the MS-ISAM subroutine ISEEK can find the first
record, the last record, the first record with a key value equal to a specified
value, or the first record with a key value greater than a specified value.

The current record is generally the record pointed to by the last seek. (Cer
tain other subroutines, such as IWRITE, INEXT, and IPREV, can also
change which record is the current one.)

Two other subroutines that are useful for finding a location in a file are
ISAVEFP and IRESTOREFP. With these routines, you can mark and re
turn to any specified file position.

Operating on a Record

MS-ISAM can read or write a record, rewrite or delete a record, locate a re
lated record, or find the size of a record. The following list describes these
operations briefly. The predefined ISAM status variable, IXSTAT, must be
used after each operation to see if the operation was successful. For com
plete information on all MS-ISAM subroutines, refer to Section D.5, "MS
ISAM Subroutines."

• Read a record
Once the current record has been established, often by ISEEK, that
data record can be fetched by IREAD.

• Write a record
To insert a record into the data file, use IWRITE. The newly insert
ed record becomes the current record.

• Rewrite a record
The !REWRITE procedure differs from IWRITE in that it deletes
the old record from the data file and inserts the modified record.
The keys are updated to reflect this change. The modified record
becomes the current record.

361

Microsoft XENIX BASIC Compiler

• Delete a record
Removing a record from the data file is done by establishing the
current record and using IDELETE. The next record then becomes
the current record.

• Move to the next or previous record
The data file can be examined sequentially by using INEXT and
IPREV. The records are ordered (alphabetically or numerically) by
the value in the key field that was used in the last seek operation.
The record that you move to becomes the current record.

• Find the size of a record
ISIZEOF finds the size of the current record, in bytes. This can be
useful when using variable-length records; to set the size of a buffer,
for example, before reading a variable-length record into it.

Closing a File

It is important to use !CLOSE to close every MS-ISAM file that you open.
If an MS-ISAM file is not closed by !CLOSE, its key file may be corrupted. ("., In this case, you must use the Rebuild Utility to insure that the key file is

,

valid. Rebuild is an MS-ISAM application program that is included in your
MS-ISAM package. Its primary use is in building key files. For complete
information on rebuild, ref er to Appendix E.

Warning

882

Do not rely on BASIC's CLOSE statement to close ISAM files. This will
not work. ISAM files must be explicitly closed with ICLOSE.

ISAM Reference

Other MS-ISAM Subroutines

The other five MS-ISAM subroutines are

I CONTROL
ID READ

IGETKD
IGETDP
I LOCK

Writes all data held in memory to the data file.
Reads a record. The difference between IDREAD
and !READ is that you give IDREAD a pointer to
the record you want to read. !READ reads the
current record. !DREAD can also use the tag file
generated by SORT to read a data file directly.
Gets the key description.
Gets a pointer to a record.
Controls record locking.

D.3 Parameters

Some parameters, such as file handles and key handles, have unique mean
ing to MS-ISAM. You will also use parameters that are specific to MS
ISAM when describing fields and records. The rest of this appendix
explains these parameters. More information on each parameter can be
found in Section D.4, "MS-ISAM Subroutines," where each MS-ISAM sub
routine and its arguments are listed and explained. This section also
explains split keys and segmented records, and some of the parameters you
will have to supply if you are using them.

File Handles

The file handle is a number used by MS-ISAM to ref er to a specific MS
ISAM file. Although an MS-ISAM file is physically two files, there is only
one file handle for each data file/key file pair. MS-ISAM will return the file
handle each time you open a file.

Key Handles

The key handle is a number used by MS-ISAM to ref er to a specific key in
an MS-ISAM file. The key handle is assigned by the programmer in the
field description when the MS-ISAM file is created.

383

Microsoft XENIX BASIC Compiler

Key handle values range from 1 to n, where n is the number of keys. There
needn't be a physical relationship between the key handle values and the
record layout, but it is a good idea to assign key values from the lowest to
highest part of the record.

Split Keys

A split key is a key that is made up of more than one field. The component
fields of a split key may or may not be adjacent, may be the same or
different data types, and may be non-key fields, keys, or split keys. All the
components of one split key must have the same key handle.

If a component field of a split key is also a key, that field's description must
be given twice: once to describe it as a key field, and once to group it with
the other components of the split key. This type of field will also have more
than one key handle: one handle of its own, and one handle that is the same
as the other components of the split key.

When key values are compared (to determine the order of records, or to
determine if values are equal) the split key components are compared
according to the order in which they were declared in the key description.

Split keys cannot be used with segmented records.

Segmented Records

MS-ISAM data files contain either segmented or non-segmented records.
These record types cannot be mixed in one file.

The address of a key field is given by a segment number and an offset. For
non-segmented records, the segment number is 1 . In segmented records,
the segment number acts as an index to a segment table, which must be
inserted in front of each record. The segment table is an array of 16-bit
offsets; this offset is the number of bytes from the start of the record to the
start of the segment. For a given key n, the address of the key is the
address in the nth entry in the segment table, plus any offset within the
segment itself. A field length of zero indicates that the field length equals
the length of the entire segment.

The segment table and offsets within segments must be supplied in the
record and field descriptions when the file is created. The segment table
must be maintained by the application programmer. It is recommended
that segmented records be used only if variable-length key fields are needed.
Often, all fixed-size record fields are placed in the first segment, and each

364

ISAM Reference

string field is placed in its own segment.

If a data file contains segmented records, it is not necessary for each record
to contain the same number of segments. All segments that contain keys,
however, must be present in each record. If a segment that contains a key
is missing from a record, IXSTAT will return the status code izstat% =10
(key not found.)

Segmented records cannot contain split keys.

Record Description

The record description tells how many keys are in the record, and if the
record is segmented or non-segmented. This information is given to MS
ISAM as an array, Rd es%.

Rd es%(1) = # keys

The number of keys in the record.

Rdes%(2) = segment·flag

If the record is non-segmented, segment-flag =0. If the record is
segmented, segment-flag = l .

Rdes%(3) = minimum-allocation

The minimum record allocation defaults to 8 bytes: 5 bytes of data
and 3 bytes of overhead. The 8-byte minimum was chosen because
of the way MS-ISAM handles one problem of variable length
records: what happens when you rewrite a large record over a small
record?
When a record is rewritten over a record that is too small to contain
the new record, MS-ISAM makes the old record into an "indirection
record." The indirection record points to the location of the new,
larger record. By using indirection records, MS-ISAM avoids having
to change every key that pointed to the old record location. To
make sure that every record is large enough to hold an indirection
record, MS-ISAM sets the minimum record allocation to 8 bytes.

If you know your records will be larger than 8 bytes, it is recommended
that you raise the minimum record allocation. If, for example, your records
are all 100 bytes long, you will generate an indirection record nearly every
time you rewrite a record. Extensive rewriting of variable-length records
can product a large number of indirection records. You can use rebuild, as
described in Appendix E, to compress a data file, removing the indirection

866

Microsoft XENIX BASIC Compiler

records.

Field Description

Whenever you create an MS-ISAM file, you must describe each field that
you will use as a key field; this information is used to build key files. You
can also describe non-key fields. MS-ISAM will put this information in the
data dictionary, at the beginning of the data file. Whenever a file is
opened, its data dictionary is loaded into memory from the data file.

If you are using files created by SORT, you should be aware that some of
these files do not have a data dictionary. When using these files, you must
specify the field description each time you open the file.

It is recommended that you describe each field in the record when you
create an MS-ISAM file. This provides an easy way to identify each file and
its contents. Complete field descriptions can also be used by other utilities
to access field information.

Field descriptions are given to MS-ISAM as a nine-integer array, Kdes. The
required parameters for each field that you describe are as follows:

366

Kdes(l } = varptr(field-name$)

A pointer to a buffer that contains the name of the field. The field
name must be less than or equal to 40 characters. If no field name is
supplied, this pointer must be null. Field names can be used by utilities,
such as general file dump utilities, to access fields in a data file.

Kdes(3) !high byte] = subtype

A subclassification of the data type. It is present for future MS-ISAM
expansion, and must be initialized to zero.

Kdes(3) [low byte] = data- type

The data type of the field. Section D.5, "MS-ISAM Codes," contains a
complete list of supported data types. For certain data types, like
integer, the length is implied, so any specified length is ignored.

Kdes(4) = segment-number
For segmented records, the number of the segment containing the field.
For non-segmented records, this number must be 1.
Segments are numbered from 1 to n, where n is the number of segments.
Segment 1 is the first segment in the record and segment n is the last.

ISAM Reference

Each segment can contain many fields but no field can span more then
one segment.

Kdes(5} = field-position

This is the position from the beginning of the segment to the beginning
of the key field. The first byte in the segment is numbered 1 .
Kdes(4} and Kdes(5} make the field address. The segment number tells
what segment the field is in, and field-position tells the distance from
the beginning of the segment to the beginning of the field.

Kdes(6) = key-length

The length of the field in bytes. A zero length field indicates that the
field size is from the field segment position to the end of the segment. If
the field length is variable then this number should always be zero.

Kdes(7} = key-handle

Any value between 1 and n, where n is the number of keys. The con
vention is to assign key handles beginning with 1 and starting with the
leftmost byte in the record. Using this convention makes it easier to
remember key handles. Key handles can be determined at run time by
using the IGETKD procedure to fetch key field descriptions.

Kdes(S} !high byte] = duplicates-allowed flag, descending flag, and
case-insensitive flag

The duplicates-allowed flag = 1 , the descending flag = 2, and the case
insensitive flag = 4.
Add the values of the desired flags together, and enter that number as
the high byte. For example, to switch the duplicates-allowed and case
insensitive flags, use

Kdes(S} = (256 i (1 + 4}) + field-mode

duplicates-allowed flag

Indicates whether duplicate keys are allowed in the data file.

descending-flag

Inverts the meaning of comparisons performed on this field. The
result is that the records are inserted into the key set in descending
instead of ascending order. It is most useful with split keys where
the ordering of the different components might need to be inverted.

887

Microsoft XENIX BASIC Compiler

case- insensitive-flag

Causes string-based data types to ignore differences in case (e.g.,
the values 'FiRst' and 'first' would be equal).

Kdes(8) [low byte) = field-mode

Tells if the field is a key. If it is a key, it tells if it. is a split key.
If the field is a non-key field, field-mode = 0. If the field is a non-split
field, field-mode = I. If the field is a component of a split key, field
mode = 2.

Kdes(9) = filler

A reserved word area. It must be initialized to zero.

D.4 MS-ISAM Subroutines

MS-IS.Alvi is made up of 17 subroutines. Your BASIC programs can call
these routines with the CALL statement. The following section will
describe the syntax of the subroutine and describe each parameter. If the ("""....
subroutine returns a value (e.g., IOPEN returns a file handle) then t.he syn-
tax sect.ion will be followed by the word Returns: and the value t.hat is
returned. Where pointer values are indicated in the text, they should be
obtained by using the VARPTR function to return a pointer to a variable
of the the proper size and data type.

The interface to assembly language is also provided in this appendix,
including an example of record and field descriptions, and a list of codes
used in MS-IS.Alvi.

868

ISAM Reference

I CLOSE

ICLOSE closes the key and data files, and empties and frees any buffers for
the named file.

While the key file is open, portions of the B tree are kept in core. If the
MS-ISAM subroutine ICLOSE is not used to close the file, these sections of
the B tree may not be written to the key file. When this happ_ens, the file is
marked damaged or "corrupted" (IXSTAT will return ixstat% =5), and
!OPEN will not open the file. If this occurs, the Rebuild Utility must be
run to regenerate a good key file.

!CLOSE (fileno%)

file no%

I CONTROL

The file handle (integer value returned by !OPEN)
identifying the file to be closed.

!CONTROL requests the check point function. This function writes all
data held in memory to the data file. It then closes and reopens the file
used to hold the data. These two operations guarantee that the data file is
updated. The key file is still held in memory and needs to be written to
disk . Should you not do an ICLOSE, rebuild can completely restore the key
file.

!CONTROL (request%, checkpoint)

request%

checkpoint

This designates the ICONTROL check point function.
Its value is two.
Pointer to an array: the first element of the array holds
the file handle (integer returned by IOPEN) identifying
the MS-ISAM file that you want to check point; the
second element of the array holds a pointer to the
string used to name the file in IOPEN; the third ele
ment is a reserved space.

869

Microsoft XENIX BASIC Compiler

Example:

DIM CHECKPOINT{3)

.
CHECKPOINT(lt=FILENO% 'FILENO% is file handle
CHECKPOINT(2 =VARPTR(FILENAME$) 'FILENAME$ is name used by IOPEN
CALL ICONTRO (2,VARPTR(CHECKPO!NT(l)))

IDELETE

IDELETE deletes the current record and all key values associated with that
record .

IDELETE (Ji.Jeno%)

fileno%

ID READ

The file handle (integer returned by !OPEN) identifying
the file from which the record will be deleted.

This data read routine is a special routine that will read directly from the
file. Given a record pointer, this routine will determine if the pointer points
directly to a data record or to an indirection record. In either case, it will
return the data record. Use IGETDP to get the data pointer. Other

370

ISAM Reference

methods are not reliable if the file has been overwritten.

IDREAD (jileno%, pbuffer, length%, plocation)

fi.leno%

pbuffer

length%

plocation

Returns:

length%

IGETDP

The file handle (integer returned by IOPEN) identifying
the file to use.
The pointer to the buffer to receive the record.
This is the number of bytes that the record buffer
(pbuff er) can hold. For fixed length records this is the
record size. For variable length records it is the max
imum size. IXSTAT will return an error (ixstat%=18)
if the record was greater than length%. ISIZEOF can
be used to determine the size of any record. !DREAD
uses length% to return the actual length of the record.
A pointer to a 4-byte buffer that holds the pointer to
the data. This number is set in IGETDP.

The number of bytes read into the record buffer.

This routine fetches a pointer to a record. (The data pointer may not point
directly at the record.) You can accumulate several data pointers and do
the data reads later. ft is a good idea to use IGETDP with IDREAD.
IGETDP sometimes returns a pointer to an indirection record, but IDREAD
compensates for this, and will read the associated data record. All data
pointers fetched by IGETDP will be correct until the record is deleted or
the file is reorganized by rebuild. If you are using the SORT utility,
remember that data pointers returned by SORT will probably be wrong if
the file has been modified.

IGETDP (Jileno%, plocation)

fi.leno% The file handle (integer returned by IOPEN) identifying
the file to be used.

371

Microsoft. XENIX BASIC Compiler

Returns:

plocation

IGETKD

The address of a 4-byte buffer in which ISAM puts the
pointer to the record. A single precision number is big
enough to be a data pointer.

This routine returns key descriptions that were given when the file was
created. (Even if other fields were described when the file was created, they
cannot be accessed through this routine.) In addition, for split keys,
IGETKD returns the number of components in the split key.

If you want ISAM lo return the current field name, you must set Kdes(l) to
point to a string of 40 bytes; otherwise, set Kdes(l) to zero.

For example,
field . name$=string$ (40 , 0)
Kdes (l) =VARPTR (field . name$)

A CHR$(0) will appear at the end of the field name returned by ISAM. To
extract just the name, use the following BASIC statement:

LEFT$(field.name$,INSTR(field.name$,CHR$(0)) - 1)

IGETKD (fileno%, keyno%, componentno%, pkeydes)

fileno%

keyno%

componentno%

pkeydes

372

The file handle (integer returned by IOPEN) identifying
the file to be used.
The key handle that identifies the key that you want
information about. Key handles range from I to n,
where n is the number of keys in the file. The conven
tion is to assign key handles beginning with 1, starting
with the left-most byte in the record.
The desired key component number. The key com
ponent number is a value from 1 to n, where n is the
number of components of a split key. For keys that are
not split keys, the key component number is 1 .
IGETKD uses componentno% to return the actual
number of key components. If IGETKD returns - 1 for
the value of componentno%, there was an error.
This :s a pointer to a buffer to hold the key description.
For a split key, this is a pointer to a 9-integer array
that will hold the key components.

Returns:

componentno%

ILOCK

ISAM Reference

This is the number of fields in the key. For a non-split
key, componentno% = l . If componentno% =-1 , there
was an error.

ILOCK controls record locking on a single file. This subroutine is particu
larly useful if you have opened a file in any one of the multiuser modes. For
example, if you are updating a record, a lock on that record will prevent
another user from modifying it between the time you read the record and
then rewrite it. Without record locking, any changes the other user made
would be lost.

There are two kinds of record locking: automatic and manual. Automatic
mode is the default: every time you establish a new file position, the current
record is locked, and the last record that was locked is released.

In manual mode, no record is locked unless a lock is specifically requested.
The L- LOCK request locks the current record; it remains locked until the
program calls the L- RELEASE function, ILOCK(fileno%,4). As a result,
more than one record can be locked at one time in manual mode.

In both modes, a record must be unlocked before it can be read, written,
rewritten or deleted. Any ISAM call that seeks or moves to a locked record
results in a locked warning.

If a record is locked, there are two options: WAIT mode or NOW AIT mode.
WAIT, which is the default mode, pauses until the required record is
unlocked; with WAIT, your program will never return a locked error or
warning. The NOW AIT mode, on the other hand, returns a locked error
immediately.

ILOCK(fileno%, request%)

Ji.Leno% The file handle (integer returned by IOPEN) identifying

373

Microsoft XENIX BASIC Compiler

the file to access
request% This integer (0 to 5) specifies the desired locking func-

ti on.
0: L- AUTO Sets locking to Automatic

(default)
r---,

1 : L-MANUAL Sets locking to Manual
2: L_ WAIT Causes program to wait if

lock conftict (default)
3: L_ NOWAIT Lock confticts returned to

program
4: L- RELEASE All locks on file released

(Auto/Manual mode)
5: L- LOCK Locks the current record

I NEXT

For a given key, INEXT finds the record in the file with the next higher key
value than the current record, and makes that record the current record. If
INEXT finds duplicate key values, it determines what the next record will r-"..
be, based on the order in which the records were entered. For records with
identical key values, the "next" record will be the younger record (the
record entered most recently). If there are duplicate key values, IXSTAT
will return ixstat% =12 for "duplicate key warning" if the "duplicates
allowed" switch was not set in the key description.

INEXT (fileno%, keynum%)

fileno%

keynum%

I OPEN

The file handle (integer returned by I OPEN) identifying
what file to access.
The key handle of the keyset that you are sequentially
reading. Each keyset has a position associated with it.

IOPEN opens an MS-ISAM file. IOPEN returns a handle to be used to iden
tify the file in other MS-ISAM operations. When creating a new file
(mode%= 1 , 3, or 6), you must include a record description. The record
description must at least contain descriptions for all key fields, and may
contain descriptions for non-key fields. The record description is not neces-

3'14

ISAM Reference

sary when you are reading or updating a file (mode% =0, 2, 4, or 5).

IOPEN (filename$, mode%, precdes, pkeydes, fileno%}

filename$

mode%

This character string is the MS-ISAM data file name.
Data file names conventionally have the suffix ".dat".
Filename$ must be less than 64 characters long.
This integer specifies the mode in which to open the
file. The seven modes are:

0: Read Only
Data file can only be read.

I: Write Only
New data file is created and can only be written to.

2: Update
Data file can be written to and read.

3: New Update
New data file is created and can be written to and
read.

4: Multiuser Read Only
Data file can be read by more than one user.

5: Multiuser Update
Data file can be written to or read by more than
one user.

6: Multiuser New Update
New data file is created which can be written to or
read by more than one user.

376

Microsoft XENIX BASIC Compiler

precdes

pkeydes

Returns:

fi.leno%

IP REV

Integer pointing to start of record description. The
record description contains three integers: the number
of field descriptions (this may be more than the number
of keys if split keys are used), the record type (seg
mented or nonsegmented) , and the minimum record
allocation (the default mmimum allocation being 8
bytes).
Integer pointing to start of key description.

This is an integer used by MS-ISAM to identify the file
given in filename$.

For a given key, IPREV finds the record in the file with the next lower key
value than the current record, and makes that record the current record. If
IPREV finds duplicate key values, it determines what the next record will
be, based on the order in which the records were entered. For records wit.h
identical key values, the "previous" record will be the older record (the
record entered earlier} . If there are duplicate key values, IXSTAT will
return ixstat%=12.

IPREV (!Ueno%, keynum%)

Ji.Leno%

keynum%

876

The file handle (integer returned by I OPEN) identifying
what file to access.
The key handle.

ISAM Reference

IREAD reads the current record into the buffer. This routine does not
change the file position.

IREAD (fileno%, pbujfer, length%)

fileno%

pbujfer

length%

Returns:

length%

IRESTOREFP

The file handle (integer returned by I OPEN) identifying
the file in which to read.
Pointer to buffer to receive current record.
This is the number of bytes that the record buffer
{pbujfer} can hold. For fixed length records this is the
record size. For variable length records it is the max
imum size. IXSTAT will return an error (ixstat% =18)
if the record was greater than length%. ISIZEOF can
be used to determine the size of any record. IREAD
uses length% to return the actual length of the record.

This is the number of bytes read into the record buffer.

IRESTOREFP restores the file position and the key of reference that was
saved by the last ISA VEFP call.

IRESTOREFP (fileno%)

/Ueno%

mEWRITE

The file handle (integer returned by IOPEN) identifying
what file to access.

This subroutine rewrites an MS-ISAM record and updates the appropriate
keys. !REWRITE is similar to !DELETE foil owed by IWRITE.

� !REWRITE (fileno%, pbujf er, length%)

file no%

pbujfer

The file handle (integer returned by !OPEN) identifying
the file in which to rewrite.

377

Microsoft XENIX BASIC Compiler

length%

ISAVEFP

Pointer to buffer that holds the record to be rewritten.
This pointer is returned by V ARPTR() .
This is the number of bytes to be written (the length of
pbuffer).

ISA VEFP saves the current file position. The saved file position can then
be restored by IRESTOREFP. Use ISAVEFP to place a ccbook mark" in
your file and use IRESTOREFP to find it. This is faster than using ISEEK
to find your place again because ISA VEFP saves the most recent key of
reference established by ISEEK.

ISA VEFP (Jileno%)

fi.leno%

I SEEK

The file handle (integer returned by IOPEN) identifying
what file to access.

This subroutine searches the file for a specified key, and, optionally, a �
specified value of that key. !SEEK can locate the first or last record, or the
first record with a value equal to or a value greater than the specified key
value.

ISEEK determines what record is the "first" or "last" record based upon
the value of the specified key field in that record. Records are arranged
alphabetically and numerically (numbers come before letters). When there
is more than one record with the same value in the specified key field, order
is determined by the order in which the records were originally entered,
with older entries coming before younger entries.

If there are duplicate key values, IXSTAT will return ixstat%=l2 for
"duplicate key warning."

ISEEK (Jileno%, keynum%, pkey, keylen%, mode%)

Ji.Leno%

keynum%

pkey

378

The file handle (integer returned by IOPEN) identifying
the file in which to seek.
The key handle. This value can be found by IGETKD.
This is a pointer to a buffer containing the key value to
search for.

key I en%

mode%

ISIZEOF

ISAM Reference

Integer length of the key value, in bytes.
Integer indicating what to search for. The search
modes are:
0
1
2

3

4

5

First record in a given key set.
Last record in a given key set.
Key equal to this value.
This positions the file at the first record
matching the key value.
Key greater than this value.
This positions the file at the first record
with a key value greater than the specified
key value.
Key greater than or equal to this value.
This positions the file at the first record
with a key value equal to or greater than
the specified key value.
First Equal Key.
Use this when the seek key is less than the
size of the keyfield.
This positions the file at the first record
that has a key with a matching prefix.

Computes the number of bytes in the current record. This can be useful
when an MS-ISAM file is opened for reading and was created by another
program or when the record has variable length fields.

ISIZEOF (fileno%,JUlsize%);

fileno%

Returns:

� recordsize%

The file handle (integer returned by !OPEN) identifying
what file to access.

Integer size of current record.

379

Microsoft XENIX BASIC Compiler

IWRITE

IWRITE writes a new record to the MS-ISAM file. The newly created
record becomes the current record. The keys associated with the record are
inserted into the key file.

IWRITE (/i.leno%, pbulfer, length%)

380

fi.leno%

pbulfer

length%

The file handle (integer returned by IOPEN) identi
fying the file in which to write.
Pointer to buffer that holds the record.
This is the number of bytes to be written (the
length of pbuffer).

ISAM Reference

D.5 MS-ISAM Codes

(""., Table D.1

Values Returned by Function IXSTAT

Symbol Name

IXS-OK
IXS_FN
rxs_KD
IXS_KN
IXS-VER
IXS_DAM
IXS_ MEM
IXS- NAM
rxs_ACC
rxs_FUL
IXS- KEY
IXS-EOK
IXS_DKW
IXS-DKE
IXS_RLK
IXS-FLK
IXS_DSK
IXS_POS

rxs_oVR
IXS_DD
IXS- SEG
IXS_TYP
IXS_RES
IXS_KL
IXS_MU
IXS-BOK
IXS_CRIT

IXS_LOAD
IXS_MODE

Return Value Description

0 Successful completion
1 Invalid MS-ISAM file number.
2 Invalid key descriptor.
3 Invalid key number.
4 File and MS-ISAM version mismatch
5 File damaged
6 Memory full
7 File or directory not found, or invalid name.
8 Permission to access the file denied.
9 Disk is full or file is too large.
10 Key not found
1 1 Keyset boundary reached (start or end).
12 Duplicate key warning
13 Duplicate key error
14 Record locked
15 File locked
16 Fatal error: Disk 1/0 operation failure.
17 File position (location of current record) has

been lost.
18 Buffer overftow (buffer too small).
19 Data dictionary error.
20 Invalid segment number in field descriptor.
21 Invalid field type in field descriptor.
22 Reserved value in field descriptor non-zero.
23 Key Length out of range in field descriptor.
24 Multiuser failure.
25 Beginning Of Keyset boundary reached.
26 Critical operating system error has aborted

MS-ISAM.
27 MS-ISAM has not been loaded in memory.
28 Invalid Open mode

881

Microsoft XENIX BASIC Compiler

Table D.2
Open Mode Definitions

Symbol Name Return Value

IO-READ 0
IO_NEW_WRITE I
IO_ UPDATE 2
IO_NEW_lJPDATE 3

IO_ MU_ READ 4

IO-MU-UPDATE 5
IQ_MU_NEW_UPDATE 6

Table D.3
Seek Modes

Description

Read Only
Clear file, and open for Write only
Read and Write
Clear file, and open for Read and
Write
Clear file, and open for multiuser
Read only
Multiuser Read and Write
Clear file, and open for multiuser
Read and Write

Symbol Name Return Value Description

IS_ FIRST
IS-LAST
IS_ EQUAL
IS-GREATER
IS-NOT-LESS
IS_EQ-FIRST

0 First key in key set
I Last key in key set
2 key equal to this value
3 key greater than this value
4 key greater than or equal to this value
5 First equal key, seek on short length

Table D.4
!CONTROL Requests

Symbol Name Return Value Description

IC-CHECK 2 Write the data file to disk

382

Table D.5
Data Types

ISAM Reference

� Symbol Name Return Value Description

II<-WORD
UL INTEGER
11<-ALPHA
IJ<-CHAR
11<-LSTRING
IJ<-STRING
IJ<-NUMERIC
11<-SMICRO
11<-SIEEE
IJ<-SDEC
II<-DMICRO
IJ<-DIEEE
II<-DDEC
II<-SHORT
II<-LONG
11<-BYTE

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Unsigned integer - 2
Signed integer - 2
Character string
Character string
Pascal Lstring type
Character string
Free format, integer/real ascii number
Single precision, Microsoft real number - 4
Single precision, IEEE real number - 4
Single precision, Decimal real number - 4
Double precision, Microsoft real number - 4
Double precision, IEEE real number - 4
Double precision, Decimal real number - 4
Signed integer - 1
Signed integer -4
Unsigned 1 byte integer - 1

Data types shown in Table D.5 that are followed by a number have the
given fixed size in bytes. You must always give a value when ref erring to
these types. The IEEE numbers refer to the floating point numbers that
appear in the binary version of MS-BASIC. The decimal numbers refer to
the floating point numbers that appear in the decimal version of MS
BASIC.

Table D.6
Il,,OCK Requests

Symbol Name Return Value Description

L_AUTO
L_MANUAL
L_WAIT
L_NOWAIT
L_RELEASE
L_LOCK

0
1
2
3
4
5

Set record locking to Automatic
Set record locking to Manual
Wait for locked record
Don't wait for locked record
Release all locked records
Lock current record

383

Appendix ·E

Rebuild 2 .0

E.1 Introduction 387
E.2 Using Rebuild With Your Data Files 388
E.3 Invoking Rebuild 389
E.4 Definitions of

Command. Line Arguments 389
E.5 Using Rebuild as a Tool 391
E.5. 1 Fixing a Corrupted Key File 391
E.5.2 Compressing the Data File 392
E.5.3 Converting

lvficrosoft COBOL Indexed Files 392
E.6 Data Loss After a System Crash 394
E. 7 Adding and Deleting Indexes 395
E.7.1 Updating a Key File:

ASCII Input File 395
E.7.2 Updating a Key File:

Interactive Mode 398
E.8 Creating and Using

a dd (ASCII) Text File 401
E.8.1 Syntax Considerations 401
E.8.2 Statement Directory 402

386

Rebuild 2.0

E.1 Introduction

The Rebuild Utility (rebuild) , version 2.0 and later, is a tool provided with
the XENIX BASIC Compiler for use with files created with MS-ISAM. Re
build allows you to:

1 . Generate new key files from MS-ISAM data files.
This is probably the most common use of rebuild. Rebuild must. be
run to regenerate a corrupted key file. The data file is the input to
rebuild for this task. See Section E.5. 1 , "Fixing a Corrupted Key
File," for more information on this task.

2. Compress the data file.
Free space is created during normal record processing using
!DELETE and !REWRITE statements, especially when variable
length records are used. Data file compression removes this free
space from the dat.a file.

3. View the data dictionary.

Note

Whenever MS-ISAM or rebuild create a data file, they also build a
"data dictionary, " a binary record description located at the begin
ning of the data file. This useful feature allows you to examine the
Indexed file structure. It also allows you to save the data dictionary
as an ASCII file by redirecting the output as shown in Section E.8,
"Creating and Using a dd (ASCII) Text File."
Rebuild can use a data dictionary to rebuild key files.

Rebuild supports an interactive mode for entering new data dictionary
information. You switch to this mode by starting rebuild with the - i
switch as explained in Section E.7.2, "Updating a Key File: Interactive
Mode."

387

Microsoft XENIX BASIC Compiler

E.2 Using Rebuild With Your Data Files

You can damage your key file by erasing all or part of it, or by failing to
use ICLOSE to close an MS-ISAM file. Key files can also be damaged if
your system goes down while an MS-ISAM file is open. If you know or
suspect that your key file has been damaged, you can give a rebuild com
mand. Rebuild erases the old key file and builds a new key file by using the
information in your data file.

You may want to use rebuild when you change or add keys for a particular
file. Suppose, for example, you have a file EMPLOYEE.DAT that you
created for making mailing lists. EMPLOYEE.DAT contains the names
and addresses of employees, their social security numbers, and dates of em
ployment. Assume that EMPLOYEE.DAT has only one key field: the
"name" field. Now, you have to send information on the pension plan to
any employees who started working before a certain date. This would be
easier to do if the "date-of-employment" field were a key field. You can do
this in one of the following two ways: 1) use I OPEN to create new data and
key files, describing the date-of-employment field as a key field in the
"keydes" array; or 2) use rebuild to edit the data dictionary in EMPLOY
EE.DAT and create a new key file. It is usually faster to use rebuild than
to create a new MS-ISAM file.

Rebuild changes only the indexing information, not the actual data in the
data file. You have to make sure the descriptions you give rebuild accu
rately describe the format and contents of your data file. If you use rebuild
to change the name field to an integer data type, for example, rebuild trusts
you to make sure the name field contains integers. It doesn't check or
change any of the data. Similarly, if you tell rebuild the date-of
employment field is now the address field, and the address field is now the
date-of-employment field, rebuild changes all the indexes and pointers ac
cordingly, but will not move any of the data from one column to another.

Rebuild is also useful if you have an MS-ISAM file that has been extensively
updated. The more an MS-ISAM file has been rewritten, the more likely it
is that there is wasted space inside the file. This is especially likely if you
are using variable length records, because rewriting can generate indirec
tion records. (See Appendix D, "ISAM Reference," for a discussion of in
direction records.) Whenever you tell rebuild to copy a file, it compresses
the input data tile by removing free space and indirection records.

388

Rebuild 2.0

E.3 Invoking Rebuild

Use the following syntax to provide arguments on the rebuild command
line:

rebu i l d [- switch (es)] {source-/ile f - } [target-file]
[-k " key description"] (- d dd-/ile]

Blanks are allowed in the command line between the arguments. An empty
argument generates default values for the target-file and key description.

E.4 Definitions of
Command Line Arguments

Rebuild 2.0 supports the following command line arguments:

1 . switches (optional)
a. - i(nteractive) switch

The - i switch turns on rebuild's interactive mode (see Section
E.7.2, "Updating a Key File: Interactive Mode," for details). Ir
you use this switch, rebuild ignores all other arguments except
source-file and target-file.

b. - t(erse) switch
The - t switch sets rebuild in the terse mode. If there are no fa
tal errors, there is no output to the screen.

c. - p(rint) switch
The - p switch brings an ASCII version of the data dictionary
to the screen. The output can be redirected to a file or device.
(See Section E.8, cccreating and Using a dd (ASCII) Text File,,,
tor information on redirection.)

d. - f(orce) switch
The - f switch allows rebuild to exit or perform other routines
without waiting for your confirmation.

e. - s(ingle key) switch
The - s switch copies the data file, removes the data dictionary
and free space; no key file is built. Generates a data file that is

389

Microsoft. XENIX BASIC Compiler

compatible with the single-key Rebuild Utility, version 1 . 1 .

2. source-file or the hyphen (-)
The source-file is the name of the data file from which you want to
generate a key file. Source-file is the only required element of the
command line. Using the hyphen instead of a file name indicates
you want to build an empty data file using an ASCII dd-file or you
want to interactively enter the record structure.

3. target-file (optional)
If target-file is present, the data file is copied and a key file (target
file.key) is generated. All free space is removed from the file. A
target-fi le must be specified if a data dictionary is to be added to a
data file.

4. key description (optional)
Key description describes a single key of the format " integer-
1 : integer-£ data type" . Data type integer- I and integer-2 refer to
the key field location and key field length.
The key description can be used only when the MS-ISAM file con
tains a single key. The description contains the starting position
and size of the key.

5. dd-file (optional)
The dd-file is an ASCII file prepared with a text editor. The dd-file
contains an ASCII description of the data dictionary for a
corresponding MS-ISAM data file. The presence of dd-file preceded
by the - d Hag tells rebuild that a file in ASCII format must be pro
cessed. A description of the dd-file is given in Section E.8, "Creat
ing and Using a dd (ASCII) Text File."
The data dictionary is a binary record description located at the be
ginning of the data file. Rebuild generates this binary record au
tomatically during a data file copy, but will also generate this
binary data dictionary from the ASCII record description contained
in dd-file if you give both the dd-file and target-file arguments. If
no target-file is specified, rebuild uses the data dictionary in
source-file, rather than the dd-file, to create the new key file.

See the FIELD statement syntax in Section E.8 . 1 , "Syntax Considerations,"
for the details about defining the record fields with rebuild 2.0.

390

Rebuild 2.0

E.5 Using Rebuild as a Tool

� The following sections describe rebuild 's major uses as a tool.

See Section E.3, "Invoking Rebuild," for a description of rebuild's com
mand line arguments.

E.5.1 Fixing a Corrupted Key File

Assume an ISAM file named emprec.dat was open for writing when a power
failure occurred. Since it was not closed by ISAM, it was "corrupted" and
must have its key file rebuilt. Assume that the data file contains a data
dictionary (this will be true in most cases). The command line to rebuild
would be

rebui ld emprec . dat

Rebuild will read the data file description from the data dictionary in data
file emprec.dat, and use that to build a key file. The key file will be called
emprec.key.

If the data file emprec.dat had not contained a data dictionary as assumed
above (for example, if it had been created by COBOL 1 .0 or MS-SORT), a
description of the data would have to be provided by entering a key
description on the rebuild command line, by providing a dd file (see Section
E.8, "Creating and Using a dd (ASCII) Text File") , or by using rebuild's in
teractive mode (see Section E. 7 .2, "Updating a Key File: Interactive
Mode").

If there is only a single key in the record, the command line itself can con
tain this data description. Use the command

rebui ld emprec . dat -k " 1 : 10 string"

This will also build the key file called emprec.key. It will contain a single
key that is a fixed-length string, ten characters in length, which starts on
the first character of the record. Since no target-file was specified to ini
tiate the data file copy. your data file still won't contain a data dictionary
and never will until a data file copy using a target-file specification is ini
tiated.

391

Microsoft XENIX BASIC Compiler

E.5.2 Compressing the Data File

When a target file is specified on the command line, a copy of the source
data file is produced in addition to a new key file. This data file is
compressed (all free space records are removed). Free space records are
"empty" records resulting from deletions and rewrites which have yet to be
reused by MS-ISAM.

Whenever a data file copy is performed without the -s switch, rebuild will
put a data dictionary into the data file. If one did not exist before, it will
after rebuild is run. For example, using the indexed file emprec.dat on the
rebuild command line

rebu i l d emprec . dat emprec2 . dat

will create the new file emprec2.dat, which will contain the data records
and the data dictionary from emprec.dat. This new file will contain no free
space records. The key file will be called emprec2.key.

Note

If you have indexed files created by MS-COBOL that you want to use in
your BASIC applications, read the following section on converting MS
COBOL indexed files.

E.5.3 Converting
Microsoft COBOL Indexed Files

The key file formats for Indexed files created by MS-COBOL or rebuild ver
sions prior to 2.0 (LO format files) and Indexed files created by MS-COBOL
or rebuild 2.0 or later, or the M.icrosoft ISAM Facility (2.0 format files) are
not identical and are not compatible. The conversion process from 1 .0 to
2.0 follows:

392

1 . 1 .0 Format to 2.0 Format
This is straightforward since rebuild is able to support both for
mats. If the 1.0 format data file is called filel .dat, a valid rebuild
command line could be
rebui ld fi lel . dat file2 . dat -k " 1 : 10 ALPHA"

Rebuild 2.0

Note

Since Microsoft 1 .0 format Indexed files do not produce a data
dictionary, you must provide a key field description on the com
mand line; in this case, - k " 1 : 10 ALPHA". Rebuild will build
the new Indexed data file with an appropriate data dictionary.
This new data file (file2.dat) is now fully compatible with MS
COBOL version 2.0 and later.

2. 1 .0 Format to Multi-Key 2.0 Format
If you plan to simultaneously upgrade this single-keyed data file to
include alternate record keys, you 'II need to revise your source pro
gram and create a new key file. Use one of the following methods to
make this conversion:

New Data Dictionary Method
a. Extract a copy of the data dictionary from the created data

(empty) file by invoking rebuild 2.0 with the - p switch and
redirecting the data dictionary to a file. Delete the empty data
file.
rebui l d -p empty . dat >mu l t i . dd

b. Update the single-key file of single.dat to a multi-key file and
create your targeted multi-key data file by invoking rebuild
again with a target-file for the data file copy and the data dic
tionary filename preceded by the - d switch.
rebu i l d singl e . dat mul ti . dat -d mu l ti . dd

Rebuild Key Manipulation Method
Use the key manipulating functions of rebuild as described in Sec
tion E. 7 . 1 , "Updating a Key File: ASCII Input File" and Section
E. 7 .2, "Updating a Key File: Interactive Mode" to update the
keyfile and data dictionary by adding the described new key fields.

393

Microsoft XENIX BASIC Compiler

E.6 Data Loss After a System Crash

A data file can be damaged when electrical power to the computer system is
interrupted or the operating system is rebooted while an ISAM file is open
in WRITE or UPDATE mode.

A system failure may leave the data file with partially written data records
because of the high degree of disk file buffering in memory. This may cause
rebuild to fail to completely recover an indexed file for either or both of the
following reasons:

1 . I f the system failure occurred during a file update job, when 512
bytes of the file are kept in memory, the file may contain records
with both original and new information. Rebuild cannot determine
which part of the data was written during the terminated job, and
therefore cannot exclude the new, incomplete data from the rebuilt
file. Adding a current date field to data records may help discrim
inate between original and new data.

2 . If the system failure occurred while records were being added to the
indexed file, the last 512 bytes of data will not be written to disk.
Rebuild will detect that information is missing from the end of the
file but will not be able to add it to the recovered file.

A data file can also be damaged when space is exhausted during a WRITE
operation to the disk on which the indexed file resides.

You will know that space was exhausted during the WRITE operation when
WRITE produces a boundary error (ixstat% = 9), indicating that the disk
is full. When this happens, you should perform a CLOSE in order to write
as much information as possible to disk.

It is likely, however, that the CLOSE will also return with a boundary er
ror. As in the case of a system failure during the addition of records, the
last 512 bytes of information will not be present within the data file and is
therefore not recoverable by rebuild.

394

E. 7 Adding and Deleting Indexes

Rebuild 2.0

When indexes need to be added, deleted, or otherwise modified, you can use
two methods to update the key file: an ASCII input file, or rebuild 's in
teractive mode.

E.7.1 Updating a Key File:
ASCII Input File

Use a command line of the form

rebui l d sampl e . dat samp l e2 . dat -d new . dd

This directs rebuild to create sample2.dat and sample2.key, using new.dd
as the data dictionary (record description) for sample2.dat. Rebuild also
uses the file new.dd to update the index information in the key file when
sample2.key is generated.

� Note

Rebuild will ignore the input file new.dd if you have not specified
sample2.dat. Without an indication that you want a data file copy, re
build will assume that the existing data dictionary in sample.dat is ac
ceptable.

If you use a dd-file that changes the record description for an ISAM file, you
will need to add the same index and field information contained in the dd
file to the programs that access the data file.

For example, suppose that the dd-file, new.dd, contains the following record
description, and is designed to update the key file for a multi-key data file
called 'buyer .dat.' New .dd contains this information (n: n represents begin
ning byte:length):

396

Microsoft. XENIX BASIC Compiler

Fie l d "Process- Code" IS 59 1 Str ing
Keyed By 1 ;

Fie l d "Number " I S 1 I nteger·
Keyed By 2

Fie l d "Name" I S 3 : 20 String
Keyed By 3 Dup l icates Al l owed

Fie l d "City" IS 23 : 20 String ;

Fie l d "Zip-Code" I S 43 Single I EEE

Sp lit Keyset 4 is "Process - Code" " Zip-Code" Dup l icates Al lowed ;

You should change all MS-BASIC programs that used the buyer.dat key file
with its previous index to reflect its new index structure. In the following
source fragment from an application report.int, a split key containing the
two italicized fields is added to the existing field statement in line 20:

10 Open "/dev/nu l l " as 119 len=59 ' Open needed for FI ELD
20 F ie l d # 9 . \

2 as Numbers . \
20 as Names . \
20 as City $, \
4 as Zip. Codes • \

12 as Description$. \
1 as Process. Codex

Lines 500 to 680 in the following fragment indicate the corresponding fields
in the KOES array that will make up the new split key, 59:

10 DIM RDES (3) , KDES (S4)

30 I
&O RDES (l) = &
70 RDES (2) = 0
80 RDES (3) = 0
90 '

100 NAMESlS = "Process -Code"
110 I
1 20 KDES (l) = VARPTR (NAMES1$}
130 KDES (3) = S
140 KOES (4) = 1
150 KOES (5) = 59

1

l
l&O KOES (&)

170 KDES (7) =
180 KDES (8) 1

190 '
200 NAMES2$ = "Number"
210 '

396

'& keys in record

' Non- segmented record
' No minimum record a l location

' F ield Names

' F ield name
' String Type
' In segment 1
'Position 1 o! record - - 59 : 1
' Length o f field

' Key number 1
' Dup l i cates a l lowed

�

�

r-",

220 KOES (1 • 9) = VARPTR (NAMES2$)
230 KDES (3 • 9) l
240 KDES (4•9) 1
250 KOES (5• 9) l
260 KOES (6• 9) = 2
270 KOES (7• 9) 2
280 KDES { 8 • 9) = l
290 '

300 NAMES3$ = "Name"
310 I
320 KDES (l • l8) = VARPTR (NAMES3$)
330 KOES (3• 18) = 5
340 KOES (4 • 18) l

350 KDES (5• 18) = 3
360 KOES (6• 18) 20
370 KDES (7• 18) = 3
380 KOES (8• 18) {256" 1) • 1
390 •
400 NAMES4$ = "City"
410 I
420 KDES (1 • 27) = VARPTR (NAMES4$)
430 KDES (3 • 27) 5
440 KDES (4 • 27) 1
450 KDES (5• 27) = 2 3
460 KDES (6• 27) 20
470 KDES (7+27) = 0
480 KDES (8+ 27) = 0

490 •
500 ' Sp l it key
510 •
520 KDES (l • 36) = O
530 KDES (3 + 36) = 5
540 KDES (4• 36) 1
550 KDES (5• 36) = 5�
560 KDES (6• 36) = l
570 KDES (7 + 36) = 4
580 KOES (8• 36) = (256 • 1) + 2
590 '
600 NAMES5$ = "Zip- Code"
610 '
620 KDES (1 • 45) = VARPTR (NAMES5$)
630 KDES (3 • 45) = 8
640 KOES (4•45) = l
650 KOES (5• 45) = 43
660 KOES (6•45) = 4
670 KDES (7•45) 4
680 KOES (8+45) = (256 • 1) + 2

Rebuild 2.0

' I nteger

' 1 : 2

' Key number 2

' String

' 3 : 20

' Key number 3
' Dup l icates

' String

' 2 3 : 20

'Not a key fie ld

'Pr ocess code already has name
' str ing

' 59 : 1

' Sp l i t Key #4, first component

'Single precision

' 43 : 4

' Sp l i t Key #4 , second component

397

Microsoft XENIX BASIC Compiler

When you invoke rebuild with the command line

rebu i l d buyer . dat newbuyer . dat -d new . dd

the data dictionary and the key file for newbuyer.dat are updated, making
newbuyer.dat compatible with new versions of report.int.

E. 7 .2 Updating a Key File:
Interactive Mode

Rebuild also has an interactive mode that lets you modify the record
description in an MS-ISAM file's data dictionary.

To invoke rebuild in this mode, enter a command line of the form

rebu i l d - i samp l e . dat sample2 . dat

These arguments place the table of commands on your terminal screen (see
Figure E. 1 , "Rebuild Interactive Mode Main Menu") , and place rebuild mto
the interactive mode. The record description can then be examined or
modified.

List <field > :

Delete <field> :
Replace <field > :
Add <field > :

File options:
Help:
Exit:
Quit:

List a field, or with no args, all
fields.
Delete a field and/or split key.
Replace a field or split key.
Add a new field or another field to
a split key.
Change the file options.
List this display.
Cancel rebuild.
Quit editing and perform rebuild
operations.

Figure E.1 Rebuild Interactive Mode Main Menu

Target-file sample2.dat is specified in the command line so that changes
made to the rer.ord description WiJI bf'!COme part, of thP data dir.t,ion ary once
you complete the edit, and exit rebuild.

See Section E.8.2, "StateMent Dictionary," for descriptions of the FIELD
and RECORD statements.

898

Rebuild 2.0

Menu Descriptions

The following commands may be typed in full or represented by their first
Jetter. You will receive a prompt if additional information is required. If
<field > is more than one word, enclose the name in quotation marks (") .
Most of the commands take one or more arguments. You may enter all
arguments at once or as prompted by rebuild. Multiple arguments are
separated by spaces.

List <field> :
Displays the current record description in ASCII file format. All
field descriptions are printed if <field> is omitted.

Delete <field > :
Deletes a field description.

Add <field > <statement> :
Adds a field description to the data dictionary. If <statement> is
omitted, the Add statement issues the prompt
Speci fy a compl ete statement for Add

A FIELD/SPLIT statement, in the ASCII format described in Sec
tion E.8. 1 , "Syntax Considerations," should then be entered.

File <options> :
Modifies the file options that have a global effect. If <options> is
omitted, the prompt returned is
N) ame S) egmented M) inimum Al location

Each option corresponds to one of the the options on the RECORD
statement from the ASCII format. Enter the first letter for the
desired option. The RECORD statement is described in Section
E.8.2, "Statement Directory." The Name and :Minimum Allocation
options will prompt for further input.

Replace <field> <subcommand>:
Replaces all or part of a field description.

399

Mieroson. XENIX BASIC Compiler

400

If the <subcommand> option is omitted, rebuild issues the follow
ing prompts:
N) ame L) oc T) ype K) ey# DE) scending D) up l icates I) nsensitive

R) emove-Sp l i t A) dd - Sp l i t DES) cending- Sp l i t

To select subcommands enter the capitalized letter(s) to the left of
the right parenthesis ")". The subcommands N)ame through
I)nsensitive deal with fields and keys. The subcommands R)emove
Split through DES)cending-Split deal with split keys.

a. N)ame [" Jfield name["J

Replaces the field name description. The quotation marks
are needed only when the name has more than one word
separated by spaces.

b. L}oc !segment#]start position[: lengthJ

Changes the field position.
c. T)ype field type

Changes the data type.
d. K)ey# number

Assigns a key number to the field. You must select the same
key number that your MS-BASIC programs are going to use.
Specifying a key number of 0 makes the field non-keyed.

e. DE)scending
This switches the internal "Descending" flag on or off each
time it is executed.

f. D}uplicates
This switches "duplicates allowed" on or off. This subcom
mand also works with split keys.

g. I)nsensitive
This switches the insensitive switch on or off.

h. R)emove-Split field
Allows you to delete the components which make up a split
key.

1. A}dd-Split field
Allows you to add the components which make up a split
key.

Rebuild 2.0

J · DES)cending-Split field

Allows individual components of a split key to have the des
cending attribute independent of the descending attributes
in the referenced field. This switches Descending on or off
each time it is executed.

E.8 Creating and Using
a dd (ASCII) Text File

To bring an ASCII version of sample.dat's data dictionary to the screen,
use the - p switch on the command line

rebuild -p sampl e . dat .

If you want to redirect this output to another file (e.g., text.dd), and then
edit it to new specifications, enter the command line

rebu i l d -p sample . dat >text . dd

You could then edit text.dd, and add the new version of the data dictionary
to sample2.dat, with the command line

rebui l d sample . dat sample2 . dat text . dd

The ASCII files acceptable to rebuild lend themselves to easy maintenance.
The fallowing sections describe the syntax and language recognized by
rebuild, and provide practical examples of record descriptions in data dic
tionary format.

E.8.1 Syntax Considerations

You can describe an MS-ISAM file record by using the RECORD, FIELD,
and SPLIT KEYSET statements. The RECORD statement is optional
(only one RECORD statement may be given for any file), but you must use
one or more FIELD statements. SPLIT KEYSET statement(sJ are optional.
All statements must end with a semicolon.

In the syntax diagrams that follow, optional material is indicated by s�uare
brackets ([I). Braces (I :) are used two ways: with the vertical bar (1) to
indicate a cfloice of two options; or with ellipses (. . .) to indicate a repeated
group. The optional quoted square brackets ({'' [" J and f"] ")) in the

401

Microsoft XENIX BASIC Compiler

FIELD statement indicate that an actual bracket character may be entered .
If the optional opening bracket ([) is chosen, the closing bracket (J) must
also be used, and vice versa.

[RECORD [record-name] [SEGMENTED]
[MINIMUM ALLOCATI ON I S integer]) :

F I ELD [field· name] I S (11 (11] position (: size]
data.type [INSENSITIVE] ["] " J

[KEYED [BY) key-number [DUPLICATES ALLOWED]
[DESCENDING)) :

[SPLIT KEYSET key-number I S
{{field-name I key-number} [DESCENDING] }

[DUPLI CATES ALLOWED]] :

E.8.2 Statement Directory

Rebuild 2.0 supports the following keywords to create an ASCII file that
describes data file records:

RECORD Statement

The optional RECORD statement sets global file options. These options
can also be set with the F(ile) options command in the interactive mode.

The arguments of the RECORD statement are

402

record-name

SEGMENTED

MINIMUM
ALLOCATION

an optional identifying name.

the file will have a special segmented structure.

the minimum record size allocated
from the data file. MINIMUM ALLOCATION can
be used to minimize data file fragmentation when
IREWRITEing variable length records.

Rebuild 2.0

FIELD Statement

The FIELD statement describes each field in the record. We recommend
that all fields in a record be defined even though rebuild requires that only
key fields be defined. This additional effort will allow future utilities to
access desired data items. The interactive mode commands A(dd}, L(ist},
P(rint), R(eplace), and D(elete) use field names or entire FIELD statements
as input.

The arguments of the FIELD statement are

field-name

position

size

data type

Name of field; maximum 40 characters. If more
than one word, enclose the name in double quota
tion marks (").

Position from start of the record (1 being the first
position).
Size of data field in characters.
The data type of the contents of the field. Rebuild
supports the following data types:

ALPHANUMERIC
BOOLEAN l 1-, 2-, 4-byte lengths only l

BYTE l l l

CHARACTER
DOUBLE DECIMAL l 8 l
DOUBLE IEEE l 8 l
DOUBLE [MlCROSOFTJ I 8 l
INTEGER l 1-, 2-, 4-byte lengths only l
LOGICAL l 1-, 2-, 4-byte lengths only l
LSTRING
NUMERIC
SINGLE DECIMAL l 4 l

SINGLE IEEE I 4 l
SINGLE !MlCROSOFTJ l 4 J
STRING
WORD ! 2 }

403

Microso� XENIX BASIC Compiler

INSENSITIVE

KEYED BY Clause

Data types followed by numbers in braces (: l) have
a fixed size value, which must be specified as noted
in size. Neither the braces themselves, nor the
numbers they contain, are actually part of the
FIELD statement syntax. If a size argument is
given for a data type with an implied length, size
will be ignored.
When using the binary version of BASIC, use the
IEEE floating point data types. For the decimal
version, use the DECIMAL floating point data
types.
Characters which differ by case only are considered
equal.

The optional KEYED BY clause makes a specific field value into a key to
the record. During revisions of the key file using rebuild, the KEYED BY
clause is used to make a field into a record key. The arguments are:

key-number

DUPLICATES
ALLOWED

DESCENDING

Identifies a key and is used in the MS-ISAM file sys
tem. The number can range from 1 to (n), where (n)
is the number of keys.

Allows two or more records to have the same key
value.

Reverses the ordering of keys. DESCENDING key
files should be used only with programs that expect
this feature.

SPLIT KEYSET Statement

The SPLIT KEYSET statement defines split keys. The parameters are

key-number

field-name or key-number

404

Serves the same purpose a.o;; the key
number in the KEYED BY clause.
Identifies a single key composed of
several concatenated record fields.
field-name is the same field name used to
identify the field in the FIELD statement.

DESCENDING

Rebuild 2.0

If no name was given in the FIELD state
ment, key-number can be substituted for
field-name.

Reverses the ordering of the preceding
component of the split key.

4.05

Appendix F

Error Messages

F. 1 Invocation Errors 409
F.2 Compile-Time Errors 410
F.3 Run-Time Errors 416

407

r---...

Error Messages

During development of a :Microsoft BASIC program with the XENIX Com
piler, four different kinds of errors may occur:

1 . Invocation errors
2. Compile-time errors and warnings
3. Linker errors
4. Run-time errors

Each type of error is associated with a particular step in the program
dt,velopment process. Invocation errors occur when you invoke the com
piler; compile-time errors and warnings occur during compilation; linker er
rors occur during linking, and run-time errors occur when the compiled
XENIX program is rµnning.

This appendix lists error codes and error messages for invocation, compile
time and run-time errors, along with any error numbers that are assigned.
Error messages are organized in the following sections:

Section Errors

F. l Invocation errors
F.2 Compile-timer errors
F.3 Run-time errors

F . 1 Invocation Errors

Invocation errors occur when you enter illegal input on the command l inl'
or in response to prompts during invocation. The messages that may occur
when the compiler is invoked are listed below:

Bad fi l ename

Improper file specification entered.

Can ' t create f i l e

Disk is write protected or disk is full.

409

XENIX BASIC Compiler

Command e r r o r : ' c '

An error has occurred at character c. If no drivename appears, the disk
in the default drive is ful l .

F i l e not found

The file does not exist, or you do not have permission to access the file.

Unknown swi tch : /s

Illegal compiler option s.

F. 2 Compile-Time Errors

When errors occur while your program is compiling, the compiler displays
the line containing the error, and a two-character code for the error. An
arrow beneath that line points to the place in the line where the error oc
curred. In some cases, the compiler reads ahead on a line to determine
whether an error has really occurred, and the arrow will point a few charac
ters beyond where the error actually took place.

The messages listed below describe both severe errors and warning errors.
When a severe error occurs, the compiler will attempt to continue. How
ever, the resulting object file will not be correct. You must correct the error
and recompile the source file before linking.

On the other hand, when a warning error occurs, compilation continues,
but warning errors are displayed to point out poorly constructed program
statements. The resulting object file can be linked to form an executable
program, but the program may not perform as intended. Errors and warn
ings are indicated either by a long message or by a two-letter code. Long
error messages describe general conditions that are not associated with a
particular line number. Two-letter codes indicate errors on specific lines.

B i n ary s ource f i l e

410

The file you have attempted to compile is not an ASCII file. All source
files saved from within the BASIC interpreter should be saved with the
",A" option.

Bad subscript. The following situations cause this error:

CD

CN

co

DD

FD

FN

I N

• Illegal array dimension value
• Wrong number of subscripts

Duplicate COMMON variable.

COMMON array not dimensioned.

Error Messages

COMMON out of order. COMMON must appear before any executable
statements.

Array already dimensioned. This error can be caused by the following:

• More than one DIM statement for same array
• DIM statement after initial use of array
• OPTION BASE after array dimensioned

Function definition error. This error occurs when a _ereviously defined
function is redefined or when DEF FN ... EXIT DEF /END DEF state
ments are incorrectly nested.

FOR . . . NEXT error. This can be caused by the following conditions:

• FOR loop index variable already in use
• FOR without NEXT
• NEXT without FOR

$ INCLUDE file not found.

I nterna l error
An internal error has occurred in the XENIX Compiler. Please note
precisely what actions preceded this message and report the problem to
Microsoft immediately.

411

XENIX BASIC Compiler

Line label i s unde fined

A statement refers to a nonexistent line label.

L ine n is unde f i ned

A statement refers to a nonexistent line number.

LL

Line too long. Lines are limited to 254 characters.

LS

String constant too long. Strings are limited to 32767 characters.

MC

Warning error. A metacommand is incorrect.

Memory over f l ow

Available memory has been exhausted. Try compiling without the
debug options. If memory is still exhausted, break your program into
parts and use the CHAIN command or separate compilation facilities.

Missing NEXT for va r i ab l e

ND

OM

OV

412

No NEXT was found to match a FOR statement.

Warning error. An array is declared but not dimensioned.

Out of memory. This error can be caused by the following conditions:

• Array too big
• Data-memory overflow
• Too many statement numbers
• Program-memory overflow

Math overflow. The result of a calculation is too large to be represented
in BASIC number format.

S B

S I

SN

�

Error Messages

This is a subprogram definition error and is usually caused by one of
the following:

• The subprogram is already defined, or a subprogram of that
name is already defined.

• The program contains incorrectly nested SUB . . . EXIT SUB/END
SUB statements.

Warning error. Statement ignored. This warning often results when a11
unimplemented command is used in a program.

Syntax error. This error can be caused by the following conditions:

• Illegal argument name
• Illegal assignment target
• Illegal constant format
• Illegal debug request
• Illegal DEFxxx character speci.fication
• Illegal expression syntax
• Illegal function name
• Illegal function formal parameter
• Illegal separator
• Illegal format for statement number
• Invalid character
• Missing AS
• Missing equal sign
• Missing GOTO or GOSUB
• Missing comma
• Missing INPUT
• Missing line number

413

XENIX BASIC Compiler

SQ

ST

414

• .Missing lert or right parenthesis
• Missing minus sign
• Missing operand in expression
• Missing semicolon
• Missing TO
• Missing THEN
• Missing BASE
• Name too long
• Expected GOTO or GOSUB
• String assignment required
• String expression required
• String variable required
• Illegal syntax
• Illegal FOR loop index variable
• Illegal C0�1MON name
• Illegal subroutine name
• Variable required
• Wrong number or arguments
• Formal parameters not unique
• Single variable only allowed

This is a sequence error and is usually caused by une of the following
conditions:

• Duplicate statement number
• Statement out of sequence

Warning error. There is a missing STATIC or SUB statement.

�

TC

TM

UC

UF

WE

/0

/E

/X

Error Messages

This message is caused by one of the following condi tions:

• Expression too complex

• Too many arguments in function call (limi t of 60}
• Too many dimensions (l imit of 255)
• Too many variables for LINE INPUT (limit of I)
• Too many variables for INPUT (limit of 60)

Type mismatches are caused by the following conditions:

• Data type conflict

• Variables of different types

Unrecognizable command.

Function not defined. Functions must be defined before they are used.

This is a WHILE . . . WEND error, caused by either a WHILE statement
without a corresponding WEND, or a WEND statement without a
corresponding WHILE.

This message is caused by division by zero, division of the integer
-32768 by I or - 1 , or moding of the integer -32768 by 1 or - 1 .

Missing "/E" option. Programs that contain ON ERROR GOTO state
ments must be compiled with the -E option .

Missing "/X" option. Programs that contain RESUME, RESUME
NEXT, and RESUME 0 statements must be compiled with the /X
option.

416

XENIX BASIC Compiler

F.3 Run-Time Errors

The coded errors listed below may occur while the program is running. The
compiler run-time system prints long error messages followed by an ad
dress, unless a -D, -E, or -X option is specified in the compiler command
line. In those cases, the error message is also followed by the number of the
line in which the error occurred. The standard forms of the error messages
are as follows:

Error X in modu le zzzzzzzz at address nnnn:nn n n .

and

Error X in l ine 1111111/ of modu l e zzzzzzzz at address nnnn:nn n n .

A description of the uncoded (unnumbered) run-time error messages follows
this list.

Code

2

3

4

5

416

Message

Syntax E r ror

A line i s encountered that contains an incorrect sequence of
characters in a DA TA statement.

RETURN wi thout GOSUB

A RETURN statement is encountered for which there is no
previous, unmatched GOSUB statement.

Out o f Data

A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

I l l egal Function Ca l l

A parameter that is out of range is passed to a math or
string function. A function call error may also occur for the
following reasons:

• A negative or unreasonably large subscript is used.
• A negative number is raised to a power that is not

an integer.

Code

6

7

9

10

1 1

1 3

Error Messages

Message

• A USR function is called that has an undefined start
ing address.

• A negative record number is given when using GET
file or PUT file.

• An improper or out-of-range argument is given to a
function.

• Strings are concatenated to create a string greater
than 32767 characters in length.

F l oating Over flow or I nteger Over f l ow

The result of a calculation is too large to be represented
within the range allowed for floating-point numbers.

Out o f memory

Not enough memory is available to allocate a file buffer.

Subscr ipt Out o f Range

An array element was referenced with a subscript that was
outside the dimensions of the array; or an element of an un
dimensioned dynamic array was accessed. This messag<' is
generated only if the -D option was specified at compile
time.

Redimensioned Array

A second DIM statement was executed for an already dimen
sioned dynamic array.

Divis i on by Zero

A division by zero is encountered in an expression, or the
operation of involution results in zero being raised to a neg
ative power. Also occurs if the integer -32768 is divided by
I or - 1 , or if -32768 is moded by 1 or - 1 .

Type mismatch

The argument types are not compatible.

417

XENIX BASIC Compiler

Code

1 4

1 6

1 9

20

50

5 1

52

53

418

Message

Out o f Str ing Space

String variables exceed the allocated amount of string space.

Str i ng formu l a too comp l ex

A string formula is too long, or an INPUT statement re
quests more than 15 string variables. Break the formula or
INPUT statement into parts for correct execution.

No RESUME

The end of the program was encountered while the program
was in an error-handling routine. A RESU!vIB statement is
needed to remedy this situation.

RESUME w i thout E rr or

A RESUME statement is encountered before an error-
trapping routine is entered.

F i e l d Over f l ow

A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random file.

I nterna l E r ror

An internal malfunction occurred in the XENIX Compiler.
Report to Microsoft the conditions under which the message
appeared.

Bad F i l e Number

A statement or command references a file with a file number
that is not OPEN or is out of the range of file numbers
specified at initialization.

F i l e Not Found

A KILL, NAMES, FILES, or OPEN statement references a
file that does not exist on the current disk.

�

Code

54

55

57

58

6 1

6 2

6 J

6 4

68

Error Messages

Message

Bad f i l e Mode

An attempt is made to use PUT or GET with a sequential
file, or to execute an OPEN with a file mode other than I , 0,
or R. This error also occurs when an attempt is made t.o
read from a file opened for output or appending.

F i l e A l r eady Open

A sequential output mode OPEN is issued for a file that i�
already open; or a KILL is given for a file that is open.

D i sk I /O E r r o r

An 1/0 error occurred o n a disk 1/0 operation. Till' OJH'ra l
ing system cannot recover from the error.

F i l e A l r e ady E x i s t s

The filename specified in a NA1vIB statement is ident.ica I to a
filename already in use on the disk.

D i s k F u l l

All disk space has been allocated.

I nput P a s t End

An INPUT statement reads from a null (empty) file, or from
a file in which all data has already been read . To avoicl this
error, use the EOF function to detect the end of file.

Bod Rec c r d Number

In a PUT or GET statement, the record number is equal to
zero.

Bad F i l e Name

An illegal form is used for the filename with LOAD, SA VE,
KILL, or OPEN (e.g., a filename with too many characters).

Dev ice unavai l ab l e

The device you are attempting to access i s not on-line or
does not exist.

4 19

XENIX BASIC Compiler

Code Message

70

7 1

7 2

Permiss i on Der. i ed

An attempt was made to write to a write-protected file.

Unpr intab l e error

There is no message for this error.

D i sk med i a error

Disk-drive hardware has detected a physical flaw on the
disk.

7 3 - 76 Unp r i ntab l e error

77

There are no message for these errors.

Lock a t tempt f a i led

An attempt to lock a file or section of a file has failed
because the section is already locked by another user.

78 - 87 Unpr i ntab l e error

88

There are no messages for these errors.

Chi l d pr ocess err or

The child process set in motion by a SHELL statement
failed, either as the result of a XENIX error, or as the result
of a shell termination signal (e.g, Control-D) .

89- 255 Unpr intab l e error

There are no messages for these errors.

The following is a list of uncoded run-time error messages:

E r r o r i n an executab l e fi le

420

This error occurs when a file is not of the correct type or does not have
the correct permissions. A file must be an executable file if it is to be
executed with RUN or CHAIN. For chaining, the user must have both
read and write permission on the chained-to file. This error is severe
and cannot be trapped.

Error Messages

No L i ne Number in modnam at address rmnn:rmmi

The error address cannot be found in the line-number table during error
trapping. This occurs when you have forgotten to use either the -X
or -E compiler options in programs that contain RESUME and ON

ERROR GOTO statements. It can also ot'cur if the line-number
table has been accidentally overwritten by the user program. This error
is severe and cannot be trapped.

Str i ng Space Cor r up t in [line number o f] modnam at address
nnnn:nnnn

This error occurs when an invalid string in string space is being deallo
cated, usually in a string assignment statement. See the listing follow
ing the error message "String Space Corrupt during G.C." below for
additional causes. This error is severe and cannot be trapped.

Str i ng Space Cor rupt dur ing G . C . i n [line number o f)
modnam at address nnnn:nnnn

This error occurs when an invalid string in string space is being deleted
during garbage collection. The probable causes for either of the "String
Space Corrupt" errors are as follows:

• A string descriptor or string backpointer has been improperly
modified . This may occur if you use an assembly-language sub
routine to modify strings.

• Out-of-range array subscripts are used and string space is inad
vertently modified. The -D option may be used to ensure that
array subscripts do not exceed the array bounds.

• Incorrect use of the POKE and/or DEF SEG statements may
modify string space improperly.

• Mismatched C0?\1MON declarations may occur between two
chained programs.

421

Glossary

The definitions in this glossary are intended for use wit,h this manual. Nl'i
ther the individual definitions nor the list of terms is comprehensive.

Base name
The portion of the filename that precedes the filename extension. For
example, SAMPLE is the basename of the file SAMPLE.BAS.

Call by reference
See "Pass by reference."

Call by value
See "Pass by value."

Compile time
The time during which the compiler is executing, compiling a BASIC
source file, and creating a relocatable object file.

Compiler
A set of programs that translat.es BASIC programs into a language
understood by the computer.

Disassembly listing
A listing that shows assembled code, instructions, and addresses rela
tive to the start of Lhe program or module.

Double precision
A real value that, is allocated 8 bytes of memory.

Executable program
A file that contains executable program code. When the name of the file
is typed at the system prompt, the statements in the file are executed.

External symbol
A symbol referenced in one assembly-language module but defined
(made PUBLIC) in another module. References to the symbol arc
resolved (filled m with the correct addresses) by the linker.

423

XENIX BASIC Compiler

Heap
An area of random access memory that is used by BASIC as the data
management area. Variables and arrays are stored here.

Library
A directory that stores related modules of compiled code.

Link map file
A file that shows the address of every code and data segment in a pro
gram, relative to the start of the program.

Link time
The time during which the l inker is executing, and during which it col
lects and links relocatable object files and library files. See also Compile
time, Run time.

Linking
The process in which the linker loads modules into memory, computes
absolute offset addresses for routines and variables in relocatable mod
ules, and resolves all external references by searching the run-time
library. After loading and linking, the linker saves the modules it has
loaded into memory as a single executable file.

Machine code
Instructions that a microprocessor can execute.

Main program
In a program that calls subprograms or subroutines, the calling pro
gram is the main program.

Memory map
A representation of where in memory the computer expects to find cer
tain types of information.

Metacommands

424

Metacommands are special commands enclosed in comments in the
source file that tell the compiler to perform certain actions while it is
compiling the program; for example, to produce a listing file in a certain
format.

Glossary

Module
A general term for a discrete unit of code. There are several types of
modules, including relocatable and executable modules. The compi ler
creates relocatable modules that are later processed by the linker. Your
final executable program is an executable module.

Object file
A file that contains relocatable machine code.

Offset
The number of bytes from the beginning of a segment to a particular
byte in that segment.

Pass by reference
A method of passing parameters in which the calling routine provides
the called routine with the memory .addresses of the parameters. This
permits subroutines to change the values of the parameters.

Pass by value
A method of passing parameters in which the calling routine provide�
the called routine with the current value of the parameters. This
prevents the possibility of the subroutine changing the value of the
parameter; the subroutine only changes its copy of the value.

Relocatable
The term applied to a module when the code within it can be placed
and run at different locations in memory. The relocatable modules
created by the compiler are an intermediate stage between source code
and executable code; they are changed into executable modules by the
linker and have .o extensions.

Routine
Executable code residing in a module, and usually representing a partic
ular feature or procedure. More than one routine may reside in a mod
ule.

Run time
The time during which a compiled and linked program is executing.
Run time refers to the execution time of a program rather than to the
execution time of the compiler or the linker.

426

XENIX BASIC Compiler

Subprogram

A separat.ely compilable module of code delimited by the SUB and END
SUB or EXIT SUB statements. See also Main program.

Unbound External
A symbol that is referenced in one assembly-language module but is not
made PUBLIC in another module that is linked with it. Unbound exter
nal references are usually caused by misspellings, or by omitting from
the link command line the name of the module containing the desired
symbol .

426

Index

ABS function, 150
Absolute value, 1 50
ALL, 173
Alphanumeric line labels. See Line

labels
a.out file

executable program file name, 19
naming, 21 , 30

Apostrophe, entering, 6
Arctangent, 1 52
Arithmetic operators, 1 18
Arithmetic overflow, 23, 1 26
Arrays, 1 97

bounds check, 23
dimensioning, 1 15
$ DYNAMIC metacommand , 130
dynamic

defined, 129
ERASE statement, effect, 130
memory space allocation , 1 30
REDIM statement, 1 30, 291

elements, 1 15
LBOUND function, 79, 234
memory allocation, 1 34
passing with CALL, 77
storing, 25
subprograms, parameter list form, 74
$ STATIC metacommand, 130
static

bounds checking, 13 1
defined, 1 29
ERASE, effect, 1 30
REDIM, effect, 130
redimensioning, 130

subscripts, 1 1 6
UBOUND function, 79, 333
unallocated, default to static, 132
variables, 173, 1 9 1

ASC function, 15 1
ASCII

codes, 166, 347
file, 390
format, 1 5 1 , 160

Assembler error messages, 26
Assembly language

Assembly language {continued}
coding rules, 97
interfacing, 93
loading files, 93
source file, using, 25
subroutines, 93, 153, 158, 273, 337

ATN function, 1 52
AUTO command, 1 43

.BAS file, execution by compiler, 144
bascom command

-A option, 22
-c option, 20
disassembly listing, creating. 22
error messages, 26
executable file naming option, 2 1
form, 1 7
link map file option, 22
-m option, 22
-o option, 21
object file, creating, 20
options,form, 1 8
with assembly language sou rce, 2fi

Basename, defined, 422
BASIC run-time errors, 416
Boundary error indicator, 394
Bounds checking, arrays, 131
Built-in functions, 124

C language modules, 99
CALL statement, 153, 158

assembly language subroutine, 93
BASIC subprograms, 75
compiler /interpreter differences, 144

Calling C language modules, 99
CALLS statement, 99

compiler /interpreter differences, I 44
Carriage return, 229, 242, 34 1 , 343, 345
Case, line labels, 107
CDBL function, 1 59
CHAIN statement, 1 44, 1 60, 1 73
Characters recognized by BASIC, 105
CIIDIR, 1 65

427

Index

Child process, 35
CHR.$ function, 166
CINT function, 167
CLEAR statement, 168
Clearing output window, 171
CLOSE statement, 170
CLS statement, 171
Code segment address listing, 22, 32
COMMAND$ function, 137
Commands

See also Specific Command
bascom, 17

Comments, introducing, 108
COMMON statement, 173

compiler/interpreter differences, 1 44,
145

described, 131
DIM, restriction with, 130
order of variables, 175
SHARED attribute, 80

Compile time
defined, 422
error messages, 410

Compiler/interpreter comparison, 138
Compiling

bascom command, 17
multiple source files, 20
single source file, 19

Compressing ISAM data files, 392
CONT command, 143, 242
Converting indexed file format, 392
Converting interpreted programs, 137
COS function, 176
CSNG function, 177
CVD function, 178
CVDBCD function, 143
CVI function, 178
CVS function, 178
CVSBCD function, 143

-d flag, 390
-D option, 23, 24
Damaged data file, 394
Data segment address listing, 22, 32
DATA statement, 180, 296
Data types

Double-precision floating-point
numeric, 1 10

integer numeric, 109
Single-precision floating-point

numeric,

428

109
Data types (continued}

string, 109
DATE$ function, 182
dd-file, 390
Debug option, static array bounds

checking, 131
Debugging messages, 23
Declaring variable types, 114
DEF FN statement, 145, 183, 184
DEF USR statement, 143
DEFDBL statement, 143, 187
DEFINT statement, 1 15, 143, 187
DEFSNG statement, 143, 187
DEFSTR statement, 1 43, 187
DEFtype statements

See also Specific Statement.
compiler/interpreter differences, 144

DELETE command, 143
DELETE statement, 190
Device-independent I/O, 35
DIM statement, 191

array dimensioning, 130
COMMON, restriction with , 130
compiler/interpreter differences, 144
SHARED attribute, 80
use, 130

Direct mode, 263
Directories, hierarchical, 37
Disabling metacommands, 133
Disassembled object code listing, 22,

135
Disk storage error, 394
Division by zero, 119
Double precision, 1 11 , 159, 187, 279
$DYNAMIC, 134
Dynamic arrays

See also Arrays
$DYNAMIC metacommand, 134
REDIM Statement, 291

$DYNAMIC metacommand
See also Metacommands

array memory allocation, 130, 134

-E option, 24, 139
EDIT command, 143
END SUB, 73
END statement, 193, 215, 216

compiler/interpreter differences, 145
use with $ INCLUDE, 1 34

EOF function, 195
ERASE statement, 197

arrays, etTect on, 1 30
compiler/interpreter ditrerences, 145

ERL function, 108, 199
ERR function, 199
Error codes, 201
Error handling, 23, 24, 199, 263
Error messages, 409

assembler, 26
bascom command, 26
linker, 26

ERROR statement/command, 201
Error trapping, 201 , 297

ISAM files, 47
line O, 107

Errors
run-time, 416
severe, 410

Executable file
creating from object file, 30
name, 19, 21, 30

Executing a program, 19
Execution time. See Program execution
EXIT statement, use in subprograms,

324
EXIT SUB, 73
EXP function, 203
Expressions

conversion of operands, 126
definition, 1 16
passing to subprograms, 79

External symbol, 422

FIELD statement, 109, 204
File naming conventions, 36
FILES statement, 207
Files

ASCII format, 139, 390
data, 37
dd-file, 390
EOF function, 195
$ INCLUDE, 133
LOC function, 243
LOCK statement, 245
LOF function, 248
multi-key Indexed file, 392
multi-user, 65
naming, 36
object See Object file, 20

Index

Files (continued)
OPEN statement, 266
random, 204, 213, 233, 253, 257 , 266,

285, 303
accessing, 43
creating, 41

sequential, 37, 226, 233, 240, 266,
275, 343

accessing, 39
appending, 40
creating, 38

single-key Indexed file, 392
FIX function, 208
Fixed-point constants, 1 1 1
Floating-point constants

allowable range
double precision, 1 10, 1 1 1
single precision , 109, 1 1 1

exponent, 109
mantissa, 109
most significant bit, 109

FOR ... NEXT statement, 145, 209, 261
FORTRAN subroutines, 99
FRE function, 145, 212
Functional operators, 124
Functions, 183

COMMAND$ I 137
contrasted with statements, 149
enhanced in compiler, 144
FRE, 145
interpreter

CVDBCD, 143
CVSBCD, 143
MKDBCD$, 143
MKSBCD$, 143
USR, 143

intrinsic, 124
LBOUND, 79, 137
new. See New statements/functions
not accepted by compiler, 143
UBOUND, 79, 1 37
user-defined, 124, 184

GET statement, 204, 213
Global symbols

address listing, 22, 32
listing, 22, 32

GOSUB statement, 215, 216, 299
GOSUB ... RETURN, 145
GOTO statement, 215, 219

429

Index

GOTO statement {continued)
compiler/interpreter differences, 145
$ INCLUDE, use with , 134
required with line label, 108
subroutines, use with, 216

Heap, 423
HEX$ function, 221
Hexadecimal, 221
Hierarchical directories, 37
Hierarchy of operations, 1 17

IF ... GOTO statement, 222
IF ... THEN statement, 199, 222
IF ... THEN ... ELSE statement, 222

GOTO, when required, 108
line labels, 108

$ INCLUDE metacommand, 1 33
Indexes, input to rebuild, 395
INKEY$ function, 225
INPUT$ function, 228
INPUT statement, 204
INPUT# statement, 226
INPUT statement, 229
INSTR function, 231
INT function , 232
Integer constants, 1 67, 208, 232

decimal, 1 10
hexadecimal, 1 1 1
octal, I l l

Integer division, 1 1 9
Internal module names, changing, 136
Interpreter programs, converting, 137
Interpreter/ compiler comparison, 138
Intrinsic functions, 124
Invocation errors, 409
Invoking rebuild, 389
ISAM files, 47

adding a record, 59
advantages, 47
automatic locking, 66
changing a record, 61
closing a file, 362
codes, 1, 381
comparison with sequential, 48
compressing, 392
construction, 47
creating, 50
currency, 361

430

ISAfv1 files {continued}
current record, 361
data dictionary, 47
data file

non-segmented records, 48
record types, 48

data files, 4 7, 359
data file

segmented records, 48
definition, 359
deleting a record, 60
error codes, 1 , 381
error trapping, 47
field description, 366
file handles, 363
ICLOSE, 369
!CONTROL, 363, 369
IDELETE, 370
IDREAD, 363, 370
IGETDP, 363, 371
IGETKD, 363, 372
!LOCK, 66, 363, 373
in BASIC programs, 50
INEXT, 374
IOPEN, 374
IPREV, 376
IREAD, 377
IRESTOREFP, 377
IREWRITE, 377
ISAVEFP, 378
ISEEK, 378
ISIZEOF, 379
IWRITE, 380
key, 359
key description array, 53
key files, 47
key handles, 50, 363, 364
keys, 49
locking, 66
manual locking, 66
modified with rebuild, 398
multi user applications, 67
opening a file, 361
operating system concerns, 67
ownership, 67
parameters, 363
permissions, 67
reading a record, 361
record description, 365
record description array, 53
records, 360

records (continued}
non-segmented, 360
segmented, 360, 364

rewriting a record , 36 1 , 362
searching, 62
segment table, 364
segmented records, 364
sharing in XENIX, 67
sizing a record, 362
split key, 359, 364
split keys, 49
status codes, 1, 381
subroutines, 368
updating, 56
writing a record, 361
writing an application, 360
XENIX considerations, 67

ISAM file modes, 375
ishare utility, 68

-k flag, 390
KILL command, 233
K"YBD:, 35, 195, 243, 248

LBOUND function, 79, 234
LBOUND/UBOUND, 137
Id command

executable file naming option, 30
-I option, 3 1
link map file option, 32
-m option, 32
-o option, 30

LEFT!fi function, 236
LEN function, 237
LET statement, 204, 238
Library

search order, 3 1
special, linking option, 3 1

Line O , effect on error trapping, 107
LINE INPUT# statement, 240
LINE INPUT statement, 242
Line labels

alphanumeric, 106, 107
case, significance, 107
RESUME statement, 108
use, 106, 108
use with GOTO, 108

Line length restrictions, 108
Line number check , 23

Linc numbers
example of, 107
restrictions, 1 07
RESUME statement, 1 08
USC of, 106

Line printer, 250, 251 , 341
Linefeed, 229, 242, 343, 345
$LINESIZE, 135
Link map file

described, 22, 32
producing, 22, 32

Link time, 423
Linker error messages, 26
Linking

bascom command, 1 7
special libraries, 31

$LIST, 1 34
LIST command, 1 43
LLIST command, 143
LOAD command, 143
LOC, 40
LOC function, 243
LOCK Statement, 65
LOCK statement, 245
LOCK. .. UNLOCK, 137
LOF function, 248
LOG function , 249
Logical operators, 121
Loops, 209, 261 , 339
LPOS function, 250, 341
LPRINT statement, 251, 34 1
LPRINT USING statement, 251
LPTl :, 35, 248
LSET statement, 253, 303

Main program, defined, 73
MERGE command, 143
Metacornmands, 132

See also Specific Metacommand
defined, 132
disabling, 1 33
$DYNAMIC, 1 30, 134
$ INCLUDE, J 33
$LINESIZE, 135
$LIST, 134
listing format, 1 35
$MODULE, 136
$ 0CODE, 135
$ PAGE, 135
$PAGEIF, 135

Index

431

Index

Metacomman ds (continued)
$PAGESIZE, 135
purpose, 132
$ STATIC, 130, 134
$ SUBTITLE, 135
syntax, 1 33
$ TITLE, 135

MID$ function, 255
MKO$ function, 257
MKDBCD$ function, 143
MKDIR statement, 259
MKI$ function, 257
MKS$ function, 257
MKSBCD$ function, 1 43
Modular programming, defined, 73
$MODULE metacommand, 136
Module, relocatable, 424
Modulo arithmetic , 1 1 9
Multi-user files, 65

NAME command, 260
NEW command, 143
New statements/functions

COMMAND$, 1 37
LBOUND/UBOUND, 137
LOCK ... UNLOCK, 137
REDIM, 1 37
SHARED, 137
STATIC, 137
SUB ... END SUB, 137

Newline, 240
NEXT, 261
Notational conventions, 6
Numeric constants, 1 10

Object file
creating, 20, 21
filename extension, 20
linking, 30

$ 0CODE, 135
OCT$ function, 262
Octal, 262
ON ERROR GOTO statement, 263

-E option required, 139
line 0, 107

ON ERROR GOTO . . . RESUME, -E
option, 24

ON ERROR GOTO
-X option, 24

482

ON event GOSUB, -E option required,
139

ON event GOTO line O, 107
ON GOSUB statement, 265
ON GOTO statement, 265
OPEN statement, 145, 204, 266
Operators, 116 1 117

arithmetic, 1 18
functional, 124
logical, 121
relational, 120
string, 124

OPTION BASE statement, 270
Options

array storage, -R, 25
-D, 23, 24
Debug, 131
-E, 24
error handling See Error handling

options. See
-R, 25
-X, 24

Output file, naming, 19
Overflow, 1 19, 203, 329

$PAGE, 135
$PAGEIF, 135
$PAGESIZE, 135
Parameter passing

by reference, 77
by value, 77
single module

SHARED attribute, 80
SHARED statement, 80, 82

Pass by value, 424
Pathnames defined, 37
PEEK function, 272, 273
PIPE:, 35, 195, 243, 248, 266
POKE statement, 272, 273
POS function, 274, 341
PRINT# statement, 275
PRINT statement, 278
PRINT USING statement, 281
PRINT# USING statement, 275
Program

converting to compiled, 137
executing, 19
execution, speeding up, 138
naming, 1 9

PUT statement, 204, 285

-R option , 25
Random files, 41 , 204, 213, 233, 253,

257, 266, 285, 303
Random numbers, 28i , 302
RANDOMIZE statement, 28i, 302
READ statement, 289, 296
rebuild, 362, 387

changing key information
example, 388

command line syntax, 389
compressing data files, 388
damaged key files, 388
FIELD statement, 403
KEYED BY Clause, 404
redirect output, 401
SPLIT KEYSET statement, 404
switches

-f, 389
-i, 389
-p, 389
-s, 389
-t, 389

Records, 40
REDIM statement, 137, 291

arrays, use with, 130
SHARED attribute, 80

Relational operators, 120
Relocatable, 424
REM statement, 294
RENmvl command, 143, 160, 199
Reserved words, 349
RESTORE statement, 296
RESUME O

line O, 107
-X option, 139

RESUME NEXT statement, 108
RESUME NEXT

-X option required, 139
RESUME statement, 297

alphanumeric line labels, 108
compiler/interpreter differences, 144,

145
-X option required, 24, 1 39

RETURN statement, 215, 299
check for GOSUB, 23
not equivalent to EXIT statement,

324
syntax, 216

RIGHT$ function, 300
RMDIR statement, 301
RND function, 287, 302

Routine, 424
RSET statement, 253, 303
RUN command , 304
RUN statement , 144, 304
Running a program

See Executing a program
Run-time

defined, 424
error messages, 416

-S option, 24
SADD function , 306
SAVE command, 139, 143
Saving a program

ASCII format, 139
SCRN:, 35, 248

Index

Sequential files, 226, 233, 240, 266, 275,
343

SGN function, 307
SHARED statement, 137
SHARED Statement, 308
SHARED statement, form, 82
SHARED statement

single module, 82
SHELL function, 69, 310
SHELL statement, 69
SIN function, 312
Single precision, 177, 187, 279
Single-precision numbers, 1 1 1
$ SKIP, 135
Source file

compiling, 19
format, 139
linking, 20
multiple, compiling, 20
name extension, 19

Source listing
format metacommands, 135
turning off, 134

SPACE$ function, 313
SPC function, 314
Special characters, 105
SQR function, 315
Statements enhanced in compiler

COMMON, 145
DEF FN, 145
END, 145
ERASE, 145
FOR •.. NEXT, 145
GOSUB . . . RETURN, 145

433

Index

Statements enhanced in compiler
(continued}

GOTO, 145
OPEN, 145
RESUME, 145

Statements
CALL, 144
ClWN, 144
COM:MON, 131, 144, 145
contrasted with functions, 149
DEF FN, 145
DEF type, 144
DEFDBL, 143
DEFINT, 143
DEFSNG, 143
DEFSTR, 143
DIM, 130, 144
END, 145
END SUB, 323
enhanced in compiler, 144
ERASE, 1 30, 145
executable, lOi
execution

compiler, 1 38
interpreter, 138

FIELD, 109
FOR ... NEXT, 145
GOSUB ... RETURN, 145
GOTO, 108, 145
IF ... THEN .•• ELSE, 108
interpreter

AUT0, 143
CONT, 143
DELETE, 143
EDIT, 143
LIST, 143
LLIST, 1 43
LOAD, 1 43
MERGE, 143
NEW, 143
RENUM, 143
SAVE, 143

LOCK, 137
new. See New statements/functions
nonexecutable, 107
not accepted by compiler, 143
ON ERROR GOTO, 107
OPEN, 145
prohibited, 143
REDIM, 130, 137
requiring modification in compiler,

143

434

State men ts (continued)
RESUME O, 107
RESUME, 144, 145
RESUME NEXT, 108
RUN, 144
SHARED, 1 37
STATIC, 137
SUB, 323
SUB ... END SUB, 137
UNLOCK, 137

STATIC, 74
$STATIC, 134
Static arrays

Set also Array
STATIC statement, 137, 3 16
$STATIC metacommand, 130, 134
STOP statement, 1 93, 215, 216, 320
STR$ function, 321
String constants, 1 10
String function, 237, 255, 310
STRING$ function, 322
String functions, 178, 231, 236, 300,

321 , 336
String literal, 98
String operators, 124
String space, 212
String variables, 187, 240, 242
Strings

concatenation, 124
writing to disk, 24

Structured programs
See also Subprograms.
defined, 73
single module

passing parameters, 80
SHARED attribute, 80
SHARED statement, 80

SUB ... END SUB statement, 137, 323
SUB statement, formal parameter list,

74
Subprograms, 323

argument, parameter list errors, 89
defined, 73
format, 73
GOSUB in, 86
invoking with CALL, 75
passing

arrays, 74
expressions, 79

prohibited expresi;ions, 74
RETURN in, 86

Subprograms {continued}
variable aliasing errors, 89
variables, 76, 308, 316

Subroutines, 153, 158, 215, 216, 265,
299

Subscripts, 191, 270
!Ii SUBTITLE, 135
SWAP statement, 326
Switches See Options
Syntax notation, 6
System maintenance mode, installing

compiler in, 1 1
SYSTEM statement/command, 327

TAB function , 328
TAN function, 329
THvlE$ function, 330
!li TITLE, 135
TROFF, 23, 139, 331
TRON command, 23,139, 331
Type conversion , 125
Type mismatch error message, 126

UBOUND function, 79, 137, 333
Unbound, 425
UNLOCK statement, 137, 335
Unresolved external, 425
User-defined functions, 124
USR function, 143

VAL function, 336
Variables, 1 12

array, 173, 1 9 1
global

function definitions, 137, 316
subprograms, 137, 308, 316

local
function definitions, 137, 316
subprograms, 1 37, 308, 316

passing to subprograms
by reference, 76
single module, 80, 83

passing with COMMON, 160
reinitializing, 168
SHARED attribute, 80
SHARED statement, 83
string, 187, 240, 242
subprogram aliasing errors, 89

VARPTR function, 337

WAIT, 65
WEND statement, 339
WHILE st.atemen t, 339
WIDTH LPRINT statement, 341
WIDTH statement, 341
WRITE# statement, 343
V\'RITE statement, 345

-X option, 24

Index

436

MICROSOFT®
1 601 1 NE 361h Way, Box 97017, Redmond, WA 98073·971 7

Software
Problem Report

Name ______________________ _

Street ______________________ _

City __________ State _____ Zip ___ _

Phone ______________ Date ______ _

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

___ Software Problem

__ Software Enhancement

Software Description

__ Documentation Problem
(Document # ___ _

__ Other

Microsoft Product __________________ _

Rev. ____ Registration # ___________ _

Operating System __________________ _

Rev. ____ Supplier _____________ _

Other Software Used _________________ _

Rev. ____ Supplier _____________ _

Hardware Description

Manufacturer _______ CPU ____ Memory ___ KB

Disk Size ___ " Density: Sides:

Single __ Single __

Double __ Double __
Peripherals ____________________ _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Microsoft Use Only

Tech Support ____ _ Date Received ___ _

Routing Code ____ _ Date Resolved ___ _

Report Number ___ _

Action Taken:

	2018_10_28_01_32_37
	2018_10_28_01_33_26
	2018_10_28_01_34_22
	2018_10_28_01_35_27
	2018_10_28_01_36_20
	2018_10_28_01_37_59
	2018_10_28_01_39_42
	2018_10_28_01_41_02

