
MIIIICIOSOfT XENIX
PROGRAMMER'S
MANUAL

VOL.1

XENIX OS
Programmer's Manual

Volume I

Information in this document is subject to change without notice and does not represent a
commitment on the pan of Microsoft. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agr�ement.

© 1979, Bell Telephone Laboratories, Incorporated
Reprinted with permission.

Copyrighi 1979� Bell Telephone Laboratories, Incorporated.
, · :.,...'.'!· - ' . . ;

fiol:aers of a: UNIX'M software license are petinitted to cop.y this dOcument, or any ponioa.D(·. ':..
it,· aS necessary for licensed use of the software' provided this ·cepyright!tmitite. atld statem�t.· ;·
of perm.ission are included.

.•. -

-�

8601-100-01

' '

!�?J;: c � 'd r� · .
"i . ..Jf .�i .. �:

..;,. .
..... " .: . . ·. ;;

·�. .., . . .

"'·J

INTRODUCTION TO VOLUME 1

This volume gives descriptions of the publicly available features of the UNIXt system. It does
not attempt to provide perspective or tutorial information upon the UNIX operating system, its
facilities, or its implementation. Various documents on those topics are contained in Volume 2.
In particular, for an overview see 'The UNIX Time-Sharing System' by Ritchie and Thompson;
for a tutorial see 'UNIX for Beginners' by Kernighan.
Within the area it surveys, this volume attempts to be timely, complete and concise. Where
the latter two objectives conflict, the; obvious is often left unsaid in favor of brevity. It is
intended that each program be described as it is, not as it should be. Inevitably, this means
that various sections will soon be out of date.
The volume is divided into eight sections:

1. Commands
2. System calls
3. Subroutines
4. Special files
5. File formats and conventions
6. Games
7. Macro packages and language conventions
8. Maintenance

Commands are programs intended to be invoked directly by th� user, in contradistirt���on to
subroutines, which are intended to be called by the user's programs. Commands generally
reside in directory' lbin (for bin·ary programs). Some programs. also reside in I usr/ bin, to save .

space in /bin. These directories�are searched automatically by the command interpreter. .
System calls are entries into the UNIX supervisor. Every system call has one or more C
language interfaces described in section 2. The underlying assembly language interface, coded
with opcode sys, a synonym for trap, is given as well.
An assortment of subroutines is available; they are described in section 3. The primary
libraries in which they are kept are described in intro(3). The functions are described in terms
of C, but most will work with Fortran as well.
The special files section 4 discusses the characteristics of each system 'file' that actually refers
to an 110 device; The names in this section refer to the DEC device names for the hardware,
instead of the names of the special files themselves.
The file forma� and conventions section 5 documents the structure of particular kinds of files;
for example; the form of the ·output of the loader and assembler is given. Excluded are files
used by only one command� for example the assembler's intermediate files.
Games have been relegated to section 6 to keep them from contaminating the more staid infor
mation of section l.
Section 7 is a miscellaneous collection of information necessary to writing in various specialized
languages: character codes, macro packages for typesetting, etc.
The maintenance section 8 discusses procedures not intended for use by the ordinary user.
These procedures·· often involve use of commands of section 1, where an attempt has been

tUNIX is a Trademark of Bell Laboratories.

- iii -

made to single out peculiarly maintenance-flavored commands by marking them 1M.
· Each section consists of a number of independent entries of ·a page or ·so each. The name of

the entrY is in the upper comers of its pages, together with the section number, and sometimes
a letter characteristic of a subcategory, e.g. graphics is lG, and the math library is 3M. Entries
within each section are alphabetized. The page numbers of each entry start at 1; it is infeasible
to number consecutively the pages of a document like this that is republished in many variant
forms.
All entries are based on a common format, not all of whose subsections will always appear.

The name subsection lists the exact names of the commands and subroutines covered
under the entry and gives a very short description of their purpose.
The synopsis summarizes the use of the 'program being described. A few conventions are
used, particularly in the Commands subsection:

Boldface words are considered literals, and are typed just as they appear.
Square brackets [] around an argument indicate that the argument is optional.
When an argument is given as 'name', it always refers to a file name.
Ellipses ' .. . ' are used to show that the previous argument-prototype may be
repeated.
A final convention is used by the commands themselves. An argument beginning
with a minus sign '-' is often taken to mean some sort of option-specifying argu
ment even if it appears in a position where a file name could appear. Therefore, it is
unwise to have files whose names begin with '-'.

The description subsection discusses in detail the subject at hand.
The fi.les subsection gives the names of files which are built i�to.the PiC)gram�
A see also subsection gives pointers to related information.
A diagnostics subsection disctJsses the diagnostic indications wh�clit may. be produced.
Messages which are intended to be self-explanatory are not listed.. ' · · ·· ·

The bugs subsection gives known bugs and sometim�s deficienci�s.. Occa,si�ri�Uy also the
suggested fix is described.

" · · · · · ·-

In section 2 an assembler subsection carries the assembly.Janguage system interface. ' . . ; . . .

At the beginning of the volume is .a table of contents. organized by ·section :and-·alphabeticaUy
within each section. There is also a permuted index derived frc:lm the table of-contents .. Within
each index· entry, the title of. the writeup. to which it refers is ·fol4:>wed 9Y :th�, appropriate sec
tio'ri number in parentheses. This fact is important because· thereds�·:considerable'. name duplica
tion among 'the sections, arising principally from commands which' exist" anly tO:· exercise .a par-
tic�.dar 's)'stem call. . . ' . .

. . ..

. HOW-TO GET STARTED
This: $ectiori slcetches the basic information you need to ge.t �d on ·:ie;:l:�� ,tJNl:X.: how to
log in and log out, how to communicate: tt¢ough yow; .:terminal; and how.·� rJ,tn:a,.program. See
'UNIX :for- Beginners'' in Volunie � foli::a more complete :iJitroduction to .th�.system • . , .

� · · ' , .. " ,_ . ,, , ' >- . � ·.·· ·���! • • .t\� � ·'· -

Logging in. You· must- call·UNIX from an appropriate� terminal; .umx ·termina,J$ ar� typified· .by
the TtY "43, the GE-Terminet 300; t�e DA.Sl·:300S �rui 450;'aoo most Yi'deo.:-�ei'rninal$ <SlJch as

'the'.'llaiarnedia· 5120 or HP. 2640. You must also have a valid user na��- wni�h\· may •be .·

obt3:rried�_;togethei with.the telep,hone number, from thi system··adminis1atgrs.;.::T;her:same. tete ..
· phone ritunoer .serves· terminals :operating a:t all the standatd speeds. _:After· a · data :conttecti:pn is

estilblish��:·fhe' i'ogif�r<?<;edure depends on whiit kind of terminal you are· �ng.' :· . . : .,_ ; ' •

300-btzud termi��- Such terminals include. the GE Tenninet-·360:and .most. display .terminals ·

run with p.qpu.Iar- ·modems." !hese:.terlt1irtaJs gen�ra..tty :�ve a. speed switch V!hich:shouid·, be .set
at '30<r \ot'30 '·fof5"0 cti&:acters j,er:-secondh: and�.a::�haif/fulfduplex switch which should be set .r .. . �� ;: .. :�.-�; ""' � ·; . "

- iv -

at full-duplex. (This switch will often have to be changed since many other systems require
half-duplex). When a connection is established, the system types 'login:'; you type your user
name, followed by the 'return' key. If you have a password, the system asks for it and turns
off the printer on the terminal so the password will not appear. After you have logged in, the

'return', 'new line', or 'linefeed' keys will give exactly the same results.
1200- and 150-baud terminals: If there is a half/full duplex switch, set it at full-duplex. When
you have established a data connection, the system types out a few garbage characters (the

'login:' message at the wrong speed). Depress the 'break' (or 'interrupt') key; this is a speed
independent signal to UNIX that a different speed terminal is in use. The system then will type

'login:,' this time at another speed. Continue depressing the break key until 'login:' appears in
clear, then respond with your user name. From the TTY 37 terminal, and any other which has
the 'newline' function (combined carriage return and linefeed), terminate each line you type
with the 'new line' key, otherwise use the 'return' key.
Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud;
otherwise the preceding instructions apply.
For all these terminals, it is important that you type your name in lower-case if possible� if you
type upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters
and will translate all subsequent upper-case letters to lower case.
The evidence that you have successfully logged in is that the Shell program will type a '$' to
you. (The Shell is described below under 'How to run a program.')
For more information, consult srzy(l), which tells how to adjust terminal behavior, getzy(8),
which discusses the login sequence in more detail, and rzy(4), which discusses terminal I/0.
Logging ouL There are three ways to log out:

You can simply ?ang up the PhC?ne.
You cim log out by typing an end-of-file indication (EOT character, control-d) to the
Shell. The Shell will terminate and the 'login: ' message will appear again.

' ·· · You can also tog in directly a5 another user by giving a loginO) command.
t

How to communicate throughyour ter'minaL When you type characters, a gnome deep in �he sys-
. tern gathers-your characters and saves them in a secret place. The characters will not be given

to a program until you type a return (or newline), as described above in Logging in.
UNIX terminal I/0 is full-duplex. ·u has full read-ahead, which means that you can tfpe at aQy
time; even.·while a program is· typing at:. you. Of course, if you type during output, the printed
output will· hav.e the input characters. interspersed-. However, whatever you type will be saved
up and interi:)reted in correct sequence. There is a limit to the amount of read-ahead, but it .is
generous and·: nnt ·likely to be· exceeded unless the system is in trouble. When the reaq-ahead
limit is exceeded, the s}rstem throws away all the saved characters. · ·

The character '@' in typed input kills all the preceding characters in the line, so typing mistakes
can be repaired on a single line. Also, the character • #' erases the last character typed. S.uc;ces
sive uses of '#' erase characters back to, but not beyond, the beginning of the line. '@; and

'#'can .be:transmitted .. to a program. by preceding .them with'\'. (So, to erase'\.', you need two
. '#'s); These conv�ntions cari be;.chang�p by th.e stzy(l') command. .

The 'break' of "'iritetrupt' key ·eailses .� interrupt signal, as does the The ASCII 'delete'· (or
'rtibout') iharacter� which is not passe(l. to programs. This signal generally causes W:hatever
progr-a.J:ri..you· are nu1ning· to terminate. It is typiCally used to stop a long printout that you don't
want. However:, progialns can arrange either to ignore this signal altogether, or to be frotified
whenit'happens·· (instead of being termimned). The editor, for example, catcheif�in�errup.ts and
stops what itis' tloing, instead of terminating, so that an interrupt can be used t.o·.halt·an editor
printout without losing. the file being edited. .· . . .
The quit sigrial is senerated 0 by ty�n� th� , A§CH··;:F� cha.taCier. (FS appears" many_: .places. on ·

different terminals� most commonlY··�:conttol-\ .af. .�oriti'ot-1.> It rwt;oniy ,causes: a-'running -'' . .

- v -

program to terminate but also generates a file with the core image of the terminated process.
Quit is useful for debugging.
Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you
have a terminal with the newline function or whether it must be simulated with carriage-return
and line-feed. In the latter case, all input carriage returns are turned to newline characters (the
standard line delimiter) and both a carriage return and a line feed are echoed to the terminal.
If you get into the wrong mode, the stty(l) command will rescue you.
Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have them turned into spaces during output, and echoed as spaces
during input. The system assumes that tabs are set every eight columns. Again, the srzy(I)
command will set or reset this mode. Also, the command tabs(!) will set the tab stops
automatically on many terminals.
How to run a program; the Sheil. When you have successfully logged in, a program called the
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a com
mand name and arguments, and executes the command. A command is simply an executable
program. The Shell looks first in your current directory (see below) for a program with the
given name. and if none is there, then in a system directory. There is nothing special about
system-provided commands except that they are kept in a directory where the Shell can find
them.
The command name is always the first word on an input line; it and its arguments are separated
from one another by spaces.
When a program terminates. the Shell will ordinarily regain control and type a '$' at you to
indicate thati t is ready for another command.
The Sheli has many other capabilities, which are described in detail in section sh(l).

. ·,.: � ' '

The current directory. UNIX has a file system arranged in a hierarchy of directories. :When the.
system ·administrator gave you a user name. he also created a dire_ctory for you..{ordinarily with·
the same name as your user name). When you log in, any file name you .typ�·-fs by ,_default in
this directory. Since you are the owner of this directory, you hay_e ·full� per.m1s$ion to read,
write, alter, or destroy its contents. Permissions to have your wiif with.other directories and
files will have been granted or denied to you by their owners. As a mati'et of observed fact,
few UNIX users protect their files from destruction, let a.Ione perusal, _by other use� ' '

To change the current directory (but not the set of permissions you were endowed. with at
login) use cd(l) . '

Path names. To refer to files not in the current directory, you must use a path name. Full
path names begin with '/', the name. of the root directory of the 'wtiole file system. After the
stash comes the name of each directory containing the next sub-directory {foliowed by a '/')
until-finally the fil� name is reached. For example, lusrllemlfile£refers tci;;the :file·)iJex in the
directory /em; /em is itself a subdirectory of usr; usr springs directly::from the root directory.
If your current directory has subdirectories, the path names uf files· ther�in be'8in wilh. the name
of the subdirectory with no prefixed 'r.

· -

A path name may be used anywhere a file name is required.
Important commands which modify the contents of files are cp(l), ·mv,.(l)/arid rm(l), which
respectively copy, move (i.e. rename) and remove files. To find out thlstatus of fiielor direc
tories. use /s(l) . .. See mkdir(l) for making directories and rmdir ·(in: .rm(l)J-Hfor ·de$troying
them. , : t�_'.:.-:
For a fuller discussion of the file system, see 'The UNIX Time-Sharing S.ystem,' by J(�._Thompo
son artd Dennis Ritchie. It may also be useful to glance through section 2 :.�(ttt_is·:map.ual, \]._.· which discusses system calls, even if you don't intend to deal with the system at that level. .,.,
Writing a program. To enter the text of a source program into a UNIX file, use the editor ed(l).

The three principal languages in UNlX are provided by the C compiler ceO), the Fortran

- vi -

compiler }77(1), and the assembler asO) . After the program text has been entered through
the editor and written on a file, you can give the file to the appropriate language processor as an
argument. The output of the language processor will be left on a file in the current directory
named 'a.out' . (If the output is precious, use mv to move it to a less exposed name soon.) If
you wrote in assembly language, you will probably need to load the program with library sub
routines; see /d(l) . The other two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the Shell in response to the '$' prompt.

Your programs can receive arguments from the command line just as system programs do, see
exec(2) .
Text processi ng. Almost all text is entered through the editor ed(l) . The commands most
often used to write text on a terminal are: cat, pr, ro.ff and nroff. all in section 1.
The cat command simply dumps ASCII text on the terminal, with no processing at all. The pr
command paginates the text, supplies headings, and ha.S. a facility for multi-column output.
Nro.ffis an elaborate text formatting program. Used naked, it requires careful forethought, but
for ordinary documents it has been tamed; see ms(7) . Ro.ff is a simpler text formatting pro
gram, and requires somewhat less forethought.

Tro.ff prepares documents for a Graphics Systems phototypesetter; it is very similar to nroff. and
often works from exactly the same source text. It was used to produce this manual.

Status inquiries. Various commands exist to provide you with useful information. Who(l)
prints a list of users presently logged in. DateO) prints the current time and date. Ls(l) will
list the files in your directory or give summary information about particular files.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to
use them, it would .be well to learn something about them, because someone else may aim
them at you.

To communicate with.another user currently logged in, write(!) is used; mai /(1) w.illJ�ave a
message ·whose presence will be announced to another user when he next logs in. the write
ups in· the manual also. suggest how to respond to the two commands if you are a target.

When you log in, a message�of-the-day may greet you before the first '$'.

CONVERTING FROM THE 6TH EDITION

There follows a catalogue of significant, mostly incompatible, changes that will affect old users
converting to the 7th edition.

Addressi ng .fi les. Byt� addresses in files are now long (32-bit) integers. Accordingly s eek has
been replac.ed by /seek;(2) . Every program that contains a seek must be modified. Stat and
fs tat(2) have been affected .similarly, since file lengths are now 32- rather than 24-bit quantities.

Assembly l ang uage . .System entry points are no longer built in symbols. Their values must oe
obtained from

.
lus.r!/ncil,ldelsys.s. see intro (2) . All system calls modify rO. ,This ,means that

sequences like ·

·

. file,rO
lseek,0,0,2
write, buf,n ..

will no: longer work. Hn· fact, /seek now modifies rl as well, so be doubly cautious.)

The s/eep(2) entry point is gone; see the more general facility, alarm , plus pause.
Few libr�· functions have assembly language entry points any more. You will have to simulate:

• the Ccallfng· sequence; :. %!51

�' ' . . .

- vii -

Stty and grey . These system calls have been extensively altered, see i ocr/(2) and rry (4) .
Archive files. The format of files produced by ar(l) has been altered. To convert to the new
style, use arcv (l) .
C language, lint. The official syntax for initialization requires an equal sign - before an initial
izer, and brackets (} around compound initial values; arrays and structures are now initialized
honestly. Two-address operators, such as - + and ==-, are now written + - and - - to avoid
ambiguities, although the old style is still accepted. You will also certainly want to learn about

long integers
type definitions
casts (for type conversion)
unions (for more honest storage sharing)
#include < filename> (which searches in standard places)

The program limO) checks for obsolete syntax and does strong type checking of C programs,
singly or in groups that are expected to be loaded together. It is indispensable for conversion
work.
Fortran. The old j c is replaced by }77, a true compiler for Fortran 77, compatible with C.
There are substantial changes in the language� see • A Portable Fortran 77 Compiler' in Volume
2.

Stream editor. The program sed(l) is adapted to massive, repetitive editing jobs of the sort
encountered in converting to the new system. It is well worth learning.
Standard 1/0. The old f open, getc, pure complex and the old -tp package are both dead, and
even getchar has changed. All have been replaced by the clean, highly efficient, stdio(3) pack
age. The first things to know are that getcharO) returns the integer EOF (- 1) , which is not a
possible byte value, on end of file, that 5 18-byte buffers are out, and that there is a defined tJ FILE data type.
Make. The program makeO) handles the recompilation and loading of software in an orderly
way from a •makefile' recipe given for each piece of software. It remakes only as much as the
modification dates of the input files show is necessary. The make files will guide you in building
your new system.
Shell, chdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every com
puter scientist because it is there. So it is with the shell for UNIX users. Everything beyond
simple command invocation from a terminal is different. Even chdir is now spelled cd. You
will want to study sh(l) long and hard
Debugging. Adb(l) is a far more capable replacement for the debugger db. The first-time user
should be especially careful about distinguishing I and ? in adb commands, and watching to
make sure that the x whose value he asked for is the real x. and not just some absolute loca
tion equal to the stack offset of some automatic x. You can always use the. ' true' name, _x, to
pin down a C external variable.
D_sw. This little-known, but indispensable facility has been taken over by rm -ri .
Boot procedures. Needless to say, these are. all different. See section 8 of this volume, and
'Setting up UNIX' in Volume 2. .

PERMUTED INDEX

fabs, floor, ceil -

phys -allow a process to
access -determine

ac-login
sa. accton -system

acct -execution
acct -turn

sa,
sin, cos, tan, asin,

dn -DN-11

phys -allow a process to access physical
basename -strip filename

plot: openpl et

brk, sbrk, break -change core
malloc, free, realloc. canoe -main memory

lex -generator of lexical
bed, ppt -convert to

be
tp -manipulate tape

ar
ar

tar -tape
arcv -convert

echo-echo
expr -evaluate

pow, gcd, rpow -multiple precision integer

be -arbitrary-precision

asctime, timezone -convert date and time to

ASCII .
functions

atof, atoi, atol -convert
. ctime, localtime, ,gmtime,
. sin, cos, tan,

as
a.out -

setbuf-

sin, cos, tan, asin, acos,

wait-
language

store, delete, firstkey, nextkey -data

bas -

cb -C program

abort -generate lOT fault
abs -integer absolute value
absolute value, floor, ceiling functions
ac -login accounting
access -determine accessibility of file
access physical addresses
accessibility of file
accounting
accounting
accounting file
accounting on or off .
accton -system accounting .
acos, atan, atan2 -trigonometric functions
ACU interface .
adb -debugger
addresses
affixes
al. -graphics interface
alarm -schedule signal after specified time
allocation
allocator
analysis programs
antique media . .

a.out -assembler and link editor output .
ar -archive and library maintainer .
ar -archive (library) file format ...
arbitrary-precision arithmetic language
archive

archive and library maintainer .
archive (library) file format
archiver
archives to new format . .
arguments
arguments as an expression
arithmetic /msub, mult, mdiv, min, mout,
arithmetic -provide drill in number facts
arithmetic language
as -assembler
ASCII ctime, localtime, gmtime,
ascii -: map of ASCII character set

ASCII to numbers
asctime, timezone -convert date and time to .
asin, acos, atan, atan2 -trigonometric .
assembler
assembler and link editor output
assert -program verification . .
assign buffering to a stream . . .
at -execute commands at a later time .
atan, atan2 -trigonometric functions .
atof, atoi, atol -convert ASCII to numbers .
await completion of process
awk -pattern scanning and processing .
backgammon -the game . .
banner -make long posters . . .
bas -basic . :
base subroutines dbminit, fetch,
basename -strip filename affixes
basic
be -arbitrary-precision arithmetic language
bed, ppt -convert to antique media
beautifier

abort(3)
abs(3)

floer(3)
ac(l)

access(2)
phys(2)

access(2)
ac(l)
sa(l)

acct(S)
acct(2)

sa(l)
sin(3)
dn(4)

adb(l)
phys(2)

base name (1)
plot(3)

alarm(2)
brk(2)

malloc(3)
lex (1)

bcd(6)
a.out(S)

ar(l)
ar(S)
bc(l)
tp(l)
ar(l)
ar(S)

tar(l)
arcv(l)
echo(!)
expr(l)

mp(3)
arithmetic(6)

bc(l)
as(l)

ctime(3)
ascii(7)
atof(3)

ctime(3)
sin(3)
as(l)

a.out(S)
assert (3)
setbuf(3)

at(l)
sin(3)

atof(3)
wait(})
awk(l)

backgamrrlon (6)
banner(6)

bas {I)
dbm(3)

basename(l)
bas (I)

bc(l)
bcd(6)

cb(l)

jO, jl, jn, y.O, yl, yn -
fread, fwrite -buffered

sync -update the super
sync -update super

update -periodically update the super
sum -sum and count

ching, fortune -the

brk, sbrk,
export, login,/ sh, for, case, if, while,

fread, fwrite -
stdio -standard

setbuf -assign
mknod-

13tol, ltol3 -convert between 3-
swab-swap

CC, pee
cb -

lint-a
hypot,

de -desk
cal -print

indir -indirect system
cu -

malloc, free, realloc,
intro, errno -introduction to system

exec, exit, export, login, newgrp,/ sh, for,

signal
cat-

sh, for, case, if, while, break, continue,
functions fabs, floor,

brk, sbrk, break -
chdir

passwd -
chmod
chmod
chown -

chown, chgrp -
cd

ching, fortune -the book of
pipe -create an interprocess

ungetc -push
ispunct, isprint, iscntrl, isascii -

eqnchar -special
getc, getchar, fgetc, getw -get

putc, putchar, fputc, putw -put
ascii -map of ASCII

tr -translate

dcheck -file system directory consistency
icheck -. file system storage consistency ·

eqn, neqn,

other cookies

chess -the game of
chown,

isprint, iscntrl, isascii -character
clri -

feof, ferror,

- ix -

bessel functions
binary input/output
bj -the game of black jack .
block
block .. .
block .. .
blocks in a file
book of changes and other cookies
boot -startup procedures
break -change core allocation . .
break, continue, cd, eva!, exec, exit,
brk, sbrk, break -change core allocation
buffered binary input/output .
buffered input/output package
buffering to a stream
build special file
byte integers and long integers
bytes

C compiler
C program beautifier .
C program verifier . .
cabs -euclidean distance .
cal -print calendar
calculator
calendar
calendar -reminder service
call
call UNIX
calloc -main memory allocator
calls and error numbers
case, if, while, break, continue, cd, eva!,
cat -catenate and print
cat -phototypesetter interface
catch or ignore signals . . .
catenate and print
cb -C program beautifier
cc, pee - C compiler . . .
cd -change working directory
cd, eva!, exec, exit, export, login, newgrp,/
ceil -absolute value, floor, ceiling .
change core allocation . .
change default directory .
change login password . .
change mode . . . : . . .
change mode of file . . .
change owner and group of a file
change owner or group . .
change working directory
changes and other cookies
channel
character back into input stream
character classification /isalnum, isspace,
character definitions for eqn ..
character or word from stream
character or word on a stream
character set
characters
chdir -change default directory
check
check
checkeq -typeset mathematics .
checkers -game
chess
chgrp -change owner or group
ching, fortune -the book of changes and
chmod -change mode
chmod -change mode of file
chown -change owner and group of a file .
chown, chgrp -change owner or group . .
classification /isalnum, isspace, ispunct,
clear i-node
cJearerr. fileno '-.stream status inquiries

j0(3)
fread(3)

bj(6)
sync(l)
sync{2)

update(8)
sum(l)

ching(6)
boot(8)

brk(2)
sh(l)

brk(2)
fread(3)
stdio(3)

setbuf(3)
mknod(l)

13tol(3)
swab(3)

· cc(l)
cb(l)

lint (I)
hypot{3)

cal(I)
dc(l)
cal(I)

calendar (I)
indir(2)

cu(l)
malloc(3)

intro(2)
sh(l)

cat(l)
cat(4)

signal(2)
cat(l)
cb(l)
cc(l)
cd(l)
sh(l)

floor(3)
brk(2)

chdir(2)
passwd(l)
chmod(l)
chmod(2)
chown(2)
chown(l)

cd(l)
ching(6)

pipe(2)
ungetc(3)

ctype(3)
eqnchar(7)

getc(3)
putc(3)
ascii(7)

tr(l)
chdir(2)

dcheck(l)
icheck(l)

eqn(l)
checkers (6)

chess(6)
chown(l)

ching(6)
chmod(l)
chmod(2)
chown(2)
chown(l)

ctype(3)
clri(l)

ferror(3)

•

cron-

fclose. mush -

sorted files
system - issue a shell

test - condition
time- time a

nice. nohup - run a
uux ·- unix to unix

set, shift, times. trap, umask, wait -
intro - introduction to

at- execute
comm - select or reject lines

diff - differential file
cmp

diff3 - 3-way differential file
cc, pee- C

n1 - Fortran 77
yacc - yet another compiler

wait- await
test -

mkconf - generate
dcheck - file system directory

icheck - file system storage
mkfs

deroff - remove nroff, troff, tbl and eqn
Is- list

login,/ sh, for, case, if, while, break,
ioctl, stty, gtty -
init, rc - process

terminals
ecvt, fcvt, gcvt - output

printf, fprintf, sprintf - formatted output
scanf, fscanf, sscanf - formatted input

units -
dd

arcv
atof, atoi. atol -

integers 13tol, ltol3 -
localtime, gmtime, asctime. timezone -

bed, ppt
fortune - the book of changes and other

cp
uucp, uulog - unix to unix

dd - convert and

brk. sbrk, break - change
core - format of

mem, kmem-
trigonometric functions sin,

sinh,
we- word

sum- sum and

pipe
umask - set file

- convert date and time to ASCII

ttt,
spline - interpolate smooth

cron- clock
prof - display profile

ttys - terminal initialization
fetch, store. delete, firstkey, nextkey -

- X -

clock daemon
close - close a file . .
close or flush a stream .
clri - clear i-node . . .
cmp - compare two files
col - filter reverse line feeds
comm - select or reject lines common to two
command
command
command
command at low priority
command execution . . .
command language /newgrp, read. readonly,
commands
commands at a later time .
common to two sorted files
comparator

compare two files
comparison .
compiler
compiler ..
compiler ..
completion of process
condition command
configuration tables .
consistency check . .
consistency check . .
construct a file system
constructs
contents of directory .
continue. cd. eval, exec, exit, export,
control device . . .
control initialization
conventional names
conversion
conversion
conversion
conversion program
convert and copy a file.
convert archives to new format · .

convert ASCII to numbers . ..
convert between 3-byte integers and long
convert date and time to ASCII ctime,
convert to antique media
cookies . chinl!
copy

copy

copy a file
core - format of core image file
core allocation
core image file
core memory
cos, tan, asin, acos, atan. atan2 -
cosh. tanh - hyperbolic functions
count
count blocks in a file
cp- copy
crash - what to do when the system crashes
creat - create a new file . . .
create an interprocess channel .
creation mode mask . .
cron - Clock daemon
crypt - encode/ decode
crypt, setkey, encrypt - DES encryption .
ctime. localtime, gmtime, asctime, timezone .
cu - call UNIX . .

cubic - tic-tac-toe .

curve ..
daemon
data .. .
data .. .
data base subrou-tines · . . . dbminit,

cron(8)
close(2)

fclose(3)
clri(l)

cmp (l)
col (I)

comm(l)
system(3)

test(l)
time (l)
nice (I)
uux(l)

sh (l)
intro(l)

at(l)
comm(l)

dilf(l)
cmp(l)
diff3(1)

cc(l)
f77 (1)

yacc (l)
wait (I)
test (1)

mkconf (l)
dcheck(l)
icheck(l)

mkfs (l)
derolf(l)

ls(l)
sh(l)

ioctl(2)
init (8)

term (7)
ecvt (3)

printf(3)
scanf (3)
units (I)

dd (l)
arcv(l)
atof (3)
13tol (3)

ctime(3)
bcd(6)

ching(6)
cp (l)

uucp (l)
dd(l)

core(S)
brk (2)

core(S)
mem (4)

sin(3)
sinh(3)

wc (l)
sum(l)

cp (l)
crash(8)
creat(2)
pipe(2)

umask(2)
cron(8)

crypt (I)
crypt (3)

ctime(3)
cu (l)
ttl (6)

spline (I)
cron(8)
prof (l)
ttys (5)

dbm (3)

null -
types - primitive system

join - relational
du, dp - DU-ll 201

date - print and set the
time, ftime - get

gmtime, asctime, timezone - convert
touch - update

nextkey - data base subroutines .

check :

dump,
adb

tp
crypt - encode/

tc - TC-11/TU56
chdir - change

eqnchar - special character
subroutines dbminit, fetch, store,

tail -
mesg - permit or

constructs . . .
crypt, setkey, encrypt -

dup, dup2 - duplicate an open file
de

access -
file -

ioctl, stty, gtty - control

diff
diff3 - 3-way

mv - move or rename files and
cd - change working

chdir - change default
Is - list contents of

mkdir - make a
dcheck - file system

unlink - remove
pwd - working

mknod - make a
hp- RH-ll/RP04, RPOS, RP06 moving-head

rk - RK-ll/RK03 or RKOS
rp - RP-11/RP03 moving-head

hs - RHll/RS03-RS04 fixed-head
rf - RF11/RS 11 fixed-head

df
du - summarize

mount, umount - mount and
prof

hypot, cabs - euclidean

descriptor

- find and insert literature references in
du,

reversi - a game of
graph

arithmetic - provide
pk - packet

pkclose, pkread, pkwrite, pkfail - packet

dump - incremental file system
od- octal

dumpdir - print the names of files on a

- xi -

data sink
data types
database operator . .
data-phone interface .
date
date and time
date and time to ASCII
date last modified of a file

. ctime, localtime,

dbminit, fetch, store, delete, firstkey,
de - desk calculator
dcheck - file system directory consistency .
dd - convert and copy a file . . .

ddate - incremental dump format
debugger

DEC/mag tape formats
decode
DECtape
default directory
definitions for eqn ...
delete, firstkey, nextkey - data base .
deliver the last part of a file
deny messages
deroff - remove nroff, troff, tbl and eqn
DES encryption
descriptor
desk calculator
determine accessibility of file
determine file type
device
df - disk free
diff - differential file comparator .
diffJ - 3-way differential file comparison
differential file comparator
differential file comparison
dir - format of directories
directories
directory
directory .
directory .
directory .
directory consistency check
directory entry
directory name
directory or a special file .
disk .. .

disk . . .
disk .. .
disk file .
disk file .
disk free
disk usage .
dismount file system .
display profile data . .

distance
dn - DN-11 ACU interface
documents refer, lookbib
dp - DU-ll 201 data-phone interface
dramatic reversals . . .
draw a graph ·.

drill in number facts ..
driver

driver simulator pkopen,
du - summarize disk usage
du, dp - DU-ll 201 data-phone interface
dump
dump
dump - incremental file system dump . .
dump, ddate - incremental dump format
dump tape

dup, dup2 - duplicate an open file .
echo - echo arguments
ecvt, fcvt, gcvt -·output conversion

null(4)
types(S)

join(l)
du(4)

date(l)
time(2)

ctime(3)
touch (I)

dbm(3)
dc(l)

dcheck(1)
dd(l)

dump(S)
adb(l)

tp(S)
crypt(l)

tc{4)
chdir(2)

eqnchar(7)
dbm(3)

tail (I)
mesg(l)

deroff(l)
crypt(3)

dup(2)
dc(l)

access(2)
file(l)

ioctl (2)
'df(l)
diff(l)

diffJ(l)
diff(l)

diffJ(l)
dir(S)

mv(l)
cd(l)

chdir(2)
ls(l)

mkdir(l)
dcheck(l)
unlink(2)

pwd(l)
mknod(2)

hp(4)
rk(4)
rp(4)
hs(4)
rf(4)
df(l)

du(l)
mount (I)

prof(l)
hypot(3)

dn(4)
refer (I)

du(4)
reversi(6)

graph (I)
arithmetic(6)

pk(4)
pkopen(3)

du(l)
du(4)

dump(l)
od(l)

dump(l)
dump(S)

dumpdir(l)
dup(2)

echo (I)
ecvt(3)

program .

end, etext,
ed - text

sed - stream
a.out - assembler and link

grep,
crypt -

crypt, setkey,
makekey - generate

getgrent, getgrgid, getgrnam, setgrent,
getpwent, getpwuid, getpwnam, setpwent,

xsend, xget,
nlist - get

setgrent, endgrent - get group file
setpwent, endpwent - get password file

unlink - remove directory
execle, execve, execlp, execvp, exec, exece,

getenv - value for
eqnchar - special character definitions for

deroff - remove nroff, troff, tbl and

eqn
error numbers intro,

perror, sys errlist, sys nerr - system
errno - introduction to system calls and

spell, spellin, spellout - find spelling
pkon, pkoff

end,
hypot, cabs -

for, case, if, while, break, continue, "d,
expr

exec!, execv, execle, execve, execlp, execvp,
/case, if, while, break, continue, cd, eval,

execv, execle, execve, execlp, execvp, exec,
at

uux - unix to unix command
acct

sleep - suspend
sleep - suspend

monitor - prepare
profil

exece, environ - execute a file exec!,

/if, while, break, continue, cd, eva!, exec,
logarithm, power, square root

frexp, ldexp, modf - split into mantissa and
exp, log, loglO, pow, sqrt -

/while, break, continue, cd, eval, exec, exit,

ceiling functions .
factor, primes -

true,
abort - generate lOT

ecvt,
fopen, freopen,

status inquiries .
data base subroutines dbminit,

fclose,
stream getc, getchar,

gets,
grep, egrep,

access - determine accessibility of
acct - execution accounting

chmod - change mode of
chown - change owner and group of a

close - close a
core - format of core image

creat - create .a. new.

- xii -

ed - text editor
edata - last locations in program .
editor
editor
editor output
egrep, fgrep - search a file for a pattern
encode/ decode
encrypt - DES encryption
encryption key
end, etext, edata - last locations in
endgrent - get group file entry . . .
endpwent - get password file entry
enroll - secret mail
entries from name list
entry getgrent, getgrgid, getgrnam,
entry getpwent, getpwuid, getpwnam,
entry
environ - execute a file . . . execl, execv,
environ - user environment
environment name
eqn
eqn constructs
eqn, neqn, checkeq - typeset mathematics
eqnchar - special character definitions for
errno - introduction to system calls and .
error messages .
error numbers
errors
establish packet protocol .
etext, edata - last locations in program
euclidean distance

. intro,

eval, exec, exit, export, login, newgrp,/ sh,
evaluate arguments as an expression . .
exec, exece, environ - execute a file
exec, exit, export, login, newgrp, read,/
exece, environ - execute a file execl,
execute commands at a later time .
execution
execution accounting file
execution for an interval
execution for interval
execution profile
execution time profile . .
execv, execle, execve, execlp, execvp, exec,
exit - terminate process
exit, export, login, newgrp, read, readonly,/
exp, log, loglO, pow, sqrt - exponential, .
exponent
exponential, logarithm, power, square root .
export, login, newgrp, read, readonly, set,/
expr - evaluate arguments as an expression .
f77 - Fortran 77 compiler
fabs, floor, ceil - absolute value, floor,
factor a number, generate large primes .
false - provide truth values
fault
fclose, mush - close or flush a stream .
fcvt, gcvt - output conversion
fdopen - open a stream
feof, ferror, clearerr, fileno - stream .
fetch, store, delete, firstkey, nextkey -
mush - close or flush a stream
fgetc, getw - get character or word from
fgets - get a string from a stream
fgrep - search a file for a pattern .
file
file
file
file
file
file
file

ed(l)
end(J)

ed(l)
sed(l)

a.out(S)
grep(l)

crypt(l)
crypt(3)

makekey(8)
end(3)

getgrent (3)
getpwent(3)

xsend(l)
nlist(3)

getgrent(3)
getpwent(3)

unlink(2)
exec(2)

environ(5)
getenv(3)

eqnchar(7)
deroff(l)

eqn(l)
eqnchar(7)

intro(2)
perror(3)

intro(2)
spell(l)

pkon(2)
end(J)

hypot(J)
sh(l)

expr(l)
exec(2)

sh(l)
exec(2)

at(l)
uux(l)
acct(S)

sleep (I)
sleep(J)

monitor(J)
profil(2)
exec(2)
exit(2)

sh(l)
exp(3)

frexp(3)
exp(3)

sh(l)
expr(l)

f77(1)
floor(3)

factor(!)
true(l)

abort(3)
fclose(3)

ecvt(3)
fopen(3)
ferror(3)

dbm(3)
fclose(3)

getc(3)
gets(3)
grep(l)

access(2)
acct(S)

chmod(2)
chown(2)

close(2)
core(S)

creat(2)

dd - convert and copy a
execvp, exec, exece, environ - execute a

group - group
hs - RH 1 1/RS03-RS04 fixed-head disk

link - link to a
mknod - build special

mknod - make a directory or a special
passwd - password

pr- print
read - read from

rev - reverse lines of a
rf - RFll/RSil fixetJ-head disk

size - size of an object
sum - sum and count blocks in a

tail - deliver the last part of a
touch - update date last modified of a

uniq - report repeated lines in a
write - write on a

diff - differential
diff3 - 3-way differential

umask - set
dup, dup2 - duplicate an open

getgrnam, setgrent, endgrent - get group
getpwnam, setpwent, endpwent - get password

grep, egrep, fgrep - search a
ar - archive (librart)

split - split a
mktemp - make a unique

stat, fstat - get
mkfs - construct a

mount, umount - mount and dismount
mount, umount - mount or remove

dcheck
dump - incremental

hier
quot - summarize

restor - incremental
icheck -

mtab - mounted
filsys, flblk, ino - format" of

utime- set
file - determine

basename - str!E.
feof, ferror, clearerr,
cmp - compare two

select or reject lines common to two sorted
find - find

rm, rmdir - remove (unlink)
sort - sort or merge

mv - move or rename
dumpdir - print the names of

volume
col

plot - graphics

documents refer, lookbib -
find -

look
ttyname, isatty, ttyslot -

!order
spell, speilin, spellout -

dbminit, fetch, store, delete,
hs - RHll/RS03-RS04

rf - RFll/RSll
filsys,

functions fabs,
fclose, mush - close or

ar - archive (library) file
arcv - convert archives to new

- xiii -

file
file execl, execv, execle, execve, execlp,
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file - determine file type
file comparator
file comparison
file creation mode mask .
file descriptor .
file entry getgrent, getgrgid,
file entry getpwent, getpwuid,
file for a pattern
file format . .
file into pieces
file name .
file statuS' .
file system
file system
file system
file system directory consistency check
file system dump . . .
file system hierarchy
file system ownership
file system restore
file system storage consistency check
file system table . .
file system volume .
file times
file type
filename affixes
fileno - stream status inquiries .
files ...
files . . comm -
files . . .
files . . .
files . . .
files and directories
files on a dump tape
filsys, flblk, ino - format of file system
filter reverse line feeds
filters
find - find files
find and insert literature references in
find files
find lines in a sorted list
find name of a terminal
find ordering relation for an object library
find spelling errors
firstkey, nextkey - data base subroutines
fixed-head disk file
fixed-head disk file
flblk, ino - format of file system volume
floor, ceil - absolute value, floor, ceiling
flush a stream
fopen, freopen, fdopen - open a stream .
fork - spawn new process
format
format

dd(l)
exec(2)

group(S)
hs(4)

link(2)
mknod(l)
mknod(2)
passwd(S)

pr(l)
read(2)

rev (I)
rf(4)

size (l)
sum(l)

tail (I)
touch (I)

uniq(l)
write(2)

file (I)
diff (l)

diff3 (1)
umask(2)

dup(2)
getgrent(3)

getpwent(3)
grep(l)

ar(S)
split (I)

mktemp(3)
stat(2)

mkfs(l)
mount (I)
mount(2)
dcheck(l)

dump (I)
hier(7)

quot(l)
restor (I)
icheck(l)

mtab(S)
filsys(S)

utime(2)
file (I)

basename(l)
ferror(3)

cmp(l)
comm (l)

find (I)
rm (l)

sort (I)
mv(l)

dumpdir(l)
filsys(S)

col (I)
plot(l)
find (I)

refer(l)
find (I)

look (I)
ttyname(3)

lorder(l)
spell(l)
dbm(3)

hs(4)
rf(4)

filsys(S)
floor(3)

fclose(3)
fopen(3)

fork(2)
ar(S)

arcv(l)

dump, ddate - incremental dump
core

dir
filsys, flblk, ino -

tbl
roff

tp - DEC/mag tape
scanf, fscanf, sscanf -

printf, fprintf, sprintf -
troff, nroff - text

ms - macros for
f77 -

ratfor - rational
struct - structure

cookies . ching,
conversion printf,
stream putc, putchar,

allocator ..

exponent ..

puts,

df - disk
. . malloc,

fopen,

scanf,

stat,
fseek,
time,

floor, ceil - absolute value, floor, ceiling
intro - introduction to library

jO, jl, jn, yO, yl, yn - bessel
tan, asin, acos, atan, atan2 - trigonometric

sinh, cosh, tanh - hyperbolic
fread,

backgammon - the
checkers

moo - guessing
bj - the

chess - the
reversi - a

wump - the
hangman, words - word

itom, madd, msub, mult, mdiv, min, mout, pow,
ecvt, fcvt,

maze
mkconf

makekey
abort -

factor, primes - factor a number,
ncheck

rand, srand - random number
lex -

or word from stream
getuid, getgid, geteuid,

identity getuid, getgid,
endgrent - get group file entry

endpwent - get password file entry

and group identity .

time to ASCII . . .
getc, getchar, fgetc,
. . ctime, localtime,

setjmp, longjmp - non-local
graph - draw a

plot
plot: openpl et al. -

plot -

• xiv -

format
format of core image file
format of directories . . .
format of file system volume
format tables for nroff or troff
format text
formats
formatted input conversion .
formatted output conversion
formatting and typesetting .
formatting manuscripts
Fortran 77 compiler
Fortran dialect
Fortran programs
fortune - the book of changes and other
fprintf, sprintf - formatted output
fputc, putw - put character or word on a
fputs - put a string on a stream
fread, fwrite - buffered binary input/ output .
free
free, realloc, calloc - main memory
freopen, fdopen - open a stream
frexp, ldexp, modf - split into mantissa and .
fscanf, sscanf - formatted input conversion
fseek, ftell, rewind - reposition a stream
fstat - get file status
ftell, rewind - reposition a stream
ftime - get date and time
functions . fabs,
functions
functions·
functions . sin, cos,
functions
fwrite - buffered binary input/output
game
game
game
game of black jack .
game of chess . . .
game of dramatic reversals
game of hunt·the·wumpus
games
gcd, rpow - multiple precision integer/
gcvt - output conversion . .
generate a maze problem . .
generate configuration tables
generate encryption key . . .
generate lOT fault
generate large primes
generate names from i-numbers
generator

generator of lexical analysis programs
getc, getchar, fgetc, getw - get ·character
getegid - get user and group identity .
getenv - value for environment name .
geteuid, getegid - get user and group
getgrent, getgrgid, getgmam, setgrent,
getlogin - get login name
getpass - read a password
getpid - get process identification
getpw - get name from UID . . .
getpwent, getpwuid, getpwnam, setpwent,
gets, fgets - get a string from a stream .
getty - set typewriter mode
getuid, getgid, geteuid, getegid - get user
getw - get character or word from stream .
gmtime, asctime, timezone - convert date and
goto
graph
graphics filters . .
graphics interface
graphics interface

dump(S)
core (S)

dir(S)
filsys(S)

tbl(l)
roff (l)

tp(S)
scanf(3)

printf(3)
troff(l)

ms (7)
f77(1)

ratfor(l)
struct(l)
ching(6)
printf(3)

putc(3)
puts(3)

fread (3)
df (l)

malloc(3)
fopen(3)
frexp(3)
scanf(3)
fseek(3)

stat (2)
fseek(3)
time(2)
floor(3)
intro(3)

j0(3)
sinO)

sinh(3)
fread(3)

backgammon(6)
checkers(6)

moo(6)
bj (6)

chess(6)
reversi(6)
wump(6)
words(6)

mp(3)
ecvt (3)

maze(6)
mkconf(l)

makekey(8)
abort (3)

factor (I)
ncheck(l)

rand(3)
lex (l)

getc(3)
getuid(2)

getenv(3)
getuid(2)

getgrent(3)
getlogin(3)
getpass (3)

getpid(2)
getpw(3)

getpwent (3)
gets(3)

getty(8)
getuid(2)

getc(3)
ctime (3)

setjmp(3)
graph(l)

plot(l)
plot(3)
plot(S)

pattern
chown, chgrp - change owner or

newgrp - log in to a new

getgrgid, getgmam, setgrent, endgrent - get
setuid, setgid - set user and

getgid, geteuid, getegid - get user and
chown - change owner and

make - maintain program
ioctl, stty,

moo -

check

wump - the game of
sinh, cosh, tanh -

setuid, setgid - set user and group
su - substitute user
getpid - get process

geteuid, getegid - get user and group
exit, export; login, newgrp,/ sh, for, case,

signal - catch or
core - format of core

dump, ddate -
dump
restor

ptx - permuted
strcmp, strncmp, strcpy, strncpy, strlen,

ttys - terminal
popen, pclose -

filsys, flblk,
clri - clear

scanf, fscanf, sscanf - formatted
ungetc - push character back into

fread, fwrite - buffered binary
stdio - standard buffered

ferror, clearerr, fileno - stream status
refer, lookbib - find and

cat - phototypesetter
dn - DN-11 ACU

du, dp - DU- l l 201 data-phone
ht - RH-11/TU-16 magtape
plot: openpl et al. - graphics

plot - graphics
tm - TM-11/TU-10 magtape

tty - general terminal
spline

pipe - create an
intro
intro -

numbers intro, ermo -
ncheck - generate names from

iostat - report
popen, pclose - initiate

abort - generate
isascii/ . . . isalpha, isupper, islower, isdigit,

·
ttyname,

/isdigit, isalnum, isspace, ispunct, isprint,
system

ispunct, isprint, iscntrl, isasciil isalpha,
gcd, rpow - multiple precision integer/

bj - the game of black
jO, j1,

- XV ·

grep, egrep, fgrep - search a file for a
group
group
group - group file
group file entry getgrent,
group ID . .
group identity getuid,
group of a file
groups
gtiy - control device
guessing game
hangman, words - word games
hier - file system hierarchy
hp - RH-11/RP04, RPOS, RP06 moving-head disk
hs - RH 1 1/RS03-RS04 fixed-head disk file
ht - RH-11/TU-16 magtape interface
hunt·the-wumpus · .
hyperbolic functions
hypot, cabs - euclidean distance
icheck - file system storage consistency
ID
id temporarily
identification
identity getuid, getgid,
if, while, break, continue, cd, eva!, exec, .
ignore signals
image file
incremental dump format . . .
incremental file system dump .
incremental file system restore
index
index, rindex - string operations /strncat,
indir - indirect system call
init, rc - process control initialization
initialization data
initiate I/0 to/from a process
ino - format of file system volume
i-node
input conversion . . .
input stream
input/output
input/output package
inquiries . feof,
insert literature references in documents
interface
interface
interface
interface
interface
interface
interface
interface
interpolate smooth curve
interprocess channel . . .
introduction to commands
introduction to library functions
introduction to system calls and error .
i-numbers
1/0 statistics
1/0 to/from a process
ioctl, stty, gtty - control device
iostat - report I/0 statistics . .
lOT fault
isalnum, isspace, ispunct, isprint, iscntrl,
isatty, ttyslot - find name of a terminal
iscntrl, isascii - character classification .
issue a shell command

isupper, islower, isdigit, isalnum, isspace, . . .
itom, madd, msub, mult, mdiv, min, mout, pow,
jO, j1, jn, yO, y1, yn - bessel functions .
jack
jn, yO, yl, yn - bessel functions

grep(l)
chown(l)

newgrp(l)
group(S)

getgrent(3)
setuid(2)
getuid (2)
chown (2)

make(l)
ioctl(2)
moo(6)

words(6)
hier(7)

hp(4)
hs(4)
ht(4)

wump(6)
sinh(3)

hypot(3)
icheck(l)
setuid (2)

su(l)
getpid(2)
getuid(2)

sh (l)
signal (2)

core(S)
dump(5)
dump (I)
restor(})

ptx (l)
string(3)

indir(2)
init(8)
ttys (S)

popen (3)
filsys(S)

clri (l)
scanf(3)

ungetc(3)
fread (3)
stdio(3)

ferror(3)
refer (I)

cat(4)
dn (4)
du(4)
ht(4)

plot(3)
plot(S)

tm (4)
tty(4)

spline(!)
pipe(2)

intro (l)
intro (3)
intro(2)

ncheck(l)
iostat (l)

popen(3)
ioctl(2)

iostat(l)
abort(3)
ctype(3)

ttyname(3)
ctype(3)

system(3)
ctype(3)

mp(3)
j0(3)
bj(6)
j0(3)

makekey - generate encryption

prejudice
mem,

integers and long integers .

exponent

awk - pattern scanning and processing
be - arbitrary-precision arithmetic

shift, times, trap, umask, wait - command

. frexp,

- find ordering relation for an object
ar - archive (

intro - introduction to
ar - archive and

col - filter reverse
comm - select or reject

uniq - report repeated
look - find

rev - reverse
In- make a

a.out - assembler and
link -

look - find lines in a sorted
nlist - get entries from name

nm - print name
Is

refer, lookbib - find and insert

ld
convert date and time to ASCII ctime,

end, etext, edata - last

newgrp-
logarithm, power, square root exp,

ac -
getlogin - get

/continue, cd, eval, exec, exit, export,
passwd - change

utmp, wtmp
setjmp,

references in documents .
object library

. refer,

long integers 13tol,

ms
man

rpow - multiple precision integer/ itom,
tp- DEC/

ht - RH-11/TU-16
tm - TM-11/TU-10

xsend, xget, enroll - secret

malloc, free, realloc, calloc -
make

ar - archive and library

allocator

mkdir
mknod

In
mktemp

banner-

- xvi -

join - relational database operator . . .
key
kill - send signal to a process
kill - terminate a process with extreme
kmem - core memory
13tol, ltol3 - convert between 3-byte . .
language
language
language /login, newgrp, read, readonly, set,
ld- loader
ldexp, modf - split into mantissa and
lex - generator of lexical analysis programs
library . lorder
library) file format .
library functions
library maintainer
line feeds
lines common to two sorted files
lines in a file
lines in a sorted list
lines of a file
link
link - link to a file
link editor output .
link to a file
lint - a C program verifier
list
list
list
list contents of directory . .
literature references in documents
In - make a link
loader
localtime, gmtime, asctime, timezone -
locations in program
lock - lock a process in primary memory
log in to a new group
log, loglO, pow, sqrt - exponential,
login - sign on
login accounting
login name
login, newgrp, read, readonly, set, shift,/
login password
login records
longjmp - non-local goto
look - find lines in a sorted list . .
lookbib - find and insert literature .
lorder - find ordering relation for an
Is - list contents of directory
!seek, tell - move read/write pointer
lto13 - convert between 3-byte integers and
m4 - macro processor
macros for formatting manuscripts
macros to typeset manual
madd, msub, mult, mdiv, min, mout, pow, gcd, .
mag tape formats
magtape interface
magtape interface �
mail
mail - send or receive mail among users
main memory allocator
maintain program groups
maintainer
make - maintain program groups
make a directory
make a directory or a special file
make a link
make a unique file name
make long posters
makekey - generate encryption key
malloc, free, realloc, calloc - main memory .
man - macros to typeset manual

join(!)
makekey(8)

kill(2)
kill (1)

mem(4)
13tol(3)
awk(l)

bc(l)
sh(l)
ld(l)

frexp(3)
lex (I)

lorder(l)
ar(S)

intro(3)
ar(l)

col(l)
comm(l)

uniq(l}
look(!)

rev(l)
ln(l)

· link(2)
a.out(S)

link(2)
lint (I)

look(l)
nlist(3)
nm(l)

ls(l)
refer(l)

ln(l)
ld(l)

ctime(3)
end(3)
lock(2)

newgrp(l)
exp(3)

login (I)
ac(l)

getlogin (3)
sh(l)

passwd(l)
utmp(S)

setjmp(3)
look (I)
refer(!)

lorder(l)
ls(l)

lseek(2)
13to1(3)

m4(1)
ms(7)

man(7)
mp(3)

tp(S)
ht(4)

tm(4)
xsend(l)

mail(l)
malloc {3)

make (I)
ar(l)

make(!)
mkdir(l)

mknod(2)
ln(l)

mktemp(3)
banner(6)

makekey{8)
malloc(3)

man(7)

tp
frexp, ldexp, modf - split into

man - print sections of this
man - macros to typeset

ms - macros for formatting
umask - set file creation mode

eqn, neqn, checkeq - typeset

precision integer/ itom, madd, msub, mult,
bed, ppt - convert to antique

lock - lock a process in primary
mem, kmem - core

malloc, free, realloc, calloc - main
sort - sort or

perror, sys errlist, sys nerr - system error
precision/ itom, madd, msub, mult, mdiv,

system .

chmod - change
getty - set typewriter

umask - set file creation
chmod - change

frexp, ldexp,
touch - update date last

mount, umount -
mount, umount -

mtab
integer/ itom, madd, msub, mult, mdiv, min,

mv
!seek, tell -

hp - RH- 1 1/RP04, RPOS, RP06
rp - RP-Il/RP03

- multiple precision integer/ itom, madd,

multiple precision integer/ itom, madd, msub,

getenv - value for environment
getlogin - get login

mktemp - make a unique file
pwd - working directory

tty - get terminal
getpw - get

nlist - get entries from
nm - print

ttyname, isatty, ttyslot - find
terminals - conventional

ncheck - generate
dumpdir - print the

eqn,
creat - create a

arcv - convert archives to
newgrp - log in to a

fork - spawn

trap,/ led, eval, exec, exit, export, login,
dbminit, fetch, store, delete, firstkey,

- xvii -

man - print sections of this manual
manipulate tape archive
mantissa and exponent
manual . . .
manual . . .
manuscripts
mask
mathematics
maze - generate a maze problem
mdiv, min, mout, pow, gcd, rpow - multiple
media
mem, kmem - core memory .
memory
memory
memory allocator
merge files
mesg - permit or deny messages .
messages
min, mout, pow, gcd, rpow - multiple .
mkconf - generate configuration tables
mkdir - make a directory
mkfs - construct a file system
mknod - build special file
mknod - make a directory or a special file
mktemp - make a unique file name
mode
mode
mode mask
mode of file
modf - split into mantissa and exponent
modified of a file
monitor - prepare execution profile
moo - guessing game
mount and dismount file system . .
mount or remove file system
mount, umount - mount and dismount file .
mount, umount - mount or remove file system
mounted file system table
mout, pow, gcd, rpow - multiple precision
move or rename files and directories
move read/write pointer
moving-head disk
moving-head disk · ms - macros for formatting manuscripts .
msub, mult, mdiv, min, mout, pow, gcd, rpow
mtab - mounted file system table
mult, mdiv, min, mout, pow, gcd, rpow - .
mv - move or rename files and directories
name .
name .
name .
name .
name .
name from UID
name list
name list
name of a terminal
names
names from i-numbers
names of files on a dump tape
ncheck - generate names from i-numbers .
neqn, checkeq - typeset mathematics
new file . . .
new format .
new group .
new process
newgrp - log in to a new group
newgrp, read, readonly, set, shift, times, .
nextkey - data base subroutines
nice - set program priority
nice, nohup - run a command at low priority
nlist - get entries from name list

man(l)
tp(l)

frexp(3)
man (I)
man(7)

ms(7)
umask (2)

eqn (l)
maze(6)

mp(3)
bcd(6)

mem (4)
lock (2)

mem(4)
malloc(3)

sort(!)
mesg (l)

perror(3)
mp(3)

mkconf(l)
mkdir(l)

mkfs(l)
mknod (l)
mknod (2)

mktemp(3)
chmod (l)

getty(8)
umask (2)
chmod(2)
. frexp (3)
touch (!)

monitor(3)
moo(6)

mount(!)
mount(2)
mount(!)
mount(2)

mtab (S)
mp(3)
mv(l)

lseek(2)
hp(4)
rp(4)

ms(7)
mp(3)

mtab (S)
mp(3)
mv(l)

getenv(3)
getlogin (3)
mktemp(3)

pwd (l)
tty(!)

getpw(3)
nlist(3)
nm(l)

ttyname(3)
term (7)

ncheck(l)
dumpdir(l)

ncheck (l)
eqn(l)

creat (2)
arcv (l)

newgrp(l)
fork (2)

newgrp(l)
sh(l)

dbm (3)
nice(2)
nice(!)
nlist (3)

)

clri - clear i
nice,

setjmp, longjmp -
troff,

tbl - format tables for
deroff - remove

arithmetic - provide drill in
factor, primes - factor a

rand, srand - random
atof, atoi, atol - convert ASCII to

- introduction to.system calls and error
ncheck - generate names from i

size - size of an
!order - find ordering relation for an

od -

fopen, freopen, fdopen -
dup, dup2 - duplicate an

open
plot:

stmcpy, strlen, index, rindex - string
join - relational database

stty - set terminal
!order - find

a.out - assembler and link editor
fread, fwrite - buffered binary input/

ecvt, fcvt, gcvt -
printf, fprintf, sprintf - formatted

stdio - standard buffered input/
chown - change

chown, chgrp - change
quot - summarize file system

pk -
pkopen, pkclose, pkread, pkwrite, pkfail -

pkon, pkoff - establish
tk -

getpass - read a
passwd - change login

passwd
getpwuid, getpwnam, setpwent, endpwent - get

grep, egrep, fgrep - search a file for a
awk -

cc,
popen,

mesg
pt� -

messages
du, dp - DU- l l 201 data

cat -
tc -

addresses

driver simulator

packet driver simulator

tee -

. pkopen,
pkon,

vp - Versatec printer
lseek, tell - move read/write

process . .
banner - make long

itom, madd, msub, mult, mdiv, min, mout,
square root exp, log, loglO,

bed,

- xviii -

nm - print name list
node · · ·

nohup - run a command at low priority
non-local goto
nroff - text formatting and typesetting
nroff or troff
nroff, troff, tbl and eqn constructs
null - data sink
number facts
number, generate large primes
number generator
numbers
numbers intro, errno
numbers
object file
object library
octal dump
open - open for reading or writing .
open a stream
open file descriptor
open for reading or writing
openpl et a!. - graphics interface . .
operations /strncat, strcmp, strncmp, strcpy,
operator
options
ordering relation for an object library .
output
output
output conversion
output conversion
output package . .
owner and group of a file
owner or group
ownership
packet driver
packet driver simulator
packet protocol
paginator for the Tektronix 4014
passwd - change login password
passwd - password file
password
password
password file
password file entry getpwent,
pattern
pattern scanning and processing language .
paus� - stop until signal
pee - C compiler
pclose - initiate 1/0 to/from a process .
permit or deny messages
permuted index
perror, sys err list, sys nerr - system error
phone interface . . . -.
phototypesetter interface
photypesetter simulator
phys - allow a process to access physical .
pipe - create an interprocess channel . .
pipe fitting
pk - packet driver
pkclose, pkread, pkwrite, pkfail - packet
pkoff - establish packet protocol
pkopen, pkclose, pkread, pkwrite, pkfail - .
plot - graphics filters
plot - graphics interface
plot: openpl et a!. - graphics interface
plott�r
pointer
popen, pclose - initiate 1/0 to/from a
posters
pow, gcd, rpow - multiple precision integer/
pow, sqrt - exponential, logarithm, power,
ppt - convert to antique media

nm(l)
clri (l)

nice (l)
setjmp(3)

troff(l)
tbJ (l)

deroff(l)
nu11(4)

arithmetic(6)
factor (I)

rand(3)
atof(3)

intro(2)
ncheck (l)

size (l)
!order (I)

od (l)
open (2)

fopen (3)
dup(2)

open(2)
plot (3)

string(3)
join (I)
stty (l)

lorder(l)
a.out (S)
fread (3)

ecvt (3)
printf(3)
stdio(3)

chown (2)
chown (l)

quot (l)
pk(4)

pkopen (3)
pkon (2)

tk (l)
passwd (l)
passwd (S)
getpass(3)
passwd (l)
passwd(S)

getpwent(3)
grep(l)
awk (l)

pause(2)
cc(l)

popen (3)
mesg(l)

ptx (l)
perror(3)

du (4)
cat(4)

tc(l)
phys(2)
pipe(2)
tee (I)
pk(4)

pkopen (3)
pkon (2)

pkopen (3)
plot (I)
plot (S)
plot(3)

vp(4)
lseek(2)

popen (3)
banner(6)

mp(3)
exp(3)
bcd(6)

be - arbitrary
mdiv, min, mout, pow, gcd, rpow - multiple

monitor
lock - lock a process in

primes - factor a number, generate large
types

cat - catenate and
date

cal
pr

nm
man
pstat

dumpdir -

conversion
vp - Versatec

nice, nohup - run a command at low
nice - set program

boot - startup
exit - terminate

fork - spawn new
kill - send signal to a

popen, pclose - initiate UO to/from a
wait - await completion of

init, rc
getpid - get

lock - lock a
ps

times - get
phys - allow a
wait - wait for

ptrace
kill - terminate a

awk - pattern scanning and
m4 - macro

monitor - prepare execution
profil - execution time

prof - display
end, etext, edata - last locations in

units - conversion
cb - C

make - maintain
nice - set

assert -
lint - a C

lex - generator of lexical analysis
struct - structure Fortran

pkon, pkotf - establish packet
arithmetic -
true, false -

ungetc
puts, fputs -

putc, putchar, fputc, putw -

putc, putchar, fputc,

init,

getpass
read -

- xix -

pr - print file . .
precision arithmetic language
precision integer arithmetic /msub, mult,
prepare execution profile
primary memory .
primes . factor,
primitive system data types
print
print and Set the date
print calendar
print file
print name list
print sections of this manual
print system facts
print the names of files on a dump tape
printer-plotter
printf, fprintf, sprintf - formatted output
priority . .
priority . .
procedures
process
process
process
process
process
process control initialization .
process identification
process in primary memory
process status
process times
process to access physical addresses .
process to terminate
process trace
process with extreme prejudice
processing language
processor
prof - display profile data . .
profil .:.. execution time profile
profile . . .
profile . . .
profile data .
program . .
program . .
program beautifier .
program groups . .
program priority . .
program verification
program verifier
programs
programs
protocol
provide drill in number facts
provide truth values . . .
ps - process status . . .
pstat - print system facts
ptrace - process trace . .
ptx - permuted index . .
push character back into input stream
put a string on a stream
put character or word on a stream . .
puts, fputs - put a string on a stream
putw - put character or word on a stream .
pwd - working directory name
qsort - quicker sort
quiz - test your knowledge
quot - summarize file system ownership
rand, srand - random number generator
ratfor - rational Fortran dialect .
rc - process control initialization .
read - read from file
read a password
read from file

pr(l)
bc(l)

mp(J)
monitor(J)

lock (2)
factor (I)
types(S)

cat (I)
date(l)

cai(I)
pr(l)

nm (l)
man (I)
pstat(l)

dumpdir(l)
vp(4)

printf(J)
nice (I)
nice (2)

boot (8)
exit(2)

fork (2)
kill (2)

popen (J)
wait (I)
init (8)

gerpid (2)
lock (2)

ps(l)
times(2)
phys(2)
wait (2)

ptrace(2)
kill (I)

awk(l)
m4(1)

prof(l)
profil (2)

monitor(J)
profil (2)

prof(!)
end (J)

units {I)
cb(l)

make(l}
nice(2)

assert(J)
lint (I)
lex(l)

struct(l)
pkon (2)

arithmetic(6)
true (I)

ps(l)
pstat (1)

ptrace(2)
ptx(l)

ungetc(J)
puts(J)
putc(J)
puts (J)
putc(J)
pwd (l)

qsort (J)
quiz(6)
quot (l)
rand (J)

ratfor(J)
init (8)

read (2)
getpass(J)

read (2)

I I /

led, eval, exec, exit, export, login, newgrp,
open - open for

/exec, exit, export, login, newgrp, read,
lseek, tell - move

malloc, free,
mail - send or

utmp, wtmp - login
references in documents . .

comm - select or
!order - find ordering

join
strip - remove symbols and

calendar
unlink -

mount, umount - mount or
deroff

strip -
rm, rmdir

mv - move or
uniq - report

iostat -
uniq

fseek, ftell, rewind -

reversi - a game of dramatic
col - filter

rev -

fseek, ftell,

hp
hs
ht -

strncmp, strcpy, strncpy, strlen, index,

sqrt - exponential, logarithm, power, square

hp - RH-1 1/
rp

/madd, msub, mult, mdiv, min, mout, pow, gcd,
hs - RH l l/
rf - RFI II

nice, nohup -

conversion
brk, ·

awk - pattern
alarm

grep, egrep, fgrep -
xsend, xget, enroll -

man - print

files . comm -
mail

kill -
ascii - map of ASCII character

umask -
utime -

nice
/exit, export, login, newgrp, read, readonly,

stty -
tabs

date - print and
stime
getty

setuid, setgid -

set\lid,
getgrent, getgrgid, getgrnam,

· XX -

read, readonly, set, shift, times, trap,/ .
reading or writing . . . :
readonly, set, shift, times, trap, umask,/
read/write pointer
realloc, calloc - main memory allocator
receive mail among users
records
refer, lookbib - find and insert literature
reject lines common to two sorted files .
relation for an object library .
relational database operator .
relocation bits
reminder service

remove directory entry . . .
remove file system
remove nroff, troff, tbl and eqn constructs .
remove symbols and relocation bits .
remove (unlink) files . . .
rename files and directories .
repeated lines in a file
report 1/0 statistics
report repeated lines in a file
reposition a stream
restor - incremental file system restore
rev - reverse lines of a file .
reversals
reverse line feeds
reverse lines of a file
reversi - a game of dramatic reversals .
rewind - reposition a stream
rf - RFl l/RS l l fixed-head disk file . .
RH-l l/RP04, RPOS, RP06 moving-head disk
RHI I/RS03-RS04 fixed-head disk file
RH-1 1/TU-16 magtape interface .
rindex - string operations /strncat, strcmp,
rk - RK- l l/RK03 or RKOS disk .
rm, rmdir - remove (unlink) files
roff - format text
root exp, log, loglO, pow,
rp - RP-I l/RP03 moving-head disk
RP04, RPOS, RP06 moving-head disk
RP-1 1/ RP03 moving-head disk
rpow - multiple precision integer arithmetic .
RS03-RS04 fixed-head disk file
RSl l fixed-head disk file
run a command at low priority .
sa, accton - system accounting .
sbrk, break - change core allocation .
scanf, fscanf, sscanf - formatted input .
scanning and processing language .
schedule signal after specified time
search a file for a pattern
secret mail
sections of this manual .
sed - stream editor . . .
select or reject lines common to two sorted
send or receive mail among users .
send signal to a process . .
set
set file creation mode mask
set file times
set program priority
set, shift, times, trap, umask, wait -I
set terminal options
set terminal tabs .
set the date
set time
set typewriter mode
set user and group ID
setbuf - assign buffering to a stream
setgid - set user and group ID
setgrent, endgrent - get group file entry .

sh (l)
open (2)

sh (l)
lseek(2)

malloc(3)
mail (l)

utmp(5)
refer (I)

comm (l)
lorder(l)

join (I)
strip (I)

calendar (I)
unlink (2)
mount(2)
deroff(l)

strip (I)
rm(l)
mv(l)

uniq (l)
iostat(1)

uniq (l)
fseek(3)

restor(l)
rev(l)

reversi (6)
col (I)
rev (I)

reversi(6)
fseek (3)

rf(4)
hp(4)
hs(4)
ht (4)

string(3)
rk (4)

rm (l)
roff(l)
exp(3)

rp(4)
hp(4)
rp(4)

mp(3)
hs(4)
rf(4)

nice (l)
sa(l)

brk(2)
scanf(3)

awk (l)
alarm (2)

grep(l)
xsend (l)

man (I)
sed (l)

comm (l)
mail (I)

kill(2)
ascii (7)

umask(2)
utime(2)

nice (2)
sh (l)

stty (l)
tabs{l)
date (I)

stime(2)
getty(8)

setuid(2)
setbuf(3)
setuid(2)

getgrent(3)

crypt,
getpwent, getpwuid, getpwnam,

cd, eva!, exec, exit, export, login, newgrp,/ 0 0 o o 0

system - issue a
/export, login, newgrp, read, readonly, set,

login
pause - stop until

alarm - schedule
kill - send

signal - catch or ignore
pkread, pkwrite, pkfail - packet driver

tc - photypesetter
trigonometric functions o 0 o o 0 0 0 0 0 0 o 0 0 o o 0

null - data

spline - interpolate
qsort - quicker

tsort - topological

comm - select or reject lines common to two
look - find lines in a

fork
alarm - schedule signal after

errors 0 0 0 0 0 0 0 0

frexp, ldexp, modf -
printf, fprintf,

root 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 exp, log, loglO, pow,

package 0 o 0

rand,
scanf, fscanf,

stdio -
boot-

iostat - report 1/0
ps - process

stat, fstat - get file
feof, ferror, clearerr, fileno - stream

pause
icheck - file system

subroutines 0 0 0 0 0 0 0 0 o o 0 0 o o dbminit, fetch,
strncpy, strlen, index, rindex - string/ o o 0 0 0 o 0

fclose, ffiush - close or flush a
fopen, freopen, fdopen - open a

fseek, ftell, rewind - reposition a
fgetc, getw - get character or word from

gets, fgets - get a string from a
fputc, putw - put character or word on a

puts, fputs - put a string on a
setbuf - assign buffering to a

ungetc - push character back into input
sed

feof, ferror, clearerr, fileno -
gets, fgets - get a

puts, fputs - put a
strcpy, strncpy, strlen, index, rindex -

basename
/strncat, strcmp, strncmp, strcpy, strncpy,

ioctl,

store, delete, firstkey, nextkey - data base

- xxi -

setjmp, lonllimp - non-local goto o o 0 o 0 0

setkey, encrypt - DES encryption 0 o o 0 0 0

setpwent, endpwent - get password file entry
setuid, setgid - set user and group ID o 0 0 o

sh, for, case, if, while, break, continue, 0 0 0

shell command 0 o 0 0 0 o 0 • 0 0 0 0 0 0 0 0 0

shift, times, trap, umask, wait - command/ 0

sign on 0 0 o o o o o 0 0 o 0 0 0 o

signal 0 0 • 0 0 • • 0 0 0 0 0 • 0 0

signal - catch or ignore signals 0

signal after specified time
signal to a process
signals . 0 o ; • • o o • o

simulator o o o • • o pkopen, pkclose,
simulator 0 o • • o • o 0 •

sin, cos, tan, asin, acos, atan, atan2 - .
sinh, cosh, tanh - hyperbolic functions
sink o o • 0 o 0 0 • 0 0 0 • • • • • 0 • 0 °0

size - size of an object file 0 o 0 • 0 0 0

sleep - suspend execution for an interval
sleep - suspend execution for interval 0

smooth curve
sort 0 • • 0 o 0 0 o 0 o 0 0

sort o • 0 0 o • 0 o o 0 • 0

sort - sort or merge files
sorted files . o o 0 o

sorted list . . 0 0 o

spawn new process 0

specified time 0 o o

spell, spellin, spellout - find spelling 0

spline - interpolate smooth curve 0 0

split - split a file into pieces 0 0 0 0 0

split into mantissa and exponent 0 0 0

sprintf - formatted output conversion
sqrt - exponential, logarithm, power, square
srand - random number generator 0 0 0

sscanf - formatted input conversion 0 0

standard buffered input/output package
startup procedures 0 0 0 0 0

stat, fstat - get file status 0

statistics
status 0 0 0 o 0 0

status 0 0 0 o • 0

status inquiries 0

stdio - standard buffered input/output
stime - set time 0 0 0 0 0

stop until signal 0 o 0 0 0 0 • 0 0 0 0 • 0

storage consistency check 0 0 0 0 0 0 0 0 0

store, delete, firstkey, nextkey - data base
strcat, strncat, strcmp, strncmp, strcpy, 0

stream
stream
stream
stream o 0 o o 0 0 o 0 0 o 0 0 o 0 0 • 0 0 0 getc, getchar,
stream o o • 0 o 0 0 o 0 o 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0

stream o o 0 0 o 0 0 o 0 o o 0 0 o 0 0 0 0 0 putc, putchar,
stream
stream 0 0 0 0

stream 0 0 o 0

stream editor 0

stream status inquiries 0

string from a stream 0

string on a stream 0 0 0

string operations 0 0 0 0 0 0 /strncat, strcmp, strncmp,
strip - remove symbols and relocation bits
strip filename affixes 0 0 0 0 0 0 0 0 0 0 0 0

strlen, index, rindex - string operations 0

struct - structure Fortran programs
stty - set terminal options 0 0 0 0 0

stty, gtty - control device 0 0 0 0 0

su - substitute user id temporarily 0

subroutines 0 0 o 0 0 0 0 0 0 0 0 0 0 0 dbminit, fetch,

setjmp(3)
crypt(3)

getpwent(3)
setuid(2)

sh(l)
system(3)

sh(l)
login (I)

pause(2)
signal(2)
alarm(2)

ki11(2)
signa1(2)

pkopen(3)
tc{l)

sin(3)
sinh(3)
null(4)
size(l)

sleep (I)
sleep(3)

spline(!)
qsort(3)
tsort(l)
sort (I)

comm(l)
look(!)
fork(2)

alarm(2)
spell (I)

spline(!)
split (I}

frexp(3)
printf(3)

exp(3)
rand(3)

scanf(3)
stdio(3)
boot(8)

stat (2)
iostat(l)

ps(!)
stat(2)

ferror(J)
stdio(3)

stime(2)
pause(2)

icheck(l)
dbm(3)

string(3)
fclose(3)
fopen(3)
fseekO)

getc(J)
gets(3)
putc(J)
puts(3)

setbuf(3)
ungetcO)

sed(l)
ferror(3)

gets(3)
puts(3)

string(3)
strip(!)

basename(l)
string(3)
structO)

stty(l)
ioctl(2)

su(l)
dbm(3)

su -

du
quot

sync - update the
update - periodically update the

sync - update
sleep
sleep -

strip - remove

messages . perror.
mtab - mounted file system

mkconf - generate configuration
tbl - format

tabs - set terminal

functions sin, cos,
sinh, cosh,

dumpdir - print the names of files on a dump
tp - manipulate

tar
tp :- DEC/mag

deroff - remove nroff, troff,

tk - paginator for the
!seek,

su - substitute user id
ttyname, isatty, ttyslot - find name of a

ttys -
tty - general

tty - get
stty - set
tabs - set

wait - wait for process to
kill -

exit -

quiz
roff - format

ed -
troff, nroff -

ttt, cubic
alarm - schedule signal after specified

at - execute commands at a later
stime - set

time, ftime - get date and

profil - execution
gmtime, asctime, timezone - convert date and

times - get process
utime - set file

/login, newgrp, read, readonly, set, shift,
ctime, localtime, gmtime, asctime,

tsort -

ptrace - process
tr -

- xxii -

substitute user id temporarily
sum - sum and count blocks in a file
summarize disk usage
summarize file system ownership
super block
super block
super-block
suspend execution for an interval .
suspend execution for interval
swab - swap bytes
symbols and relocation bits . .
sync - update super-block . .
sync - update the super block
sys errlist, sys nerr - system error
table -
tables
tables for nroff or troff
tabs
tail - deliver the last part of a file
tan, asin, acos, atan, atan2 - trigonometric
tanh - hyperbolic functions
tape
tape archive .
tape archiver .
tape formats .
tar - tape archiver
tbl - format tables for nroff or troff .
tbl and eqn constructs
tc - photypesetter simulator
tc - TC- l l /TU56 DECtape .
tee - pipe fitting
Tektronix 4014

tell - move read/write pointer
temporarily
terminal
terminal initialization data .
terminal interface
terminal name .
terminal options .
terminal tabs . . .
terminals - conventional names
terminate
terminate a process with extreme prejudice .
terminate process
test - condition command
test your knowledge
text
text editor
text formatting and typesetting
tic-tac-toe
time
time
time
time
time - time a command
time, ftime - get date and time
time profile . .
time to ASCII . ctime, localtime,
times
times
times - get process times
times, trap, umask, wait - command language
timezone - convert date and time to ASCII .
tk - paginator for the Tektronix 4014 . . .
tm - TM-1 1/TU-10 magtape interface . . .
topological sort
touch - update date last modified of a file .
tp - DEC/mag tape formats
tp - manipulate tape archive
tr - translate characters .
trace
translate characters . . .

su(l)
sum O)

duO)
quot (l)
sync (I)

update(8)
sync(2)

sleep (I)
sleep(3)
swab(3)
strip (I)
sync(2)
sync (I)

perror(3)
mtab(5)

mkconf(l)
tbl (l)

tabs (I)
tail (I)
sin (3)

sinh (3)
dumpdir (l)

tp(l)
tar O)
tp(5)

tar (l)
tbl (l)

deroff(l)
te O)
tc(4)

tee (I)
tk (1)

lseek(2)
su (l)

ttyname (3)
ttys (S)
tty (4)
tty (I)

suy (l)
tabs (I)

term (7)
wait (2)

kill (1)
exit (2)
test (1)

quiz(6)
roff(l)

ed (l)
troff(l)

ttt (6)
alarm (2)

at (I)
stime(2)
time(2)
time (l)
time(2)

profil(2)
ctime(3)
times(2)
utime(2)
times (2)

sh (l)
ctime(3)

tk (l)
tm(4)

tsort(l)
touch (I)

tp(5)
tp(l)
tr(l)

ptrace(2)
tr(l)

newgrp, read, readonly, set, shift, times,
sin, cos, tan, asin, acos, atan, atan2 -

tbl - format tables for nroff or
typesetting .

deroff - remove nroff,

terminal

ttyname, isatty,
tm - TM-1 1/
ht - RH- l l/
tc - TC- 1 1/

tile - determine tile
types - primitive system data

man - macros to
eqn, neqn, checkeq -

. troff, nroff - text formatting and
getty - set

getpw - get name from

read, read only, set, shift, times, trap,
mount,
mount,

stream

mktemp - make a

cu - call
uux - unix to

uucp, uulog - unix to
uux -

uucp, uulog -

rm, rmdir - remove (

touch
sync
sync

update - periodically
du - summarize disk

write - write to another
setuid, setgid - set

getuid, getgid, geteuid, getegid - get
environ

su - substitute
mail - send or receive mail among

wall - write to all

abs - integer absolute
fabs, floor, ceil - absolute

getenv -
true, false - provide truth

assert - program
lint - a C program

vp
filsys, flblk, ino - format of file system

readonly, set, shift, times, trap, umask,

crash -
export, login, newgrp,/ sh, for, case, if,

- xxiii -

trap, umask, wait - command language /login,
trigonometric functions
troff
troff, nroff - text formatting and .
troff, tbl and eqn constructs
true, false - provide truth values
tsort - topological sort
ttt, cubic - tic-tac-toe
tty - general terminal interface . .
tty - get terminal name
ttyname, isatty, ttyslot - find name of a .
ttys - terminal initialization data .
ttyslot - find name of a terminal .
TU-10 magtape interface
TU-16 magtape interface
TU56 DECtape
type

types
typeset manual . . .
typeset mathematics
typesetting
typewriter mode . .
UID
umask - set file creation mode mask
umask, wait - command language /newgrp,
umount - mount and dismount file system
umount - mount or remove file system
ungetc - push character back into input
uniq - report repeated lines in a tile
unique file name
units - conversion program .
UNIX
unix command execution . . .
unix copy
unix to unix command execution .
unix to unix copy
unlink - remove directory entry .
unlink) files
update - periodically update the super block
update date last modified of a file .
update super-block . . .
update the super block
update the super block
usage
user
user and group 10 . . .
user and group identity
user environment .
user id temporarily . . .
users
users
utime - set file times .
utmp, wtmp - login records
uucp, uulog - unix to unix copy
uux - unix to unix command execution .
value
value, floor, ceiling functions
value for environment name
values . . .
verification
verifier
Versatec printer-plotter
volume

vp - Versatec printer-plotter
wait - await completion of process .
wait - command language /newgrp, read.
wait - wait for process to terminate
wall - write to all users
we - word count
what to do when the system crashes
while, break, continue, cd, eval, exec, exit,
who - who is on the system

sh (l)
sin(3)
tbl (l)

troff(l)
deroff(l)

true(l)
tsort (l)

ttt (6)
tty (4)
tty (l)

ttyname(3)
ttys(S)

ttyname(3)
tm (4)
ht(4)
tc(4)

file (I)
types(S)
man(7)
eqn (l)

troff(l)
getty(8)

getpw (3)
umask (2)

sh (l)
mount (I)
mount(2)
ungetc(3)

uniq(l)
mktemp(3)

units (I)
cu (l)

uux (l)
uucp (l)
uux (l)

uucp (l)
unlink(2)

rm (l)
update(8)

touch (!)
sync(2)
sync (I)

update(8)
du (l)

write { I)
setuid (2)
getuid(2)

environ (S)
su (l)

mail (I)
wall (I)

utime (2)
utmp(S)
uucp (l)
uux (l)
abs(3)

floor(3)
getenv(3)

true(l)
assert(3)

lint (I)
vp(4)

filsys (S)
vp(4)

wait (I)
sh (l)

wait(2)
wall (l)

wc(l)
crash (8)

sh (l)
who (l)

j

•

we
getchar, fgetc, getw - get character or

hangman, words -
putchar, fputc, putw - put character or

hangman,
cd - change

pwd -

write
!seek, tell - move read/

wall -
write

open - open for reading or
utmp,

xsend,
jO, jl , jn,

- xxiv -

word count . .
word from stream getc,
word games . .
word on a stream putc,
words - word games .
working directory
working directory name
write - write on a file
write - write to another user .
write on a file . .
write pointer
write to all users . . .
write to another user
writing
wtmp - login records .
wump - the game of hunt-the-wumpus
xget, enroll - secret mail
yO, y l , yn - bessel functions
yacc - yet another compiler-compiler

wc(l)
getc(3)

words(6)
putc(3)

words(6)
cd (l)

pwd (l)
write(2)
write (I)
write (2)
lseek (2)

wall (I)
write(l)
open(2)
utmp(5)

wump(6)
xsend (l)

j0(3)
yacc (l)

INTRO (1) INTRO (1)

NAME
intro - introduction to commands

DESCRIPTION
This section describes publicly accessible commands in alphabetic order. Certain distinctions of
purpose are made in the headings:
(1) Commands of general utility.
(lC} Commands for communication with other systems.
(lG) Commands used primarily for graphics and computer-aided design.
(1M) Commands used primarily for system maintenance.
The word 'local' at the foot of a page means that the command may not work on all machines;
'PDP11 ' means the description is peculiar to UNIX systems on that family of machines.

SEE ALSO
Section (6) for computer games.
How to get started, in the Introduction.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the system giving
the cause for termination, and (in the case of 'normal' termination) one supplied by the pro
gram, see wait and exit(2) . The former byte is 0 for normal termination, the latter is cus
tomarily 0 for successful execution, nonzero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is called variously
'exit code', 'exit status' or 'return code' , and is described only where special conventions are
involved.

7th Edition 1

AC (1M) AC (lM)

NAME
ac - login accounting

SYNOPSIS
ac: [-w wtmp 1 [- p 1 [- d 1 [people 1 . . .

DESCRIPTION

FILES

Ac produces a printout giving connect time for each user who has logged in during the life of
the current wtmp file. A total is also produced. -w is used to specify an alternate wtmp file.
-p prints individual totals; without this option, only totals are printed. -d causes a printout
for each midnight to midnight period. Any people will limit the printout to only the specified
login names. If no wtmp file is given, lusrladmlwtmp is used.
The accounting file lusrladm/wtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting,
it should be created with length 0. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired should be collected and the file
truncated.

/usr/adm/wtmp
SEE ALSO

init(8) , login(l) , utmp(S) .

7th Edition 1

ADB (1) ADB (l)

NAME
adb - debugger

SYNOPSIS
adb [- w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.
Obi/if is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for obi/if is a.out. Corjil is assumed to be a core image file produced after executing
obi/if; the default for corjil is core.

Requests to adb are read from the standard input and responses are to the standard output. If
the - w flag is present then both obi/if and corjil are created if necessary and opened for reading
and writing so that files can be modified using adb. Adb ignores QUIT; INTERRUPT causes
return to the next adb command.
In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands
count specifies how many times the command will be executed. The default count is 1 . Address
and count are expressions.
The interpretation of an address depends on the context it is used in. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subpro
cess. For further details of address mapping see ADDRESSES.

EXPRESSIONS

+

"

The value of dot.

The value of dot incremented by the current increment.
The value of dot decremented by the current increment.
The last address typed.

integer An octal number if integer begins with a 0� a hexadecimal number if preceded by #�
otherwise a decimal number.

integer Jraction
A 32 bit floating point number.

'ecce ' The ASCII value of up to 4 characters. \ may be used . to escape a '.
< name

The value of name, which is either a variable name or a register name. A db maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corjil. The register names are rO • . . rS sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The value of the symbol is taken from the symbol table in objfil. An ini
tial _ or - will be prepended to symbol if needed.

_ symbol
In C, the 'true name' of an external symbol begins with _. It may be necessary to utter
this name to disinguish it from internal or hidden variables of a program.

routine .name

7th Edition 1

ADB (1) ADB (l)

The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine.

(exp) The value of the expression exp.

Monadic operators

•exp The contents of the location addressed by exp in corfil.

@ exp The contents of the location addressed by exp in ob.ifil.

- exp Integer negation.

-exp Bitwise complement.
Dyadic operators are left associative and are less binding than monadic operators.

el + e2 Integer addition.

el -e2 Integer subtraction.

ebe2

el%e2

el&e2

elle2

el#e2

COMMANDS

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

El rounded up to the next multiple of e2.

Most commands consist of a verb followed by a modifier or list of modifiers. The following
verbs are available. (The commands ' ? ' and '/' may be followed by '•' ; see ADDRESSES for
further details.)

?f Locations starting at address in ob.ifil are printed according to the format f
If Locations starting at address in corjil are printed according to the format f
= f The value of address itself is printed in the styles indicated by the format f (For i for

mat ' ? ' is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format charac
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dot is incremented temporarily by the amount given for each format
letter. If no format is given then the last format is used. The format letters available are as
follows.

7th Edition

0 2
0 4
q 2
Q 4
d 2
D 4
X 2
X 4
u 2
U 4
f 4
F 8
b 1
c 1
c 1

Print 2 bytes in octal.
Print 4 bytes in octal.
Print in signed octal.

All octal numbers output by adb are preceded by 0.

Print long signed octal.
Print in decimal.
Print long decimal.
Print 2 bytes in hexadecimal.
Print 4 bytes in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.
Print the 32 bit value as a floating point number.
Print double floating point.
Print the addressed byte in octal.
Print the addressed character.
Print the addressed character using the following escape convention. Character

2

ADB (1) ADB (1)

newline

values 000 to 040 are printed as @ followed by the corresponding character in
the range 0100 to 0140. The character @ is printed as @@.

s n Print the addressed characters until a zero character is reached.
S n Print a string using the @ escape convention. n is the length of the string

including its zero terminator.
Y 4 Print 4 bytes in date format (see ctime(3)) .
i n Print as PDP l l instructions. n is the number of bytes occupied by the instruc

tion. This style of printing causes variables 1 and 2 to be set to the offset parts
of the source and destination respectively.

a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

I local or global data symbol
? local or global text symbol
- local or global absolute symbol

p 2 Print the addressed value in symbolic form using the same rules for symbol
lookup as a

t 0 When preceded by an integer tabs to the next appropriate tab stop. For exam-
ple, 8t moves to the next 8-space tab stop.

r 0 Print a space.
n 0 Print a newline.
" . • • • 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1 . Nothing is printed.

If the previous command temporarily incremented dot, make the increment permanent.
Repeat the previous command with a count of 1 .

[?/]I value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged� otherwise dot is set to the matched location. If mask is
omitted then - 1 is used.

[? /] w value . . .
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[?/]m bl el .fl[?/]
New values for (bl, el, jl) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the ' ? ' or '/' is followed by '•'
then the second segment (b2 , e2 ,j2) of the mapping is changed. If the list is ter
minated by ' ? ' or '/' then the file (objfil or corfil respectively) is used for subsequent
requests. (So that, for example, '/m?' will cause '/' to refer to objfil.}

>name Dot is assigned to the variable or register named.

A shell is called to read the rest of the line foil owing ' ! ' .
$modifier

7th Edition

Miscellaneous commands. The available modifiers are:

<I Read commands from the file /and return.
> f Send output to the file /. which is created if it does not exist.
r Print the general registers and the instruction addressed by pc. Dot is set to pc.
f Print the floating registers in single or double length. If the floating point

3

ADB (l)

b
a

c

e
w
s
0
d
q
"f
m

ADB (1)

status of ps is set to double (0200 bit) then double length is used anyway.
Print all breakpoints and their associated counts and commands.
ALGOL 68 stack backtrace. If address is given then it is taken to be the
address of the current frame (instead of r4) . If count is given then only the
first count frames are printed.
C stack backtrace. If address is given then it is taken as the address of the
current frame (instead of r5) . If C is used then the names and (16 bit) values
of all automatic and static variables are printed for each active function. If
count is given then only the first count frames are printed.
The names and values of external variables are printed.
Set the page width for output to address (default 80) .
Set the limit for symbol matches to address (default 255) .
All integers input are regarded as octal.
Reset integer input as described in EXPRESSIONS.
Exit from adb.
Print all non zero variables in octal.
Print the address map.

:modifier

VARIABLES

Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed count- ! times before
causing a stop. Each time the breakpoint is encountered the command c is exe
cuted. If this command sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run obj.fil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com
mand. An argument starting with < or > causes the standard input or output
to be established for the command. All signals are turned on on entry to the
subprocess.

cs The subprocess is continued with signal s c s, see signa/(2) . If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for c except that the subprocess is single stepped count times. If there is no
current subprocess then obj.fil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub-
process.

k The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.
On entry the following are set from the system header in the corjil. If corjil does not appear to
be a core file then these values are set from obj.fil.

b The base address of the data segment.

7th Edition 4

��ll)

ADB (1) ADB (1)

d
e
m
s
t

The data segment size.
The entry point.
The 'magic' number (0405, 0407, 0410 or 041 1) .
The stack segment size.
The text segment size.

ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (bl, el, fl} and (b2, e2, .f2) and the
.file address corresponding to a written address is calculated as follows.

bl � address < el - > .file address- address +.{! -bl. otherwise,

b2 � address < e2 -> .file address- address +.f2-b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I
and D space) the two segments for a file may overlap. If a ? or I is followed by an • then only
the second triple is used.
The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, b I is set to 0, e I is set to the maximum file size and
.11 is set to 0; in this way the whole file can be examined with no address translation.

So that adb may be used on large files all appropriate values are kept as signed 32 bit integers.

/dev/mem
/dev/swap
a. out
core

SEE ALSO
ptrace (2) , a.out (5) , core (5)

DIAGNOSTICS

BUGS

'Adb' when there is no current command or format. Comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or
returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul up the accessing of
the external .

7th Edition 5

AR (1) AR (1)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posilame] afile name ...

DESCRIPTION

FILES

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibcl. Afile is the archive file. The names are constituent files in the archive file. The mean
ings of the key characters are:

d Delete the named files from the archive file.

r

q

t

p

Replace the named files in the archive file. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. I f an
optional positioning character from the set abi is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in the ar
chive are tabled. If names are given, only those files are tabled.

Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved.

·

x Extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with p, it precedes
each file with a name.

c Create. Normally ar will create afile when it needs to. The create option suppresses
the normal message that is produced when a./ile is created.

Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

/tmp/v* temporaries

SEE ALSO
ld(l) , ar(S) , lorder(l)

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

'

7th Edition

ARCV (1M)

NAME
arcv - convert archives to new format

SYNOPSIS
arcv file .. .

DESCRIPTION

ARCV (1M)

Arcv converts archive files (see ar(l) , ar(5)) from 6th edition to 7th edition format. The
conversion is done in place, and the command refuses to alter a file not in old archive format.

FILES

Old archives are marked with a magic number of 0177555 at the start� new archives have
0177545.

/tmp/v*, temporary copy

SEE ALSO
ar(l) , ar(5)

7th Edition

AS (l) AS (l)

NAME
as - assembler

SYNOPSIS
as [- 1 [- o objfile 1 file ...

DESCRIPTION

FILES

As assembles the concatenation of the named files. If the optional first argument - is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used. It is exe
cutable if no errors occurred during the assembly, and if there were no unresolved external
references.

/lib/as2 pass 2 of the assembler
/tmp/atm[l-31 ? temporary
a.out object

SEE ALSO
ld(l) , nm(l) , adb (l) , a.out(S)
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS

BUGS

When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out
together with the line number and the file name in which it occurred. Errors in pass 1 cause
cancellation of pass 2. The possible errors are:

) Parentheses error
1 Parentheses error
< String not terminated properly

• Indirection used illegally
Illegal assignment to ' . '

a Error in address
b Branch instruction is odd or too remote
e Error in expression
f Error in local ('r or 'b') type symbol
g Garbage (unknown) character

End of file inside an if
m Multiply defined symbol as label
0 Word quantity assembled at odd address
p ' . ' different in pass 1 and 2
r Relocation error
u Undefined symbol
X Syntax error

Syntax errors can cause incorrect line numbers in following diagnostics.

7th Edition PDP l l 1

�fy)

AT (1) AT (I)

NAME
at - execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION

FILES

A r squirrels away a copy of the named file {standard input default) to be used as input to sh(l)
at a specified later time. A cd(l) command to the current directory is inserted at the
beginning, followed by assignments to all environment variables. When the script is run, it
uses the user and group ID of -the creator of the copy file.

The time is 1 to 4 digits, with an optional following 'A', •p• , 'N' or 'M' for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or {2) a day of the
week; if the word 'week' follows invocation is moved seven days further off. Names of months
and days may be recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1 530 fr week

A t programs are executed by periodic execution of the command /usrllib/atrun from cron(8).
The granularity of at depends upon how often arrun is executed.

Standard output or error output is lost unless redirected.

/usr/spool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of year day ddd of year xv. till is a unique number.
/usr/spool/at/lasttimedone contains hhhh for last hour of activity.
/usr/spool/at/past directory of activities now in progress
/usr/lib/atrun program that executes activities that are due
pwd(l)

SEE ALSO
calendarO) , cron{8)

DIAGNOSTICS
Complains about various syntax errors and times out of range.

BUGS
Due to the granularity of the execution of /usr/liblatrtm, there may be bugs in scheduling things
almost exactly 24 hours into the future.

7th Edition 1

AWK (l) AWK (1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [- F c] [prog] [file] . . .

DESCRIPTION
A wk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified as
- f file.

Files are read in order� if there are no files, the standard input is read. The file name · - '

means the standard input. Each line is matched against the pattern portion of every pattern
action statement� the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1 , $2, . . . � $0 refers to the entire line.

A pattern-action statement has the form

pattern (action }

A missing (action } means print the line; a missing pattern always matches.

An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional � expression) statement
break
continue
([statement] . . . }
variable - expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators + , - , *, I, %, and concatenation (indicated by a blank) . The C
operators + + , - - , + - , - - . * =- , /=- , and %=- are also available in expressions. Variables
may be scalars, array elements (denoted x [i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric� this allows for a form of
associative memory. String constants are quoted " . . . " .

The print statement prints its arguments on the standard output (or on a file if >.file is present) ,
separated by the current output field separator, and terminated by the output record separator.
The prinifstatement formats its expression list according to the format (see printf(3)) .

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer. substds, m, n) returns the n-character substring of s that begins at
position m. The function sprintf(Jmt, expr, expr, . . .) formats the expressions according to the
printf(3) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (! , I I , &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep. Isolated regular expressions in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions.

7th Edition

AWK (1) AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is per
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either - (for contains)
or !- (for does not contain) . A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input l ine
is read and after the last. BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with

BEGIN { FS J. "c" }

or by using the - F c option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record: FILENAME, the name of t-he current
input file; OFS, the output field separator (default blank) ; ORS, the output record separator
(default newline) ; and OFMT, the output format for numbers (default "%.6g") .

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $ 1 }
Add up first column, print sum and average:

{ s + == $ 1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i == NF; i > 0; - -i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is differe!'lt from previous one:

$ 1 ! == prev { print; prev == $ 1 }

SEE ALSO

BUGS

lex (I) , sed (l)
A . V . Aho, B . W. Kernighan, P : J . Weinberger, A wk - a pattern scanning and processing
language

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concatenate "" to it .

7th Edition 2

BAS (1) BAS (1)

NAME
bas - basic

SYNOPSIS
bas [file]

DESCRIPTION
Bas is a dialect of Basic. lf a file argument is provided, the file is used for input before the ter
minal is read. Bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution.
They are stored in sorted ascending order. Non-numbered statements are immediately execut
ed. The result of an immediate expression statement (that does not have ' == ' as its highest
operator) is printed. Interrupts suspend computation.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing
as described above.

comment . . .
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

dump

edit

The name and current value of every variable is printed.

The UNIX editor, ed, is invoked with the file argument. After the editor exits, this file is
recompiled.

for name - expression expression statement
for name = expression expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the
corresponding integer numbered statment. If executed from immediate mode, the inter
nal statements are compiled first.

if expression statement
if expression

[else

fi

7th Edition

. . .]

The statement (first form) or group of statements (second form) is executed if the ex
pression evaluates to non-zero. In the second form, an optional else allows for a group of
statements to be executed when the first group is not.

1

BAS (1) BAS (1)

list [expression [expression]]
is used to print out the stored internal statements. I f no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by
" characters.)

prompt list
Prompt is the same as print except that no newline character is printed.

return [expression]

run

The expression is evaluated and the result is passed back as the value of a function call.
If no expression is given, zero is returned.

The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expression]]
Save i s like list except that the output is written on the file argument. If no argument is
given on the command, b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style,
and contains digits, an optional decimal point, and possibly a scale factor consisting of an
e followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expression ([expression [, expression] . . .])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the
internal statements to be compiled. If the expression evaluates negative, a builtin func
tion is called. The list of builtin functions appears below.

name I expression [, expression 1 . . . I
Each expression is truncated to an integer and used as a specifier for the name. The
result is syntactically identical to a name. al1,21 is the same as all l l21 . The truncated ex
pressions are restricted to values between 0 and 32767.

The following is the list of operators:
== == is the assignment operator. The left operand must be a name or an array element.

The result is the right operand. Assignment binds right to left,

7th Edition 2

BAS (1) BAS (1)

FILES

& I & (logical and) has result zero if either of its arguments are zero. It has result one if
both its arguments are non-zero. I (logical or) has result zero if both of its arguments
are zero. It has result one if either of its arguments are non-zero.

< < - > > - - - < >
The relational operators (< less than, < == less than or equal, > greater than, > ==
greater than or equal, == == equal to, < > not equal to) return one if their arguments
are in the specified relation. They return zero otherwise. Relational operators at the
same level extend as follows: a > b >c is the same as a > b&b >c.

+ - Add and subtract .
. • I Multiply and divide.

Exponentiation.

The following is a list of builtin functions:

arg(i) is the value of the i -th actual parameter on the current level of function cail.

exp(x) is the exponential function of x.
log(x) is the natural logarithm of x.
sqr(x) is the square root of x.
sin (x) is the sine of x (radians) .

cos(x) is the cosine of x (radians) .

atn(x) is the arctangent of x. Its value is between -1r/2 and 1r/2.

rnd() is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and evaluated as an
expression. The resultant value is returned.

abs(x) is the absolute value of x.
int(x) returns x truncated (towards 0) to an integer.

/tmp/btm? temporary
b.out save file
/bin/ed for edit

DIAGNOSTICS

BUGS

Syntax errors cause the incorrect line to be typed with an underscore where the parse failed.
All other diagnostics are self explanatory.

Has been known to give core images.
Catches interrupts even when they are turned off.

7th Edition 3

BASENAME (1)

NAME
basename - strip filename affixes

SYNOPSIS
basename string [suffix]

DESCRIPTION

BASENAME (1)

Base name deletes any prefix ending in • /' and the suffix. if present in string, from string, and
prints the result on the standard output. It is normally used inside substitution marks ' ' in
shell procedures.

This shell procedure invoked with the argument /usrlsrc!cmd/cat.c compiles the named file and
moves the output to cat in the current directory:

SEE ALSO
sh(l)

7th Edition

cc $ 1
m v a.out 'basename $ 1 .c'

4111�

BC (1) BC (1)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-c 1 [-I 1 [file .. . 1

DESCRIPTION �
Be is an interactive processor for a language which resembles C but provides unlimited preci
sion arithmetic. It takes input from any files given. then reads the standard input. The -I ar
gument stands for the name of an arbitrary precision math library. The syntax for be programs
is as follows� L means letter a-z. E means expression. S means statement.

Comments
are enclosed in r and • I.

Names
simple variables: L
array elements: L [E 1
The words ' ibase' , 'obase' , and 'scale'

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L (E , . . . , E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - • I % � (% is remainder; � is power)
+ + (prefix and postfix; apply to names)
== = < == > = ! = < >
= = + - - =* = I =% - A

Statements
E
{ s ; . . . ; s }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , . . . , L) {

auto L, . . . , L
S; . . . S
return (E)

Functions in -I math library

7th Edition

s (x) sine
c (x) cosine
e (x) exponential
l (x) log
a (x) arctangent
j (n.x) Bessel function

BC (1)

FILES

BC (l)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign
ment. Either semicolons or newlines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations in the manner of dc(l) . Assign
ments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. 'Auto' variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables empty square
brackets must follow the array name.

For example

scale - 20
define e(x) {

auto a, b, c, i, s
a == 1
b - 1
s - 1
for(i=- 1 � 1 == == 1 � i + +) {

a - a*x
b - b*i
c == a/b
if(c - == 0) retum(s)
s - s + c

defines a function to compute an approximate value of the exponential function and

for(i == 1 � i < == IO� i + +) e(i)

prints approximate values of the exponential function of the first ten integers.

Be is actually a preprocessor for dc(l) , which it invokes automatically, unless the -c (compile
only) option is present. In this case the de input is sent to the standard output instead.

/usr/lib/lib.b mathematical library
de (1) desk calculator proper

SEE ALSO
dc(l)
L . L . Cherry and R. Morris, BC - An arbitrary precision desk-calculator language

BUGS
No &&, I I , or ! operators.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

7th Edition 2

)

)
. /

CAL (1)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION

CAL (1)

Cal prints a calendar for the specified year. If a month is also specified. a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12 .
The calendar produced is that for England and her colonies.

BUGS

Try September 1 752.

The year is always considered to start in January even though this is historically naive.
Beware that 'cal 78' refers to the early Christian era, not the 20th century.

7th Edition

CALENDAR (1) CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar { - 1

DESCRIPTION

FILES

Calendar consults the file 'calendar' in the current directory and prints out lines that contain
today's or tomorrow's date anywhere in the line. Most reasonable month·d�y dates such as
'Dec. 7 , ' 'december 7, ' ' 1 2/7,' etc., are recognized, but not '7 December' or '7/12' . On
weekends ' tomorrow' extends through Monday.

·

When an argument is present, calendar does its job for every user who has a file 'calendar' in
his login directory and sends him any positive results by mai/(1) . Normally this is done daily in
the wee hours under control of cron(8) .

calendar
/usr/lib/calendar to figure out today's and tomorrow's dates
/etc/passwd
/tmp/cal*
egrep, sed, mail subprocesses

SEE ALSO

BUGS

at{ l) , cron(8) , maiJ(l)

Your calendar must be public information for you to get reminder service.
Calendar 's extended idea of ' tomorrow' doesn't account for holidays.

7th Edition 1

CAT (1)

NAME
cat - catenate and print

SYNOPSIS
cat [-u 1 file . . .

DESCRIPTION
Cat reads each .file in sequence and writes it on the standard output. Thus

cat file

prints the file, and

cat file 1 file2 > file3

concatenates the first two files and places the result on the third.

CAT (1)

If no input file is given, or if the argument • - ' is encountered, cat reads from the standard
input file. Output is buffered in 5 12-byte blocks unless the standard output is a terminal or the
-u option is specified.

SEE ALSO
pr(l) , cp(l)

BUGS
Beware of 'cat a b >a' and 'cat a b > b', which destroy the input files before reading them.

7th Edition 1

CB (1)

NAME
cb - C program beautifier

SYNOPSIS
cb

DESCRIPTION

CB (1)

Cb places a copy of the C program from the standard input on the standard output with spacing
and indentation that displays the structure of the program.

BUGS

7th Edition 1

/

cc (1) cc (1)

NAME
cc, pee - C compiler

SYNOPSIS
cc [option 1 ... file .. .

pee [option 1 . . . file . . .
DESCRIPTION

Cc is the UNIX C compiler. It accepts several types of arguments:

Arguments whose names end with '.c' are taken to be C source programs; they are compiled,
and each object program is left on the file whose name is that of the source with ' .o' substituted
for ' .c' . The ' .o' file is normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with '.s' are taken to be assembly source
programs and are assembled, producing a ' .o' file.

The following options are interpreted by cc. See /d(l) for load-time options.

-e Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times each
routine is called; also, if loading takes place, replace the standard startup routine by
one which automatically calls monitor(3) at the start and arranges to write out a
mon. out file at normal termination of execution of the object program. An execution
profile can then be generated by use of pro.f(D .

-(In systems without hardware floating-point, use a version . of the C compiler which
handles floating-point constants and loads the object program with the floating-point
interpreter. Do not use if the hardware is present.

- 0 Invoke an object-code optimizer.

-s Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed '.s'.

- P Run only the macro preprocessor and place the result for each ' .c' file i n a
corresponding ' . i ' file and has no '#' lines in it.

-E Run only the macro preprocessor and send the result to the standard output. The
output is intended for compiler debugging; it is unacceptable as input to cc.

-o output
Name the final output file output. If this option is used the file 'a.out' will be left
undisturbed.

- D name -def
- D na me

- U name

Define the name to the preprocessor, as if by '#define' . If no definition is given, the
name is defined as 1 .

Remove any initial definition of name.

- I dir '#include' files whose names do not begin with '/' are always sought first in the
directory of the file argument, then in directories named in - I options, then in
directories on a standard list.

- Bstring

7th Edition

Find substitute compiler passes in the files named string with the suffixes cpp, cO, c1
and c2. If string is empty, use a standard backup version.

PDP l l

cc (1)

FILES

cc (1)

-t [p012]
Find only the designated compiler passes in the files whose names are constructed by a
- B option. In the absence of a - B option, the string is taken to be 'lusrlc/' .

Other arguments are taken to be either loader option arguments, or C-compatible object
programs, typically produced by an earlier ee run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are loaded On the
order given) to produce an executable pro�ram with name a.out.

The major purpose of the 'portable C compiler', pee, is to serve as a model on which to base
other compilers. Pee does not support options - f, - E, - B, and - t. It provides, in addition
to the language of ee, unsigned char type data and initialized bit fields.

file.c
file.o
a. out
ltmplctm?
lliblcpp
lliblc{O l]
lusrlcloc [0 1 2]
I usr I cl ocpp
lliblfc [O l]
lliblc2
lliblcrtO.o
lliblmcrtO.o
lliblfcrtO.o
llibllibc.a
lusrlinclude
ltmplpc*
lusrlliblccom

input file
object file
loaded output
temporaries for ec
preprocessor
compiler for ee
backup compiler for ee
backup preprocessor
floating-point compiler
optional optimizer
runtime starto.ff
starto.ff for profiling
startoff for floating-point interpretation
standard library, see intro (3)
standard directory for '#include' files
temporaries for pee
compiler for pee

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
D. M. Ritchie, C Reference Manual
monitor(3) , prof(l) , adb (l) , Jd(l)

DIAGNOSTICS

BUGS

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader. Of these, the most mystifying are from the
assembler, as(l) , in particular 'm', which means a multiply-defined external symbol (function
or data) .

Pee is little tried on the PDP 1 1 � specialized code generated for that machine has not been well
shaken down. The - 0 optimizer was designed to work with ee� its use with pee is suspect.

7th Edition 2

CD (1)

NAME
cd - change working directory

SYNOPSIS
cd directory

DESCRIPTION

CD (1)

Directory becomes the new working directory. The process must have execute (search) permis
sion in directory.

Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh (l) , pwd (l) , chdir(2)

7th Edition

CHMOD (I) CHMOD (1)

NAME
chmod - change mode

SYNOPSIS
chmod mode file . . .

DESCRIPTION .
The mode of each named file is changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1 000 sticky bit, see chmod(2)
0400. read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission] . . .

The who part is a combination of the letters u (for user's permissions) , g (group) and o (other) .
The letter a stands for ugo. If who is omitted; the default is a but the setting of the file creation
mask (see umask(2)) is taken into account.

Op can be + to add permission to the file's mode, - to take away permission and = to assign
permission absolutely (all other bits will be reset) .

Permission is any combination of the letters r (read) , w (write) , x (execute) , s (set owner or
group id) and t (save text - sticky) . Letters u, g or o indicate that permission is to be taken
from the current mode. Omitting permission is only useful with = to take away all permissions.

The first example denies write permission to others, the second makes a file executable:

chmod o-w file
chmod + x file

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
ls(l) , chmod(2) , chown (1) , stat(2) , umask(2)

7th Edition 1

' \

./

CHOWN (l) CHOWN (1)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file .. .
chgrp group file .. .

DESCRIPTION

FILES

Chown changes the owner of the files to owner. The owner may be either a decimal UIO or a
login name found in the password file.

Chgrp changes the group-10 of the files to group. The group may be either a decimal GIO or a
group name found in the group-10 file.

Only the super-user can change owner or group, in order to simplify as yet unimplemented
accounting procedures.

/etc/passwd
/etc/group

SEE ALSO
chown (2) , passwd(S) , group(S)

7th Edition

CLRI (1 M) CLRI (1M)

NAME
clri - clear i-node

SYNOPSIS
clri filesystem i-number . . .

DESCRIPTION
Clri writes zeros on the i-nodes with the decimal i-numbers on the filesystem. After clri, any
blocks in the affected file will show up as 'missing' in an icheck(l) of the fiiesystem.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be taken
to track down the entry and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to that file. At that point removing the old entry will destroy
the new file. The new entry will again point to an unallocated i-node, so the whole cycle is
likely to be repeated again and again.

SEE ALSO
icheck(l)

BUGS
If the file is open, clri is likely to be ineffective.

7th Edition 1

CMP (l) CMP (l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I 1 [- s 1 file! file2

DESCRIPTION
The two files are compared. (If ./ilel is • - ' , the standard input is used.) Under default options,
cmp makes no comment if the files are the same� if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.

Options:

- 1 Print the byte number (decimal) and the differing bytes (octal) for each difference.

-s Print nothing for differing files� return codes only.

SEE ALSO
diff(l) , comm (l)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or miss
ing argument.

7th Edition 1

COL (1) COL (1)

NAME
col - filter reverse lin� feeds

SYNOPSIS
col (-bfx)

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line overlays
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds
(ESC-9 and ESC-8) . Col is particularly useful for filtering multicolumn output made with the
' .rt' command of nroffand output resulting from use of the tbl(l) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full line boundary.
This treatment can be suppressed by the -f (fine) option� in this case the output from col may
contain forward half line feeds (ESC-9) , but will still never contain either kind of reverse line
mo�ion.

If the -b option is given, col assumes that the output device in use is not capable of backspac
ing. In this case, if several characters are to appear in the same place, only the last one read
will be taken.

The control characters SO (ASCII code 0 1 7) , and SI (0 16) are assumed to start and end text in
an alternate character set. The character set (primary or alternate) associated with each printing
character read is remembered� on output, SO and SI characters are generated where necessary
to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the - x option is given,
this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return, new
line, ESC (033) followed by one of 789_, SI, SO, and VT (013) . This last character is an alter
nate form of full reverse line feed, for compatibility with some other hardware conventions.
All other non-printing characters are ignored.

SEE ALSO
troff(l) , tbl (1) , greek (1)

BUGS
Can't back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

7th Edition

COMM (1) COMM (1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123 1 1 file! file2

DESCRIPTION
Comm reads file I and file2, which should be ordered in ASCII collating sequence, and produces
a three column output: lines only in filel; lines only in file2; and lines in both files. The
filename ' - ' means the standard input.

Flags 1 , 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only
the lines common to the two files; comm -23 prints only lines in the first file but not in the
second� comm -123 is a no-op.

SEE ALSO
cmp(l) , diff(l) , uniq (l)

7th Edition

CP (1)

NAME
cp - copy

SYNOPSIS .
cp file 1 file2

cp file . . . directory

DESCRIPTION

CP (l)

Filel is copied onto file2. The. mode and owner of file2 are preserved if it already existed; the
mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file·names.

Cp refuses to copy a file onto itself.

SEE ALSO
cat(l) , pr(l) , mv(l)

7th Edition 1

CRYPT (I) CRYPT (1)

NAME
crypt - encode/ decode

SYNOPSIS
crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. Crypt encrypts and decrypts wi�h
the same key:

crypt key < clear >cypher
crypt key < cypher I P,r

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; 'sneak paths' by which keys or clear
text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing
ps(l) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(l) , makekey(8)

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, as to the accuracy of the enclosed materials or as
to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor
mation or documentation.

7th Edition 1

CU (lC) CU (lC)

NAME
cu - call UNIX

SYNOPSIS
cu telno [-t] [- s speed] [-a acu] [-I line 1

DESCRIPTION

FILES

Cu calls up another U�IX system, a terminal, or possibly a non-UNIX system. It manages an
interactive conversation with possible transfers of text files. Te/no is the telephone number,
with minus signs at appropriate places for delays. The - t flag is used to dial out to a terminal.
Speedgives the transmission speed (1 10, 1 34, 1 50, 300, 1 200) ; 300 is the default value.

The -a and - 1 values may be used to specify pathnames for the ACU and communications
line devices. They can be used to override the following built-in choices:

-a /dev/cuaO -1 /dev/cuiO

After making the connection, cu runs as two processes: the send process reads the standard
input and passes most of it to the remote system; the receive process reads from the remote
system and passes most data to the standard output. Lines beginning with · -· have special
meanings.

The send process interprets the following:

"EOT

- <file

terminate the conversation.
terminate the conversation
send the contents of file to the remote system, as though typed at the
terminal.

invoke an interactive shell on the local system.

run the command on the local system (via sh -c) .

·scmd . . . run the command locally and send its output to the remote system.

'"o/otake from [to] copy file 'from' (on the remote system) to file 'to' on the local system. If
'to ' is omitted, the 'from' name is used both places.

-%put from [to] copy file 'from' (on local system) to file ' to' on remote system. If ' to' is
omitted, the 'from' name is used both places.

send the line ·- . . . ' .

The receive process handles output diversions of the fol lowing form:

- > [>] (:]file
zero or more lines to be written to file
->

In any case, output is diverted (or appended, i f '> > ' used) to the file. I f ' : ' is used, the
diversion is silent, i.e., it is written only to the file. If ' : ' is omitted, output is written both to
the file and to the standard output. The trailing · ->' terminates the diversion.

The use of ""o/oput requires stty and cat on the remote side. I t also requires that the current
erase and kill characters on the remote system be identical to the current ones on the local
system. Backslashes are inserted at appropriate places.

The use of -%take requires the existence of echo and tee on the remote sy�tem. Also, stty tabs
mode is required on the remote system if tabs are to be copied without expansion.

/dev/cuaO
/dev/cuiO
/dev/null

7th Edition 1

CU (lC) CU (lC)

SEE ALSO
dn(4) , tty(4)

DIAGNOSTICS
Exit code is zero for normal exit, nonzero (various values) otherwise.

BUGS
The syntax is unique.

7th Edition 2

DATE (1) DATE (1)

NAME
date - print and set the date

SYNOPSIS
date [yymmddhhmm [.ss]]

DESCRIPTION

FILES

If no argument is given, the current date and time are printed. If an argument is given, the
current date is set. yy is the last two digits of the year; the first mm is the month number; dd is
the day number in the month; hh is the hour number (24 hour system) ; the second mm is the
minute number� . ss is optional and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12 :45 AM. The year, month and day may be omitted, the current values
being the defaults. The system operates in GMT. Date takes care of the conversion to and
from local standard and daylight time.

/usr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS
'No permission' if you aren't the super-user and you try to change the date� 'bad conversion' if
the date set is syntactically incorrect.

7th Edition 1

DC (1) DC (1)

NAME
de - desk calculator

SYNOPSIS
de [file 1

DESCRIPTION
De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be maintained.
The overall structure of de is a stacking (reverse Polish) calculator. If an argument is given, in
put is taken from that file until its end, then from the standard input. The following construc
tions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0-9. It may be preceded by an underscore _ to input a negative number. Numbers
may contain decimal points.

+ - ! * % �
The top two values on the stack are added (+) , subtracted (-) , multiplied (*) , divided
(/) , remaindered (%) , or exponentiated (�) . The two entries are popped off the stack;
the result is pushed on the stack in their place. Any fractional part of an exponent is ig
nored.

sx The top of the stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

lx

d

The value in register x is pushed on the stack. The register x is not altered. All registers
start with zero value. If the I is capitalized, register x is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged. P interprets
the top of the stack as an ascii string, removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is popped
by that value.

x treats the top element of the stack as a character string and executes it as a string of de
commands.

X replaces the number on the top of the stack with its scale factor.

(. . . I puts the bracketed ascii string onto the top of the stack.

<x >x =x

v

c

0

7th Edition

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation.

replaces the top element on the stack by its square root. Any existing fractional part of
the argument is taken into account, but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.

All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input. I
pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output.

1

DC (1)

0

k

z
z
?
. . ' .

DC (l)

pushes .the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplica
tion, division, and exponentiation. The interaction of scale factor, input base, and out
put base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack. with its length.

A line of input is taken from the input source (usually the terminal) and executed.

are used by be for array operations .

An example which prints the first ten values of n! is

[lal +dsa*plal O > y]sy
Osal
lyx

SEE ALSO
bc(l) , which is a preprocessor for de providing infix notation and a C-lik� syntax which imple
ments functions and reasonable control structures for programs.

DIAGNOSTICS
'x is unimplemented' where x is an octal number.
'stack empty' for not enough elements on the stack to do what was asked.
'Out of space' when the free list is exhausted (too many digits) .
'Out of headers' for too many numbers being kept around.
'Out of pushdown' for too many items on the stack.
'Nesting Depth' for too many levels of nested execution.

7th Edition 2

DCHECK (1 M) DCHECK (1 M)

NAME
dcheck - file system directory consistency check

SYNOPSIS
dcheck [- i numbers 1 [filesystem 1

DESCRIPTION

FILES

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The - i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a
directory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

Default file systems vary with installation.

SEE ALSO
icheck(l) , filsys(S) , clri (l) , ncheck(l)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree, the
relevant facts are reported. Allocated files which have 0 link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They should
be removed. When there are more links than entries, or there is an allocated file with neither
links nor entries, some disk space may be lost but the situation will not degenerate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

7th Edition 1

DO (1) DO (1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] . . .

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The stan
dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical 1/0.

option values
if= input file name� standard input is default
of= output file name; standard output is default
ibs== n input block size n bytes (default 5 1 2)
obs= n output block size (default 5 12)
bs== n set both input and output block size, superseding ibs and obs; also, if no

conversion is specified, it is particularly efficient since no copy need be done
cbs= n conversion buffer size
skip= n skip n input records before starting copy
files= n copy n files from (tape) input
seek= n seek n records from beginning of output file before copying
count== n copy only n input records
conv==ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case '\II{� swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
. . . , . . . several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to
specify multiplication by 1024, 5 12, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new
line added before sending the line to the output. In the latter case ASCII characters are read
into the conversion buffer, converted to EBCDIC, and blanks added to make up an output
record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape bkcked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if=/dev/rmtO of=x ibs= 800 cbs=80 conv =ascii, lcase

Note the use of raw magtape. Dd is especially suited to l/0 on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

To skip over a file before copying from magnetic tape do

(dd of=/dev/null; dd of= x) </dev/rmtO

SEE ALSO
cp(l) , tr(l)

7th Edition 1

DD (1) DD (1)

DIAGNOSTICS

BUGS

f+p records in(out) : numbers of full and partial records read(written)

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1 968. The ' ibm' conversion, while less blessed as a standard, corresponds better to cer
tain IBM print train conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is done only on conversion to
EBCDIC. These should be separate options.

7th Edition 2

DEROFF (l) DEROFF (l)

NAME
deroff - remove nroff, troff, tbl and eqn constructs

SYNOPSIS
derotf [- w] file . . .

DESCRIPTION
Deroffreads each file in sequence and removes all nro.ffand troffcommand lines, backslash con
structions, macro definitions, eqn constructs (between • .EQ' and ' .EN' lines or between delim
iters) , and table descriptions and writes the remainder on the standard output. Dero.fffollows
chains of included files (' .so' and • .nx' commands) ; if a file has already been included, a •.so' is
ignored and a • .nx' terminates execution. If no input file is given, dero.ff reads from the stan
dard input file.

If the - w flag is given, the output is a word list, one 'word' (string of letters, digits, and apos
trophes, beginning with a letter� apostrophes are removed) per line, and all other characters ig
nored. Otherwise, tl:te output follows the original, with the deletions mentioned above.

SEE ALSO

BUGS

troff(l) , eqn (1) , tbl (1)

Dero.ff is not a complete tro.ff interpreter, so it can be confused by subtle constructs. Most er
rors result in too much rather than too little output.

7th Edition

'' J

DF (lM) ·

NAME
df - disk free

SYNOPSIS
df [filesystem] . . .

DESCRIPTION

OF (1 M)

Df prints out the number of free blocks available on the fi/esystems. If no file system is
specified, the free space on all of the normally mounted file systems is printed.

FILES
Default file systems vary with installation.

SEE ALSO
icheck(l)

7th Edition

DIFF (1) DIFF (1)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbh] filel file2

DESCRIPTION

FILES

Ditftells what lines must be changed in two files to bring them into agreement. If file/ (file})
is ' - '. the standard input is used. If .file/ (file2) is a directory, then a file in that directory
whose file-name is the same as the file-name of file} (file/) is used. The normal output con
tains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl, n2 c n3,n4

These lines resemble ed commands to convert .file/ into .file2. The numbers after the letters
pertain to .file2. In fact, by exchanging 'a' for 'd' and reading backward one may ascertain
equally how to convert .file2 into .filel. As in ed, identical pairs where nl - n2 or n3 - n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ' < ' ,
then all the lines that are affected in the second file flagged by ' > ' .

The - b option causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

The -e option produces a script of a, c and d commands for the editor ed, which will recreate
.file2 from .file/. The -f option produces a similar script, not useful with ed, in the opposite
order. In connection with -e. the following shell program may help maintain multiple versions
of a file. Only an ancestral file ($ 1) and a chain of version-to-version ed scripts ($2,$3 , . . .)
made by ditfneed be on hand. A 'latest version' appears on the standard output.

(shift� cat $*� echo ' I ,$p') I ed - $ 1

Except i n rare circumstances, difffinds a smallest sufficient set of file differences.

Option - h does a fast, half-hearted job. It works only when changed stretches are short and
well separated, but does work on files of unlimited length. Options -e and -f are unavailable
with - h.

/tmp/d?? ? ? ?
/usr/lib/ditTh for -h

SEE ALSO
cmp(l) , comm(l) , ed (l)

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating lines consisting of
a single ' . ' .

7th Edition

DIFF3 (l) DlFF3 (l)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-ex3 1 file l file2 file3

DESCRIPTION

FILES

Dilf3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

== = = ==

= = = = 1

= = = =2

= = = =3

all three files differ

file/ is different

.file2 is different

file] is different

The type of change suffered in converting a given range of a given file to some other is indicat
ed in one of these ways:

f : nl a Text is to be appended after line number nl in file f. where f= 1 , 2, or 3 .

.f : nl , n2 c Text is to be changed in the range line nl to line n2. If nl = n2, the range
may be abbreviated to nl .

The original contents of the range follows immediately after a c indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

Under the -e option, di/f3 publishes a script for the editor ed that will incorporate into .file/ all
changes between .file2 and .file], i. e. the changes that normally would be flagged = = = = and
= = = =3. Option - x (-3) produces a script to incorporate only changes flagged = = = =
(= = = = 3) . The following command will apply the resulting script to 'file 1 ' .

(cat script; echo ' l ,$p') I ed - file l

/tmp/d3 ? ? ? ? ?
/usr/lib/diff3

SEE ALSO

BUGS

diff(1)

Text lines that consist of a single ' . ' will defeat -e.
Files longer than 64K bytes won't work.

7th Edition

DU (1) DU (l)

NAME
du - summarize disk usage

SYNOPSIS
du [- s] [- a] [name . . .]

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or file name. If name is missing, ' . ' is used.

The optional argument - s causes only the grand total to be given. The optional argument -a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted once.

Non-directories given as arguments (not under - a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

7th Edition

DUMP (1 M) DUMP (1 M)

NAME '
dump - incremental file system dump

SYNOPSIS
dump [key [argument . . .] filesystem]

DESCRIPTION

FILES

Dump copies to magnetic tape all files changed after a certain date in the .filesystem. The key
specifies the date and other options about the dump. Key consists of characters from the set
0123456789fusd.

f Place the dump on the next argument file instead of the tape.

u If the dump completes successfully, write the date of the beginning of the dump on file
'/etc/ddate' . This file records a separate date for each filesystem and each dump level.

0-9 This number is the 'dump level' . All files modified since the last date stored in the file
'/etc/ddate' for the same filesystem at lesser levels will be dumped. If no date is deter
mined by the level, the beginning of time is assumed� thus the option 0 causes the entire
filesystem to be dumped.

s The size of the dump tape is specified in feet. The number of feet is taken from the next
argument. When the specified size is reached, the dump will wait for reels to be changed.
The default size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used
in calculating the amount of tape used per write. The default is 1 600.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to
the default tape.
Now a short suggestion on how perform dumps. Start with a full level 0 dump

dump Ou

Next, periodic level 9 dumps should be made on an exponential progression of tapes. (Some
times called Tower of Hanoi - 1 2 1 3 I 2 I 4 . . . tape 1 used every other time, tape 2 used
every fourth, tape 3 used every eighth, etc.)

dump 9u

When the level 9 incremental approaches a full tape (about 78000 blocks at 1 600 BPI blocked
20) , a level I dump should be made.

dump l u

After this, the exponential series should progress as uninterrupted. These level 9 dumps are
based on the level I dump which is based on the level 0 full dump. This progression of levels
of dump can be carried as far as desired.

default filesystem and tape vary with installation.
/etc/ddate: record dump dates of filesystem/level.

SEE ALSO
restor (l) , dump(S) , dumpdir(l)

DIAGNOSTICS

BUGS

If the dump requires more than one tape, it will ask you to change tapes. Reply with a new
line when this has been done.

7th Edition

DUMP (1 M) DUMP (1M)

Sizes are based on 1 600 BPI blocked tape. The raw magtape device has to be used to approach
these densities. Read errors on the filesystem are ignored. Write errors on the magtape are
usually fatal. delim $$

7th Edition 2/22/74 2

DUMPDIR (1M)

NAME
dumpdir - print the names of files on a dump tape

SYNOPSIS
dumpdir [f filename]

DESCRIPTION

DUMPDIR (1M)

Dumpdir is used to read magtapes dumped with the dump command and list the names and
inode numbers of all the files and directories on the tape.

FILES

The f option causes filename as the name of the tape instead of the default.

default tape unit varies with installation
rst•

SE.E ALSO
dump (l) , restor(!)

DIAGNOSTICS

BUGS

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a
new-line when the next tape has been mounted.

There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately, dumpdir doesn't use it.

7th Edition 1

ECHO (1)

NAME
echo - echo arguments

SYNOPSIS
echo [- n] [arg] . . .

DESCRIPTION

ECHO (1)

Echo writes its arguments separated by blanks and terminated by a newline on the standard out
put. If the flag - n is used. no newline is added to the output.
Echo is useful for producing diagnostics in shell programs and for writing constant data on
pipes. To send diagnostics to the standard error file. do 'echo . . . 1 >&2' .

7th Edition

ED (�) ED (1)

NAME
ed - text editor

SYNOPSIS
ed [-] [- x] [name]

DESCRIPTION
Ed is the standard text editor.

If a name argument is given. ed simulates an e command (see below) on the named file; that is
to say, the file is read into ed's buffer so that it can be edited. If - x is present, an x command
is simulated first to handle an encrypted file. The optional - suppresses the printing of charac
ter counts by e, r, and w commands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a tem
porary file called the buffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a sin
gle character command, possibly followed by parameters to the command. These address�s
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of
text to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by typing a period
' .' alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of
strings of characters. A member of this set of strings is said to be matched by the regular
expression. In the following specification for regular expressions the word 'character' means
any character but newline.

1 . Any character except a special character matches itself. Special characters are the regu-
lar expression delimiter plus \ [. and sometimes � "' $.

2. A . matches any character.
3 . A \ followed by any character except a digit or () matches that character.

4. A nonempty string s bracketed [s 1 (or [A s]) matches any character in (or not in) s. In
s, \ has no special meaning, and 1 may only appear as the first letter. A substring a-b,
with a and b in ascending ASCII order, stands for the inclusive range of ASCII charac
ters.

5. A regular expression of form 1 -4 followed by "' matches a sequence of 0 or more
matches of the regular expression.

6. A regular expression, x, of form 1 -8, bracketed \ (x \) matches what x matches.

7. A \ followed by a digit n matches a copy of the string that the bracketed regular expres
sion beginning with the nth \ (matched.

8 . A regular expression of form 1 -8, x, followed by a regular expression of form 1 -7, y
matches a match for x followed by a match for y, with the x match being as long as pos
sible while still permitting a y match.

9. A regular expression of form 1-8 preceded by A (or followed by $) , is constrained to
matches that begin at the left (or end at the right) end of a line.

10.

1 1 .

7th Edition

A regular expression of form 1-9 picks out the longest among the leftmost matches in a
line.

An empty regular expression stands for a copy of the last regular expression encoun
tered.

ED (1) ED (l)

Regular expressions are used in addresses to specify lines and in one command (see s below) ��
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular
expression metacharacters as an ordinary character, that character may be preceded by '\'. This
also applies to the character bounding the regular expression (often '/') and to '\' itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; however, the exact
effect on the current line is discussed under the description of the command. Addresses are
constructed as follows.

1 . The character ' . ' addresses the current line.
2 . The character ' $' addresses the last line of the buffer.
3 . A decimal number n addresses the n-th line of the buffer.

4. '' x addresses the line marked with the name x, which must be a lower-case letter.
Lines are marked with the k command described below.

5 . A regular expression enclosed in slashes '/' addresses the line found by searching for
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the beginning of the
buffer.

6.

7.

A regular expression enclosed in queries ' ? ' addresses the line found by searching back
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the end of the buffer.

An address followed by a plus sign ' + ' or a minus sign ' - ' followed by a decimal
number specifies that address plus (resp. minus) the indicated number of lines. The
plus sign may be omitted.

8 . If an address begins with ' + ' or ' - ' the addition or subtraction is taken with respect to
the current line; e.g. ' -5' is understood to mean ' . -5' .

9. If an address ends with ' + ' or '- ', then 1 is added (resp. subtracted) . As a conse
quence of this rule and rule 8, the address ' - ' refers to the line before the current line.
Moreover, trailing ' + ' and ' - ' characters have cumulative effect, so ' - - ' refers to
the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character 'A' in
addresses is equivalent to ' - '.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ' , ' . They may also be separated
by a semicolon ' ; '. In this case the current line ' . ' is set to the previous address before the
next address is interpreted. This feature can be used to determine the starting line for forward
and backward searches ('/' , ' ?') . The second address of any two-address sequence must
correspond to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
most commands may be suffixed by 'p' or by ' I' , in which case the current line is either printed (�� or listed respectively in the way discussed below.

7 th Edition 2

ED (1)

(.) a
< text>

ED (1)

The append command reads the given text and appends it after the addressed line. ' . ' is
left on the last line input, if there were any, otherwise at the addressed line. Address '0'
is legal fot:. this command; text is placed at the beginning of the buffer.

(.
'

.) c
< text>

The change command deletes the addressed lines, then accepts input text which replaces
these lines. ' . ' is left at the last line input; if there were none, it is left at the line preced
ing the deleted lines.

(. '
•) d

The delete command deletes the addressed lines from the buffer. The line originally after
the last line deleted becomes the current line; if the lines deleted were originally at the
end, the new last line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ' . ' is set to the last line of the buffer. The number of characters
read is typed. 'filename' is remembered for possible use as a default file name in a subse
quent r or w command. If 'filename' is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been
given since the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If 'filename' is given,
the currently remembered file name is changed to 'filename' .

(1 ,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given regu
lar expression. Then for every such line, the given command list is executed with ' . ' ini
tially set to that line. A single command or the first of multiple commands appears on the
same line with the global command. All lines of a multi-line list except the last line must
be ended with '\ ' . A, i, and c commands and associated input are permitted; the ' . ' ter
minating input mode may be omitted if it would be on the last line of the command list.
The commands g and v are not permitted in the command list.

(.) i

< text>

This command inserts the given text before the addressed line. ' . ' is left at the last line
input, or, if there were none, at the line before the addressed line. This command differs
from the a command only in the placement of the text.

(. , . + l) j
This command joins the addressed lines into a single line; intermediate newlines simply
disappear. ' . ' is left at the resulting line.

(.) kx
The mark command marks the addressed line with name x, which must be a lower-case

7 th Edition 3

..

ED (1) ED (1)

letter. The address form ' 'x then addresses this line.

(. , •) 1
The list command prints the addressed lines in an unambiguous way: non-graphic charac
ters are printed in two-digit octal, and long lines are folded. The I command may be
placed on the same line after any non-i/o command.

(. , •) rna
The move command repositions the addressed lines after the line addressed by a. The
last of the moved lines becomes the current line.

(. , •) p
The print command prints the addressed lines. ' . ' is left at the last line printed. The p
command may be placed on the same line after any non-i/o command.

(. , .) p
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as q, except that no diagnostic results when no w has been
given since the last buffer alteration.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and /commands) . The file name
is remembered if there was no remembered file name already. Address '0' is legal for r
and causes the file to be read at the beginning of the buffer. If the read is successful, the
number of characters read is typed. ' . ' is left at the last line read in from the file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified
regular expression. On each line in which a match is found, all matched strings are
replaced by the replacement specified, if the global replacement indicator 'g' appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fai l on all addressed lines.
Any character other than space or new-line may be used instead of 'I' to delimit the regu
lar expression and the replacement. ' .' is left at the last line substituted.

An ampersand \�' appearing in the replacement is replaced by the string matching the
regular expression. The special meaning of '&' in this context may be suppressed by
preceding it by '\ ' . The characters '\ n ' where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between '\ (' and '\) ' . When nested,
parenthesized subexpressions are present, n is determined by counting occurrences of '\ ('
starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the
replacement string must be escaped by preceding it by '\' .

(. , .) t a
This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0) . ' . ' is left on the last line of the copy.

(. , •) u
The undo command restores the preceding contents of the current line, which must be
'the last line in which a substitution was made.

(1 , $) v/regular expression/command list
This command is the same as the global command g except that the command l ist is exe
cuted g with ' . ' initially set to every line except those matching the regular expression.

7th Edition 4

ED (1)

FILES

ED (1)

(1 , $) w filename
The write command writes the addressed lines onto the given file. If the file does not
exist, it is created mode 666 (readable and writable by everyone) . The file name is
remembered if there was no remembered file name already. If no file name is given, the
remembered file name, if any, is used (see e and f commands) . ' . ' is unchanged. If the
command is successful, the number of characters written is printed.

(1 , $) W filename
This command is the same as w, except that the addressed lines are appended to the file.

x A key string is demanded from the standard input. Later r, e and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(l) . An explicitly
empty key turns off encryption.

($) =
The line number of the addressed line is typed. ' .' is unchanged by this command.

! <shell command>
The remainder of the line after the ' ! ' is sent to sh(l) to be interpreted as a command.
' . ' is unchanged.

(. + 1) < newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ' . + 1p' ; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed prints a '? ' and returns to its command level.

Some size limitations: 5 1 2 characters per line, 256 characters per global command list, 64 char
acters per file name, and 128K characters in the temporary file. The limit on the number of
lines depends on the amount of core: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the last newline.
It refuses to read files containing non-ASCII characters.

/tmp/e'"
ed.hup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, A Tutorial / ntroduction to the ED Text Editor
B. W. Kernighan, A dvanced editing on UNIX
sed (1) , crypt (1)

DIAGNOSTICS

BUGS

' ?name' for inaccessible file; ' ? ' for errors in commands; ' ?TMP' for temporary file overflow.

To protect against throwing away valuable work, a q or e command is considered to be in error,
unless a w has occurred since the last buffer change. A second q or e will be obeyed regardless.

The I command mishandles DEL.
A ! command cannot be subject to a g command.
Because 0 is an illegal address for a w command, it is not possible to create an empty file with
ed.

7th Edition 5

XSEND, XGET, ENROLL (1) XSEND, XGET, ENROLL (l)

NAME
xsend, xget, enroll - secret mail

SYNOPSIS
xsend person
xget
enroll

DESCRIPTION

FILES

These commands implement a secure communication channel; it is like mai/0) , but no one can
read the messages except the intended recipient. The method embodies a public-key cryptosys
tem using knapsacks.

To receive messages, use enroll; it asks you for a password that you must subsequently quote in
order to receive secret mail.
To receive secret mail, use xget. It asks for your password, then gives you the messages.

To send secret mail, use xsend in the same manner as the ordinary mail command. (However,
it will accept only one target) . A message announcing the receipt of secret mail is also sent by
ordinary mail.

/usr/spool/secretmail/* .key: keys /usr/spool/secretmail/*. [0-9] : messages

SEE ALSO

BUGS

mail (1)

I t should be integrated with ordinary mail. The announcement of secret mail makes traffic
analysis possible. (tfv

7th Edition 1

EQN (I) EQN (I)

NAME
eqn, neqn, checkeq - typeset mathematics

SYNOPSIS
eqn [-dxy] [-pn] [-sn] [-fn 1 [file] . . .
checkeq [file] . . .

DESCRIPTION
Eqn is a troff(l) preprocessor for typesetting mathematics on a Graphic Systems photo
typesetter, neqn on terminals. Usage is almost always

eqn file .. . I troff
neqn file . . . I nroff

If no files are specified, these programs reads from the standard input. A line beginning with
' .EQ' marks the start of an equation: the end of an equation is marked by a line beginning with
' .EN' . Neither of these lines is altered, so they may be defined in macro packages to get
centering, numbering, etc. It is also possible to set two characters as 'delimiters' ; subsequent
text between delimiters is also treated as eqn input. Delimiters may be set to characters x and y
with the command-line argument - d.xy or (more commonly) with 'delim .xy' between .EQ and
.EN. The left and right delimiters may be identical. Delimiters are turned off by 'delim off'.
All text that is neither between delimiters nor between .EQ and .EN is passed through un
touched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or
circumflexes. Braces { } are used for grouping; generally speaking, anywhere a single character
like x could appear, a complicated construction enclosed in braces may be used instead. Tilde -
represents a full space in the output, circumflex � half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes X; ,
a sub i sup 2 produces a/, and e sup {x sup 2 + y sup 2} gives ex2+Y2•

Fractions are made with over: a over b yields � .
sqrt makes square roots: 1 over sqrt {ax sup 2 + bx+c} results in -;:==:;=i===

.Jax2+bx+c
n

The keywords from and to introduce lower and upper limits on arbitrary things: lim I,x; is
n-co 0

made with lim from { n- > inf} sum .from 0 to n x sub i .

.Left and right brackets, braces, etc. , of the right height are made with left and right: left { x sup

2 + y sup 2 over alpha right r -. I produces lx'+..;;'-] - I . The right clause is optional. Legal

characters after left and right are braces, brackets, bars, c and f for ceiling and floor, and "" for
nothing at all (useful for a right-side-only bracket) .

Vertical piles of things are made with pile, lpile, cpile, and rpile: pile { a above b above c) pro
a

duces b. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and
c

cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: matrix { /col { x sub i above y sub 2 } ceo/ { 1 above 2 l } pro
X; 1

duces Y� 2. In addition, there is rcol for a right-justified column.

7th Edition

EQN (1) EQN (1)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, dyad, and under: x dot - f(t)
bar is x=-f(t) , y dotdot bar - -- n under i� y - !!. · and x vee - -- y dyad is x =- y.
Sizes and font can be changed with size n or size ± n, roman, italic, bold, and font n. Size and
fonts can be changed globally in a document by gsize n and gfont n, or by the command-line
arguments -sn and -fn.
Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this
may be changed by the command-line argument -pn.
Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing % replace
ment % defines a new token called thing which will be replaced by replacement whenever it ap
pears thereafter. The % may be any character that does not occur in replacement.
Keywords like sum < !> int <J> inf (oo) and shorthands like > - (�) - > (-) , and ! == (;e)
are recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA.
Mathematical words like sin, cos, log are made Roman automatically. Troffi l) four-character
escapes like \(bs (@) can be used anywhere. Strings enclosed in double quotes " .. . " are passed
through untouched; this permits keywords to be entered as text, and can be used to communi
cate with tro.ffwhen all else fails.

SEE ALSO /

BUGS

troff(l) , tbl (1) , ms(7) , eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics- User 's Guide
J . F. Ossanna, NROFF/TROFF User's Manual

To embolden digits, parens, etc., it is necessary to quote them, as in 'bold "1 2.3'".

7th Edition 2

EXPR (1) EXPR (1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arg . . .

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the stan- '
dard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence, with
equal precedence operators grouped.

expr l expr
yields the first expr if i t is neither null nor '0' , otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or '0' , otherwise yields '0' .

expr relop expr
where relop is one of < < = = ! = > = > , yields ' 1 ' if the indicated comparison is
true, '0' if false. The comparison is numeric if both expr are integers, otherwise lexico
graphic.

expr + expr
expr - expr
addition or subtraction of the arguments.

expr * expr
expr I expr
expr 1Vtl expr
multiplicat ion, division, or remainder of the arguments.

expr : expr

(expr)

The matching operator compares the string first argument with the regular expression
second argument; regular expression syntax is the same as that of ed(l) . The \ (. . . \)
pattern symbols can be used to select a portion of the first argument. Otherwise, the
matching operator yields the number of characters matched ('0' on fai lure) .

parentheses for grouping.

Examples:

To add 1 to the Shell variable a:

a== 'expr $a + 1 '

To find the filename part (least significant part) of the pathname stored i n variable a, which
may or may not contain '/' :

expr $a : ' . */\ (.*\) ' 'r $a

Note the quoted Shell metacharacters.

SEE ALSO
ed (1) , sh (1) , test (1)

DIAGNOSTICS
Expr returns the following exit codes:

7th Edition

0
1
2

if the expression is neither null nor '0',
if the expression is null or '0',
for invalid expressions.

F77 (l) F77 (1)

NAME
f77 - Fortran 77 compiler

SYNOPSIS
rn [option] . . . file . . .

DESCRIPTION

FILES

F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with ' .r are taken to be Fortran 77 source programs� they are
compiled, and each object program is left on the file in the current directory whose name is that
of the source with ' .o' substituted for ' .r .
Arguments whose names end with ' . r' or ' .e ' are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with ' .c' or ' .s' are taken to be C or assembly
source programs and are compiled or assembled, producing a ' .o' file.

·

The fol lowing options have the same meaning as in cc(l) . See /d(1) for load-time options.

-c Suppress loading and produce ' .o' files for each source file.

-p Prepare object files for profiling, see prof(1) .

-0 Invoke an object-code optimizer.

-s Compile the named programs. and leave the assembler-language output on correspond-
ing files suffixed '.s'. (No ' .o' is created.) .

-f Use a floating point interpreter (for PDP 1 1 ' s that lack 1 1 /70-style floating point) .

- o output
Name the final output file output instead of 'a.out' .

The following options are peculiar to }77.

- one trip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops
are not performed at all if the upper limit is smaller than the lower limit.)

- u Make the default type o f a variable 'undefined' rather than using the default Fortran
rules.

-C Compile code to check that subscripts are within declared array bounds.

- w Suppress all warning messages. If the option is ' -w66' , only Fortran 66 compatibil ity
warnings are suppressed.

- F Apply EFL and Rat for preprocessor to relevant files, put the result in the file with the
suffix changed to ' . f . but do not compi le.

- m Apply the M4 preprocessor to each ' . r'. or ' .e' file before transforming it with the Ratfor
or EFL preprocessor.

-Ex Use the string x as an EFL option in processing ' .e' files.

- Rx Use the string x as a Rat for option in processing ' . r' files.

Other arguments are taken to be either loader option arguments, or F77-compatible object pro
grams, typically produced by an earlier run. or perhaps l ibraries of F77 -compatible routines.
These programs. together with the results of any compilations specified, are loaded (in the ord
er given) to produce an executable program with name 'a.out' .

7th Edition

\ !

F77 (I)

file. [fresc] input file
file.o object file
a.out loaded output
/usr/lib/f77pass i compiler
/lib/c l pass 2
/lib/c2 optional optimizer
/usr/lib/libF77.a intrinsic function library
/usr/lib/libl77 .a Fortran 1/0 library
/lib/libc.a C library, see section 3

F77 (I)

SEE ALSO
S. I. Feldman, P. J. Weinberger, A Portable Fortran 77 Compiler
prof(l) , cc(l) , ld(l)

DIAGNOSTICS

BUGS

The diagnostics produced by j77 i tself are intended to be self-explanatory. Occasional messages
may be produced by the loader.

The Fortran 66 subset of the language has been exercised extensively; the newer features have
not.

7th Edition 2

FACTOR (1) FACTOR (I)

NAME
factor, primes - factor a number, generate large primes

SYNOPSIS
factor [number 1

primes

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed in. If you type
in a positive number le�s than 256 (about 7 .2 x 1 016) it will factor the number and print its prime
factors� each one is printed the proper number of times. Then it waits for another number. It
exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to .Jn and occurs when n is prime or the square of a
prime. It takes 1 minute to factor a prime near 1 014 on a PDP1 1 .

When primes is invoked, i t waits for a number to be typed in. I f you type in a positive number
less than 256 it will print aU primes greater than or equal to this number.

DIAGNOSTICS
'Ouch.' for input out of range or for garbage input.

7th Edition 1

FILE (1 }

NAME
file - determine file type

SYNOPSIS
file file . . .

DESCRIPTION

FILE (1)

File performs a series of tests on each argument in an attempt to classify it. If an argument ap
pears to be ascii , file examines the first 5 1 2 bytes and tries to guess its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

7th Edition 1

FIND (l) FIND (1)

NAME
find - find files

SYNOPSIS
find pathname-list expression

DESCRIPTION .
Find recursively descends the directory hierarchy for each pathname in the pathname-list (i.e. ,
one or more pathnames) seeking files that match a boolean expression written in the primaries
given below. In the descriptions, the argument n is used as a decimal integer where +n means
more than n, - n means less than n and n means exactly n.
- name filename

True if the filename argument matches the current file name. Normal Shell argu
ment syntax may be used if escaped (watch out for ' [' , ' ? ' and '* ') .

-perm onum .
True if the file permission flags exactly · match the octal number onum (see
chmod(l)) . If onum is prefixed by a minus sign, more flag bits (0 1 7777, see stat(2))
become significant and the flags are compared: (/lags&onumJ =- -onum.

- type c True if the type of the file is c, where c is b, c, d or f for block special file, character
special file, directory or plain file.

- links n True if the file has n links.

-user uname
True if the file belongs to the user una me (login name or numeric user ID) .

-group gname
True if the file belongs to group gname (group name or numeric group ID).

-size n True if the file is n blocks long (5 1 2 bytes per block) .

- inurn n True if the file has inode number n.
-atime n True if the file has been accessed in n days.

-mtime n
True if the file has been modified in n days.

-exec command
True if the executed command returns a zero value as exit status. The end of the
command must be punctuated by an escaped semicolon. A command argument • { } '
i s replaced by the current pathname.

- ok command
Like -exec except that the generated command is written on the standard output,
then the standard input is read and the command executed only upon response y.

-print Always true; causes the current pathname to be printed.

-newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing pre
cedence) :

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and
must be escaped) .

2) The negation of a primary (' ! ' is the unary not operator) .

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri
maries) .

7th Edition

Fl ND (1) FIND (1)

4) Alternation of primaries (' -o' is the or operator) .

EXAMPLE

FI LES

To remove all files named 'a. out' or '* .o' that have not been accessed for a week:

find I \ (-name a.out -o -name '* .o' \) -atime + 7 -exec rm 1 l \;

/etc/passwd
/etc/group

SEE ALSO
sh (l) , test (l) , filsys (S)

BUGS
The syntax is painful.

7th Edition 2

GRAPH (I G) GRAPH (IG)

NAME
graph - draw a graph

SYNOPSIS
graph [option] . . .

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscissas and ordi
nates of a graph. Successive points are connected by straight lines. The graph is encoded on
the standard output for display by the plot(!) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a la
bel beginning on the point. Labels may be surrounded with quotes " . . . ", in which case they may
be empty or contain blanks and numbers� labels never contain newlines.

The following options are recognized, each as a separate argument.

-a Supply abscissas automatically (they are missing from the input) : spacing i s given by
the next argument (default 1) . A second optional argument is the starting point for au
tomatic abscissas (default 0 or lower limit given by - x) .

- b Break (disconnect) the graph after each label in the input.

- c Character string given by next argument is default label for each point.

-g Next argument i s grid style, 0 no grid, 1 frame with ticks, 2 full grid (default) .

- I Next argument i s label for graph.

- m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected (de-
fault) . Some devices give distinguishable line styles for other small integers.

-s Save screen, don't erase before plotting.

-x [I]

-y [I]

If I is present, x axis is logarithmic. Next I (or 2) arguments are lower (and upper) x
limits. Third argument, if present, is grid spacing on x axis. Normally these quantities
are determined automatically.

Similarly for y.
- h Next argument is fraction of space for height.

- w Similarly for width.

-r Next argument is fraction of space to move right before plotting.

- u Similarly to move up before plotting.

- t Transpose horizontal and vertical axes. (Option - x now applies to the vertical axis.)

A legend indicating grid range is produced with a grid unless the -s option is present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

BUGS

spline (!) , plot (I)

Graph stores all points internally and drops those for which there isn't room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

7th Edition

GREP (1) GREP (1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [option] . . . expression [file] . . .

egrep [option] . . . [expression] [file] . . .

fgrep [option] . . . [strings] [file]

DESCRIPTION
Commands of the grep family search the input .files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output; unless the - h flag is used,
the file name is s_!lown if there is more than one input file.
Grep patterns are limited regular expressions in the style of ed(l) ; it uses a compact nondeter
ministic algorithm. Egrep patterns are full regular expressions; it uses a fast deterministic algo
rithm that sometimes needs exponential space. Fgrep patterns are fixed strings; it is fast and
compact.

The following options are recognized.

-v All lines but those matching are printed.

-c Only a count of matching lines is printed.

- I The names of files with matching lines are listed (once) separated by newlines.
- n Each line is preceded by its line number in the file.

-b Each line is preceded by the block number on which it was found. This is sometimes
useful in locating disk block numbers by context.

- s No output is produced, only status.

- h Do not print filename headers with output lines.

- y Lower case letters in the pattern will also match upper case letters in the input (grep
only).

-e expression
Same as a simple expression argument, but useful when the expression begins with a - .

- f .tile The regular expression (egrep) or string list (fgrep) is taken from the .file.

- x (Exact) only lines matched in their entirety are printed (fgrep only) .

Care should be taken when using the characters $ * [A I ? ' " () and \ in the expression as they
are also meaningful to the Shell. It is safest to enclose the entire expression argument in single
quotes

Fgrep searches for lines that contain one of the (newline-separated) strings.

Egrep accepts extended regular expressions. In the following description 'character' excludes
newline:

7th Edition

A \ followed by a single character matches that character.

The character A ($) matches the beginning (end) of a line.
A . matches any character.

A single character not otherwise endowed with special meaning matches that character.

A string enclosed in brackets [] matches any single character from the string. Ranges
of ASCII character codes may be abbreviated as in 'a-z0 - 9' . A] may occur only as
the first character of the string. A literal - must be placed where it can't be mistaken
as a range indicator.

GREP (l) GREP (1)

A regular expression followed by * (+, ?) matches a sequence of 0 or more (1 or
more, 0 or 1) matches of the regular expression.

Two regular expressions concatenated match a match of the first followed by a match of
the second.

Two regular expressions separated by I or newline match either a match for the first or a
match for the second.

A regular expression enclosed in parentheses matches a match for the regular expres
sion.

The order of precedence of operators at the same parenthesis level is [] then * + ? then con
catenation then I and newline.

SEE ALSO
ed(l) , sed (l) , sh(l)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

Ideally there should be only one grep, but we don't know a single algorithm that spans a wide
enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer l ines are truncated.

7 th Edition 2

!CHECK (1 M) ICHECK (I M)

NAME
icheck - file system storage consistency check

SYNOPSIS
icheck [-s] [- b numbers] [filesystem]

DESCRIPTION

FILES

/check examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. If the file system is not specified, a set of
default file systems is checked. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and char-
acter special files.

·

The total number of blocks in use and the numbers of single- , double-, and triple
indirect blocks and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

The - s option causes icheck to ignore the actual free list and reconstruct a new one by rewrit
ing the super-block of the file system. The file system should be dismounted while this is
done; if this is not possible (for example if the root file system has to be salvaged) care should
be taken that the system is quiescent and that it is rebooted immediately afterwards so that the
old, bad in-core copy of the super-block will not continue to be used. Notice also that the
words in the super-block which indicate the size of the free list and of the i-list are believed. If
the super-block has been curdled these words will have to be patched. The -s option causes
the normal output reports to be suppressed.

Following the - b option is a list of block numbers; whenever any of the named blocks turns
up in a file, a diagnostic is produced.

/check is faster if the raw version of the special file is used, since it reads the i-list many blocks
at a time.

Default file systems vary with installation.

SEE ALSO
dcheck(l) , ncheck (l) , filsys(S) , clri (l)

DIAGNOSTICS

B UGS

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the
difficulty, the i-number, and the kind of block involved. If a read error is encountered, the
block number of the bad block is printed and icheck considers it to contain 0. 'Bad freeblock'
means that a block number outside the available space was encountered in the free list. ' n dups
in free' means that n blocks were found in the free list which duplicate blocks either in some
file or in the earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.
It believes even preposterous super-blocks and consequently can get core images.

7th Edition

lOST AT (l M) lOST AT (l M)

NAME
iostat - report 110 statistics

SYNOPSIS
iostat [option] .. . [interval [count]]

DESCRIPTION

FILES

lostat delves into the system and reports certain statistics kept about input-output activity. In
formation is kept about up to three different disks (RF, RK, RP) and about typewriters. For
each disk, 10 completions and number of words transferred are counted� for typewriters collec
tively, the number of input and output characters are counted. Also, each sixtieth of a second,
the state of each disk is examined and a tally is made if the disk is active. The tally goes into
one of four categories, depending on whether the system is executing in user mode, in 'nice'
(background) user mode, in system mode, or idle. From all these numbers and from the
known transfer rates of the devices it is possible to determine information such as the degree of
IO overlap and average seek times for each device.

The optional interval argument causes iostat to report once each interval seconds. The first re
port is for all time since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

With no option argument iostat reports for each disk the number of transfers per minute, the
milliseconds per average seek, and the milliseconds per data transfer exclusive of seek time. It
also gives the percentage of time the system has spend in each of the four categories mentioned
above.

The following options are available:

- t Report the number o f characters o f terminal IO per second as well.

- i Report the percentage of time spend in each of the four categories mentioned above,
the percentage of time each disk was active (seeking or transferring) , the percentage of
time any disk was active, and the percentage of time spent in 'IO wait: ' idle, but with a
disk active.

-s Report the raw timing information: 32 numbers indicating the percentage of time spent
in each of the possible configurations of 4 system states and 8 IO states (3 disks each
active or not) .

-b Report on the usage of IO buffers.

/dev/mem, /unix

7th Edition l

JOIN (1) JOIN (1)

NAME
join - relational database operator

SYNOPSIS
join [options] file ! file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of .tile 1 and
file2. If file! is ' - ' , the standard input is used.

File! and file2 must be sorted in increasing ASCII collating sequence on the fields on which
they are to be joined, normally the firs.t in each line.

There is one line in the output for each pair of lines in file! and file2 that have identical join
fields. The output line normally consists of the common field, then the rest of the line from
file!, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, multiple separators count
as one, and leading separators are discarded.

These options are recognized:

- an In addition to the normal output, produce a line for each unpairable line in file n,
where n is 1 or 2.

-e s Replace empty output fields by string s.

-j n m Join on the mth field of file n. If n is missing, use the mth field in each file.

-o list Each output line comprises the fields specifed in list, each element of which has the
form n. m, where n is a file number and m is a field number.

-tc Use character c as a separator (tab character) . Every appearance of c in a l ine is
significant.

SEE ALSO

BUGS

sort(!) , comm (l) , awk (l)

With default field separation, the collating sequence is that of sort -b; with - t, the sequence is
that of a plain sort.

The conventions of join, sort, comm, uniq, look and awk (1) are wi ldly incongruous.

7th Edition

KILL (1) KILL (1)

NAME
kill - terminate a process with extreme prejudice

SYNOPSIS
kill [-signo] processid . . .

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. If a signal number preceded by ' - '
is given as first argument, that signal is sent instead of terminate (see signa/(2)) . This will kill
processes that do not catch the signal� in particular 'kill - 9 .. . ' is a sure kill .

By convention, if process number 0 is specified, all members in the process group (i.e.
processes resulting from the current login) are signaled.

The killed processes must belong to the current user unless he is the super-user. To shut the
system down and bring it up single user the super-user may use 'kill - 1 1 ' ; see init(8) .

The process number of an asynchronous process started with '&' i s reported by the shell. Pro
cess numbers can also be found by using ps(l) .

SEE ALSO
ps (1) , kill (2) , signal (2)

7th Edition 1

LD (1) UNIX Programmer's Manual LD (1)

NAME
ld - loader

SYNOPSIS
ld [option] file . . .

DESCRIPTION
Ld combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and ld combines them. producing an
object module which can be either executed or become the input for a further ld run. (In the
latter case, the -r option must be given to preserve the relocation bits.) The output of ld is left
on a.out. Thi.s file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argument is · a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, and the library has not been
processed by ranJib(l) , the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries may be important. If the first member of a
library is named • _.SYMDEF', then it is understood to be a dictionary for the library such as
produced by ranlib� the dictionary is searched iteratively to satisfy as many references as possi
ble.

The symbols '_etext ' , '_edata' and '_end' ('etext' , 'edata' and 'end' in C) are reserved, and if
referred to, are set to the first location above the program, the first location above initialized
data, and the first location above all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for - 1, they should appear before the file names.

- s 'Strip' the output, that is, remove the symbol table and relocation bits to save space
(but impair the usefulness of the debugger) . This information can also be removed by
strip(l) .

-u Take the foflowing argument as a symbol and enter i t as undefined .in the symbol table.
This is useful for loading wholly from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first routine.

- lx This option is an abbreviation for the library name '/lib/libx.a' , where x is a string. If
that does not exist, ld tries '/usr/lib/libx.a'. A library is searched when i ts name is
encountered, so the placement of a - 1 is significant.

- x Do not preserve local (non-.globl) symbols in the output symbol table� only enter
external symbols. This op.tion saves some space in the output file.

-X Save local symbols except for those whose names begin with 'L ' . This option is used
by cc(l) to discard internally generated labels while retaining symbols local to routines.

-r Generate relocation bits in the output file so that it can be the subject of another ld run.
This flag also prevents final definitions from being given to common symbols, and
suppresses the 'undefined symbol' diagnostics.

-d Force definition of common storage even if the - r flag is present.

- n

- i

7th Edition

Arrange that when the output file is executed. the text portion will be read-only and
shared among all users executing the file. This involves moving the data areas up to
the first possible 4K word boundary fol lowing the end of the text.

When the output file is executed, the program text and data areas will live in separate
address spaces. The only difference between this option and - n is that here the data
starts at location 0.

revised 5/79

LD (1)

FILES

UNIX Programmer's Manual LD (1)

-o The name argument after -o is used as the name of the ld output file, instead of a.out.

-e The following argument is taken to be the name of the entry point of the loaded pro-
gram; location 0 is the default.

-0 This is an overlay file, only the text segment will be replaced by exed2) . Shared data
must have the same layout as in the program overlaid. /

-D l}le next argument is a decimal number that sets the size of the data segment.

/lib/lib* .a libraries
/usr/lib/lib*.a more libraries
a.out output file·

SEE ALSO

as(l) , ar(l) , cc(l) , ranlib(l)
BUGS

7th Edition revised 5179 2

LEARN (I) LEARN (I)

NAME
learn - computer aided instruction about UNIX

SYNOPSIS
learn [-directory] [subject [lesson [speed]]]

DESCRIPTION

FILES

BUGS

Learn gives CAl courses and practice in the use of UNIX. To get started simply type 'learn ' .
The program will ask questions to find out what you want to do. The questions may be
bypassed by naming a subject, and the last lesson number that learn told you in the previous ses
sion. You may also include a speed number that was given with the lesson number (but
without the parentheses that learn places around the speed number) . If lesson is ' - ', learn
prompts for each lesson� this is useful for debugging.

The subjects presently handled are

editor
eqn
files
macros
morefiles
c

The special command 'bye' terminates a learn session.

The -directory option allows one to exercise a script in a nonstandard place.

/usr/learn and all dependent directories and files

The main strength of learn, that it asks the student to use the real UNIX, also makes possible
baffling mistakes. It is helpful, especially for nonprogrammers, to have a UNIX initiate near at
hand during the first sessions.

Occasionally lessons are incorrect, sometimes because the !peal version of a command operates
in a non-standard way. Such lessons may be skipped, but it takes some sophistication to recog
nize the situation.

7th Edition

LEX (1) LEX (1)

NAME
lex - generator of lexical analysis programs

SYNOPSIS
lex [- tvfn] [file] . . .

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (standard
input default) contain regular expressions to be searched for, and actions written in C to be ex
ecuted when expressions are found.

A C source program, 'lex.yy.c' is generated, to be compiled thus:

cc lex.yy.c - II

This program, when run, copies unrecognized portions of the input to the output, and executes
the associated C action for each regular expression that is recognized.

The following lex program converts upper case to lower, removes blanks at the end of lines,
and replaces multiple blanks by single blanks.

%%
[A -Z] putchar(yytext [0] + ·a' - · A') ;
[] + $
[] + putchar(' ') ;

The options have the following meanings.

-t Place the result on the standard output instead of in file ' lex.yy.c'.

- v
-n

Print a one-line summary o f statistics of the generated analyzer.

Opposite of - v; - n is default.

-f 'Faster' compilation: don' t bother to pack the resulting tables; l imited to small pro
grams.

SEE ALSO
yacc(l)
M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator

7th Edition 1

LINT (l)

NAME
lint - a C program verifier

SYNOPSIS
lint [- abchnpuvx] file . . .

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, or non
portable, or wasteful. It also checks the type usage of the program more strictly than the com
pilers. Among the things which are currently found are unreachable statements, loops not en
tered at the top, automatic variables declared and not used, and logical expressions whose value
is constant. Moreover, the usage of functions is checked to find functions which return values
in some places and not in others, functions called with varying numbers of arguments, and
functions whose values are not used.

By default, it is assumed that all the files are to be loaded together� they are checked for mutual
compatibility. Function definitions for certain libraries are available to lint, these l ibraries are
referred to by a conventional name, such as '-1m', in the style of /d(l) .
Any number of the options in the following list may be used. The -D. - u, and - I options of
ceO) are also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce
waste.

b Report break statements that cannot be reached. (This is not the default because, un
fortunately, most lex and many yacc outputs produce dozens of such comments.)

v Suppress complaints about unused arguments in functions.

x Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or defined and
not used (this is suitable for running lint on a subset of files out of a larger program) .

n Do not check compatibility against the standard l ibrary.

Exit(2) and other functions which do not return are not understood; this causes various lies.

Certain conventional comments in the C source will change the behavior of lint:
/*NOTREACHED* I

at appropriate points stops comments about unreachable code.

I*VARARGSn*l
suppresses the usual checking for variable numbers of arguments in the following func
tion declaration. The data types of the first n arguments are checked; a missing · n is
taken to be 0.

/*NOSTRICT* I
shuts off strict type checking in the next expression.

I* ARGSUSED* I
turns on the - v option for the next function.

/*LINTLIBRAR Y* I
at the beginning of a file shuts off complaints about unused functions in this file.

7th Edition

LINT (l)

FILES
/usr/lib/lint[l 2] programs
/usr/lib/llib-lc declarations for standard functions
/usr/lib/llib-port declarations for portable functions

SEE ALSO
cc(l)
S. C. Johnson. Lint, a C Program Checker

7th Edition

LINT (1)

2

LN (1) LN (1)

NAME
In - make a link

SYNOPSIS
In namel [name2]

DESCRIPTION
A link is a directory entry referring to a file� the same file (together with its size, all its protec
tion information, etc.) may have' several links to it. There is no way to distinguish a link to a
file from its original directory entry� any changes in the file are effective independently of the
name by which the file is known.
Ln creates a link to an existing file name 1 . If name2 is given, the link has that name� otherwise
it is placed in the current directory and its name is the last component of name] .

It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm (l)

7th Edition

LOGIN (1) LOGIN (1)

NAME
login - sign on

SYNOPSIS
login [username]

DESCRIPTION

FILES

The login command is used when a user initially signs on, or it may be used at any time to
change from one user to another. The latter case is the one summarized above and described
here. See 'How to Get Started' for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass
word. Echoing is turned off (if possible) during the typing of the password, so it will not
appear on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence
of .mail and message-of-the-day files. Login initializes the user and group IDs and the working
directory, then executes a command interpreter (usually sh(l)) according to specifications
found in a password file. Argument 0 of the command interpreter is ' - sh.

Login is recognized by sh(l) and executed directly (without forking) .

/etc/utmp
/usr/adm/wtmp
/usr/mail/*
/etc/motd
/etc/passwd

accounting
accounting
mail
message-of-the-day
password file

SEE ALSO
init(8) , newgrp (l) , getty(8) , mail(l) , passwd(l) , passwd(5)

DIAGNOSTICS
'Login incorrect, ' if the name or the password is bad.
'No Shell', 'cannot open password file' , 'no directory': consult a programming counselor.

7th Edition 1

LOOK (1) LOOK (1)

NAME
look - find lines in a sorted list

SYNOPSIS
look [-df 1 string [file 1

DESCRIPTION

FILES

Look consults a sorted .file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sort(l) :
d 'Dictionary' order: only letters, digits, tabs and blanks participate in comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, lusr/dictlwords is assumed with collating sequence - df.

/usr/dict/words

SEE ALSO
sort (1) , grep (1)

7th Edition 1

LOOKALL (1) LOOKALL (1)

NAME
lookall - look through all text files on UNIX

SYNOPSIS
lookall [-en 1

DESCRIPTION

FILES

Looka/1 accepts keywords from the standard input, performs a search similar to that of refor(1) ,
and writes the result o n the standard output. Looka/1 consults, however, an index to all the text
files on the system rather than just bibliographies. Only the first 50 words of each file (roughly)
were used to make the indexes. Blank lines are taken as delimiters between queries.

The -C n option specifies a coordination level search: up to n keywords may be missing from the
answers, and the answers are listed with those containing the most keywords first.

The command sequence in lusr/dictllooka/Umakindex regenerates the index.

The directory /usr/dict/looka/1 contains the index files.

DIAGNOSTICS

BUGS

'Warning: index precedes file ... ' means that a file has been changed since the index was made
and it may be retrieved (or not retrieved) erroneously.

Coordination level searching doesn't work as described: only those acceptable items with the
smallest number of missing keywords are retreived.

7th Edition local 1

LORDER (1) LORDER (1)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
I order file . . .

DESCRIPTION

FILES

The input is one or more object or library archive (see ar(1)) files. The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external identifiers
defined in the second. The output may be processed by tsort(l) to find an ordering of a library
suitable for one-pass access by /d(l) .

This brash one-liner intends to build a new library from existing • .o' files.

ar cr library ' lorder • .o I tsort •

•symref, •symdef
nm(l) , sed(l) , sort (l) , join(l)

SEE ALSO

BUGS

tsort (1) , ld(l) , ar(l)

The names of object files, in and out of libraries, must end with • .o\ nonsense results other
wise.

7th Edition

LPR (1) LPR (1)

NAME
lpr, vpr - line printer spooler

SYNOPSIS
lpr [option] . . . [file] . . .
vpr [-b banner] [file] . . .

DESCRIPTION

FILES

Lpr causes the files to be queued for printing on a line printer. If no files are named, the stan
dard input is read. The following options are available:

- r Remove the file when it has been queued.

- c Copy the file to insulate against changes that may happen before printing.

- m Report by mai/(1) when printing is complete.

-n Do not report by mail. This is the default option.

Vpr is the program used by /pr when the online printer is a Versatec machine to insert an identi
fying banner before the output, strip overstrikes, and, where possible, remove blank lines to
make 66-line pages fit on 64 lines. If the file /usr/admlvpacct is writable, vpr places accouting
information on it.

lusr I spool/lpdllock
lusrlspoolllpdlcf* data file
lusrlspoolllpdldf* daemon control file
lusrlspoolllpdltf* temporary version of control file
lusrlbinlvpr for Versatec printer
lusr I admlvpacct

SEE ALSO
opr(l) , lpd(8)

7th Edition local 1

LS (l) LS (l)

NAME
Is - list contents of directory

SYNOPSIS
Is [- ltasdrucifg] name . . .

DESCRIPTION
For each directory argument, Is lists the contents of the directory: for each file argument, Is re
peats its name and any other information requested. The output is sorted alphabetically by de
fault. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:

- 1 List i n long format, giving mode, number of links, owner, size i n bytes, and time of
last modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers.

-t Sort by time modified (latest first) instead of by name, as i s normal.

-a List all entries� usually ' . ' and ' • . ' are suppressed.

-s Give size i n blocks, including indirect blocks, for each entry.

-d If argument is a directory, list only its name, not i ts contents (mostly used with -1 to
get status on directory) .

- r Reverse the order of sort to get reverse alphabetic o r oldest first as appropriate.

-u Use time of last access instead of last modification for sorting (- t) or printing (-I) .

- c Use time of last modification to inode (mode, etc.) instead of last modification to file
for sorting (- t) or printing (-I) .

- i Print i-number in first column of the report for each file listed.

-f Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off -1, - t, - s, and - r, and turns on -a; the order is the
order in which entries appear in the directory.

-g Give group 10 instead of owner 10 in long listing.

The mode printed under the - I option contains 1 1 characters which are interpreted as follows:
the first character is

d if the entry is a directory�
b if the entry is a block-type special file;
c if the entry is a character-type special file�

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions: the next to permissions to others in the same user-group� and the last to all
others. Within each set the three characters indicate permission respectively to read, to write,
or to execute the file as a program. For a directory, 'execute' permission is interpreted to mean
permission to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable:
w if the file is writable:
x if the file is executable:

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-10 mode: likewise
the user-execute permission character is given as s if the file has set-user- 10 mode.

7th Edition

LS (1)

FILES

LS (1)

The last character of the mode (normally 'x' or ' - ') is t if the 1 000 bit of the mode is on. See
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed.

/etc/passwd to get user ID's for ' Is -1 ' .
/etc/group to get group ID's for 'Is -g'.

7th Edition 2

M4 (1) M4 (1)

NAME
m4 - macro processor

SYNOPSIS
m4 [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of
the argument files is processed in order; if there are no arguments, or if an argument is '- ' ,
the standard input is read. The processed text is written on the standard output.

Macro calls have the form

name (arg 1 ,arg2, . . . , argn)

The ' (' must immediately follow the name of the macro. If a defined macro name is not fol
lowed by a ' (' , it is deemed to have no arguments. Leading unquoted blanks, tabs, and new
lines are ignored while collecting arguments. Potential macro names consist of alphabetic
letters, digits, and underscore '_' , where the first character is not a digit.

Left and right single quotes (' ') are used to quote strings. The. value of a quoted string is the
string stripped of· the quotes.

When a macro name is recognized, its arguments are colleCted by searching for a matching right
parenthesis. Macro evaluation proceeds normally during the collection of the arJ!>uments, and
any commas or right parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection, the value of the
macro is pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is
done the original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first
argument. Each occurrence of $n in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string.

undefine removes the definition of the macro named in its argument.

ifdef If the first argument is defined, the value is the second argument, otherwise the
third. If there is no third argument, the value is null. The word unix is predefined
on UNIX versions of m4.

changequote
Change quote characters to the first and second arguments. Changequote without
arguments restores the original values (i.e., · ') .

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatena
tion of the streams in numerical order; initially stream 0 is the current stream. The
divert macro changes the current output stream to its (digit-string) argument. Out
put diverted to a stream other than 0 through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all diver
sions if no argument. Text may be undiverted into another diversion. Undiverting
discards the diverted text.

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

if else

7th Edition

has three or more arguments. If the first argument is the same string as the second,
then the value is the third argument. If not, and if there are more than four argu
ments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is

M4 (1) M4 (1)

either the fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by 1 . The value of the argument is
calculated by interpreting an initial digit-string as a decimal number.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Opera
tors include + , - , *, /, %, A (exponentiation) ; relationals; parentheses.

len returns the number of characters in its argument.

index returns the position in its first argument where the second argument begins (zero
origin) , or - 1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a zero origin
number selecting the first character; the third argument indicates the length of the
substring. A missing third argument is taken to be large enough to extend to the
end of the first string.

translit transliterates the characters in its first argument from the set given by the second
argument to ·the set given by the third. No abbreviations are permitted.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is inaccessible.

syscmd executes the UNIX command given in the first argument. No value is returned.

maketemp fills in a string of XXXXX in its argument with the current process id.

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all if no arguments
are given.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor

7th Edition 2

{1:1 '! ·-:.-::;�;;:�;�"'

MAIL (1) MAIL (l)

NAME
mail - send or receive mail among users

SYNOPSIS
mail person . . .
mail [- r] [-q] [- p] [-f file l

DESCRIPTION

FILES

Mail with no argument prints a user's mail, message-by-message, in last- in, first-out order� the
optional argument - r causes first-in, first-out order. If the - p flag is given, the mail is printed
with no questions asked� otherwise, for each message, mail reads a line from the standard input
to direct disposition of the message.

newline
Go on to next message.

d Delete message and go on to the next.

p Print message again.

Go back to previous message.

s [./i/e] . . .
Save the message in the named .Iiles ('mbox' default) .

w [.tile l . . .
Save the message, without a header, in the named .tiles ('mbox' default) .

m [person l . . .
Mail the message to the named persons (yourself is default) .

EOT (control-D)
Put unexamined mail back in the mailbox and stop.

q Same as EOT.

x Exit, without changing the mailbox file.

!command
Escape to the Shell to do command.

? Print a command summary.

An interrupt stops the printing of the current letter. The optional argument -q causes mail to
exit after interrupts without changing the mailbox.
When persons are named, mail takes the standard input up to an end-of-file (or a line with just
' . ') and adds it to each person 's 'mail' file. The message is preceded by the sender's name and a
postmark. Lines that look like postmarks are prepended with ' > '. A person is usually a user
name recognized by login(l) . To denote a recipient on a remote system, prefix person by the
system name and exclamation mark (see uucp(l)) .

The -f option causes the named file, e.g. 'mbox' , to be printed as if it were the mail file.

Each user owns his own mailbox, which is by default generally readable but not writable. The
command does not delete an empty mailbox nor change its mode, so a user may make it
unreadable if desired.

When a user logs in he is informed of the presence of mail.

/usr/spoollmail/* mailboxes
/etc/passwd tv identify sender and locate persons
mbox saved mail
/tmp/ma* temp file

7th Edition

MAIL (1)

dead.letter
uux(l)

SEE ALSO

UNIX Programmer's Manual

unmailable text

xsend (l) , write { l) , uucp(l)

BUGS

MAIL (1)

There is a locking mechanism intended to prevent two senders from accessing the same mail
box, but it is not perfect and races are possible.

7th Edition 2

MAKE (1) MAKE (1)

NAME
make - maintain program groups

SYNOPSIS
make [-f makefile] [option] . . . file . . .

DESCRIPTION
Make executes commands in makefiie to update one or more target names. Name is typically a
program. If no -f option is present, 'makefile' and 'Makefile' are tried in order. If makefile is
' - ' , the standard input is taken. More than one -r option may appear

Make updates a target if it depends on prerequi�ite files that have been modified since the tar
get was last modified, or if the target does not exist.

Make/tie contains a sequence of entries that specify dependencies. The first line of an entry is a
blank-separated list of targets. then a colon, then a list of prerequisite files. Text following a
semicolon. and all following lines that begin with a tab, are shell commands to be executed to
update the target.

Sharp and newline surround comments.

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that they in
turn depend on '.c' files and a common file ' incl ' .

pgm: a.o b.o
cc a.o b.o -lm -o pgm

a.o: inc! a.c
cc -c a.c

b.o: inc! b.c
cc -c b.c

Makefile entries of the form

string 1 = string2

are macro definitions. Subsequent appearances of $(string/) are replaced by string2. If string] is .
a single character. the parentheses are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For ex
ample, a ' .c' file may be inferred as prerequisite for a ' .o ' file and be compiled to produce the
' .o' file. Thus the preceding example can be done more briefly:

pgm: a.o b.o
cc a.o b.o - lm -o pgm

a.o b.o: inc!

Prerequisites are inferred according to selected suffixes listed as the 'prerequisites' for the spe
cial name ' .SUFFIXES' ; multiple lists accumulate; an empty list clears what came before. Ord
er is significant; the first possible name for which both a file and a rule as described in the next
paragraph exist is inferred. The default list is

.SUFFIXES: .out .o .c .e .r .f .y .I .s

The rule to create a file with suffix s2 that depends on a similarly named file with suffix sl is
specified as an entry for the ' target' sl s2. In such an entry, the special macro $* stands for the
target name with suffix deleted, $@ for the full target name, $ < for the complete list of prere
quisites, and $? for the list of prerequisites that are out of date. For example, a rule for mak
ing optimized ' .o' files from ' .c' files is

.c.o: ; cc -c -0 -o $@ $* .c

7th Edition

MAKE (1) MAKE (1)

FILES

Certain macros are used by the default inference rules to communicate optional arguments to
any resulting compilations. In particular, 'CFLAGS' is used for cc and }77(1) options,
'LFLAGS' and 'YFLAGS' for lex and yacc(l) options.

Command lines are executed one at a time, each by its own shell. A line is printed when it is
executed unless the special target ' .SILENT' is in makefile, or the first character of the com
mand is '@ ' .

Commands returning nonzero status (see intro (1)) cause make to terminate unless special tar
get ' . IGNORE' is in makejile or the command begins with < tab> < hyphen >.

Interrupt and quit cause the target to be deleted unless the target depends on the special name
' .PRECIOUS' .

Other options:

- i Equivalent to the special entry ' . IGNORE:' .

-k When a command returns nonzero status, abandon work on the current entry, but con-
tinue on branches that do not depend on the current entry.

- n Trace and print, but do not execute the commands needed to update the targets.

- t Touch, i .e. update the modified date of targets, without executing any commands.

- r Equivalent to an initial special entry ' .SUFFIX ES:' with no list.

-s Equivalent to the special entry ' .SILENT:' .

makefile, Makefile

SEE ALSO

BUGS

sh(l) , touch (1)
S. I . Feldman Make - A Program for Maintaining Computer Programs

Some commands return nonzero status inappropriately. Use -i to overcome the difficulty.
Commands that are directly executed by the shell, notably cd(1) , are ineffectual across newlines
in make.

7th Edition 2

;\!:\ /1, (c)

En ding a Mail Sc uion

You can end a m ail �ession with the qu i t (q) com mand. Messages
w h i ch have been examinrd go to your m b o.z file u n less they have been
delete d in which c ase they arc d iscarded. Unexamined messages go
hack to the post offi ce. The -r option cau�cs m ail to read in the con
t e n ts or your mbo:r (or the spt'c ified file) for p rocessing; when you qu i t
mail writes undelete d messages b ack to this fi le . The - i option c auses
mail to i gnore i nter r u p ts.

Uting Alirue1 a n d Dittrib utio n Litll

It is also possible to create a personal d istri b u tion l ists so th at, for
instance, you can se nd m ail to " cohor ts" and h ave it go to a gro u p or
people. Such l ists can be defin�>d by p l acing a l ine l ike

alias cohorts bi l l bob bar ry bobo b!!'tty beth bobbi

in the fil.e .mailrc in your home d i re ctory. The current l ist or such
ali ases can be d isplayed by the al ias (a) com mand i n mail. System·
wide d istr ibu t ion lists can be cre ated by e d i ti n g jusr/l i b/m ail/al iases,
see aliaut(�f) ; these are kept in a slightly d ifferen t syn tax. In mai l
you se n d , personal aliases wi l l he e x p anded in m ail sent to others so
that they w ill be able to reply to the recipi!!' nts. System-wide alian t
are not expanded whrtn the mai l is sent, but any reply retu r n e d to the
m achine wi l l have the system-wide ali as ex pan ded.

Mail has a number or options which can be set i n the . m aitre fi le to
alter i ts behavior; thus "set askcc" en ables the " askcc" rcature.
(These options are su m m arized below.)

June 8, - Page 3 (J)

MA ll, (C) MA/1, (C)

R e a ding Mail

To re ad m ai l , i nvoke m ail with no arguments. This wi l l check your
m ail out o f the system-wide d irectory so that you c an read and dispose
or the messages sent to you. A message header is printe d out for each
m ess�.ge in your m ailbox The current message is initially the last num·
bered message and can be p r i n te d using the print command (which
can be abb reviate d p) . You can move among the- messages much as
you move between l i n es in e d, with the com m ands + and - moving
backwards and for wards, and sim ple numbers ty ping the addressed
message.

Ir ne w mai l arrives during the mai l session you can read in the new
messages with the restart command.

Di,poeing of Mail

Arter examining a message you can delete (d) the message o r reply
(r) to i t. Deletion causes the mail program to forget about the mes·
sage. This is not i r reversible, the message can be u ndeleted (u) by
giving i ts number, or the maa'l session can be aborted by giving the
ex i t (x) command. Del eted messages will, however, usually disappear
never to be seen again.

Specifyin g Me uag e s

Commands su ch as pr i n t a n d delete oft.e n c an b e given a l ist o f mes
sage numbers as argument to apply to a n umber of messages at once.
Thus "delete 1 2" deletes messages 1 and 2, while "delete 1 -5" deletes
messages 1 th rough 5. The spec ial name " • " add resses all messages,
and " $" ad'dresses the la.st message; thus the com mand top which
pri nts t h e fi rs t few lines of a message could be used i n "to p • " to p r i nt
the first fe w l ines or all messages.

Replying to or Origin ating Mail

You can U!'C the rl'ply com mand to se t up a responl!e to a message,
sen d i ng it back to the person who it was from. Tex t you then ty pe in,
up to a CNTRL-D defi ncs the contents of the message. \Vh ile you are
com pol:'ing a m cssag!!', m ail treats lines begi n n i n g wi th a tilde (") as
special . For i nstance, ty ping " ' m" (alone on a l ine) places a copy or
the c u r r e n t mrssage into the response, r ight s h i fti ng it by one tabstop.
Other escapes se t up subject fields, add and delete recipients to the
mes�age, and allow you to escape to an edito r to revise the message or
to a shell to run some commands. (These options are be given i n the
summary below.)

J u ne 8, 1 984 Page 2

-�� ...

At:\ 1/, (C)

S u m m ary

Each mail comm and is typed on a line by itsl' lf. and may t ake argu·
nwnts following t he command word . The command lli'NI not be ty ped
in its entirety - the first command which rn :Jt dJI':< thl' ty pl'd prrlix is
u�ed. For the commands t hat take ml'ssage li$IS as arg11mrnts, if no
mrs::agr li�t is given, then thr next message forward that satisfil's the
command's requircmrnts is usrd. If there arc no mrssagrs forward of
t he current mrssage, the search proceeds backwar ds, and if there are
no good messages at all, mail types "No appl icable messages' ' and
aborts the comm:J.nd.

+

RE"J:t'R;'I;

=

$
al ias

cd

delete

dp

C'cho path

June 8, 19

Goes to the prev ious message and pr ints it out. If given
a numer ic argument n, goes to the nth previous mess:J.ge
and pr in ts it .

Goes to the next mcss:J.ge and prints i t out. If given a
numeric argument n, goes to the nt h next message and
prints it.

Goes to the next message and prints i t out.

Pr ints a brief summary of commands.

Executes the shell command whkh follows.

Prints out the current message number.

Pr ints out t he fi rst message.

Pr ints out the bst message.

(a) With no arguments, prints out all currently-defined
aliases. With one argument, pr ints out that alias. With
more than one argument, adds the users named in the
second and later arguments to t he alias named in the
fi rst argument.

(c) Changes t he user's work ing directory to that
specified, if given. If no directory is given , then changl?s
to the user's login d irectory.

(d) Takes a l ist of messages as an argument and marks
them all as deleted. Deleted messagrs arc not retained in
t he sy'stem mail box after a quit, nor are they available to
any command o thN than the u n de le t e command.

Dele tes the current message and pr int-s the next message.
If there is no next message, m ail says "at EOF."

Expands shell metacharacters.

Page ·I

AI:\ /I, (t ')

l'd i t

C'X i t

fi le

ro rw nrd

Forward

headers

hold

l i s t

.\1:\ ll, (c)

(C') Takrs a l i�t of ml'ssagl's and poi nts the tex t ed itor at
rach one in turn. On return from the editor , the message
is read back in .

(x) Effects an immed iate return to the shell without
mod ifying the user 's system mai lbox, his mboz file, or h is
edit fi le in -· f .

(11) Switches mailbox files to the fi le given by a filename
argument. (Not yet implemented.)

(r) Forwards the current message to the named users.
Current message is indented within forwarded mes5age.

(F) Forwards the current message to the named usrrs.
Current message is not indented within forwarded mes·
sagt>.

(h) Lists the current range or headers, which is an 1 8
message group. If a " + " argument is given, then the
next 1 8 messagt> group is printed, and if a "-" argumE"nt
is given, the prev ious 1 8 message group is pr inted. Doth
"+" and " · " m ay take a number to v iew a particul3r
window. If a message- l ist is given, i t prints the specifit:>d
headers.

(h o) Takt>s a message list and marks each message
therein to be saved in the user's system mai lbox instead
of in mb oz. Use only when the switch automboz is set.
Does not override the delete command.

Pr ints list or mail commands.

l p r (I) Prints out c:J.ch message in a message-list on the l ine·
pr inter.

m ai l (m) Takes a s argument lozin names and d istr ibu t ion
group names and sends mail to t hose people.

m box (rn b) Marks messages in a message l ist so that they are
saved in the user mailbox after leaYing mail.

move mug· liPt meeg ·num
Places the ml'ssages specified in mog-li,t after the mes· ·
sage spec i fied in me �g- num. If mePg· num is 0, mug-lilt
mons to the top of the mailbox.

nex t (n l ike + or RETURN) Goes t.o the next message in
sequence and pr ints it . With an argument l ist, types the
nrxt matching message.

p r i n t (p) Prints out rach message i n a message- list on the ter·
minal d isp lay .

J u nl' R, 1 9R·I "' ��··· Pap;!' .')

M:\ 1], (C)

q u i t.

reply

Reply

res tart

save

set

shel l

s ize

so u r c e

M:\1/, (C)

(q) Tt'rrninatr!< tl!'f :>r;;;;ion, r r t:�ining all undrlrt rd,
unsaved messagt's in the system m:�il box and rcrnm· ing
al l other messages. Files marked with a star (•) are
savt'd; 11 les marked with an "M" are san•d · i n the user
mailbox. If new mail has arrived during the session, the
message "You have new mail" is given. Ir given while
edit ing a mailbox file with the -r flag, then the edit file is
rewri tten. The user re turns to the shell , un less the
rewrite of edit file fails, in which case the use r can escape
with the ex i t command.

(r) Takes a message l ist and sends mail to each message
author. The default message must not be deleted.

(R) Takes a message l ist and sends mail to each message
author a n d e ac h m e mbe r of the m e u age j ust like the
mai l command. The default message must not be
dele ted.

Reads in messages that arrived during the current mail
session.

(s) Takes a message list and a fi lename and appends each
message in turn to the end of the file. The fi lename, in
quotation marks, fol lowed by the line count and charac
ter count is echoed on the user 's terminal.

(se) With no arguments, pr ints all var iable values. O th
erwise, sets option. Arguments are or the form
"option=value" o r "option".

(sh) Invokes an inte ractive version of the shell.

(si) Takes a message l ist and prints out the size in char·
acters of each message.

(so) Reads mail commands from the file given as its only
argument.

st r ing ,tn'ng m e ,g·UB t

t o p

unde lete

. unset

Junr 8, 1 98·1

Searches for , l rt'n g in m e tg· lt",t. Ir no m e ,g·li,t is
specified, all unde leted messages are searched. Case is
ignored in search.

(t) Takes a message l ist and pr ints t he top few l ines of
each. The number of lines pr intrd is controlled by the
variable topl i nes and defaults to five.

(u) Takes a message list and marks each one as n ot being
deleted.

(uns) Takes a l ist or option names and discards the ir
remembered v alues; the inverse of set .

Page 6

M:I IL (C) MAll, (C)

v is u a l (v) Takes a mrssage list and invokes vi on each rncs;;age.

w r i te file n a m e
(w) S:wes the body or the message in the named file.

l lere is a summ:�.ry or the compose escapes, which are used when com
posing messages to perform special functions. Compose escapes are
only recognized at the beginning of l ines.

- - � I rin g

- r

- ! c m d

- l c m d

lnst'rts the string or text in the message prefaced by a
single t i lde (-). Ir you have changed the escape character,
then you should double that characte r instead.

Prints out help for compose escapes.

Same as Cl\'TRL-0 on a new l ine.

Executes the ind icated shell command, then returns to
the message.

Pipt's the message th rough the command as a filter . I f
t he command gh·es no output or te rminates abnormally ,
retains the or iginal text or the message.

-- m ail· c o m m n n d
Exec utes a mail com mand, then retu rns t o compose
mode.

- m ail- c om ma n d

-a l ias

Executes a mail command, then retu rns to compose
mode.

Pr int� list of private aliases

- a l i as aliM n a m e

- A l i as

- A l i as u � e re

Prints names included in pr iv ate alianame.

Pr in ts list of pr ivate, then system-wide aliases for all
u�ers named in the current To, Cc and Bee lists.

Pr inEt list of private, then system-wide aliases for uee r�.

- b n a m e . . . Adds the given names to the list of bl ind carbon copy
rt'ci pi en ts.

C' n a m e . . . A d d s the given names to the list of carbon copy reci
p it· n ts.

- c c n a me . . . Same as - c above.

-d

J une 8, 1 !18·1

R eads the fi le de ad.lrt t e r from your home directory i nto
the m('ssage.

��)\ ®ffik'::l �t-�W Pagl' 7

M:�/1, (C)

c

" h

m m u g -li�t

" M m (�g-li�t

p

q

M.·\1/, (C)

lnvok<'s th<' trxt edit.or on th<' rnr,:<age rol !rrtrd so far.
After t he edi t ing s('ssion is tin i>hed, you may continue
apprnding trxt to the mes�:tgr.

Edits the message h<'ader fields by typing e a�h one in
turn and allowing the use r to append trxt to the end or
modify the field with the current terminal e rase and ki l l
characters.

Reads the named messages into the rnr><flage bu ffe r ,
shi fted r ight one tab. If no m<'ss:tg<'s a re "P<' rilird , reads
the current message.

Reads the named messages into the mrssage buffer ,
shirted r ight one tab , Ir no messages arc �<prrified, reads
the current message.

Pr ints out the me!'sages collected so far , prefaced by the ,
message header fields.

Aborts the message being sent, copying the mess:�.ge to
de a d. lett e r in your home di rectory ir save is set.

" r fil e n ame Reads the n amed file into the message buffer.

"Return n a me

• s ,t rin g

" t n a m t

· v

Adds the given names to the Return- receipt- to field.

Causes the n amed string to become the current subject
field.

Adds the given names to the direct r'ecipient l ist.

Invokes a v isual editor (defined by the \1SUAL opti-on)
on the message b tJfTer . 1Vter yotJ quit the editor, you
m ay resume appending text to the end of your message.

·w file n ame Writes the body or the message to t he named ti le.

Options are controlled with the set and u nset commands. An option
may be either a switch, i n which case it is eitht'r on or ofT, or a string,
in which case the actual value is of inte rt'st. The switch options
include the following:

askcc

ask suhj<'<'t

J u ne 8, I�

Causes you to b e prompted for additional c arbon
copy recipients at the end of e a�h mes!'age. Respond
ing with a newline indicates your satisfaction with
the current list.

Causefl m ail to prom pt you for t he suhjrrt of rarh
mess:tge you sl' nd. I f you rr�pond with s imply a

l 'ag!• !l �ili::;l��

!\fA IL (C)

a u t o m box

autopr int

chron

dot

ignore

mchron

me t oo

nosave

pr<'pcnd

quiet

MAIL (C)

newline, no subject field is sent.

C:tufles all E-xamined messa.ges to be saved in the user
m:J.ilbox un lrss de leted or s:J.ved.

Causes the dele te command to behave like dp -
thus, after deleting a mc�sage, the next one will be
typed automatically.

Causes messages to be d isplayed in chronological
order.

Permits use of dot (.) as the end of fi le character
when composing messages.

Cau�r:s interrupt signals from your te rminal to be
ignored and echoed as at-signs (@) .
Causes messages to be l isted in numerical 'Order (most
recently received first), but d isplayed in chronological
order .

l'sually, when a group is expanded that contains the
sender, the sender is removed from the expansion.
Setting this option causes the sender to be included in
the group.

Prevents aborted messages from being appended to
the file dt a d.le t ter in your home directory on receipt
of two inter rupts (or a • q.)
Caust's mess:tges saved in mboz to be prepended to
the end rather than appended.

Suppresses the p r inting of the version header wh<'n
first im·oked.

The following opt ions have string values:

EDITOR

SHELL

\'J Sl 'AL

CSC' a p<'

J u ne· H, l !l� ·l

Pathname of the tex t editor to use in the edit com
mand and • e escape. If not dt'fined, then a default
editor is used.

Pathn:J.me of the shel l to use in the ! comm:J.nd and
the "! escape. A default' shell is used if this option is
not defined.

P:J.thn:�.me of the text editor to use in the visual
command :tnd ·v escape.

If dr t1ned, the first character of this opt ion givrs the
rh:uac· trr t o u�r in t he pbrr of t hr t i ldr (") to drnotr
c·:�c·aJ ' f'!"'.

��:·";-;"' -� l 'ar,e f)

M:W. (C) M.-1 1/. (1 ')

pagc= n Specil1es the numb<'r or I iili'S (n) (.() bl' p r i n tl'd i n :\
" page" or l!'Xt W hl'n di�<pJ:tying llll'f'S:lgl':<.

record I r defined, gives the pathname or the fi le used to
ret>ord all outgoing mail. Ir not defined, then outgo
ing mail is not saved.

topl i n es Ir defined, gives the number or lines of a message to
be printed out with the top command; normally, the
first five l ines are p r in ted.

F i les

fusr /spool/mail/• System mai lboxes

fusr/namt/dead. lctte r File where undeliverable mail is deposited.

fusrfnamt/mbox Your old mail

/usr/namef.mailrc File giving initial mail commands

fusr /lib/mail/aliases System-wide aliases

/usr /lib/mail/aliases. hash �ystem-wide alias database

/usr /lib/mail/faliases Forwarding aliases for the local machine

fusr /lib/mail/maliases Machine aliases

fusr /lib/mailhelp.cmd Help fi le

fusr /lib/mailhelp.esc Help file

fusr /lib/mai lhelp.set Help fi le

/usr /lib/mail/mail rc System init ialization file

/bin/mail The mail command

June 8, 1 Page 1 0 �11@

M:\ 1/, ((') M.·\IL (C)

St•e Also

ali :�.scs(M) , ali:J.Sha..�h(M) , netu tii (C)

Credi t

This uti l i ty was developed a t the University of California a t Berkeley
and is used with permission.

J u rll' R, H l R ·I e Page 1 1

M a r 1 5 1 0 : 1 1 1 9 82 b l u r t o P a g e 1

F r om r o o t M o n M a r 1 5 0 8 : 2 4 : 1 3 1 9 8 2
> F r o m g o r d o n M o n M a r 1 5 0 8 : 1 7 : 2 2 1 9 82 r e m o t e f r o m m i c r o s o f t
T o : e u ! b i c e u ! b o b m e u ! c b l e u ! c h r i s e u ! c o n n l e e u ! c o x e u ! d a v e m e u ! j e f f e u ! k a

e u ! k l u n d e r e u ! k o n z e n e u ! l y l e e u ! ma r k e u ! m a r k d e u ! m l k e o e u ! p a u l a
e u ! r a o e u ! r i c w e u ! s i m o n y i e u ! s t e v e e u ! s t e v e h e u ! t a n d y t e u ! t o d d
h h o n i s h t

•
n e w m a i l

•

A n e w s y s t e m m a i l e r h a s b e e n I n s t a l l e d � I t c o m b i n e s t h e b e s t f e a t u r e s
o f t h e V 7 a n d B e r k e l e y m a i l e r s , p r e v i ou s k n o w n a s " m a i l " a n d " M a i l " ,
r e s p e c t i v e l y ,.

J h e n e w m a i D e r i s I n v o k e d a s " m a i l " • " M a i l " n o l o n g e r e x i s t s e

S e n d i n g M a i l

T h e n e w ma i l e r i s I d e n t i c a l t o o l d " M a i l " , a n d i s a f u n c t i o n a l
s u p e r s e t o f o l d " m a i l " .

I n o r d e r t o s t a nd a r d i z e m a i l i n g s , t h e m a i l e r w i l l a l w a y s p r o m p t
S u b j e c t :
f o r e a c h o u t g o i n g i t e m . I f y o u d e l i b e r a t e l y w i s h t o o m i t a s u b j e c t
l i n e , h i t < r e t u r n > i n r e s p o n s e t o t h e p r o m p t .

S i nc e t h e n e w m a i l e r h a s a f u l l a l i a s c a p a b i l i t y (a s d i d o l d M a i i J
u s e r s s h o u l d n e v e r s p e c i f y a n e x p l i c i t p a t h n am e , b u t j u s t t h e r e c i p i e n t (s
n am e s ; r e g a r d l e s s o f t h e i r " h o m e m a c h i n e " &

R e c e h i n g Pi a i I

S y s t e m d e f a u i t s h a v e b e e n s e t u p s o t h a t r e c e i v i n g m a i l i s a l m o s t
i de n t i c a l t o t h e p r o c e d u r e w i t h t h e o l d " m a l l " p r o g r a m m T h e f i r s t

® d i f f e r e n c e i s r e a d i l y a p p a r e n t : w h e n y o u t y p e m a i l y o u s e e t h e
h ea d e r s f o r t h e l a s t 1 8 m e s s a g e s i n y o u r m a i l b o x � Y o u c a n d i s p l a y
i t e m s b y t y p i n g t h e i r n u mb e r � O r , y o u c a n v i e w t h e m s e q u e n t a i ! l y v i a

@ t h e < r e t u r n > c o mm a n d , T h e f o l l o w i n g c o mm a n d s a r e v a l i d :

? - h e l p J i s t
® < r e t u r n > - s e e n e x t m e s s a g e

+ g o t o h i g h e r (l a t e r) m e s s a g e n u m b e r
- g o t o l o w e r ! e a r l i e r) m e s s a g e n u m b e r

s l n a m e s a v e t h e c u r r e n t m a i l e n t r y i n ' f n a m e '
d d e ! e t e c u r r e n t m e s s a g e

q e x i t , u p d a t i n g ma � l b o x
x e x i t � d o n 9 t c ha n g e m a i l b o x

N o t e t ha t t h i s l i s t i s d e l i b e r a t e l y s i mp l e ; t h e r e a r e m o r e c o mma n d s , a n d
m o s t t a k e f i s t s o f m e s s a g e s a s a r g u m e n t s � W h e n a c o m m a n d i s g i v e n w 3 t h o u t
a m e s s a g e n u m b e r s p e c i f i e d , t h e o ne m e s s a g e r e f e r e n c e d i s e f f e c t e d �

ij)[' F o r w a r d i n g M a i i '
:w: m a .m m a zs a a .w a a :rz z: .m

M a r 1 5 1 0 : 1 7 1 9 82 b ! u r f o P a g e 2

T h e m o s t s i g n i f i c a n t c ha n g e i s i n t h e f o r w a r d i n g o f m a i l . T h e
' m ' c o m m a n d n o l o n g e r J us t f o r w a r d s t h e i t e m t o a r e c i p i e n t , b u t
i n s t ea d i n v o k e s a c o p y o f ' m a i l ' t o s e n d a m e s s a g e t o t h e n a m e d
r e c i p i e n t . I t i s c o n v e n i e n t , h o w e v e r , t o i n s e r t a c o p y o f a n i n c o m m i n g
m a i l i t e m i n t o t h a t o u t g o i n g m a l t , t h u s h a v i n g t h e ' f o r w a r d ' e f f e c t
w i t h t h e a d d e d f e a t u r e o f b e i n g a b l e t o a d d p r e - a n d p o s t- c o m m e n t a r y $

A f t e r y o u t y p e t h e ' m ' c om m a n d , a s y o u a r e t y p i n g t h e m e s s a g e , a I i n e
s ta r t i n g w i t h - i n d i c a t e s a s p e c i a l m a i l c om m a n d . T h e c om w a n d

, ... m < n u m > '
c a u s e s m a i l i t e m ' < n u m> ' t o b e i n s e r t e d i n t o t h e o u t g o i n g m a i l y o u a r e
c r e a t i n g . T hu s , t o f o r wa r d a m e s s a g e i t e m t o ' b i n g o ' w i t h p r e a n d
p os t c omm e n t a r y , d o :

_ < r e t u r n >
< n e x t i t e m B s s h o w n >

_ m b i n g o
S u b j e c t : t y o u e n t e r }

p r e c omme n t a r y g o e s h e r e
..

m
p os t c o mm e n t a r y g o e s h e r e
< c U - d >

N o t e t h a t t h e s p e c i a l c omma n d • - p ' c a u s e s m a i l t o s h o w
m e s s a g e t h u s f a r , s o t h a t y o u c a n s e e ' h o w t t l o o k s ' �
s p e c i a l , - , c om ma n d s a r e u s e f u l , t y p e , - , , f o r a l i s t .
, - , c omm a n d s a r e o n l y v a l i d w h e n e n t e r i n g m a i l , n o t i n
t he ' ' p r o m p t ..

A d v a n c e d U s a g e

y o u t h e
M a n y o t h e r

O f c o u r s e .,
r e s p o n s e t o

D o c u m e n t a t i on o n t h e f u � l f e a t u r e s o f t h e B e r k e i e y m a i l e r
i s a v a i l a b l e .. F o r t h e b e n e f i t o f t h o s e f am � ! i a r w i t h B e r k e l e y M a i l ,

03 t w o n e w ' s e t ' o p t i o n s h a v e b e e n a d d e d :

s e t b a c k w a r d s
g o t h r o u g h t h e m a i f I t e m s f r o m o l d e s t t o n e w e s t

s e t n o t ou c h
d o n o t a u t o m a t i c a l l y ' t o u c h 0 m a i l i t e m s 0 T h e y s t a y
i n t h e m a � ! b o x u n l e s s d e l e t e d , s a v e d t o a f i l e , o r
e x p l i c i t i y t o u c h e d �

T h e s e o p t i o n s , t o g e t h e r w i t h
s e t a s k

a r e b e i n g s e t o n a s y s t e m g l o b a a b a s i s e I f y ou d o n � t w a n t t h e m �
I n s e r t t h e a p p r o p r i a t e

u n s e t < o p U o n >
H n e s i n y o u r .. ma i h c f i l e ..

MAN (I) MAN (1)

NAME
man - print sections of this manual

SYNOPSIS
man [option . . .] [chapter] title . . .

DESCRIPTION

FILES

Man locates and prints the section of this manual named title in the specified chapter. On this
context, the word 'page' is often used as a synonym for 'section' .) The title is entered in lower
case. The chapter number does not need a letter suffix. If no chapter is specified, the whole
manual is searched for title and all occurrences of it are printed.

Options and their meanings are:

- t Photo typeset the section using trQ!f(l) .

-n Print the · section on the standard output using nrQt!O) .

- k Display the output o n a Tektronix 401 4 terminal using trQff(l) and teO) .

- e Appended or prefixed to any of the above causes the manual section to be preprocessed
by neqn or eqnO) ; -e alone means - te.

-w Print the path names of the manual sections, but do not print the sections themselves.

(default)
Copy an already formatted manual section to the terminal, or, if none is available, act
as - n. I t may be necessary to use a fi lter to adapt the output to the particular
terminal 's characteristics.

Further options. e.g. to specify the kind of terminal you have, are passed on to tra!!O) or nra!!:
Options and chapter may be changed before each title.

For example:

man man

would reproduce this section, as well as any other sections named man that may exist in other
chapters of the manual, e.g. ma n(7) .

I usr I man/ man? I*

/usr/man/cat? I *

SEE ALSO

BUGS

•

nroff(l) , eqn (l) , teO) , man(7)

The manual is supposed to be reproducible either on a phototypesetter or on a terminal.
However, on a terminal some information is necessarily lost.

7th Edition

MESG (1)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n] [y]

DESCRIPTION

MESG (1)

Mesg with argument n forbids messages via write (l) by revoking non-user write permission on
the user's terminaL Mesg with argument y reinstates permission. All by itself, mesg reports the
current state without changing it.

FILES
/dev/tty*
/dev

SEE ALSO
write (l)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

7th Edition 1

.'

,-;.t;-:� •••

. �t[!i::j;}

M KCONF (1 M) MKCONF (1 M)

NAME
mkconf - generate configuration tables

SYNOPSIS
mkconf

DESCRIPTION

FILES

Mkcorif examines a machine configuration table on its standard input. I ts output is a pair of
files l.s and c. c. The first is an assembler program that represents the interrupt vectors located in
low memory addresses; the second contains initialized block and character device switch tables.

Input to mkcorifis a sequence of lines. The following describe devices on the machine :

pc (PC l l)
lp (LP l l)
rf (RS l l)
hs (RS03/RS04)
tc (TU56)
rk (RK03/RK05)
tm (TU 10)
rp (RP03)
hp (RP04/5/6)
ht (TU1 6)
de* (DCl l)
kl* (KL l l /DL l l -ABC)
dl* (OLl i -E)
dp* (DP I I)
dn* (DN l l)
dh* (DH i l)
dhdm* (DM l l -BB)
du* (DU l l)

The devices marked
,
with * may be preceded by a number telling how many are to be included,

The console typewrite is automatically included; don't count it as part of the KL or DL
specification. Count ON's in units of 4 (1 system unit) .

The following lines are also accepted.

root dev minor
The specified block device (e.g. hp} is used for the root. minor is a decimal number giv
ing the minor device. This line must appear exactly once.

swap dev minor
The specified block device is used for swapping. If not given the root is used.

pipe dev minor
The specified block device is used to store pipes. If not given the root is used.

swplo number

nswap number
Sets the origin (block number) and size of the area used for swapping. By default, the
not very useful numbers 4000 and 872.

pack Include the packet drivet;. By default it is left out.

mpx Include the mul tiplexor driver. By default it is left out.

l.s, c.c output files

7th Edition

MKCONF (1 M) MKCONF { lM)

SEE ALSO

BUGS

'Setting up Unix' , in Volume 2.

The set of devices i t knows about, the set of drivers included, and the set of devices on the
machine are mutually incomparable. Some handwork is certain to be necessary. Because of
floating vectors that may have been missed, It is mandatory to check the /.s file to make sure it
corresponds with reality.

7th Edition 2

MKDIR (1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname . . .

DESCRIPTION

MKDIR { 1)

Mkdir creates specified directories in mode 777. Standard entries, ' . ' , for the directory itself,
and ' . . ' for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm (l)

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made. Otherwise it prints a diag
nostic and returns nonzero.

7th Edition

MKFS (1 M) MKFS (l M)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special proto

DESCRIPTION
Mkfs constructs a file system by writing on the special file special according to the directions
found in the prototype file proto. The prototype file contains tokens separated by spaces or new
lines. The first token is the name of a file to be copied onto block zero as the bootstrap pro
gram, see bprod8) . The second token is a number specifying the size of the created file sys
tem. Typically it will be the number of blocks on the device, perhaps diminished by space for
swapping. The next token is the number of i-nodes in the i-list. The next set of tokens
comprise the specification for the root file. File specifications consist of tokens giving the
mode, the user-id·, the group id, and the initial contents of the file. The syntax of the contents
field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the
file. (The characters - bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The rest of the mode is a three digit octal
number giving the owner, group, and other read, write, execute permissions, see chmod(l) .

Two decimal number tokens come after the mode; they specify the user and group ID's of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are
copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkfs makes the entries • and .. and then reads a list of names and (re
cursively) file specifications for the entries in the directory. The scan is terminated with the to
ken $.

If the prototype file cannot be opened and its name consists of a string of digits, mlifs builds a
file system with a single empty directory on it. The size of the file system is the value of proto
interpreted as a decimal number. The number of i-nodes is calculated as a function of the
filsystem size. The boot program is left uninitialized .

. A sample prototype specification follows:

/usr/mdec/uboot

SEE ALSO

4872 55
d - - 777 3 1
usr d - - 777 3 1

$

sh - - - 755 3 1 /bin/sh
ken d- - 755 6 1 ·

$
bO b - - 644 3 1 0 0
cO c - - 644 3 1 0 0
$

filsys(5) , dir(5) , bproc(8)

7th Edition 1

\ I

M KFS (1 M) MKFS (l M)

BUGS
There should be some way to specify links.

7th Edition 2

MKNOD (l M)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name [c] [b] major minor

DESCRIPTION

MKNOD (lM)

Mknod makes a special file. The first argument is the name of the entry. The second is b if the
special file 'is block-type (disks, tape) or c if it is character-type (other devices) . The last two
arguments are numbers specifying the major device type and the minor device (e.g. unit, drive,
or line number) .

The assignment of major device numbers is specific to each system. They have to be dug out
of the system source file conj.c.

SEE ALSO
mknod(2)

7th Edition

MOUNT (1 M) MOUNT (1 M)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special name [- r]]

/etc/umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on the device special.
The file name must exist already� it must be a directory (unless the root of the mounted file
system is not a directory) . It becomes the name of the newly mounted root. The optional last
argument indicates that the file system is to be mounted read-only.

Umoum announces to the system that the removable file system previously mounted on device
special is to be removed.

These commands maintain a table of mounted devices. If invoked without an argument, mount
prints the table.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors
wi ll occur when access t imes are updated, whether or not any explicit write is attempted.

/etc/mtab: mount table

SEE ALSO
mount (2) , mtab(5)

BUGS
Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames invalid.

7th Edition

MV (l) MV (l)

NAME
mv - move or rename files and directories

SYNOPSIS
mv file 1 file2

mv file . . . directory

DESCRIPTION
Mv moves (changes the name of) .file I to fiie2.

If fiie2 already exists, it is removed before filel is moved. If file2 has a mode which forbids
writing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if the
line begins with y, the move takes place; if not, mv exits.

In the second for�, one or more files are moved to the directory with their original file-names.

Mv refuses to move a file onto itself.

SEE ALSO

BUGS

cp(l) , chmod(2)

If filel and file2 lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship with
other files is lost.

Mv should take -f flag, like rm, to suppress the question if the target exists and is not writable.

7th Edition local 1

NCHECK (1 M) NCHECK (1 M)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
ncheck [-i numbers] [- a] [- s] [filesystem]

DESCRIPTION
Ncheck with no argument generates a pathname vs. i-number list of all files on a set of default
file systems. Names of directory files are fol lowed by 'I . ' . The - i option reduces the report to
only those files whose i-numbers fol low. The - a option allows printing of the names ' .' and
' . . ' , which are ordinarily suppressed. suppressed. The - s option reduces the report to special
files and files with set-user-10 mode� it is intended to discover concealed violations of security
policy.

A file system may be specified.

The report is in rio useful order, and probably should be sorted.

SEE ALSO
dcheck (1) , icheck (1) , sort (1)

DIAGNOSTICS
When the filesystem structure is improper, ' ? ? ' denotes the 'parent' of a parentless file and a
pathname beginning with ' . . . ' denotes a loop.

7th Edi tion

NEWGRP (I) NEWGRP (1)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp group

DESCRIPTION
Newgrp changes the group identification of its caller, analogously to login (l) . The same person
remains logged in, and the current directory is unchanged, but calculations of access permis
sions to files are performed with respect to the new group ID.

A password is demanded if the group has a password and the user himself does not.

When most users log in, they are members of the group named 'other.' Newgrp is known to the
shell, which executes it directly without a fork.

FILES
/etc/group, /etc/passwd

SEE ALSO
login (l) , group(5)

7th Edition 1

NICE (1) NICE (1)

N AME
nice, nohup - run a command at low priority

SYNOPSIS
nice [-number 1 command [arguments]

nohup command [arguments 1

DESCRIPTION

FILES

Nice executes command with low scheduling priority. If the number argument is present, the
priority is incremented (higher numbers mean lower priorities) by that amount up to a limit of
20. The default number is 1 0.

The super-user may run commands with priority higher than normal by using a negative prior
ity, e.g. � - - 10'.

Nohup executes command immune to hangup and terminate signals from the controlling termi
nal . The priority is incremented by 5. Nohup should be invoked from the shell with '&' in
order to prevent it from responding to interrupts by or stealing the input from the next person
who logs in on the same terminal.

nohup.out standard output and standard error file under nohup

SEE ALSO
nice (2)

DIAGNOSTICS
Nice returns the exit status of the subject command.

7th Edition

NM (1) NM (l)

NAME
nm - print name list

SYNOPSIS
nm [- gnopru] [file . . .]

DESCRIPTION
Nm prints the name list (symbol table) of each object .file in the argument list. If an argument
is an archive, a listing for each object file in the archive wil l be produced. If no file is given,
the symbols in 'a.out' are listed.

Each symbol name is preceded by i ts value (blanks if undefined) and one of the letters U
(undefined) , A (absolute) , T (text segment symbol) , D (data segment symbol) , B (bss segment
symbol) , or C (common symbol) . If the symbol is local (non-external) the type letter is in
lower case. The output is sorted alphabetically.

Options are:

- g Print only global (external) symbols.

- n Sort numerically rather than alphabetically.

- o Prepend file or archive element name to each output line rather than only once.

- p Don't sort; print in symbol-table order.

- r Sort in reverse order.

- u Print only undefined symbols.

SEE ALSO
ar (l) , ar (5) , a.out (5)

7th Edition 1

OD (1) OD (1)

NAME
od - octal dump

SYNOPSIS
od [- bcdox 1 [file 1 [[+] offset [.] [b 1 1

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If the first argument is
missing, - o is default. The meanings of the format argument characters are:

b Interpret bytes in octal.

c Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes: null -\0,
backspace -\b, formfeed -\f, newline -\n, retum -\r, tab -\t; others appear as 3-digit octal
numbers.

d Interpret words in decimal.

o Interpret words in octal.

x Interpret words in hex.

The .file argument specifies which file is to be dumped. If no file argument is specified, the
standard input is used.

The offset argument specifies the offset in the file where dumping is to commence. This argu
ment is normally interpreted as octal bytes. If ' .' is appended, the offset is interpreted in
decimal. If 'b' is appended, the offset is interpreted in blocks of 5 1 2 bytes. If the file argument
is omitted, the offset argument must be preceded ' + '.

Dumping continues until end-of-file.

SEE ALSO
adb (l)

7th Edition 1

PASSWD (1) PASSWD (1)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

DESCRIPTION

FILES

This command changes (or installs) a password associated with the user name (your own name
by default) .

The program prompts for the old password and then for the new one. The caller must supply
both. The new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and
at least six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove
he knows the old password.

I etc/ passwd

SEE ALSO
login (l) , passwd (5) , crypt (3)
Robert Morris and Ken Thompson, Password Security: A Case HisTory

7th Edition PDP l l 1

PLOT (I G) PLOT (I G)

NAME
plot - graphics filters

SYNOPSIS
plot [-Tterminal [raster]]

DESCRIPTION

FILES

These commands read plotting instructions (see plot(S)) from the standard input, and in gen
eral produce plotting instructions suitable for a particular terminal on the standard output.

If no terminal type is specified, the environment parameter $TERM (see environ(5)) is used.
Known terminals are:

401 4 Tektronix 40 1 4 storage scope.

450 DA51 Hyterm 450 terminal (Diablo mechanism) .

300 DA51 300 or G5I terminal (Diablo mechanism) .

3005 DA51 3005 terminal (Diablo mechanism) .

ver Versatec D 1 200A printer-plotter. This version of plot places a scan-converted image in
'lusrltmplraster' and sends the result directly to the plotter device rather than to the
standard output. The optional argument causes a previously scan-converted file raster
to be sent to the plotter.

lusrlbinltek
lusrlbinlt450
lusrlbinlt300
lusrlbinlt300s
lusrlbinlvplot
I usr I tmpl raster

SEE ALSO
plotO) . plot(5)

BUGS
There is no lockout protection for lusrltmplraster.

7th Edition 1

PR (1) PR (1)

NAME
pr - print file

SYNOPSIS
pr [option] . . . [file] . . .

DESCRIPTION

FILES

Pr produces a printed listing of one or more .Iiles. The output is separated into pages headed by
a date, the name of the file or a specified header, and the page number. If there are no file
arguments, pr prints its standard input.

Options apply to all fol lowing files but may be reset between files:

-n Produce n-column output.

+n Begin printing with page n.
- h Take the next argument as a page header.

- wn For purposes of multi-column output, take the width of the page to be n characters
instead of the default 72.

-In Take the length of the page to be n lines instead of the default 66.

- t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

- sc Separate columns by the single character c instead of by the appropriate amount of
white space. A missing c is taken to be a tab.

- m Print all .files simulta:teously, each i n one column,

Inter-terminal messages via wrire (l) are forbidden during a pr.

/dev/tty? to suspend messages.

SEE ALSO
cat (1)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

7th Edition 1

PREP (1) PREP (1)

NAME
prep - prepare text for statistical processing

SYNOPSIS
prep [-dio 1 file . . .

DESCRIPTION
Prep reads each .file in sequence and writes it on the standard output, one 'word' to a line. A
word is a string of alphabetic characters and imbedded apostrophes, delimited by space or punc
tuation. Hyphented words are broken apart� hyphens at the end of lines are removed and the
hyphenated parts are joined. Strings of digits are discarded.

The following option letters may appear in any order:

- d Print the word number (in the input stream) with each word.

- i Take the next .file as an 'ignore' file. These words wi ll not appear in the output. (They
will be counted, for purposes of the - d count.)

-o Take the next .file as an 'only' file . Only these words will appear in the output. (All
other words will also be counted for the - d count.)

-p Include punctuation marks (single nonalphanumeric characters) as separate output
lines. The punctuation marks are not counted for the -d count.

Ignore and only files contain words, one per line.

SEE ALSO
derotf(I)

7th Edition

PROF (1) PROF (l)

NAME
prof - display profile data

SYNOPSIS
prof [-v 1 [-a 1 [- I 1 [- low [- high 1 1 [file 1

DESCRIPTION

FILES

Pro/interprets the file mon.out produced by the monitor subroutine. Under default modes, the
symbol table in the named object file (a. out default) is read and correlated with the mon.out
profile file. For each external symbol, the percentage of time spent executing between that
symbol and the next is printed (in decreasing order) , together with the number of times that
routine was called and the number of milliseconds per call.

If the -a option is used, all symbols are reported rather than just external symbols. If the - I
option is used, the output is listed by symbol value rather than decreasing percentage.

If the - v option is used, all printing is suppressed and a graphic version of the profile is pro
duced on the standard output for display by the plot(l) filters. The numbers low and high, by
default 0 and 1 00, cause a selected percentage of the profile to be plotted with accordingly
higher resolution.

In order for the number of calls to a routine to be tallied, the - p option of cc must have been
given when the file containing the routine was compiled. This option also arranges for the
mon.out file to be produced automatically.

mon.out for profile
a.out for namelist

SEE ALSO
monitor(3) , profil (2) , cc(l) , plot (l)

BUGS
Beware of quantization errors.

7th Edition PDPl l 1

PS (l) PS (I)

NAME
ps - process status

SYNOPSIS
ps [aklx] [namel ist]

DESCRIPTION

FILES

Ps prints certain indicia about active processes. The a option asks for information about all
processes with terminals (ordinarily only one's own processes are displayed) ; x asks even about
processes with no terminal; I asks for a long listing. The short listing contains the process ID,
tty letter, the cumulative execution time of the process and an approximation to the command
line.

The long listing is columnar and contains

F Flags associated with the process. 0 1 : in core; 02: system process; 04: locked in core
(e.g. for physical I/0) ; 10: being swapped; 20: being traced by another process.

S The state of the process. 0: nonexistent; S: sleeping; W: waiting; R: running; I: inter
mediate; Z: terminated; T: stopped.

UID The user ID of the process owner.

PID The process ID of the process; as in certain cults it is possible to kill a process if you
know i ts true name.

PPID The process ID of the parent process.

CPU Processor utilization for scheduling.

PRI The priority of the process; high numbers mean low priority.

NICE Used in priority computation.

ADDR The core address of the process if resident, otherwise the disk address.

SZ The size in blocks of the core image of the process.

WCHAN
The event for which the process is waiting or sleeping; if blank, the process is running.

TTY The controlling tty for the process.

TIME The cumulative execution time for the process.

The command and its arguments.

A process that has exited and has a parent , but has not yet been waited for by the parent is
marked <defunct > . Ps makes an educated guess as to the file name and arguments given
when the process was created by examining core memory or the swap area. The method is
inherently somewhat unreliable and in any event a process is entitled to destroy this informa
tion, so the names cannot be counted on too much.

If the k option is specified, the file /usr/sys/core is used in place of /devlmem. This is used for
postmortem system debugging. If a second argument is given, it is taken to be the file contain
ing the system's namelist.

/unix system namelist
/dev/mem core memory
/usr/sys/core alternate core file
I dev searched to find swap device and tty names

SEE ALSO
kill (1)

7th Edition PDP l l

PS (1)

BUGS

PS (1)

Things can change while ps is running; the picture i t gives is only a close approximation to real
i ty.
Some data printed for defunct processes is irrelevant

7th Edi tion 2

PST AT (1M)

NAME
pstat - print system facts

SYNOPSIS
pstat [-aixptuf] [suboptions] [file]

DESCRIPTION

PST AT (1 M)

Pstat interprets the contents of certain system tables. If file is given, the tables are sought
there, otherwise in /dev/mem. The required namelist is taken from /unix. Options are

-a Under - p, describe all process slots rather than just active ones.

- i Print the in ode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
U update time fiisys(S)) must be corrected
A access time must be corrected
M . file system is mounted here
W wanted by another process (L flag is on)
T contains a. text file

· C changed time must be corrected
CNT Number of open file �able entries for this inode.
DEV Major and minor device number of file system in which this inode resides.
INO 1-number within the device.
MODE Mode bits, see chmod(2) .
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

- x

LOC
FLAGS

Number of bytes in an ordinary file, or major and minor device of special file.

Print the text table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)

D ADDR Disk address in swap, measured in multiples of 5 1 2 bytes.

CADDR Core address, measured in multiples of 64 bytes.

SIZE Size of text segment, measured in multiples of 64 bytes.

IPTR Core location of corresponding inode.

CNT Number of processes using this text segment.

CCNT

- p

LOC
s

7th Edition

Number of processes in core using this text segment.

Print process table for active processes with these headings:

The core location of this table entry.
Run state encoded thus:
0 no process
1 waiting for some event
3 runnable
4 being created

PST AT (1 M) PSTAT (lM)

5 being terminated
6 stopped under trace

F Miscellaneous state variables, or-ed together:
01 loaded
02 the scheduler process
04 locked
010 swapped out
020 traced
040 used in tracing
0 100 locked in by lock(2) .

PRI Scheduling priority, see nice(2) .
SIGNAL Signals received (signals 1 - 1 6 coded in bits 0- 1 5) ,
UID Real user ID.
TIM Time resident in seconds; times over 127 coded as 1 27.
CPU Weighted integral of CPU tiq1e, for scheduler.
NI Nice level, see nice(2) .
PGRP Process number of root of process group (the opener of the controlling terminal) .
PID The process I D number.
PPID The process ID of parent process.
ADDR If in core, the physical address of the 'u-area' of the process measured in multiples of

64 bytes. If swapped out, the position in the swap area measured in multiples of 5 1 2
bytes.

SIZE Size of process image in multiples of 64 bytes.
WCHAN Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table entry.
CLKT Countdown for alarm(2) measured in seconds.

- t Print table for terminals (only DHl l and DL l l handled) with these headings:

RAW Number of characters in raw input queue.
CAN Number of characters in canonicalized input queue.
OUT Number of characters in putput queue.
MODE See tty(4) .
ADDR Physical device address.
DEL Number of delimiters (newlines) in canonicalized input queue.
COL Calculated column position of terminal.
STATE Miscellaneous state variables encoded thus:

W waiting for open to complete
0 open
S has special (output) start routine
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close

PGRP Process group for which this is controlling terminal.

- u print information about a user process; the next argument is its address as given by
ps(l) . The process must be in main memory, or the file used can be a core image
and the address 0 .

-f

LOC
FLG

7th Edition

Print the open file table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:

2

.")

PST AT (1M)

FILES

CNT
INO
OFFS

.

R open for reading
W open for writing
p pipe
Number of processes that know this open file.
The location of the inode table entry for this file.
The file offset, see /seek(2) .

/unix namelist
/dev/mem default source of tables

SEE ALSO
ps(l) , stat(2) , filsys(S)
K. Thompson, UNIX Implementation

7th Edition

PST AT (l M)

3

PTX (1) PTX (1)

NAME
ptx - permuted index

SYNOPSIS
ptx [option] . . . [input [output]]

DESCRIPTION

FILES

BUGS

Ptx generates a permuted index to file input on file output (standard input and output default) .
It has three phases: the first does the permutation, generating one line for each keyword in an
input line. The keyword is rotated to the front. The permuted file is then sorted. Finally, the
sorted lines are rotated so the keyword comes at the middle of the page. Ptx produces output
in the form: .

. xx "tail" "before keyword" "keyword and after" "head"

where .xx may be an nroffor troff(l) macro for user-defined formatting. The before keyword
and keyword and after fields incorporate as much of the line as will fit around the keyword when
it is printed at the middle of the page. Tail and head, at least one of which is an empty string
"", are wrapped-around pieces small enough to fit in the unused space at the opposite end of the
line. When original text must be discarded, '/' marks the spot.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

- t Prepare the output for the phototypesetter; the default line length is 1 00 characters.

- w n Use the next argument, n, as the width of the output line. The default line length is 72

-g n

characters.

Use the next argument, n, as the number of characters to allow for each gap among the
four parts of the line as finally printed. The default gap is 3 characters.

- o only
Use as keywords only the words given in the only file.

- i ignore
Do not use as keywords any words given in the ignore file. If the -i and -o options are
missing, use /usr/lib/eigrt as the ignore file.

- b break
Use the characters in the break file to separate words. In any case, tab, newline, and
space characters are always used as break characters.

- r Take any leading non blank characters of each input line to be a reference identifier (as
to a page or chapter) separate from the text of the line. Attach that identifier as a 5th
field on each output line.

The index for this manual was generated using ptx.

/bin/sort
/usr/lib/eign

Line length counts do not account for overstriking or proportional spacing.

7th Edition 1

,
PUBINDEX (1) PUBINDEX (l)

N AME
pubindex - make inverted bibliographic index

SYNOPSIS
pubindex [file] . . .

DESCRIPTION

FILES

Pubindex makes a hashed inverted index to the named files for use by rejer(l) . The files con
tain bibliographic references separated by blank lines. A bibliographic reference is a set of lines
that contain bibliographic information fields. Each field starts on a line beginning with a '%' ,
followed by a key-letter, followed by a blank, and followed by the contents of the field, which
continues until the next line starting with '%'. The most common key-letters and the
corresponding fields are:

A Author name
B Title of book containing article referenced
C City
D Date
d Alternate date
E Editor of book containing article referenced
G Government (CFSTI) order number
I · Issuer (publisher)
J Journal
K Other keywords to use in locating reference
M Technical memorandum number
N Issue number within volume
0 Other commentary to be printed at end of reference
P Page numbers
R Report number
r Alternate report number
T Title of article, book, etc.
V Volume number
X Commentary unused by pubindex

Except for 'A' , each field should only be given once. Only relevant fields should be supplied.
An example is:

%T 5-by-5 Palindromic Word Squares
%A M. D. Mci lroy
%J Word Ways
%V 9
%P 1 99-202
%D 1 976

x. ia, x. ib, x. ic where x is the first argument.

SEE ALSO
refer(I)

7th Edition local

PWD (1)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(l)

7th Edition

PWD (l)

1

QUOT (l M) QUOT (l M)

NAME
quot - summarize file system ownersh ip

SYNOPSIS
quot [option l . . . [filesystem l

DESCRIPTION

FILES

Quot prints the number of blocks in the named .filesystem currently owned by each user. If no
.filesystem is named, a default name is assumed. The following options are available:

- n Cause the pipeline ncheck filesystem I sort + On I quot - n filesystem to produce a list
of all files and their owners.

. ·

- c Print three columns giving file size in blocks, number of files of that size, and cumula
tive total of blocks in that size or smaller file.

- f Print co·unt o f number of files as well as space owned by each user.

Default file system varies with system.
/etc/passwd to get user names

SEE ALSO
ls (l) , du (l)

BUGS
Holes in files are counted as if they actually occupied space.

7th Edition 1

RATFOR (1)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [option . . .] [filename ...]

DESCRIPTION

RATFOR (1)

Raifor converts a rational dialect of Fortran into ordinary irrational Fortran. Raifor provides
control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-making:
if (condition) statement [else statement]
switch Griteger value) {

case integer: statement

[default:] statement

loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break [n]
next [n]

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
> , > = , etc. , become .GT. , .GE. , etc.

return (expression)
returns expression to caller from function

define: define name replacement

include:
include filename

The option - h causes quoted strings to be turned into 27H constructs. -c copies comments
to the output, and attempts to format it neatly. Normally, continuation lines are marked with a
& in column 1 ; the option -6x makes the continuation character x and places i t in column 6.

Raifor is best used with }77(1) .

SEE ALSO
n7 < t >
B . W . Kernighan and P . J . Plauger, Software Tools, Addison-Wesley, 1 976.

7 th Edition 1

RANLIB (1) UNIX Programmer's Manual RANLIB (1)

NAME

ranlib - convert archives to random libraries

SYNOPSIS

ranlib archive .. .

DESCRIPTION

Ranlib converts each archive to a form whicb can be loaded more rapidly by the loader, by
adding a table of contents named _.SYMDEF to the beginning of the archive. It uses arO)
to reconstruct the archive, so that sufficient temporary file space must be available in the file
system containing the current directory.

SEE ALSO

BUGS

ld{ l) , ar(l)

Because generation of a library by ar and randomization by ranlib are separate, phase errors are
possible. The loader ld warns when the modification date of a library is more recent than the
creation of its dictionary� but this means you get the warning even if you only copy the library.

7th Edition

REFER (1) REFER (1)

NAME
refer, lookbib - find and insert literature references in documents

SYNOPSIS
refer [option 1 . . .

lookbib [file 1 . . .

DESCRIPTION
Lookbib accepts keywords from the standard input and searches a bibliographic data base for
references that contain those keywords anywhere in title, author, journal name, etc. Matching
references are printed on the standard output. Blank lines are taken as delimiters between
queries.

Refer is a preprocessor for nro./J or troffil) that finds and formats references. The input files
(standard input .default) are copied to the standard output, except for lines between . [and . 1
command lines, which are assumed to contain keywords as for lookbib. and are replaced by
information from the bibliographic data base. The user may avoid the search, override fields
from it, or add new fields. The reference data, from whatever source, are assigned to a set of
tro./Jstrings. Macro packages such as ms(7) print the finished reference text from these strings.
A flag is placed in the text at the point of reference; by default the references are indicated by
numbers.

The following options are available:

-ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones) . If r is omitted all
author names are reversed.

-b Bare mode: do not put any flags in text (neither numbers nor labels) .

-cstring
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in string.

- e Instead of leaving the references where encountered, accumulate them until a sequence
of the form

. [
$LIST$
.]

is encountered, and then write out all references collected so far. Collapse references to
the same source.

- kx Instead of numbering references, use labels as specified in a reference data line begin
ning %x; by default x is L.

- lm, n
Instead of numbering references, use labels made from the senior author's last name and
the year of publication. Only the first m letters of the last name and the last n digits of
the date are used. If either m or , n is omitted the entire name or date respectively is
used.

- p Take the next argument as a file of references to be searched. The default file is
searched last.

- n Do not search the default file.

- skeys

7th Edition

Sort references by fields whose key-letters are in the keys string; permute reference
numbers in text accordingly. Implies - e. The key-letters in keys may be followed by a
number to indicate how many such fields are used, with + taken as a very large number.
The default is AD which sorts on the senior author and then date; to sort, for example,
on all authors and then title use -sA +T.

REFER (1) REFER (1)

FILES

To use your own references, put them in the format described in pubindex(l) They can be
')

searched more rapidly by running pubindexO) on them before using reftr; failure to index
results in a linear search.

When refer is used with eqn, neqn or tb/, refer should be first, to minimize the volume of data
passed through pipes.

lusrldictlpapers directory of default publication lists and indexes
lusrllib/refer directory of programs

SEE ALSO

7th Edition 2

RESTOR (1 M) RESTOR (1 M)

NAME
restor - incremental file system restore

SYNOPSIS
restor key [argument . . . 1

DESCRIPTION

FILES

Restor is used to read magtapes dumped with the dump command. The key specifies what is to
be done. Key is one of the characters rRxt optionally combined with f.

f Use the first argument as the name of the tape instead of the default.

r or R The tape is read and loaded into the file system specified in argument. This should not
be done lightly (see below) . If the key is R restor asks which tape of a multi volume
set to start on. This allows restor to be interrupted and then restarted (an icheck -s
must be done before

x Each file on the tape named by an argument is extracted. The file name has all 'mount'
prefixes removed; for example, /usr/bin/lpr is named / bin/lpr on the tape. The file
extracted is placed in a file with a numeric name supplied by restor (actually the inode
number) . In order to keep the amount of tape read to a minimum, the following pro
cedure is recommended:

Mount volume 1 of the set of dump tapes.

Type the restor command.

Restor will announce whether or not it found the files, give the number it will name the
file, and rewind the tape.

It then asks you to 'mount the desired tape volume' . Type the number of the volume
you choose. On a multivolume dump the recommended procedure is to mount the last
through the first volume in that order. Restor checks to see if any of the files requested
are on the mounted tape (or a later tape, thus the reverse order) and doesn't read
through the tape if no files are. I f you are working with a single volume dump or the
number of files being restored is large, respond to the query with ' 1 ' and restor will read
the tapes in sequential order.

If you have a hierarchy to restore you can use dumpdir(l) to produce the list of names
and a shell script to move the resulting files to their homes.

t Print the date the tape was written and the date the filesystem was dumped from.

The r option should only be used to restore a complete dump tape onto a clear file system or to
restore an incremental dump tape onto this. Thus

/etc/mkfs /dev/rpO 40600
restor r /dev/rpO

is a typical sequence to restore a complete dump. Another restor can be done to get an incre
mental dump in on top of this.

A dump followed by a mkfs and a restor is used to change the size of a file system.

default tape unit varies with installation
rst*

7th Edition 1

RESTOR (1 M) RESTOR (1 M)

SEE ALSO
dump (l) , mkfs (l) , dumpdir(l)

DIAGNOSTICS

BUGS

There are various diagnostics involved with reading the tape and writing the disk. There are
also diagnostics if the i-list or the free list of the file system is not large enough to hold the
dump.

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a
new-line when the next tape has been mounted.

There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately, restor doesn't use it.

7th Edition 2

- �

REV (1) REV (1)

NAME
rev - reverse lines of a file

SYNOPSIS
rev [file] . . .

DESCRIPTION
Rev copies the named files to the standard output, reversing the order of characters in every
line. If no file is specified, the standard input is copied.

7th Edition PDP l l

RM (1) R M (l)

NAME
rm, rmdir - remove (unlink) files

SYNOPSIS
rm [- fri] file . . .

rmdir dir . . .

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in i ts directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is reaq from the standard input. If that line begins wi th 'y' the file is deleted, other
wise the file remains. No questions are asked when the - f (force) option is given.

If a designated file is a directory, an error comment is printed unless the optional argument - r
has been used. In that case, rm recursively deletes the entire contents of the specified direc
tory, and the directory itself.

If the - i (interactive) option is in effect, rm asks whether to delete each file, and, under - r,
whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
unlink (2)

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file ' .. ' merely to avoid the antisocial flw consequences of inadvertently doing something like ' rm - r . * ' .

7th Edition 1

ROFF (1) ROFF (l)

NAME
roff - format text

SYNOPSIS
roff [+ n] [- n] [- s] [- h] file . . .

nroff - mr [option] . . . file . . .
troff - mr [option] . . . file .. .

DESCRIPTION

FILES

BUGS

Ro.ffformats text according to control lines embedded in the text in the given files. Encounter
ing a nonexistent file terminates printing. Incoming inter-terminal messages are turned off dur
ing printing. The optional flag arguments mean :
+n Start printing at the first page with number n.
- n Stop printing at the first page numbered higher than n.
- s Stop before each page (including the first) to allow paper manipulation; resume on receipt

of an interrupt signal.
- h Insert tabs in the output stream to replace spaces whenever appropriate.

Input consists of intermixed text lines. which contain information to be formatted, and request
lines. which contain instructions about how to format it . Request lines begin with a dis
tinguished control character, normally a period.

Output lines may be .filled as nearly as possible with words without regard to input lineation.
Line breaks may be caused at specified places by certain commands, or by the appearance of an
empty input line or an input line beginning with a space.

The capabilities of ro.ff are specified in the attached Request Summary. Numerical values are
denoted there by n or +n , titles by t , and single characters by c. Numbers denoted + n may be
signed + or - , in which case they signify relative changes to a quantity, otherwise they signify
an absolute resetting. Missing n fields are ordinarily taken to be 1 , missing t fields to be empty,
and c fields to shut off the appropriate special interpretation.

Running titles usually appear at top and bottom of every page. They are set by requests l ike

.he 'part l 'part2'part3'

Part 1 is left justified, part2 is centered, and part3 is right justified on the page. Any % sign in a
ti tle is replaced by the current page number. Any nonblank may serve as a quote .

ASCII tab characters are replaced in the input by a replacement character, normally a space,
according to the column settings given by a .ta command. (See .tr for how to convert this char
acter on output.)

Automatic hyphenation of filled output is done under control of .hy. When a word contains a
designated hyphenation character, that character disappears from the output and hyphens can be
introduced into the word at the marked places only.

The - mr option of nroff or trqff(l) simulates roffto the greatest extent possible.

/usr/lib/suftab suffix hyphenation tables
/tmp/rtm ? temporary

Roffis the simplest of the text formatting programs, and is utterly frozen.

7th Edition

ROFF (1)

REQUEST SUMMARY

Request Break Initial Meaning
.ad yes yes Begin adjusting right margins .
. ar no arabic Arabic page numbers .
. br yes Causes a line break the filling of the current line is stopped .
. bl n yes Insert of n blank lines, on new page if necessary .
. bp +n yes n = 1 Begin new page and number it n; no n means ' + 1 ' .
. cc c no c = . Control character becomes 'c' .
. ce n yes Center the next n input l ines, without filling .

ROFF (1)

. de xx no Define parameterless macro to be invoked by request ' .xx' (definition ends on line

. ds

.ef t

.eh t
. fi
.fo
. he c
.he t
. hx
. hy n
. ig
. in +n
.ix +n
. I i n
. II + n
. I s + n
. m l n
. m2 n
. m3 n
. m4 n
.na
.ne n
. nn + n
. n 1
. n2 n
. ni +n
. nf
. nx file
.of t
.oh t
. pa +n
. p i +n
. po +n
.ro
. sk n
.sp n
. ss
. ta n n . .
. t c c
. ti +n

yes
no
no
yes
no
no
no
no
no
no
yes
no
no
no
yes
no
no
no
no
yes
no
no
no
no
no
yes

no
no
yes
no
no
no
no
yes
yes

no
yes

. tr cdef. . no

. ul n no

7th Edition

no
t =
t =

beginning ' • .') .
Double space; same as ' . Is 2' .
Even foot title becomes t .
Even head title becomes t .

yes Begin filling output lines .
t = All foot titles are t .
none Hyphenation character becomes 'c' .
t = All head titles are t.

Title lines are suppressed .
n = 1 Hyphenation is done, if n = 1 ; and is not done, if n = 0 .

Ignore input lines through a line beginning with ' . .' .
Indent n spaces from left margin .
Same as ' . in ' but without break .
Literal, treat next n lines as text.

n = 65 Line length including indent is n characters .
n = 1 Line spacing set to n lines per output line .
n = 2 Put n blank lines between the top of page and head ti tle .
n = 2 n blank lines put between head title and beginning of text on page .
n = 1 n blank lines put between end of text and foot title .
n = 3 n blank lines put between the foot ti tle and the bottom of page .
no Stop adjusting the right margin.

Begin new page, if n output lines cannot fit on present page.
The next n output lines are not numbered .

no Add 5 to page offset; number lines in margin from 1 on each page .
no Add 5 to page offset; number lines from n ; stop if n = 0 .
n = 0 Line numbers are indented n .
no Stop filling output lines .
Switch input to 'file' .
t = Odd foot title becomes t .
t = Odd head title becomes t.
n = l Same as ' .bp' .
n == 66 Total paper length taken to be n lines .
n = 0 Page offset. All lines are preceded by n spaces .
arabic Roman page numbers.

Produce n blank pages starting next page .
Insert block of n blank lines, except at top of page.

yes Single space output lines, equivalent to ' . Is 1 ' .
Pseudotab settings. Initial tab settings are columns 9 1 7 25 . . .

space Tab replacement character becomes 'c' .
Temporarily indent next output line n spaces .
Translate c into d, e into f, etc.
Underline the letters and numbers in the next n input lines .

2

SA (1 M) SA (I M)

NAME
sa, accton - system accounting

SYNOPSIS
sa [- abcjlnrstuv] [file]

/etc/accton [file]

DESCRIPTION

FILES

With an argument naming an existing file, accton causes system accounting information for
every process executed to be placed at the end of the file. If no arguemnt is given. accounting
is turned off.

Sa reports on, cleans up, and generally maintains accounting files.

Sa is able to condense the information in /usrladmlacct into a summary file /usr/admlsavacct
which contains a· count of the number of times each command was called and the time
resources consumed. This condensation is desirable because on a large system acct can grow by
1 00 blocks per day. The summary file is read before the accounting file, so the reports include
all available information.

If a file name is given as the last argument, that file will be treated as the accounting fi le: sha is
the default. There are zillions of options:

a Place all command names containing unprintable characters and those used only once
under the name '***other. '

b Sort output by sum of user and system time divided by number of calls. Default sort is
by sum of user and system times.

c Besides total user, system, and real time for each command print percentage of total
time over all commands.

J I nstead of total minutes time for each category, give seconds per call.

I Separate system and user time; normally they are combined.

m Print number of processes and number of CPU minutes for each user.

n Sort by number of calls.

r Reverse order of sort.

s Merge accounting file into summary file /usrladm/savacct when done.

For each command report ratio of real time to the sum of user and system times.

u S uperseding all other flags, print for each command in the accounting file the user 1 0
and command name.

v If the next character is a digit n, then type the name of each command used n times or
fewer. Await a reply from the typewriter; if it begins with 'y' , add the command to the
category '**junk** . ' This is used to strip out garbage.

/usr/adm/acct raw accounting
/usr/adm/savacct summary
/usr/adm/usracct per-user summary

SEE ALSO
ac (1) , acct (2)

7th Edition

SED (l) SED (1)

NAME
sed - stream editor

SYNOPSIS
sed [- n] [- e script] [- f sfile] [file] . . .

DESCRIPTION
Sed copies the named .files (standard input defaul t) to the standard output, edited according to a
script of commands. The - f option causes the script to be taken from file s.ftle; these options
accumulate. If there is just one - e option and no - fs, the flag - e may be omitted. The - n
option suppresses the default output .

A script consists of editing commands, one per line, of the fol lowing form:

[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pall ern space (unless there is
something left after a 'D' command) , applies in sequence all commands whose addresses select
that pattern spa�e. and at the end of the script copies the pattern space to the standard output
(except under - n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a '$'
that addresses the last line of input , or a context address , '/regular expression/' , in the style of
ed(l) modified thus:

The escape sequence '\n' matches a newl ine embedded in the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line wi th two addresses selects the inclusive range from the first pattern space that
matches the first address through the next pattern space that matches the second. (If the
second address is a number less than or equal to the line number first selected, only one line is
selected.) Thereafter the process is repeated, looking again for the first address .

Editing commands can be applied only to non-selected pattern spaces by use of the negation
function ' ! ' (below) .

In the following list o f functions the maximum number of permissi ble addresses for each func
tion is indicated in parentheses.

An argument denoted rexr consists of one or more li nes , all but the last of which end with '\' to
hide the newline. Backslashes in text are treated like backslashes in the replacement string of
an 's' command, and may be used to protect initial blanks and tabs against the stripping that is
done on every script line.

An argument denoted rfile or w.file must terminate the command line and must be preceded by
exactly one blank. Each w.file is created before processing begins. There can be at most 10 dis
tinct w.ftle arguments . .

(1) a\
rext

Append. Place rexr on the output before reading the next input line.

(2) b label

(2) c\
rexr

7th Edition

Branch to the ' : ' command bearing the label. If label is empty, branch to the end of the
script.

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address
range, place rexr on the output. Start the next cycle.

SED (1) SED (1)

(2) d

(2) D

(2) g

(2) G

(2) h

(2) H

(1) i\

Delete the pattern space. Start the next cycle.

Delete the initial segment of the pattern space through the first newline. Start the next
cycle.

Replace the contents of the pattern space by the contents of the hold space.

Append the contents of the hold space to the pattern space.

Replace the contents of the hold space by the contents of the pattern space.

Append the contents of the pattern space to the hold space.

text Insert. Place text on the standard output.

(2) I List the pattern space on the standard output in an unambiguous form. Non-printing
characters are spelled in two digit ascii , and long lines are folded.

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next
line of input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The
current line number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the standard
output.

(1) q · Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile
Read the contents of r:file. Place them on the output before reading the next input line.

(2) slregu/ar expression/replacement(f/ags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of ' / ' . For a fuller description see ed(l) .
Flags is zero or more of

g Global . Substitute for all nonoverlapping instances of the regular expression
rather than just the first one.

p Print the pattern space if a replacement was made.

w w.ftle Write. Append the pattern space to w.file if a replacement was made.

(2) t label
Test. Branch to the ' : ' command bearing the label if any substitutions have been made
since the most recent reading of an input line or execution of a ' t ' . If label is empty,
branch to the end of the script.

(2) w w.file
Write. Append the pattern space to w.file.

(2) x Exchange the contents of the pattern and hold spaces.

(2) ylstring 1 /string2/
Transform. Replace all occurrences of characters in string 1 with the corresponding
character in string2. The lengths of srring 1 and srring2 must be equal.

(2) ! fimction
Don't. Apply the jimction (or group, i f fimcrion is ' {') only to lines nor selected by the
address (es) .

(0) : label
This command does nothing; it bears a label for 'b ' and ' t ' commands to branch to.

7th Edition 2

SED (1) UNIX Programmer's Manual SED (1)

(1) =

(2) {

Place the current line number on the standard output as a line.

Execute the following commands through a matching ') ' only when the pattern space is
selected.

(0) An empty command is ignored.

SEE ALSO
ed (l) , grep (l) , awk (l)

7th Edition 3

\ I

e ,

SH (1)

NAME

SH (1)

sh, for, case, if, while, :, . , break, continue, cd, eval, exec, exit, export, login, newgrp, read,
readonly, set, shift, times, trap, umask, wait - command language

SYNOPSIS
sh [- ceiknrstuvx] [arg] . . : ·

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a file.
See invocation for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a
space) . The first word specifies the name of the command to be executed. Except as specified
below the remaining words are passed as arguments to the invoked command. The command
name is passed as argument 0 (see exec(2)) . The value of a simple-command is i ts exit status if
it terminates normally or 200 ::b status if it terminates abnormally (see signa/(2) for a l ist of
status values) .

A pipeline is a sequence of one or more commands separated by I . The standard output of each
command but the last is connected by a pipe(2) to the standard input of the next command.
Each command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ; , &, && or I I and optionally ter
minated by ; or &. ; and & have equal precedence which is lower than that of && and I I , &&
and I I also have equal precedence. A semicolon causes sequential execution; an ampersand
causes the preceding pipeline to be executed without waiting for it to finish. The symbol &&
(I I) causes the list following to be executed only if the preceding pipeline returns a zero (non
zero) value. Newlines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value returned by a com
mand is that of the last simple-command executed in the command.

for name [in word . . .] do list done
Each time a for command is executed name is set to the next word in the for word list
If in word . . . is omitted then in "$@ " is assumed. Execution ends when there are no
more words in the list.

case word in [pattern [I pattern] . . .) list ; ;] . . . esac
A case command executes the list associated with the first pattern that matches �wd.
The form of the patterns is the same as that used for file name generation.

if list then list [elif list then list1 . . . { else list1 fi
The list following if is executed and if it returns zero the list following then is executed.
Otherwise, the list following elif is executed and if its value is zero the list following
then is executed. Failing that the else list is executed.

while list [do list] done
A while command repeatedly executes the while list and if i ts value is zero executes
the do list; otherwise the loop terminates. The value returned by a w hile command is

. that of the last executed command in the do list. until may be used in place of wh i le to
negate the loop termination test.

(list) Execute list in a subs hell.

{ list } list is simply executed.

The following words are only recognized as the,first word of a command and when not quoted.

if then else elif fi case in esac for while until do done { }

7th Edition

SH (1) SH (1)

.,\
Command substitution. i
The standard output from a command enclosed in a pair of grave accents C ') may be used as
part or all of a word; trailing newlines are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be
assigned values by set. Variables may be set by writing

name= value [name= value l . . .
$ {parameter }

A parameter is a sequence of letters, digits or underscores (a name) , a digit, or any of
the characters * @ # ? - $! . The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a letter, digit, or underscore that
is not to · be interpreted as part of its name. If parameter is a digit then it is a positional
parameter. If parameter is * or @ then all the positional parameters, starting with $1 ,
are substituted separated by spaces. $0 is set from argument zero when the shell is
invoked.

$ {parameter - word}
I f parameter is set then substitute its value ; otherwise substitute word.

$ {parameter= word}
I f parameter is not set then set it to word: the value of the parameter is then substituted.
Positional parameters may not be assigned to in this way.

$ {parameter ? word}
If parameter is set then substitute its value; otherwise, print word and exit from the
shell. I f word is omitted then a standard message is printed.

$ {parameter+ word}
If parameter is set then substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So that, for
example, echo $ (d- 'pwd'} will only execute pwd if d is unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.
Options supplied to the shell on invocation or by set.

? The value returned by the last executed command in decimal.
$ The process number of this shell .

The process number of the last background command invoked.

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see execution) .
MAIL I f this variable is set to the name of a mail file then the shell informs the user

of the arrival of mail in the specified file.
PSI Primary prompt string, by default ' $ ' .
PS2 Secondary prompt string, by default ' > ' .
IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.
After parameter and command substitution, any results of substitution are scanned for internal
field separator characters (those found in $I FS) and split into distinct arguments where such
characters are fou nd. Explicit null arguments ("" or ") are retained. Implicit null arguments �.=.@_z,:_�_fYm (those resulting from parameters that have no values) are removed. ,._,

7th Edition 2

SH (I) SH (I)

File name generation.
Following substitution, each command word is scanned for the characters *, ? and I . If one of
these characters appears then the word is regarded as a pattern. The word is replaced with
alphabetically sorted file names that match the pattern. If no file name is found that matches
the pattern then the word is left unchanged. The character . at the start of a file name or
immediately following a /, and the character /, must be matched explicitly.

*
?

Matches any string, including the null string.
Matches any single character.

I . . . I Matches any one of the characters enclosed. A pair of characters separated by -
matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shel l and cause termination of a word
unless quoted. ·

; & () < > new line space tab

A character may be quoted by preceding it with a \ . \newline is ignored. Al l characters
enclosed between a pair of q1.10te marks (' ') , except a single quote, are quoted. I nside double
quotes (" ") parameter and command substitution occurs and \ quotes the characters \ ' " and $.
"$*" is equivalent t o "Sl $2 .. . " whereas
"$@" is equivalent to "$1" "$2"
Prompting.
When used interactively, the shell prompts with the value of PS 1 before reading a command. If
at any time a newline is typed and further input is needed to complete a command then the
secondary prompt (SPS2) is issued.

Input output.
Before a command is executed its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may pre
cede or follow a command and are not passed on to the invoked command. Substitution occurs
before word or digit is used.

< word Use file word as standard input (file descriptor 0) .

> word Use file word as standard output (file descriptor 1) . If the file does not exist then it is
created� otherwise it is truncated to zero length.

> > word
Use file word as standard output. If the file exists then output is appended (by seeking
to the end) � otherwise the file is created.

< < word
The shel l input is read up to a l ine the same as word, or end of file. The resulting
document becomes the standard input. If any character of word is quoted then no
interpretation is placed upon the characters of the document� otherwise, parameter and
command substitution occurs, \newline is ignored, and \ is used to quote the characters
\ $ ' and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2) . S imilarly for the
standard output using > .

< & - The standard input is closed. Similarly for the standard output using > .

If one of the above is preceded by a digi t then the file descriptor created is that specified by the .
digit Gnstead of the default 0 or I) . For example,

7th Edition 3

SH (1) SH (1)

. . . 2 >& 1

creates file descriptor 2 to be a duplicate of file descriptor 1 .

If a command is followed by & then the default standard input for the command is the empty
file (/dev/null) . Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input output specifications.

E nvironment.
The environment is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list; see exec(2) and environ(5) . The shell interacts with the
environment in several ways. On invocation, the shell scans the environment and creates a
parameter for each name found, giving it the corresponding value. Executed commands inherit
the same environment If the user modifies the values of these parameters or creates new ones,
none of these affects the environment unless the export command is used to bind the shell's
parameter to the environment. The environment seen by any executed command is thus com
posed of any unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus these two lines are equivalent

TERM=450 cmd args
(export TERM; TERM =450; cmd args)

If the - k flag is set, all keyword arguments are placed in the environment, even if the occur
after the command name. The following prints 'a=b c' and 'c' :
echo a=b c
set -k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is
followed by &; otherwise signals have the values inherited by the shell from its parent. (But
see also trap.)

Execution.
Each time a command is executed the above substitutions are carried out. Except for the 'spe
cial commands' listed below a new process is created and an attempt is made to execute the
command via an exec(2) .

The shell parameter SPATH defines the search path for the directory containing the command.
Each alternative directory name is separated by a colon (:) . The default path is :/bin:/usr/bin.
If the command name contains a I then the search path is not used. Otherwise, each directory
in the path is searched for an executable file. If the file has execute permission but is not an
a.out file, it is assumed to be a file containing shell commands. A subshell (i.e. , a separate pro
cess) is spawned to read it. A parenthesized command is also executed in a subshell.

Special commands.
The following commands are executed in the shell process and except where specified no input
output redirection is permitted for such commands.

No effect; the command does nothing. .
. file Read and execute commands from file and return. The search path SPATH is used to

find the directory containing file.
break [nl

Exit from the enclosing for or while loop, if any. If n is specified then break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n i s specified then

7th Edition 4

SH (1)

resume at the n-th enclosing loop.
cd [arg]

SH (1)

Change the current directory to arg. The shell parameter SHOME is the default arg.
eval [arg . . .]

The arguments are read as input to the shell and the resulting command(s) executed.
exec [arg . . .]

The command specified by the arguments is executed in place of this shell without
creating a new process. Input output arguments may appear and if no other arguments
are given cause the shell input output to be modified.

exit [n]
Causes a non interactive shell to exit with the exit status specified by n. I f n i s omitted
then the exit status is that of the last command executed. (An end of file will also exit
from the shell .)

export [name . . .]
The given names are marked for automatic export to the environment of subsequently
executed commands. If no arguments are given then a list of exportable names is
printed.

login [arg . . .]
Equivalent to 'exec login arg .. . ' .

newgrp [arg . . .]
Equivalent to 'exec newgrp arg . . . ' .

read name . . .
One line i s read from the standard input� successive words of the input are assigned to
the variables name in order, with leftover words to the last variable. The return code is
0 unless the end-of-file is encountered.

readonly [name . . .]
The given names are marked readonly and the values of the these names may not be
changed by subsequent assignment. If no arguments are given then a list of all
readonly names is printed.

set [-eknptuvx [arg . . .]]
- e I f non interactive then exit immediately if a command fails.
- k All keyword arguments are placed in the environment for a command, not just

those that precede the command name.
- n Read commands but do not execute them.
- t Exit after reading and executing one command.
- u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
- x Print commands and their arguments as they are executed.

Turn off the - x and - v options.

These flags can also be used upon invocation of the shell. The current set of flags may
be found in s- .
Remaining arguments are positional parameters and are assigned, in order, to St . $2,
etc. If no arguments are given then the values of all names are printed.

shift The positional parameters from $2. . . are renamed St . . .

times Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] . . .
Arg is a command to be read and executed when the shell receives signal (s) n. {Note
that arg is scanned once when the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. If arg is absent then all trap (s) n
are reset to their original values. If arg is the null string then this signal is ignored by
the shell and by invoked commands. If n is 0 then the command arg is executed on

7th Edition 5

SH (1)

FILES

SH (1)

exit from the shell, 'Otherwise upon receipt of signal n as numbered in signa/(2) . Trap \
with no arguments prints a list of commands associated with each signal number.

umask [nnn]
The user file creation mask is set to the octal value nnn (see umask(2)) . If nnn is omit
ted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n i s not given then
all currently active child processes are waited for. The return code from this command
is that of the process 'waited for.

I nvocation.
If the first character of argument zero is - , commands are read from SHOME/. profile, if such a
file exists. Co�mands are then read as described below. The following flags are interpreted by
the shell when it is invoked
- c string If the - c flag is present then commands are read from string .
-s If the - s flag is present or if no arguments remain then commands are read from

the standard input. Shell output is written to file descriptor 2 .
- i If the - i flag is present or if the shell input and output are attached to a terminal

(as told by gtty) then this shell is interactive. In this case the terminate signal
SIGTERM (see signa/(2)) is ignored (so that 'kill 0' does not kill an interactive
shell) and the interrupt signal SIGINT is caught and ignored (so that wait is inter
ruptable) . In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

$HOME/ .profile
/tmp/sh*
/dev/null

SEE ALSO
testO) , exec(2) ,

DIAGNOSTICS

BUGS

Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit
status. If the shell is being used non interactively then execution of the shell file is abandoned.
Otherwise, the shell returns the exit status of the last command executed (see also exit) .

If < < is used to provide standard input to an asynchronous process invoked by &, the shell gets
mixed up about naming the input document. A garbage file /tmp/sh* is created, and the shell
complains about not being able to find the file by another name.

7th Edition 6

SIZE (1)

NAME
size - size of an object file

SYNOPSIS
size [object . . .]

DESCRIPTION

SIZE (1)

Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in octal and decimal, of each object-file argument. If no file is specified, a.out is used

SEE ALSO
a.out (S)

7th Edition 1

SLEEP (1)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP (1)

Sleep suspends execution for time seconds. It is used to execute a command after a certain
amount of time as in:

(sleep 105� command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
alarm(2) , sleep(3)

B UGS
Time must be less than 65536 seconds.

7th Edition

SORT (1) SORT (1)

NAME
sort - sort or merge files

SYNOPSIS
sort [- mubdfinrtx] [+ posl [-pos2]] . . . [-o name] [-T directory] [name] . . .

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output. The
name ' - ' means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine
collating sequence. The ordering is affected globally by the following options, one or more of
which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d 'Dictionary'· order: only letters, digits and blanks are significant in comparisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCI I range 040-01 76 in nonnumeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or
more digits with optional decimal point, is sorted by arithmetic value. Option n implies
option b.

r Reverse the sense of comparisons.

tx 'Tab character' separating fields is x.

The notation + posl -pos2 restricts a sort key to a field beginning at posl and ending just be
fore pos2. Posl and pos2 each have the form m. n, optionally followed by one or more of the
flags bdfinr, where m tells a number of fields to skip from the beginning of the line and n tells
a number of characters to skip further. If any flags are present they override all the global ord
ering options for this key. If the b option is in effect n is counted from the first nonblank in
the field; b is attached independently to pos2. A missing . n means .0; a missing - posl means
the end of the line. Under the - tx option, fields are strings separated by x, otherwise fields
are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless
the file is out of sort.

m Merge only, the input files are already sorted.

o The next argument is the name of an output file to use instead of the standard output.
This file may be the same as one of the inputs.

T The next argument is the name of a directory in which temporary files should be made.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do
not participate in this comparison.

Examples. Print in alphabetical order all the unique spellings in a list of words. Capitalized
words differ from uncapitalized.

sort -u +Of +0 list

Print the password file (passwd(5)) sorted by user id number (the 3rd colon-separated field) .

7th Edition

SORT (l) SORT (I)

sort -t: + 2n /etc/passwd

Print the first instance of each month in an already sorted file of (month day) entries. The op
tions - um with just one input file make the choice of a unique representative from a set of
equal lines predictable.

sort -urn +0 - 1 dates

FILES
/usr/tmp/stm*. /tmp/*: first and second tries for temporary files

SEE ALSO
uniq (1) , comm (1) , rev (I) , join (1)

DIAGNOSTICS
Comments and .exits with nonzero status for various trouble conditions and for disorder
discovered under option -c.

BUGS
Very long lines are silently truncated.

7th Edition 2

SPELL (1) SPELL (1)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell [option] . . . [file] ...

/usr/src/cmd/spell/spellin [list]

/usr/src/cmd/spell/spellout [-d] list

D ESCRIPTION

FILES

BUGS

Spell collects words from the named documents, and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes or suffixes)
from words in the spelling list are printed on the standard output. If no files are named, words
are collected from the standard input.

Spell ignores most" troJJ; tbl and eqn(l) constructions.

Under the - v option, all words not literally in the spelling list are printed, and plausible deriva
tions from spelling list words are indicated.

Under the -b option, British spelling is checked. Besides preferring centre, colour, speciality,
travelled. etc. , this option insists upon -ise in words like standardise, Fowler and the OED to the
contrary notwithstanding.

Under the - x option, every plausible stem is printed with ' = ' for each word.

The spelling list is based on many sources, and while more haphazard than an ordinary diction
ary, is also more effective in respect to proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with their default
settings. Copies of all output are accumulated in the history file. The stop list filters out
misspellings (e.g. thier = thy - y + ier) that would otherwise pass.

Two routines help maintain the hash lists used by spelL Both expect a list of words, one per
line, from the standard input. Spellin adds the words on the standard input to the preexisting
list and places a new list on the standard output. If no list is specified, the new list is created
from scratch. Spe/lout looks up each word in the standard input and prints on the standard out
put those that are missing from (or present on, with option -d) the hash list.

D = /usr/dict/hlisdab] : hashed spelling lists, American & British
S = /usr/dict/hstop: hashed stop list
H = /usr/dict/spellhist: history file
/usr/lib/spell
deroff(l) , son(l) , tee O) , sed (l)

The spelling' list's coverage is uneven; new installations will probably wish to monitor the out
put for several months to gather local additions.
British spelling was done by an A merican.

7th Edition 1

SPLINE (IG) SPLINE (1 G)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [option] . . .

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It
produces a similar set, which is approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. Hamming, Numerical Methods for Scientists and
Engineers, 2nd ed. , 349ff) has two continuous derivatives, and sufficiently many points to look
smooth when plotted, for example by graph (l) .

The fol lowing options are recognized, each as a separate argument.

- a Supply abscissas automatically (they are missing from the input) ; spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

- k The constant k used in the boundary value computation

is set by the next argument. By default k - 0.

- n Space output points so that approximately n intervals occur between the lower and upper x
limits. (Default n - 1 00.)

- p Make output periodic, i.e. match derivatives at ends. First and last _input values should
normally agree. %1§

- x Next I (or 2) arguments are lower (and upper) x limits. Normally these limits are calcu-
lated from the data. Automatic abcissas start at lower limit (default 0) .

SEE ALSO
graph (1)

DIAGNOSTICS

BUGS

When data is not strictly monotone in x. spline reproduces the input without interpolating extra
points.

A limit of 1 000 input points is enforced silently.

7th Edition

SPLIT (1)

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [file [name]]

DESCRIPTION

SPLIT (1)

Split reads file and writes it in n-line pieces (default 1 000) , as many as necessary, onto a set of
output files. The name of the first output file is name with aa appended, and so on lexicograph
ically. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

7th Edition

STRIP (1) STRIP (1)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the
assembler and loader. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the -s option of /d.

FILES
/tmp/stm?

SEE ALSO
ld(l)

7th Edition

temporary file

1

" I I

STRUCT (1) STRUCT (l)

NAME
struct - structure Fortran programs

SYNOPSIS
struct [option 1 . .. file

DESCRIPTION

FILES

Struct translates the Fortran program specified by file (standard input default) into a Ratfor pro
gram. Wherever possible, Ratfor control constructs replace the original Fortran. Statement
numbers appear only where still necessary. Cosmetic changes are made, including changing
Hollerith strings into quoted strings and relational operators into symbols (.e.g. '.GT.' into
' > ') . The output is appropriately indented.

The following options may occur in any order.

- s Input is accepted in standard format, i.e. comments are specified by a c, C, or • in
column 1 , and continuation lines are specified by a nonzero, nonblank character in
column 6. Normally, a statement whose first nonblank character is not alphanumeric is
treated as a continuation.

- i Do not turn computed goto statements into switches. (Ratfor does not turn switches
back into computed goto statements.)

- a Turn sequences of else ifs into a non-Ratfor switch of the form

switch {
case predl : code
case pred2: code
case pred3: code
default: code

The case predicates are tested in order; the code appropriate to only one case is exe
cuted. This generalized form of switch statement does not occur in Ratfor.

- b Generate goto's instead of multilevel break statements.

- n Generate goto's instead of multilevel next statements.

-en If n is 0 (default) , place code within a loop only if it can lead to an iteration of the loop.
If n is nonzero, admit code segments with fewer than n statements to a loop if other
wise the loop would have exits to several places including the segment, and the seg
ment can be reached only from the loop.

/tmp/struct*
/usr/lib/struct/*

SEE ALSO

BUGS

f77 (1)

Struct knows Fortran 66 syntax, but not full Fortran 77 (alternate returns, IF . . . THEN . . . ELSE,
etc.)

-

If an input Fortran program contains identifiers which are reserved words in Ratfor, the struc
tured version of the program will not be a valid Ratfor program.
Extended range DO's generate cryptic errors.
Columns 73-80 are not special even when - s is in effect.
Will not generate Ratfor FOR statements.

7th Edition 1

STTY (1) STTY (1)

NAME
stty - set terminal options

SYNOPSIS
stty [option . . .]

DESCRIPTION
Stty sets certain I/0 options on the current output terminal. With no argument, it reports the
current settings of the options. The option strings are selected from the following set:

even allow even parity
- even disallow even parity
odd allow odd parity
-odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
- raw negate raw mode
cooked same as ' - raw'
cbreak make each character available to read(2) as received; no erase and kill
- cbreak

- nl
nl
echo
-echo
lease
- lease
- tabs
tabs
ek
erase c

make characters available to read only when newline is received
allow carriage return for new-line, and output CR-LF for carriage return or new-line
accept only new-line to end lines
echo back every character typed
do not echo characters
map upper case to lower case
do not map case
replace tabs by spaces when printing
preserve tabs
reset erase and kill characters back to normal # and @
set erase character to c. C can be of the form "X' which is interpreted as a 'control
X'.

kill c set kill character to c. "X' works here also.
crO crt cr2 cr3

select style of delay for carriage return (see ioct/(2))
nlO nil nl2 nl3

select style of delay for linefeed
tabO tabl tab2 tab3

select style of delay for tab
ffO ff1 select style of delay for form feed
bsO bsl select style of delay for backspace
tty33 set all modes suitable for the Teletype Corporation Model 33 terminal.
tty37 set all modes suitable for the Teletype Corporation Model 37 terminal.
vtOS set all modes suitable for Digital Equipment Corp. VTOS terminal
tn300 set all modes suitable for a General Electric TermiNet 300
ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
hup hang up dataphone on last close.
- hup do not hang up dataphone on last close.
0 hang up phone line immediately
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

7th Edition

Set terminal baud rate to the number given, if possible. (These are the speeds sup
ported by the DH- 1 1 interface) .

STTY (1) STTY (1)

SEE ALSO
ioctl (2), tabs(l)

7th Edition 2

su (1)

NAME
su - substitute user id temporarily

SYNOPSIS
su [userid]

DESCRIPTION

su (1)

Su demands the password of the specified userid, and if it is given, changes to that , userid and
invokes the Shell sh (l) without changing the current directory or the user environment (see
environ (5)) . The new user ID stays in force until the Shell exits.

If no userid is specified, 'root' is assumed. To remind the super-user of his responsibilities, the
Shell substitutes '#' for its usual prompt.

SEE ALSO
sh (l)

7th Edition

SUM (1) SUM (1)

NAME
sum - sum and count blocks in a file

SYNOPSIS
sum file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated
over some transmission line.

SEE ALSO
wc(l)

DIAGNOSTICS
'Read error' is indistinuishable from end of file on most devices� check the block count.

7th Edition 1

SYNC (1 M)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC (1 M)

Sync executes the sync system primitive. If the system is to be stopped, sync must be called to
insure file system integrity. See sync(2) for details.

SEE ALSO
sync(2) , update (8)

7th Edition

TABS (1) TABS (l l

NAME
tabs - set terminal tabs

SYNOPSIS
tabs [- n l [terminal l

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various of the terminal names given in term (7)
are recognized� the default is, however, suitable for most 300 baud terminals. If the - n flag is
present then the left margin is not indented as is normal.

SEE ALSO
stty (1) , term (7)

7th Edition

TAIL (1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [±number[lbc]] [file 1

DESCRIPTION

TAIL (1)

Tail copies the named file to the standard output beginning at a designated place. If no file is
named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of the
input. Number is counted in units of lines, blocks or characters, according to the appended
option 1, b or c. When no units are specified, counting is by lines.

SEE ALSO
dd(l)

BUGS
Tails relative to the end of the file are treasured up in a buffer. and thus are limited in length.
Various kinds of anomalous behavior may happen with character special files.

7th Edition 1

TAR (1) TAR (1)

NAME
tar - tape archiver

SYNOPSIS
tar [key] [name . . .]

DESCRIPTION
Tar saves and restores files on magtape. Its actions are controlled by the key argument. The
key is a string of characters containing at most one function letter and possibly one or more
function modifiers. Other arguments to the command are file or directory names specifying
which files are to be dumped or restored. In all cases, appearance of a directory name refers to
the files and (recursively) subdirectories of that directory.
The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function implies this.

x The named files are extracted from the tape. If the named file matches a directory
whose contents had been written onto the tape, this directory is (recursively)
extracted. The owner, modification time, and mode are restored (if possible) . If no
file argument is given, the entire content of the tape is extracted. Note that if multiple
entries specifying the same file are on the tape, the last one overwrites all earlier.

t The names of the specified files are listed each time they occur on the tape. If no file
argument is given, all of the names on the tape are listed.

u The named files are added to the tape if either they are not already there or have been
modified since last put on the tape.

c Create a new tape; writing begins on the beginning of the tape instead of after the last
file. This command implies r.

The following characters may be used in addition to the letter which selects the function
desired.
0, . . . , 7

v

w

f

b

m

7th Edition

This modifier selects the drive on which the tape is mounted. The default is 1 .

Normally tar does its work silently. The v (verbose) option causes i t to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

causes tar to print the action to be taken followed by file name, then wait for user
confirmation. If a word beginning with 'y' is given, the action is performed. Any
other input means don't do it.

causes tar to use the next argument as the name of the archive instead of /dev/mt?.
If the name of the file is '- ' , tar writes to standard output or reads from standard
input, whichever is appropriate. Thus, tar can be used as the head or tail of a filter
chain Tar can also be used to move hierarchies with the command

cd fromdir; tar cf - . I (cd todir; tar xf -)

causes tar to use the next argument as the blocking factor for tape records. The
default is 1 , the maximum is 20. This option should only be used with raw magnetic
tape archives (See f above) . The block size is determined automatically when read
ing tapes (key letters 'x' and 't') .

tells tar to complain if i t cannot resolve all of the links to the files dumped. I f this is
not specified, no error messages are printed.

tells tar to not restore the modification, times. The mod time will be the time of
extraction.

1

TAR (1) TAR (1)

FILES
/dev/mt?
/tmp/tar•

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The current
magtape driver cannot backspace raw magtape. If the archive is on a disk file the b option
should not be used at all, as updating an archive stored in this manner can destroy it.
The current limit on file name length is 1 00 characters.

7th Edition 2

TBL (1) TBL (1)

NAME

tbl - format tables for nroff or troff

SYNOPSIS

tbl [files] . . .

DESCRIPTION

Tbl is a preprocessor for formatting tables for nroff or troff(1) . The input files are copied to the
standard output, except for lines between .TS and .TE command lines, which are assumed to
describe tables and reformatted. Details are given in the reference manual.

As an exampfe, letting \t represent a tab (which should be typed as a genuine tab) the input
.TS

yields

c s s
c c s
C C C
I n n.
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3 .26
Bernards Twp.\t3087\t3 .74
Bemardsville\t201 8\t3 .30
Bound Brook\t3425\t3 .04
Branchburg\t 1644\t3 .49
Bridgewater\t7897\tJ.8 1
Far HHls\t240\t3 . 1 9
.TE

Household Population
Town Households

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Branchburg
Bridgewater
Far Hills

Number Size
789 3 .26

3087 3.74
201 8 3 .30
3425 3.04
1644 3.49
7897 3 .8 1
240 3 . 19

I f no arguments are given, tbl reads the standard input, so i t may be used as a filter. When i t is
used with eqn or neq n the tbl command should be first, to minimize the volume of data passed
through pipes.

SEE ALSO

troff(l) , eqn (1)
M . E . Lesk, TBL.

7th Edition

TC (1) TC (1)

NAME
tc - photypesetter simulat'Or

SYNOPSIS
tc [-t 1 [- sN 1 [-pL 1 [file 1

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Graphic Systems photo
typesetter (cat) . The standard output of tc is intended for a Tektronix 401 5 (a 401 4 teminal
with ASCII and APL character sets). The sixteen typesetter sizes are mapped into the 401 4's
four sizes� the entire TROFF character set is drawn using the 401 4's character generator, using
overstruck combinations where necessary. Typical usage:

troff -t file I tc

At the end of each page tc waits for a newline (empty line) from the keyboard before continu
ing on to the next page. In this wait state, the command e will suppress the screen erase _before
the next page� sN will cause the next N pages to be skipped� and !line will send line to the
shell.

The command line options are:

- t Don't wait between pages� for directing output into a file.

- sN Skip the first N pages.

-pL Set page length to L. L may include the scale factors p (points) , i (inches) , c (centime-
ters), and P (picas)� default is picas.

' - I w' Multiply the default aspect ratio, 1 .5, of a displayed page by 1/w.

SEE ALSO
troff(l) , plot (1)

BUGS
Font distinctions are lost.
The aspect ratio option is unbelievable.

7th Edition 1

TEE (1) TEE (1)

NAME
tee - pipe fitting

SYNOPSIS
tee [- i] [-a] [file] . . .

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files. Option
- i ignores interrupts; option - a causes the output to be appended to the files rather than
overwriting them.

7th Edition 1

TEST (l) TEST (1)

NAME
test - condition command

SYNOPSIS h '-. 1r 7 ((htfl 1s0
test expr . ':t sf...,-A.;.J. 1s k/1 \fP\I ICI '€---- 'i> .• (flo111 /cs"')

DESCRIPTION [x, -_f.�p.-hfS
test evaluates the expression expr, and if its value is true then returns zero exit status� other
wise, a non zero exit status is returned. test returns a non zero exit if there are no arguments.
The following primitives are used to 'construct expr.

·-r file true if the fil� exists and is readable.
- w file true if the file exists and is writable.

- f file true if. the file exists and is not a directory.

- d file true if the file exists and is a directory.

-s file true if the file exists and has a size greater than zero.

- t [tildes]
true if the open file whose file descriptor number is fildes (1 by default) is associated
with a terminal device.

- z s l true i f the length of string s1 i s zero.

- n s l true if the length of the string s1 is nonzero.

sl = s2 true if the strings s1 and s2 are equal.

s 1 ! == s2 true if the strings s 1 and s2 are not equal.

s l true if s1 is not the null string.

n l -eq n2
true if the integers n 1 and n2 are algebraically equal. Any of the comparisons -ne,
-gt, -ge, -It, or - le may be used in place of -eq.

These primaries may be combined with the following operators:

unary negation operator

- a binary and operator

-o binary or operator

(expr)
parentheses for grouping.

- a has higher precedence than -o. Notice that all the operators and flags are separate argu
ments to test. Notice also that parentheses are meaningful to the Shell and must be escaped.

SEE ALSO
sh { 1) , find (1)

7th Edition 1

TIME (1) TIME (I)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION

BUGS

The given command is executed; after it is complete, time prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of the command.
Times are reported in seconds.

The execution time can depend on what kind of memory the program happens to land in; the
user time in MOS is often half what it is in core.

The times are p�nted on the diagnostic output stream.

Elapsed time is accurate to the second, while the CPU times are measured to the 60th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

7th Edition

TK (l) TK (l)

NAME
tk - paginator for the Tektronix 4014

SYNOPSIS
tk [-t] [-N] [-pL] [file]

DESCRIPTION
The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on
the screen, divides the screen into N columns, and contributes an eight space page offset in the
(default) single-column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. Teletype Model 37 half- and reverse-line sequences are interpreted and plotted. At
the end of each page tk waits for a newline (empt¥ line) from the keyboard before continuing
on to the next page. In this wait state, the command !command will send the command to the
shell.

The command line options are:

-t Don't wait between pages; for directing output into a file.

- N Divide the screen into N columns and wait after the last column.

-pL Set page length to L lines.

SEE ALSO
pr(l)

7th Edition 1

TOUCH (1)

NAME
touch - update date last modified of a file

SYNOPSIS
touch [- c] file . • .

DESCRIPTION

TOUCH (1)

Touch attempts to set the modified date of each file. This is done by reading a character from
the file and writing it back.

If a file does not exist, an attempt will be made to create it unless the -c option is specified.

7th Edition 1

TP (1) TP (1)

NAME
tp - manipulate tape archive

SYNOPSIS
tp [key] [name . . .]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu
ment. The key is a string of characters containing at most one function letter and possibly one
or more function modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases, appearance of a direc
tory name refers to the files and (recursively) subdirectories of that directory. ·

The function portion of the key is specified by one of the following letters:
r The named files are written on the tape. If files with the same names already exist ,

they are replaced. 'Same' is determined by string comparison, so ' ./abc' can never be
the same as '/usr/dmr/abc' even if '/usr/dmr' is the current directory. If no file argu
ment is given, • .' is the default.

u

d

X

t

updates the tape. u is like r, but a file is replaced only if its modification date is later
than the date stored on the tape� that is to say, if it has changed since it was dumped.
u is the default command if none is given.

deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.
lists the names of the specified files. If no file argument is given , the entire contents
of the tape is listed.

The following characters may be used in addition to the letter which selects the function
desired.
m
0, . • • , 7

v

c

r

w

7th Edition

Specifies magtape as opposed to DECtape.

This modifier selects the drive on which the tape is mounted. For DECtape, x is
default; for magtape '0' is the default.

Normally tp does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

means a fresh dump is being created; the tape directory is cleared before beginning.
Usable only with r and u. This option is assumed with magtape since it is impossible
to selectively overwrite magtape.

Errors reading and writing the tape are noted, but no action is taken. Normally,
errors cause a return to the command level.
Use the first named file, rather than a tape, as the archive. This option is known to
work only with x.

causes tp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user's response. Response y means 'yes' , so the file
is treated. Null response means 'no', and the file does not take part in whatever is
being done. Response x means 'exit'; the tp command terminates immediately. In
the x function, files previously asked about have been extracted already. With r, u,
and d no change has been made to the tape.

deprecated 1

TP (l)

FILES
/dev/tap?
/dev/mt?

SEE ALSO
ar(l) , tar (l)

DIAGNOSTICS

BUGS

Several; the non-obvious one is 'Phase error' , which means the file changed after it was
selected for dumping but before it was dumped.

A single file with several links to it is treated like several files.

TP (1)

Binary-coded control information makes magnetic tapes written by tp difficult to carry to other
machines; tar (l) · avoids the problem.

7th Edition 2

TR (l) TR (l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds 1 [string! [string2 1 1

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected
characters. Input characters found in string] are mapped into the corresponding characters of
string2. When string2 is short it is padded to the length of string 1-by duplicating its last charac
ter. Any combination of the options -cds may be used: -c complements the set of characters
in string] with respect to the universe of characters whose ASCII codes are 01 through 0377
octal; -d deletes all input character.s in string]; - s squeezes all strings of repeated output char
acters that are i� string2 to single characters.
In either string the notation a -b means a range of characters from a to b in increasing ASCII
order. The character '\' followed by 1 , 2 or 3 octal digits stands for the character whose ASCII
code is given by those digits. A '\' followed by any other character stands for that character.

The following example creates a list of all the words in 'file 1 ' one per line in 'file2' , where a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect '\'
from the Shell. 0 1 2 is the ASCII code for newline.

tr -cs A-Za-z '\01 2' < filel >file2

SEE ALSO
ed (1) , ascii (7)

BUGS
Won't handle ASCII NUL in string] or string2; always deletes NUL from input.

7th Edition 1

4llif��t ·���y

TROFF (1) TROFF (1)

NAME
troff, nroff - text formatting and typesetting

SYNOPSIS
troff [option] . . . [file] . . .
nroff [option] . . . [file] . . .

DESCRIPTION
Tro.ffformats text in the named .files for printing on a Graphic Systems C/ AfT phototypesetter�
nro.fffor typewriter-like devices. Their capabilities are described in the Nro.D/Troffuser 's manual.

If no .file argument is present, the standard input is read. An argument consisting of a single
minus (-) is taken to be a file name corresponding to the standard input. The options, which
may appear in any order so long as they appear before the files, are:
-olist

- nN

Print orily pages whose page numbers appear in the comma-separated list of numbers
and ranges. A range N- M means pages N through M� an initial -N means from
the beginning to page N� and a final N- means from N to the end.
Number first generated page N.

- sN Stop every N pages. Nroffwill halt prior to every N pages (default N- 1) to allow pa
per loading or changing, and will resume upon receipt of a newline. Troff will stop
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and
resume when the typesetter's start button is pressed.

-mname Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

-raN Set register a (one-character) to N.

- i Read standard input after the input files are exhausted.

- q Invoke the simultaneous input-output mode of the rd request.
Nroff only

-T name Prepare output for specified terminal. Known names are 37 for the (default) Tele
type Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or any termi- ·

nal without half-line capability) , 300S for the DASI-300S, 300 for the DASI-300, and
450 for the DASI-450 (Diablo Hyterm) .

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-- h Use output tabs during horizontal spacing to speed output and reduce output charac-
ter count. Tab settings are assumed to be every 8 nominal character widths.

Troff only

- t Direct output to the standard output instead of the phototypesetter.

- f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

- w Wait until phototypesetter is available, if currently busy.

- b Report whether the phototypesetter is busy or available. No text processing is done.

-a Send a printable ASCII approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and mo-
tions, to reduce phototypesetter elasped time.

-g Prepare output for a GCOS phototypesetter and direct it to the standard output (see
gcatO)) .

If the file /usr/admltracct is writable, troff keeps phototypesetter accounting records there. The
integrity of that file may be secured by making troffa 'set user-id' program.

7th Edition

TROFF (l)

FILES
/usr/lib/suftab
/tmp/ta*
/usr/lib/tmac/tmac. *
I usr /lib/term/*
/usr/lib/font/*
/dev/cat
/usr/adm/tracct

suffix hyphenation tables
temporary file
standard macro files
terminal driving tables for nro.ff
font width tables for tro.ff
phototypesetter
accounting statistics for /dev/cat

SEE ALSO
J. F. Ossanna, NrojJ/Tro.ff user 's manual
B. W. Kernighan, A TROFF Tutorial
eqn (l) , tbi (l)
col (1) , tk (1) (nro.ff only)
tc(l) , gcat (l } (tro.ffonly)

7th Edition

TROFF (l)

2

TRUE (1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE (1)

True does nothing, successfully. False does nothing, unsuccessfully. They are typically used in
input to sh(l) such as:

while true
do

command
done

SEE ALSO
sh (1)

DIAGNOSTICS
True has exit status zero, false nonzero.

7th Edition

TSORT (1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION

TSORT (1)

Tsort produces on the standard output a totally ordered list of items consistent with a partial
ordering of items mentioned in the input file. If no file is specified, the standard input is
understood.

The. input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different
items indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(l)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm� not worth fixing for the typical use of ordering a library archive file.

7th Edition 1

TTY (1)

NAME
tty - get terminal name

SYNOPSIS
tty

DESCRIPTION
Try prints the pathname of the user's terminal.

DIAGNOSTICS
'not a tty' if the standard input file is not a terminal.

7th Edition

TTY (l I

UNIQ (l) UNIQ (1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [- udc [+n] [-n 1 1 [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed
ing copies of repeated lines ar.e removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort (!) . If the -u flag is used, just
the lines that are not repeated in the original file are output. The -d option specifies that one
copy of just the repeated lines is to be written. The normal mode output is the union of the
-u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.
The n arguments specify skipping an initial portion of each line in the comparison:

- n The first n fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort{ l) , comm(l)

7th Edition PDPl l 1

UNITS (1) UNITS (I)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

BUGS

Units converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch
You want: em

• 2.54000e+OO
I 3. 9370le-Ol

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 1 5 pounds forcelin2
You want: atm

• 1.02069e+OO
I 9. 79730e- Ol

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog
nized, together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of gravity
force same as g
mole Avogadro's number
water pressure head per unit height of water
au astronomical unit

'Pound' is a unit of mass. Compound names are run together, e.g. 'lightyear'. British units
that differ from their US counterparts are prefixed thus: 'brgallon' . For a complete list of units,
'cat lusrlliblunits'.

lusr/lib/units

Currency conversions are handled, but don't base your financial plans on them.

7th Edition

UUCP (lC) UUCP (lC)

NAME

uucp, uulog - unix to
,
unix copy

SYNOPSIS

uucp [option 1 . . . source-file . .. destination-file

uulog [option] .. .

DESCRIPTION

FILES

Uucp copies files named by the source-file arguments to the destination-file argument. A file
name may be a path name on your machine, or may have the form

system-name!pathname

where 'system-name' is taken from a list of system names which uucp knows about. Shell
metacharacters �· [] appearing in the pathname part will be expanded on the appropriate system.

Pathnames may be one of

(1) a full pathname;

(2) a pathname preceded by -user, where user is a userid on the specified system and is
replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system the copy will fail. If the
destination-file is a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and write per
missions (see chmod(2)) .

The following options are interpreted by uucp.

-d Make all necessary directories for the file copy.

- c Use the source file when copying out rather than copying the file to the spool directory.

-m Send mail to the requester when the copy is complete.

Uu/og maintains a summary log of uucp and uux(l)
'/usr/spool/uucp/LOGFILE' by gathering information from
'/usr/spool/uucp/LOG.*.?' . It removes the partial log files.

The options cause uuiog to print logging information:

-ssys Print information about work involving system sys.

-uuser
Print information about work done for the specified user.

/usr/spool/uucp - spool directory
/usr/lib/uucp/* - other data and program files

transactions in the file
partial log files named

SEE ALSO

uux(l) , mail(!)
D. A. Nowitz, Uucp Implementation Description

WARNING

The domain of remotely accessible files can (and for obvious security reasons, usually should)
be severely restricted. You will very likely not be able to fetch files by pathname; ask a respon
sible person on the remote system to send them to you. For the same reasons you will prob-

,&R�:::, ably not be able to send files to arbitrary pathnames. As distributed, the generally accessible
WJMW files are those whose names begin /usr/spool/uucp/users.

7th Edition 1

UUCP (IC) UUCP (lC)

BUGS
All files received by uucp will be owned by uucp.
The - m option will only work sending files or receiving a single file. (Receiving multiple files
specified by special shell characters ?* [] will not activate the - m option.)

7th Edition 2

-w • .. '

UUX () C) UUX (lC)

NAME
uux - unix to unix command execution

SYNOPSIS
uux [-] command-string

DESCRIPTION

FILES

Uux will gather 0 or more files from various systems, execute a command on a specified system
and send standard output to a file on a specified system.
The command-string !s made up of one or more arguments that look like a shell command line,
except that the command and file names may be prefixed by system-name! . A null system
name is interpreted as the local system.

File names may be one of

(1) a fut rpathname;

(2) a pathname preceded by -x:a; where xxx is a use rid on the specified system and is
replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

The • - ' option will cause the standard input to the uux command to be the standard input to
the command-string.

For example, the command

u•lx "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.diff"

will get the f1 files from the usg and pwba machines, execute a diff command and put the
results in fl .diff in the local directory.

Any special shell characters such as < > ;I should be quoted either by quoting the entire
command-string, or quoting the special characters as individual arguments.

/usr/uucp/spool - spool directory
/usr/uucpr - other data and programs

SEE ALSO
uucp(l)
D . A. Nowitz, Uucp implementation description

WARNING

BUGS

An installation may, and for security reasons generally will, limit the list of commands
executable on behalf of an incoming request from uux. Typically, a restricted site will permit
little other than the receipt of mail via uux.

Only the first command of a shell pipeline may have a system-name! . All other commands are
executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do.
The shell tokens < < and > > are not implemented.
There is no notification of denial of execution on the remote machine.

7th Edition

WAIT (1) WAIT (1)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with & have completed, and report on abnormal terminations.
Because the wait(2) system call must be executed in the parent process, the Shell itself exe
cutes wait, without creating a new process.

SEE ALSO
sh(l)

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the Shell, and thus can't be
waited for.

7th Edition 1

WALL (1M) WALL (lM)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION

FILES

Wall reads its standard input until an end-of-file. It then sends this message, preceded by
'Broadcast Message . . . ', to all logged in users.

The sender should be super-user to override any protections the users may have invoked.

/dev/tty?
/etc/utmp

SEE ALSO
mesg(l) , write (l)

DIAGNOSTICS
'Cannot send to . . . ' when the open on a user's tty file fails.

7th Edition 1

WC (l) WC (l)

NAME
we - word count

SYNOPSIS
we [- lwc] [name . . .]

DESCRIPTION
We counts lines, words and characters in the named files, or in the standard input if no name
appears. A word is a maximal string of characters delimited by spaces, tabs or newlines.

If the optional argument is present, just the specified counts (lines, words or characters) are
selected by the letters I, w, or c.

7th Edition 1

WHO (l) WHO (1)

NAME
who - who is on the system

SYNOPSIS
who [who-file 1 [am I 1

DESCRIPTION

FILES

Who. without an argument, lists the login name, terminal name, and login time for each
current UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains a
record of all the logins since it was created. Then who lists logins, logouts, and crashes since
the creation of the wtmp file. Each login is listed with user name, terminal name (with '/dev/'
suppressed) , and date and time. When an argument is given, logouts produce a similar line
without a user name. Reboots produce a line with 'x' in the place of the device name, and a
fossil time indicative of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you') , who tells who you are logged
in as.

/etc/utmp

SEE ALSO
getuid (2) , utmp(S)

7th Edition 1

WRITE (1) WRITE (1)

NAME
write - write to another user

SYNOPSIS
write user [ttyname]

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first called. it sends the
message

Message from youmame yourttyname ...

The recipient of the message should write back at this point. Communication continues until
an end of file is read from the terminal or an interrupt is sent. At that point write writes 'EOT'
on the other terminal and exits.

If you want to write to a user who is logged in more than once, the tryname argument may be
used to indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command. At the outset writ
ing is allowed. Certain commands, in particular n;o.ffand pr(l) disallow messages in order to
prevent messy output.

If the character ' ! ' is found at the beginning of a line, write calls the shell to execute the rest of
the line as a command.

The following protocol is suggested for using write: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis
tinctive signal- (o) for 'over' is conventional-that the other may reply. (oo) for 'over and
out' is suggested when conversation is about to be terminated.

/etc/utmp to find user
/bin/sh to execute ' ! '

SEE ALSO
mesg(l) , who(l) , mail(l)

7th Edition 1

YACC (1) YACC (1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [- vd] grammar

DESCRIPTION

FILES

Ya c converts a context-free grammar into a set of tables for a simple automaton which exe
cutes an LR (1) parsing algorithm. The grammar may be ambiguous; specified precedence rules
are used to break ambiguities.

The output file, y. tab.c, must be compiled by the C compiler to produce a program yyparse.
This program must be loaded with the lexical analyzer program, yylex, as well as main and yyer
ror, an error handling routine. These routines must be supplied by the user; Lex(l) is useful
for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

If the - d flag is used, the file y. tab. h is generated with the define statements that associate the
yacc-assigned 'token codes' with the user-declared 'token names' . This allows source files other
than y. tab.c to access the token codes.

y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files
/usr/lib/yaccpar parser prototype for C programs

(!ri!l:rrr� /lib/liby.a library with default 'main' and 'yyerror'

SEE ALSO
lex(l)
LR Parsing by A. V . Aho and S . C. Johnson, Computing Surveys, June, 1 974.
YACC - Yet �nother Compiler Compiler by S. C. Johnson.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a
more detailed report is found in the y. output file. Similarly, if some rules are not reachable
from the start symbol, this is also reported.

Because file names are fixed, at most one yacc process can be active in a given directory at a
time.

7th Edition 1

INTRO (2) INTRO (2)

NAME
intro, errno - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h >

DESCRIPTION
Section 2 of this manual lists all the entries into the system. Most of these calls have an error
return. An error condition is indicated by an otherwise impossible returned value. Almost
always this is -1 ; the individual sections specify the details. An error number is also made
available in the external variable errno. Errno is not cleared on successful calls, so it should be
tested only after an error has occurred.

There is a table of messages associated with each error, and a routine for printing the message;
See perror(3) . The possible error numbers are not recited with each writeup in section 2, since
many errors are possible for most of the calls. Here is a list of the error numbers, their names
as defined in <errno.h > , and the messages available using perror.

0 Error 0
Unused.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to signal and ptrace does not exist, or is already
dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit) , which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO I/0 error
Some physical 110 error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice that does not exist, or beyond the limits of
the device. It may also occur when, for example, a tape drive is not dialled in or no
disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5 1 20 bytes is presented to exec.

8 ENOEXEC Exec format error
A reouest is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number, see a.out(5) .

9 EBADF Bad file number

7th Edition

Either a file descriptor refers to no open file, or a read (resp. write) request is made to
a file that is open only for writing (resp. reading) .

1

INTRO (2) INTRO (2)

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

1 1 EAG AIN No more processes
In a fork, the system's process table is full or the user is not allowed to create any more
processes.

1 2 ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is able to sup
ply. This is not a temporary condition; the maximum core size is a system parameter.
The error may also occur if the arrangement of text, data, and stack segments requires
too many segmentation registers.

1 3 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting tO access the arguments of a
system call.

1 5 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

1 6 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory,
mounted-on file, active text segment) .

1 7 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

1 8 EXDEV Cross-device link
A link to a file on another device was attempted.

1 9 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to chdir .

. 2 1 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown
signal in signal, reading or writing a file for which seek has generated a negative pointer.
Also set by math functions, see intro(3) .

·

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTTY Not a typewriter
The file mentioned in stty or gtty i:; not a terminal or one of the other devices to which
these calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program that is currently open for writing (or

7th Edition 2

INTRO (2) INTR0 (2)

reading!) . Also an attempt to open for writing a pure-procedure program that is being
executed.

27 EFBIG File too large
The size of a file exceeded the maximum (about 1 09 bytes) .

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An /seek was issued to a pipe. This error should also be issued for other non-seekable
devices.

30 EROFS Read-only file system
An attempt_ to modify a file or directory was made on a device mounted read-only.

3 1 EMLINK Too many links
An attempt to make more than 32767 links to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition nor
mally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large

SEE ALSO
intro(3)

ASSEMBLER

The value of a function in the math package (3M) is unrepresentable within machine
precision.

as /usr/include/sys.s tile . • •

The PDP1 1 assembly language interface is given for each system call. The assembler symbols
are defined in '/usr/include/sys.s'.

Return values appear in registers rO and rl; it is unwise to count on these registers being
preserved when no value is expected. An erroneous call is always indicated by turning on the
c-bit of the condition codes. The error number is returned in rO. The presence of an error is
most easily tested by the instructions bes and bee ('branch on error set (or clear) '). These are
synonyms for the bes and bee instructions.

On the Interdata 8/32, the system call arguments correspond well to the arguments of the C
routines. The sequence is:

la %2,errno
1 %0,&callno
svc O,args

Thus register 2 points to a word into which the error number will be stored as needed; it is
cleared if no error occurs. Register 0 contains the system call number; the nomenclature is
identical to that on the PDPl l . The argument of the sve is the address of the arguments, laid
out in storage as in the C calling sequence. The return value is in register 2 (possibly 3 also, as
in pipe) and is - 1 in case of error. The overflow bit in the program status word is also set
when errors occur.

7th Edition 3

ACCESS (2) ACCESS (2)

NAME
access - determine accessibility of file

SYNOPSIS
access (name, mode)
�bar *name;

DESCRIPTION
Access checks the given file name for accessibility according to mode, which is 4 (read) , 2
(write) or 1 (execute) or a combination thereof. Specifying mode 0 tests whether the direc
tories leading to the file can be searched and the file exists.

An appropriate error indication is returned if name cannot be found or if any of the desired ac
cess modes would not be granted. On disallowed accesses - 1 is returned and the error code is
in errno. 0 is returned from successful tests.

The user and group IDs with respect to which permission is checked are the real UID and GID
of the process, so this call is useful to set-UID programs.

Notice that it is only access bits that are checked. A directory may be announced as writable by
access, but an attempt to open it for writing will fail (although files may be created there) ; a file
may look executable, but exec will fail unless it is in proper format.

SEE ALSO
stat(2)

ASSEMBLER
(access - 33.)
sys access; name; mode

7th Edition 1

ACCT (2) ACCT (2)

NAME
acct - turn accounting on or off

SYNOPSIS
acct(file)
char *file;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it terminates.
This call, with a null-terminated string naming an existing file as argument, turns on account
ing� records for each terminating process are appended to file. An argument of 0 causes
accounting to be turned off.

The accounting file format is given in acct(S) .

SEE ALSO
acct(S) , sa(l)

DIAGNOSTICS

BUGS

On error - 1 is returned. The file must exist and the call may be exercised only by the super
user. It is erroneous to try to turn on accounting when it is already on.

No accounting is produced for programs running when a crash occurs. In particular nonter
minating programs are never accounted for.

ASSEMBLER
(acct - 5 1 .)
sys acct; file

7th Edition

· ALARM (2)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm (seconds)
unsigned seconds;

DESCRIPTION

ALARM (2)

Alarm causes signal SIGALRM, see signa/(2) , to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is cancelled. Because the clock has a l·second resolution, the signal may occur
up to one second early; because of scheduling delays, resumption of execution of when the sig·
nal is caught may be delayed an arbitrary amount. The longest specifiable delay time is 65535
seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
pause(2) , signal(2) , sleep(J)

ASSEMBLER
(alarm - 27.)
(seconds in rO)
sys alarm
(previous amount in rO)

7th Edition 1

j

BRK (2) BRK (2)

NAME
brk, sbrk, break - change core allocation

SYNOPSIS
char *brk(addr)

char *sbrk<incr)

DESCRIPTION
Brk sets the system's idea of the lowest location not used by the program (called the break) to
addr (rounded up to the next multiple of 64 bytes on the PDPl l , 256 bytes on the Interdata
8/3 2, 5 1 2 bytes on the VAX -1 1 /780) . Locations not less than addr and below the stack pointer
are not in the address space and will thus cause a memory violation if accessed.

In the alternate fu.nction sbrk, incr more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via exec the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use break.

SEE ALSO
exec(2) , malloc(3} , end(3)

DIAGNOSTICS

BUGS

Zero is returned if the break could be set� - 1 if the program requests more memory than the
system limit or if too many segmentation registers would be required to implement the break.

Setting the break in the range 01 77701 to 01 77777 (on the PDP l l) is the same as setting it to
zero.

ASSEMBLER
(break = 1 7.)
sys break; addr

Break performs the function of brk. The name of the routine differs from that in C for histori
cal reasons.

7th Edition 1

CHDIR (2)

NAME
chdir. chroot - change default directory

SYNOPSIS
chdir(dirname)
char *dirname;

chroot(dirname)
char *dirname;

DESCRIPTION

CHOIR (2)

Dirname is the address of the pathname of a directory, terminated by a null byte. Chdir causes
this directory to become the current working directory, the starting point for path names not
beginning with • /'.

Chroot sets the root directory, the starting point for path names beginning with •r . The call is
restricted to the super-user.

SEE ALSO
cd(l)

DIAGNOSTICS
Zero is returned if the directory is changed; - 1 is returned if the given name is not that of a
directory or is not searchable.

ASSEMBLER
(chdir - 1 2.)
sys chdir; dirname

(chroot - 61 .)
sys chroot; dirname

7th Edition 1

CHMOD (2) CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
chmod (name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed to by name has its mode
changed to mode. Modes are constructed by ORing together some combination of the follow
ing:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (- n or - i option of ld(l)) then mode 1 000 prevents
the system from abandoning the swap-space image of the program-text portion of the file when
its last user terminates. Thus when the next user of the file executes it, the text need not be
read from �he file system but can simply be swapped in, saving time. Ability to set this bit is
restricted to the super-user since swap space is consumed by the images; it is only worth while
for heaily used commands.

Only the owner of a file (or the super-user) may change the mode. Only the super-user can set
the 1000 mode.

SEE ALSO
chmod(l)

DIAGNOSTIC
Zero is returned if the mode is changed; - 1 is returned if name cannot be found or if current
user is neither the owner of the file nor the super-user.

ASSEMBLER
(chmod - 1 5 .)
sys chmod; name; mode

7th Edition 1

CHOWN (2)

NAME
chown - change owner and group of a file

SYNOPSIS
chown(name, owner, group)
char *name;

DESCRIPTION

CHOWN (2))

The file whose name is given by the null-terminated string pointed to by name has its owner and
group changed as specified. Only the super-user may execute this call, because if users were
able to give files away, they could defeat the (nonexistent) file-space accounting procedures.

SEE ALSO
chown(l) , passwd(5)

DIAGNOSTICS
Zero is returned if the owner is changed; - 1 is returned on illegal owner changes.

ASSEMBLER
(chown - 1 6.)
sys chown; name; owner; group

7th Edition 1

(1 ,

CLOSE (2)

NAME
close - close a file

SYNOPSIS
close (fi Ides)

DESCRIPTION

CLOSE (2)

Given a file descriptor such as returned from an open, creat, dup or pipe(2) call, close closes the
associated file. A close of all files is automatic on exit, but since there is a limit on the number
of open files per process, close is necessary for programs which deal with many files.

Files are closed upon termination of a process, and certain file descriptors may be closed by
exec(2) (see ioct/(2)) .

SEE ALSO
creat (2) , open (2) ; pipe (2) , exec(2) , ioctl (2)

DIAGNOSTICS
Zero is returned if a file is closed� - 1 is returned for an unknown file descriptor.

ASSEMBLER
(close = 6.)
(file descriptor in rO)
sys close

7th Edition 1

CREA}' (2) CREAT (2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char •name;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process's mode mask (see umask(2)) . Also see chmod(2) for the construction of the mode
argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with a mode that forbids writing.
Then if a second instance of the program attempts a creat, an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write(2) , close(2) , chmod(2) , umask (2)

DIAGNOSTICS
The value - 1 is returned if: a needed directory is not searchable; the file does not exist and the
directory in which it is to be created is not writable; the file does exist and is unwritable; the file
is a directory; there are already too many files open.

ASSEMBLER
(creat - 8.)
sys creat; name; mode
(file descriptor in rO)

7 th Edition 1

DUP (2)

NAME
dup, dup2 - duplicate an open file descriptor

SYNOPSIS
dup(fildes)
int tildes;

dup2 (tildes, ft ldes2)
int tildes, fildes2 ;

DESCRIPTION

DUP (2)

Given a file descriptor returned from an open, pipe, or creat call, dup allocates another file
descriptor synonymous with the original. The new file descriptor is returned.

In the second form of the call, fildes is a file descriptor referring to an open file, and fi/des2 is a
non-negative integer less than the maximum value allowed for file descriptors (approximately
1 9) . Dup2 causes fildes2 to refer to the same file as fi/des. If fildes2 already referred to an open
file, it is closed first.

SEE ALSO
creat(2) , open(2) , close(2) , pipe(2)

DIAGNOSTICS
The value - 1 is returned if: the given file descriptor is invalid; there are already too many
open files.

ASSEMBLER
(dup .. 41 .)
(file descriptor in rO)
(new file descriptor in rl)
sys dup
(file descriptor in rO)

The dup2 entry is implemented by adding 0100 to fildes.

7th Edition 1

EXEC (2) EXEC (2)

NAME
execl, execv, execle, execve, execlp, execvp, exec, exece, environ - execute a file

SYNOPSIS
execHname, argO, argl, ••• , argo, 0)
char *name, *argO, *argl, • • • , *argo;

execv (name, argv)
char *name, *argv() ;

execle(name, argO, argl, • • • , argn, 0 , envp)
char *name, *argO, *argl, • • • , *argo, *envpl) ;

execve(name, argv, envp) ;
char *name, *a�v(), *envpl) ;

extern char **environ;

DESCRIPTION
Exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec� the calling
core image is lost.

Files remain open across exec unless explicit arrangement has been made; see ioct/(2) . Ignored
signals remain ignored across these calls, but signals that are caught (see signa/(2)) are reset to
their default values.

Each user has a real user 10 and group 10 and an effective user 10 and group 10. The real 10
identifies the person using the system� the effective 10 determines his access privileges. Exec
changes the effective user and group 10 to the owner of the executed file if the file has the
'set-user-10' or 'set-group-10' modes. The real user 10 is not affected.

The name argument is a pointer to the name of the file to be executed. The pointers arg[O] ,
arg[l] . . . address null-terminated strings. Conventionally arg[O] is the name of the file.

From C, two interfaces are available. Exec/ is useful when a known file with known arguments
is being called; the arguments to exec/ are the character strings constituting the file and the
arguments; the first argument is conventionally the same as the file name (or its last com
ponent) . A 0 argument must end the argument list.

The execv version is usefuL when the number of arguments is unknown in advance; the argu
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char ••argv, ••envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argv{argc] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an " =- " , and a null-terminated value. The array of pointers is ter
minated by a null pointer. The shell sh(l) passes an environment entry for each global shell
variable defined when the program is called. See environ(S) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global cell environ, which
is used by execv and exec/ to pass the environment to any subprograms executed by the current

7th Edition 1

EXEC (2) EXEC (2)

FILES

program. The exec routines use lower-level routines as follows to pass an environment expli
citly:

execle (file, argO, arg 1 , . . . , argn, 0, environ) ;
execve(file, argv, environ) �

Execlp and execvp are called with the same arguments as exec/ and execv, but duplicate the
shell's actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
fork(2) , environ (S)

DIAGNOSTICS

B UGS

If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(S)) , if maximum memory is exceeded, or if the arguments require too much space,
a return constitutes the diagnostic; the return value is - 1 . Even for the super-user, at least
one of the execute-permission bits must be set for a file to be executed.

If execvp is called to execute a file that turns out to be a shell command file, and if it is impossi
ble to execute the shell, the values of argv[O} and argv{ -1} will be modified before return.

ASSEMBLER
(exec = 1 1 .)
sys exec; name; argv

(exece = 59.)
sys exece; name; argv; envp

Plain exec is obsoleted by exece, but remains for historical reasons.
When the called file starts execution on the PDP 1 1 , the stack pointer points to a word contain
ing the number of arguments. Just above this number is a list of pointers to the argument
strings, followed by a null pointer, followed by the pointers to the environment strings and then
another null pointer. The strings themselves follow; a 0 word is left at the very top of memory.

sp- nargs
argO

argn
0
envO

envm
0

argO: <arg0\0>

envO: <env0\0>
0

On the Interdata 8/32, the stack begins at a conventional place (currently OxDOOOO) and grows
upwards. After exec, the layout of data on the stack is as follows.

int 0
argO: byte

argpO: int argO

7th Edition 2

EXEC (2) EXEC (2)

int 0
envpO: int envO

int 0
%2- space 40

int nargs
int argpO
int envpO

%3-

This arrangement happens to conform well to C calling conventions.

7th Edition 3

EXIT (2)

NAME
exit - terminate process

SYNOPSIS
exit(status)
int status;

_exit(status)
int status;

DESCRIPTION

EXIT (2)

Exit is the normal means of terminating a process. Exit closes all the process's files and notifies
the parent process if it is executing a wait. The low-order 8 bits of status are available to the
parent process.

This call can never return.

The C function exit may cause cleanup actions before the final 'sys exit'. The function _exit cir
cumvents all cleanup.

SEE ALSO
wait(2)

ASSEMBLER
(exit - 1 .)
(status in rO)
sys exit

7th Edition 1

FORK (2) FORK (2)

NAME
fork - spawn new process

SYNOPSIS
fork()

DESCRIPTION
Fork is the only way new processes are created. The new process's core image is a copy of that
of the caller of fork. The only distinction is the fact that the value returned in the old (parent)
process contains the process ID of the new (child) process, while the value returned in the
child is 0. Process ID's range from 1 to 30,000 . . This process ID is used by wait(2) .

Files open before the fork are shared, and have a common read-write pointer. In particular,
this is the way that standard input and output files are passed and also how pipes are set up.

SEE ALSO
wait (2) , exec(2)

DIAGNOSTICS
Returns - 1 and fails to create a process if: there is inadequate swap space, the user is not
super-user and has too many processes, or the system's process table is full. Only the super
user can take the last process-table slot.

ASSEMBLER
(fork =- 2.)
sys fork
(new process return)
(old process return, new process ID in rO)

The return locations in the old and new process differ by one word. The C-bit is set in the old
process if a new process could not be created.

7th Edition 1

GETPID (2)

NAME
getpid - get process identification

SYNOPSIS
getpid()

DESCRIPTION

GETPID (2)

Getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.

SEE ALSO
mktemp(3)

ASSEMBLER
(getpid - 20.)
sys getpid
(pid in rO)

7th Edition 1

GETUID (2)

NAME
getuid, getgid, geteuid, getegid - get user and group identity

SYNOPSIS
getuid ()

geteuid ()

getgid()

getegid()

DESCRIPTION

GETUID (2)

Getuid returns the real user ID of the current process, geteuid the effective user ID . The real
user ID identifies the person who is logged in, in contradistinction to the effective user ID;
which determines his access permission at the moment. It is thus useful to programs which
operate using the 'set user ID' mode, to find out who invoked them.
Getgid returns the real group ID, getegid the effective group 10.

SEE ALSO
setuid(2)

ASSEMBLER
(getuid - 24.)
sys getuid
(real user ID in tO, effective user ID in rl)

(getgid =- 47.)
sys getgid ·

(real group ID in rO, effective group ID in rl)

7th Edition 1

INDIR (2) INDIR (2)

NAME
indir - indirect system call

ASSEMBLER
(indir - 0 .)
sys indir; call

The system call at the location call is executed. Execution resumes after the indir call.

The main purpose of indir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a
system call, indir returns error code EINV AL� see intro (2) .

7th Edition

IOCTL (2) IOCTL { 2)

NAME
ioctl, stty, gtty - control device

SYNOPSIS
#include <sgtty.h >

ioctl (fildes, request, argp)
struct sgttyb *argp;

stty(fildes, argp)
struct sgttyb *argp;

gtty(fildes, argp)
struct sgttyb *argp;

DESCRIPTION
foeti performs a variety of functions on character special files (devices) . The writeups of vari
ous devices in section 4 discuss how ioctl applies to them.

For certain status setting and status inquiries about terminal devices, the functions stty and guy
are equivalent to

ioctHfildes, TIOCSETP, argp)
ioctHfildes, TIOCGETP, argp)

respectively: see tty(4) .

The following two calls, however, apply to any open file:

ioctHfildes, FIOCLEX, NULL) ;
ioctHfildes, FIONCLEX, NULL) ;

The first causes the file to be closed automatically during a successful exec operation; the
second reverses the effect of the first.

SEE ALSO
stty (l) , tty (4), exec(2)

DIAGNOSTICS

BUGS

Zero is returned if the call was successful; - 1 if the file descriptor does not refer to the kind of
file for which it was intended.

Strictly speaking, since ioctl may be extended in different ways to devices with different proper
ties, argp should have an open-ended declaration like

union (struct sgttyb . . . ; ... } *argp;

The important thing is that the size is fixed by 'struct sgttyb'.

ASSEMBLER
(ioctl = 54.)
sys ioctl ; fildes; request; argp

(stty - 3 1 .)
(file descriptor in rO)
stty; argp

(gtty = 32.)
(file descriptor in rO)
sys gtty; argp

7th Edition

KILL (2) KILL (2)

NAME
kill - send signal to a process

SYNOPSIS
kill (pid, sig) ;

DESCRIPTION
Kill sends the signal sig to the process specified by the process number in rO. See signa/(2) for
a list of signals.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user.

If the process number is 0, the signal is sent to all other processes in the sender's process
group; see try(4) .

If the process number is - 1 , and the user is the super-user, the signal is broadcast universally
except to processes 0 and 1 , the scheduler and initialization processes, see init(8) .

Processes may send signals to themselves.

SEE ALSO
signal (2) , kill (1)

DIAGNOSTICS
Zero is returned if the process is killed; - 1 is returned if the process does not have the same
effective user ID and the user is not super-user, or if the process does not exist.

ASSEMBLER
(kill = 37.)
(process number in rO)
sys kill; sig

7th Edition 1

LINK (2)

NAME
link - link to a file

SYNOPSIS
link(namel, name2)
char *namel , *name2;

DESCRIPTION

LINK (2)

A link to namel is created; the link has the name name2. Either name may be an arbitrary path
name.

SEE ALSO
ln(l) , unlink(2)

DIAGNOSTICS
Zero is returned when a link is made; - 1 is returned when namel cannot ·be found: when
name2 already exists; when the directory of name2 cannot be written; when an attempt is made
to link to a directory by a user other than the super-user; when an attempt is made to link to a
file on another file system; when a file has too many links.

ASSEMBLER
Oink - 9.)
sys link; namel ; name2

7th Edition

LOCK (2)

NAME
lock - lock a process in primary memory

SYNOPSIS
lock(flag)

D ESCRIPTION

LOCK t .:. '

If the flag argument is non-zero, the process executing this call will not be swapped except if i t
i s required to grow. If the argument i s zero, the process i s unlocked. This call may only be e x
ecuted by the super-user.

B UGS
Locked processes interfere with the compaction of primary memory and can cause deadlocK
This system call is not considered a permanent part of the system.

ASSEMBLER
(lock - 53.)
sys lock; flag

7th Edition

LSEEK (2) LSEEK (2)

NAME
!seek, tell - move read/write pointer

SYNOPSIS
long lseek(fildes, offset, whence)
long offset;

long tell (fildes)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1 , the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

The returned value is the resulting pointer location.

The obsolete function te/1(/ildes) is identical to lseek(/ildes, OL, 1) .
Seeking far beyond the end of a file, then writing, creates a gap o r 'hole' , which occupies no
physical space and reads as zeros.

SEE ALSO
open (2) , creat (2) , fseek(3)

DIAGNOSTICS

BUGS

- I is returned for an undefined file descriptor, seek on a pipe, or seek to a position before the
beginning of file.

Lseek is a no-op on character special files.

ASSEMBLER
(!seek = 1 9.)
(file descriptor i n rO)
sys !seek; offset I ; offset2; whence

Offset/ and Qlfset2 are the high and low words of offset: rO and r l contain the pointer upon re
turn.

7th Edition

MKNOD (2)

NAME
mknod - make a directory or a special file

SYNOPSIS
mknod(name, mode, addr)
char *name;

DESCRIPTION

MKNOD (2)

Mknod creates a new file whose name is the null-terminated string pointed to by name. The
mode of the new file (including directory and special file bits) is initialized from mode. (The
protection part of the mode is modified by the process's mode mask; see umask(2)) . The first
block pointer of the i-node is initialized from addr. For ordinary files and directories addr is
normally zero. In the case of a special file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE A LSO
mkdir (1) , mknod (1) , filsys (5)

DIAGNOSTICS
Zero is returned if the file has been made; - 1 if the file already exists or if the user is not the
super-user.

ASSEMBLER
(mknod = 14 .)
sys mknod ; name; mode; addr

7th Edition

MOUNT (2) MOUNT (2)

NAME
mount, umount - mount or remove file system

SYNOPSIS
mount(special, name, rwfiag)
char *special, *name;

umount(special)
char *special;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings con
taining the appropriate path names.

Name must exist already. Name must be a directory (unless the root of the mounted file system
is not a directory) . Its old contents are inaccessible while the file system is mounted.

The rwftag argument determines whether the file system can be written on; if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys
tems must be mounted read-only or errors will occur when access times are updated, whether
or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

SEE ALSO
mount (I)

DIAGNOSTICS
Mount returns 0 if the action occurred; - 1 if special is inaccessible or not an appropriate file; if
name does not exist; if special is already mounted; if name is in use; or if there are already too
many file systems mounted.

Umount returns 0 if the action occurred; - 1 if if the special file is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.

ASSEMBLER
(mount = 2 1 .)
sys mount; special; name; rwfiag

(umount = 22.)
sys umount; special

7th Edition

MPX (2) MPX (2)

NAME
mpx - create and manipulate multiplexed files

SYNOPSIS
mpx(name, access) char *name;

join (fd, xd)

chan(xd)

extract (i, xd)

attach (i, xd)

detach (i, xd)

connect(fd, cd, �nd)

npgrp(i, xd, pgrp)

ckill (i, xd, signal)

#include < sys/mx.h >
mpxcall (cmd, vee)
int *vee;

DESCRIPTION
mpxcalHcmd, vee) is the system call shared by the library routines described below. Cmd
selects a command using values defined in < syslmx.h> . Vec is the address of a structure con
taining the arguments for the command.

mpx(name, access)

Mpx creates and opens the file name with access permission access (see creat(2)) and returns a
file descriptor available for reading and writing. A - 1 is returned if the fiie cannot be created,
if name already exists, or if the file table or other operating system data structures are full. The
file descriptor is required for use with other routines.

If name designates a null string, a file descriptor is returned as described but no entry is created
in the file system.

Once created an mpx file may be opened (see open(2)) by any process. This provides a form of
interprocess communication whereby a process B can 'call' process A by opening an mpx file
created by A. To B, the file is ordinary with one exception: the connect primitive could be
applied to it. Otherwise the functions described below are used only in process A and descen
dants that inherit the open mpx file.

When a process opens an mpx file, the owner of the file receives a control message when the
file is next read. The method for 'answering' this kind of call involves using attach and detach
as described in more detail below.

Once B has opened A's mpx file it is said to have a channel to A. A channel is a pair of data
streams: in this case, one from B to A and the other from A to B. Several processes may open
the same mpx file yielding multiple channels within the one mpx file. By accessing the
appropriate channel, A can communicate with B and any others. When A reads (see read(2))
from the mpx file data written to A by the other processes appears in A's buffer using a record
format described in mpxio(5) . When A writes (see write(2)) on its mpx file the data must be
formatted in a similar way.

The following commands are used to manipulate mpx files and channels.

7th Edition

join- adds a new channel on an mpx file to an open file F. 1/0 on the new channel is
I/0 on F.
chan- creates a new channel.

1

MPX (2) MPX (2 }

extract- file descriptor maintenance.
connect- similar to join except that the open file F is connected to an existing channel.
attach and detach- used with call protocol.
npgrp- manipulates process group numbers so that a channel· can act as a control ter
minal (see tzy (4)) .
cki/1- send signal (see signa/(2)) to process group through channel.

A maximum of 1 5 channels may be connected to an mpx file. They are numbered 0 through
14. Join may be used to make one mpx file appear as a channel on another mpx file. A hierar
chy or tree of mpx files may be set up in this way. In this case one of the mpx files must be
the root of a tree where the other mpx files are interior nodes. The maximum depth of such a
tree is 4.

An index is a 1 6-b.it value that denotes a location in an mpx tree other than the root: the path
through mpx 'nodes' from the root to the location is expressed as a sequence of 4-bit nibbles.
The brapch taken at the root is represented by the low-order 4-bits of an index. Each succeed
ing branch is specified by the next higher-or'der nibble. If the length of a path to be expressed
is less than 4, then the illegal channel number, 15 , must be used to terminate the sequence.
This is not strictly necessary for the simple case of a tree consisting of only a root node: its
channels can be expressed by the numbers 0 through 14. An index i and file descriptor xd for
the root of an mpx tree are required as arguments to most of the commands described below.
Indices also serve as channel identifiers in the record formats given in mpxio(5) . Since -1 is not
a valid index, it can be returned as a error indication by subroutines that normally return
indices.
The operating system informs the process managing an mpx file of changes in the status of
channels attached to the file by generating messages that are read along with data from the
channels. The form and content of these messages is described in mpxio(5) . �tlltlw
join(fd, xd) establishes a connection (channel) between an mpx file and another object. Fd is
an open file descriptor for a character device or an mpx file and xd is the file descriptor of an
mpx file. Join returns the index for the new channel if the operation succeeds and - 1 if it
does not.

Following join, fd may still be used in any system call that would have been meaningful before
the join operation. Thus a process can read and write directly to fd as well as access it via xd. If
the number of channels required for a tree of mpx files exceeds the number of open files per
mitted a process by the operating system, some of the file descriptors can be released using the
standard dose(2) call. Following a close on an active file descriptor for a channel or internal
mpx node, that object may still be accessed through the root of the tree.

chan(xd) allocates a channel and connects one end of it to the mpx file represented by file
descriptor xd. Chan returns the index of the new channel or a - 1 indicating failure. The
extract primitive can be used to get a non-multiplexed file descriptor for the free end of a chan
nel created by chan.

Both chan and join operate on the mpx file specified by xd. File descriptors for interior nodes
of an mpx tree must be preserved or reconstructed with extract for use with join or chan. For
the remaining commands described here, xd denotes the file descriptor for the root of an mpx
tree.

Extract(i, xd) returns a file descriptor for the object with index i on the mpx tree with root file
descriptor xd. A - 1 is returned by extract if a file descriptor is not available or if the arguments
do not refer to an existing channel and mpx file.

-

:!!:�:�!: ��. If a process A has created an mpx file represented by file descriptor xd, then a fit
process B can open (see open(2)) the mpx file. The purpose is to establish a channel bP.tween

7th Edition 2

MPX (2) MPX (2)

FILES

A and B through the mpx file. A ttach and Detach are used by A to respond to such opens.

An open request by B fails immediately if a new channel cannot be allocated on the mpx file, if
the mpx file does not exist, or if it does exist but there is no process (A) with a multiplexed file
descriptor for the mpx file (i .e. xd as returned by mpx(2)) . Otherwise a channel with index
number i is allocated. The next time A reads on file descriptor xd, the WATCH control mes
sage (see mpxio(5)) will be delivered on channel i. A responds to this message with attach or
detach. The former causes the open to complete and return a file descriptor to B. The latter
deallocates channel i and causes the open to fail.

One mpx file may be placed in 'listener' mode. This is done by writing ioctl(xd, MXLSTN, 0)
where xd is an mpx file descriptor and MXLSTN is defined in lusrlinclude/sgtty.h. The semantics
of listener mode are that all file names discovered by open(2) to have the syntax
system!pathname (see uucp(l)) are treated as opens on the mpx file. The operating system
sends the listener process an OPEN message (see mpxio(5)) which includes the file name being
opened. Attach and detach then apply as described above.

Detach has two other uses: it closes and releases the resources of any active channel it is applied
to, and should be used to respond to a CLOSE message (see mpxio(5)) on a channel so the
channel may be reused.
connect(fd, cd, end) . Fd is a character file descriptor and cd is a file descriptor for a channel,
such as might be obtained via extract(chan(xdJ, xd) or by open(2) followed by attach. Connect
splices the two streams together. If end is negative, only the output of fd is spliced to the input
of cd. If end is positive, the output of cd is spliced to the input of fd. If end is zero, then both
splices are made.
npgrp(i, xd, pgrp) . If xd is negative npgrp applies to the process executing it, otherwise i and
xd are interpreted as a channel index and mpx file descriptor and npgrp is applied to the process
on the non-multiplexed end of the channel. If pgrp is zero, the process group number of the
indicated process is set to the process number of that process, otherwise the value of pgrp is
used as the process group number.

Npgrp normally returns the new process group number. If i and xd specify a nonexistant chan
nel. npgrp returns - 1 .

ckill (i, xd, signaD sends the specified signal (see signa/(2)) through the channel specified by i
and xd. If the channel is connected to anything other than a process, cki/1 is a null operation. If
there is a process at the other end of the channel, the process group will be interrupted (see sig
na/(2) , ki/1(2)) . Cki/1 normally returns signal. If ch and xd specify a nonexistent channel, cki/1
returns - 1 .

/usr/include/sys/mx.h
/usr/include/sgtty.h

SEE ALSO

BUGS

mpxio(5)

Mpx files are an experimental part of the operating system more subject to change and prone to
bugs than other parts. Maintenance programs, e.g. icheck(l) , diagnose mpx files as an illegal
mode. Channels may only be connected to objects in the operating system that are accessible
through the line discipline mechanism. Higher performace line disciplines are needed. The
maximum tree depth restriction is not really checked. A non-destructive disconnect primitive
(inverse of connect) is not provided. A non-blocking flow control strategy based on messages
defined in mpxio(5) should not be attempted by novices� the enabling ioctl command should be
protected. The join operation could be subsumed by connect. A mechanism is needed for mov
ing a channel from one location in an mpx tree to another.

7th Edition 3

NICE (2) NICE (2)

NAME
nice - set program priority

SYNOPSIS
nice{incr)

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive priorities get less service
than normal. Priority 10 is recommended to users who wish to execute long-running programs
without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to
the range -20 (most urgent) to 20 (least) .

The priority of a process is passed to a child process by jork(2) . For a privileged process to
return to normal ·priority from an unknown state, nice should be called successively with argu
ments -40 (goes to priority -20 because of truncation) , 20 (to get to 0) , then 0 (to maintain
compatibility with previous versions of this call) .

SEE ALSO
nice (l)

ASSEMBLER
(nice =- 34.)
(priority in rO)
sys nice

7th Edition 1

OPEN (2) OPEN (2)

NAME
open - open for reading or writing

SYNOPSIS
open (name, mode)
char *name;

DESCRIPTION
Open opens the file name for reading (if mode is 0) , writing (if mode is 1) or for both reading
and writing (if mode is 2) . Name is the address of a string of ASCII characters representing a
path name, terminated by a null character.

The file is positioned at the beginning (byte 0) . The returned file descriptor must be used for
subsequent calls for other input-output functions on the file.

SEE ALSO
creat(2) , read(2) , write(2) , dup(2) , close(2)

DIAGNOSTICS
The value - 1 is returned if the file does not exist, if one of the necessary directories does not
exist or is unreadable, if the file is not readable (resp. writable) , or if too many files are open.

ASSEMBLER
(open == 5.)
sys open; name; mode
(file descriptor in rO)

7th Edition

PAUSE (2)

NAME
pause - stop until signal

SYNOPSIS
pause ()

DESCRIPTION

PAUSE (2)

Pause never returns normally. It is used to give up control while waiting for a signal from
ki//(2) or alarm(2) .

SEE ALSO
kill { l) , kill (2) , alarm(2) , signal(2) , setjmp(3)

ASSEMBLER
(pause - 29.)
sys pause

7th Edition 1

PHYS (2) PHYS (2)

NAME
phys - allow a process to access physical addresses

SYNOPSIS
phys(segreg, size, physadr)

DESCRIPTION
The argument segreg specifies a process virtual (data-space) address range of 8K bytes starting
at virtual address segregx8K bytes. This address range is mapped into physical address phy
sadrx64 bytes. Only the first sizex64 bytes of this mapping is addressable. If size is zero, any
previous mapping of this virtual address range is nullified. For example, the call

phys(6, 1 , 0 1 77775) ;

will map virtual addresses 0 1 60000-01 60077 into physical addresses 0 17777500-01 7777577. In
particular, virtual address 0 1 60060 is the PDP- 1 1 console located at physical address 0 1 7777560.
This call may only be executed by the super-user.

SEE ALSO
PDP- I I segmentation hardware

DIAGNOSTICS

BUGS

The function value zero is returned if the physical mapping is in effect. The value - 1 is re
turned if not super-user, if segreg is not in the range 0-7, if size is not in the range 0- 1 27, or if
the specified segreg is already used for other than a previous call to phys.

This system call is obviously very machine dependent and very dangerous. This system call is
not considered a permanent part of the system.

ASSEMBLER
(phys = 52.)
sys phys; segreg; size; physadr

7th Edition local

PIPE (2) PIPE (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
pipe (fi Ides)
int fildes(2) ;

DESCRIPTION
The pipe system call creates an l/0 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fiides(l] up
to 4096 bytes of data are buffered before the writing process is suspended. A read using the
descriptor fildes[O] will pick up the data. Writes with a count of 4096 bytes or less are atomic�
no other process can intersperse data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

SEE ALSO
sh(l) , read(2) , write (2) , fork(2)

DIAGNOSTICS

BUGS

The function value zero is returned if the pipe was created� - 1 if too many files are already
open. A signal is generated if a write on a pipe with only one end is attempted.

Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

ASSEMBLER
(pipe == 42.)
sys pipe
(read file descriptor in rO)
(write file descriptor in r l) .

7th Edition

PKON (2) PKON (2)

NAME
pkon, pkoff - establish packet protocol

SYNOPSIS
pkon (fd, size)

pkoff(fd)

DESCRIPTION
Pkon establishes packet protocol (see pk(4)) on the open character special file whose file
descriptor is fd. Size is a desired packet size, a power of 2 in the range 32 � size� 4096. The size
is negotiated with a remote packet driver, and a possibly smaller actual packet size is returned.

An asynchronous line used for packet communication should be in raw mode; see tty(4) .

Pko.ffturns off the packet driver on the channel whose file descriptor is fd.

SEE ALSO
pk(4) , pkopen(3) , tty (4) , signal(2)

DIAGNOSTICS
Pkon returns - 1 if fd does not describe an open file, or if packet communication cannot be
established.

Pko.ffreturns - 1 for an unknown file descriptor.

Writing on a packet driver link that has been shut down by close or pko.ffat the other end raises
signal SIGPIPE in the writing process.

7th Edition deprecated 1

PROFIL (2) PROFIL (2)

NAME
profil - execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Bzdf points to an area of core whose length (in bytes) is given by bujsiz. After this call, the
user's program counter (pc) is examined each clock tick (60th second) ; offset is subtracted from
it, and the result multiplied by scale. If the resulting number corresponds to a word inside buff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
01 77777(8) gives a 1 - 1 mapping of pc's to words in buff,· 077777 (8) maps each pair of instruc
tion words together. 02 (8) maps all instructions onto the beginning of buff (producing a non
interrupting core clock) .

Profiling is turned off by giving a scale of 0 or 1 . It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an exec is executed, but remains on in child and parent both
after a fork. Profiling may be turned off if an update in bzdfwould cause a memory fault.

SEE ALSO
monitor(3) , prof (I)

ASSEMBLER
(profil = 44.)
sys profil; buff; bufsiz; offset; scale

7th Edition 1

PTRACE (2) PTRACE (2)

NAME
ptrace - process trace

SYNOPSIS
#include <signal.h>

ptrace(request, pid, addr, data)
int *addr;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of break
point debugging. There are four arguments whose interpretation depends on a request argu
ment. Generally, pid is the process ID of the traced process, whfch must be a child (no more
distant descendant) of the tracing process. A process being traced behaves normally until it
encounters some signal whether internally generated like ' illegal instruction' or externally gen
erated like ' interrupt. ' See signa/(2) for the list. Then the traced process enters a stopped state
and its parent is notified via wait(2) . When the child is in the stopped state, its core image can
be examined and modified using ptrace. If desired, another ptrace request can then cause the
child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1 ,2 The word in the child process's address space at addr is returned. If I and D space are
separated, request 1 indicates I space, 2 D space. A ddr must be even. The child must be
stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to the user structure in the system.

'

4,5 The given data is written at the word in the process's address space corresponding to addr,
which must be even. No useful value is returned. If I and D space are separated, request
4 indicates I space, 5 D space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer
tain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues at loca
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process's image indicating which signal caused the stop. If addr is Gnt *) 1 then execu
tion continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the PDP- 1 1 the T-bit is used and just one instruction is executed; on the
Interdata the stop does not take place until a store instruction is executed.) This is part of
the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the 'termina
tion' status returned by wait has the value 0 1 77 to indicate stoppage rather than genuine

7 th Edition 1

PTRACE (2) PTRACE (2)

termination.
To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If
a traced process calls exec, it will stop before executing the first instruction of the new image
showing signal SIGTRAP.

On the Interdata 8/32, 'word' means a 32-bi t word and 'even' means 0 mod 4.

SEE ALSO
wait(2) , signal(2) , adb (l)

DIAGNOSTICS

B UGS

The value - 1 is returned if request is invalid, pid is not a traceable process, addr is out of
bounds, or data specifies an illegal signal number.

On the Interdata 8/32, 'as soon as possible' (request 7) means 'as soon as a store instruction
has been executed. '
The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use ' ille
gal instruction' signals at a very high rate) could be efficiently debugged.
The error indication, - 1 , is a legitimate function value� errno, see intro(2) , can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call� in this way a completely
controlled environment could be provided.

ASSEMBLER
(ptrace = 26.)
(data in rO)
sys ptrace; pid; addr; request
(value in rO)

7th Edition

•·

2

READ (2)

NAME
read - read from file

SYNOPSIS
read(ftldes, buffer, nbytes)
char *buffer;

DESCRIPTION

READ (2)

A file descriptor is a word returned from a successful open, creat, dup, or pipe call. Buffer is the
location of nbytes contiguous bytes into which the input will be placed. It is not guaranteed that
all nbytes bytes will be read; for example if the file refers to a typewriter at most one line will be
returned. In any event the number of characters read is returned.

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open(2) , creat(2) , dup(2) , pipe(2)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was other
wise unsuccessful the return value is - 1 . Many conditions can generate an error: physical 1/0
errors, bad buffer address, preposterous nbytes, file descriptor not that of an input file.

ASSEMBLER
(read - 3.)
(file descriptor in rO)
sys read; buffer; nbytes
(byte count in rO)

7th Edition 1

SETUID (2)

NAME
setuid, setgid - set user and group ID

SYNOPSIS
setuid(uid)

setgid(gid)

DESCRIPTION

SETUID (2)

The user ID (group ID) of the current process is set to the argument. Both the effective and
the real ID are set. These calls are only permitted to the super-user or if the argument is the
real ID.

SEE ALSO
getuid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; - 1 is returned otherwise.

ASSEMBLER
(setuid =- 23.)
(user ID in rO)
sys setuid

(setgid - 46.)
(group ID in rO)
sys setgid

7th Edition 1

�illlw

SIGNAL (2) SIGNAL (2)

NAME
signal - catch or ignore signals

SYNOPSIS
#include < signal.h >

(*signal (sig, fund) 0
(*func) 0 ;

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at a typewriter (quit , in
terrupt) , by a program error (bus error, etc.) , or by request of another program (kill) . Normal
ly all signals cause termination of the receiving process, but a signal call allows them either to
be ignored or to cause an interrupt to a specified location. Here is the list of signals with names
as in the include file.

SIGH UP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM

1 hangup
2 interrupt
3 * quit
4* illegal instruction (not reset when caught)
5* trace trap (not reset when caught)
6* lOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
1 0* bus error
1 1 * segmentation violation
1 2* bad argument to system call
1 3 write on a pipe or link with no one to read it
14 alarm clock
1 5 software termination signal
1 6 unassigned

The starred signals in the list above cause a core image if not caught or ignored.

If june is SIG _DFL, the default action for signal sig is reinstated; this default is termination,
sometimes with a core image. If june is SIG _ION the signal is ignored. Otherwise when the
signal occurs june will be called with the signal number as argument. A return from the func
tion will continue the process at the point it was interrupted. Except as indicated, a signal is
reset to SIG _DFL after being caught. Thus if it is desired to catch every such signal, the catch
ing routine must issue another signal call .

When a caught signal occurs during certain system calls, the call terminates prematurely. In
particular this can occur during a read or write(2) on a slow device (like a typewriter� but not a
file) ; and during pause or wait(2) . When such a signal occurs, the saved user status is arranged
in such a way that when return from the signal-catching takes place, it will appear that the sys
tem call returned an error statu�. The user's program may then, if it wishes, re-execute the
call.

The value of signal is the previous (or initial) value of june for the particular signal.

After a jork(2) the child inherits all signals. Exee(2) resets all caught signals to default action.

SEE ALSO
kill (1) , kill (2) , ptrace(2) , setjmp(3)

DIAGNOSTICS

7th Edition 1

SIGNAL (2) SIGNAL (2)

BUGS

The value (int) - 1 is returned if the given signal is out of range.

If a repeated signal arrives before the last one can be reset, there is no chance to catch it.

The type specification of the routine and its fonc argument are problematical.

ASSEMBLER
(signal - 48.)
sys signal; sig; label
(old label in rO)

If label is 0, default action is reinstated. If label is odd, the signal is ignored. Any other even
label specifies an address in the process where an interrupt is simulated. An RTI or RTT in
struction will return from the interrupt.

7th Edition 2

STAT (2) STAT (2)

NAME
stat, fstat - get file status

SYNOPSIS
#include < sys/types.h>
#include < sys/stat.h>

stat(name, buf)
char *name;
struct stat *buf;

fstat(fildes, buf)
struct stat *buf;

DESCRIPTION
Stat obtains detailed information about a named file. Fstat obtains the same information about
an open file known by the file descriptor from a successful open, creat, dup or pipe(2) call.

Name points to a null-terminated string naming a file; bujis the address of a buffer into which
itlformation is placed concerning the file. It is unnecessary to have any permissions at all with
respect to the file, but all directories leading to the file must be searchable. The layout of the
structure pointed to by buf as defined in < stat. h> is given below. St_mode is encoded accord
ing to the '#define' statements.

struct stat
{

dev_t st_dev;
ino_t st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

} ;

#defineS_ IFMT 0170000 I* type of file *I
#define S_IFDIR 0040000 I* directory */
#define S_IFCHR 0020000 I* character special */
#define S _ IFBLK 0060000 I* block special *I
#define S IFREG 0100000 I* regular */
#define S

-
IFMPC 0030000 I* multiplexed char special *I

#define S)FMPB 0070000 I* multiplexed block special *I
#defineS_ ISUID 0004000 I* set user id on execution *I
#defineS_ISGID 0002000 I* set group id on execution * I
#defineS_ISVTX 0001000 I* save swapped text even after use *I
#defineS _IREAD 0000400 I* read permission, owner *I
#defineS _!WRITE 0000200 I* write permission, owner *I
#defineS_IEXEC 00001 00 r execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)) .
The defined types, ino_t, o.ff_t, time_t, name various width integer values; dev_t encodes major
and minor device numbers; their exact definitions are in the include file < sys/types.h> (see
types(S) .

7th Edition 1

STAT (2) STAT (2)

When ./ildes is associated with a pipe, /stat reports an ordinary file with restricted permissions.
The size is the number of bytes queued in the pipe.

st atime is the file was last read. For reasons of efficiency, it is not set when a directory is
se-;rched, although this would be more logical. st_mtime is the time the file was last written or
created. It is not set by changes of owner, group, link count, or mode. st_ctime is set both
both by writing and changing the i-m>de.

SEE ALSO
Is (l) , filsys(5)

DIAGNOSTICS
Zero is returned if a status is available; - 1 if the file cannot be found.

ASSEMBLER
(stat == 1 8.)
sys stat; name; buf

(fstat == 28.)
(file descriptor in rO)
sys fstat; buf

7th Edition 2

/

STIME (2)

NAME
stime - set time

SYNOPSIS
sti

.
me(tp)

long *tp;

DESCRIPTION

STIME (2)

Stime sets the system's idea of the time and date. Time, pointed to by tp, is measured in
seconds from 0000 GMT Jan 1 , 1970. Only the super-user may use this call .

SEE ALSO
dateO) , time (2) , ctime(3)

DIAGNOSTICS
Zero is returned if the time was set� - 1 if user is not the super-user.

ASSEMBLER
(stime = 25.)
(time in rO-r l)
sys stime

7th Edition

SYNC (2)

NAME
sync - update super-block

SYNOPSIS
sync()

DESCRIPTION

SYNC (2)

Sync causes all information in core memory that should be on disk to be written out. This in
cludes modified super blocks, modified i-nodes, and delayed block 1/0.

It should be used by programs which examine a file system, for example icheck. df, etc. It is
mandatory before a boot.

SEE ALSO
sync (l) , update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

ASSEMBLER
(sync == 36.)
sys sync

7th Edition 1

j

TIME (2)

NAME
time, ftime - get date and time

SYNOPSIS
long time(O)

long time(tloc)
long *tloc;

#include < sys/types.h >
#include < sys/timeb.h >
ftime(tp)
struct timeb *tp;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1 , 1 970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

TIME (2)

The /time entry fills in a structure pointed to by its argument, as defined by < sysltimeb.h> :

I*
* Structure returned by ftime system call
*I

struct timeb {

} ;

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more
precise interval, the local timezone (measured in minutes of time westward from Greenwich) ,
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date (l) , stime(2) , ctime(3)

ASSEMBLER
(ftime = 35 .)
sys ftime; bufptr

(time = 13 . ; obsolete call)
sys time
(time since 1 970 in rO-r l }

7th Edition

TIMES (2)

NAME
times - get process times

SYNOPSIS
times(buffer)
struct tbuffer *buffer;

DESCRIPTION

TIMES (2)

Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1 /HZ seconds, where HZ==60 in North
America.

After the call, the buffer will appear as follows:

struct tbutfer {
long
long
long
long

} ;

·proc _user_ time;
proc_system_time;
child_ user_ time;
child_system_time;

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time (I) , time(2)

ASSEMBLER
(times - 43.)
sys times; buffer

7th Edition

UMASK (2) UMASK (2)

NAME
umask - set file creation mode mask

SYNOPSIS
umask (complmode)

DESCRIPTION
Umask sets a mask used whenever a file is created by creat(2) or mknod(2) : the actual mode
(see chmod(2)) of the newly-created file is the logical and of the given mode and the comple
ment of the argument. Only the low-order 9 bits of the mask (the protection bits) participate.
In other words, the mask shows the bits to be turned off when files are created.

The previous value of the mask is returned by the call. The value is initially 0 (no restric
tions) . The mask is inherited by child processes.

SEE ALSO
creat (2) , mknod(2) , chmod(2)

ASSEMBLER
(umask - 60.)
sys umask; complmode

7th Edition 1

UNLINK (2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(name)
char *name;

DESCRIPTION

UNLINK (2)

Name points to a null-terminated string. Unlink removes the entry for the file pointed to by
name from its directory. If this entry was the last link to the file, the contents of the file are
freed and the file is destroyed. If, however, the file was open in any process, the actual des
truction is delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm (1) , link (2)

DIAGNOSTICS
Zero is normally returned; - 1 indicates that the file does not exist, that its directory cannot be
written, or that the file contains pure procedure text that" is currently in use. Write permission
is not required on the file itself. It is also illegal to unlink a directory (except for the super
user) .

ASSEMBLER
(unlink - 10.)
sys unlink; name

7th Edition 1

/

UTIME (2)

NAME
utime - set file times

SYNOPSIS
#include < sys/types.h>
utime<file, timep)
char *file;
time_t timepl21;

DESCRIPTION

UTIME (2)

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set
the corresponding recorded times for .file.

The caller must be the owner of the file or the super-user. The ' inode-changed' time of the file
is set to the current time.

SEE ALSO
stat (2)

ASSEMBLER
(utime - 30.)
sys utime; file; timep

7th Edition

WAIT (2) WAIT (2)

NAME
wait - wait for process to terminate

SYNOPSIS
wait(status)
int *status;

wait(O)

DESCRIPTION
Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate� if there are no children, return is
immediate with the error bit set (resp. with a value of - 1 returned) . The normal return yields
the process ID of the terminated child. In the case of several children several wait calls are
needed to learn of all the deaths.

If Gnt) status is nonzero, the high byte of the word pointed to receives the low byte of the argu
ment of exit when the child terminated. The low byte receives the termination status of the
process. See signa/(2) for a list of termination statuses (signals) � 0 status indicates normal ter
mination. A special status (0177) is returned for a stopped process which has not terminated
and can be restarted. See ptrace(2) . If the 0200 bit of the termination status is set, a core im
age of the process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (pro
cess ID == 1) inherits the children.

SEE ALSO
exit (2) , fork(2) , signal(2)

DIAGNOSTICS
Returns - 1 if there are no children not previously waited for.

ASSEMBLER
(wait - 7.)
sys wait
(process ID in rO)
(status in r l)

The high byte of the status is the low byte of rO in the child at termination.

7th Edition 1

� •

WRITE (2)

NAME
write - write on a file

SYNOPSIS
write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION

WRITE (2)

A file descriptor is a word returned from a successful open, creat, dup, or pipe(2) call.

BLfifer is the address of nbytes contiguous bytes which are written on the output file. The
number of characters actually written is returned. It should be regarded as an error if this is
not the same as requested.

Writes which are multiples of 5 1 2 characters long and begin on a 5 12-byte boundary in the file
are more effici�nt than any others.

SEE ALSO
creat (2) , open (2) , pipe(2)

DIAGNOSTICS .
Returns - 1 on error: bad descriptor, buffer address, or count� physical I/0 errors.

ASSEMBLER
(write = 4.)
(file descriptor in rO)
sys write; buffer; nbytes
(byte count in rO)

7th Edition 1

INTRO (3) INTRO (3)

NAME
intro - introduction to library functions

SYNOPSIS
#include < stdio.h >

#include < math.h >

DESCRIPTION

FILES

This section describes functions that may be found in various libraries, other than those func
tions that directly invoke UNIX system primitives, which are described in section 2. Functidns
are divided into various libraries distinguished by the section number at the top of the page:

(3) These functions, together with those of section 2 and those marked (3S) , constitute li
brary libc, which is automatically loaded by the C compiler ceO) and the Fortran com
piler }71(1) . The link editor /d(l) searches this library under the ' -lc' option. Declara
tions for some of these functions may be obtained from include files indicated on the ap
propriate pages.

(3M) These functions constitute the math library, /ibm. They are automatically loaded as need
ed by the Fortran compiler }77(1) . The link editor searches this library under the ' - lm'
option. Declarations for these functions may be obtained from the include file
< math.h > .

(3S) These functions constitute the 'standard 110 package' , see stdio(3) . These functions are
in the library libc already mentioned. Declarations for these functions may be obtained
from the include file < stdio.h > .

(3X) Various specialized libraries have not been given distinctive captions. The files in which
these libraries are found are named on the appropriate pages.

/lib/libc.a
/lib/libm.a, /usr/lib/libm.a (one or the other)

SEE ALSO
stdio (3) , nm(l) , ld(l) , cc(l) , n7(1) , intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. ln these cases the
external variable errno (see intro(2)) is set to the value EDOM or ERANGE. The values of
EDOM and ERANGE are defined in the include file < math. h> .

ASSEMBLER
In assembly language these functions may be accessed by simulating the C calling sequence.
For example, ecvt(3) might be called this way:

7th Edition

setd
mov $sign,- (sp)
mov $decpt,- (sp)
mov ndigit,-(sp)
movf value,- (sp)
jsr pc,_ecvt
add $ 1 4. ,sp

1

ABORT (3)

NAME
abort - generate lOT fault

DESCRIPTION

ABORT (3)

A bort executes the PDP l l lOT instruction. This causes a signal that normally terminates the
process with a core dump, which may be used for debugging.

SEE ALSO
adb(l) , signal (2) , exit(2)

DIAGNOSTICS
Usually ' lOT trap - core dumped' from the shell.

7th Edition

ABS (3)

NAME
abs - integer absolute value

SYNOPSIS
abs(i)

DESCRIPTION
A bs returns the absolute value of its integer operand.

SEE ALSO
floor (3) for fabs

BUGS
You get what the hardware gives on the largest negative integer.

7th Edit ion

ABS (3)

1

ASSERT OX)

NAME
assert - program verification

SYNOPSIS
#include < assert.h >

assert (expression)

DESCRIPTION

ASSERT (3X)

Assert is a macro that indicates expression is expected to be true at this point in the program. It
causes an exit(2) with a diagnostic comment on the standard output when expression is false (0) .
Compiling with the ceO) option - DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
'Assertion failed: . file f line n. ' F is the source file and n the source line number of the assert
statement.

7th Edition 1

ATOF (3) ATOF (3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char *nptr;

atoHnptr)
char *nptr;

long atoHnptr)
char *nptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of
digits optionally containing a decimal point, then an optional 'e' or 'E' followed by an optionally
signed integer.

Atoi and atol recognize an optional string of tabs and spaces, then an optional sign, then a string
of digits.

SEE ALSO
scanf(3)

BUGS
There are no provisions for overflow.

7th Edition 1

CRYPT (3) CRYPT { 3)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

setkey (key)
char *key;

encrypt(block, edftag)
char *block;

DESCRIPTION
Crypt is the password · encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is a user's typed password. The second is a 2-character string
chosen from the set [a-zA-Z0-9./] . The sait string is used to perturb the DES algorithm in one
of 4096 different ways, after which the password is used as the key to encrypt repeatedly a con
stant string. The returned value points to the encrypted password, in the same alphabet as the
salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and 1 . If this string is divided into groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing O's and i)t_�if.itf] 1 's. The argument array is modified in place to a similar array representing the bits of the argu- · ···

ment after having been subjected to the DES algorithm using the key set by setkey. If edjfag is
0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(l) , passwd(5) , login (l) , getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 1

CTIME (3) CTIME (3)

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to ASCII

SYNOPSIS
char *ctime (clock)
long *clock;

#include < time.h >

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

cJJar *timezone(zone, dst)

DESCRIPTION
Clime converts a time pointed to by clock such as returned by time (2) into ASCII and returns a
pointer to a 26-character string in the following form. All the fields have constant width.

Sun Sep 16 0 1 :03:52 1 973\n\0

Localrime and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmrime converts directly to GMT,
which is the time UNIX uses. Ascrime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct tm (/* see ctime(3) */

} ;

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

These quantities give the time on a 24-hour clock, day of month 0-3 1) , month of year {0- 1 1 } ,
day of week (Sunday == 0) , year - 1900, day of year (0-365) , and a flag that is nonzero if day
light saving time is in effect.

When local time is called for, the program consults the system to determine the time zone and
whether the standard U.S.A. daylight saving time adjustment is appropriate. The program
knows about the peculiarities of this conversion in 1974 and 1975; if necessary, a table for
these years can be extended.
Timezone returns the name of the time zone associated with its first argument, which is meas
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; e.g. in Afghanistan
timezone(- (60*4 + 30). 0) is appropriate because it is 4:30 ahead of GMT and the string
GMT + 4 :30 is produced.

'

7th Edition 1

CTIME (3)

SEE ALSO
t ime (2)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition

CTIME (3)

2

CTYPE (3) CTYPE (3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii - character
classification

SYNOPSIS
#include <ctype.h >

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate return
ing nonzero for true, zero for false. lsascii is defined on all integer values� the rest are defined
only. where isascii is true and on the single non-ASCII value EOF (see stdio(3)) .

isalpha

isupper

isfower

isdigit

isalnum

isspace

ispunct

isprint

iscntrl

isascii

SEE ALSO
ascii(7)

7th Edition

· c is a letter

c is an upper case letter

c is a lower case letter

c is a digit

c is an alphanumeric character

c is a space, tab, carnage return, newline, or formfeed

c is a punctuation character (neither control n9r alphanumeric)

c is a printing character, code 040(8) (space) through 0 1 76 (tilde)

c is a delete character (0 1 77) or ordinary control character (less than 040) .

c is an ASCII character, code less than 0200

1

DBM (3X) DBM (3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNOPSIS
typedef struct { char "'dptr; int dsize; } datum;

dbminit(file)
char *file;

datum fetch (key)
datum key;

store(key, content>
datum key, content;

delete(key)
datum key;

datum firstkey 0 ;

datum nextkey(key) ;
datum key;

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will handle very large
(a billion blocks) databases and will access a keyed item in one or two filesystem accesses. The
functions are obtained with the loader option -ldbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes
pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data

��s: �!c���e�1�nc�:�a��:s�11���a ��ds
h:Sd��;���r:

s
��

s
n����

.
g a bit map and has ' .dir' as its suffix. ��lfv

Before a database can be accessed, it must be opened by dbminit. At the time of this call , the
files file.dir and .fi/e.pag must exist. (An empty database is created by creating zero-length
' .dir' and ' .pag' files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys in
a database may be made, in an (apparently) random order, by use of firstkey and nextkey. First
key will return the first key in the database. With any key nextkey will return the next key in
the database. This code will traverse the data base:

for (key-firstkeyO � key .dptr! -NULL� key= nextkey (key))

D IAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates ok.
Routines that return a datum indicate errors with a null (0) dptr.

The ' .pag' file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files can
not be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subse
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
5 1 2 bytes) . Moreover all key I content pairs that hash together must fit on a single block. Store
will return an error in the event that a disk block fills with inseparable data.

7th Edition

DBM (3X) DBM (3X)

Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function, not on any
thing interesting.

7th Edition 2

ECVT (3) ECVT (3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCI I digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored in
directly through decpt (negative means to the left of the returned digits) . If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran F-format out
put of the number of digits specified by ndigits.

Gcvt converts the value to a null-terminated ASCI I string in bufand returns a pointer to buf I t
attempts to produce ndigit significant digits in Fortran F format i f possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition

END (3) END (3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edata above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break coincides with end, but many functions reset the
program break, among them the routines of brk(2), malloc(3) , standard input/output
(stdio (3)) , the · profile (-p) option of cc(l) , etc. The current value of the program break is
reliably returned by 'sbrk(O) ' , see brk(2) .

SEE ALSO
brk (2) , malloc (3)

7th Edition 1

EXP (3M)

NAME
exp, log, log l O, pow, sqrt - exponential, logarithm. power, square root

SYNOPSIS
#include < math. h >

double exp(x)
double x;

double log(x)
double x;

double loglO(x)
double x;

double pow(x, y) ·
double x, y;

double sqrt(x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x, loglO returns the base 1 0 logarithm.

Pow returns ::1.
Sqrt returns the square root of x.

SEE ALSO
hypot (3) , sinh(3) , intro(2)

DIAGNOSTICS

EXP (3M)

Exp and pow return a huge value when the correct value would overflow; errno is set to
ERANGE. Pow returns 0 and sets errno to EDOM when the second argument is negative and
non-integral and when both arguments are 0.

Log returns 0 when x is zero or negative; errno is set to EDOM.
Sqrt returns 0 when x is negative; errno is set to EDOM.

7th Edition 1

FCLOSE (3S) FCLOSE (3S)

NAME
fclose, ffiush - close or flush a stream

SYNOPSIS
#include < stdio. h >

fclose(stream)
FILE *stream;

ftlush (stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the. standard input/output system are freed.

Fclose is performed automatically upon calling exit(2) .

Fjlush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

SEE ALSO
close (2) , fopen (3) , setbuf(3)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data
cannot be transferred to that file.

7th Edition 1

FERROR (3S)

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h >

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr(stream)
FILE *stream

fileno(stream)
FILE *stream;

DESCRIPTION

FERROR (3S)

Feojreturns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, other
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.
Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open(2) .

These functions are implemented as macros� they cannot be redeclared.

SEE ALSO
fopen(3) , open(2)

7th Edition 1

FLOOR (3M)

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#include < math.h >

double floor(x)
double x;

double ceil (x)
double x;

double fabs(x)
double(x) ;

DESCRIPTION
Fabs returns the absolute value l xl.

Floor returns the largest integer not greater than x.

Ceifreturns the smallest integer not less than x.
SEE ALSO

abs(3)

7th Edition

FLOOR (3M)

1

FOPEN (3S) FOPEN (3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include < stdio.h >

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
Fopen opens the file named by .filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing
"a" append: open for writing at end of file, or create for writing

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed.

Freopen is typically used to attach the pr�opened constant names, stdin, stdout, stderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2) . The
type of the stream must agree with the mode of the open file.

SEE ALSO
open(2) , fclose(3)

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be accessed.

BUGS
Fdopen is not portable to systems other than UNIX.

7th Edition 1

FREAD (3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include < stdio.h >

fread(ptr, sizeof(*ptr) , nitems, stream)
FILE *stream;

·

fwrite(ptr, sizeof(*ptr) , nitems, stream)
FILE *stream;

· DESCRIPTION

FREAD (3S)

Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the named in
put stream. It returns the number of items actually read.

Fwrite appends at most nitems of data of the type of *ptr beginning at ptr to the named output
stream. It returns the number of items actually written.

SEE ALSO .
read(2) , write(2) , fopen (3) , getc(3) , putc (3) , gets (3) , puts(3) , printf(3) , scanf(3)

DI AGNOSTICS
Fread and fwrite return 0 upon end of file or error.

7th Edition 1

FREXP (3) FREXP (3)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer n such that value - x*2** n indirectly through eptr.

Ldexp returns the quantity va/ue*2** exp.

Mod/ returns the positive fractional part of value and stores the integer part indirectly through
iptr.

7th Edition

FSEEK (3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include <stdio.h>

fseek (stream, offset, ptrname)
FILE *stream;
long offset:

long ftell (stream)
FILE *stream;

rewind (stream)

DESCRIPTION

FSEEK (3S)

Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offiet bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1 , or 2.

Fseek undoes any effects of ungetc(3) .

Fte!l returns the current value of the offset relative to the beginning of the file associated with
the named stream. lt is measured in bytes on UNIX; on some other systems it is a magic cook
ie, and the only foolproof way to obtain an qffset for fseek.

Rewind(stream) is equivalent to fseek(stream. OL, 0).

SEE ALSO
!seek { 2) , fopen {3)

DIAGNOSTICS
Fseek returns - 1 for improper seeks.

7th Edition 1

GETC (3S) GETC (3S)

NAME
getc, getchar. fgetc. getw - get character or word from stream

SYNOPSIS
#include < stdio. h >

int getc(stream)
FILE *stream;

int getcharO

int fgetc<stream)
FILE *stream;

int getw(stream)
FILE *stream; ·

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getdsrdin) .

Fgetc behaves like getc, but is a genuine function, not a macro: it may be used to save object
text.
Getw returns the next word from the named input stream. It returns the constant EOF upon
end of file or error, but since that is a good integer value, feq{and ferror(3) should be used to
check the success of getw. Getw assumes no special alignment in the file.

SEE ALSO
fopen(3) , putc (3) , gets(3) . scanf(3) , fread (3) , ungetc (3)

D IAGNOSTICS

B UGS

These functions return the integer constant EOF at end of file or upon read error.

A stop with message. 'Reading bad file ' , means an attempt has been made to read from a
stream that has not been opened for reading by fopen.

The end-of-file return from getchar is incompatible with that in UNIX editions 1 -6.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly.
In particular, 'getc(*f+ +) : ' doesn't work sensibly.

7th Edition 1

GETENY (3)

NAME
getenv - value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION

GETENY (3)

Getenv searches the environment list (see environ(5)) for a string of the form name== value and
returns value if such a string is present, otherwise 0 (NULL) .

SEE ALSO
environ (5) , exed2)

7th Edition 1

GETGRENT (3) GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include <grp.h >

struct group *getgrentO ;

struct group *getgrgid(gid) int gid;

struct group *getgrnam(name) char *name;

int setgrentO ;

int endgrentO ;

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

struct group (I* see getgrent(3) */

};

char *gr_name;
char *gr _passwd;
int gr_gid;
char **gr_mem;

The members of this structure are:

gr_name
The name of the group.

gr_passwd
The encrypted password of the group.

gr_gid The numerical group-ID.
gr_mem

Null-terminated vector of pointers to the individual member names.
Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered) . Each routine picks up where the others leave off
so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

/etc/group

SEE ALSO
getlogin(3) , getpwent (3) , group(S)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

B UGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 1

GETLOGIN (3)

NAME
getlogin - get login name

SYNOPSIS
char *getloginO ;

DESCRIPTION

GETLOGIN (3)

Getlogin returns a pointer to the login name as found in /etclutmp. I t may be used in conjunc
tion with getpwnam to locate the correct password file entry when the same userid is shared by
several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to first call getlogin and if it fails, to call
getpwuid.

FILES
/etc/utmp

SEE ALSO .
getpwent (3) , getgrent {3) , utmp(5)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 1

GETPASS (3)

NAME
getpass - read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION

GETPASS (3)

Getpass reads a password from the file /dev/tty. or if that cannot be opened, from the standard
input. after prompting with the null-terminated string prompt and disabling echoing. A pointer
is returned to a null-terminated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition

•

•

GETPW (3)

NAME
getpw - get name from UID

SYNOPSIS
getpw (uid, buf)
char *buf;

DESCRI PTION

GETPW (3)

Getpw searches the password file for the (numerical) uid, and fills in bl{{with the corresponding
line� it returns non-zero if uid could not be found. The line is null-terminated.

FI LES
/etc/passwd

SEE ALSO
getpwent (3) , passwd(5)

DI AGNOSTICS
Non·-zero return on error .

7th Edition 1

GETPWENT (3) GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNOPSIS
#include < pwd. h >

struct passwd *getpwentO ;

struct passwd *getpwuid(uid) int uid;

struct passwd *getpwnam(name) char *name;

int setpwentO;

int endpwentO ;

DESCRIPTION

FI LES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
containing the broken-out fields of a line in the password file.

·

struct passwd { /* see getpwent (3) *I

} :

char *pw _name�
char *pw _passwd�
int pw_uid�
int pw_gid�
int pw _quota;
char *pw _comment;
char *pw _gecos;
char *pw _dir;
char *pw _shell;

The fields pw_quota and pw_comment are unused; the others have meanings described in
passwd(5) .

Getpwent reads the next line (opening the file i f necessary) ; setpwent rewinds the file; endpwent
closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or un
til EOF is encountered) .

/etc/passwd

SEE ALSO
getlogin(3) , getgrent (3) , passwd(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so i t must be copied if it is to be saved.

7th Edition

•

GETS (3S) G ETS (JS)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include < stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
FILE *stream;

DESCRIPTION
Gets reads a string into s from the standard input stream stdin. The string is terminated by a
newline character, .which is replaced in s by a null character. Gets returns its argument.

Fgets reads n - 1 characters, or up to a newline character, whichever comes first. from the
stream into the string s. The last character read into s is fol lowed by a null character. Fgets re
turns its first argument.

SEE ALSO
puts(3 } , getc(3} , scanf(3} , fread(3) , ferror(3)

DIAGNOSTICS
Gets and fgers return the constant pointer NULL upon end of file or error.

BUGS
Gers .deletes a newline, fgets keeps it, all in the name of backward compatibility.

7th Edition

HYPOT (3M)

NAME
hypot, cabs - euclidean distance

SYNOPSIS
#include < math. h >

double hypot(x, y)
double x, y ;

double cabs(z)
struct { double x, y;} z;

DESCRIPTION
Hypot and crzbs return

sqrt (x*x + y*y) ,

taking precautions against unwarranted overflows.

SEE ALSO
exp(3) for sqrt

7th Edition

HYPOT (3M)

J ll l J I\1) JO OM)

N A M E
jO, j I , jn, yO, y I , yn - bessel functions

SY NOPSIS
#include < math.h>

double j O (x)
double x;

double jl (x)
double x;

double j n (n, x) ;
double x;

double yO (x)
double x ;

double yl (x)
double x:

double yn(n, x)
double x:

DESCRIPTION .
These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

·

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return a huge negative value and set errno to
EDOM.

7th Edition 1

L3TOL (3)

NAME
13tol, ltol3 - convert between 3-byte integers and long integers

SYNOPSIS
13tol (lp, cp, n)
long *lp;
char *cp;

ltol3 (cp, lp, n)
char *cp;
long *lp;

DESCRIPTION

L3TOL (3)

LJtol converts a list of n three-byte integers packed into a character string pointed to by cp into
a list of long integers pointed to by lp.

Lto/3 performs the reverse conversion from long integers (/p) to three-byte integers (CfJ) .

These f:mctions are useful for file-system maintenance; disk addresses are three bytes long.

SEE ALSO
filsys (5)

7th Edition PDP l l

MALLOC (3) MALLOC (3 J

NAME
malloc, free, realloc, calloc - main meinory allocator

SYNOPSIS
char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Ma/loc and free provide a simple general-purpose memory allocation package. Malloc returns a
pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed to free.

Mal/oc allocates the first big enough contiguous reach of free space found in a circular search
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls sbrk
(see break (2)) to get more memory from the system when there is no suitable space already
free.

Real/oc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the !esser of the new and old
sizes.

Real/oc also works if ptr points to a block freed since the last call of malloc, rea/loc or calloc:
thus sequences of free, malloc and rea/loc can exploit the search strategy of ma/loc to do storage
compaction.

Cal/oc allocates space for an array of nelem elements of size e/size. The space is initialized to
zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

BUGS

Mal/oc, rea/foe and cal/oc return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block. Malloc may be
recompiled to check the arena very stringently on every transaction; see the source code.

When realloc returns 0, the block pointed to by ptr may be destroyed.

7th Edition

MKTEMP (3)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp(template)
char *template;

DESCRIPTION

MKTEMP (3)

Mktemp replaces template by a unique file name, and returns the address of the template. The
template should look like a file name with six trailing X's, which will be replaced with the
current process id and a unique letter.

SEE ALSO
getpid(2)

7th Edition 1

MONITOR (3) MONITOR (3)

NAME
monitor - prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize, nfunc>
int (*lowpc) () , (*highpc) () ;
short buffer! I ;

DESCRIPTION

FILES

An executable program created by 'cc - p' automatically includes calls for monitor with default
parameters� monitor needn't be called explicitly except to gain fine control over profiling.

Monitor is an interface to prQ/i/(2) . Lowpc and highpc are the addresses of two functions� bi,{/Jer
is the address of a (user supplied) array of bujsize short integers. Monitor arranges to record a
histogram of periodically sampled values of the program counter, and of counts of calls of cer
tain functions, in the buffer. The lowest address sampled is that of /owpc and the highest is just
below highpc. At most n.func call counts can be kept� only calls of functions compiled with the
profiling option - p of ceO) are recorded. For the results to be significant, especially where
there are small. heavily used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext 0 �

monitor((int) 2, etext, buf, bufsize, nfunc) �

Etext lies just above all the program text, see end(3) .

To stop execution monitoring and write the results on the file mon.out, use

monitor(O) �

then pro.fl.. I) can be used �o examine the results.

mon.out

SEE ALSO
prof(I) . profil (2) . cc (l)

7th Edition 1

MP (3X) MP (3X)

NAME
itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow - multiple precision integer arith
metic

SYNOPSIS
typedef struct { int len; short *val; } mint;

madd (a, b, c)
msub(a, b, c)
mult(a, b, c)
mdiv (a, b, q, r)
min(a)
mout(a)
pow (a, b, m, c)
gcd(a, b, c)
rpow(a, b, c)
msqrt(a, b, r)
mint *a, *b, *c, *m, *q, *r;

sdiv(a, n, q, r)
mint *a, *q;
s}\ort *r;

mint * itom(n)

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored using
the defined type mint. Pointers to a mint should be initialized using the function itom, which """'"'§%
sets the initial value to n. After that space is managed automatically by the routines. WifJ
madd, msub, mu/t, assign to their third arguments the sum, difference, and product, respec-
tively, of their first two arguments. mdiv assigns the quotient and remainder, respectively, to its
third and fourth arguments. sdiv is like mdiv except that the divisor is an ordinary integer.
msqrt produces the square root and remainder of its first argument. rpow calculates a raised to
the power b, while pow calculates this reduced modulo m. min andmout do decimal input and
output.

The functions are obtained with the loader option -Imp.

DIAGNOSTICS
I llegal operations and running out of memory produce messages and core images.

7th Edition 1

NLIST (3) NLIST < 3 >

NAME
nlist - get entries from name list

SYNOPSIS
#include <a.out.h>
nlist(filename, nn
char *filename;
struct nlist nll) ;

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the next two fields. I f the
name is not found·, both entries are set to 0. See a.out(S) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out (S)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

7th Edition

PERROR (3) PERROR (3)

NAME
perror. sys_errlist, sys_nerr - system error messages

SYNOPSIS
perror(s)
char *s;

int sys nerr;
char *sys errlistlJ ;

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error en
countered during a call to the system from a C program. First the argument string s is printed,
then a colon, then the message and a new-line. Most usefully. the argument string is the name
of the program which incurred the error. The error number is taken from the external variable
errno (see intro(2)) . which is set when errors occur but not cleared when non-erroneous calls
are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided�
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table� it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO
intro (2)

7th Edition 1

PKOPEN (3) PKOPEN (3)

NAME
pkopen, pkclose, pkread, pkwrite, pkfail - packet driver simulator

SYNOPSIS
char *pkopen(fd)

pkclose(ptr)
char *ptr;

pkread(ptr, buffer, count)
char *ptr, *buffer;

pkwrite(ptr, buffer, count)
char *ptr, *buffer;

pkfailO

DESCRIPTION
These routines are a user-level implementation of the full-duplex end-to-end communication
protocol described in pk(4) . If fd is a file descriptor open for reading and writing, pkopen carries
out the initial synchronization and returns an identifying pointer. The pointer is used as the
first parameter to pkread, pkwrite, and pkc/ose.

Pkread, pkwrite and pkclose behave analogously to read, write and c/ose(2) . However, a write of
zero bytes is meaningful and will produce a corresponding read of zero bytes.

SEE ALSO
pk(4) , pkon(2)

DIAGNOSTICS

BUGS

Pk}ail is called upon persistent breakdown of communication. Pkfail must be supplied by the
user.

Pkopen returns a null (0) pointer if packet protocol can not be established.

Pkread returns - 1 on end of file, 0 in correspondence with a 0-length write.

This simulation of pk(4) leaves something to be desired in needing special read and write rou
tines, and in not being inheritable across calls of exec(2) . Its prime use is on systems that lack
pk.
These functions use alarm(2) ; simultaneous use of alarm for other puposes may cause trouble.

7 th Edition 1

PLOT (3X)

NAME
plot: openpl et al. - graphics interface

SYNOPSIS
openpl ()

erase()

label (s) char sl I ;
line(xl, yl, x2, y2)

circle(x, y, r)

arc(x, y, xO, yO, xl, yl)

move(x, y)

cont(x, y)

point(x, y)

linemod(s) char sl I ;
space(xO, yO, xl , yl)

closepl ()

DESCRIPTION

PLOT (3X)

These subroutines generate graphic output in a relatively device-independent manner. See
p/or(5) for a description of their effect. Openpl must be used before any of the others to open
the device for writing. Closepl flushes the output.

String arguments to label and /inemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the Elf!f9
following ld(l) options:

- I plot device-independent graphics stream on standard output for plor(l) filters
- 1300 GSI 300 terminal
- 1300s GSI 300S terminal
- 1450 DASI 450 terminal
-14014 Tektronix 40 1 4 terminal

SEE ALSO
plot (5) , plot (I) , graph (1)

7th Edition 1

POPEN (3S) POPEN (3S)

NAME
popen, pclose - initiate 110 to/from a process

SYNOPSIS
#include < stdio. h >

FILE *popen (command, type)
char *command, *type;

pclose (stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an I/0 mode, either "r" for reading or "w" for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or read
from its standard output.

A stream opened by popen should be closed by pciose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and a type
"w" as an output filter.

SEE ALSO
pipe(2) , fopen(3) , fclose(3) , system(3) , wait(2)

DIAGNOSTICS

BUGS

Popen returns a null pointer if files or processes cannot be created, or the Shell cannot be ac
cessed.

Pclose returns - 1 if stream is not associated with a 'popened' command.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be forestalled by careful buffer flush
ing, e.g. with fflush, see fclose(3) .

7th Edition

PRINTF (3S) PRINTF (3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include < stdio.h>

printf(format [, arg] . . .)
char *format;

fprintf(stream, format [, arg 1 . ..)
FILE *stream;
char *format;

sprintf(s, format [, arg] . . .)
char *s, format;

DESCRIPTION
Print/ places output on the standard output stream stdout. Fprintf places output on the named
output stream. Sprint/places 'output' in the string s, followed by the character '\0'.

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The first argument is a character string which contains two types of ob
jects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg print/.

Each conversion specification is introduced by the character %. Following the %, there may be

an optional minus sign ' - ' which specifies left adjustment of the converted value in the
indicated field�

��rs
o����a�h�g�e��i�d

s
t�e��fy��� ab;e��a��:�����e

0�n
t�:rt��t

v��r
e

r�:�t�e�e�h
c
e
ha

1���: ({lr@
adjustment indicator has been given) to make up the field width; if the field width be
gins with a zero, zero-padding will be done instead of blank-padding�

an optional period ' . ' which serves to separate the field width from the next digit string�

an optional digit string specifying a precision which specifies the number of digits to ap
pear after the decimal point, for e- and f-conversion, or the maximum number of char
acters to be printed from a string;

the character I specifying that a following d, o, x, or u corresponds to a long integer
arg. (A capitalized conversion code accomplishes the same thing.)

a character which indicates the type of conversion to be applied.

A field width or precision may be '*' instead of a digit string. In this case an integer arg sup
plies the field width or precision.

The conversion characters and theii: meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style ' [-] ddd.ddd'
where the number of d's after the decimal point is equal to the precision specification
for the argument. If the precision is missing, 6 digits are given� if the precision is ex
plicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style ' [-]d.ddde±dd' where there is one di
git before the decimal point and the number after is equal to the precision specification
for the argument� when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever gives full
precision in minimum space.

7th Edition 1

PRINTF (3S) PRINTF (3S)

c The character arg is printed. Null characters are ignored.

s Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 to 65535) .

% Print a '%'; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by print/
are printed by purcp>.

Examples
To print a date and time in the form 'Sunday, July 3, 1 0:02', where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min) ;

To print 1T to 5 decimals:

printf("pi == %.5r', 4*atan (l .O)) ;

SEE ALSO
putc(3) , scanf(3) , ecvt (3)

BUGS
Very wide fields (> 1 28 characters) fail.

7th Edition 2

PUTC (JS) PUTC (3S)

N AME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include < stdio.h >

int putc(c, stream)
char c;
FILE *stream;

putcbar(c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION
Pwc appends the character c to the named output stream. It returns the character written.

Putchar(c) is defined as putdc, stdoutJ.

Fputc behaves like putc. but is a genuine function rather than a macro. I t may be used to save
on object text.

Putw appends word (i.e. int) w to the output stream. It returns the word written. Putw neither
assumes nor causes special alignment in the file.

The standard stream stdow is normally buffered if and only if the output does not refer to a

�e���:���h�sn!!��t��:��� ,
b�u��a

s�g�� .��o;:������� .to!�(3 ��a��r�a��=��t;1�:;o�e
b�u�:::�� 4rl:'

setbz{/; again, will set the state to whatever is desired. When an output stream is unbuffered
information appears on the destination fi le or terminal as soon as written� when it is buffered
many characters are saved up and written as a block. f!fush (see .fi::/ose(3)) may be used to
force the block out early.

SEE A LSO
fopen(3) , fclose <J) , getcO) , putsO) , printf(3) , fread<J)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. S ince this is a good integer, /f!rrorO)
should be used to detect plltw errors.

Because it is implemented as a macro, putc treats a stream argument with side effects
improperly. In particular 'putdc, *f+ +) � ' doesn't work sensibly .

7th Edition

PUTS (3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include < stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION

PUTS (3S)

Puts copies the null-terminated string s to the standard output stream stdour and appends a new
line character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

fopen (3) , gets (3) , putc (3) , printf(3) , ferror(3)
fread(3) for .{write

Puts appends a newline, /puts does not, all in the name of backward compatibility.

7th Edition

RAND (3) RAND (3)

NAME
rand, srand - random number generator

SYNOPSIS
srand (seed)
int seed;

rand()

DESCRIPTION
Rand uses a multiplicative congruential random number generator with period 232 to return suc
cessive pseudo-random numbers in the range from 0 to 2 15- 1 .

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

7th Edition

QSORT (3)

NAME
qsert - quicker sort

SYNOPSIS
qsort(base, nel, width, eompar)
char *base;
int (*comparH) ;

DESCRIPTION

QSORT (3)

Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according as the first argument is to be considered less than, equal to, or
greater than the second.

SEE ALSO
sort (I)

7th Edition 1

SCANF (3S) SCANF (3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include < stdio.h >

scanf(format [, poin ter] . . .)
char *format;

fscanf(stream, format (, pointer] . . .
FILE *stream;
char *format;

sscanf(s, format [, pointer] . . .
char *s, *format;

DESCRIPTION
Scan.f reads from the standard input stream stdin. Fscan.f reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them ac
cording to a format, and stores the results in i ts arguments. Each expects as arguments a con
trol string format, described below, and a set of poimer arguments indicating where the convert
ed input should be stored.

The control string usually contains conversion specifications, which are used to direct interpre
tation of input sequences. The control string may contain :

1 . Blanks, tabs or newlines, which match optional white space i n the input.

2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppress-
ing character *, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field� the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was indi
cated by *: An input field is defined as a string of non-space characters� i t extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are
legal :

% a single '1Yo' is expected in ihe input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating '\0 ' ,
which wi l l be added. The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space
character, try '% l s' . I f a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
f through the corresponding argument, which should be a pointer to a .float. The input for- -

mat for floating point numbers is an optionally signed string of digits possibly containing a
decimal point, fol lowed by an optional exponent field consisting of an E or e followed by

7th Edition

SCANF (3S) SCANF (3S)

an optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket� the characters between the brackets define a set of
characters making up the string. If the first character is not. circumflex (A) , the input field
is all characters until the first character not in the set between the brackets� if the first char
acter after the left bracket is A, the input field is all characters until the first character which
is in the remaining set of characters between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, o and x may be capitalized or preceeded by I to indicate that a
pointer to long rather than to int is in· the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by I to indicate a pointer to double rather than to float. The
conversion characters d, o and x may be preceeded by h to indicate a pointer to short rather
than to int.

The scan/functions return the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. The constant EOF is returned upon
end of input� note that this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

int i� float x� char name[SO] �
scanf("%d%fo/os", &i, &x, name) �

with the input line

25 54.32E-1 thompson

will assign to i the value 25, x the value 5 .432, and name will contain 'thompson\0 ·. Or,
int i� float x� char name[SO] �
scanf("o/o2do/ofo/o*d% [1 234567890]" , &i, &x, name) �

with input

56789 0 1 23 56a72

will assign 56 to i, 789.0 to x, skip '0 123 ' , and place the string '56\0' in name. The next call to
getchar will return 'a'.

SEE ALSO
atof(3) , getc(3) , printf(3)

DIAGNOSTICS

BUGS

The scan{functions return EOF on end of input, and a short count for missing or illegal data
items.

The success of literal matches and suppressed assignments is not directly determinable.

7th Edition 2

SETBUF (3S) SETBUF (3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >

setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or written. I t causes the
character array bufto be used instead of an automatically allocated buffer. If bujis the constant
pointer NULL, input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ] ;

A buffer is normally obtained from malloc(3) upon the first getc or purc(3) on the file, except
that output streams directed to terminals, and the standard error stream stderr are normally not
buffered.

SEE ALSO
fopen(3) , getc (3) , putc(3) , malloc(3)

7th Edition

SETJMP (3) SETJMP (3)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include < setjmp.h >

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub
routine of a program.

Se(jmp saves its stack environment in env for later use by longjmp. It returns value 0.

Longjmp restores the environment saved by the last call of se(jmp. It then returns in such a way
that execution continues as if the call of se(jmp had just returned the value val to the function
that invoked se(jmp, which must not itself have returned in the interim. All accessible data
have values as of the time longjmp was called.

SEE ALSO
signal (2)

7th Edition 1

SIN (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include < math.h >

double sin(x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (x, y)
double x, y ;

DESCRIPTION

SIN (3M)

Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the ar
gument should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range -1r12 to 1rl2.

Acos returns the arc cosine in the range 0 to 1r.

A tan returns the arc tangent of x in the range - 1r12 to 1rl2.

A tan2 returns the arc tangent of x!y in the range -1r to 1r.

DIAGNOSTICS

BUGS

Arguments of magnitude greater than 1 cause asin and acos to return value 0� errno is set to
EDOM. The value of tan at its singular points is a huge number, and errno is set to ERANGE.

The value of tan for arguments greater than about 2**3 1 is garbage.

7th Edition

SINH (3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include < math.h >

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH (3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

7th Edition

SLEEP (3) SLEEP (3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the ar·
gument. The actual suspension time may be up to 1 second less than that requested, because
scheduled wakeups occur at fixed l ·second intervals, an<� an arbitrary amount longer because of
other activity in the system.

The routine is implemented by setting an alarm clock signal and pausing until it occurs. The
previous state of this signal is saved and restored. If the sleep time exceeds the time to the
alarm signal, the process sleeps only until the signal would have occurred, and the signal is sent
1 second later.

SEE ALSO
alarm(2) , pause(2)

7th Edition

STDIO (3S) STDIO (3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in Sections 3S constitute an efficient user-level buffering scheme. The
in-line macros getc and putc(3) handle characters quickly. The higher level routines gets, fgets,
scan/, jscanf, fread, puts, fputs, print/, fprintf, .fwrite all use getc and putc; they can be freely inter
mixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined
type FILE. Fopen(3} creates certain descriptive data for a stream and returns a pointer to desig
nate the stream in all further transactions. There are three normally open streams with con
stant pointers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (- 1) is returned upon end of file or error by integer functions that
deal with st�eams.

Any routine tha� uses the standard input/output package must include the header file
<stdio.h > of pertinent macro definitions. The functions and constants mentioned in sections
labeled 3S are declared in the include file and need no further declaration. The constants, and
the following 'functions' are implemented as macros� redeclaration of these names is perilous:
getc, getchar, putc, putchar, jeoj, jerror, fileno.

SEE ALSO
open (2) , close(2) , read(2) , write(2)

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized
with fopen, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

7th Edition 1

STRING (3) STRING (3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string operations

SYNOPSIS
char *strcat(sl , s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2 ;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, *s2 ;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s;

DESCRIPTION

BUGS

These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Strcat appends a copy of string s2 to the end of string sl. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as sl is lexicographically greater than, equal to, or less than s2. Strncmp makes the
same comparison but looks at at most n characters.

Strcpy copies string s2 to sl, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding s2; the target may not be null-terminated if the
length of s2 is n or more. Both return sl.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character c in string s, or zero if
c does not occur in the string.

Strcmp uses native character comparison, which is signed on PDP l l 's, unsigned on other
machines.

7th Edition 1

SWAB (3)

NAME .
swab - swap bytes

SYNOPSIS
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION

SWAB (3)

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adja
cent even and odd bytes. It is useful for carrying binary data between PDP l l 's and other
machines. Nbytes should be even.

7th Edition 1

SYSTEM (3)

NAME

system - issue a shell command

SYNOPSIS

system (string)
char *string;

DESCRIPTION

SYSTEM (3)

System causes the string to be given to sh(l) as input as if the string had been typed as a com
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO

popen(3) , exec (2) , wait(2)

DIAGNOSTICS

Exit status 1 27 indicates the shell couldn't be executed.

7th Edition 1

TTYNAME (3) ITYNAME (3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char *ttyname(fildes)

isatty (tildes)

ttyslotO

DESCRIPTION

FILES

Ttyname returns a pointer· to the null-terminated path name of the terminal device associated
with file descriptor .fildes.

Isatty returns 1 if .fildes is associated with a terminal device, 0 otherwise.

Ttyslot returns the numb�r of the entry in the ttys(S) file for the control terminal of the current
process.

/dev/*
/etc/ttys

SEE ALSO
ioctH2) , ttys(S)

DIAGNOSTICS
Tryname returns a null pointer (0) if .fildes does not describe a terminal device in directory
'/dev' .

Trys/ot returns 0 if '/etc/ttys' is inaccessible or if it cannot determine the control terminal.
BUGS

The return value points to static data whose content is overwritten by each call.

7th Edition 1

UNGETC (3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include < stdio.h >

ungetc<c, stream)
FILE *stream;

DESCRIPTION

UNGETC (3S)

Ungetc pushes the character c back on an input stream. That character will be returned by the
next getc call on that stream. Ungetc returns c.

One character of ·pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered. Attempts to push EOF are rejected.

Fseek(3) erases all memory of pushed back characters.

SEE ALSO
getc (3 } , setbuf(3) , fseek(3)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

·········-·-· -······.l.th..Editi.on

8 '

CAT (4) CAT (4)

NAME

cat - phototypesetter interface

DESCRIPTION

Cat provides the interface to a Graphic Systems C/ A/T phototypesetter. Bytes written on the
file specify font, size, and other control information as well as the characters to be flashed. The
coding will not be described here.

Only one process may have this file open at a time. It is write-only.

FILES

/dev/cat

SEE ALSO

troff(l)
Phototypesetter interface specification

7th Edition

DN (4)

NAME
dn - DN-1 1 ACU interface

DESCRIPTION
The dn? files are write-only. The permissible codes are:

0-9 dial 0-9
dial •
dial # .
4 second delay for second dial tone

< end-of-number

The entire telephone number must be presented in a single write system call.

DN (4)

It is recommended that an end-of-number code be given even though not all ACU's actually
require it.

·

FJLES
/dev/dnO
/dev/dn1
/dev/dn2

SEE ALSO
dp(4)

7th Edition

connected to 801 with dpO
not currently connected
not currently connected

1

DU (4) DU (4)

NAME
du, dp - DU-l l 201 data-phone interface

DESCRIPTION

FILES

.The dpO file is a 201 data-phone interface. Read and write calls to dpO are limited to a max
imum of 5 1 2 bytes. Each write call is sent as a single record. Seven bits from each byte are
written along with an eighth odd parity bit. The sync must be user supplied. Each read call re
turns characters received from a single record. Seven bits are returned unaltered; the eighth bit
is set if the byte was not received in odd parity. A 1 0 second time out is set and a zero-byte
record is returned if nothing is received in that time.

/dev/dpO

SEE ALSO
dn(4)

BUGS
The name dpO is a historical dreg.

7th Edition 1

HP { 4) HP (4)

NAME
hp - RH- l l /RP04, RP05, RP06 moving-head disk

DESCRIPTION

FI LES

The octal representation of the minor device number is encoded idp, where i is an interleave
flag, d is a physical drive number, and p is a pseudodrive (subsection) within a physical unit. If
i is 0, the origins and sizes of the pseudodisks on each drive, counted in cylinders of 4 1 8 5 1 2-
byte blocks, are:

disk start
0 0
1 23
2 0
3 0
4 44
5 430

. 6 44
7 44

length
23
2 1
0
0
386
385
367
77 1

If i is 1 , the minor device consists of the specified pseudodisk on drives numbered 0 through
the designated drive number. Successively numbered blocks are distributed across the drives in
rotation.

Systems distributed for these devices use disk 0 for the root, disk 1 for swapping, and disk 4
(RP04/5) or disk 7 (RP06) for a mounted user file system.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records.
A 'raw' interface provides for direct transmission between the disk and the user's read or write
buffer. A single read or write call results in exactly one I/0 operation and therefore raw I/0 is
considerably more efficient when many words are transmitted. The names of the raw files
conventionally begin with an extra 'r. ' In raw 1/0 the buffer must begin on a word boundary,
and raw I/0 to an interleaved device is likely to have disappointing results.

/dev/rp? , /dev/rrp?

SEE ALSO
rp(4)

BUGS
In raw I/0 read and write(2) truncate file offsets to 5 1 2-byte block boundaries, and write
scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access raw
devices, read. write and lseek(2) should always deal in 5 1 2-byte multiples.

Raw device drivers don' t work on interleaved devices.

7th Edition 1

HS (4) HS (4 1

NAME

hs - RH1 1 /RS03-RS04 fixed-head disk file

DESCRIPTION

FILES

The files hsO .. . hs7 refer to RJS03 disk drives 0 through 7. The files hs8 . . . hs15 refer to
RJS04 disk drives 0 through 7. The RJS03 drives are each 1024 blocks long and the RJS04
drives are 2048 blocks long.

The hs files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a •raw' inteface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call results in exactly one 1/0 operation and therefore raw I/0 is considerably more
efficient when many words are transmitted. The names of the raw HS files begin with rhs. The
same minor device considerations hold for the raw interface as for the normal interface.

In raw 1/0 the buffer must begin on a word boundary, and counts should be a multiple of 5 12
bytes (a disk block) . Likewise /seek calls should specify a multiple of 5 1 2 bytes.

/dev/hs?, /dev/rhs?

7th Edition

HT (4) HT (4) ·

NAME
ht - RH-1 1/TU-16 magtape interface

DESCRIPTION

FILES

The files mtO, mtl, . . . refer to the DEC RH/TM/TU16 magtape. When opened for reading or
writing, the tape is not rewound. When closed, it is rewound (unless the 0200 bit is on, see
below) . If the tape was open for writing, a double end-of-file is written. If the tape is not to be
rewound the tape is backspaced to just between the two tapemarks.
A standard tape consists of a series of 5 12 byte records terminated by a double end-of-file. To
the extent possible, the system makes it possible, if inefficient, to treat the tape like any other
file. Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing
in very small units is inadvisable, however, because it tends to create monstrous record gaps.

The last octal digi t of the minor device number selects the drive. The middle digit selects a
controller. The initial digit is even to select 800 BPI, odd to select 1 600 BPI. If the 0200 bit is
on (initial digit 2 or 3) , the tape is not rewound on close. Note that the minor device number
has no necessary connection with the file name, and in fact tp(l) turns the short name x into
'/dev/mtx'.

The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written·, the 'raw' interface is appropriate. The associated files may be named
rmtO, . . . , rmt7, but the same minor-device considerations as for the regular files still apply.

Each read or write call reads or writes the next record on the tape. In the write case the record
has the same length as the buffer given. During a read, the record size is passed back as the
number of bytes read, provided it is no greater than the buffer size; if the record is long, an
error is indicated. In raw tape 1/0, the buffer must begin on a word boundary and the count
must be even. Seeks are ignored. A zero count is returned when a tape mark is read; another
read will fetch the first record of the next tape file.

/dev/mt?, /dev/rmt?

SEE ALSO
tp(l)

BUGS
The magtape system is supposed to be able to take 64 drives. Such addressing has never been
tried.

Taking a drive off line, or running off the end of tape, while writing have been known to hang
the system.
If any non-data error is encountered, it refuses to do anything more until closed. In raw I/0,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark explicitly.

7th Edition 1

MEM (4) MEM (4)

NAME
mem, kmem - core memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system. Kmem is the same as mem except that
kernel virtual memory rather than physical memory is accessed.

Byte addresses are interpreted as memory addresses. References to non-existent locations re
turn errors.

Examining and patching device registers is likely to lead to unexpected results when read-only
or write-only bits are present.

On PDP1 1 's, the 1/0 page begins at location 0 160000 of kmem and per-process data for the
current process begins at 0 140000.

/dev/mem, /dev/kmem

On PDP l l 's, memory files are accessed one byte at a time, an inapproriate method for some
device registers.

7th Edition 1

NULL (4)

NAME
null - data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

7th Edition

NULL (4)

1

PK (4) PK (4)

NAME
pk .- packet driver

DESCRIPTION
The packet driver implements a full-duplex end-to-end flow control strategy for machine-to
machine communication. Packet driver protocol is established by calling pkon(2) with a charac
ter device file descriptor and a desired packet size in bytes. The packet size must be a power of
2, 32 � size� 4096. The file descriptor must represent an 8-bit data path. This is normally
obtained by setting the device in raw mode (see ioct/(2)) .

The actual packet size, which may be smaller than the desired packet size, is arrived at by nego
tiation with the packet driver at the remote end of the data link.

The packet driver maintains two data areas for incoming and outgoing packets. The output area
is needed to implement retransmission on errors, and arriving packets are queued in the input
area. Data arriving for a file not open for reading is discarded. Initially the size of both areas is
set to two packets.

It is not necessary that reads and writes be multiples of the packet size although there is less
system overhead if they are. Read operations return the maximum amount of data available
from the input area up to the number of bytes specified in the system call. The buffer sizes in
write operations are not normally transmitted across the link. However, writes of zero length
are treated specially and are- reflected at the remote end as a zero-length read. This facilitates
marking the serial byte stream, usually for delimiting files.

When one side of a packet driver link is shut down by close(2) or pko./f (see pkon(2)) , read(2)
on the other side will return 0, and write on the other side will raise a SIGPIPE signal.

SEE ALSO
pkon(2) , pkopen(3)

7th Edition

RF (4) RF (4)

NAME
rf - RFl l /RS 1 1 fixed-head disk file

DESCRIPTION

FILES

BUGS

This file refers to the concatenation of all RS- 1 1 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file is
1 024x (minor+ l) blocks. That is minor device zero is taken to be 1024 blocks long; minor
device one is 2048, etc.

The rj() file accesses the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write call results in exactly one 1/0 operation and therefore raw 1/0 is considerably more
efficient when many words are transmitted. The name of the raw RF file is rrj(). The same
minor device considerations hold for the raw interface as for the normal interface.

In raw 1/0 the buffer must begin on a word boundary, and counts should be a multiple of 5 12
bytes (a disk block) . Likewise seek calls should specify a multiple of 5 1 2 bytes.

/dev/rfO, /dev/rrfO

The 5 1 2-byte restrictions on the raw device are not physic
.
ally necessary, but are still imposed.

7th Edition I

RK (4) RK (4)

NAME
rk - RK- 1 1/RK03 or RK05 disk

DESCRIPTION

FILES

BUGS

Rk? refers to an entire disk as a single sequentially-addressed file. I ts 256-word blocks are
numbered 0 to 487 1 . Minor device numbers are drive numbers on one controller.

·

The rk files discussed above access the disk via the system's normal buffering mechanism and
may be read and written without regard to physical disk records. There is also a 'raw' interface
which provides for direct transmission between the disk and the user's read or write buffer. A
single read or write call results in exactly one 110 operation and therefore raw 1/0 is consider
ably more efficient when many words are transmitted. The names of the raw RK files begin
with rrk and end with a number which selects the same disk as the corresponding rk file.

In raw 110 the b�ffer must begin on a word boundary, and counts should be a multiple of 5 1 2
bytes (a disk block) . Likewise seek calls should specify a multiple of 5 1 2 bytes.

/dev/rk? , /dev/rrk?

In raw 110 read and write(2) truncate file offsets to 5 12-byte block boundaries, and write scrib
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and lseek(2) should always deal in 5 1 2-byte multipies.

7th Edition

RP { 4) RP (4)

NAME
rp - RP- 1 1 /RP03 moving-head disk

DESCRIPTION

FILES

The files rpO . . . rpl refer to sections of RP disk drive 0. The files rp8 . . . rp/5 refer to drive 1
etc. This allows a large disk to be broken up into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 8 1 000
1 0 5000
2 5000 2000
3 7000 74000
4-7 unassigned

Thus rpO covers the whole drive, while rpl , rp2, rp3 can serve usefully as a root, swap, and
mounted user file system respectively.

The rp files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a 'raw' interface which provides
for direct transmission between the disk and the user's read or write buffer. A single read or
write call results in exactly one 110 operation and therefore raw 110 is considerably more
efficient when many words are transmitted. The names of the raw RP files begin with rrp and
end with a number which selects the same disk section as the corresponding rp file.
In raw 110 the buffer must begin on a word boundary.

/dev/rp?, /dev/rrp?

SEE ALSO
hp(4)

BUGS
In raw 110 read and write(2) truncate file offsets to 5 1 2-byte block boundaries, and write
scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access raw
devices, read. write and /seek(2) should always deal in 5 1 2-byte multiples.

7th Edition 1

TC (4)

NAME

tc - TC-1 1/TU56 DECtape

DESCRIPTION

The files tapO . • . tap7 refer to the TC-l l/TU56 DECtape drives 0 to 7 .

The 256-word blocks on a standard DECtape are numbered 0 to 577.

FILES

/dev/tap?

SEE ALSO

tp(l)

7th Edition

TC (4)

TM (4) TM { 4)

NAME
tm - TM-1 1/TU-10 magtape interface

DESCRIPTION

FILES

The files mtO, ... , mtl refer to the DEC TUlO/TM l l magtape. When closed it can be rewound
or not, see below. If it was open for writing, two end-of-files are written. If the tape is not to
be rewound it is positioned with the head between the two tapemarks.

If the 0200 bit is on in the minor device number the tape is not rewound when closed.

A standard tape consists of a series of 5 1 2 byte records terminated by an end-of-file. To the
extent possible, the system makes it pqssible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create monstrous record gaps.

The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt witn, and especially when long r:ecords
are to be read or written, the •raw' interface is appropriate. The associated files are named
rmtO, . . . , rmtl. Each read or write call reads or writes the next record on the tape. In the write
case the record has the same length as the buffer given. During a read, the record size is
passed back as the number of bytes read, provided it is no greater than the buffer size; if the
record is long, an error is indicated. In raw tape I/0, the buffer must begin on a word boun
dary and the count must be even. Seeks are ignored. A zero byte count is returned when a
tape mark is read, but another read will fetch the first record of the new tape file.

/dev/mt? , /dev/rmt?

SEE ALSO
tp { l)

BUGS
If any non-data error is encountered, it refuses to do anything more until closed. In raw 1/0,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark.

7th Edition 1

TIY (4) UNIX Programmer's Manual TTY (4)

NAME

tty - general terminal interface

DESCRIPTION

This section describes both a particular special file, and the general nature of the terminal inter
face.

The file /dev/tty is, in each process, a synonym for the control terminal associated with that pro
cess. It is useful for programs that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used for programs that demand a file
name for output, when typed output is desired and it is tiresome to find out which terminal is
currently in use.

As for terminals in general: all of the low-speed asynchronous communications ports use the
same general interface, no matter ·what hardware is involved. The remainder of this section
discusses the common features of the interface.

When a terminal file is opened, it causes the process to wait until a connection is established.
In practice user's programs seldom open these files� they are opened by init and become a
user's input and output file. The very first terminal file open in a process becomes the control
terminal for that process. The control terminal plays a special role in handling quit or interrupt
signals, as discussed below. The control terminal is inheri ted by a child process during a fork.
even if the control terminal is · closed. The set of processes that thus share a control terminal is
called a process group� all members of a process group receive certain signals together. see DEL
below and ki//(2) .
A terminal associated with one of these files ordinarily operates in full-duplex mode. Charac
ters may be typed at any time. even while output is occurring� and are only lost when the
system's character input buffers become completely choked, which �s rare, or when the user has
accumulated the maximum allowed number of input characters that have not yet been read by
some program. Currently this limit is 256 characters. When the input limit is reached all the
saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how many char
acters are requested in the read call, at most one line will be returned. It is not however neces
sary to read a whole line at once; any number of characters may be requested in a read, even
one, without losing information. There are special modes, discussed below, that permit the
program to read each character as typed without waiting for a full line.

During input, erase and kill processing is normally done. By default, the character '#' erases
the last character typed, except that it will not erase beyond the beginning of a line or an EOT.
By default, the character '@ ' ki11s the entire line up to the point where i t was typed, but not
beyond an EOT. Both these characters operate on a keystroke basis independently of any back
spacing or tabbing that may have been done. Either '@ ' or '#' may be entered literally by
preceding it by '\'; the erase or kill character remains, but the '\' disappears. These two charac
ters may be changed to others.

When desired, all upper-case letters are mapped into the corresponding lower-case letter. The
upper-case letter may be generated by preceding it by '\' . In addition. the following escape
sequences can be generated on output and accepted on input:

for use

7th Edition

\'
\ !
,.
\ (
\)

r;:vised 5 1 79

TIY (4) UNIX Programmer's Manual ITY (4)

Certain ASCII control characters have special meaning. These characters are not passed to a
reading program except in raw mode w�ere they lose· their special character. Also, it is possible
to change these characters from the default� see below.

EOT (Control-D) may be used to generate an end of file from a terminal. When an EOT is
received, all the characters waiting to be read are immediately passed to the program,
without waiting for a new-line, and the EOT is discarded. Thus if there are no charac
ters waiting, which is to say the EOT occurred at the beginning of a line, zero charac
ters will be passed back, and this is the standard end-of-file indication.

DEL (Rubout) is not passed to a program but generates an interrupt signal which is sent to all
processes with the associated control terminal. Normally each such process is forced to
terminate, but arrangements may be made either to ignore the signal or to receive a
trap to �n agreed-upon location. See signa/(2) .

FS (Control-\ or control-shift-L) generates the quit signal. Its treatment is identical to the
interrupt signal except that unless a receiving process has made other arrangements it
will not only be terminated but a core image file will be generated.

DC3 (Control-S) delays all printing on the terminal until something is typed in.

DCl (Control-Q) restarts printing after DC3 without generating any input to a program.

When the carrier signal from the dataset drops (usually because the user has hung up his termi
nal) a hangup signal is sent to all processes with the terminal as control terminal. Unless other
arrangements have been made, this signal causes the processes to terminate. If the hangup sig- ·

nal is ignored, any read returns with an end-of-file indication. Thus programs that read a termi
nal and test for end-of-file on their input can terminate appropriately when hung up on.

When one or more characters are written, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. Input characters are echoed by putting
them in the output queue as they arrive. When a process produces characters more rapidly
than they can be typed, it will be suspended when its output queue exceeds some limit. When
the queue has drained down to some threshold the program is resumed. Even parity is always
generated on output. The EOT character is not transmitted (except in raw mode) to prevent
terminals that respond to it from hanging up.

Several ioct/(2) calls apply to terminals. Most of them use the following structure, defined in
< sgtty.h> :

struct sgttyb {

} ;

char sg_ispeed;
char sg_ospeed;
cbar sg_erase;
cbar sg_kill;
int sg_ftags;

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according
to the following · table, which corresponds to the DEC DH- 1 1 interface. If other hardware is
used, impossible speed changes are ignored. Symbolic values in the table are as defined in
< sgtty. h> .

BO 0
BSO 1
B75 2
Bl lO 3
B 1 34 4
B 1 50 5

7th Edition

(hang up dataphone)
50 baud .
75 baud
1 10 baud
1 34.5 baud
1 50 baud

revised 5179 2

TIY (4)

B200 6
B300 7
B600 8
B1200 9
Bl 800 10
B2400 1 1
B4800 1 2
B9600 1 3
EXTA 1 4
EXTB 1 5

200 baud
300 baud
600 baud
1 200 baud
1 800 baud
2400 baud
4800 baud
9600 baud
External A
External B

UNIX Programmer's Manual TTY (4)

In the current configuration, only 1 10, 1 50, 300 and 1 200 baud are really supported on dial-up
lines. Code conversion and line control required for IBM 274 1 's (1 34.5 baud) must be imple

. mented by the
·
user's program. The half-duplex line discipline required for the 202 dataset

(1 200 baud) is not supplied; full-duplex 2 1 2 datasets work fine.

The sg_erase and sg_ki/1 fields of the argument structure specify the erase and kill characters
respectively. (Defaults are # and @.) . ,

The sg_jlags field of the argument structure contains several bits that determine the system's
treatment of the terminal:

ALLDELAY 0 1 77400 Delay algorithm selection
BSDELAY
BSO
BS1
VTDELAY
FFO
FF1
CRDELAY
CRO
CR l
CR2
CR3
TBDELAY
TABO
TABl
TAB2
XTABS
NLDELAY
NLO
NLl
NL2
NL3
EVENP
ODDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

0100000 Select backspace delays (not implemented) :
0
0 100000
0040000 Select form-feed and vertical-tab delays:
0
0 100000
0030000 Select carriage-return delays:
0
0010000
0020000
0030000
0006000 Select tab delays:
0
000 1000
0004000
0006000
0001400 Select new-line delays:
0
0000400
0001000
000 1400
0000200 Even parity allowed on input (most terminals)
00001 00 Odd parity allowed on input
0000040 Raw mode: wake up on all characters, 8-bi l interface
0000020 Map CR into LF� echo LF or CR as CR-LF
000001 0 Echo (full duplex)
0000004 Map upper case to lower on input
000000'2 Return each character as soon as typed
000000 1 Automatic flow control

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

7th Edition revised 5/79 3

TIY (4) UNIX Programmer's Manual

Backspace delays are currently ignored but might be used for Terminet 300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

TTY (4)

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about . 1 6 seconds and is suitable for the VTOS and the TI 700. Delay type 3 is
unimplemented and is 0.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model
37's. Type 2 is useful for the VTOS and is about . 1 0 seconds. Type 3 is unimplemented and is
0.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model
37. Type 3, called XTABS, is not a delay at all but causes tabs to be replaced by the appropri
ate number of spaces on output.

Characters with the wrong parity, as determined by bits 200 and 100. are ignored.

In raw mode, every character is passed immediately to the program without waiting until a full
line has been typed. No erase or kill processing is done� the end-of-file indicator (EOT) , the
interrupt character (DEL) and the quit character (FS) are not treated specially. There are no
delays and no echoing, and no replacement of one character for another� characters are a full 8
bits for both input and output (parity is up to the program) .

Mode 020 causes input carriage returns to be turned into new-lines� input of either CR or LF
causes LF-CR both to be echoed (for ter]llinals with a new-line function) .

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as
typed, instead of waiting for a full line, but quit and interrupt work, and output delays, case
translation, CRMOD, XTABS, ECHO, and parity work normally. On the other hand there is
no erase or kill, and no special treatment of \ or EOT.

TANDEM mode causes the system to produce a stop character (default DC3) whenever the
input queue is in danger of overflowing, and a start character (default DCl) when the input
queue has drained sufficiently. It is useful for flow control when the 'terminal' is actually
another machine that obeys the conventions.

Several ioctl calls have the form:

#include < sgtty.h >

ioctl (fi.ldes, code, arg)
struct sgttyb *arg;

The applicable codes are:

TIOCGETP
Fetch the parameters associated with the terminal. and store in the pointed-to structure.

TIOCSETP
Set the parameters according to the pointed-to structure. The interface delays until out
put is quiescent, then throws away any unread characters. before changing the modes.

TIOCSETN
Set the parameters but do not delay or flush input. Switching out of RAW or CBREAK
mode may cause some garbage input.

With the following codes the arg is ignored.

TIOCEXCL
Set ••exclusive-use" mode: no further opens are permitted until the file has been
closed.

TIOCNXCL

7th Edition revised 5/79 4

TIY (4) UNIX Programmer's Manual TIY (4)

FILES

Tum off .. exclusive-use" mode.

TIOCHPCL
When the file is closed for the last time, hang up the terminaL This is useful when the
line is associated with an ACU used to place outgoing calls.

TIOCFLUSH
All characters waiting in input or output queues are flushed.

The following codes affect characters that are special to the terminal interface.
a pointer to the following structure, defined in < sgtty. h> :

struc:t tc:hars {
char
char
char
char
char
char

} ;

t_intrc;
�-quite:;
t_startc;
t_stopc:;
t_eofc:;
t_brkc:;

I* interrupt *I
I* quit *I
I* start output *I
I* stop output *I
I* end-of-file *I
I* input delimiter (like nn *I

The argument is

The default values for these characters are DEL, FS, DCl , DC3, EOT, and - 1 . A character
value of - 1 eliminates the effect of that character. The t_brkc character, by default - 1 , acts
like a new-line in that it terminates a ' line, ' is echoed, and is passed to the program. The 'stop'
and 'start' characters may be the same, to produce a toggle effect. It is probably counterproduc
tive to make other special characters (including erase and kill) identical.

The calls are:

TIOCSETC
Change the various special characters to those given in the structure.

TIOCSETP
Set the special characters to those given in the structure.

/dev/tty
/dev/tty*
ldev/console

SEE ALSO

BUGS

getty(8) , stty (1) , signal(2) , ioctl(2)

Half-duplex terminals are not supported.

The terminal handler has clearly entered the race for ever-greater complexity and generality.
It's still not complex and general enough for TENEX fans.

7th Edition revised 5179 5

TTY (4) TTY (4)

FILES

Speed cannot be changed on terminals attached to a KL- 1 1 ; the UNIX console, whose special
use is described in boot(8) , is such a terminal. Other terminals, called /devlttyOO, /devlttyOJ • . . . •

are attached to DH-1 1 's.

/dev/tty
/dev/tty*
I dev I console

SEE ALSO

BUGS

getty(8) , stty (1) , signal (2) , ioctl (2)

Half-duplex terminals are not supported. On raw-mode output, parity should be transmitted as
specified in the ch�racters written.

7th Edition 5

VP (4) UNIX Programmer's Manual VP (4)

NAME
vp - Versatec printer-plotter

DESCRIPTION

FILES

VpO is the interface to a Versatec D 1 200A printer-plotter with a Versatec C-PDPl l (DMA) con
troller. Ordinarily bytes written on it are interpreted as ASCII characters and printed. As a
printer, it writes 64 lines of 132 characters each on 1 1 by 8.5 inch paper. Only some of the
ASCII control characters are interpreted.

NL performs the usual new-line function, i.e. spaces up the paper and resets to the left
margin. It is ignored however following a CR which ends a non-empty line.

CR is ignored if th� current line is empty but is otherwise like NL.

FF resets to · the left margin and then to the top of the next page.

EOT resets to the left margin, advances 8 inches, and then performs a FF.

The ioct/(2) system call may be used to change the mode of the device. Only the first word of
the 3-word argument structure is used. The bits mean:

0400 Enter simultaneous print/plot mode.
0200 Enter plot mode.
0 1 00 Enter print mode (default on open) .
040 Send remote terminate.
020 Send remote form-feed.
0 10 Send remote EOT.
04 Send remote clear.
02 Send. remote reset.

On open a reset, clear, and form-feed are performed automatically. Notice that the mode bits ����D are not encoded, so that it is required that exactly one be set.

In plot mode each byte is interpreted as 8 bits of which the high-order is plotted to the left� a
' 1 ' leaves a visible dot. A full line of dots is produced by 264 bytes; lines are terminated only
by count or by a remote terminate function. There are 200 dots per inch both vertically and
horizontally.

When simultaneous print-plot mode is entered exactly one line of characters, terminated by
NL, CR, or the remote terminate function, should be written. Then the device enters plot
mode and at least 20 lines of plotting bytes should be sent. As the line of characters (which is
20 dots high) is printed, the plotting bytes overlay the characters. Notice that it is impossible to
print characters on baselines that differ by fewer than 20 dot-lines.

In print mode lines may be terminated either with an appropriate ASCII character or by using
the remote terminate function.

/dev/vpO

SEE ALSO
opr (l)

7th Edition 1

ACCT (5)

NAME
acct - execution accounting file

SYNOPSIS
#include < sys/ acct.h >

DESCRIPTION

ACCT (5)

Acct(2) causes entries to be made into an accounting file for each process that terminates. The
accounting file is a sequence of entries whose layout, as defined by the include file is:

typedef unsigned short cotnp t�
I* "floating pt": 3 bits

-
base 8 exp, 13 bits fraction • I

struct acct
{

};

char ac_comm[IO} � I* command name *I
comp_t ac_utime� I* user time *I
comp_t ac_stime� /* system time *I
comp_t ac_etime� I* elapsed time *I
time_t ac_btime� I* beginning time *I
short ac_uid� I* user 10 • I
short ac_gid; I* group 10 • I
short ac_mem� I* average memory usage *I
comp_t ac_io� I* number of disk 10 blocks *I
dev _t ac_tty� I* control typewriter • I
char ac_flag� I* accounting flag • I

I* flag bits • I
#define AFORK 01 I* has executed fork, but no exec *I
#define ASU 02 I* used super-user privileges • I

If the process does an exec{2) , the first 10 characters of the filename appear in ac_comm. The
accounting flag contains bits indicating whether exec(2) was ever accomplished, and whether
the process ever had super-user privileges.

SEE ALSO
acct (2) , sa(l)

7th Edition

A.OUT (5) A.OUT (5)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include < a.out.h >

DESCRIPTION
A .out is the output file of the assembler as(l) and the link editor /d(l) . Both programs make
a.out executable if there were no errors and no unresolved external references. Layout infor
mation as given in the include file for the PDP1 1 is:

struct exec { I* a.out header *I

} ;

int · a_magic� I* magic number •;.
unsigned a_text; I* size of text segment *I
unsigned a_ data; I* size of initialized data *I
unsigned a_ bss� I* size of uni tialized data *I
unsigned a_syms; I* size of symbol table *I
unsigned a_entry; I* entry point *I
unsigned a_unused; I* not used *I
unsigned a_flag; I* relocation info stripped *I

#define A_MAGIC1
#define A_MAGIC2
#define A_MAGIC3
#define A_MAGIC4

0407
0410
041 1
0405

I* normal *I
I* read-only text *'I
I* separated I&D *I
I* overlay *I

struct nlist { I* symbol table entry *I
char n_name[8] ; I* symbol name *I
int n _type; I* type flag *I
unsigned n_value; I* value *I

} ;

I * values for type flag *I
#define N _ UNDF 0
#define N_ABS 01
#define N _TEXT 02
#define N_DATA03
-#define N_BSS 04
#define N_TYPE 037
#define N_REG 024
#define N_FN 037
#define N_EXT 040
#define FORMAT

I* undefined *I
I* absolute *I
I* text symbol *I
I* data symbol *I
I* bss symbol *I

I* register name *I
I* file name symbol *I
I* external bit, or'ed in *I
"%06o"l* to print a value *I

The file has four sections: a header, the program and data text, relocation information, and a
symbol table (in that order) . The last two may be empty if the program was loaded with the
' -s' option of ld or if the symbols and relocation have been removed by strip(l) .

In the header the sizes of each section are given in bytes, but are even. The size of the header
is not included in any of the other sizes.

When an a. out file is loaded into core for execution, three logical segments are set up: the text
segment, the data segment (with uninitialized data, which starts off as all 0, following initial- @illb_� ized) , and a stack. The text segment begins at 0 in the core image; the header is not loaded. If 'i.futr
the magic number in the header is 0407 (8) , it indicates that the text segment is not to be

7th Edition 1

A.OUT (5) A.OUT (5)

write-protected and shared, so the data segment is immediately contiguous with the text seg
ment. If the magic number is 0410, the data segment begins at the first 0 mod 8K byte boun
dary following the text segment, and the text segment is not writable by the program; if other
processes are executing the same file, they will share the text segment. If the magic number is
41 1 , the text segment is again pure, write-protected, and shared, and moreover instruction and
data space are separated; the text and data segment both begin at location 0. If the magic
number is 0405, the text segment is overlaid on an existing (041 1 or 0405) text seg111ent and
the existing data segment is preserved.

The stack will occupy the highest possible locations in the core image: from 01 77776(8) and
growing downwards. The stack is automatically extended as required. The data segment is only
extended as requested by brk(2) .

The start of the te;xt segment in the file is 020(8) ; the start of the data segment is 020+51 (the
size of the text) the start of the relocation information is 020+51 +5d; the start of the symbol
table is 020+2 (51 +5d) if the relocation information is present, 020+51 +5d if not.

The layout of a symbol table entry and the principal flag values that distinguish symbol types
are given in the include file. Other flag values may occur if an assembly language program
defines machine instructions.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter
preted by the loader ld as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined exter
nal symbol is exactly that value which will appear in core when the file is executed. If a word
in the text or data portion involves a reference to an undefined external symbol, as indicated by
the relocation information for that word, then the value of the word as stored in the file is an
offset from the associated external symbol. When the file is processed by the link editor and
the external symbol becomes defined, the value of the symbol will be added into the word in
the file.

If relocation information is present, it amounts to one word per word of program text or initial
ized data. There is no relocation information if the 'relocation info stripped' flag in the header
js on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associat
ed with the relocation word:

000 absolute number
002 reference to text segment
004 reference to initialized data
006 reference to uninitialized data (bss)
010 reference to undefined external symbol

Bit 0 of the relocation word indicates, if 1 , that the reference is relative to the pc (e.g. 'clr x ') ;
if 0, that the reference is to the actual symbol (e.g. , 'clr *Sx') .

The remainder of the relocation word (bits 1 5-4) contains a symbol number in the case of
external references, and is unused otherwise. The first symbol is numbered 0, the second 1 ,
etc.

SEE ALSO
as(l) , ld(l) , nm(l)

7th Edition 2

AR (5) AR (5)

NAME
ar - archive (library) file format

SYNOPSIS
#include < ar. h >

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link·editor /d.

A file produced by ar has a magic number at the start, fol lowed by the constituent files, each
preceded by a file header. The magic number and header layout as described in the include file
are:

#define ARMAG 0177545
struct ar_hdr {

char
long
char
char
int
long

} ;

ar_name[l4] ;
ar_date;
ar_uid;
ar_gid;
ar_mode;
ar_size;

The name is a null·terminated string; the date is in the form of time(2) ; the user ID and group
ID are numbers; the mode is a bit pattern per chmod(2) ; the size is counted in bytes.

Each file begins on a word boundary; a null byte is inserted between files if necessary.
Nevertheless the size given reflects· the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(l) , ld(l) , nm(l)

BUGS
Coding user and group IDs as characters is a botch.

7th Edition 1

CORE (5) CORE (5)

NAME
. core - format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
signa/(2) for the list of reasons� the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called 'core' and is written in the
process's working directory (provided it can be� normal access controls apply) .

The first 1024 bytes of the core image are a copy of the system's per-user data for the process,
including the registers as they were at the time of the fault� see the system listings for the for
mat of this area. The remainder represents the actual contents of the user's core area when the
core image was written. If the text segment is write-protected and shared, it is not dumped;
otherwise the entire address space is dumped.

In general the debugger adb(1) is sufficient to deal with core images.

SEE ALSO
adb (1) , signal (2 >.

7th Edition 1

DIR (5) DIR (5)

NAME
dir - format of directories

SYNOPSIS
#include < sys/dir.h >

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry see,
fiisys(S) . The structure of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ14
#endif
struct . direct
{

ino_t d ino;
char d=name[DIRSIZ] ;

} ;
By convention, the first two entries in each directory are for ' . ' and ' . . ' . The first is an entry
for the directory itself. The second is for the parent directory. The meaning of ' . . ' is modified
for the root directory of the master file system and for the root directories of removable file
systems. In the first case, there is no parent, and in the second, the system does not permit
off-device references. Therefore in both cases ' .. ' has the same meaning as ' . ' .

SEE ALSO
filsys(5)

7th Edition 1

DUMP (5)

NAME
dump, ddate - incremental dump format

SYNOPSIS
#include < sys/types.h>
#include < sys/ino.h >
include < dumprestor.h >

DESCRIPTION
Tapes used by dump and restor(!) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

DUMP (5)

The format of the header record and of the first record of each description as given in the in
clude file < dumprestor.h> is:

#define NTREC 20
#define MLEN 16
#define MSIZ 4096

#define TS_TAPE 1
#define TS_INODE 2
#define TS_BITS 3
#define TS_ADDR 4
#define TS_END 5
#define TS CLRI 6
#define MAGIC (int)600 1 1
#define CHECKSUM (int) 84446
struct spcl
{

} spcl;

struct
{

} ;

int
time_t
time_t
int
daddr_t
ino_t
int
int
struct
int
char

idates

char
char
time_t

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
c_inumber;
c_magic;
c_checksum�
dinodec_dinode;
c count;
c=addr[BSIZE] ;

id_name[l 6] ;
id_incno;
id_ddate;

NTREC is the number of 5 1 2 byte records in a physical tape block. MLEN is the number of
bits in a bit map word. MSIZ is the number of bit map words.

7th Edition 1

DUMP (5) DUMP (S)

FILES

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types
and their meanings are as follows:

TS TAPE Tape volume label
TS_INODE A file or directory follows. The c_dinode field is a copy of the disk inode and con

TS_BITS
TS ADDR
TS_END
TS_CLRI

tains bits telling what sort of file this is.
A bit map follows. This bit map has a one bit for each inode that was dumped.
A subrecord of a file description. See c_addr below.
End of tape record.
A bit map follows. This bit map contains a zero bit for all inodes that were empty
on the file system when dumped.

MAGIC All header records have this number in c_magic.
CHECKSUM

Header records checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.
c _date The date the dump was taken.
c_ddate The date the file system was dumped from.
c_volume The current volume number of the dump.
c_tapea The current number of this (51 2-byte) record.
c_inumber The number of the inode being dumped if this is of type TS_INODE.
c_magic This contains the value MAGIC above, truncated as needed.
c_checksum

This contains whatever value is needed to make the record sum to CHECKSUM.
c dinode This is a copy of the inode as it appears on the file system� see filsys(5) .
c_count
c addr

The count of characters in c_addr.
An array of characters describing the blocks of the dumped file. A character is zero
if the block associated with that character was not present on the file system, other-
wise the character is non-zero. If the block was not present on the file system, no
block was dumped� the block will be restored as a hole in the file. If there is not
sufficient space in this record to describe all of the blocks in a file, TS_ADDR
records will be scattered through the file, each one picking up where the last left
off.

Each volume except the last ends with a tapemark (read as an end of file) . The last volume
ends with a TS_END record and then the tapemark.

The structure idates describes an entry of the file /etc/ddate where dump history is kept. The
fields of the structure are:

id name The dumped filesystem is '/dev/ id nam '.
id_incno The level number of the dump tape� see dump(l) .
id_ddate The date of the incremental dump in system format see types(S) .

/etc/ddate

SEE ALSO
dump(l) , dumpdir(l) , restor (l) , filsys(S) , types(S)

7th Edition 2

ENVIRON (S) ENVIRON (5)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the 'environment' is made available by exec(2) when a process be
gins. By convention these strings have the form 'name-value' . The following names are used
by various commands:

PATH The sequence of directory prefixes that sh, time, nice(l) , etc., apply in searching for a
file known by an incomplete path name. The prefixes are separated by ' : ' . Login(l)
sets PATH- :/bin:/usr/bin.

HOME A user's iogin directory, set by login(l) from the password file passwd(S) .

TERM The kind of terminal for which output is to be prepared. This information is used by
commands, such as nro.ffor plot(l) , which may exploit special terminal capabilities. See
term(?) for a list of terminal types.

Further names may be placed in the environment by the export command and 'name-value'
arguments in sh(l) , or by exec(2) . It is unwise to conflict with certain Shell variables that are
frequently exported by ' .profile' files: MAIL, PSI , PS2, IFS.

SEE ALSO
exec(2) , sh(l) , term(7) , login (!)

7th Edition

FILSYS (5) FILSYS (5)

NAME
filsys, flblk, ino - format of file system volume

SYNOPSIS
#include < sys/types.h>
#include < sys/ftbk.h >
#include < sys/ftlsys. h >
#include < sys/ino.h >

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a com
mon format for certain vital information. Every such volume is divided into a certain number
of 5 12-byte blocks. Block 0 is unused and is available to contain a bootstrap program, pack la
bel, or other information.

Block 1 is the ·super block. The layout of the super block as defined by the include file
< sys/filsys. h> is:

I* Structure of the super-block *I
struct filsys {

} ;

unsigned short s_isize; I* first block not in i-list */
daddr_t s_fsize; I* size in blocks of entire volume */
short s nfree; I* number of addresses in s_free */
daddr_t s)ree [NICFREE] ; I* free block list */
short s ninode; I* number of i-nodes in s inode *I
ino_t s=inode[NICINOD] ; I* free i-node list */

-

char s flock; I* lock during free list manipulation *I
char s)ock; I* lock during i-list manipulation *I
char s_fmod; I* super block modified flag */
char s_ronly; I* mounted read-only flag *I
time_t s_time; I* last super block update */
I* remainder not maintained by this version of the system *I
daddr_t s_tfree; I* total free blocks*/
ino_t s_tinode; I* total free inodes */
short s_m; I* interleave factor *I
short s n· /* II I I * 1
char s

-
f�ame[6] ; I* file system name ""/

char s)pack[6] ; r file system pack name ""/

S_isize is the address of the first block after the i-Iist, which starts just after the super-block, in
block 2. Thus is i-list is s_isize- 2 blocks long. SJsize is the address of the first block not po
tentially available for allocation to a file. These numbers are used by the system to check for
bad block addresses; if an . ' impossible' block address is allocated from the free list or is freed, a
diagnostic is written on the on-line console. Moreover, the free array is cleared, so as to
prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The sJree array contains, in sJree{l],
. . . , sJree{s_n.free-1], up to NICFREE free block numbers. NICFREE is a configuration con
stant. SJree{O] is the block address of the head of a chain of blocks constituting the free list.
The layout of each block of the free chain as defined in the include file < sys/jblk.h> is:

struct tblk
{

} ;

7th Edition

int df nfree;
daddr_t df)ree[NICFREE] ;

1

FILSYS (5) FILSYS (5)

The fields df_nfree and dfJree in a free block are used exactly like s_nfree and sJree in the
super block. To allocate a block: decrement s rifree, and the new block number is
sJree{s_rifree]. If the new block address is 0, there

-
are no blocks left, so give an error. If

s_nfree became 0, read the new block into s_nfree and sJree. To free a block, check if s_nfree is
NICFREE; if so, copy s_nfree and the sJree array into it, write it out, and set s_nfree to 0. In
any event set sJree{s_rifree] to the freed block's address and increment s_nfree.

S ninode is the number of free i-n umbers in the s inode array. To allocate an i-node: if s ninode
is
-
greater than 0, decrement it and return s inode]s ninode]. If it was 0, read the i-list and place

the numbers of all free inodes (up to NICINOD) into the s_inode array, then try again. To free
an i-node, provided s_ninode is less than NICINODE, place its number into s_inode[s_ninode]
and increment s_ninode. If s_ninode is already NICINODE, don't bother to enter the freed i
node into any table. This list of i-nodes is only to speed up the allocation process; the informa
tion as to whether the inode is really free or not is maintained in the inode itself.
S_ftock and s_ilock are flags maintained in the core copy of the file system while it is mounted
and their values on disk are immaterial. The value of sJmod on disk is likewise immaterial; it
is used as a flag to indicate that the super-block has changed and should be copied to the disk
during the next periodic update of file system information. S_ronly is a write-protection indica
tor; its disk value is also immaterial.

S_time is the last time the super-block of the file system was changed. During a reboot, s_time
of the super-block for the root file system is used to set the system's idea of the time.

The fields s_t.free, s_tinode, sJname and sJpack are not currently maintained.

I-numbers begin at 1 , and the storage for i-nodes begins in block 2. I-nodes are 64 bytes long,
so 8 of them fit into a block. I-node 2 is reserved for the root directory of the file system, but
no other i-number has a built-in meaning. Each i-node represents one file. The format of an
i-node as given in the include file < sys/ino.h> is:

I* I node structure as it appears on a disk block. • I
struct dinode
{

};

unsigned short di_mode;/* mode and type of file • I
short
short
short
otr_t
char
time_t
time_t
time_t

di_nlink; I* number of links to file • I
di_uid; /* owner's user id • I
di_gid; /* owner's group id • I
di_size; I* number of bytes in file • I
di_addr[40] ; r disk block addresses *I
di_atime; I* time last accessed • I
di_mtime; I* time last modified • I
di_ctime; I* time created • I

#define INOPB 8 I* 8 inodes per block • I
I*
• the 40 address bytes:
• 39 used; 1 3 addresses
• of 3 bytes each.
*I

Di_mode tells the kind of file; it is encoded identically to the st_mode field of stat(2) . Di_nlink is
the number of directory entries Oinks) 'that refer to this i-node. Di uid ·and di gid are the
owner's user and group IDs. Size is the number of bytes in the file. Dl atime and di mtime are
the times of last access and modification of the file contents (read,

-
write or create) (see

times(2)) ; Di ctime records the time of last modification to the inode or to the file, and is used
to determine whether it should be dumped.

7th Edition 2

FILSYS (5 } FILSYS (5)

Special files are recognized by their modes and not by i-number. A block-type special file is
one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files, the di_addr field is occupied by
the device code (see types(5) } . The device codes of block and character special files overlap.

Disk addresses of plain files and directories are kept in the array di_addr packed into 3 bytes
each. The first 1 0 addresses specify device blocks directly. The last 3 addresses are singly,
doubly, and triply indirect and point to blocks of 1 28 block pointers. Pointers in indirect blocks
have the type daddr_t (see types(S) } .

For block b in a file to exist, i t is not necessary that all blocks less than b exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the
corresponding block has never been allocated. Such a missing block reads as if it contained all
zero words.

SEE ALSO
icheck(l) , dcheck(l) , dir(S) , mount(l) , stat(2) , types(S)

7th Edition 3

GROUP (S) GROUP (5)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password-field is null, no password is demanded.

This file resides in directorY /etc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical group ID's to names.

FILES
/etc/group

SEE ALSO
newgrp(l) , crypt(3) , passwd (l) , passwd(S)

7th Edition

\

MPXIO (5) MPXIO (S)

NAME
mpxio - multiplexed i/o

SYNOPSIS
#include < sys/mx. h >

#include < sgtty.h >

DESCRIPTION
Data transfers on mpx files (see mpx(2)) are multiplexed by imposing a record structure on
the io stream. Each record represents data from/to a particular channel or a control or status
message associated with a particular channel.

The prototypical data record read from an mpx file is as follows

struct input _i-ecord {
short index;
short count;
short ccount;
char data[] ;

} ;
where index identifies the channel, and count specifies the number of characters in dala. If count
is zero, ccount gives the . size of data, and the record is a control or status message. Although
count or ccount might be odd, the operating system aligns reeords on short (i.e. 1 6 - bit) boun
daries by skipping bytes when necessary.

Data written to an mpx file must be formatted as an array of record structures defined as fol
lows

struct output_record {
short index;
short count;
short ccount;
char *data;

} ;
where the data portion of the record is referred to indirectly and the other cells have the same
interpretation as in input_record.

The control messages listed below may be read from a multiplexed file descriptor. They are
presented as two 1 6-bit integers: the first number is the message code (defined in
< sys/mx. h>) , the second is an optional parameter meaningful only with M _WATCH and
M_BLK.

7th Edition

M_ WATCH - a process 'wants to attach' on this channel. The second parameter is
the 16-bit user-id of the process that executed the open.

M_CLOSE - the channel is closed. This message is generated when the last file
descriptor referencing a channel is closed. The detach command (see mpx(2)
should be used in response to this message.

M_EOT - indicates logical end of file on a channel. If the channel is joined to a type
writer, EOT (control-d) will cause the M_EOT message under the conditions
specified in t(Y(4) for end of file. If the channel is attached to a process,
M_EOT will be generated whenever the process writes zero bytes on the chan
nel.

M_BLK - if non-blocking mode has been enabled on an mpx file descriptor xd by exe
cuting ioctl(xd, MXNBLK, OJ, write operations on the file are truncated in the
kernel when internal queues become full. This is done on a per-channel basis:
the parameter is a count of the number of characters not transferred to the

1

�:fl '>":-:;.::,:;,r.

MPXIO (5) MPXIO (S)

channel on which M_BLK is received.
M_UBLK - is generated for a channel after M_BLK when the internal queues have

drained below a threshold.

Two other messages may be generated by the kernel. As with other messages, the first 1 6-bit
quantity is the message code.

M_OPEN - is generated in conjunction with 'listener' mode (see mpx(2)) . The uid of
the calling process follows the message code as with M_WATCH. This is fol
lowed by a null-terminated string which is the name of the file being opened.

M_IOCTL - is generated for a channel connected to a process when that process exe
cutes the ioctl(fd, cmd, &vee) call on the channel file descriptor. The M IOCTL
code is followed by the cmd argument given to ioctl followed by the contents of
the structure vee. It is assumed, not needing a better compromise at this time,
that the length of vee is determined by sizeof (struct sgttyb) as declared in
< sgtty.h> .

Two control messages are understood by the operating system. M EOT may be sent through
an mpx file to a channel. It is equivalent to propagating a zero-length record through the chan
nel; i.e. the channel is allowed to drain and the process or device at the other end receives a
zero-length transfer before data starts flowing through the channel again. M_IOCTL can also
be sent through a channel. The format is identical to that described above.

7th Edition 2

MTAB (5) MTAB (5)

NAME
mtab - mounted file system table

DESCRIPTION

FILES

Mtab resides in directory /etc and contains a table of devices mounted by the mount command.
Umount removes entries.

Each entry is 64 bytes long� the first 32 are the null-padded name of the place where the special
file is mounted; the second 32 are the null-padded name of the special file. The special file has
all its directories stripped away� that is, everything through the last • /' is thrown away.

This table is present only so people can look at it. It does not matter to mount if there are du
plicated entries nor to umount if a name cannot be found.

/etc/mtab

SEE ALSO
mount (l)

7th Edition 1

PASSWD (5) PASSWD (5)

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group 10
GCOS job number, box number, optional GCOS user-id
initial working directory
program to use as Shell

This is an ASCIJ file. Each field within each user's entry is separated from the next by a colon.
The GCOS field is used only when communicating with that system, and in other installations
can contain any desired information. Each user is separated from the next by a new-line. If
the password field is null, no password is demanded� if the Shell field is null, the Shell itself is
used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user ID's to names.

I etc/ passwd

SEE ALSO
getpwent(3) , login(l) , crypt(3) , passwd(l) , group(S)

7th Edition

PLOT (5) PLOT (5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3) , and are interpreted for vari
ous devices by commands described in plot(!) . A graphics file is a stream of plotting instruc
tions. Each instruction consists of an ASCII letter usually followed by bytes of binary informa
tion. The instructions are executed in order. A point is designated by four bytes representing
the x and y values� each value is a signed integer. The last designated point in an I, m, n, or p
instruction becomes the 'current point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in plot(3) .

m move: The next four bytes give a new current point.

n cont: Draw a· line from the current point to the point given by the next four bytes. See
p/ot(1) .

p point: Plot the point given by the next four bytes.

I line: Draw a line from the point given by the next four bytes to the point given by the fol
lowing four bytes.

t label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the last
four give the end point of a circular arc. The least significant coordinate of the end point is
used only to determine the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for drawing further lines.
The styles are 'dotted, ' 'solid,' ' longdashed, ' 'shortdashed, ' and 'dotdashed. ' Effective only
in plot 4014 and plot ver.

s space: The next four bytes give the lower left corner of the plotting area� the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as close
ly as possible.

· SEE ALSO

Space settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters of plot(!) . The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square� points outside may be displayable on dev
ices whose face isn't square.
401 4 space(O, 0, 3 1 20, 3 1 20)�
ver space(O, 0, 2048, 2048) ;
300, 300s space(O, 0, 4096, 4096) ;
450 space(O, 0, 4096, 4096) ;

plot (1) , plot (3) , graph (1)

7th Edition 1

TP (5) TP (5)

NAME
tp - DEC/mag tape formats

DESCRIPTION
The command tp dumps files to and extracts files from DECtape and magtape. The formats of
these tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See bproc(8) .

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block� 64 bytes per entry. Each
entry has the following format:

struct {

} ;

char pathname[32]�
int
char
char
char
char
long
int
char
int

mode;
uid�
gid�
unused! ;
size [3] �
mod time;
tapeaddr;
unused2 [16] ;
checksum;

The path name entry is the path name of the file when put on the tape. If the pathnarrie starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte.
Mode, uid, gid, size and ·time modified are the same as described under i-nodes (see file system
jilsys(5)) . The tape address is the tape block number of the start of the contents of the file.
Every file starts on a block boundary. The file occupies (size+5 1 1) /5 1 2 blocks of continuous
tape. The checksum entry has a value such that the sum of the 32 words of the directory entry
is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
filsys (5) , tp(l)

BUGS
The pathname, uid, gid, and size fields are too small.

7th Edition

TTYS (5) TTYS (5)

NAME
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file is read by the init program and specifies which terminal special files are to have a
process created for them which will allow people to logjn. It contains one line per special file.

The first character of a line is either '0' or '1 ·� the former causes the line to be ignored, the
latter causes it to be effective. The second character is used as an argument to gerry(8) , which
performs such tasks as baud-rate recognition, reading the login name, and calling login. For nor
mal lines, the character is '0'� other charact�rs can be used, for example, with hard-wired ter
minals where speed recognition is unnecessary or which have special characteristics. (Getty will
have to be fixed in such cases.) The remainder of the line is the terminal's entry in the device
directory, /dev.

/etc/ttys

SEE ALSO
init(8) , getty (8) , login { l)

7th Edition 1

TYPES (5) UNIX Programmer's Manual TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include < sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these
types are accessible to user code:

typedef long daddr-t; r disk address .,
typedef char • caddr_t; t• core address •t
typedef unsigned int ino_t; r i-node number .,
typedef long time_t; r a time .,
typedef int label t[6]; r program status .,
type de(int dev _ t; /* device code •t
typedef long off t; I* offset in file •t

I* selectors and constructor for device code •t
#definemajor(x) Gnt) (((unsigned) x > > 8))
#defineminor(x) (int) (x&0377)
#definemakedev(x,y) (dev _t) ((x) < < Sl(y))

The form daddr t is used for disk addresses except in an i-node on disk, see .filsys(S) . Times
are encoded in seconds since 00:00:00 GMT, January 1 , 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation-dependent. Offsets
are measured in bytes from the beginning of a file. The fabel_t variables are used to save the
processor state while another process is running.

SEE ALSO
filsys(S) , time(2) , lseek(2) , adb(l)

7th Edition 1

UTMP (5) UTMP (5)

NAME
utmp, wtmp - login records

SYNOPSIS
#include < utmp. h >

DESCRIPTION

FILES

The utmp file allows one to discover information about who is currently using UNIX. The file
is a sequence of entries with the following structure declared in the include file:

struct utmp {
char ut line [8] � I* tty name */
char ut=name[8L I* user id */
long ut_time; I* time on • I

This structure gives the name of the special file associated with the user's terminal, the user's
login name, and the time of the login in the form of time(2) .

The wrmp file records all logins and logouts. Its format is exactly like utmp except that a null
user name indicates a logout on the associated terminal. Furthermore, the terminal name · - ·

indicates that the system was rebooted at the indicated time� the adjacent pair of entries with
terminal names ' I ' and ' } ' indicate the system-maintained time just before and just after a date
command has changed the system's idea of the time.

Wtmp is maintained by loginO) and init(8) . Neither of these programs creates the file, so if it
is removed record-keeping is turned off. It is summarized by ac(l) .

/etc/utmp
/usr/adm/wtmp

SEE ALSO
login (l) , init (8) , who (l) , ac (l)

ARITHMETIC (6) ARITHMETIC (6)

e NAME
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+ - x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the
answer is correct, it types back "Right!", and a new problem. If the answer is wrong, it replies
"What?", and waits for another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt (delete) .

The first optional argument determines the kind of problem to be generated� + - xl respective
ly cause addition, subtraction, multiplication, and division problems to be generated. One or
more characters can be given� if more than one is given, the different types of problems will be
mixed in random order� default is + -

Range is a decimal number� all addends, subtrahends, differences, multiplicands, divisors, and
quotients will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respon
dent makes a mistake, the numbers in the problem which was missed become more likely to
reappear.

As a matter of educational philosophy, the program will not give correct answers, since the
learner should, in principle, be able to calculate them. Thus the program is intended to provide
drill for someone just past the first learning stage, not to teach number facts de novo. For al
most all users, the relevant statistic should be time per problem, not percent correct.

7th Edition 1

BACKGAMMON (6)

NAME
backgammon - the game

SYNOPSIS
I usr/ games/backgammon

DESCRIPTION

BACKGAMMON (6)

This program does what you expect. It will ask whether you need instructions.

7th Edition

BANNER (6)

NAME
banner - make long posters

SYNOPSIS
/usr/games/banner

DESCRIPTION

BANNER (6)

Banner reads the standard input and prints it sideways in huge built-up letters on the standard
output.

7th Edition 1

BCD (6)

NAME
bed, ppt - convert to antique media

SYNOPSIS
/usr/games/bcd text

/usr/games/ppt

DESCRIPTION
Bed converts the literal text into a form familiar to old-timers.

Ppt converts the standard input into yet another form.

SEE ALSO
dd(l)

7th Edition

BCD (6)

BJ (6) BJ (6) '

NAME
bj - the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as
might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player 'natural' (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a 'push' (no money exchange) .

If t}1e dealer has an ace up, the player is allowed to make an ' insurance' bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, 'it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if
the dealer does not.

If the player is dealt two cards of the same value, he is allowed to 'double'. He is allowed
to play two hands, each with one of these cards. (The bet is doubled also; $2 on each
hand.)

If a dealt hand has a total of ten or eleven, the player may 'double down'. He may dou
ble the bet ($2 to $4) and receive exactly one more card

'
on that hand.

Under normal play, the player may 'hit' (draw a card) as long as his total is not over
twenty-one. If the player 'busts' (goes over twenty-one) , the dealer wins the bet.

When the player 'stands' (decides not to hit) , the dealer hits until he attains a total of
seventeen or more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times.
Each question is answered by y followed by a new line for 'yes', or just new line for 'no'.
? (means, 'do you want a hit?')
Insurance?
Double down?

Every time the deck is shuffied, the dealer so states and the 'action' (total bet) and 'standing'
(total won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing
will be printe.d.

·

7th Edition 1

CHECKERS (6)

NAME
checkers - game

SYNOPSIS
/usr/garnes/checkers

DESCRIPTION
Checkers uses standard. notation for the board:

BLACK
Ill/ 1 !Ill 2 /Ill
Ill/ /Ill /Ill

5 /Ill 6 /Ill 7
/Ill /Ill

/Ill 9 /Ill 10 !Ill
Ill/ /Ill !Ill

1 3 /Ill 14 1/11 15
/Ill /Ill

/Ill 1 7 /Ill 1 8 !Ill
Ill! /Ill !Ill

2 1 /Ill 22 /Ill 23
/Ill /Ill

Ill/ 25 !Ill 26 !Ill
Ill/ !Ill !Ill

29 /Ill 30 /Ill 3 1
/Ill /Ill

WHITE

CHECKERS (6)

3 Ill/ 4
/Ill

Ill/ 8 /Ill
!Ill /Ill

1 1 Ill! 12
/Ill

Ill/ 16 /Ill
Ill/ /Ill

19 Ill! 20
/Ill

Ill/ 24 Ill!
II/I Ill!

27 Ill/ 28
/Ill

!Ill 32 Ill!
Ill/ Ill/

Black plays first. The program normally plays white. To specify a move, name the square
moved from and the square moved to. For multiple jumps name all the squares touched.

Certain commands may be given instead of moves:

reverse Reverse roles� the program takes over your pieces.

backup Undo the last move for each player.

list Print the record of the game.

move Let the program select a move for you.

print Print a map of the present position.

7th Edition

CHESS (6)

AME
chess - the game of chess

SYNOPSIS
/usr/gan1es/chess

DESCRIPTION

CHESS (6)

Chess is a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol ' + ' is used to specify check� 'o-o'
and 'o-o-o' specify castling. To play black, type 'first'� to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program's reply.

FILES
, /usr/lib/book opening ' book'

DIAGNOSTICS
The most cryptic diagnostic is 'eh ?' which means that the input was syntactically incorrect.

WARNING
Over-use of this program will cause it to go away.

BUGS
. Pawns may be promoted only to queens.

7th Edition 1

CHING (6) CHING (6)

NAME
ching, fortune - the book of changes and other cookies

SYNOPSIS
/usr/games/ching [hexagram]

/usr/games/fortune

DESCRIPTION
The I Ching or Book of Changes is an ancient Chinese oracle that has been in use for centuries
as a source of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each sym
bolized by a particular arrangement of six straight (- - -) and broken (- -) lines. These
lines have values ranging from six through nine. with the even values indicating the broken
lines.

Each hexagram consists of two major sections. The Judgement relates specifically to the matter
at hand (E.g., "It furthers one to have somewhere to go.") while the Image describes the gen
eral attributes of the hexagram and how they apply to one's own life ("Thus the superio� man
makes himself strong and untiring.") .

. When any of the lines have the values six or nine, they are moving lines� for each there is an
appended judgement which becomes significant. Furthermore, the moving lines are inherently
unstable and change into their opposites� a second hexagram (and thus an additional judge
ment) is formed.
Normally, one consults the oracle by fixing the desired question firmly in mind and then casting
a set of changes (lines) using yarrow-stalks or tossed coins. The resulting hexagram will be
the answer to the question.
Using an algorithm suggested by S. C. Johnson, · the Unix oracle simply reads a question from
the standard input (up to an EOF) and hashes the individual characters in combination with the
time of day, process id and any other magic numbers which happen to be lying around the sys
tem. The resulting value is used as the seed of a random number generator which drives a
simulated coin- toss divination. The answer is then piped through nroff for formatting and will
appear on the standard output.
For those who wish to remain steadfast in the old traditions, the oracle will also accept the
results of a personal divination using, for example, coins. To do this, cast the change and then
type the resulting line values as an argument.

The impatient modern may prefer to settle for Chinese cookies� try fonune.

SEE ALSO
It furthers one to see the great man.

DIAGNOSTICS

BUGS

The great prince issues commands,
Founds states, vests families with fiefs.
Inferior people should not be employed.

Waiting in the mud
Brings about the arrival of the enemy.

If one is not extremely careful,
Somebody may come up from behind and strike him.
Misfortune.

7th Edition

MAZE (6)

NAME
maze - generate a maze problem

SYNOPSIS
/usr/gannes/nnaze/

DESCRIPTION
Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

7th Edition

MAZE (6)

1

M00 (6)

NAME
moo - guessing game

SYNOPSIS
/usr/ga�es/�oo

DESCRIPTION

MOO (6)

Moo is a guessing game imported from England. The computer picks a number consisting of
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A 'cow' is a correct digit in an incorrect position. A 'bull' is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls) .

7th Edition 1

QUIZ (6) QUIZ (6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [- i file] [- t] [category! category2]

DESCRIPTION

FILES

BUGS

Quiz gives associative knowledge tests on various subjects. It asks items chosen from category/
and expects answers from category2. If no categories are specified, quiz gives instructions and
lists the available categories.

Quiz tells a correct answer whenever yqu type a bare newline. At the end of input, upon inter
rupt, or when questions run out, quiz reports a score and terminates .

. The - t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is
gradually introduced as you learn.

The - i flag causes the named file to be substituted for the default index file. T!le lines of
these files have the syntax:

line = category newline I category ' : ' line
category = alternate I category 'I' alternate
alternate = empty I alternate primary
primary = character I ' [' category '] ' I option
option = ' { ' category ' } '

The first category on each line of an index file names an information file. The remammg
categories specify the order and cont�nts of the data in each line of the information file. Infor
mation files have the same syntax. Backslash '\' is used as with sh (l) to quote syntactically
significant characters or to insert transparent newlines into a line. When either ·a question or its
answer is empty, quiz will refrain from asking it.

/usr/games/quiz.k/*

The construct 'alab' doesn't work in an information file. Use 'a{b) ' .

7th Edition

REVERSI (6) REVERSI (6)

NAME
reversi - a game of dramatic reversals

SYNOPSIS
/usr/games/reversi [[-r 1 .file]

DESCRIPTION
Reversi (also known as 'friends' . 'Chinese friends' and 'Othello') is played on an 8x8 board us
ing two-sided tokens. Each player takes his turn by placing a token with his side up in an emp
ty square. During the first four turns, players may only place tokens in the four central squares
of the board. Subsequently. with each turn, a player must capture one or more of his
opponent's tokens. He does this by placing one of his tokens such that it and another of his to
kens embrace a solid line of his opponent's horizontally, vertically or diagonally. Captured to
kens are flipped over and thus can be re-captured. If a player cannot outflank his opponent he
forfeits his turn. The play continues until the board is filled or until no more outflanking is
possible.

In this game, your tokens are asterisks and the machine's are at-signs. You move by typing in
the row and column at which you want to place your token as two digits 0 -8) , optionally
separated by blanks or tabs. You can also type

c to continue the game after hitting break (this is only necessary if you interrupt the
machine while it is deliberating) .

g n to start reversi playing against itself for the next n moves (or until the break key is hit) .

n to stop printing the board after each move.

0 to start it up again.

p to print the board regardless.

q to quit (without dishonor) .

s to print the score.

Reversi also recognizes several commands which are valid only at the start of the game, before
any moves have been made. They are

f · to let the machine go fir-st.

h n to ask for a handicap of from one to four corner squares. If you' re good, you can give
the machine a handicap by typing a negative number.

I n to set the amount of lookahead used by the machine in searching for moves. Zero
means none at all. Four is the default. Greater than six means you may fall asleep
waiting for the machine to move.

t n to tell reversi that you will only need n seconds to consider each move. If you fail to
respond in the alloted time, you forfeit your turn.

If reversi is given a file name as an argument, it will checkpoint the game. move by move, by
dumping the board onto file. The - r option will cause reversi to restart the game from .file and
continue logging.

7th Edition

fl

TIT (6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/usr/games/ttt

/usr/games/cubic

DESCRIPTION

TIT (6)

Ttt is the X and 0 game popular in the first grade. This is a learning program that never makes
the same mistake twice.

FILES

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are specified as a sequence
of three coordinate numbers in the range 1-4.

/usr/games/ttt.k learning file

7th Edition 1

WORDS (6) WORDS (6)

NAME
hangman, words - word games

SYNOPSIS
/usr/games/hangman [diet 1

/usr/games/words

DESCRIPTION

FILES

Hangman chooses a word at least seven letters long from a word list. The user is to guess
letters one at a time.

The optional argument names an alternate word list. The special name ' -a' gets a particular
very large word list.
Words prints all the uncapitalized words in the word list that can be made from letters in string.

/usr/dict/words
/crp/dict/web2

the regular word list
the the - a word list

DIAGNOSTICS

BUGS

After each round,
of rounds.

hangman reports the average number of guesses per round and the number

Hyphenated compounds are run together.

UNIX software is distributed without the -a word list.

7th l=riitinn

WUMP (6) WUMP (6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION

BUGS

Wump plays the game of 'Hunt the Wumpus. ' A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot
tomless Pits. There are also Super Bats which are likely to pick you up and drop you in some
random room.

The program asks various questions which you answer one per line� it will give a more detailed
description if you want.

This program is based on one described in People 's Computer Company, 2, 2 (November 1973) .

I t will never replace Space War.

7th Edition 1

ASCII (7)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION

FILES

Ascii is a map of the ASCII character set, to be printed as needed. It contains:

1 000 nui i OO l soh l 002 s t x l 003 e tx ! 004 eot i OOS enq j 006 ack l 007 be l l
1 0 1 0 bs l Ol l h t 1 0 1 2 n l 1 01 3 v t 1 0 1 4 np l OI S c r 1 01 6 so 1 01 7 s i I
1 020 d l e i 02r dcl l 022 dc2 I 023 dc3 I 024 dc4 I 02S nak l 026 syn l 027 e t b l
1 030 can l 03 1 an 1 032 sub l 033 esc l 034 fs I 03S gs 1 036 r s 1 037 us
1 040 sp 1 04 1 ! 1 042 " 1 043 # 1 044 $ l 04S % 1 046 & 1 047 '
I OSO (I OS l) I OS2 • I OS3 + I OS4 ' l OSS - � 056 . 1 057 I
1 060 0 1 06 1 1 1 062 2 1 063 3 1 064 4 I 06S s 1 066 6 1 067 7
1 070 8 1 07 1 9 1 072 : 1 073 ; 1 074 < 1 075 - 1 076 > 1 077 ?
I IOO @ 1 10 1 A 1 1 02 B 1 103 c 1 1 04 D I IOS E 1 106 F 1 107 G
1 1 1 0 H I I l l I 1 1 1 2 J 1 1 1 3 K 1 1 14 .. t I l l S M 1 1 1 6 N 1 117 0
1 1 20 P 1 1 2 1 Q 1 122 R 1 1 23 S 1 1 24 T 1 125 U ! 1 26 V 1 127 W
1 1 30 X 1 1 3 1 y 1 1 32 z 1 1 33 [1 1 34 \ 1 1 3 5] 1 13 6 A 1 1 37
1 140 ' 1 1 41 a 1 1 42 b 1 143 c 1 144 d 1 145 e 1 146 f 1 147 g
! I SO h j 1 S l ! 1 52 j 1 1 53 k ! 1 54 l ! I SS m ! 1 56 n ! 1 57 o
1 1 60 p 1 1 6 1 q 1 1 62 r 1 163 s 1 1 64 t 1 1 65 u 1 1 66 v 1 1 67 w
1 1 70 x 1 1 7 1 y 1 1 72 z 1 173 { 1 1 74 I 1 1 75 } 1 1 76 - 1 177 de l

/usr/pub/ascii

7th Edition

ASCII (7)

1

EQNCHAR (7)

NAME
eqnchar - special character definitions for eqn

SYNOPSIS
eqn /usr/pub/eqnchar [files] I troff [options 1

neqn /usr/pub/eqnchar [files] I nroff [options]

DESCRIPTION

EQNCHAR (7)

Eqnchar contains troff and nro.ff character definitions for constructing characters that are not
available on the Graphic Systems typesetter. These definitions are primarily intended for use
with eqn and neqn. It contains definitions for the following characters

ciplus e
citimes ®
wig
-wig -
> wig �
< wig �

. -wig -
=-

star *
bigstar *
-dot . -
orsign v
andsign 1\
-del a -
oppA './
oppE �
angstrom A

FILES
I usr I pub/ eqnchar

SEE ALSO
troff(l) , eqn (1)

7th Edition

II
/angle
rangle
hbar
ppd
< ->
< ->
I
I >
ang
rang
3dot
thf
quarter
3quarter
degree

I I square 0
I circle 0 J blot •
1i bullet •
.J.. prop a:
- empty "'
.. member E
<t nomem �
::> cup u
L cap n
L inc/ !:

subset c
supset ::::>

1/4 !subset !;;
J,4 !supset � 0

1

(jfj1

GREEK (7)

NAME
greek - graphics for extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek [I greek -Tterminal]

DESCRIPTION

GREEK (7)

Greek gives the mapping from ascii to the 'shift out' graphics in effect between SO and SI on
model 37 Teletypes with a 1 28-character type-box. These are the default greek characters pro
duced by nroff. The filters of greek(l) attempt to print them on various other terminals. The
file contains:
alpha a A beta f3 B gamma 'Y \
GAMMA r G delta 8 D DELTA .1 w
epsilon . E s zeta ' Q eta T) N
THETA 9 T theta H 0 lambda A. L
LAMBDA A E mu f..l. M nu v @
xi g X pi 11' J PI n p
rho p K sigma (1' y SIGMA 1: R
tau T I phi rJ> u PHI <t> - p
psi '" v PSI 'II H omega w c
OMEGA n z nabla "V [not
partial a] integral I

SEE ALSO
greek(l)
troff(l)

7th Edition

HIER (7)

NAME
hier - file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative directory hierarchy.

I root
I dev I devices (4)

console
main console, tzy(4)

tty* terminals, tzy(4)
cat phototypesetter cat(4)
rp* disks, rp, hp(4)
rrp* �aw disks, rp, hp(4)

/bin/ utility programs, cf /usr/bin/ (1)
as assembler first pass, cf /usr/lib/as2
cc C compiler executive, cf /usr/lib/c£012]

/lib/ object l ibraries and other stuff, cf /usr/Iib/
libc.a system calls, standard 1/0, etc. (2,3,3S)
libm.a math routines (3M)
libplot.a

plotting routines, plot(3)
libF77.a

Fortran runtime support
libl77.a

Fortran I/0

as2 second pass of a sO)
c [Ol2] passes of cc{ l)

/etc/ essential data and dangerous maintenance utilities
passwd password file, passwd(S)
group group file, group(S)
motd message of the day, loginO)
mtab mounted file table, mtab(S)
ddate dump history, dump(!)
ttys properties of terminals, tzys(S)
getty part of login, getzy(S)
init the father of all processes, init(S)
rc shell program to bring the system up
cron the clock daemon, cron(8)
mount mounr(l)
wall wa 110)

/tmp/ temporary files, usually on a fast device, cf /usr/tmp/
e* used by ed(l)
ctm* used by cc(l)

/usr/ general-pupose directory, usually a mounted file system
adm/ administrative information

wtmp login history, utmp(S)
messages

7tb Edition

HIER (7)

,;$'$-:· . •

1

HIER (7)

hardware error messages
tracct phototypesetter accounting, troff(l)
vpacct line printer .accounting lpr(l)

/usr /bin

7th Edition

utility programs, to keep /bin/ small
tmp/ temporaries, to keep /tmp/ small

stm* used by sorr(l)
raster used by plor(l)

diet/ word lists, etc.

games/

words principal word list, used by look(!)
spellhist

history file for spe/1(1)

bj blackjack
hangman
quiz.k/ what quiz(6) knows

index category index
africa countries and capitals

include/
standard #include files
a.out.h object file layout, a.out(S)
stdio.h standard I/0, stdio (3)
math.h (3M)

sys/ system-defined layouts, cf /usr/sys/h
acct.h process accounts, acct(S)
buf.h internal system buffers

lib/ object libraries and stuff, to keep /lib/ small
lind12]

subprocesses for /intO)
Ilib-lc dummy declarations for /lib/libc.a, used by /intO)
Ilib-lm dummy declarations for /lib/libc.m
atrun scheduler for ar(l)
struct/ passes of structO)

tmac/ macros for troff(l)
tmac.an

macros for man(7)
tmac.s macros for ms(7)

font/ fonts for troff(l)
R Times Roman
B Times Bold

uucp/ programs and data for uucp(l)
L.sys remote system names and numbers
uucico the real copy program

suftab table of suffixes for hyphenation, used by troff(l)

HIER (7)

2

HIER (7)

units
eign

HIER (7)

conversion tables for unitsO)
list of English words to be ignored by ptx(l)

/usr/ man/

7th Edition

volume 1 of this manual, man(l)
manO/ general

intro introduction to volume 1 , ms(7) format
xx template for manual page

manl/ chapter 1
as. l
mount. 1 m

catl / preprinted pages for manll
as. l
mount. l m

spool/ delayed execution files
at/ used by ar(l)
lpd/ used by lpr(1)

lock present when line printer is active
cf* copy of file to be printed, if necessary
df* daemon control file, /pd(8) ,
tf* transient control file, while lpr is working

uucp/ work files and staging area for uucp(l)
LOG FILE

summary log
LOG. • log file for one transaction

mail/ mailboxes for mai/(1)
uid mail file for user uid
uid.lock

lock file while uid is receiving mail
wd initial working directory of a user, typically wd is the user's login name

.profile set environment for sh(l) , -environ(S)
calendar

user's datebook for calendar(l)
doc/ papers, mostly in volume 2 of this manual, typically in ms(7) format

as/ assembler manual
c C manual

sys/ system source .
dev I device drivers

bio.c common code
cat.c cat(4)
dh.c DHl l , t(Y(4)
tty t(Y(4)

conf/ hardware-dependent code

hi

mch.s assembly language portion
conf configuration generator

header (include) files
acct.h acct(S)
stat.h stat(2)

3

1%¥1 •

HIER (7)

sys/ source for system proper
main.c
pipe.c
sysent.c

system entry points

HIER (7)

/usr/ src/

7th Edition

source programs for utilities, etc.
cmd/ source of commands

as/ assembler
makefile

recipe for rebuilding the assembler
asl ? .s source of pass!

ar.c source for ar(l)

troff/ source for nro.ffand troffi.l)
nmake makefile for nroff
tmake makefile for tro.ff
font/ source for font tables, /usr/lib/font/

ftR.c Roman

term/ terminal characteristics tables, /usr/lib/term/
tab300.c

DASI 300

libel source for functions in /lib/libc.a
crt/ C runtime support

ldiv.s division into a long
lmul.s multiplication to produce long

csu/ startup and wrapup routines needed with every C program
crtO.s regular startup
mcrtO.s modified startup for cc -p

sys/ system calls (2)
access.s
alarm.s

stdio/ standard 110 functions (3S)
fgets.c
fopen.c

gen/ other functions in (3)
abs.c
atof.c

com pall
shell procedure to compile libc

mklib shell procedure to make /lib/libc.a
libl77 I source for /lib/libl77
IibF77/

4

HIER (7) HIER (7)

games/ source for /usr/games
SEE ALSO

ls(l) , ncheck(l) , findO) , grep(l)
BUGS

The position of files is subject to change without notice.

7th Edition 5

ey'f{:'?-,. •

MAN (7) MAN (7)

NAME
man - macros to typeset manual

SYNOPSIS
nroff - man file . . .
troff - man file . . .

DESCRIPTION

FILES

These macros are used to lay out pages of this manual. A skeleton page may be found in the
file /usr/man/manO/xx.
Any text argument t may be zero to six words. Quotes may be used to include blanks in a
'word'. If text is empty, the special treatment is applied to the next input line with text to be
printed. In this way .I may be used to i talicize a whole line, or .SM followed by .B to make
small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is
reset to default value upon reaching a non-indented paragraph. Default units for indents i are
ens.

Type font and size are reset to default values before each paragraph, and after processing font
and size setting macros.

These strings are predefined by - man:

\ *R •®' , ' (Reg) ' in nro.ff.

\ *S Change to default type size.

/usr /lib/ tmac/ tmac.an
I usr I man/ manO/ xx

SEE ALSO
troff(l) , man (1)

BUGS
Relative indents don't nest.

REQUESTS
Request Cause If no Explanation

Break Argument
.B t no r-n.t.I.*
.BI t no r-n.t. l.
.BR t no r-n.t.l.
. DT no . .5i l i . . .
.HP i yes i=p.i.*
. I t no r-n.t. l.
.IB t no r-n.t.l.
.IP X i yes x- ""
. IR t no r-n.t.l .
. LP yes
.PD d no d= .4v
.PP yes
.RE yes
.RB t no t= n.t. l.
.RI t no r- n. t. l.
.RS i yes i=p.i.

. SH t yes r-n.t.l.

7 th Edition

Text t is bold.
Join words of t alternating bold and italic.
Join words of t alternating bold and Roman.
Restore ·default tabs .
Set prevailing indent to i. Begin paragraph with hanging indent.
Text t is italic.
Join words of t alternating italic and bold.
Same as . TP with tag x .
Join words of t alternating italic and Roman.
Same as .PP .
Interparagraph distance is d.
Begin paragraph. Set prevailing indent to .Si.
End of relative indent. Set prevailing indent to amount of starting .RS.
Join words of t alternating Roman and bold.
Join words of t alternating Roman and italic.
Start relative indent, move left margin in distance i. Set prevailing indent to
.Si for nested indents .
Subhead.

MAN (7)

.SM t no
.TH n c x yes

.TP i yes

r- n.t.l.

MAN (7)

Text t is small.
Begin page named ·n of chapter c; x is extra commentary, e.g. ' local', for

page foot. Set prevailing indent and tabs to .S i.
Set prevailing indent to i. Begin indented paragraph with hanging tag given
by next text line. If tag doesn't fit, place it on separate line.

* n.t.l. - next text line� p.i. - prevailing indent

7th Edition 2

•

MS (7) MS (7)

NAME
ms - macros for formatting manuscripts

SYNOPSIS
nroff - ms [options] file .. .
troff - ms [options] file . . .

DESCRIPTION

FILES

This package of nroffand troffmacro definitions provides a canned formatting facility for tech
nical papers in various formats. When producing 2-column output on a terminal, filter the out
put through col (I) .
The macro requests are defined below. Many nrojfand tro.ffrequests are unsafe in conjunction
with this package, however these requests may be used with impunity after the first .PP:

. bp begin new page

. br break output line here

.sp n insert n spacing lines

. Is n Oine spacing) n - 1 single, n-2 double space

.na no alignment of right margin

Output of the eqn, neqn, refer, and tb/(1) preprocessors for equations and tables is acceptable as
input.

/usr/lib/tmac/tmac.s

SEE ALSO
eqn (l) , troff(l) , refer(l) , tbl (l)

REQUESTS
Request Initial Cause Explanation

. lC

.2C

.AB

.AE

. AI

. AT

. AU xy

. B X

. B l

. B2

. BT

. BX x

.cs x. ..

. CT

. DA x

.DE

.OS X

.EG

. EN

.EQ x y

Value Break
yes yes One column format on a new page .
no yes Two column format.
no yes Begin abstract.

yes End abstract.
no yes Author's institution follows. Suppressed in TM .
no yes Print 'Attached' and turn off line filling .
no yes Author's name follows. x is location and y is extension, ignored except in TM .
no
no

no Print x in boldface; if no argument switch to boldface .
yes Begin text to be enclosed in a box .

no yes End text to be boxed . print it .
date no Bottom title, automatically invoked at foot of page. May be redefined .
no no Print x in a box .

yes Cover sheet info if TM format, suppressed otherwise. Arguments are number
of text pages, other pages, total pages, figures, tables, references.

no yes
nroff no

yes

Print 'Copies to' and enter no-fill mode .
'Date line' at bottom of page is x. Default is today .
End displayed text. Implies .KE.

no yes Start of displayed text, to appear verbatim line-by-line. x== I for indented

no

display (default) , x-L for left-justified on the page, x==C for centered, x= B
for make left-justified block, then center whole block. Implies .KS.
Print document in BTL format for 'Engineer's Notes. ' Must be first.

yes Space after equation produced by eqn or neqn .
yes Precede equation; break out and add space. Equation number is y. The option

al argument x may be I to indent equation (default) , L to left-adjust the equa-

7th Edition 1

MS (7)

. FE

. FS

. HO

.l x

. IH

.IM

.IP xy
. KE
.KF

.KS

.LG

. LP

.MF

. MH

.MR

yes
no no

no
no no
no no
no no
no yes

yes
no yes

no yes
no no
yes yes

no

.ND date troff no

.NH n yes

. NL yes no

. OK yes
. PP no yes
. PT pg # -
.PY no
.QE yes
. QP yes
.QS yes
.R yes no
. RE yes
. RP no
.RS yes

.SG x no yes

. SH yes

. SM no no

. TA x.. . 5 . . . no

. TE yes

. TH yes

. TL no yes

.TM x. .. no

. TR x

.TS x yes

. UL x no

.UX no

.WH no

7th Edition

MS (7)

tion, or C to center the equation.
End footnote .
Start footnote. The note will be moved to the bottom of the page .
'Bell Laboratories, Holmdel, New Jersey 07733' .
Italicize � if x missing, italic text follows .
'Bell Laboratories, Naperville, Illinois 60540'
Print document in BTL format for an internal memorandum. Must be first.
Start indented paragraph, with hanging tag x. Indentation is y ens (default 5) .
End keep. Put kept text on next page if not enough room .
Start floating keep. If the kept text must be moved to the next page, float later
text back to this page.
Start keeping following text.
Make letters larger.
Start left-blocked paragraph .
Print document in BTL format for 'Memorandum for File.' Must be first.
'Bell Laboratories, Murray Hill, New Jersey 07974' .
Print document in BTL format for 'Memorandum for Record.' Must be first.
Use date supplied (if any) only in special BTL format positions; omit from page
footer.
Same as .SH, with section number supplied automatically. Numbers are mul
tilevel, like 1 .2 .3, where n tells what level is wanted (default is 1) .
Make letters normal size .
'Other keywords' for TM cover sheet follow .
Begin paragraph. First line indented .
Page title, automatically invoked at top of page. May be redefined .
'Bell Laboratories, Piscataway, New Jersey 08854'
End quoted (indented and shorter) material.
Begin single paragraph which is indented and shorter .
Begin quoted (indented and shorter) material.
Roman text follows .
End relative indent level.
Cover sheet and first page for released paper. Must precede other requests .
Start level of relative indentation. Following .IP's are measured from current
indentation.
Insert signature(s) of author(s) , ignored except in TM. x is the reference line
(initials of author and typist) .
Section head follows, font automatically bold .
Make letters smaller .
Set tabs in ens. Default is 5 10 15 . . .
End table .
End heading section of table.
Title follows .
Print document in BTL technical memorandum format. Arguments are TM
number, (quoted list of) case number(s) , and file number. Must precede other
requests .
Print in BTL technical report format; report number is x. Must be first.
Begin table; if x is H table has repeated heading.
Underline argument (even in troff) .
'UNIX'; first time used, add footnote 'UNIX is a trademark of Bell Labora
tories. '
'Bell Laboratories, Whippany, New Jersey 07981 ' .

2

TERM (7) TERM (7)

NAME
terminals- conventional names

DESCRIPTION
These names are used by certain commands and are maintained as part of the shell environ
ment (see sh(l) , environ(5)) .

1620 DIABLO 1620 (and others using HyType II)
1620 - 12 same, in 12-pitch mode
300 DASI/DTC/GSI 300 (and others using HyType I)
300 - 12 same, in 12-pitch mode
300s DASI/DTC 300/S
300s-12 same, in 12-pitch mode
33 TELETYPE® Model 33
37 TELETYPE Model 37
40-2 TELETYPE Model 40/2
43 TELETYPE Model 43
450 DASI 450 (same as Diablo 1620)
450- 12 same, in 12-pitch mode
450 - 12-8 same, in 12-pitch, 8 lines/inch mode
735 Texas Instruments Tl735 (and TI725)
745 Texas Instruments TI745
dumb terminals with no special features
hp Hewlett-Packard HP264? series terminals
4014 Tektronix 4014
tn1200 General Electric TermiNet 1200
tn300 General Electric TermiNet 300
vt05 Digital Equipment Corp. VT05
Commands whose behavior may depend on the terminal accept arguments of the form
-Tterm, where term is one of the names given above. If no such argument is present, a com
mand may consult the shell environment for the terminal type.

SEE ALSO

BUGS

stty{l) , tabs(l) , plot(l) , sh(l) , environ(5)
troff(l) for nro.ff

The programs that ought to adhere to this nomenclature do so only fitfully.

7th Edition

BOOT (8) BOOT (8)

NAME
boot - startup procedures

DESCRIPTION
A PDP1 1/45 and PDP 1 1 170 UNIX system is started by a two-stage process. The first is a pri
mary bootstrap which is able to read in relatively small stand-alone programs; the second (called
boot) is used to read in the system itself.
The primary bootstrap must reside in the otherwise unused block zero of the boot devicF· It
can be read in and started by the standard ROM programs, or if necessary by keying in a small
startup routine. This program is capable of loading type 407 executable files (not shared, not
separate I&D) . The user types on the SYStem console the name of the program wished, in this
case boot, followed by a carriage return; the named program is retrieved from the file system
that starts at block 0 of drive 0 of the boot device. No prompt is given, no diagnostic results if
the file cannot be found, and no provision is made for correcting typographical errors.
The second step, called boot, actually brings in the system. When read into location 0 and exe
cuted, boot sets up memory management, relocates itself into high memory, and types a ' : ' on
the console. Then it reads from the console a device specification (see below) followed
immediately by a pathname. Boot finds the corresponding file on the given device, loads that
file into memory location zero, sets up memory management as required, and calls the program
by executing a ' trap' instruction. Normal line editing characters can be used.
Conventionally, the name of the secondary boot program is 1/boot' and the name of the current
version of the system is '/unix'. Then, the recipe is:
1) Load block 0 of the boot device by fiddling with the console keys as appropriate for

your hardware. If you have no appropriate ROM, some programs suitable for manual
use are given below.

2) Type boot.

3) When the prompt is given, type
hp(O,O)unix

or
rp(O,O)unix

depending on whether you are loading from an RP04/5/6 or an RP03 respectively. The
first 0 indicates the physical unit number; the second indicates the block number of the
beginning of the logical file system to be searched. (See below) .

When the system is running, it types a '#' prompt. After doing any file system checks and set
ting the date (date(8)) a multi-user system is brought up- by typing an EOT (control-d) in
response to the '#' prompt.
Device specifications. A device specification has the following form:

device(unit,offset)
where device is the type of the device to be searched, unit is the unit number of the device, and
offset is the block offset of the file system on the device. Device is one of the following

rp RP03
hp RP04/5/6
rk RK05

For example, the specification
hp(l ,iOOO)

indicates an RP03 disk, unit 1 , and the file system found starting at block 7000 (cylinder 35) .

7th Edition 1

BOOT (8) BOOT (8)

FILES

ROM programs. The following programs to call the primary bootstrap may be installed in read- A
only memories or manually keyed into main memory. Each program is position-independent V
but should be placed well above location 0 so it will not be overwritten. Each reads a block
from the beginning of a device into core location zero. The octal words constituting the pro-
gram are listed on the left.

RK (drive 0) :
0 12700 mov $rkda,r0
1 7741 2
005040 clr - (rO) I rkda cleared by start
0 10040 mov rO, - (rO)
0 12740 mov $5, - (rO)
000005
105710 1 : tstb (rO)
002376 bge 1 b .
005007 clr pc

RP (drive 0)
012700 mov $rpmr,r0
1 76726
005040 clr - (rO)
005040 clr - (rO)
005040 clr - (rO)
0 10040 mov rO, - (rO)
012740 mov $5, - (rO)
000005
105710 1 : tstb (rO)
002376 bge 1 b
005007 clr pc

/unix - system code
/usr/mdec/rpuboot, /usr/mdec/hpuboot - copies of primary bootstrap
/boot - second stage bootstrap

� f%j���j�

SEE ALSO
init(8) ·

7th Edition 2

CRON (8) CRON (8)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the instructions in the file
/usr/lib/crontab. Since cron never exits, it should only be executed once. This is best done by
runnipg cron from the initialization process through the file /etc/rc; see init(8) .

Crontab consists of lines of six fields each. The fields are separated by spaces or tabs. The first
five are integer patterns to specify the minute (0-59) , hour (0-23) , day of the month 0-3 1) ,
month of the year 0-12) , and day of the week 0-7 with 1 -monday) . Each of these patterns
may contain a n·umber in the range above; two numbers separated by a minus meaning a range
inclusive� a list of numbers separated by commas meaning any of the numbers� or an asterisk
meaning all legal values. The sixth field is a string that is executed by the Shell at the specified
times. A percent character in this field is translated to a new-line character. Only the first line
(up to a % or end of line) of the command field is executed by the Shell. The other lines are
made available to the command as standard input.

Crontab is examined by cron every minute.

/usr/lib/crontab

7th Edition

CRASH (8) CRASH (8)

•,

NAME
crash - ·what to do when the system crashes

DESCRIPTION

. · , . .

This section gives at least a few clues about how to proceed if the system crashes. It can't pre
tend to be complete .

,Bringing it back up. If the reason for the crash is not evident (see below for guidance on 'evi
dent') you may want to try to dump the system if you feel up to debugging. At the moment a
dump can be taken only on magtape. With a tape mounted and ready, stop the machine, load
address 44, and start. This should write a copy of all of core on the tape with an EOF mark.
Caution: Any error is taken to mean the end of core has been reached. This means that you
must be sure the ring is in, the tape is ready, and the tape is clean and new. If the dump fails,
you can try again, but some of the registers will be lost. See below for what to do with the
tape.

In restarting after a crash, always bring up the system single-user. This is accomplished by fol
lowing the directions in boot(8) as modified for your particular installation; a single-user system
is indicated by having a particular value in the switches (1 73030 unless you've changed initJ as
the system starts executing. When it .is running, perform a dcheck and icheck(l) on all file sys
tems which could have been in use at the time of the crash. If any serious file system problems
are found, . they should be repaired. When you are satisfied with the health of your disks, check
and set the date if necessary, then come up multi-user. This is most easily accomplished by
changing the single-user value in the switches to something else, then logging out by typing an
EOT.

To even boot UNIX at all, three files (and the directories leading to them) must be intact. First,
the initialization program !etc/init must be present and executable. If it is not, the CPU will
loop in user mode at location 6. For init to work correctly, ldev/tty8 and lbinlsh must be present.
If either does not exist, the symptom is best described as thrashing. 1 nit will go into a fork/exec
loop trying to create a Shell with proper standard input and output.

If you cannot get the system to boot, a runnable system must be obtained from a backup
medium. The root file system may then be doctored as a mounted file system as described
below. If there are any problems with the root file system, it is probably prudent to go to a
backup system to avoid working .on a mounted file system.

·

Repairing disks. The first rule to keep in mind is that an addled disk should qe treated gently; it
shouldn't be mounted unless necessary, and if it is very valuable yet .i,Ja. quite bad shape,
perhaps it should be dumped before trying surgery on it. This is an area-wh�m� .experience and
informed courage count for much.

· -

The problems reported by icheck typically fall into two kinds. There can be problems with the
free list: duplicates in the free list, or free blocks also in files. These can be

- cured easily with
an icheck -s. If the same block appears in more than one file or if a· file c6ntains bad blocks,
the files should be deleted, and the free list reconstructed. The best. wliy to ; delete such a file is
to use clriO) , then remove its directory entries. · If any of the "affected file$'1s really precious,
you can try to copy it to another device first. . ..-

Dcheck may report files which have more directory -entries than· "Hnks. Such situations are
potentially dangerous; clri discusses a special case of the prob1em: All the directory entries for
the file should be removed. If on the other hand there are more links than directory entries,
there is no danger of spreading infection, but merely some disk spaceAhat is lost for use. It is
sufficient to copy the file (if it has any entries and is useful) then use · c/rt.on its inode and
remove any directory entries that do exist. · � -

7th Edition 1

CRASH (8) CRASH (8)

Finally, there may be inodes reported by de heck that have 0 links and 0 entries. These occur on
the root device when the system is stopped with pipes open, and on other file systems when the
system stops with files that have been deleted while still open. A clri will free the inode, and an
icheck -s will recover any missing blocks.
Why did it crash? UNIX types a message on the console typewriter when it voluntarily crashes.
Here is the current list of such messages, with enough information to provide a hope at least of
the remedy. The message has the form 'panic: .. . ' , possibly accompanied by other information.
Left unstated in all cases is the possibility that hardware or software error produced the message
in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as argument. Definitely
hardware 9r software error.

devtab

iinit

Null device table entry for the major device used as . argument to getblk. Definitely
hardware or software error.

An I/0 error reading the super-block for the root file system .during initialization.

out of inodes

no fs

A mounted file system has no more i-nodes when creating a file. · Sorry, the device isn't
available; the icheck should tell you.

·

A device has disappeared from the mounted-device table. Definitely hardware or software
error.

l."O imt ,
Like 'po fs', but produced elsewhere.

no inodes
The in:-core inode table is full. Try increasing NINODE in param.h. Shouldn't be a
panic, just a user error.

no clock .
During initialization, neither the line nor programmable clock was found to exist.

swap error
An unrecoverable I/0 error during a swap. Really shouldn't be a panic, but it is hard to
fix.

unlink - iget
The directory containing a file being deleted can't be found. Hardware or software.

out of' swap space · ·
A program needs to be swapped out, and there is no more swap space. It has to be
incr�sed. This really shouldn't be a panic, but there is no easy fix.

out of text .

trap ..

7th Edition

A ptJ.re procedure program is being executed, and the table for such things is full. This
shQuldn't be. a panic,

An unexpe.cted trap has occurred within the system. This is accompanied by three
numbers: a 'ka6 ' , which is the contents of the segmentation register for the area in which
the system's stack is kept; 'aps', which is the location where the hardware stored the pro
gram status word during the trap; and a 'trap type' which encodes which trap occurred.
The trap types are:

2

CRASH (8)

0 bus error
1 illegal instruction
2 BPT/trace
3 lOT
4 power fai l
5 EMT
6 recursive system call (TRAP instruction)
7 1 1/70 cache parity, or programmed interrupt
10 floating point trap
1 1 segmentation violation

CRASH (8)

In some of these cases it is possible for octal 20 to be added into the trap type; this indicates
that the processor was in . user mode when the trap occurred. If you wish to examine the stack
after such a trap, either dump the system, or use the console switches :to examine core; the
required address mapping is described below.

Interpreting dumps. All file system problems should be taken care of before· attempting to look at
dumps. The dump should be read into the file lusr/sys/core; cp(l) will do. At this point, you
should execute ps -alxk and who to print the process table and the users who were on at the
time of the crash. You should dump (od(l)) the first 30 bytes of /usrlsys/core. Starting at loca
tion 4, the registers RO, Rl , R2, R3, R4, R5, SP and KDSA6 (KISA6 for l l /40s) are stored.
If the dump had to be · restarted, RO will not be correct. Next, take the value of KA6 (location
022(8) in the dump) multiplied by 0100 (8) and dump 01000(8) bytes ·siartirig from there. This
is the per-process data associated with the process running at the t.ime of the. crash. Relabel the
addresses 140000 to 141 776. R5 is C's frame or display pointer. Stored at (R5) is the old R5
pointing to the previous stack frame. At (R5) +2 is the saved PC of the calling procedure.

/.(Y'/:
· · Trace this calling chain until you obtain an R5 value of 141756, which is where the user's R5 is %�H!!::][j stored. If the chain is broken, you have to look for a plausible R5, PC pair and continue from -,�pr

there. Each PC should be Jooked up in the system's name list usins adb(l) and its ' : ' com-
mand, to get a reverse calling order. In most cases this procedure will give an idea of what is
wrong. A more complete discussion of system debugging is impossible here:· ·

·

SEE ALSO
clri (l) , icheck(l) , dcheck(l) , boot(8)

7th Edition 3

GETTY (8) GETTY (8)

NAME
getty - set typewriter mode

SYNOPSIS
/etc/getty [char 1

DESCRIPTION
Getty is invoked by init(8) immediately after a typewriter is opened following a dial-up. It reads
the user's login name and calls. loginO) with the name as argument. While reading the name
getty attempts to adapt the system to the speed and type of terminal being used.

/nit calls getty with a single character argument taken from the ttys(5} file entry for the terminal
line. This argument determines a sequence of : line speeds through which getty cycles, and also
the 'login:� greeting message, which can contain -character sequences to . put various kinds of ter
minals· in· useful states.

The user's name is terminated by a new-line or carriage-return character. In the second case
CRMOn mode is set (see ioct/(2)) . . , _

The name is 'scanried to see if it contains any lower•case alphabetic characters; if not, and if the
name is 'noriempty, the system is told to map any future ' upper-case characters into the
corresponding1 l�wer-case characters. · . '" ' ·· · · _; > · ·

.

If the terminal's 'break' key is depressed, getty cycles to.the
'
next speed aJ)ptOpriate to the type

of Une ,and prints .. the gre�ting message again. .
· · · · · '

Finally, login is called with the user's name as argument.

The· following �guments from the ttys file are understo�d.
. • ' :.. .

0 Cycles through 300-1200-1 50-1 10 baud. Useful as a qefault for Q.ialup lines a�cessed by
, · · -a variety of terminals.

�

Intended_ :for· an on-line Telety-pe model 33 , fOr eXample · ari operator's console'.
1

'
op'

thtiiz�d for a 1 50-baud Teletype model 37. ·
'

2 Intended for an on-line 9600-baud terminal, for example the Textronix 4104 . ..
3 Starts at 1 200 baud, cycles to 300 and back. Useful with 2 12 datasets where most ter

minals run at 1 200 speed
5 Same as '3 ' but starts at 300.
4 Useful for on-line console DECwriter (LA36) .

SEE ALSO
init(8) , loginO) , ioctl(2) , ttys(5)

7th Edition 1

' . t '· : · ,

INIT (8)

NAME
init, rc - process control initialization

SYNOPSIS
/etc/init
/etc/rc ·

' . \

:,'� . ' ' . �, ��-r"!' : ·--

INIT (8)

J>ESC�IPTION . . ,

. . . . , ., . , . , .
/nit is invoked as the last step of the oqot procedure . (se� �po((8)) . Geti.erally its role is to
create' a proce�s for each typewriter on which � user rna¥ lo_$' i�� ··

.. ·
. . : .

·

• ' • ' '< A ' ' - '
When init first is executed the console typewriter /dev/console. is opened for r�ading and writing
and the shell is invoked immeqiately. Tl)is feature is used �o bring ,up a single-user system. If
the shell termina�es; tnit comes u·p multi-user and the pro¢e�s describ"ed below is started.
When init comes up multiuser, :� it invokes· a Shell , with input ' takeri ·from the' file letc!rc. This
command file performs housekeeping tilre removing temporary. fites, mounting file systems, and
starting daemons. r . .

Then in it reads the file letc!ttys and forks several times to create· a process for each typewriter
specified in the file. . Each . of these · processes opens the appropriate typewriter for reading and
writing. These charineis .th\ls re<;ejve file descriptors 0, 1 and 2, the s:tandard input, output and
error files. Opening the typewrifer' will usually involve a delay, since the open is not completed
until someone is dialed u·p and carrier established on 'the channel. · Then"/etclgetty is called with
argument as specified by the last character of the ttys file line. : Getty reads the '\Jser's name and
invokes login (!) to log in the_.-user and execute the shell. . ,
Ultimately the shell will terminate because of an end-ot:-file either typed ;explicitly or generated

. . as a.' resUl,t of hanging �p. , 'The maip path of , init, which has be�n . . �a�·t!ng f.or such an event,
. wa�es up and' remo.v�s �e �appropriate entry, from the file utmp, . which recor4s current users,

· and makes an 'entcy "in lusr/admiW,t,;.,p� wh�ch .. maintains a histocy ofr:l_ogi�s a� logouts. Then
the appropriate typewriter is reopened and getty is reirivoked.

·

/nit catches the hangup signal SlGHUP and interprets it to mean tbat the ,system. should be
brought from multi user to single user. Use '!Qll �1 1' to send the hangup si:gnal.

FILES
. /dev/tty? , /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO
login(l) , kill (l) , sh(l) , ttys (S) , getty(8)

7th Edition
!.. .•

1

•

•

LPD (8) _ UNIX Programmer's Manual LPD (8)

NAME

lpd - line printer daemon
SYNOPSIS

/etc/lpd
DESCRIPTION ;

FILES

Lpd is the daemon for the line printer. Lpd uses the directory /usr/spooU/pd. The file lock in
that directory is used to prevent two daemons from becoming active. .· After .the program has
successfully set the 1� it forks �d Ule main path exits, .thus spawning :the daemon. The
dk�ry is �ed for files beginnHtl With. df. Each Such ftle is submitted as a job. Each line
of a job ftle must· begm' with a key ·character to specify what to do with. the remainder of the

. Jine: · : . . · . ·· . l . . • . ••

t � that the m.nainder of the lirie iS 'to be sen� lis a Uteral. ·
t" •• , . > •• ; • .. •

.. B . speci� . tllat the J"eSt of the line � a ftle name.
! t · ' . , ·' • · · f ••

F · . is the same as B· except a form £eec1 is prepended to the ftle�

U specifies that the rest of the line is a file name. After the job has been transmitted, the
: file)is unlinked.

M · iS followed by a user ID; after th� job · is sen_t� a m�e is mailed to the user via the
. �;/(1) command to verify the sendih&,of ��job. .. ·_ .

j • - • �

. Any errt)r encqUJ1�red ·will cause the daemon ·to .wai.t . and. stan . over. This means that an
; �prope�ly constructed U file may cause tbe same job to be· submitted repeatedly.
Lpd is automatically initiated by the line printer ·comm&n:d,' /jlf.
To restart lpd (in the else of hardware or software malfunction), it is necessary to first kill the
old daemon ·ur still alive), and remove the lock file before· initiating the new daemon. This is
done automaticilly when· the system 'is brought up, by letclre, in case there were any jobs left in
the sPOoling directory when the system last. went do�.· . . ·

·

' . �
' . �: t

/usr/sp(,ol/Jpd/• spool area for line printer daemon
/etC/paliiswd to get the user's name
/dev/lp line printer device

SEE ALSO

lpr(l)

7th Edition 1

t:'l1ll:ro
'-;-:-r

MAKEKEY (8) MAKEKEY (8)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/lib/ make key

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input, and
writes 1 3 bytes on its standard output. The output depends on the input in a way intended to
be difficult to compute (i.e. to require a substantial fraction of a second) .
The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, upper- and lower-case letters, and • . ' and • /'. The
salt characters are repeated as the first two characters of the output. The remaining 1 1 output
characters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096
cryptographic machines all based on the National Bureau of Standards DES algorithm, but
modified in 4096 different ways. Using the input key as key, a constant string is fed into the
machine and recirculated a number of times. The 64 bits that. come out are distributed into the
66 useful key bits in the result.
Makekey is intended for programs that perform encryption (e.g. ed and cr,ypt(l)) . Usually its
input and output will be pipes.

SEE ALSO
crypt (I) , ed(l)

7th Edition

UPDATE (8)

NAME
update.-- periodically update the super block

SYNOPSIS ·
- · /etc/update

DESCRIPTION

UPDATE (8)

Update is a program that executes the sync(2) primitive every 30 secqnds. This insures that the
file system. is fairly up- to·· date in case· of 'a 'crash. This coni.r:nan,d should nC;lt be executed
directly, but should be executed OUt o�� the initiali�ation sh�ll comma·nd file.

- �·· �:
SEE ALSo,,·, : .:z i

BUGS

... �-

sync(2) , sync(l) , init(8) , ,

With update running, if th�· :
CPU is halted· just as the sync is executed, a file system· can be

damag�d. This is partially due t'o DEC hardware that writes zeros when NPR requests fail. A
fix would be to ha¥e sync(l) temporarily incremertt the system 'tin;le by at .l�ast 30 secpnds to
trigger �he execution of update. l'his wQu,ld give JO·seconds grac� to . . hal� the CPU.

... - ·-:....· · . - .,_
� ·1.,;. :: •

· ·.: ·

. ' '
.. . � ·.

_,..-:•

. , ;- ... _ :

· .

. . -·

'
t.

. •
'

7th Edition L

MIIIICROSOFf XENIX VOLM 2A
PROGRAMMER'S
MANUAL

eft: I

XENIXOS
·Programmer's Manual

Volume 2A

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software. may be used or copied
only in accordance with the terms of the agreement.

© 1979, Bell Telephone Laboratories, Incorporated.
Reprinted with permission.

Copyright 1979, Bell Telephone Laboratories, Incorporated.

Holders of a UNIX™ software license are permitted to copy this document, or any portion of
it, as necessary for a licensed use of the software, provided this copyright notice and state
ment of permission are included.

860 1-100-0 1

(

UNIX Programmer's Manual

Volume 2- Supplementary Documents

Seventh Edition
January 10, 1979

This volume contains documents which supplement the information contained in Volume
1 of The UNixt Programmer's Afanual. The documents here are grouped roughly into the areas
of basics, editing, language tools, document preparation, and system maintenance. Further
general information may be found in the Bell System Technical Journal special issue on UNIX,
July-August, 1 978.

Many of the documents cited within this volume as Bell Laboratories internal memoranda
or Computing Science Technical Reports (CSTR) are also contained here.

These documents contain occasional localisms, typically references to other operating sys
tems like GCOS and IBM. In all cases, such references may be safely ignored by UNIX users.

General Works
1 . 7th Edition UNIX - Summary. .

A concise summary of the facilities available on UNIX.
2. The UNIX Time-Sharing System. D. M. Ritchie and K. Thompson.

The original UNIX paper, reprinted from CACM.

Getting Started
3. UNIX for Beginners - Second Edition. B. W. Kernighan.

An introduction to the most basic use of the system.
4. A Tutorial Introduction to the UNIX Text Editor. B. W. Kernighan.

An easy way to get started with the editor.
5. Advanced Editing on UNIX. B. W. Kernighan.

The next step.
6. An Introduction to the UNIX Shell. S. R. Bourne.

An introduction to the capabilities of the command interpreter, the shell.
7. Learn - Computer Aided Instruction on UNIX. M. E. Lesk and B. W. Kernighan.

Describes a computer-aided instruction program that walks new users through the
basics of files, the editor, and document preparation software.

Document Preparation
8. Typing Documents on the UNIX System. M. E. Lesk.

Describes the basic use of the formatting tools. Also describes " - ms", a standard-.
ized package of formatting requests that can be used to lay out most documents
(including those in this volume) .

tUN IX is a Trademark of Bell Laboratories.

• . -.J

- 2 -

9. A System for Typesetting Mathematics. B. W. Kernighan and L. L. Cherry.
Describes EQN. an easy-to-learn language for doing high-quality mathematical
typesetting,

10. TBL - A Program to Format Tables. M. E. Lesk.
A program to permit easy specification of tabular material for typesetting. Again,
easy to learn and use.

1 1 . Some Applications of Inverted Indexes on the UNIX System. M. E . Lesk.
Describes, among other things, the program REFER which fills in bibliographic cita
tions from a data base automatically.

12 . NROFF/TROFF User's Manual. J. ·F. Ossanna.
The basic formatting program.

13 . A TROFF Tutorial. B. W. Kernighan.
An introduction to TROFF for those who really want to know such things.

Programming
14. The C Programming Language - Reference Manual. D. M. Ritchie.

Official statement of the syntax and semantics of C. Should be supplemented by The
C Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978,
which contains a tutorial introduction and many examples. · ·

15 . Lint, A C Program Checker. S. C. Johnson.
Checks C programs for syntax errors, type violations, portability problems, and a
variety of probable errors.

16. Make - A Program for Maintaining Computer Programs. S. I . Feldman.
Indispensable tool for making sure that large programs are properly compiled with
minimal effort.

17 . UNIX Programming. B. W. Kernighan and D. M. Ritchie.
Describes the programming interface to the operating system and the standard 110
library.

IS.. A Tutorial Introduction to ADB. J. F. Maranzano and S. R. Bourne.
How to use the ADB debugger.

Supporting Tools and Languages
19. YACC: Yet Another Compiler-Compiler. S. C. Johnson.

Converts a BNF specification of a language and semantic actions written in C into a
compiler for the language.

· 20. LEX - A Lexical Analyzer Generator. M. E. Lesk and E. Schmidt.
Creates a recognizer for a set of regular expressions; each regular expression can be
followed by arbitrary C code which will be executed when the regular expression is
found.

2 1 . A Portable Fortran 77 Compiler. S. I . Feldman and P . J . Weinberger.
The first Fortran 77 compiler, and still one of the best.

22. Ratfor - A Preprocessor for a Rational Fortran. B. W. Kernighan.
Converts a Fortran with C-like contml structures and cosmetics into real, ugly For
tran.

23 . The M4 Macro Processor. B. W. Kernighan and D. M. Ritchie.
M4 is a macro processor useful as a front end for C, Ratfor, Cobol, and in its own
right.

) /

)

J _./

�-'
"

(

l.

24.

25.

26.

27.

28.

- 3 -

SED - A Non-interactive Text Editor. L. E. McMahon.
A variant of the editor for processing large inputs.

A WK - A Pattern Scanning and Processing Language. A. V. Aho, B. W. Kernighan and
P. J. Weinberger.
Makes it easy to specify many data transformation and selection operations.

DC - An Interactive Desk Calculator. R. H. Morris and L. L. Cherry.
A super HP calculator, if you don't need floating point.

BC - An Arbitrary Precision Desk-Calculator Language. L. L. Cherry and R. H. Morris.
A front end for DC that provides infix notation. control flow, and built-in functions.

UNIX Assembler Reference Manual. D. M. Ritchie.
The ultimate dead language.

Implementation, Maintenance, and Miscellaneous
29. Setting Up UNIX - Seventh Edition. C. B. Haley and D . M. Ritchie.

How to configure and get your system running.
30. Regenerating System Software. C. B. Haley and D. M. Ritchie.

What do do when you have to change things.
3 1 . UNIX Implementation. K. Thompson.

How the system actually works inside.
32 . The UNIX 1/0 System. D. M. Ritchie.

How the 1/0 system really works.
33 . A Tour Through the UNIX C Compiler. D. M. Ritchie.

How the PDP- 1 1 compiler works inside.
34. A Tour Through the Portable C Compiler. S. C. Johnson.

How the portable C compiler works inside.
35 . A D ial-Up Network of UNIX Systems. D. A. Nowitz and M. E. Lesk.

Describes UUCP, a program for communicating files between UNIX systems.
36 . UUCP Implementation Description. D. A. Nowitz.

How UUCP works, and how to administer it.
37. On the Security of UNIX. D. M. Ritchie.

Hints on how to break UNIX, and how to avoid doing so.
38 . Password Security: A Case H istory. R. H. Morris and K. Thompson.

How the bad guys used to be able to break the password algorithm, and why they
can't now, at least not so easily.

(

(

7th Edition UNIX - Summary

September 6, / 978

Bell Laboratories
Murray Hil l , New Jersey 07974

A. What's new: highlights of the 7th edition UNIXt System
Aimed at larger systems. Devices . are addressable to 23 1 bytes, fi les to 230 bytes. 1 28K
memory (separate instruction and data space) i s needed for some util ities.
Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.
Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, ·converts old, ugly Fortran into R ATFOR, a structured
dialect usable with F77.
Shell. Completely new SH program supports string variables, trap handling, structured pro
gramming, user profiles, settable search path, multilevel fi le name generation, etc.
Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for prepar
ing complicated tabular material. REFER fi lls in bibliographic citations from a data base. ·
UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.
Data processing. SED stream editor does multiple editing functions in parallel on a data
stream of indefinite length. A WK report generator does free-field pattern selection and arith
metic operations.
Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation.
Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and
data spaces, floating point, etc.
C language. The language now supports definable data types, genenilized initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com
piled functions.
Lexical analyzer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to Y ACC.
Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.
Standard input-output package. Highly efficient buffered stream I/0 is integrated with format
ted input and output.
Other. The operating system and utili ties have been enhanced and freed of restrictions in
many other ways too numerous to relate.

t UNIX is a Trademark of Bell Laboratories.

. 2 .

B. Hardware
The 7th edition UNIX operating system runs on a DEC PDP-1 1 /45 or 1 1 170* with at least

the following equipment:
1 28K to 2M words of managed memory; parity not used.
disk: RP03 , RP04, R P06, RK05 (more than 1 RK05) or equivalent.
console typewriter.
clock: KWll-L or KWll-P.

The following equipment is strongly recommended:
communications controller such as DLll or DHll.
full duplex 96-character ASCII terminals.
9- track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The mmtmum memory and disk space
specified is enough to run and maintain UNIX. More will be needed to keep all source on line,
or to handle a large number of users, big data bases, diversified complements of devices, or
large programs. The resident code occupies 1 2-20K words depending on configuration; system
data occupies 1 0�28K words.

There is no commitment to provide 7th edition UNIX on PDP- 1 1 /34, 1 1 /40 and 1 1 /60
hardware.

C. Software
Most of the programs available as UNIX commands are listed. Source code and printed

manuals are distributed for all of the listed software except games. A lmost all of the code is
written in C. Commands are self-contained and do not require extra setup information, unless
specifically noted as " interactive ." Interactive programs can be made to run from a prepared
script simply by redirecting input. Most programs intended for interactive use (e.g., the editor)
allow for an escape to command level (the Shell) . Most file processing commands can also go
from standard input to standard output ("filters") . The piping facil ity of the Shell may be used
to connect such filters directly to the input or output of other programs.

1. Basic Software
This includes the time-sharing operating system with utilities, a machine language assem

bler and a compiler for the programming language C -enough software to write and run new
applications and to maintain or modify UNIX itself.

1.1. Operating System
o UNIX The basic resident code on which everything else depends. Supports the system

calls, and maintains the file system. A general description of UNIX design phi
losophy and system facil ities appeared in the Communications of the ACM ,
July, 1 974. A more extensive survey is in the Bell System Technical Journal
for July-August 1 978. Capabilities include:
0 Reentrant code for user processes.
0 Separate instruction and data spaces.
0 "Group" access permissions for cooperative projects, with overlapping

memberships.
0 A larm-clock timeouts.

*PDP is a Trademark of Digital Equipment Corporation.

� I
/

(

(

("-··

- 3 -

0 Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

0 Multiplexed 110 for machine-to-machine communication.

o DEVICES All 110 is logically synchronous. 110 devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware's ability to do overlapped
110. Unbuffered physical record 1/0 is available for unusual applications.
Drivers for these devices are availlible; others can be easily written:
0 Asynchronous interfaces: DHll, DLll. Support for most common ASCII

termi nals.
0 Synchronous interface: D P 1 1 .
0 Automatic call ing unit interface : DN1 1 .
0 L ine printer: L Pll.
0 Magnetic tape: TU 1 0 and TU 1 6.
0 DECtape: TCll.
0 Fixed head disk: RS 1 1 , RS03 and RS04.
0 Pack type disk: R P03 , RP04, RP06; minimum-latency seek scheduling.
OCartridge-type disk: RK05, one or more physical devices per logical device.
0 N ul l device.
0 P hysical memory of PDP- 1 1 , or mapped memory in resident system.
0 Phototypesetter: G raphic Systems System/1 through DR 1 1 C.

o BOOT Procedures to get UNIX started.

o MKCONF Tailor device-dependent system code to hardware configuration. As distributed,
UNIX can be brought up directly on any acceptable CPU with any acceptable
disk, any sufficient amount of core, and e ither clock. Other changes, such as
optimal assignment of directories to devices, inclusion of floating point simula
tor, or installation of device names in file system, can then be made at leisure.

1 .2 . User Access Control

o LOGI N

o PASSWD

S ign on as a new user.
0 Verify password and establish user's individual and group (project) identity.
0 Adapt to characteristics of terminal.
0 Establish working directory.
0 A nnounce presence of mail (from MAIL) .
0 P ublish message of the day.
0 Execute user-specified profile.
0 Start command interpreter or other ini tial program.

Change a password.
0 User can change his own password.
0 Passwords are kept encrypted for security.

o NEWG RP Change working group (project) . Protects against unauthorized changes t_o pro-
jects.

1.3. Terminal Handling

o TABS

o STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input, these options are set automatically by LOGIN.

- 4 -

0 Half vs. ful l duplex.
0 Carriage return+ line feed vs. newline.
0 Interpretation of tabs.
0 Parity.
0 Mapping of upper case to lower.
0 Raw vs. edited input.
0 Delays for tabs, newlines and carriage returns.

1 .4. File Manipulation

0 CAT

o CP

o PR

o LPR

o CMP

o TAIL

o SPLIT

oD D

o SUM

Concatenate one or more fi les onto standard output. Particularly used for una
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one fi le to another, or a set of files to a directory. Works on any file
regardless of contents.

P rint fi les with title, date, and page number on every page.
0 Multicolumn output.
0 Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and report if different.

P rint last 11 lines of input
0 May print last 11 characters, or from n l ines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit
ing (ED) .

Physical fi le format translator, for exchanging data with foreign systems, espe
cially IBM 370 's.

Sum the words of a file.

1 .5 . Manipulation of Directories and File Names

o R M

o L N

o MV

o CHMOD

o CHOWN

o CHGRP

o MKDIR.

o RMDIR

o CD

o FIND

Remove a file. Only the name goes away if any other names are linked to the
file .
0 Step through a directory deleting files interactively.
0 Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.

C'

(__

(
"----

ca ';z&J '-u.-

- 5 -

0 Criteria include:
name matches a given pattern,
creation date in given range,
date of last use in given range,
given permissions,
given owner,
given special fi le characteristics,
boolean combinations of above.

0 A ny directory may be considered to be the root.
0 Perform specified command on each file found.

1 .6 . Running of Programs

o SH

o TEST

o EXPR

o WAIT

o READ

o ECHO

o SLEEP

o NOHUP

o NICE

The S hell , or command language interpreter.
0 Supply arguments to and run any executable program.
0 Redirect standard input, standard output, and standard error files.
0 Pipes: simultaneous execution with output of one process connected to the

input of another.
0 Compose compound commands using:

if . . . then . . . else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.

0 Initiate background processes.
0 Perform S hell programs, i .e . , command scripts with substitutable arguments.
0 Construct argument lists from all fi le names satisfying specified patterns.
0 Take special action on traps and interrupts.
0 User-settable search path for finding commands.
0 Executes user-settable profile upon login.
0 Optionally announces presence of mail as it arrives.
0 Provides variables and parameters with default setting.

Tests for use in Shell conditionals.
0 S tring comparison.
0 File nature and accessibility.
0 Boolean combinations of the above.

S tring computations for calculating command arguments.
0 Integer arithmetic
0 Pattern matching

Wait for termination of asynchronously running processes.

Read a line from terminal, for interactive Shell procedure.

Print remainder of command l ine. Useful for diagnostics or prompts in Shel l
programs, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.

Run a command in low (or high) priority.

.. .

o KILL

o CRON

oAT

o TEE

- 6 -

Terminate named processes.

Schedule regular actions at specified times.
0 Actions are arbitrary programs.
0 Times are conjunctions of month, day of month, day of week, hour and

m inute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1 . 7 . Status Inquiries

o LS

o FILE

o DATE

o OF

o DU

o QUOT

o WHO

o PS

o l OSTAT

o TTY

OPWD

L ist the names of one, several, or all fi les in one or more directories.
0 A lphabetic or temporal sorting, up or down.
0 Optional information: size, owner, group, date last modified, date last

accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consulting the fi le sys
tem index and by reading the fi le i tself.

Print today's date and time. Has considerable knowledge of caleildric and horo-
. logical peculiarities.

0 May set UNIX's idea of date and time.

Report amount of free spac� on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by user id.

Tell who's on the system.
0 L ist of presently logged in users, ports and times on.
0 Optional history of all logins and logouts.

Report on active processes.
0 L ist your own or everybody's processes.
0 Tell what commands are being executed.
0 Optional status information: state and scheduling info, priority, attached ter-

minal, what it's waiting for, size.

Print statistics about system 110· activity.

Print name of your terminal.

Print name of your working directory.

1 .8. Backup and Maintenance

o MOUNT Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

o UMOUNT Remove the fi le system contained on a device from the tree of directories.

o MKFS

o MKNOD

Protects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special fi le. Special fi les are physical .
devices, virtual devices, physical memory, etc.

\
j

j _/

(--, \ . , __

(

('�-

o TP

o TAR

o DUMP

o RESTOR

0 su

o DCHECK

oiCHECK

o NCHECK

o CLRI

o SYNC

- 7 -

Manage file archives on magnetic tape or DEC tape. TAR is newer.
0 Collect fi les into an archive.
0 Update DECtape archive by date.
0 Replace or delete DECtape fi les.
0 Print table of contents.
0 Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.
0 Print gross statistics: number of files, number of directories, number-of spe-

cial fi les, space used, space fret(.
0 Report duplicate use of space.
0 Retrieve lost space.
0 Report inaccessible fi les.
0 Check consistency of directories.
0 List names of all fi les.

Peremptorily expunge a file and its space from a file system. Used to repair
damaged file systems.

Force all outstanding 110 on the system to completion. Used to shut down
gracefully.

1 .9. Accounting

The timing information on which the reports are based can be manually cleared or shut off
completely.

o AC

0 SA

Publish cumulative connect time report.
0 Connect time by user or by day.
0 For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command
executed.
0 Number of times used.
0 Total system time, user time and elapsed time.
0 Optional averages and percentages.
0 Sorting on various fields.

1 . 1 0. Communication

o MAIL Mai l a message to one or more users. Also used to read and dispose of incom
ing mail. The presence of mail is announced by LOG IN and optionally by SH.
0 Each message can be disposed of individually.
0 Messages can be saved in fi les or forwarded.

- 8 -

o CALENDAR Automatic reminder service for events of today and tomorrow.

o WRITE

o WALL

o MESG

0 cu

o U UCP

Establish direct terminal communication with another user.

Write to all users.

Inhibit receipt of messages from WRITE and WALL.

Cal l up another time-sharing system.
0 Transparent interface to remote machine.
0 File transmission.
0 Take remote input from local fi le or put remote output into local fi le .
0 Remote system need not be UNIX.

UNIX to UNIX copy.
0 Automatic queuing until l ine becomes available and remote machine is up.
0 Copy between two remote machines.
0 Differences, mail, etc., between two machines.

1 . 1 1 . Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in sec
tion 2 .

0 AR

o AS

o L ibrary

Maintain archives and libraries. Combines several files into one for housekeep
ing efficiency.
0 Create new archive.
0 Update archive by date.
0 Replace or delete files.
0 Print table of contents.
0 Retrieve from archive.

Assembler. Similar to PAL- 1 1 , but different in detail .
0 Creates object program consisting of

code, possibly read-only,
initialized data or read-write code,
uninitialized data.

0 Relocatable object code is directly executable without further transformation.
0 Object code normally includes a symbol table.
0 Multiple source fi les.
0 L ocal labels.
0 Conditional assembly. ,
0 "Conditional jump" instructions become branches or branches plus jumps

depending on distance.

The basic run-time library. These routines are used free ly by all software.
0 Buffered character-by-character 1/0.
0 Formatted input and output conversion (SCANF and PRINTF) for standard

input and output, files, in-memory conversion.
0 S torage allocator.
0 Time conversions.
0 Number conversions.
0 Password encryption.
0 Quicksort.
0 Random number generator.
0 Mathematical function library, including trigonometric functions and

inverses, exponential, logarithm, square root, bessel functions.

(

0 ADB

o OD

oLD

o LORDER

o N M

o SIZE

o STRIP

o TIME

o PROF

o MAKE

- 9 -

Interactive debugger.
0 Postmortem dumping.
0 Examination of arbitrary files, with no limit on size.
0 Interactive breakpoint debugging with the debugger as a separate process.
0 Symbolic reference to local and global variables.
0 S tack trace for C programs.
0 Output formats:

1 - , 2-, or 4-byte integers in octal, decimal, or hex
single and double floating� point
character and string
disassembled machine instructions

0 Patching.
0 Searching for integer, character, or floating patterns.
0 Handles separated instruction and data space.

Dump any file. Output options include any combination of octal or decimal by
words, octal by bytes, ASCII , opcodes, hexadecimal.
0 Range of dumping is controllable.

L ink edit. Combine relocatable object files. Insert� required routines from
specified libraries.
0 Resulting code may be sharable.
0 Resulting code may have separate instruction and data spaces.

P laces object fi le names in proper order for loading, so that files depending on
others come after them.

Print the namelist (symbol table) of an object program. Provides control over
the style and order of names that are printed.

Report the core requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time
sampling the execution of a program. Uses floating point.
0 Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control fi le specifying source file
dependencies to make new version; uses time last changed to deduce minimum
amount of work necessary.
0 K nows about CC, Y ACC, LEX, etc.

1 . 12 . UNIX Programmer's Manual

o Manual Machine-readable version of the UNIX Programmer's Manual.
0 System overview.
0 Al l commands.
0 All system calls.
0 Al l subroutines in C and assembler l ibraries.
0 Al l devices and other special fi les.
0 Formats of file system and kinds of files known to system software.
0 Boot and maintenance procedures.

- 10 -

O MAN Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

o LEARN

2. Languages

A program for interpreting CAl scripts, plus scripts for learning about UNIX by
using it.
0 Scripts for basic files and commands, editor, advanced files and commands,

EQN, M S macros, C programming language.
·

2.1. The C Language

0 cc Compile and/or link edit programs in the C language. The UNIX operating sys
tem, most of the subsystems and C itself are written in C. For a full descrip
tion of C, read The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, 1 978.
0 General purpose language designed for structured programming.
0 Data types include character, integer, float, double, pointers to all types,

functions returning above types, arrays of all types, structures and unions of
all types.

0 Operations intended to give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

0 Macro preprocessor for parameterized code and inclusion of standard files.
0 All procedures recursive, with parameters by value.
0 Machine-independent pointer manipulation.
0 Object code uses full addressing capability of the PDP- 1 1 .
0 Runtime library gives access to all system facilities.
0 Definable data types.
0 Block structure

o LINT Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

0 Full cross-module checking of separately compiled programs.

o CB A beautifier for C programs. Does proper indentation and placement of braces.

\
j

2.2. Fortran)
o F77 A full compiler for ANSI Standard Fortran 77.

0 Compatible with C and supporting tools at object level.
0 Optional source compatibility with Fortran 66.
0 Free format source.
0 Optional subscript-range checking, detection of uninitialized variables.
0 All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-

byte complex.

o RATFOR Ratfor adds rational control structure a Ia C to Fortran.
0 Compound statements.

c

(

(

(
"----·

o STRUCT

- 1 1 -

0 If-else, do, for, while, repeat-until, break, next statements.
0 Symbolic constants.
0 File insertion.
0 Free format source
0 Translation of relationals like > , > =.
0 Produces genuine Fortran to carry away.
0 May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e. , Ratfor) , using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

0 BAS

o DC

o BC

An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon 'run'.
0 Statements include:

comment,
dump,
for . . . next,
go to,
if.. .else . . . fi,
list,
print,
prompt,
return,
run,
save.

0 All calculations double precision.
0 Recursive function defining and calling.
0 Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
0 Escape to ED for complex program editing.

Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding integers or programs.
0 Unlimited precision decimal arithmetic.
0 Appropriate treatment of decimal fractions.
0 Arbitrary input and output radices, in particular binary, octal, decimal and

hexadecimal.
0 Reverse Polish operators:

+-*I
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.
0 All the capabilities of DC with a high-level syntax.
0 Arrays and recursive functions.
0 Immediate evaluation of expressions and evaluation of functions upon call.
0 Arbitrary precision elementary functions: exp, sin, cos, atan.
0 Go- to-less programming.

2.4. Macroprocessing

o M4

- 1 2 -

A general purpose macroprocessor.
0 Stream-oriented, recognizes macros anywhere in text.
0 Syntax fits with functional syntax of most higher-level languages.
0 Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

o YACC

o LEX

An LRO)-based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or semantic
actions.
0 BNF syntax specifications.
0 Precedence relations.
0 Accepts formally ambiguous grammars w!th non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isola
tion of each lexical token.
0 Full regular expression, plus left and right context dependence.
0 Resulting lexical analysers interface cleanly with Y ACC parsers.

3. Text Processing

3.1. Document Preparation

o ED

o PTX
o SPELL

o LOOK
o TYPO
o CRYPT

Interactive context editor. Random access to all lines of a file.
0 Find lines by number or pattern. Patterns may include: specified characters,

don't care characters, choices among characters, repetitions of these con
structs, beginning of line, end of line.

0 Add, delete, change, copy, move or join lines.
0 Permute or split contents of a line.
0 Replace one or all instances of a pattern within a line.
0 Combine or split files.
0 Escape to Shell (command language) during editing.
0 Do any of above operations on every pattern-selected line in a given range.
0 Optional encryption for extra security.

Make a permuted (key word in context) index.
Look for spelling errors by comparing each word in a document against a word
list.
0 25,000-word list includes proper names.
0 Handles common prefixes and suffixes.
0 Collects words to help tailor local spelling lists ..

Search for words in dictionary that begin with specified prefix.

Look for spelling errors by a statistical technique; not limited to English.
Encrypt and decrypt files for security.

3.2. Document Formatting

o ROFF A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con
trol lines, such as

.sp 2 insert two lines of space

.ce center the next line
ROFF is deemed to be obsolete; it is intended only for casual use.

)

(

(

o TROFF

- 13-

0 Justification of either or both margins.
0 Automatic hyphenation.
0 Generalized running heads and feet, with even-odd page capability, number

ing, etc.
0 Definable macros for frequently used control sequences (no substitutable

arguments) .
0 All 4 margins and page size dynamically adjustable.
0 Hanging indents and one-line indents.
0 Absolute and relative parameter settings.
0 Optional legal-style numbering of output lines.
0 Multiple file capability.
0 Not usable as a filter.

o NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.
0 All ROFF capabilities available or definable.
0 Completely definable page format keyed to dynamically planted "interrupts"

at specified lines.
0 Maintains several separately definable typesetting environments (e.g., one for

body text, one for footnotes, and one for unusuaily elaborate headings) .
0 Arbitrary number of output pools can be combined at will.
0 Macros with substitutable arguments, and macros invocable in mid-line.
0 Computation and printing of numerical quantities.
0 Conditional execution of macros.
0 Tabular layout facility.
0 Positions expressible in inches, centimeters, ems, points, machine units or

arithmetic combinations thereof.
0 Access to character-width computation for unusually difficult layout prob

lems.
0 Overstrikes, built-up brackets, horizontal and vertical line drawing.
0 Dynamic relative or absolute positioning and size selection, globally or at the

character level.
0 Can exploit the characteristics of the terminal being used, for approximating

special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultane
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi
cal to NROFF and NEQN so it is usually possible to define interchangeable formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS, TBL,
and REFER are fully compatible with TROFF and NROFF.
o MS A standardized manuscript layout package for use with NROFF/TROFF. This

document was formatted with MS.

o EQN

o NEQN

o TBL

o REFER

o TC

o GREEK

o COL

- 14 -

0 Page numbers and draft dates.
0 Automatically numbered subheads.
0 Footnotes.
0 Single or double column.
0 Paragraphing, display and indentation.
0 Numbered equations.
A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For
mulas are written in a style like this:

sigma sup 2 -=- 1 over N sum from i= 1 to N (x sub i - x bar) sup 2

which produces:

· 0'2 = l f(x;-:X)2
N i=l

0 Automatic calculation of size changes for subscripts, sub-subscripts, etc.
0 Full vocabulary of Greek letters and special symbols, such as 'gamma',

'GAMMA', 'integral'.
0 Automatic calculation of large bracket sizes.
0 Vertical "piling" of formulae for matrices, conditional alternatives, etc.
0 Integrals, sums, etc., with arbitrarily complex limits.
0 Diacriticals: dots, double dots, hats, bars, etc.
0 Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares for
mulas for display on any terminal that NROFF knows about, for example,
those based on Diablo printing mechanism.
0 Same facilities as EQN within graphical capability of terminal.
A preprocessor for NROFF /TROFF that translates simple descriptions of table
layouts and contents into detailed typesetting instructions.
0 Computes column widths.
0 Handles left- and right-justified columns, centered columns and decimal-point

alignment.
0 Places column titles.
0 Table entries can be text, which is adjusted to fit.
0 Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied) .
0 References may be printed in any style, as they occur or collected at the end.
0 May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450,
and on Tektronix 4014.
0 Gives half-line forward and reverse motions.
0 Approximates Greek letters and other special characters by overstriking.

Canonicalize fi!,es with reverse line feeds for one-pass printing.

o DEROFF Remove all TROFF commands from input.
0 CHECKEQ Check document for possible errors in EQN usage.

)

\
_j

I ./

- 1 5 -

4. Information Handling

o SORT

o TSORT
o UNIQ

o TR

o DIFF

DCOMM

DJOIN
o GREP

o LOOK

owe
o SED

DAWK

Sort or merge ASCII files line-by-line. No limit on input size.
0 Sort up or down.
0 Sort lexicographically or on numeric key.
0 Multiple keys located by delimiters or by character position.
0 May sort upper case together with lower into dictionary order.
0 Optionally suppress duplicate data.

Topological sort - converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
0 Publish lines that were originally unique, duplicated, or both.
0 May give redundancy count for each line.
Do one-to-one character translation according to an arbitrary code.
0 May coalesce selected repeated characters.
0 May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.
0 May produce an editor script to convert one file into another.
0 A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
lines present in first file only, present in both, and/ or present in second only.
Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
0 May print all lines that fail to match.
0 May print count of hits.
0 May print first hit in each file.
Binary search in sorted file for lines with specified prefix.
Count the lines, "words" (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations
on each line of an input stream of unbounded length.
0 Lines may be selected by address 'Or range of addresses.
0 Control flow and conditional testing.
0 Multiple output streams.
0 Multi-line capability.
Pattern scanning and processing language. Searches input for patterns, and per
forms actions on each line of input that satisfies the pattern.
0 Patterns include regular expressions, arithmetic and lexicographic conditions,

boolean combinations and ranges of these.
0 Data treated as string or numeric as appropriate.
0 Can break input into fields; fields are variables.
0 Variables and arrays (with non-numeric subscripts) .
0 Full set of arithmetic operators and control flow.
0 Multiple output streams to files and pipes.
0 Output can be formatted as desired.
0 Multi-line capabilities.

- 1 6 -

5. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.

o GRAPH

o SPLINE
o PLOT

Prepares a graph of a set of input numbers.
0 Input scaled to fit standard plotting area.
0 Abscissae may be supplied automatically.
0 Graph may be labeled.
0 Control over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for GRAPH.
A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer I plotter.

6. Novelties, Games, and Things That Didn't Fit Anywhere Else

o BACKGAMMON
A player of modest accomplishment.

o CHESS Plays good class D chess.
o CHECKERS Ditto, fo� checkers.
o BCD Converts ascii to card-image form.
o PPT
o BJ

Converts ascii to paper tape form.

A blackjack dealer.
o CUBIC An accomplished player of 4x4x4 tic-tac-toe.
o MAZE Constructs random mazes for you to solve.
o MOO A fascinating number-guessing game.
o CAL Print a calendar of specified month and year.

o BANNER Print output in huge letters.
o CHINO The I Ching. Place your own interpretation on the output.
o FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies

included.
o UNITS

o TTT

Convert amounts between different scales of measurement. Knows hundreds
of units. For example, how many km/sec is a parsec/megayear?
A tic-tac-toe program that learns. It never makes the same mistake twice.

o ARITHMETIC
Speed and accuracy test for number facts.

o FACTOR Factor large integers.
o QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

o WUMP Hunt the wumpus, thrilling search in a dangerous cave.
o REVERS! A two person board game, isomorphic to Othello®.

o HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

- 1 7 -

o FISH Children's card-guessing game.

(

(

(
,_ -

(

(

The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for
the larger D,igital Equipment Corporation PDP-11 and the Interdata 8/32 com
puters. It offers a number of features seldom found even in larger operating
systems, including

A hierarchical file system incorporating demountable volumes,
ii Compatible file, device, and inter-process 1/0,

. iii The ability to initiate asynchronous processes,
iv System command language selectable on a per-user basis,
v Over 100 subsystems including a dozen languages,
vi High degree of portability.
This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION
There have been four versions of the UNIX time-sharing system. The earliest (circa

1969-70) ran on the Digital Equipment Corporation PDP-T and -9 computers. The second ver
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and 170 computers; it is the one described in the pre
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, cUJrent system thai runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for it1teractive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

*Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver
sion of an article that appeared in Communications of the ACM, 17, No. 7 (July 1974), pp. 365-375. That arti
cle was a revised version of a paper presented at the Fourth ACM Symposium on Operating Systems Princi
ples, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.
tUN IX is a Trademark of Bell Laboratories.

- 2 -

characteristics of the system are its simplicity, elegance, and ease of use.
Besides the operating system proper, some major programs available under UNIX are

C compiler
Text editor based on QEDl
Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs2, 3
Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6,

TMG, Pascal
There is a host of maintenance, utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX

'---\
J

software is maintained on the system; likewise, this paper and all other documents in this issue· ·"
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT
The PDP- 1 1 /70 on which the Research UNIX system is installed is a 1 6-bit word (8-bit

byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for 1/0 buffers and system
tables; a minimal system capable of running the software mentioned above can require a!t little
as 96K bytes of core altogether. There are even larger installations; see the description of the
PWB/UNIX systems, 4, 5 for example. There are also much smaller, though somewhat restricted,
versions of the system. 6

Our own PDP- 1 1 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data
sets, and an additional 1 2 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication interfaces
used for machine-to-machine file transfer. Finally, there is a variety of miscellaneous devices
including nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digi
tal switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language. 7 Early
versions of the operating system were written in assembly langU\ge, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new system not only became much easier to understand and to modify
but also included many functional improvements, including multiprogramming and the ability
to share reentrant code among several. user programs, we consider this increase in size quite
acceptable.

III. THE FILE SYSTEM
The most important role of the system is to provide a file system. From the point of view

of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files
A file contains whatever information the user places on it, for example, symbolic or

binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program starts
executing. A few user programs manipulate files with more structure; for example, the assem
bler generates, and the loader expects, an object file in a particular format. However, the struc
ture of files is controlled by the programs that use them, not by the system.

)

(

(

(

(

. - 3 -

3.2 Directories
Directories provide the mapping between the names of files and the files themselves, and

thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands. As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be · in the form of a path name, which is a sequence of directory
names separated by slashes, "I ", and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys
tem to search the root for directory alpha, then to search alpha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name "I " refers to the root itself.

A path name not starting with "/ " causes the system to begin the search in the user's
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at ieast two entries. The name " • " in each directory refers to
the directory itself. Thus a program may read the current directory under the name " . "
without knowing its complete path name. The name " . • " by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the
special entries " . " and " • . ", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a directory was severed.

3.3 Special files
Special files constitute the most unusual feature of the UNIX file system. Each supported

1/0 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory /dev, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

- 4 -

There is a threefold advantage in treating 1/0 devices this way: file and device 1/0 are as
similar as possible� file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name� finally, special files are sub
ject to the same protection mechanism as regular files.

3.4 Removable file systems
· Although the root of the file system is always stored on the same device, it is not neces

sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g. , a disk pack) should have the structure of an indepen
dent file system containing its own directory hierarchy. The effect of mount is to cause refer
ences to the heretofore ordinary file to refer instead to the root directory of the file system on
the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume) . After the mount,
there is virtually no distinction between files on the removable volume and those in the per
manent file system. In our installation, for example, the root directory resides on a small parti
tion of one of our disk drives, while the other drive, which contains the user's files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file system, or one
may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is etiforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.5 Protection
Although the access control scheme is quite simple, it has some unusual features. Each

user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

· If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program that calls
for it. The set-user-ID feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program's user. Since the actual user ID of the invoker of any program is always available, set
user-ID programs may take any measures desired to satisfy themselves as to their invoker's
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the
"super-user" (below) that creates an empty directory. · As indicated above, directories are
expected to have entries for " . " and " . • ". The command which creates a directory is owned
by the super-user and has the set-user-ID bit set. After it checks its invoker's authorization to
create the specified directory, it creates it and makes the entries for " . " and " • . " .

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protection scheme
easily solves the MOO accounting problem posed by "Aieph-null."8

The system recognizes one particular user ID (that of the "super-user") as exempt from
. the usual constraints on file access� thus (for example) , programs may be written to dump and
reload the file system without unwanted interference from the protection system.

--....,
j

(

(

- 5 -

3.6 1/0 calls
The system calls to do 1/0 are designed to eliminate the differences between the various

devices and styles of access. There is no distinction between "random" and "sequential" 1/0,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 1/0, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call :

filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or "updated," that is, read and writ
ten simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with !ln editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential. This means that if a partic
ular byte in the file was the last byte written (or read) , the next 1/0 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:
n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as 1/0 errors or end of physi
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file: also,
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of
file from a terminal by use of an escape sequence that depends on the device used.

- 6 -

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte l ies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) 1/0 it is only necessary to move the read or write pointer to
the appropriate location in the file.

location = !seek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base.
offset may be negati ve . For some devices (e.g. , paper tape and terminals) seek calls are
ignored. The actual offset from- the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with 1/0 and with the file system
that will not be discussed. For example : close a file, get the status of a file, change the protec
tion mode or the owner of a file, create a directory, make a l ink to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM
As mentioned in Section 3 . 2 above, a directory entry contains only a name for the associ

ated file and a pointer to the file itself. This pointer is an integer c�lled the i-n.umber (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-list) stored in a known part of the device on which the directory resides. The -entry
found thereby (the file's i-node) contains the description of the file.:

i i
i i i

the user and group-ID of i ts owner
its protection bits
the physical disk or tape addresses for the file contents

iv i ts size
v time of creation, last use, and last modification
vi the number of l inks to the file, that is, the number of t imes it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.
The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explidtly or implicitly named directories. Once a file is open, i ts
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i -node is allocated for it and a directory entry is made that
contains the name of the file and the i -riode number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc
tory entry. If the l ink-count drops to 0, any disk blocks in the file are freed and the i -node is
de-allocated.

The space on all disks that contain a file system is divided into a number of 5 1 2-byte
blocks logically addressed from 0 up to a l imit that depends on the device. There is space in
the i-node of each file for 1 3 device addresses. For nonspecial files, the first 1 0 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 1 1 dev
ice address points to an indirect block containing up to 1 2 8 addresses of additional blocks in the
file. Stil l larger files use the twelfth device ad�ress of the i-node to point to a double-indirect
block naming 128 indirect blocks, each pointing to 1 2 8 blocks of the file. If required, the thir
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[(1 0+ 1 28+ 1 282+ 1 283) ·5 1 2] bytes. Once opened, bytes numbered below 5 1 20 can be read
with a single disk access� bytes in the range 5 1 20 to 70,656 require two accesses� bytes in the

j

(' ,

(

- 7 -

range 70,656 to 8 ,459,264 require three accesses� bytes from there to the largest file
(1 ,082,201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/0 request is made to a file
whose i-node indicates that it is special, the .last 1 2 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with 1/0 on that device� the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create� if a match is found,
the i-mtmber is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user's workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of 110 operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual 1/0 may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system's buffers� if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 5 12 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of 1/0,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For exalJlple, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

- 8 -

V. PROCESSES AND IMAGES
An image is a computer execution environment. It includes a memory image, general

register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behatf of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it to
be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Startirrg at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes
Except while the system is bootstrapping itself into operation, a new process can come

into existence only by use of the fork system call:
processid = fork ()

When fork is executed, the process splits into two independently executing processe�. The two
processes have independent copies of the original memory image, and share all open files. The
new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes
Processes may communicate with related processes using the same system read and write

calls that are used for file-system 1/0. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2) ,
it i s not a completely general mechanism, because the pipe must be set up by a common ances
tor of the processes involved.

5.3 Execution of programs
Another major system primitive is invoked by

execute (file, arg 1, arg2, . . . , argn)

which requests the system to read in and execute the program named by file, passing it string
arguments arg1 , arg2 , • • • , argn. All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are
unaltered. Only if the call fails, for example because file could not be found or because its
execute-permission bit was not set, does a return take place from the execute primitive; it

\

_)

- 9 -

resembles a "jump" machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII
below) .

Vl. THE SHELL
For most users, communication with the system is carried on with the aid of a program

called the shell. The shell is a command- line interpreter: it reads lines typed by ,the user and
interprets. them as requests to execute other programs. (The shell is described fully elsewhere, 9
so this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

command arg1 arg2 . . . - argn
The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought; command may be a path name including the "I" character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as I bin I to
command and attempts again to find the file. Directory I bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard 1/0
The discussion of 1/0 in Section III above seems to imply that every file used by a pro

gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1 , and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user's
terminal. Thus programs that wish to write informative information ordinarily use file descrip
tor 1 . Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user's terminal printer and keyboard. If one of the arguments to a command is prefixed by
" > ", file descriptor 1 will, for the duration of the command, refer to the file named after the
" > " . For example:

- 1 0 -

Is

ordinarily l ists, on the typewriter, the names of the files in the current directory. The com
mand:

Is > there

creates a file called there and places the listing there. Thus the argument > there means "place
output on there." On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The com
mand

ed < script

interprets script as a file of editor commands; thus < script means "take input from script."
Although the file name following " < " or " > " appears to be an argument to the com

mand, in fact it is interpreted completely by the shel l and is not passed to the command at all.
Thus no special coding to handle 1/0 redirection is needed within each command; the com
mand need merely use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, l ike file 1 , ordinarily as�ociated with the terminal output stream.
When an output-diversion request with " > " is specified, file 2 remains attached. to the termi
nal, so that com mands may produce diagnostic messages that do not silently end up in the out
put file.

6.2 Filters
An extension of the standard 1/0 notion is used to direct output from one command to :�f;.f@ the input of another. A sequence of commands separated by vertical bars causes the shell to � · '

execute all the commands simultaneously and to arrange that the standard output of each com-
mand be del ivered to the standard input of the next command in the sequence. Thus in the
command l ine :

Is I pr -2 1 opr

Is l ists the names of the files in the current directory; i ts output is passed to pr, which paginates
its input with dated headings. (The argument "-2" requests double-column output.) L ikewise,
the output from pr is i nput to opr; this command spools its input onto a file for off-l ine print
ing.

This procedure could have been carried out more clumsily by :

Is > temp1
pr -2 < temp i > temp2
opr < temp2

/ /
fol lowed by removal of the temporary files. In the absence- 6f the ability to redirect output and
input, a still clumsier method would have been to req�ire the Is command to accept user
requests to paginate its output, to print in multi-column format, and to arrange that its output
be delivered off-l ine. Actually i t would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process
ing) is called a .ft/ter. Some filters that we have found useful perform character transliteration,
selection of l ines according to a pattern, sorting of the input, and encryption and decryption.

- 1 1 -

6.3 Command separators ; multitasking
Another feature provided by the shel l is relatively straightforward. Commands need not

be on different l ines; i nstead they may be separated by semicolons:

Is; ed

wil l first l ist the contents of the current directory, then enter the editor.
A related feature is more interesting. If a command is followed by "&," the shell wil l not

wai t for the command to finish before prompting again; instead, it is ready i mmediately to
accept a new command. For example:

as source > output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate i t. The
"&" may be used several times in a l ine :

as source > output & Is > files &

does both the assembly and the l isting in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, ·the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; Is) > x &

wri tes the current date and time fol lowed by a l ist of the current directory onto the file x. The
shel l also returns i mmediately for another request.

6.4 The shell as a command; command files
The shell is i tself a command, and may be called recursively. Suppose file tryout contains

the l ines:

as source
mv a.out testprog
testprog

The mv command causes the fi le a. out to be renamed testprog. a. out is the (binary) output of
the assembler, ready to be executed. Thus if the three l ines above were typed on the keyboard,
source would be assem bled, the resulting program renamed testprog, and testprog executed.
When the l ines are in tryout, the command:

sh < tryout

would cause the shell sh to execute the commands sequential ly.
The shell has further capabil ities, including the ability to substitute parameters and to con

struct argument l ists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.5 Implementation of the shell
The outline of the operation of the shell can now be understood. Most of the time, the

shel l is waiting for the user to type a command. When the newline character ending the line is
typed, the shell 's read cal l returns. The shell analyzes the command line, putting the argu
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is stil l that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this wi l l bring in and start execution of the program whose name was given.
Meanwhile, the other process result ing from the fork, which is the parent process, waits for the

- 1 2 -

child process to die. When this happens, the shel l knows the command is finished, so i t types
its prompt and reads the keyboard to obtain another command.

G iven this framework, the implementation of background processes is trivial; whenever a
command l ine contains "&, " the shel l merely refrains from waiting for the process that i t
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of i ts parent but also all the files currently open in its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files to read command l ines and to
write i ts prompts and diagnostics, and in the ordinary case i ts children- the command
programs- inheri t them automatically. When an argument with " < " or " > " is given, how
ever, the offspring process, just before it performs execute, makes the standard 1/0 file descrip
tor (0 or 1 , respectively) refer to the named file. This is easy because, by agreement, the smal
lest unused file descriptor is assigned when a new file is opened (or created) ; it is only neces
sary to close file 0 (or 1) and open the named file. Because the process in which t he command
program runs simply terminates when it is through, the association between a file specified after
" < " or " > " and file descriptor 0 or 1 is ended automatically when the process dies. There
fore the shel l need not know the actual names of the files that are i ts own standard input and
output, because it need never reopen them.

Fi l ters are straightforward extensions of standard 1/0 redirection with pipes used instead ·
of files.

In ordinary circumstances, the main loop of the shel l never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is,' the branch
that does a wait, then reads another command l ine .) The one thing that causes the shel l to ter-
minate is discovering an end-of- file condition on its input file. Thus, when the shell is exe- (IJ cuted as a command with a given input file, as in:

sh < comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance
of the shell invoked by sh wil l terminate. Because this shel l process is the chi ld of another
instance of the shel l , the wait executed in the latter wil l return, and another command may
then be processed.

6.6 Initialization
The instances of the shel l to which users type commands are themselves children of

another process. The last step in the initialization of the system is the creation of a single -Pro
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminal channel. The various subinstances of init open the appropriate termi
nals for input and output on files 0, 1, and 2 , waiting, if necessary, for carrier to be established
on dial-up l ines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification, the appropriate instance of init wakes up, receives the
log- in l ine, and reads a password file. If the user's name is found, and if he is able to supply
the correct password, init changes to the user's default current directory, sets the process's user
ID to that of the person logging in, and performs an execute of the shell . At this point, the
shel l is ready to receive commands and the logging- in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of i tself that
wil l later become shel ls) does a wait. If one of the child processes terminates, either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process, which in turn reopens the appropriate input and out
put files and types another log-in message. Thus a user may log out simply by typing the end
of-file sequence to the �hell.

- 13 -

6. 7 Other programs as shell
The shell as described above is designed to allow users full access to the facilities of the

system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user's entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro
gram is free to interpret the user's messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when u.sers of the editing sys
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g. , chess, blackjack, 30 tic-tac-toe) available on the system illus
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell . . People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS
The PDP- 1 1 hardware detects a number of program faults, such as references to non

existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a sy·stem routine. Unless other arrange�
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
· the "delete" character. Unless special action has been taken, this signal simply causes the pro
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log
ging the user out. The editor catches interrupts and returns to its command level. This is use
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing) . In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII . PERSPECTIVE
Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was

not designed to meet any predefined objectives. The first version was written when one of us
(Thompson) , dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP- 1 1/20, specifically to support a text editing and formatting
system. When in turn the 1 1120 was outgrown, the system had proved useful enough to per
suade management to invest in the PDP- 1 1 /45, and later in the PDP- 1 1/70 and Interdata 8/32
machines, upon which it developed to its present form. Our goals throughout the effort, when

- 14 -

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas and inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.
First: because we are programmers, we naturally designed the system to make it easy to

write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a "batch" system. Moreover, such a system is
rather easily ad�ptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the "salvation through suffering" philosophy,
but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of . its functional and supertlcial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were ·invented, discovered, or suggested by others.

· The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large "access method" routines are required to insulate the programmer from the system calls;
in fact, all user programs either call the system directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no "control
blocks" with a complicated structure partially maintained by and depended on by the file system
or other system calls. Generally speaking, the contents of a program's address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or output, it is also desirable to push device-dependent considerations into the operating system
itself. The only alternatives seem to be to load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con
venient and efficient. Because the shell operates as an ordinary, swappable user program, it
consumes no "wired-down" space in the system proper, and it may be made as powerful as
desired at little cost. In particular, given the framework in which the shell executes as a process
that spawns other processes to perform commands, the notions of 1/0 redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to
implement.

Inftuences
The success of UNIX lies not so much in new inventions but rather in the full exploitation

of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

)

)

\

_)

_)

- 1 5 -

The fork operation, essentially as we implemented i t, was present in the GENIE time
sharing system. lO On a number of points we were influenced by M ultics, which suggested the
particular form of the I/0 system calls 1 1 and both the name of the shell and its general func
tions. The notion that the shel l should create a process for each command was also suggested
to us by the early design of M u ltics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX. 1 2

IX. STATISTICS
The following numbers are presented to suggest the scale of the Research UNIX operation.

Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important "applications" programs.

Overall, we have today:

1 2 5
3 3

1 ,630
28,300

301 , 700

user population
maximum simultaneous users
directories
files
5 1 2-byte secondary storage blocks used

There is a " background" process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a mil l ion-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average dai ly:

X. ACKNOWLEDGMENTS

1 3 , 500
9.6

230
62

240

commands
CPU hours
connect hours
different users
log-ins

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D . Mcilroy, and J. F. Ossanna.

References

1 . L . P . Deutsch and B. W. Lampson, "An online editor, " Comm. Assoc. Comp. Mach.
10 (1 2) pp. 793-799, 803 (December 1 967) .

2 . B. W. Kernighan and L . L . Cherry, " A System for Typesetting Mathematics, " Comm.
Assoc. Comp. Mach. 18 pp. 1 5 1 - 1 57 (March 1 975) .

3 . B . W . Kernighan, M . E. Lesk, and J . F . Ossanna, "UNIX Time-Sharing System : Docu
ment Preparation, " Bei/ Sys. Tech. J. 57 (6) pp. 2 1 1 5- 2 1 3 5 (1 978) .

4. T. A. Dolotta and J. R . Mashey, "An Introduction to the Programmer's Workbench, "
Proc. 2nd Int. Conf on Software Engineering, pp. 1 64- 1 68 (October 1 3- 1 5 , 1 976) .

5 . T . A . Dolotta, R . C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench, " Bei/ Sys. Tech. J. 57 (6) pp. 2 1 77-2200 (1 978) .

- 16 -

6. H. Lycklama, "UNIX Time-Sharing System: UNIX on a Microprocessor," Bell Sys. Tech. J.
57(6) pp. 2087-210l (1978) .

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978) .

8. Aleph-null, "Computer Recreations," Software Practice and Experience 1 (2) pp. 201-204
(April-June 197 1) .

9. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys. Tech. J. 57(6) pp.
1971-1990 (1978).

10. L. P. Deutsch and B. W. Lampson, "sos 930 time-sharing system preliminary reference
manual," Doc. 30. 10. 10, Project GENIE, Univ. Cal. at Berkeley (Apri1 1965).

1 1 . R. J. Feiertag and E. I. Organick, "The Multics input-output system,., Proc. Third Sympo
sium on Operating Systems Principles, pp. 35-41 (October 1 8-20, 1 971) .

12. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "TENEX, a Paged
Time Sharing System for the PDP- 10," Comm. Assoc. Comp. Mach. 15(3) pp. 1 35-143
(March 1972) .

�
)

_)

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hil l , New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNixt operating
system. It includes:

• basics needed for day-to-day use of the system - typing commands, correct
ing typing mistakes, logging in and out, mail , inter-terminal communication,
the file system, printing files, redirecting I/0, pipes, and the shell.

• document preparation - a 'brief discussion· of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software .

• UNIX programming - using the editor, programming the shell , program
ming in C, other languages and tools.

• An annotated UNIX bibliography.

September 30, 1 978

tUN IX is a Trademark of Bell Laboratories.

UNIX For Beginners - Second Edition

Brian W. Kernighan
Bell Laboratories

Murray H i l l , New Jersey 07974

I NTROD UCTION
From the user's po in t of view, the UNIX

operating system is easy to learn and use, and
prese nts few of t he usual i mpediments to getting
the job done. I t is hard, however, for the
beginner to k now where to start, and how to
make the best use of the faci l i ties available. The
purpose of th is introduction is to help new users
get used to the main ideas of the UNIX system
and start mak ing effective use of it q u ickly.

You should have a couple of other docu
ments with you for easy reference as you read
this o ne. The most im portant is The UNIX

Programmer 's ;'v/anua l : i t 's often easier to tel l you
to read about someth ing i n the manual than to
repeat i ts conte n ts here. T he other usefu l docu
ment is A Tutonal lmroducrion ro the UNIX Text

Edimr. which wi l l te l l you how to use t he edi tor
to get text - programs. data. docu ments - into
the computer.

A word of warn ing: the UNIX system has
become qu i te popular. and there are several
major varia nts in w idespread use. Of course
details also cha nge wi th t ime. So a l tho ugh t he
basic structure of UNIX and how to use it is com
mon to all versions. there will certai n ly be a few
th ings which are differe n t on your system from
what is described here. We have tried to minim
ize the proble m. but be aware of i t . I n cases of
doubt. this paper descr ibes Version 7 UNIX .

This paper has five sections:

1 . Ge tting S tarted: How to Jog in, how to type.
what to do abo u t mistakes in typing. how to
Jog out. Some of this is depende n t o n which
system you log in to (phone numbers. for
example) and what terminal you use. so this
section must necessarily be supple111en ted by
local information.

2 . Day-to-day Use: Th ings you need every day
to use the system effectively: genera l ly use
ful commands: the fi le syste m .

3 . Docu me nt Preparat ion : Prepari ng manu
scripts is one of the most com mon uses for
UNIX systems. This section con tains advice,
but not e xtensive instructions on any of t he
formatt ing tools.

4. Writ ing Programs: UNIX is an e xcel lent sys
tem for developi ng programs. This section
talks about some of the tools, but again is
not a tu torial in any of the programming
languages provided by the system.

'

5. A UNIX R eading L ist. A n annotated
bibl iogra p hy of docu me n ts that new users
should be aware of.

I . GETTI NG STARTED

Logging i n
Y o u must have a UNIX login name. which

you ca n get fro m w hoever administers your sys
te m. You also need to k now the p hone number,
u n less your system uses permanen tly con nected
termi nals. The UNIX syste m is capa ble of deal
i ng with a wide variety of termi na ls: Term inet
300's; Execuport, Tl and simi lar portables: video
(CRT) terminals like t he H P2640, etc . ; h igh
priced graph ics terminals l ike t he Tektronix
40 1 4; plotting terminals l ike those from GSl and
DASI : and even the venerable Teletype in i ts
various forms. But note: UNIX is stro ngly
oriented towards devices with !oll'er case. I f your
terminal produces only upper case (e .g. , model
33 Teletype. some video and portable terminals) ,
l ife wi l l be so difficult that you should look for
another term inal .

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed. upper/ lower case
mode, fu l l duplex. even parity, and any ot hers
that local wisdom advises. Establ ish a con nec
tion using w hatever magic is needed for your ter
minal ; this may i nvolve dial ing a telep hone cal l
or merely fl ipping a switch. I n e i ther case, UNIX
should type " logi n : " at you . I f i t types garbage,
you may be at the wrong speed: check the
switches. I f that fa i ls, push the " break" or

" i n terrupt" key a few times, slowly. If that fails
to produce a login message, consult a guru.

When you get a login: message, type your
logi n name in /owl.'r case. Follow i t by a
RETURN; the sys tem wi l l not do anything unt i l
you type a RETURN. I f a password is required,
you will be asked for it , and (if possi ble) print ing
wi l l be turned off wh ile you type it . Don' t forget
R ETURN.

T he culmination of your logi n efforts is a
" prompt character, " a s ingle character that i ndi
cates t hat t he system is ready to accept com
mands from you. T he prompt character is usu
ally a dollar sign $ or a perce n t sign %. (You
may also get a message of the day just before the
prompt character, or a �ot ification t hat you have
mail .)

Typing Commands

O nce you ' ve seen the prompt character, you
can type commands, which are requests that t he
system do someth ing. Try typing

date

followed by RETURN. You should get back
somet h i ng l ike

Mon Jan 16 14 :17 :10 EST 1978

Don't forget t he RETURN after the command, or
nothing wi l l happen. I f you think you ' re being
ignored, type a RETURN; someth ing s hould hap
pe n. RETURN won' t be me n tioned again, but
don ' t forget it - it has to be t here at t he end of
each l ine .

A nother co mmand you might try is who,
w h ich tells you everyone who is curren tly logged
i n :

who

gives some thing l ike

mb
ski
gam

tty01
tty05
ttyll

Jan 16
Jan 16
Jan 16

09 : 1 1
09 :33
13 :07

T he time is when t he user logged in; " t tyxx" is
the system's idea of what terminal t he user is on.

I f you make a mistake typing the command
name, and refer to a non-existent command, you
wil l be told. For example, if you type

whom

you wil l be told

whom: not found

Of course . if you i nadvertent ly type the name of
some other com mand, it wi l l run, with more or
less mysterious results.

- 2 -

Strange Terminal Behavior

Sometimes you can get into a state w here
your terminal acts strangely. For e xa m ple, each
letter may be typed twice, or t he RETURN may
not cause a l ine feed or a return to the left mar
g in. You can often fix t his by loggi ng out and
logging back in . Or you can read the description
of the command stty in section I of t he manual.
To get i n tell ige n t treatment · of tab characters
(which are m uc h used in UNIX) if your terminal
doesn ' t have tabs, type the com mand

stty -tabs

a nd the system wil l convert each tab i nto t he
right n u m ber of blanks for you. If your terminal
does have computer-settable tabs, the command
tabs wil l set the stops correctly for you.

Mistakes in Typing

If you make a typ i ng mistake, and see it
before RETU RN has been typed, there are two
ways to recover. T he sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beg inn ing of t he
l ine (but not beyond) . So if you type badly, you
can correct as you go:

dd#atte##e

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input l ine, so if the
l ine is irretrievably fouled up, type an @ and
start the l ine over.

What if you must enter a s harp or at-sign as
part of the tex t ? If you precede either # or @
by a backslash \, i t loses its erase meani ng. So
to e nter a sharp or at-sign in someth ing, type \ #
or \ @ . T he syste m w i l l always echo a newline a t
y o u after y o u r at-sign, even if preceded by a
backslash. Don't worry - t he at-sign has been
recorded.

To erase a backslas h, you have to type two
sharps or two at-signs, as in \##. The backslash
is used exte nsively in UNIX to i nd icate that the
following character is in some way special.

Read-ahead

UNIX has fu l l read-ahead, which means t hat
you can type as fast as you wan t, w he never you
want, even when some command is typing at
you. If you type duri ng output, your i np u t char
acters will appear intermixed with t he output
characters, but they wi l l be stored away and
i nterpreted i n the correct order. So you can type
several commands one after another without
wait ing for the first to fin ish or even begin .

Stopping a Program

You can stop most programs by typing the
character " DEL" (perhaps called "delete" or
"rubout" on your terminal) . The "interrupt" or
"break" key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'l l be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes
sage, and RETURN, which does not (so it will
still be there the next time you read your mail
box). Other responses are described in the
manual. (Earlier versions of mail do not process
one message at a time, but are otherwise simi
lar.)

How do you send mail to someone else?
Suppose it is to go to "joe" (assuming "joe" is
someone's login name) . The easiest way is this:

mail joe
now type in the text of the letter
on as many lines as you like . . .
A.fier the last line of the letter
type the character "comro!-d",
that is, hold down "control" and type
a letter "d".

And that's it. The "control-d" sequence, often
called "EOF" for end-of-file, is used throughout
the system to mark the end of input from a ter
minal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn ' t as strange as it might sound - mail to one-

- 3 -

self is a handy reminder mechanism.)

There are other ways to send mail - you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details see mailO) . (The notation maiJ (l)

· means the command mail i n section 1 of the
UNIX Programmer 's ManuaL)

Writing to other users

At some point, out of the blue will come a
message like

Message from joe tty07 . . .

accompanied by a startling beep. I t means that
Joe wants to talk to you, but unless you take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you have to get to a
state where you can type a command. Normally,
whatever program you are running has to ter
minate or be terminated. If you're editing, you
can escape temporarily from the editor :... read
the editor tutorial .)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it's like this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines
as he likes) . When he's ready for a reply,
he signals it by typing (o) , which stands
for "over".
Now Smith types a reply, also terminated
by (o) .
This cycle repeats until someone gets
tired� he then signals his intent to quit
with (oo) , for "over and out".
To terminate the conversation, each side
must type a "control-d" character alone
on a line. ("Delete" also works.) When
the other person types his "control-d",
you will get the message EOF on your
terminal.

If you write to someone who isn't logged in,
or who doesn' t want to be disturbed, you'll be
told. If the target is logged in but doesn't answer
after a decent interval, simply type "control-d".

On-line Manual

The UNIX Programmer 's Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type "man command
name". Thus to read up on the who command,
type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com
mand

learn

If learn exists on your system, it will tell you
what to do from there.

II. DAY-TO-DAY USE

Creating Files - The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine ? Most of these tasks are done
with the UNIX "text editor" ed. Since ed is
thoroughly documented in ed(l) and explained
in A Tutorial Introduction to the UNIX Text Editor,
we won' t spend any time here describing how to
use it. All we want it for right now is to make
some .Iiles. (A file is just a collection of informa
tion stored in the machine, a simplistic but ade
quate definition.)

To create a file called junk with some text in
i t , do the following:

ed junk
a
now type in

(invokes the text editor)
(command to "ed", to add text)

whatever text you want . . .
(signals the end of adding text)

The "." that signals the end of adding text must
be at the beginning of a line by itself. Don't for
get it. for until it is typed, no other ed com
mands will be recognized - everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as

- 4 -

correcting spelling mistakes, rearranging para
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per
manently, so if you hang up and go home the
information is lost. t But after w the information
!s there permanently; you can re-access it any
time by typing

ed junk

Type a q command to quit the editor. (If you try
to quit without writing, ed will print a ? to rem
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files,
junk and temp. .

What files are out there?

The Is (for "list") command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

Is

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is - t

causes the files to be listed in the order in which
they were last changed, most recent first. The
-I option gives a " long" listing:

Is - I

will produce something like

-rw-rw-rw- 1 bwk 41 Jul 22 2 :56 junk
-rw - rw-rw - 1 bwk 78 Jul 22 2 :57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed) . bwk is the owner of the file, that is,
the person who created it. The -rw-rw-rw
tells who has permission to read and write the
file, in this case everyone.

t This is not strictly true - if you hang up wh ile editing.

the data you were working on is saved in a file called

ed.hup. which you can continue with at your next session.

Options can be combined: Is - It gives the
same thing as Is - 1, but sorted into time order.
You can also name the files you're interested in,
and Is will list the information about them only.
More details can be found in ls (l) .

The use of optional arguments that begin
with a minus sign, like - t and - It, is a com
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: ls- I is not the same as Is - I.

Printing Files

Now that you've got a file of text, how do
you print it so people can look at i t? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

ed junk
t ,$p

ed will reply with the count of the characters in
junk and then print all the lines in the file.
After you learn how to use the editor, you, can
be selective about the parts you print.

There are times when it's no.t feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines) .. Secondly, it will only print one
file at a time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives.

First is cat, the simplest of all the printing
programs. cat simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated
(hence the name "cat") onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list.
The difference is that it produces headings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:

- 5 -

pr -3 junk

prints junk in 3 -column format. You can use
any reasonable number in place of "3" and pr
will do its best. pr has other capabilities as well;
see prO) .

I t should be noted that pr is not a formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and troff, which we will get to in the sec
tion on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr and lpr. Which to use depends on what
equipment is attached to your !llachine.

Shuffling Files About

Now that you have some files in the file sys
tem and some experience in printing them, you
can try bigger things. For example, you can
move a file from one place to an�ther (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be "junk" is now
"precious". If you do an Is command now, you
will get

precious
temp

Beware that if you move a file to another one
that already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
to have two versions of something) , you can use
the cp command:

cp precious tempt

makes a duplicate copy of precious in tempt.

Finally, when you get tire
-
d of creating and

moving files, there is a command to remove files
from the file system, called rm.

rm temp tempt

will remove both of the files named.
You will get a warning message if one of the

named files wasn' t there, but otherwise rm, like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable.

What's in a Filename

So far we have used filenames without ever
saying what's a legal name, so it's time for a
couple of rules. First, filenames are limited to
1 4 characters, which is enough to be descriptive.

Second, although you can use almost any charac
ter in a filename, common sense says you should
stick 'to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the Is command, Is -t means
to list in time order. So if. you had a file whose
name was - t, you would have a tough time list
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam
iliar with the situation.

On to some more positive suggestions. Sup- ·
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chapl
chap2
etc . . .

Or, if each chapter were broken into several files,
you might have

chapl.l
chap1.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chap1.2 chap1.3 • .

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap*

The * means "anything at all," so this translates
into "print all files whose names begin with
chap", listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide,
a service of the program that interprets com
mands (the "shell," shO)) . Using that fact,
you can see how to list the names of the files in
the book:

- 6 -

Is chap*

produces

chapl.l
chap1.2
chapl.3

The * is not limited to the last position in a
filename - it can be anywhere and can occur
several times. Thus

rm *junk* *temp*

removes all files that contain junk or temp as
any part of their name. As a special case, * by
itself matches every filename, so

pr *

prints all your files (alphabetical order) , and

rm *

removes all files. (You had better be very sure
· that's what you wanted to say !)

The * is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapl12349l*

The 1. • .1 means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with

pr chapll -491*

Letters can also be used within brackets: la- zl
matches any character in the range a through z.

The ? pattern matches any single character,
so

Is ?

lists all files which have single-character names,
and

Is - I chap?.l

lists information about the first file of each
chapter (chapl.l , chap2.1, etc.) .

Of these niceties, * is certainly the most use
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe
cial meaning of *, ? , etc. , enclose the entire
argument in single quotes, as in

Is ' ? '

We'll see some more examples of this shortly.

What's in a Filename, Continued

When you first made that file called junk,
how did the system know that there wasn't
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private directory, which contains only the
files that belong to him. When you log in, you
are "in" your directory. U nless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any other file of the same name
that might exist in someone else's directory.

The set of all files is organized into a (usu
ally big) tree, with your files located several
branches into the tree. It is possible for you to
"walk" around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con
versely, you can start where you are and walk
toward the root.

Let's try the latter first. The basic tools is
the command pwd ("print working directory"),
which prints the name of the directory you are
currently in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory
/usr, which is in turn in the root directory called
by convention just /. (Even if it's not called
/usr on your system, you will get something
analogous. Make the corresponding changes and
read on.)

If you now type

Is /usr/your-name

you should get exactly the same list of file names
as you get from a plain Is: with no arguments, Is
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, try

Is /usr

This should print a long series of names, among
which is your own login name your-name. On
many systems, usr is a directory that c;ontains
the directories of all the normal users of the sys
tem, like you.

The next step is to try

Is I

- 7 -

You should get a response something like this
(although again the details may be different) :

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try

cat /usr/your-name/junk

(if junk is still around in your directory) . The
name

/usr/your-name/junk

is called the pathname of the file that you nor
mally think of as "junk". "Pathname" has an
obvious meaning: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a partic�.�r
lar file. It is a universal rule in the UNIX system
that anywhere you can use an ordinary filename,
you can lise a pathname.

Here is a picture which may make this
clearer:

bin
/ I \

(root)
/ I \

I \
I \

etc usr dev tmp
/ I \ / 1 \ / I \ I I \

I \
I \

adam eve mary
I I \

I \
junk temp

\
junk

Notice that Mary's junk is unrelated to Eve's.
This isn't too exciting if all the files of

interest are in your own directory, but if you
work with someone else or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neigh
bor has by saying

Is /usr/neighbor-name

or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn't want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See Is (1) and chmod (1) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try

Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. I t normally looks first in your
directory (where it typically doesn't find it}. then
in /bin and finally in /usr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say "I want to
work on h is files instead of my own". This is
done by changing the directory that you are
currently in:

cd /usr/your-friend

(On some systems, cd is spelled chdir.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend's directory.
Changing directories doesn' t affect any permis
sions associated with a file - if you couldn' t
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd

to find out.

I t is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now
found in (presumably)

/usr/your-name/book

To remove the directory book, type

rm book/*
rmdir book

- 8 -

The first command removes all files from the
directory; the second removes the empty direc
tory.

You can go up one level in the tree of files
by saying

cd ..

" . • " is the name of the parent of whatever direc
tory you are currently in. For completeness, " ."
i s an alternate name for the directory you are in.

Using Files instea'.l of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is > file list

a list of your files will be placed in the file filelist
(which will be created if it doesn't already exist,
or overwritten if it does) . The symbol > means
"put the output on the following file, rather than
on the terminal." Nothing is produced on the
terminal. As another example, you could com
bine several files into one by capturing the out
put of cat in a file:

cat n f2 f3 > temp

The symbol > > operates very much like >
does, except that it means "add to the end of."
That is,

cat n f2 f3 > > temp

means to concatenate fl, f2 and f3 to the end of
whatever is already in temp, instead of overwrit
ing the existing contents. As with > , if temp
doesn ' t exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file, instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file < script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

mail adam eve mary joe < let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes - a pipeline.

For example,

pr f g h

will print the fi les f, g, and h, beginning each on
a new page. Suppose you want them run
together instead. You could say

cat f g h > temp
pr < temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pr. So let us use a
pipe:

cat f g h I pr

The vertical bar I means to take the output from
cat, which would normally have gone to the ter
minal, and put it into pr to be neatly formatted.

There are many other examples of pipes.
For example,

ls l pr -3

prints a l ist of your files i n three columns. The
program we counts the number of l ines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-logged on people,
one per line. Thus

who I we

tells how many people are logged on. And of
course

Is I we

counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr -3 a b c

prints files a, b and c in order in three columns.
But in

cat a b c I pr -3

pr prints the information coming down the pipe
line, stil l in three columns.

- 9 -

The Shell

We have already mentioned once or twice
the mysterious "shell," which is in fact shO) .
The shell i s the program that interprets what you
type as commands and arguments. I t also looks
after translating *, etc., into lists of filenames,
and < , > , and I into changes of input and ·out
put streams.

The shell has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simultaneously if you wish. For example,
if you are do,ing something time-consuming, like
the editor script of an earlier section, and you
don' t want to wait around for the results before
starting something else, you can say

ed file < script &
The ampersand at the end of a command l ine
says "start this command running, then take
further commands from the terminal immedi
ately," that is, don' t wait for it to complete.
Thus the script will begin, but you can do some
thing else at the same time. Of course, to keep
the output from interfering with what you're
doing on the terminal, it would be better to say

ed file < script > script. out &
which saves the output lines in a file called
script.out.

When you initiate a command with &, the
system replies with a number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command
ps will tell you about everything you have run
ning. (If you are desperate, kill 0 will kill all
your processes.) And if you're curious about
other people, ps a will tell you about all pro
grams that are currently running.

You can say

(command-! ; command-2; command-3) &
to start three commands in the background, or
you can start a background pipeline with

command-1 1 command-2 &

Just as you can tell the editor or some simi-

Jar program to take its input from a file instead
of from the terminal, you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want to set tabs
on your terminal, and find out the date and
who's on the system every time you Jog in.
Then you can put the three necessary commands
(tabs, date, who) into a file, let's call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con
tents of startup on the terminal.

If this is to be a regular thing, you can elim
inate the need to type sh: simply type, once only,
the command

chmod +x startup

and thereafter you need only say

startup

to run the sequence of commands. The
chmod(l) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in your login
directory called .profile, and place in it the line .
startup. When the shel l first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We' l l get back
to the shell in the section on programming.

I I I . DOCUMENT PREPARATION

UNIX systems are used extensively for docu
ment preparation. There are two major format
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro
nounced "tee-roff") instead drives a photo
typesetter, which produces very h igh quality out
put on photographic paper. This paper was for
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it "format
ting commands" that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long Jines
are, whether to use single or double spacing, and
what running titles to use on each page.

- 10 -

Because nroff and troff are relatively hard to
learn to use effectively, several "packages" of
canned formatting requests are available to let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty' look
at the "manuscript" package known as - ms.
Formatting requests typically consist of a period
and two upper-case letters, such as . TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

.TL
title of document
.AU
author name
.SH
section heading
.PP
paragraph . . .
.PP

.

another paragraph . . .
.SH
another section heading
.PP
etc.

The lines that begin with a period are the for
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance) , and
on what publication the document will appear in.
For example, - ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, 112 line in troff) , and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu
ment.

To actually produce a document in standard
format using - ms, use the command

troff - ms files . . .

for the typesetter, and

nroff - ms files . . .

for a terminal. The - ms argument tells troff
and nroff to use the manuscript package of for
matting requests.

There are several similar packages; check
with a local expert to determine which ones are
in common use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu
ment preparation. The list in the next few para
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document, in an easy-to-learn
language that closely resembles the way you
would speak it aloud. For example, the eqn
input

sum from i=O to n x sub i -=- pi over 2

produces the output

The program tbl provides an analogous ser
vice for preparing tabular material; it does all the
computations necessary to align ·complicated
columns with elements of varying widths.

- 1 1 -

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for
matting package. It looks after all the details of ·
numbering references in sequence, filling in page
and volume numbers, getting the author's initials
and the journal name right, and so on.

spell and typo detect possible spelling mis
takes in a document. spell works by comparing
the words in your document to a- dictionary,
printing those that are not in the dictionary. I t
knows enough about English spelling to detect
plurals and the like, so it does a very good job.
typo looks for words which are "unusual", and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor's context search does, but on a bunch
of files) . For example,

grep 'ing$' chap*

will find all lines that end with the letters ing in
the files chap*. Ot is almost always a good prac
tice to put single quotes around the pattern
you're searching for, in case it contains charac
ters like * or $ that have a special meaning to the
shell.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located. ·

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand) .

we counts the words, lines and characters in
a set of files. tr translates characters into other
characters; for example it will convert upper to
lower case and vice versa. This translates upper
into lower:

tr A-Z a-z < input >output

sort sorts files in a variety of ways; cref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing) . sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within l ines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen
dently documented (like eqn and tbl) , or are
sufficiently simple that the description in the
UNIX Programmer 's Manual is adequate explana
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural places, such as after commas and semi
colons, rather than randomly. S ince most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis
take it's better to have clobbered a small file
than a big one. Split into files at natural boun
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack
ages like - ms is that they permit you to delay
decisions to the last possible moment. Indeed,
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by ,defining
your own nroff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice .are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facili ties
like pipes, I/0 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat . . .
I tr .. .
I tr .. .
I sort
I uniq
l comm

collect the .files
put each word on a new line
delete punctuation, etc.
into dictionary order
discard duplicates
print words in text

but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last l ines of each of a set of files, such as a book,
you could laboriously type

ed
e chapl . l
lp
$p
e chap1.2
lp
$p
etc.

But you can do the job much more easily. One
way is to type

Is chap* > temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing

- 1 2 -

commands (using the global commands of ed),
and write it into script. Now the command

ed < script

will produce the same output as the laborious
hand typing. A lternately (and more easily) , you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments :

for i in chap*
do

ed Si < script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the S hell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (if-else, while, for,
case) , subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam
ples and rules can be found in A n Introduction to
the UNIX Shell, by S . R. Bourne.

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced and fully described in The C Program
ming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1 978). Several sections
of the manual describe the system interfaces,
that is, how you do 1/0 and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 1/0 library, which provides a
set of 1/0 functions that exist in compatible
form on most machines that have C compilers.
In general, it's wisest to confine the system
interactions in a program to the facili ties pro
vided by this l ibrary.

C programs that don't depend too much on
special features of U NIX (such as pipes) can be
moved to other computers that have C com
pilers. The list of such machines grows daily; in
addition to the original PDP- 1 1 , it currently

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data General Nova and Eclipse,
HP 2 1 00, Harris /7, VAX 1 1 /780, SEL 86, and
Zilog Z80. Calls to the standard I/0 library will
work on all of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver
sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectiv.ely. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a l imited instru
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
- p option; after the test run, use prof to print
an execution profile. The command time will
give you the gross run-time statistics of a pro
gram, but they are not super accurate or repro
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in m ind that UNIX Fortran tends to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc. , are all virtually useless with Fortran pro
grams. There may also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yacc compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler languages that can be expressed

- 1 3 -

as regular expressions. I t can be used by itself,
or as a front end to recognize inputs for a
yacc-based program. Both yacc and lex require
some sophistication to use, but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol 68, APL, Basic,
L isp, Pascal, and Snobol. Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong t ha t it wil l be more trouble
than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer 's Manual, Bell Laboratories, 1 978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro
cedures. You can' t live without this, although
you will probably only need to read section 1 .

•

Documents .for Use with the UNIX Time-sharing
System. Volume 2 of the Programmer's Manual.
This contains more extensive descriptions of
major commands, and tutorials and reference
manuals. All of the papers listed below are in i t ,
as are descriptions of most of the programs men
tioned above.
D. M. Ritchie and K. L. Thompson, "The UNIX
Time-sharing s·ystem," CACM, July 1 974. An
overview of the system, for people in terested in
operating systems. Worth reading by anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.
The Bell System Technical Journal (BSTJ) Spe
cial Issue on UNIX, July/ August, 1 978, contains
many papers describing recent developments,
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1 976) contains several
papers describing the use of the Programmer's
Workbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, "A Tutorial Introduction to
the UNIX Text Editor" and "Advanced Editing
on UNIX," Bell Laboratories, 1 978 . Beginners
need the introduction; the advanced material will
help you get the most out of the editor.

M. E. Lesk, "Typing Documents on UNIX, " Bell
Laboratories, 1 978 . Describes the - ms macro
package, which isolates the novice from the
vagaries of nroff and troff, and takes care of

most formatting situations. If this specific pack
age isn't available on your system, something
similar probably is . The most likely alternative is
the PWB/UNIX macro package - mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, "A System
for Typesetting Mathematics," Bell Laboratories
Computing Science Tech. Rep. 1 7.

M. E. Lesk, "Tbl - A Program to Format
Tables," Bell Laboratories CSTR 49, 1 976.

J . F. Ossanna, Jr., "NROFF/TROFF User's
Manual," Bell Laboratories CSTR 54, 1 976.
troff is the basic formatter used by - ms, eqn
and tbl. The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with :
B. W. Kernighan, " A TROFF Tutorial," Bell
Laboratories, 1 976. An attempt to unravel the
intricacies of troff.

Programming:

B. W. Kernighan and D. M . Ritchie, The C Pro
gramming Language, Prentice-Hall, 1 978. Con
tains a tutorial introduction, complete discussions
of al l language features, and the reference
manual .
B. W. Kernighan and D. M. Ritchie, " UNIX Pro
gramming," Bell Laboratories, 1978. Describes
how to interface with the system from C pro
grams : I/0 calls, signals, processes.

S. R. Bourne, "An Introduction to the UNIX
Shell," Bell Laboratories, 1 978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, "Yacc - Yet Another Compiler
Compiler," Bell Laboratories CSTR 32, 1 978.

M. E. Lesk, "Lex - A Lexical Analyzer Gen
erator," Bell Laboratories CSTR 39, 1 975.

S. C. Johnson, "Lint, a C Program Checker,"
Bell Laboratories CSTR 65, 1 977.

S. I . Feldman, "MAKE - A Program for Main
taining Computer Programs," Bell Laboratories
CSTR 57, 1 977.

J. F. Maranzano and S . R . Bourne, "A Tutorial
Introduction to ADB," Bell Laboratories CSTR
62, 1977. An introduction te a powerful but
complex debugging tool .

S. I . Feldman and P. J . Weinberger, " A Portable
Fortran 77 Compiler," Bell Laboratories, 1 978.
A full Fortran 77 for UNIX systems.

- 1 4 -

A Tutorial I ntroduction to the UNIX Text Editor

Brian W. Kernighan

Bel l Laboratories
Murray Hil l , New Jersey 07974

ABSTRACT

A lmost all text input on the UNIXt operating system is done with the text
editor ed This memorandum is a tutorial guide to help beginners get started
with te xt editing.

Although it does not cover everything, it does discuss enough for most
users ' day-to-day needs. This inc ludes printing, appending, changing, deleting,
moving and inserting entire lines of text; reading and writing files; context
searching and l ine addressing; the substitute command; the global commands;
and the use of s!lecial characters for advanced editing.

�lrv september 2 1 , 1 978

tUN IX is a Trademark of Bell Laboratories.

A Tutorial I ntroduction to the UNI X Text Editor

Brian W. Kernighan

Be l l Laboratories
Murray Hil l , New Jersey 07974

Introduction

Ed is a " text editor"., that is, an in teractive
program for crea ting and modify ing "tex t",
using directions provided by a user a t a terminal.
The text is often a documen t like th is one , or a
program or perhaps data for a program.

This introductio n is meant to simp lify learn
ing ed. The recommended way to learn ed is to
read this document , simul taneously using ed to
follow the examples, then to read the descrip tion
in sectio n I of the UNIX Programmer 's Ma nua l. al l
the while experimenting wi th ed. (Solicitation of
adv ice fro m experienced users is a lso useful .)

Do the exercises! They cover material not
comp letely discussed. in the ac tua l te xt. An
appendix summarizes the commands.

Disclaimer

This is an in troduction and a tutorial. For
this reason, no a tte mp t is made to cover more
than a part of the facil it ies that ed offers
(although th is fractio n includes the mos t useful
and frequently . used parts) . When you have
mastered the Tutoria l , try Adva nced Editing on

UNIX. Also , there is not enough space to explain
basic UNIX procedures. We will assume that you
know how to log on to UNIX, and that you have
at least a vague understa nding of what a fi le is.
For more on that, read UNIX .for Begmners.

You must also know what character to type
as the end-of- line on your particular termina l .
This character is the RETURN key on most ter
minals. Throughout, we will refer to th is charac
ter, whatever it is, as RETU RN.

Getting Started

We'll assume that you have logged in to your
system and it has just prin ted the prompt charac
ter, usually either a $ or a 1\11. The easiest way to
ge t ed is to ty pe

ed (followed by a return)

You are now ready to g o - ed is waiting for you
to tel l it what to do.

Creating Text - the Append command "a"

As your firs t problem, suppose you want to
create some text s tarting from scra tch. Perhaps
you are typing the very firs t draft of a paper;
clearly it will have to start somewhere, and
undergo modifica tions later. This section will
show how to get some text in , just to ge t s tarted.
Later we ' l l ta lk about how to change it .

When ed is first started, it is rather l ike work- .
ing with a blank p iece of paper - there is no
text or in forma tio n present. This must be sup
p l ied by the perso n using ed; it is usua lly done by
typing in the text, or by reading it in to ed from a
fi le. We will s tar t by typing in so me te xt, and
return shortly to how to read fi les.

First a bit of termino logy . In ed jargo n, the
text being worked on is said to be "kept in a
buffer." Think of the buller as a work space , if
you like, or simply as the information that you
are go ing to be edit ing. In effect the buffer is
like the piece of paper. on which we will write
th ings, then change some of them, and fina lly
fi le the whole thing away for another day.

The user te lls ed wha t to do to his te xt by
typing instructio ns called "commands." Most
commands consis t of a 's ingle le tter. which must
be typed in lower case. Each command is .typed
on a separate line. (So metimes the command is
preceded by information about what line or lines
of te xt are to be affected - we will discuss these
shortly .) Ed makes no response to most com
mands - there is no prompting or typing of
messages like "ready" . (This sile nce is preferred
by experienced users, but so me times a hangup
for beginners.)

The first command is append, written as the
le tter

a

all by itself. It means "append (or add) te xt
lines to the buffer. as I type them in ." Append
ing is ra ther like writing fresh materia l on a piece
of paper.

So to enter lines of text into the buffer. just
type an a fo llowed by a RETU RN, followed by

the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a
l ine that contains o nly a period. The "." is used
to te l l ed that you have fi nished appending.
(Even experienced users forget that terminating
" ." so metimes. If ed see ms to be ignoring you,
type an extra line with just "." on it. Yo u may
then find you've added some garbage lines to
your text, which you' l l have to take out later.)

After the append command has been done,
the buffe r will contain the thre e lines

Now is the time
for all good men
to come to the aid of their party.

The "a" and .. _ .., are n' t there , because they are
no t text.

To add more text to w hat you already have,
just issue ano ther a co mmand, and continue typ
ing.

Error Messages - "?"

If a t any time you make an error in the com
mands yo u type to ed, it will tel l yo u by typ ing

?
This is about as cryptic as it can be, but with
practice , yo u can usually figure out how you
goofed.

Writing text out as a fi le - the Write command
"w"

It 's likely that you'll want to save your text
for late r use. To write out the contents of the
buffer onto a file, use the write command

w

followed by the fi lename you want to write on .
This will copy the buffer's contents onto the
specified file (destroying any previous informa
tio n on the fi le) . To save the text on a fi le
named junk, for example, type

w junk

Leave a space between w and the file name. Ed
will respo nd by printing the number of characters
it wrote out. In this case, ed would respond with

68

(Remember that blanks and the return character
at the end of each line are included in the c har
acter count.) Writing a file just makes a copy of

- 2 -

the text - the buffer's contents are not dis
turbed, so you can go o n adding lines to it. This
is an important point. Ed at all times works on a
copy of a fi le , not the fi le itse lf. No change in
the contents of a file takes place until you give a
w co m mand. (Writing out the text onto a fi le
from time to time as it is being created is a good
idea, s ince if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written o nto a
file is relatively safe.)

Leaving ed - the Quit command "q "

To terminate a session with ed, save the text
you're working on by writing it onto a fi le using
the w command, and then type the command

q

which stands for quit. The system will respond
with the pro mpt character ($ or %) . At this
point your buffer vanishes, with a ll its text,
wh ich is why you want to write it ouf before
quitting.t

Exercise 1 :

Enter ed and create some text using

a
. . . text . . .

Write it out using w. Then leave ed with the q
co mmand, and print the fi le , to see that every
thing worked. (To print a file , say

pr filename

or

cat filename

in response to the prompt character. Try both.)

Reading text from a fi le - the Edit command
"e"

A common way to get text in to the buffe r is
to read it from a fi le in the fi le system. This is
what you do to edit text that you saved with the
w co mmand in a previous sessio n. The edit co m
mand e fetches the entire contents of a file into
the buffer. S o if you had saved the three lines
"Now is the time", e tc., with a w command in
an earlier sessio n, the ed command

e junk

would fetch the entire contents of the file junk
into the buffer, and respond

t Actually, ed will pri n t ? if you try to quit without writ

ing. At that poin t, write if you want; if not, another q
will get you out regard less.

68

which is the number of characters in junk. If
any-thing was already in the b!lller, it is deleted first.

If you use the e command to read a file into
the buffer, then you need not use a fi le name
after a subsequent w command; ed remembers
the last fi le name used in an e co mmand, and w
will write on this fi le. Thus a good way to
operate is

ed
e file
[editing session]
w
q

This way, you can simply say w from time to
time , and be secure in the knowledge that if you
got the file name right at the beginning, you are
writing into the proper fi le each time.

You can find out at any time w hat file name
ed is re membering by typing the fi le co mmand f.
In this example, if you typed

f

ed would reply

junk

Reading text from a file the Read command
• •r"

Sometimes you want to read a file into the
buffer without destroying any thing that is a lready
there. This is done by the read command r. The
command

r junk

will read the file junk in to the buffer; i t adds i t
to the end of whatever is already in the buffer.
So if you do a read after an edit:

e junk
r junk

the buffer will contain two copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e co mmands, r prints the number
of characters read in, after the reading operation
is co mple te .

Generally speaking, r is much less used than
e.

- 3 -

Exercise 2 :

Experiment with the e command - try read
ing and printing various fi les. You may get an
error ? name, where name is the name of a file;
this means that the fi le doesn't ex is t, typ ical ly
because you spelled the file name wrong, or
perhaps tha t you are not a llowed to read or write
it . Try alternately reading and appending to see
that they work s imilarly . Verify that

ed filename

is exactly equivalent to

ed
e filename

Wlalat does

f filename

do ?

Printing the contents of the buffer - the Print
command "p"

To print or list the contents of the buffer (or
parts o f it) on the termina l, use the print co m
mand

p

The way this is done · is as follows. Specify the
lines where you want printing to begin and where
you want it to end, separated by a comma, and
fo llowed by the le tter p. Thus to print the first
two lines of the buffer, for example, (that is ,
lines l through 2) say

1 ,2p (starting Iine = l , ending line =2 p)

Ed wil l respond with

Now is the time
for all good men

Suppose you want to prin t all the lines in the
buffer. You could use 1 ,3p as above if you knew
there were exactly 3 lines in the buffer. But in
general, you don't know how many there are , so
what do you use for the ending line number? Ed
provides a shorthand symbol for "line number
of last l ine in buffer" - the dollar sign $. Use it
this way :

l ,$p

Th is will prin t all the lines in the buffer Oine l to
last line .) If you want to stop the printing before
it is finished, push the DEL or Dele te key; ed will
type

?
and wait for the next command.

To print the last line of the buffer, you could
use

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1 . INTRODUCTION

Although UNIXt provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists - typ
ists, secretaries, casual users - often use the
system less effectively than they might.

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor [1 1 ,
providing explanations and examples o f how to
edit with less effort. (You should also be fami
liar with the material in UNIX For Beginners [2] .)
Further information on al l commands discussed
here can be found in The UNIX Prof(rammer 's
Manual [3] .

Examples are based o n observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this one should give
you ideas about what to try, but until you actu
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any ane person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,

tUNIX is a Trademark of Bell Laboratories.

they will remain theoretical knowledge, not
something you have confidence in.

The List command 'I'

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

1 ,$p

to print all the lines you're editing, or

s/ abc/ def/ p

to change 'abc' to 'def' on the current line. Less
familiar is the list command I (the letter ' / '),
which gives slightly more information than p. In
particular, I makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, I
will print each tab as 7 and each backspace as
--(. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja
cent to tabs, or inserts a backspace followed by a
space.

The I command also 'folds' long lines for
printing - any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the I command will print in a
line a string of numbers preceded by a backslash ,
such as \07 or \ 1 6. These combinations are used
to make visible characters that normally don't
print, like form feed or vertical tab or bell . Each
such combination is a single character. When
you see such characters, be wary - they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command 's'
Most of the next few sections will be taken

up with a discussion of the substitute command
s. Since this is the command for changing the

Deleting lines: the "d" command

Suppose you want to get rid of the three
extra line s in the buffer. Th is is done by the
delete command

d

Except that d deletes . lines instead of printing
the m, its actio n is s imi lar to that of p. The lines
to be deleted are specified for d exactly as they
are for p:

s tarting line, ending line d

Thus the command

4 , $d

deletes lines 4 through the end. There are now
three l ines left, as you can check by using

l ,$p

A nd notice that $ now is line 3! Dot is set to the
next line after the last line deleted, unless the
last line deleted is the last line in the buffer. In
that case , do t is se t to $.

Exercise 4 :

Experiment with a, e , r , w, p and d until you
are sure that you know what they do, and. until
you understand how dot, $, and line numbers
are used.

If you are adventurous, try using line
numbers with a, r and w as well. Yo u will find
that a will append l ines ajier the l ine number that
you specify (rather than after do t) ; that r reads a
fi le in ajier the line number you specify (not
necessarily at the end of the buffer) ; and that w
will write out exactly the lines you specify, not
necessarily the who le buffer. These varia tio ns
are sometimes handy. For instance you can
insert a fi le at the beg inning of a buffer by saying

Or filename

and you can enter lines at the beginning of the
buffe r by say ing

Oa
text . . .

N otice that .w is very different from

w

Modifying text: the Substitute command "s"

We are now ready to try one of the most
important of all commands - the substitute
command

s

- 5 -

This is the command that is used to change indi
v idual words or letters within a line or group of
lines. I t is w hat you use, for example, for
correcting spe lling mistakes and typing errors.

Suppose that by a typing e rror, line l says

Now is th time

the e has been left off the. You can use s to
fi x th is up as fo llows:

l s/th/the/

This says: " in l ine l , substitute for the characters
th the c haracters the." To verify that it works (ed
will not prin t the result automatically) say

p

and ge t

Now is the time

whic h is what you wanted. Notice that dot must
have been set to the line where the substitutio n
took place, since the p command prin ted that
line . Do t is a lways set this way with the s co m
mand.

The general way to use the substitute com
mand is

starting-line, ending-line s/ change this/ to this/

Whatever string o f characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in all the lines between starting
line and ending-line. Only the first occurrence on
each line is changed, however. If you want to
change every occurrence, see Exercise 5 . The
ru les for l ine numbers are the same as those for
p, except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substi
tution took place, dot is not changed. This
causes an error ? as a warning.)

Thus you can say

1 ,Ss/speling/spelling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspellers!)

I f no line numbers are given, the s command
assumes we mean "make the substitu tion on line
dot" , so it changes things only on the current
line . This leads to the very co mmon sequence

s/something/some.thing e lse/p

which makes some correction on the current
line, and then prints i t , to make sure i t worked
out right. If it didn 't, you can try again. (No tice
that there is a p on the same line as the s com
mand. With few exceptions, p can fo llow any
command; no other multi-command lines are
lega l .)

Suppose the buffer co ntains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed l ine numbers

/Now/ + 1
/good/
/party/ - 1

are al l context search e xpressions, and they a ll
refer to the same line (line 2) . To make a
change in line 2, you could say

/Now/ + ls/good/bad/

or

I good/ s/good/bad/

or

/party/ - ls/good/bad/

The cho ice is dictated on ly by co nven ie nce . You
could print all three lines by, for instance

/Now/ ,/party/p

or

/Now/,/Now/ + 2p

or by any number of similar combinations. The
first one of these might be be tte r if you do n't
know how many lines are involved. (Of course,
if there were only three l ines in the buffer, you'd
use

1 ,$p

but not if there were several hundred.)
The basic rule is: a co ntext search e xpression

is the same as a line number, so it can be used
wherever a line number is needed.

Exercise 6 :

Experiment with context searching. Try a
body of te xt with severa l occurrences of the
same string of characters, and scan through it
using the same co ntext search.

Try using context searches as line numbers
for the substitute , print and delete commands.
(They can also be used with r, w, and a.)

Try co ntext search ing using ? text ? instead
of /text/. This scans lines · in the buffer in
reverse order ra ther than normal . This is some
times useful if you go too far while looking for
so me string o f characters - it's an easy way to
back up.

(If you get funny results with any of the
characters

- 7 -

$ · • \ &

read the section on "Specia l Characters".)
Ed provides a shorthand for repea ting a con

text search for the same string. For example ,
the ed l ine number

/string/

will find the next occurrence of string. I t often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typ ing mere ly

II
This shorthand stands for "the most recently
used contex t search expression ." It can a lso be
used as the first string of the substitute com
mand, as in

/stringl /s/ /string2/

which wil l find the next occurrence of string!
and replace it by stringl. This can save a lot of
typing. S imilarly

? ?
means "scan backwards for the same expres
sio n."

Change and Insert - "c" and "i"

This sectio n discusses the change co mmand

c

whic h is used to change or replace a group of
one or more lines, and the insert co mmand

which is used for inserting a group of one or
more lines.

"Change" , written as

c

is used to replace a number of lines with
different lines , which are typed in a t the termi
na l. For example , to c hange lines . + 1 throug h $
to some thing e lse , type

. + 1 ,$c

. . . type the lines of text you want here . . .

The lines you type between the c command and
the . will take the p lace of the orig ina l lines
between start line and end line. This is most
useful in replacing a line or several lines which
have errors in them.

If only one line is specified in the c com
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of • to end the input - this
works just l ike the . in the append command

Special Characters

You may have noticed that things just don't
work right when you used so me characters l ike . , '
*, $, and others in co ntext searches and the sub
stitute command. The reason is rather complex,
a lthough the cure is simple. Basica lly, ed treats
these c haracters as special, with special mean
ings. For instance, in a context search or the first
string of the substitute command only, . means
"any character," no t a perio d, so

/x.y/

means "a line with an x, any character, and a y, "
not just "a line with an x, a period, and a y. " A
complete list of the special characters that car.
cause trouble is the fo llowing:

$ * \

Warning: The backslash character \ is special to
ed. For safe ty 's sake, avoid it where possible. I f
you have to use one of the special characters in a
substitute co mma nd, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

s/\\\.\•/backslash dot star/

will change \ .• into ''backslash dot star" .
Here is a hurried synopsis of the o ther special

characters. First, the circumflex A signifies the
beginning of a line . Thus

rstring/

finds string only if it is at the beginning of a
line: it will find

string

but no t

the s tring ...

The dollar-sign $ is just · the opposite of the
circumt1ex; it means the end of a line:

/string$/

will only find an occurrence of string that is at
the end of some line . This implies, of course ,
that

rstring$/

will find only a line that contains just string, and

r.s1

finds a line containing e xactly one character.
The character ., as we mentioned above ,

matches anything;

/ x.y/

matches any of

- 9 -

x +y
x - y
X y
x.y

This is useful in conju nction with *, whic h is a
repetition character; a* is a shorthand for "any
number of a's," so . * matches any number of
any things. This is used like this:

s/. •/stuff/

which changes an e ntire line, or

s/.•,11

which deletes all characters in the line up to and
including the last co mma. (S ince · * finds the
longest possible match, th is goes up to the last
co mma .)

I i s used with I to form "character classes";
for e xamp le ,

I [0 1 23456789]/

matches any s ingle digit - any one of the char
acters inside the braces will cause a match. This
can be abbrevia ted to [0 - 9 i.

Fina lly , the & is another shorthand character
- it is used only on the right-hand part of a sub
s titute co mmand where it means "whatever was
matched on the left-hand side". It is used to
save typ ing. S uppose the current line contained

Now is the time

and you wanted to put parentheses around it.
You could just retype the line , but this is tedi
ous. Or you could say

sri (!
s/$/)/

using your knowledge of A and $. But the easiest
way uses the & :

s/.•1 (&) 1

This says "match the whole line, and replace it
by itself surrounded by parentheses . " The & can
be used several times in a line ; consider using

s/ . •1&? &! !/

to produce

Now is the time ? Now is the time ! !

You do n't have t o match the who le line , of
course: i f the buffer contains

the end of the world

you could type

' /world/s//& is at hand/

to produce

Special Characters

You may have no�iced that th ings just don't
work righ t whe n you used so me c haracters like . ,
•, $, and o thers in con tex t searches and the sub
stitute command. The reason is rather complex,
although the cure is s imp le . Basically, ed treats
these characters as special, with special mean
ings. For instance , in a context search or the .first
string of the substitute command only, . means
"any character," no t a period, so

/x.y/

means "a lin e with an x, any character, and a y, "
not just "a line with an x, a period, and a y. " A
complete list of the special characters that car.
cause tro uble is the fo llowing:

$ * \

Warning: T he backslash c haracter \ is special to
ed. For safe ty's sake, avoid it where possible. If
you have to use one of the special characters in a
subst itute co mmand, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

s/\\\.\•/backslash dot star/

will change \.• in to ,·,backslash dot star" .
Here is a hurried synopsis of the o ther special

characters. First, the circumflex • signifies the
beginning of a line . Thus

rstring/

finds string only if it is at the beginning of a
line: it wil l fi nd

string

but no t

the string . . .

The dollar-sign $ is just · the opposite of the
circumt1ex; it means the e nd of a l ine:

/string$/

will only find an occurrence of string that is at
the end of so me line. This impl ies, of course ,
that

rstring$/

will find only a line that contains just string, and

r.st
finds a line containing e xactly one character.

The characte r ., as we mentio ned above ,
matches anything;

/x.y/

matches any of

- 9 -

x +y
x-y
X y
x.y

This is useful in conjunction with •, which is a
repe tition character; a* is a shorthand for "any
number of a's," so .* matches any number of
anythings. This is used like this:

s/ . •/stuff/

which changes an e ntire l ine, or

sf . •,! I
which dele tes all characters in the line up to and
including the last comma. (S ince .• finds the
longest possible match, th is goes up to the last

· comma.)
I i s used with I to form "character classes";

for e xample ,

I [0 1 23456789]/

matches any s ingle digit - any one of the char
acters inside the braces will cause a match. This
can be abbreviated to I0 -9i.

Finally , the & is another shorthand character
- it is used only on the right-hand part of a sub
s titute co mmand where it means "whatever was
matched o n the left-hand side". It is used to
save typ ing. S uppose the curre nt line co nta ined

Now is the time

and you wanted to put parentheses around it.
You could just retype the line. but this is tedi
ous. Or you could say

sri (!
s/$/)/

using your knowledge of - and $. But the easiest
way uses the & :

s/. •/ (&)/

This says "match the whole l ine, and replace i t
by itself surrounded by pare ntheses ." The & can
be used several times in a l ine; consider using

s/.•1 & ? & ! !/

to produce

Now is the time? Now is the t ime ! !

You do n' t have to match the who le line , of
course: if the buffer contains

the end of the world

you could type

/world/s//& is at hand/

to produce

Suppose the buffer co ntains the three famil iar
lines

Now is the time
for all good men
to come to the aid of their party.

The n the ed l ine numbers

/Now/ + I
/good/
/party/ - I

are al l context search e xpressions, and they all
refer to the same line (line 2) . To make a
change in line 2, you could say

/Now/ + Is/good/bad/

or

/good/s/good/bad/

or

/party/ - Is/good/bad/

The cho ice is dictated on ly by convenience. You
could print all three lines by, for instance

/Now/ ,/party/p

or

/Now/,/Now/ + 2p

or by any number of similar combinations. The
first one of these might be better if you do n't
know how many l ines are involved. (Of course,
if there were o nly thre e lines in the buffer, you'd
use

I ,$p

but not if there were several hundred.)
The basic rule is: a co ntext search e xpression

is the same as a line number, so it can be used
wherever a line numbe r is needed.

Exercise 6 :

Experiment with context searching. Try a
body of te xt with several occurre nces of the
same string of characters, and scan through it
using the same co ntext search.

Try using context searches as line numbers
for the subs titute, print and delete commands.
(They can also be used with r, w, and a.)

Try co nte xt search ing using ? text ? instead
of /text/. This scans lines in the buffer in
reverse order rather than norma l. This is some
times useful if you go too far while looking for
so me string o f characters - it's an easy way to
back up.

(If you get funny results with any of the
characters

- 7 -

$ * \ &

read the section on "Special Characters".)
Ed provides a shorthand for repeating a con

text search for the same string. For example ,
the e d l ine number

/string/

wil l find the next occurrence of string. It o ften
happens that this is not the desired line , so the
search must be repeated. This can be done by
typing mere ly

II
This shorthand stands for "the most recently
used contex t search expressio n." It can a lso be
used as the first s tring of the substitute com
mand, as in

/stringi /s/ /string2/

which wil l find the next occurrence of stringl
and replace. it by string2. This can save a lo t of
typing. S imilarly

? ?

means "scan backwards for the same expres
s io n."

Change and I nsert - "c" and "i"

This sect io n discusses the change co mmand

c

which is used to change or replace a group of
one or more lines , and the insert co mmand

which is used for inserting a group of one or
more lines.

"Change", written as

c

is used to replace a number of lines with
differe nt lines, which are typed in at the termi
nal. For e xample , to change lines . + 1 through $
to something e lse, type

. + I ,$c

. . . type the lines of text you wam here . . .

The lines you type between the c command and
the . wil l take the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which
have errors in them.

If only one line is specified in the c com
mand, then just that line is rep laced. (Yo u can
type in as many replacement lines as you like.)
Notice the use of • to end the input - this
works just like the . in the append command

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRA CT

This paper is meant to help secretaries, typists and progrommers to make
effective use of the UNIXt facilities for preparing and editing text. It provides
explanations and examples of
• special characters, line addressing and global 'ommands in the editor ed�
• commands for "cut and paste" operations on files and parts of files,

including the mv, cp, cat and rm commands. and the r, w, m and t com
mands of the editor;

• editing scripts and editor-based programs like grep and sed.
Although the treatment is aimed at non-prosrammers, new users with any

background should find helpful hints on how to get their jobs done more easily.

August 4, 1978

tUNIX is a Trademark of Bell Laboratories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hil l , New Jersey 07974

1. INTRODUCTION

Although UNIXt provides remarkably
effective tools for text editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists - typ
ists, secretaries, casual users - often use the
system less effectively than they might.

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor [1] ,
providing explanations and examples of how to
edit with less effort. (You should also be fami
liar with the material in UNIX For Beginners [2] .)
Further information on all commands discussed
here can be found in The UNIX Programmer 's
Manual [3] .

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this one should give
you ideas about what to try, but until you actu
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,

t UNIX is a Trademark of Bell Labor-atories.

they will remain theoretical knowledge, not
something you have confidence in.

The List command 'I'

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

l ,$p

to print all the lines you're editing, or

s/abc/def/p

to change 'abc' to 'def' on the current line. Less
familiar is the list command I (the letter ' I ') ,
which gives slightly more information than p . In
particular, I makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, l
will print each tab as .;.. and each backspace as
-«: . This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja
cent to tabs, or inserts a backspace followed by a
space.

The I command also 'folds' long lines for
printing - any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the I command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \ 1 6. These combinations are used
to make visible characters that normally don't
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary - they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command 's'

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com
mand. With

s/ this/ that/

and

s/this/ that/ g

the first one replaces the .first 'this' on the line
with 'that' . If there is more than one 'this' on
the line, the second form with the trailing g
changes all of them.

Either form of the s command can be fol
lowed by p or I to 'print' or 'list' (as described in
the previous section) the contents of the line:

s/ this/ that/ p
s/this/that/1
s/ this/that/ gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre
ceded by one or two '1ine numbers' to specify
that the substitution is to take place on a group
of lines. Thus

I , $s/ mispell/ misspell/

changes the firsr occurrence of 'mispell' to
'misspell' on every line of the file. But

I ,$s/ mispell/ misspell/ g

changes eve1:v occurrence in every line (and this
is more likely to be what you wanted in this par
ticular case) .

You should also notice that if you add a p
or I to the end of any of these substitute com
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command 'u '

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The 'undo' command u lets
you 'undo' the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

- 2 -

The Metacharacter ' . '

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu
lar line. In the next several sections, we will talk
about these special characters, which are often
called 'metacharacters' .

The first one is the period ' .' . On the left
side of a substitute command, or in a search with
'/ .. ./'. ' .' stands for any single character. Thus
the search

/x .y/

finds any line where 'x' and 'y' occur separated
by a single character, as in

x+y
x -y
X o y
x .y

and so on . (We will use o to stand for a space
whenever we need to make it visible.)

Since ' .' matches a single character, that
gives you a way to deal with 'runny characters
printed by I. Suppose you have a line that, when
printed with the I command, appears as

. . . . th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way) .

The most obvious solution is t o try

sl\071/

but this will fail . (Try it.) The brute force solu
tion , which most people would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn 't too big, but for a very long line,
re-typing is a bore. This is where the metachar
acter ' .' comes in handy. Since '\07' really
represents a single character, if we say

s/th .is/this/

the job is done. The ' . ' matches the mysterious
character between the 'h' and the ' i ' , whatever if

is.

Bear in mind that since ' . ' matches any
single character, the command

s/ ./,1

converts the first character on a line into a ' , ' ,
which very often is not what you intended.

As is true of many characters in ed, the ' . '
has several meanings, depending on its context.
This line shows all three:

.s/ .1 ./

The first ' .' is a line number, the number of the
line we are editing, which is called 'line dot' .
(We will discuss l ine dot more in Section 3.) The
second ' .' is a metacharacter that matches any
single character on that line. The third ' .' is the
only one that really is an honest literal period.
On the right side of a substitution, ' .' is not spe
cial. If you apply this command to the line

Now is the time .

the result will be

.ow is the time .

which is probably not what you intended.

The Backs lash '\ '

, Since a period means 'any character', the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time :

into

Now is .the time?

The backslash '\' does the job. A backslash
turns off any special meaning that the next char
acter might have; in particular, '\ . ' converts the
' .' from a 'match anything' into a -period, so you
can use it to replace the period in

Now is the time .

like this :

sf\ ./ ? I

The pair of characters '\ .' is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac
ter. Suppose you are looking for a line that con
tains

.PP

The search

/ .PP/

isn't adequate, for it will find a line like

THE APPLICATION OF . . .

because the ' .' matches the letter 'A' . B!-lt if you
say

1\ .PP/

you will find only lines that contain ' .PP'.
The backslash can also be used to turn off

special meanings for characters other than ' .' .
For example, consider finding a line that con-

- 3 -

tains a backslash . The search

I\!

won't work, because the '\' isn't a literal '\', but
instead means that the second '/' no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal
backslash. Thus

1\\1

does work. Similarly, you can search for a for
ward slash 'I' with

!\II

The backslash turns off the meaning of the
immediately following 'I' so that it doesn't ter
minate the / .. ./ construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\ .\y

into the line

\x\y

Here are several solutions; verify that each
works as advertised .

sf\\ \ .I I
s/x • • /x/
s/ .. y/y/

A couple of miscellaneous notes about
backslashes and special characters. First, you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains a
lot of slashes already, like

//exec 1/sys.fort.go II etc . . .

you could use a colon as the delimiter - to
delete all the slashes, type

s:/ ::g

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@; this is true whether you're talking to
ed or any other program.

When you are adding text with a or i or c,
backslash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign '$'

The next metacharacter, the '$', stands for
'the end of the line' . As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word 'time' to the end.
Use the $ like this:

s/$1 c time/

to get

Now is the time

Notice that a space is needed before 'time' in the
substitute command, or you will get

Now is thetime

As another example, replace the second
comma in the following line with a period
without altering the first:

Now is the time, for all good men,

The command needed is

s/,$1 ./

The $ sign here provides context to make specific
which comma we mean. Without it, of course,
the s command would operate on the first
comma to produce

into

Now is the time . for all good men,

As another example, to convert

Now is the time .

Now is the time?

as we did earlier, we can use

s/ .$/ ?/

Like ' . ' , the '$' has multiple meanings
depending on context. In the line

$s/$/$/

the first '$' refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

.

The Circumflex ·· '

The circumflex (or hat or caret) , . , stands
for the beginning of the line. For example, sup
pose you are looking for a line that begins with
'the'. If you simply say

/the/

you will in all likelihood find several lines that
contain 'the' in the middle before arriving at the
one you want. But with

/ "the/

you narrow the context, and thus arrive at the
desired one more easily.

- 4 -

The other use of , ., is of course to enable
you to insert something at the beginning of a
line:

sr/ o/

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains on(v the characters

.PP

you can use the command

r\ .PP$1

The Star '* '
Suppose you have a line that looks like

this:

text x y text

where text stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

This is where the metacharacter ' *' comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/X o *Y/X o y/

The construction ' c *' means 'as many spaces as
possible' . Thus ' Xo *Y' means 'an x, as many
spaces as possible, then a y ' .

The star can be used with any character,
not just space. If the original example was
instead

rext x - - - - - - - -y rext

then all ' - ' signs can be replaced by a single
space with the command

s/x - *y/xcy/

Finally, suppose that the line was

text x • • • • • • • • • • • • • • • • • • y rexr

Can you see what trap lies in wait for the
unwary? If you blindly type

s/x .*y/x oy/

what will happen ? The answer, naturally, is that
it depends. If there are no other x's or y's on
the line, then everything works, but it's blind
luck, not good management. Remember that ' .'
matches any single character? Then ' .•' matches
as many single characters as possible, and unless

you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

text x text x y text y text

then saying

s/x .•y/x o y/

will take everything from the .first 'x' to the last
'y', which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of ' . ' with '\ . ' :

s/x\ .•y/xoy/

Now everything works, for '\ .*' means 'as many
periods as possible'.

There are times when the pattern ' ·*' is
exactly what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use ' ·*' to eat up everything after the 'for':

s/ of or .*/ .!

There are a couple of additional pitfalls
associated with '•' that you should be aware of.
Most notable is the fact that 'as many as possi
ble' means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris
ing. For example, if our line contained

text xy text x

and we said

s/X o *Y/X o y/

y text

the .first 'xy' matches this pattern, for it consists
of an 'x' , zero spaces, and a 'y'. The result is
that the substitute acts on the first 'xy' , and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern like

lxo o *YI

which says 'an x, a space, then as many more
spaces as possible, then a y' , in other words, one
or more spaces.

The other startling behavior of ' * ' is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x*/y/g

when applied to the line

- 5 -

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the beginning of the line (so that gets converted
into a 'y') , nor between the 'a' and the 'b' (so
that gets converted into a 'y') , nor .. : and so on.
Make sure you really want zero matches; if not,
in this case write

'xx*' is one or more x's.

The Brackets ' (I '
Suppose that you want to delete any

numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

1 ,$sr1 •11
1 ,$sr2•//
1 , $sr3*11

and so on, but this is clearly going to take for
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone, you must get all the
digits on one pass. This is the purpose of the
brackets [and] .

The construction

[01 23456789]

matches any single digit - the whole thing is
called a 'character class' . With a character class,
the job is easy. The pattern ' [01 23456789] *'
matches zero or more digits (an entire number) ,
so

I ,$sr [01 23456789] *I 1

deletes all digits from the beginning of all lines.
Any characters can appear within a charac

ter class, and just to confuse the issue there are
essentially no special characters inside the brack
ets; even the backslash doesn't have a special
meaning. To search for special characters, for
example, you can say

I [.\$' []/

Within [. . .], the ' [' is not special . To get a '] '
into a character class, make i t the first character.

It's a nuisance to have to spell out the
digits, so you can abbreviate them as [0 -9] ;
similarly, [a -z] stands for the lower case letters,
and [A -Z] for upper case.

As a final frill on character classes, you can

specify a class that means 'none of the following
characters' . This is done by beginning the class
with a ' ' ' :

['0-9]

stands for 'any character except a digit ' . Thus
you might find the first line that doesn't begin
with a tab or space by a search like

/T (space) (tab)] /

Within a character class, the circumflex has
a special meaning only if it occurs at the begin
ning. Just to convince yourself, verify that

IT"l/

finds a line that doesn't begin with a circumflex.

The Ampersand '&'
The ampersand '&' is used primarily to

save typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the 'the' .
The '&' i s used to eliminate the repetition. On
the right side of a substitute, the ampersand
means 'whatever was just matched' , so you can
say

s/ the/ & best/

and the '&' will stand for 'the'. Of course this
isn't much of a saving if the thing matched is
just 'the', but if it is something truly long or
awful, or if it is something like ' . * ' which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

s/ .*/ (&)/

The ampersand can occur more than once
on the right side:

s/the/ & best and & worst/

makes

Now is the best and the worst time

and

s/ .*/&? &! !/

converts the original line into

- 6 -

Now is the time? Now is the time ! !

To · get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ ampersand/\&/

converts the word into the symbol. Notice that
'&' is not special on the left side of a substitute,
only on the right side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by 'substitut
ing in a newline' . As the simplest example, sup
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed) . If it looks like

text xy text

you can break it between the 'x' and the 'y' like
this :

s/xy/x\
yl

This is actually a single command, although it is
typed on two lines. Bearing in mind that '\'
turns off special meanings, it seems relatively
intuitive that a '\' at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
'very' in a long line by splitting 'very' onto a
separate line, and preceding it by the roff or nroff
formatting command ' .ul ' .

text a very big text

The command

s/ o veryo /\
.ul\
very\
I

converts the line into four shorter lines, preced
ing the word 'very' by the line ' .ul ' , and elim
inating the spaces around the 'very', all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given
the lines

Now is
o the time

and supposing that dot is set to the first of them,

then the command

joins them together. No blanks are added, which
is why we carefully showed a blank at the begin
ning of the second line.

All by itself, a j command joins line dot to
line dot + 1 , but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

1 ,$jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3 .)

Rearranging a Line with \ (. . . \)
(This section should be skipped on first

reading.) Recall that '&' is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you

- can capture separate pieces of what was matched;
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith , A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though .)

The alternative is to 'tag' the pieces of the
pattern (in this case, the last name, and the ini
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed between \ (and \) , whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol '\ 1 '
refers t o whatever matched the first \ L\) pair,
'\2' to the second \ (. . . \) , and so on.

The command

1 ,$sf"\ ([" ,1 *\) , o *\ (.*\)l\2o \ 1 1

although hard t o read, does the job. The first
\ (. . .\) matches the last name, which is any string
up to the comma; this is referred to. on the right
side with '\ 1 ' . The second \ C..\) is whatever
follows the comma and any spaces , and is
referred to as '\2'.

Of course, with any editing sequence this
complicated, it's foolhardy to simply run it and

- 7 -

hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is , how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

1 ,$s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new
line (or return) to print the next line, and with

/thing/

to find a line that contains 'thing' . Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurretl.ce of
'thing'. This is especially handy when you real
ize that the thing you want to operate on is back
up the page from where you are currently edit
ing.

The slash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like ' . ' , '$', '/ . . ./' and ' ? ... ? ' with ' + '
and ' - '. Thus

$ - 1

is a command to print the next to last line of the
current file (that is, one line before line '$') .
For example, to recall how far you got in a previ
ous editing session,

$ - 5,$p

prints the last six lines. (Be sure you understand
why it's six, not five.) If there aren't six, of
course, you'l l get an error message.

As another example,

.-3 , . +3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way, the ' + ' can be
omitted :

.- 3 , .3p

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use ' - ' and ' + ' as
line numbers by themselves.

by itself is a command to mpve back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does ' -3' . Thus

-3 ,+3p

is also identical to the examples above.
Since ' - ' is shorter than ' . - 1 ' , construc

tions like

- , .sf bad/ good/

are useful. This changes 'bad' to 'good' on the
previous line and on the current line.

' + ' and ' - ' can be used in combination
with searches using 'I... .I ' and '? . . . ? ', and with
'$' . The search

/thing/ - -

finds the line containing 'thing', and positions
you two lines before it.

Repeated Searches

Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

II

is a shorthand for 'the previous thing that was
searched for', whatever it was. This can be ·repeated as many times as necessary. You can
also go backwards:

? ?

searches for the same thing, but i n the reverse
direction.

Not only can you repeat the search, but
you can use '/ /' as the left side of a substitute
command, to mean 'the most recent pattern'.

/horrible thing/
. . . . ed pril1fs line with 'horrible thing ' . . .

s//good/p

To go backwards and change a line, say

? ?s//good/

Of course, you can still use the '&' on the right
hand side of a substitute to stand for whatever

- .g -

got matched:

//s//&o&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints rile line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e . , the value of dot) when a com
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con
tains 'thing'. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or I to list it, or d to delete
it, or a to append text after it, or c to change it,
or i to insert text before it.

What happens if there was no 'thing' ?
Then you are left right where you were - dot is
unchanged. This is also true if you were sitting
on the only 'thing' when you issued the com
mand. The same rules hold for searches that use
' ? . . . ?'; the only difference is the direction in
which you search .

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line '$' gets deleted, however, dot points
at the new line '$' .

The line-changing commands a, c and i by
default all affect the current line - if you give
no line number with them, a appends text after
the current line, c changes the current line, and i
inserts text before the current line.

a, c, and i behave identically in one
respect - when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit
ing on the fly. For example, you can say

a
. . . text . . .
. . . botch . . .

s/botch/correct/
a
. . . more text . . .

(minor error)

(fix botched line)

without specifying any line number for the sub-

stitute command or for the second append com
mand. Or you can say

a
. . . text . . .
. . . horrible botch . . . (major error)

c (replace entire line)
... fixed up line . . .

You should experiment to determine what
happens if you add no lines with a, c or i.

The r command wilr read a file into the
text being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say Oa or 1 i to start adding text at the begin
ning.)

The w command writes out the entire file.
If you precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does not change dot:
the current line remains the same, regardless of
what lines are written. This is true even if you
say something like

·

r\ .ABI ,!"\ .AE/w abstract

which involves a context sear�h.
Since the w command is so easy to use,

you should save what you are editing regularly as
you go along just in case the system crashes, or
in case you do something foolish , like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple -
you are left sitting on the last line that got
changed. If there were no changes, then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

x l
x2
x3

Then the command

- , +s/x/y/p

prints the third line, which is tfie last one
changed. But if the three lines had been

x l
y2
y3

and the same command had been issued while

- 9 -

dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon ' ; '

Searches with '/ . . . / ' and ' ? . . . ? ' start a t the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab

be

Starting at line I , one would expect tha't the
command

/a/Jb/p

prints all the lines from the 'ab' to the 'be'
inclusive. Actually this is not what happens.
Both searches (for 'a' and for 'b') start from the
same point, and thus they both find the line that
contains 'ab'. The result is to print a single line.
Worse, if there had been a line with a 'b' in it
before the 'ab' line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dot as each address is
processed; each search starts from the same
place. In ed, the semicolon ' ; ' can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon 'moves' dot. Thus in our
example above, the command

/a/;/b/p

prints the range of lines from 'ab' to 'be',
because after the 'a' is found, dot is set to that
line, and then 'b' is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of 'thing'. You could say

/thing/
II

but this prints the first occurrence as well as the

second,' and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

/thing/ ;/ I

This says to find the first occurrence of 'thing',
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

?something?; ? ?

Printing the third o r fourth o r . . . in either direc
tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1 ;/thing/

because this fails if 'thing' occurs on line 1 . But
it is possible to say

0;/thing/

(one of the few places where 0 is a legal line
number) , for this starts the search at line 1 .

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable - if you are read-

. ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them) . Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are not sitting on that line or even
near it. Dot is left where it was when the p com
mand was started.

4. GLOBAL COMMANDS

The global commands g and v .are used to
perform one or more editing commands on all
lines that either contain (g) or don't contain (v)
a specified pattern.

As the simplest example, the command

g/UNIX/p

prints all lines that contain the word 'UNIX'.
The pattern that goes between the slashes can be

- 10 -

anything that could be used in a line search or in
a substitute command; exactly the same rules
and limitations apply.

As another example, then,

gr\ ./p

prints all the formatting commands in a file
(lines that begin with ' . ') .

The v command i s identical to g , except
that it operates on those line that do not contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter 'v'.)
So

vr\ ./p

prints all the lines that don't begin with ' .' - the
actual text lines.

The command that follows g or v can be
anything:

gr\ .ld

deletes all lines that begin with ' .' , and

gr$/d

deletes all empty lines.
Probably the most useful command that

can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word 'Unix' to 'UNIX'
everywhere, and verify that it really worked, with

g/Unix/s/ /UNIX/gp

Notice that we used '/ / ' in the substitute com
mand to mean 'the previous pattern ' , in this
case, 'Unix '. The p command is done on every
line that matches the pattern , not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely.

gr\ .PP/ +

prints the line that follows each ' .PP' command
(the signal for a new paragraph in some format
ting packages) . Remember that ' + ' means 'one
line past dot ' . And

g/topic/ ?"\.SH? 1

searches for each line that contains 'topic' , scans
backwards until it finds a line that begins ' .SH'
(a section heading) and prints the line that fol·
lows that, thus showing the section headings

under which 'topic' is mentioned. Finally,

g/ '\ .EQ/ + ,1 "\ .EN/ -p

prints a l l the lines that l ie between lines begin
ning with ' .EQ' and ' .EN' formatting commands.

The g and v commands can also be pre
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change 'x' to 'y'
and 'a' to 'b' on all lines that contain 'thing'.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The '\' signals the g command that
the set of commands continues. on the next line;
it terminates on the first line that does not end
with '\' . (As a minor blemish, you can't use a
substitute command to insert a newline within a
g command.)

You should watch out for this pr9blem:
the command

g/x/s//y/\
s/a/b/

does nor work as you expect. The remembered
pattern is the last pattern that was actually exe
cuted, so sometimes it will be 'x' (as expected) ,
and sometimes i t will be 'a' (not expected) . You
must spell it out, like this :

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i
commands under a global command; as with
other multi-line constructions, all that is needed
is to add a '\' at the end of each line except the
last. Thus to add a ' .nf' and ' .sp' command
before each ' .EQ' line, type

gr\.EQ!i\
.nf\
.sp

There is no need for a final line containing a ' .'
to terminate the i command, unless there are
further commands being done under rhe global.
On the other hand, it does no harm to put it in
either.

- 1 1 -

5. CUT AND PASTE WITH UNIX COM
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be called 'cut and paste' operations -
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX
commands for moving entire files around, then
discuss ed commands for operating on pieces of
files.

Changing the N arne of a File

You have a file named 'memo' and you
want it to be called 'paper' instead. How is it
done?

The UNIX program that renames fires is
called mv (for 'move') ; it 'moves' the file from
one name to another, like this :

mv memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself -

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file - an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any case, the way to do it is with the cp
command. (cp stands for 'copy'; the system is
big on short command names, which are appreci
ated by heavy users, but sometimes a strain for
novices .) Suppose you have a file called 'good'
and you want to save a copy before you make
some dramatic editing changes. Choose a name
- 'savegood' might be acceptable - then type

cp good savegood

This copies 'good' onto 'savegood' , and you now

have two identical copies of the file 'good'. (If
'savegood' previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of 'good',
you can say

mv savegood good

(if you're not interested in 'savegood' any
more) , or

cp savegood good

if you still want to retain a safe copy.
In summary, mv just renames a file; cp

makes a duplicate copy. Both of them clobber
the 'target' file if it already exists, so you had
better be sure that's what you want to do before
you do it.

Removing a File

If you decide you are r�ally done with a
file forever, you can remove it with the rm com
mand:

rm savegood

throws away (irrevocably) the file called
'savegood' .

Putting Two or More Files Together

The next step is the familiar one of collect
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not all programs have
two-letter names.) cat is short for 'concatenate' ,
which is exactly what we want to do.

Suppose the job is to combine the files
'file 1 ' and 'file2' into a single file called 'bigfile'.
If you say

cat file

the contents of 'file' will get printed on your ter
minal. If you say

cat file 1 file2

the contents of 'file l ' and then the contents of
'file2' will both be printed on your terminal, in
that order. So cat combines the files, all right,
but it's not much help to print them on the ter
minal - w� want them in 'bigfile'.

Fortunately, there is a way. You can tell
the system that instead of printing on your ter
minal, you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

- 1 2 -

where you want the output to go. Then you can
say

cat file 1 file2 > bigfile

and the job is done. (As with cp and mv, you're
putting something into 'bigfile', and anything
that was already there is destroyed.)

This ability t o 'capture' the output o f a
program is one of the most useful aspects of the
system. Fortunately it's not limited to the cat
program - you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally, you can combine several files,
not just two:

cat file 1 file2 file3 . . . > bigfile

collects a whole bunch.

and

Question: is there any difference between

cp good savegood

cat good >savegood

Answer: for most purposes, no. You might rea
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well , which you can investigate for yourself by
reading the manual . For now we'll stick to sim
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, mv
and/ or cat to add the file 'good 1 ' to the end of
the file 'good' ?

You could try

cat good good l >temp
mv temp good

which is probably most direct. You should also
understand why

cat good good 1 >good

doesn't work. (Don't practice with a good
'good' !)

The easy way is to use a variant of > ,
called > > . In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

cat good 1 > >good

and 'good 1 ' is added to the end of 'good' . (And

if 'good' didn't exist, this makes a copy of
'good 1 ' called 'good' .)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files - individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can't go very far without knowing
r and w. Equally useful, but less well known, is
the 'edit' command e. Within ed, the command

e newfile

says 'I want to edit a new file called newfile.
without leaving the editor. ' The e command dis
cards whatever you're currently working on and
starts over on newfile. It's exactly the same as if
you had quit with the q command: then re
entered ed with a new file name, except that if
you have a pattern remembered, then a com
mand like I I will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any sub
sequent e, r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed file 1
. . . (editing) . . .

w (writes back in file 1)
e file2 (edit new file, without leaving editor)
. . . (editing on file2) . . .

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you can see why many UNIX systems use e as a
synonym for ed.)

You can find out the remembered file
name at any time with the f command; just type
f without a file name. You can also change the
name of the remembered file name with f; a use
ful sequence is

ed precious
f junk
. . . (editing) . . .

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber the original.

- 13 -

Inserting One File into Another

Suppose you have a file called 'memo',
and you want the file called 'table' to be inserted
just after the reference to Table 1 . That is, in
'memo' somewhere is a line that says

Table 1 shows that . . .
and the data contained in 'table' has to go there,
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit 'memo' , find 'Table
1 ' , and add the file 'table' right there:

ed memo
/Table 1 /
Table I shows that . . . [response from ed]
.r table

The critical line is the last one. As we said ear
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as $r.

Writing out Part of a File

The other side of the coin is writing out
part of the document you're editing. For exam
ple, maybe you want to split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

.TS
. . . [lots of stuff]
.TE

which is the way a table is set up for the tbl pro
gram. To isolate the table in a separate file
called 'table' , first find the start of the table (the
' .TS' line) , then write out the interesting part:

r\ .TS/
• TS [ed prints the line it found]
. ,1"\ .TE/w table

and the job is done. If you are confident, you
can do it all at once with

r\ .TS/ ;1"\ .TE/w table

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact , you can write out a single line if you like;
just give one line number instead of two. For
example, if you have just typed a horribly com
plicated line and you know that it (or something
like it) is going to be needed later, then save it
- don 't re-type it. In the editor, say

e

a
. . .lots of stuff . . .
. . . horrible line . . .

.w temp
a

• • • more stuff • • •

. r temp
a
• • • more stuff • • •

This last example i s worth studying, to be sure
you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it ? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ' .PP'. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file,
delete it from its current position , then read in
the temporary file at the end. Assuming that
you are sitting on the ' .PP' command that begins
the paragraph, this is the sequence of commands:

• , 1 '\ .PP/ -w temp
.,11 -d
$r temp

That is, from where you are now (' .') until one
line before the next ' .PP' (' r\ .PP/ - ') write
onto 'temp'. Then delete the same lines.
Finally, read "temp' at the end.

As we said, that's the brute force way.
The easier way (often) is to use the move com
mand m that ed provides - it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

line l , line2 m line3

says to move all the lines between 'line l ' and
'line2' after 'line3' . Naturally, any of 'line l '
etc. , can be patterns between slashes, $ signs, or
other ways to specify lines.

Suppose again that you're sitting at the
first line of the paragraph . Then you can say

. ,1 "\ .PP/ -m$

That's all.

- 1 4 -

As another example of a frequent opera
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second .
Suppose that you are positioned at the first.
Then

m +

does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line,

m - -

does the interchange.
As you can see, the m command is more

succinct and direct than writing, deleting and re
reading. When is brute force better anyway?
This is a matter of personal taste - do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Ooing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It's also a good idea to
issue a w command before doing anything com
plicated: then if you goof, it's easy to back up to
where you were .

Marks

ed provides ·a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark

command is k: the command

kx

marks the current line with the name 'x' . If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

'x

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with 'a. Then find the last
line and mark it with 'h. Now position yourself
at the place where the stuff is to go and say

'a,'bm .

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often, so as to
cut down on typing time. Of course this could
be more than one line; then the saving is
presumably even greater.

ed provides another command, called t
(for 'transfer') for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical to the m com
mand, except that instead of moving lines it sim
ply duplicates them at the place you named.
Thus

1 , t

duplicates the entire contents that you are edit
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example, you can say

a

t .
s/x/y/
t .
s/y/z/

and so on.

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape ' ! '

Sometimes i t i s convenient to be able to
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section 5,
without leaving the editor. The 'escape' com
mand ! provides a way to do this.

If you say

!any UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes, ed will signal you by
printing another !; at that point you can resume
editing.

You can really do any UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS
There are several tools and techniques that

go along with the editor, all of which are rela
tively easy once you know how ed works,
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools, more to indicate their existence
than to provide a cbmplete tutorial. More infor-

- 1 5 -

mation on each can be found in [3] .

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are really big, it may
be impossible because of limits in ed.

The program grep was invented to get
around these limitations. The search ,.,atterns
that we have described in the paper are often
called 'regular expressions' , and 'grep' stands for

g/re/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particu
lar pattern. Thus

grep 'thing' file 1 file2 file3 . . .

finds 'thing' wherever it occurs in any of the files
'file l ' , 'file2' , etc. grep also indicates the filt: in
which the line was found, so you can later edit it
if you like.

The pattern represented by 'thing' can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat
tern searching. It is wisest always to enclose the
pattern in the single quotes ' .. .' if it contains any
non-alphabetic characters, since many such char
acters also mean something special to the UNIX
command interpreter (the 'shel l ') . If you don't
quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that don 't
contain a pattern:

grep -v 'thing' file 1 file2 . . .

finds al l lines that don 't contains 'thing' . The
- v must occur in the position shown. Given
grep and grep - v, it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines that
contain 'x' but not 'y' :

grep x file. . . I grep -v y

(The notation I is a 'pipe' , which causes the out
put of the first command to be used as input to
the second command; see [2] .)

Editing Scripts

If a fairly complicated set of editing opera
tions is to be done on a whole set of files, the
easiest thing to do is to make up a 'script', i .e., a
file that contains the operations you want to per
form , then apply this script to each file in turn.

For example, suppose you want to change
every 'Unix' to 'UNIX' and every 'Gcos' to
'GCOS' in a large number of files. Then put
into the file 'script' the lines

g/Unix/s/ /UNIX/g
g/Gcos/s/ /GCOS/g
w
q

Now you can say

ed file! <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the 'Unix' to 'UNIX' part of the example
given above, but without rewriting the files.
Then the command

sed 's/Unix/UNIX/g' file ! file2 . . .

applies the command 's/ Unix/UNIX/g' to all
lines from 'file I ' , 'file2 ' , etc. , and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file.
for example,

sed -f cmdfile input - files . . .

sed has further capabilities, including con
ditional testing and branching, which we cannot
go into here.

Acknowledgement

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

- 16 -

References

[I] Brian W . Kernighan, A Tutorial Introduction
to the UNIX Text Editor. Bell Laboratories
internal memorandum.

[2] Brian W. Kernighan, UNIX For Beginners.
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer 's Manual. Bell
Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray H il l , New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNIXt operating system. I ts features include control-flow primitives, parameter
passi ng, variables and string substitution. Constructs such as while, il then else,
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.
The shell can modify the environment in which commands run. Input and out
put can be redirected to files, and processes that communicate through 'pipes'
can be invoked. Commands are found by searching directories in the file sys
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use.

November 1 2, 1 978

tUN IX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

1 .0 Introduction

S. R. Bourne

Bell Laboratories
Murray Hill , New Jersey 07974

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell .
The first section covers most of the everyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section; see, for example, "UNIX for beginners". I
Section 2 describes those features of the shell primarily intended for use within shell pro
cedures. These include the control-flow primitives and string-valued variables provided by the
shell . A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell . References of the form "see
pipe (2)" are to a section of the UNIX manuai.2

1 . 1 Simple commands
Simple commands consist of one or m·ore words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who

is a command that prints the names of users logged in. The command

Is -1

prints a list of files in the current directory. The argument -1 tells Is to print status informa
tion, size and the creation date for each file.

1 .2 Background commands
To execute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c . The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes may be
obtained using the ps command.

1 .3 Input output redirection
Most commands produce output on the standard output that is initially connected to the termi-
nal. This output may be sent to a file by writing, for example,

·

Is -I > file

The notation >.file is interpreted by the shell and is not passed as an argument to Is. If .file does
not exist then the shell creates it; otherwise the original contents of .file are replaced with the
output from Is. Output may be appended to a file using the notation

- 2 -

· Is -1 >> file

In this case file is also created if it does not already exist.
The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we < file

The command we reads its standard input (in this · case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

we -1 < file

could be used.

1 .4 Pipelines and filters
The standard output of one command may be connected to the standard input of another by
writing the 'pipe' operator, indicated by I , as in,

Is -1 I we

Two commands connected in this way constitute a pipeline and the overall effect is the same as

Is -I > file; we < file

except that no .file is used. Instead the two processes are connected by a pipe (see pipe (.2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting we when
there is nothing to read and halting Is when the pipe is full.
A .filter is a command that reads its standard input , transforms it in some way, and prints the
result as output. One such filter, .grep, selects from its input those l ines that contain some
specified string. For example,

Is I grep old

prints those lines, if any, of the output from Is that contain the string old. Another useful filter
is sort. For example,

who I sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

Is I grep old I we -1
prints the number of file names in the current directory containing the string old.

1 .5 File name generation
Many commands accept arguments which are file names. For example,

Is -1 main.c

prints information relating to the file main.e .

The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

Is -1 * .c

generates, as arguments to Is, all file names in the current directory that end in . c . The charac
ter * is a pattern that will match any string including the null string. In general patterns are
specified as follows.

- 3 -

* Matches any string of characters including the null string.
? Matches any single character.
(. . .) Matches any one of the characters enclosed. A pair of characters separated by a

minus will match any character lexically between the pair.
For example,

[a-z]*

matches all names in the current directory beginning with one of the letters a through z.

I usr If red/ test/ ?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.
This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred . (echo is a standard
UNIX command that prints its arguments, separated by blanks .) This last feature can be expen
sive, requiring a scan of all sub-directories of /usr/fred .
There is one exception to the general rules given for patterns. The character ' .' at the start of a
file name must be explicitly matched.

echo *

will therefore echo all file names in the current directory not beginning with ' . ' .

echo .*

will echo all those file names that begin with ' .' . This avoids inadvertent matching of the
names ' .' and ' . .' which mean 'the current directory' and 'the parent directory' respectively.
(Notice that Is suppresses information for the files ' .' and ' . .' .)

1 .6 Quoting
Characters that have a special meaning to the shell, such as < > * ? I & , are called metachar
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quoted and loses its special meaning, if any. The \ is elided so that

echo \ ?

will echo a single ? , and

echo \\

will echo a single \ . To allow long strings to be continued over more than one line the
sequence \newline is ignored.
\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos
ing the string between single quotes. For example,

echo xx'****'xx

will echo

XX****XX

The quoted string may not contain a single quote but may contain newlines, which are -preserved. This quoting mechanism is the most simple and is recommended for casual use. w

- 4 -

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but riot all metacharacters. Discussion of the details is deferred to section 3.4 .

1 . 7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is ' $ ' . It may be changed by saying, for example,

PS I = yesdear

that sets the prompt to be the string yesdear . If a newline is typed and further input is needed
then the shell will issue the prompt ' > ' . Sometimes this can be caused by mistyping a quote
mark. If i t is unexpected then an interrupt (DEL) will return the shell to read another com
mand. This prompt may be changed by saying, for example,

PS2 = m ore

1 .8 The shell and login
Following login (1) the shell is called to read and execute commands typed at the terminal. If
the user's login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1 . 9 Summary

• Is .
Print the names of files in the current directory.

• Is > file
Put the output from Is into file.

• Is I we -I
Print the number of files in the current directory.

• Is I grep old
Print those file names containing the string old.

• Is I grep old I we -I
Print the number of files whose name contains the string old.

• ee pgm.e &
Run cc in the background.

- 5 -

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file . For example,

sh file [args . . .]

calls the shell to read commands from .file. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in .file using the posi
tional parameters $1 , $2, For example, if the file wg contains

who I grep $ 1

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command
chmod (1) may be used to make a file executable. For examp\e,

chmod + x wg

will ensure that the file wg has execute status. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to .be used interchangeably. In either case a new
process is created to run the command. ��fW
As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $# . The name of the file being executed is available as $0 .

A special shell parameter $* is used to substitute for all positional parameters except $0 . A
typical use of this is to provide some default arguments, as in ,

nroff -T450 -ms $*

which simply prepends some arguments to those already given.

2 .1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1 , $2, . . .) executing
commands once for each argument. An example of such a procedure is ref that searches the file
/usr/l ib/telnos that contains lines of the form

fred mh0 1 23
bert mh0789

The text of ref is

for i
do grep $i /usr/lib/telnos; done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string Fed .

- 6 -

tel fred bert

prints those lines containing fred followed by those for bert.

The for loop notation is recognized by the shell and has the general form

for name in wi w2 . . .
do command-list
done

A command-list is a sequence of one or more simple commands. separated or terminated by a
newline or semicolon. Furthermore, reserved words l ike do and done are only recognized fol
lowing a newline or semicolon. name is a shell variable that is set to the words w I w2 . . . in
turn each t ime the command-list following do i s executed. If in w I w2 . . . i s omitted then the
loop is executed once for each posit ional parameter; that is, in $* is assumed.
Another example of the use of the for loop is the create command whose text is

for i do > $i ; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >.file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new
line) is required before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,

case $# in
1) cat >> $ 1 ·; ;
2) cat >>$2 < $ 1 ; ;
*) echo 'usage : append [from 1 to' ; ;

esac

is an append command. When called with one argument as

append file

$# is the string I and the standard input is copied onto the end of file using the car command.

append file 1 file.2

appends the contents of file I onto file 2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.
The general form of the case command is

case word in
parr ern) command-list ; ;

esac

The shell attempts to match word with each pattern. in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com
plete. Since * is the pattern that matches any string it can be used for the default case.
A word of caution : no check is made to ensure that only one pattern matches the case argu
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

- 7 -

case $# in
*) . • . ,
*) . . . � �

esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in

- [ocs]) . . . ,
-*) echo 'unknown flag $i' ; ;
* .c) /lib/cO $ i • . . ; ;
*) echo 'unexpected argument $i' ; ;
esac

done

To allow the same commands to be associated with more than one P,attern the case command
provides for alternative patterns separated by a I . For example,

is equivalent to

case $i in
-x l -y)

esac

case $i in
-[xy])

esac

The usual quoting conventions apply so that

case $i in
\ ?)

will match the character ? .

2.3 Here documents
The shell procedure tel in section 2. 1 uses the file /usr/lib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

for i
do grep $i << !

fred mh0 1 23
bert mh0789

done

In this example the shell takes the lines between << ! and ! as the standard input for grep.
The string ! is arbitrary, the document being terminated by a line that consists of the string fol
lowing << .
Parameters are substituted in the document before it is made available to grep as illustrated by
the following procedure called edg .

The call

ed $3 < < %
g/$ 1/s/ /$2/g
w
%

edg string 1 string2 file

is then equivalent to the command

ed file <<%
g/string l /s/ /string2/g
w
%

- 8 -

and changes all occurrences of strinf? 1 in file to strini?2 . Substitution can be prevented using \ to
quote the special character $ as in

ed $3 << +
l ,\$s/$ 1/$2/g
w
+

(This version of edi? is equivalent to the first except that ed will print a ? if there are 110
occurrences of the string $1 .) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i <<\#

The document is presented without modification to grep. If parameter substitution is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user = fred box = mOOO acct = mhOOOO

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null =

The value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b = /usr/fred/bin
mv pgm $b

will move the file pf?m from the current directory to the directory /usr/fred/bin . A more gen
eral notation is available for parameter (or variable) substitution, as in,

echo $ {used

which is equivalent to

- 9 -

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp = /tmp/ps
ps a > $ {tmp)a

wil l direct the output of ps to the file /tmp/psa, whereas,

ps a > $tmpa

wou ld cause the value of the variable tmpa to be substituted.
Except for $? the following are set initial ly by the shell . $? is set after executing each com
mand.

$? The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

$# The number of positional parameters (in decimal) . Used, for example, in the
append command to check the num ber of parameters.

$$ The process number of this shell (in decimal) . Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

$!

$-

ps a > /tmp/ps$$

rm /tmp/ps$$

The process number of the last process run in the background (in decimal) .
The current shell ·flags, such as - x and -v .

Some variables have a special meaning to the shell and should be avoided for general use.
$MAIL When used interactively the shell looks at the file specified by this variable

before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file .profile, in the user's
login directory. For example,

MAIL=/usr/mai l/fred

$HOME The default argument for the cd command. The current directory is used to
resolve file name references that do not begin with a I , and is changed using the
cd command. For example,

cd /usr/fred/bin

makes the current directory /usr/fred/bin .

cat wn

will print on the terminal the file wn in this directory. The command cd with no
argument is equivalent to

cd $HOME

This variable is also typically set in the the user's login profile.
$PATH A list of directories that contain commands (the search path) . Each time a com-

mand is executed by the shell a l ist of directories is searched for an executable -

- 1 0 -

file . If $PATH is not set then the current directory, /bin, and /usr/bin are
searched by default. Otherwise $PATH consists of directory names separated by
. . For example,

PATH= :/usr/fred/bin :/bin :/usr/bin

specifies that the current directory (the null string before the first :) ,
/usr/fred/bin , /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own 'private' commands that are accessible
independently of the current directory. If the command name contains a I then
this directory search is not used; a single attempt is made to execute the com
mand.

$PS1 The primary shell prompt string, by default, ' $ ' .

$PS2 The shell prompt when further input is needed, by default, ' > ' .

$IFS The set of characters used by blank interpretation (see section 3.4) .

2.5 The test command

The test command, although not part of the shel l , is intended for use by shell programs. For
example,

test -f file

returns zero exit status if .file exists and non-zero exit status otherwise. In general test evaluates
a predicate and returns the result as its exit status. Some of the more frequently used test argu
ments are given here, see test (1) for a complete specification.

test s
test -f file
test -r file
test -w file
test -d file

true if the argument s is not the null string
true if .file exists
true if file is readable
true if .file is writable
true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter
mined by the exit status returned by commands. A while loop has the general form

while command-list 1
do command-list ,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list 1 is executed; if a zero exit status is returned
then command-list! is executed; otherwise, the loop terminates. For example,

is equivalent to

while test $ 1
do . . .

shift
done

for i
do . . .
done

shift is a shell command that renames the positional parameters $2, $3, . . . as $1 , $2, · . . . and
loses $1 .

- 1 1 -

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam
ple,

until test -f file
do sleep 300; done
commands

will loop until .file exists. Each time round the loop it waits for 5 minutes before trying again .
(Presumably another process will eventually create the file .)

2. 7 Control flow - if

Also available is a general conditional branch of the form,

if command-list
then command-list
else command-1/sr
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the rest command to test for the existence of
a file as in

if test -f file
then process .file
else do something else
fi .

An example of the use of if, case and for constructions is given in section 2. 1 0 .

A multiple test if command of the form

if . . .
then
else if . . .

then
else if . . .

fi
fi

fi

may be written using an extension of the if notation as,

if . . .
then
elif
then
elif

fi

The following example is the touch command which changes the 'last modified' time for a list
of files. The command may be used in conjunction with make (I) to force recompilation of a
list of files.

flag=
for i
do case $i in

-c) flag =N ; ;
*) if test -f $i

- 1 2 -

then In $i junk$$; rm junk$$

esac
done

elif test $flag
then echo file \'$i\' does not exist
else > $i
fi

The -c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari
able flag is set to some non-null string if the -c argument is encountered: The commands

In . . . ; rm . . .

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

may be written

Conversely,

if command I
then command2
fi

command 1 && command2

command 1 I I command2

executes command2 only if command I fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-list ; }

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x .

- 1 3 - .

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful �o
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc . . .

· where proc is the name of the shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. (Note that saying set -n at a ter
minal will render the terminal useless until an end-of-file is typed.)
The command

set -x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set -

and the current setting of the shell flags is available as $- .

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual . It is
called, for example, as

man sh
man ·-t ed
man 2 fork

In the first the manual section for sh is printed. Since no section is specified, section 1 is used.
The second example will typeset (-� option) the manual section for ed. The last prints the .fork
manual page from section 2.

- 1 4 -

cd /usr/man

: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s) '
N = n s = 1

for i
do case $i in

[1-9] *) s = $i ; ;

-t) N =t ; ;

-n) N=n ; ;

-*) echo unknown flag \'$i\' ; ;

*) if test -f man$s/$i.$s

esac
done

then ${N}roff man0/${N}aa man$s/$i.$s
else : 'look through all manual sections'

found= no

fi

for j in 1 2 3 4 5 6 7 8 9
do if test -f man$j/$i.$j

then man $j $i
found=yes

fi
done
case $found in

no) echo '$i: manual page not found'
esac

Figure 1 . A version of the man command

- 1 5 -

3.0 Keyword parameters
Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name =value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred The -k flag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such names are some
times called keyword parameters. If any arguments remain they are available as positional
parameters $1, $2,
The set command may also be used to set positional parameters from within a procedure. For
example,

set - *

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, -, ensures correct treatment when the first file name begins with a - .

3.1 Parameter transmission
When a shell procec;lure is invoked both positional and keyword parameters .may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such <lw variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)
Names whose value is intended to remain constant may be declared readon/y . The form of this
command is the same as that of the export command,

readonly name . . .

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution
If a shell parameter is not set then the null string is substituted for it. For example, if the vari
able d is not set

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d-. }

which will echo the value of the variable d if it is set and ' . ' otherwise. The default string is
evaluated using the usual quoting conventions so that

echo ${d-'*'}

will echo * if the variable d is not set. Similarly 8

- 1 6 -

echo ${d-$1 }

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d= . }

which substitutes the same string as

echo ${d-.}

and if d were not previously set then it will be set to the string ' . ' . (The notation ${ . . . = . . . } is
not available for positional parameters.)
If there is no sensible default then rhe notation

echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
prin�ed. A shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct? } ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is /usr/fred/bin then the command

d= 'pwd'

is equivalent to

d=/usr/fred/bin

The entire string between grave accents (' . . .') is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a · must be escaped using a \ . For example,

Is 'echo "$1 "'

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is base name which removes a specified suffix from a string. For example,

basename main.c .c

will print the string main . Its use is illustrated by the following fragment from a cc command.

case $A in

*.c) B = 'base name $A .c •

esac

- 1 7 -

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.

• for i in 'Is -f; do • . .
The variable i is set to the names of files in time order, most recent first.

• set 'date'; echo $6 $2 $3, $4
will print, e.g. , 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting
The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.
Commands are parsed initially according to the grammar given in appendix A. Before a com
mand is executed the following substitutions occur.

• parameter substitution, e.g. $user
• command substitution, e.g. 'pwd'

Only one evaluation occurs so that if, for example, the value of the variable ·X is the
string $y then

echo $X

will echo $y .
• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation) . For this purpose 'blanks' are the characters of the
string $IFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example, ®JJ@

echo ..

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null
string.

• file name generation
Each word is then scanned for the file pattern characters *• ? and (. . .I and an alpha
betical list of file names is generated to replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.
As well as the quoting mechanisms described earlier using \ and ' . . : a third quoting mechan
ism is provided using double quotes. Within double quotes parameter and command substitu
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double. quotes and may be quoted using \ .

For example,

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $ ' " \

echo "$x"

- 1 8 -

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 . . . "

The notation $@ is the same as S* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$ 1 " "$2" . . •

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter
\ $ *

n n n n n
y n n t n n
y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built- in command eva/ may
be used. For example, if the variable X has the value $y, and if y has the value pqr then

eva! echo $X

will echo the string pqr .

In general the eva/ command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

wg ='eval who I grep'
$wg fred

is equivalent to

who I grep fred

In this example, eva/ is required since there is no interpretation of metacharacters, such as I ,
following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con
nected to a terminal (as determined by gtty (2)) . A shell invoked with the -i flag is also
interactive.
Execution of a command (see also- 3. 7) may fail for any of the following reasons.
• Input output redirection may fail . For example, if a file does not exist or cannot be

created.

- 1 9 -

• The command itself does not exist or cannot be executed.
• The command terminates abnormally, for example, with a "bus error" or "memory fault".

See Figure 2 below for a complete list of UNIX signals.
• The command terminates normally but returns a non-zero exit status.
In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter
minal. Such errors include the following.
• Syntax errors. e.g., if • . . then . . . done
• A signal such as interrupt. The shell waits for the current command, if any, to finish exe

cution and then either exits or returns to the terminal.
• Failure of any of the built-in commands such as cd.

The shell flag -e causes the shell to terminate if any error is detected.

1 hangup
2 interrupt
3* quit
4 * illegal instruction
5*
6*
7*
8*
9
10*
1 1 *
1 2*
1 3
1 4
15

trace trap
lOT instruction
EMT instruction
floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination (from kill (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15 .

3 .6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam
ple,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt) , and if this signal is received will execute the com
mands

rm ·/tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The extt IS
required; otherwise, after the trap has been taken, the shell will resume executing the pro
cedure at the place where it was interrupted.
UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig
nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

- 20 -

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then trap com
mands (and the signal) are ignored.
The use of trap is illustrated by this modified version of the touch command (Figure 4) . The
cleanup action is to remove the file junk$$.

flag =
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do case $i in

-c) flag =N ;;
*) if test -f $i

esac
done

then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\' does not exist
else > $i
fi

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos
sible for the process to die without removing the file.
Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe
cuted on exit from the shell procedure . ·
A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap " 1 2 3 15

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked
commands.
Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

d= 'pwd'
for i in *
do if test -d $d/$i

then cd $d/$i
while echo "$i:"

trap exit 2
read x

- 2 1 -

do trap : 2; eval $x; done
fi

done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x . It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

3. 7 Command execution
To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The .built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like

trap " 1 2 3 1 5
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created com- 1fj$
mands and exec replaces the shell by the command specified.
Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo . . . > *.c

will write its output into a file whose name is *.c . Input output specifications are evaluated left
to right as they appear in the command.
> word The standard output (file descriptor 1) is sent to the file word which is created if it

does not already exist.

>> word

< word
<< word

> & digit

< & digit

The standard output is sent to file word. If the file exists then output is appended
(by seeking to the end) ; otherwise the file is created.
The standard input (file descriptor 0) is taken from the file word.
The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub
stitution occur and \ is used to quote the characters \ $ ' and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings) .
The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.
The standard input is duplicated from file descriptor digit.

<&- The standard input is closed . .
>&- The standard output is closed.

- 22 -

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1 . For example,

. . . 2 > file

runs a command with message output (file descriptor 2) directed to .lite .

. . . 2 >&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)
The environment for a command run in the background such as

list * .c I lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null . This prevents two processes (the shell and the command) , which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

· ed file &

would allow both the editor and the shell to read from the same input at the same time.
The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell command trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile .

-c string
If the -c flag is present then commands are read from string .

-s I f the -s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal (as told
by gtty) then this shell is interactive. I n this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable) . I n all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell3 and the PWB/UNIX shell, 4
some features having been taken from both. Similarities also exist with the command inter
preters of the Cambridge Multiple Access SystemS and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. I am also grateful ·to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

- 23 -

References

1 . B. W. Kernighan, UN/X.for Beginners, Bell Laboratories internal memorandum (1 978) .
2 . K. Thompson and D. M. Ritchie, UNIX Programmer 's Manual, Bell Laboratories (1 978) .

Seventh Edition.
3. K. Thompson, "The UNIX Command Language," pp. 375-384 in Structured

Programming-h?fotech State of the Art Report, Infotech International Ltd. , Nicholson
House, Maidenhead, Berkshire, England (March 1975) .

4. J . R. Mashey, PWBIUN/X Shell Tutorial, Bell Laboratories internal memorandum (Sep
tember 30, 1 977) .

5 . D. F . Hartley (Ed.) , The Cambridge Multiple Access System - Users Reference Manual.
University Mathematical Laboratory, Cambridge, England 0 968) .

6 . P . A. Crisman (Ed.) , The Compatible Time-Sharing System, M.I.T. Press, Cambridge, Mass.
(1 965) 0

- 24 -

Appendix A - Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command:

pipeline.'

andor:

command-list:

input-output:

.file:

case-part:

pattern:

else-part:

empty:

word:

simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word • • • do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part • • • esac
if command-list then command-list else-part fi

command
pipeline I command

pipeline
andor && pipeline
andor I I pipeline

andor
command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< .file
>> word
<< word

word
& digit
& -

pattern) command-list ; ;

word
pattern I word

elif command-list then command-list else-part
else command-list
empty

a sequence of non-blank characters

.. _

name: a sequence of letters, digits or underscores starting with a letter

digit: 0 1 2 3 4 5 6 7 8 9

- 25 -

Appendix B - Meta-characters and Reserved Words
a) syntactic

I pipe symbol
&& 'andf' symbol
I I 'orr symbol

command separator

" case delimiter
& background commands

() command grouping
< input redirection
<< input from a here document
> output creation
>> output append

b) patterns
* match any character (s) including none
? match any single character
l.. . J match any of the enclosed characters

c) substitution .
${ • • • } substitute shell variable

substitute command output

d) quoting

\ quote the next character

" "
quote the enclosed characters except for '
quote the enclosed characters except for $ · \ "

e) reserved words

if then else elif fi
case in esac
for while until do done
(}

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret
ing CAl scripts on the UNIXt operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the eqn program for mathematical typing,
the " -ms" package of formatting macros, and an introduction to the C pro
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1 979

tUNIX is a Trademark of Bell Laboratories.

LEARN - Computer-Aided Instruction on UNIX
(Second Editfon)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill , New Jersey 07974

1. Introduction.
Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons

and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIXt facilities to create a controlled UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

ing:

basic file handling commands
the UNIX text editor ed

advanced file handling
the eqn language for typing mathematics
the " - ms" macro package for document formatting
the C programming language

The purported advantages of CAl scripts for training in computer skills include the follow-

(a) students are forced to perform the exercises that are in fact the basis of training in
any case;

(b) students receive immediate feedback and confirmation of progress;
(c) students may progress at their own rate;
(d) no schedule requirements are imposed; students may study at any time convenient

for them;

(e) the lessons may be improved individually and the improvements are immediately
available to new users;

(f) since the student has access to a computer for the CAl script there is a place to do
exercises;

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student ma:y direct questions.
If CAl is used without a "counselor" or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for
many years in a variety of educational areas. I, 2, 3 The use of a computer to teach itself, how
ever, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

tUNIX is a Trademark of Bell Laboratories.

- 2 -

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer, but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.
First, the way to teach people how to do something is to have them do it. Scripts should

not contain long pieces of explanation� they should instead frequently ask ' the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right, rein
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many files are there in the current directory? Type "answer N", where N is the number
offiles.

The student is expected to respond (perhaps after experimenting) with
answer 1 7

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e. , replacing
N by 1 7) is difficult for non-programmer · students, so the first few such lessons need real care.

The third type of lesson is open-ended - a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these, using two lessons about the cat (con
catenate, i .e . , print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson. The
"speed" rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully� it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "under
stands" what he or she is doing� accordingly, the current learn scripts only measure perfor
mance, not comprehension. I f the student can perform a given task, that is deemed to be
"learning. "4

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure� the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the· assumption that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi
vided.

To avoid boring the faster students, however, an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical - tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

- 3 -

Figure I : Sample dialog from basic files script

(Student responses in italics: '$' is the prompt)

A fi le can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food": then type "ready" .
$ catfood

this is the file
named food.

$ ready

Good. Lesson 3 .3a (I)

Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the file,
and "cat" , which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready" .
$ cat President
cat: can't open President
$ ready

Sorry, that's not right. Do you want to try again? yes
Try the problem again .
$ Is
.ocopy
X I
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3 .3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"

long. Typically, for example, the fast track might present an idea and ask for a variation on the
example shown: the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track, is intended to be adequate for anyone. (The lessons of Fig
ure I are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons: this makes it profitable for a shaky user to back up

- 4 -

and try again, and many students have done so.
The tracks are not completely distinct, however. Depending on the number of correct

answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis
cussed in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In otJ:iers, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong� in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a "no" answer to the "Do you want to try again?"
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu
dents may object to not understanding what they are doing; and .the procedure of smashing
everything into small pieces may provoke the retort "you can't cross a ditch in two jumps."
Since writing CAl scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Scripts.
As mentioned above, the present scripts try at most to follow a three-track theory. Thus

little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself) . In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A) , although assistance will be needed for the first few minutes. This assis
tance, however, need not be highly skilled.

- 5 -

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is , cat , mv , rm , cp and diff commands. It also deals with
the abbreviation characters * , ? , and [] in file names. It does not cover pipes or 1/0 redirec
tion, nor does it present the many options on the Is command.

This script contains 3 1 lessons in the fast track; two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 1 44 words
and the shortest 1 4.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.s All edit6r features except encryption, mark names and
' ; ' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 1 46 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial6 is 6, 1 38 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 1 5 ,6 1 5 words.
The average ed lesson is thus also about 60 words; the largest is 1 7 1 words and the smallest 1 0.
The original ed script represents about three man-weeks of effort.

The advanced file handling script deals with Is options, 1/0 diversion, pipes, and support
ing programs like pr , we , tail , spe/(and grep . (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro
vides much less of a full three-track sequence than they do. On the other hand, since it is per
ceived as "advanced," it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high level of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 1 7 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro pack
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con
verted to follow the order of presentation in The C Programming Language, 7 but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a relatively complete introduction to
UNIX available via learn. Although we make no pretense that learn will replace other instruc
tional materials, it should provide a useful supplement to existing tutorials and reference manu
als.

- 6 -

4. Experience with Students.
Learn has been installed on many different UNIX systems. Most of the usage is on the

first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10 ,500 les
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
every one failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our system at Murray Hill , there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts� many instances exist of some
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn , the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 1 30 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ
ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les
son, most of which is the syst�m printing.

At present working through a section of the middle of the files script took about 1 .4
seconds of processor time per lesson, and a system expert typing quickly took 1 5 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx
imation, a UNIX system could support ten students working simultaneously with some spare
capacity.

5. The Script Interpreter.
The learn program itself merely interprets scripts. It provides facilities for the script writer

to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts· may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory
(named lib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named log) , and one in which user sub
directories are created (named play) . The subject directory contains master copies of all les
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln .

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson , so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:
(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right; and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

lib

- 7 -

Figure 2 : Directory structure for learn

play

files

editor

(other courses)

log

student !

student2

LO. l a
LO. l b

files for student ! . . .

files for student2 . . .

lessons for files course

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (1) commands to the script interpreter to print something, to create
a files, to test something, etc.� (2) text to be printed or put in a file� (3) other lines, which are

���� ���h
r:�h=�'/�:.� :���=�ds��h��s!� :��e

'�:�:n���s :���r��e
o:e:e:0

t:::s �e:r
,
� ��� (jff((tJ

ready , or answer . At this point, the user's work is tested� if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1� this is shown in
A�re 3.

·

Lines which begin with # are commands to the learn script interpreter. For example,
#print

causes printing of any text that follows, up to the next line that begins with a sharp.
#print file

prints the contents of file � it is the same as cat file but has less overhead. Both forms of #print
have the added property that if a lesson is failed, the #print will not be executed the second
time through� this avoids annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

#user

gives control to the student� each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes , no , ready or answer . At that
time, the driver resumes interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets &('.:@ the script writer interrogate the student's responses upon regaining control . �:%i:t�

#copyout
#uncopyout

- 8 -

Figure 3 : Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready" .
#create roosevelt

this file is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail - 3 .ocopy > XI
#cmp XI roosevelt
#log
#next
3.2b 2

Between these commands, any material typed at the student by any program is copied to the file
. ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student's actual input.

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter
(the "shell") one line at a time. This won' t do if, for example, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyout is also desired the copyout brackets must include
the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmp /tiel file2

is an in-line implementation of cmp , which compares two files for identity.
#match stuff

The last line of the student's input is compared to stuff, and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #match lines; this provides a convenient mechanism for handling
multiple "right" answers. Any text up to a # on subsequent lines after a successful #match is
printed; this is illustrated in Figure 4, another sample lesson.

#bad stuff

This is similar to #match , except that it corresponds to specific failure answers; this can be
used to produce hints for particular wrong answers that have been anticipated by the script

writer.
#succeed
#jail

- 9 -

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#cop yin
#user
#uncopyin
#match m$
#match .m$
"m$" is easier.
#log
#next
63. 1d 10

print a message upon success or failure (as determined by some previous mechanism) .
When the student types one of the "commands" yes , no , ready , or answer , the driver

terminates the #user command, and evaluation of the student's work can begin. This can be
done either by the built-in commands above, such as #match and #cmp , or by status returned

�6) ni�r�:l
t�:�x

w����::��c������1
1
1{y �:� ;a��e

tC��n����)s�t���w7s�����o���::t�:�r�a
t
t��s

t:�: ��fjj}
driver whether or not the student has successfully passed the lesson.

Performance can be logged:
#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

#log
by itself writes the logging information in the logging directory within the learn hierarchy, and
is the normal form.

#next ·

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25 . 1a 1 0
25 .2a 5
25.3a 2

indicating that unit 25 .1a is a suitable follow-on lesson for students with a speed rating of 1 0
units, 25.2a for student with speed near 5 , and 25.3a for speed near 2 . Speed ratings are main
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim
ited to 10 and the minimum to 0. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu- U
dent fails, a false status is returned and the program reverts to the previous lesson and tries

- 10 -

another alternative. If it can not find another alternative, it skips forward a Jesson. The stu
dent can terminate a session at any time by typing bye , which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line) . From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, or try to estimate the elegance of the· answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline) , command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro
gram, and made more use of the facilities of the UNIX system itself. For example, file com
parison was done py creating a cmp process, rather than comparing the two files within learn .
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #print had to be followed by a file name. Thus the initialization for each les
son was to extract the archive into t,he working directory (typically 4-8 files) , then #print the
lesson text.

The combination of such things made learn rather ·slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #create can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula
tion tools can be applied to them. The result has been that there is much Jess resistance to
going in and fixing substandard lessons.

6. Conclusions
The following observations can be made about secretaries, typists, and other non

programmers who have used learn :

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of "substitutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.
It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

- 1 1 -

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor, however, is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the better the result. For example, if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.*

One disadvantage of training with learn is that students come to depend completely on the
CAl system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them; the scripts ought to be altered to recommend suit
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student's
viewpoint, the most serious is that lessons still crop up which simply can't be passed. Some
times this is due to poor explanations, but just as often it is some error in the lesson itself - a
botched setup, a missing file, an invalid test for correctness, or some system facility that
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his or hers, but the script writer's. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les- ifJIJ� sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some scripts, notably eqn , are intrinsically slow. eqn , for
example, must do a Jot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The
defenses against such problems h�ve steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always. be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd , which
changes to another directory. The prospect of a student who is learning about directories inad
vertently moving to some random directory and removing files has deterred us from even writ
ing lessons on cd, but ultimately lessons on such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox,
and M. J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

• We have even known an expert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.

- 12 -

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1 . D . L. Bitzer and D . Skaperdas, "The Economics of a Large Scale Computer Based Educa
tion System: Plato IV," pp. 1 7-29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1 970) .

2. D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
"COALA - A Minicomputer CAl System," IEEE Trans. Education E-20 (1) , pp.73-77
(Feb. 1 977) .

3. P. Suppes, "On Using Computers to Individualize Instruction," pp. 1 1-24 in The Com
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1 967) .

4. B. F. Skinner, ' 'Why We Need Teaching Machines," Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1 964) . (1 96 1) .

5. K. Thompson and D . M. Ritchie, UNIX Programmer 's Manual, Bell Laboratories (1 978) .
See section ed (I) .

6. B. W. Kernighan, A tutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974) .

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1 978) .

APPENDIX A - Page given to new users

How to Get Started

A bsolutely basic information for using the UNIX system
from DAS/, Terminer, or HP terminals

First time. BRING A FRIEND. Anyone who has used UNIX before, however briefly, will be of
enormous help for the first fifteen minutes to show you where all the switches are and supply
information missing from this page.
Terminals. Turn the power on. There are many kinds of terminals. Look at the telephone
used with the terminal to distinguish them. Terminals may have

- old style datasets (if the phone set is a small gray box with "talk" and "data" buttons
at the right above the handset)
- new style datasets (if the phone set is a black six button phone with a red "data" button
on the left, sitting on a rectangular box with a glass front)
- acoustic couplers (if an ordinary telephone is used to call and the terminal has rubber
receptacles that the handset fits into) or
- modems (if the phone used for calling has a white button for the left button of the pair
of buttons the handset usually rests on) .
- none of the above (in which case there is probably a switch somewhere that should be
flipped to signal the computer) .

Calling in. For your local UNIX call ___ __ _
- If the terminal doesn't use a phone; ignore this section, and proceed to Login . .
- On terminals with datasets you must push the "talk" button t o get a dial tone.
- If the terminal has a separate coupler turn the coupler power on.
- If the line is busy UNIX is probably full.
- If there is no answer UNIX is broken.

Usually the phone rings only once; UNIX answers and whistles at you.
Connecting the terminal. Remember what kind of terminal you have. If it uses a

- dataset, push down the "data" button, let it spring back up, and then hang up the
handset (IN THAT ORDER) .
- coupler, place the handset in the rubber receptacles. There will be an indication of
where the phone cord should be (it matters) . You may get better results by placing the
handset in the receptacles as you dial.
- modem, pull up the white button on the telephone and put the handset down some
where (but don't hang up the phone !) .

Login. UNIX should type "login:". If it does not:
- Your terminal may be in "local" mode - check that the "local/line" switch is on
"line". Also, Terminets may have their "interrupt" light on -: turn it off by pushing
"ready."
- If the message is garbled, the speed is wrong. Somewhere on· the terminal is a switch
labeled "rate" or "baud" with positions of either " 10, 1 5,30" or " 1 10, 1 50,300" . Set it to
30 or 300. Push the break or interrupt button slowly a few times. If "login:" doesn't
appear, call for help.
- UNIX may be broken (call ext. __ to check on that) .

Type your userid, followed by "return" . Your userid is ___ _
- If each letter appears twice, find the switch labeled "full/half duplex" and set it to
"full".
- If the computer typed back your userid in upper case, find the "all caps" switch or
"shift lock" and turn it off. Then dial in again.

Normally UNIX says "Password:" and you should enter your password; printing will be turned
off while you do.

If you misspell it, UNIX will say "Login incorrect. login:" and you can then retype your
userid and password correctly.

UNIX will say "$". You have successfully logged in.

A - 2

Commands. When UNIX has typed "$" you can type commands, one per line. For example,
you can type "date" to find out what day and time it is, or "who" to find out who is logged on.
Every command must end with a "return" . After typing a command, wait for the next "$" to
see what happens. For example, your terminal paper might look like this (what the computer
typed is in italics) :

login: myid
Password: < you can't see it >
$ date
Thu Jan 15 10:58:21 EST 1 9 79
$

There are a great many other commands you can type (see the guides below) and in particular
the learn command can help you learn some features of UNIX.

- If you make a mistake typing: the character # will erase the previous character, so that
typing

dax#te
is the same as typing

date
and the character @ will erase the entire line; typing

xxxxx@
date

is the same as typing "date". UNIX supplies the carriage return after the @.
- You must hit return i f you expect the computer to notice what you typed· otherwise it
will wait patiently and silently for you to do so. When in doubt, type return and see what
happens.
- If you make a typing error apd don't correct it with # or @ before hitting return, the
computer will typically say

datr: not found
where "datr" is the erroneous input line.
- Other messages that may arise from mistyping include "cannot execute " or "No match "
or just "?". The cure is almost always to retype the offending line correctly.

Terminology. Everything stored on the computer is saved in files. A file might contain, for
example, a memo or a chapter of a book or a letter. Every file has a name, which is used
whenever you want to refer to it. Sample names might be "chap3" or "memo2". The files
are grouped into directories; each directory contains the names of several files. All users have
directories containing their own files.
Logging out. Just hang up. On a terminal with a data set, push the "talk" button. On other
terminals hang up the handset. Turn the terminal power off.
Guides. You should have copies of UNIX For Beginners and A Tutorial Introduction to the UNIX
Text Editor.

Typing Documents on the UNIX System:
Using the - ms Macros with Troff and N roff

M. E. Lesk

Bell Laboratories
Murray Hill , New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing docu
ments on the UNIX system. Documents may be produced on either the photo
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs , sections (optionally with
automatic numbering) , page titles, footnotes, equations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing
Documents with -ms" which contains additional examples of features of
-ms.

This manual is a revision of, and replaces, "Typing Documents on
UNIX," dated November 22, 1 974.

November 1 3 , 1978

Typing Documents on the UNIX System:
Using the - ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands to produce papers
using the troff and nro.ff formatting programs on the UNIX system. As with other roff-derived
programs, text is prepared interspersed with formatting commands. However, this package,
which itself is written in tro.ff commands, provides higher-level commands than those provided
with the basic tro.ffprogram. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
".PP" before each paragraph. This will produce indenting and extra space.
Alternatively, the command .LP that was used here will produce a left-aligned (block) para
graph. The paragraph spacing can be changed: see below under "Registers."

Beginning . . For a document with a paper-type cover sheet, the input should start as frn.
lows:

[optional overall format .RP - see below]
.TL
Title of document (one or more lines)
. AU
Author (s) (may also be several lines)
.AI
Author's institution (s)
.AB
Abstract� to be placed on the cover sheet of a paper.
Line length is 5/6 of normal� use . I I here to change .
. AE (abstract end)
text . . . (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
".AB no" for " .AB" . Several interspersed .AU and .AI lines can be used for multiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can't just begin a document with a line of
text. Some -ms command must precede any text input. When in doubt, use .LP to get
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure 1 shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is " .RP" a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts.

In general -ms is arranged so that only one form of a document need be stored, contain
ing all information� the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don't put extraneous material between the .TL and .AE commands. Processing
of the titling items is special, and other data placed in them may not behave as you expect.
Don't forget that some -ms command must precede any input text.

- 2 -

Page headings. The -ms macros, by default, will print a page heading containing a page
number (if greater than 1) . A default page footer is provided only in nroff, where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
strings LH, CH, and RH which are the left , center and right portions of the page headings,
respectively; and the strings LF, CF, and RF, which are the left, center and right portions of
the page footer. For more complex formats, the user can redefine the macros PT and BT,
which are invoked respectively at the top and bottom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be
careful not to change parameters such as point size or font without resetting them to default
values.

Multi-column formats. If you place
the command " .2C" in your document, the
document will be printed in double column
format beginning at that point. This feature
is not too useful in computer terminal out
put, but is often desirable on the typesetter.
The command " . 1 C" will go back to one
column format and also skip to a new page.
The ". 2C" command is actually a special
case of the command

.MC [column width [gutter width]]

which makes multiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used.
Thus triple , quadruple, . . . column pages can
be printed. Whenever the number of
columns is changed (except going from full
width to some larger number of columns) a
new page is started.

Headings. To produce a special head
ing, there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (1 , 2, 3, .. .) , in boldface. For
example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads
Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number
added:

Care and Feeding of Directors
Every section heading, of either type,

should be followed by a paragraph beginning
with .PP or .LP, indicating the end of the
heading. Headings may contain more than
one line of text.

The .NH command also supports more
complex numbering schemes. If a numeri
cal argument is given, it is taken to be a
"level" number and an appropriate sub�
section number is generated. Larger level
numbers indicate deeper sub-sections, as in
this example:

.NH
Erie-Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2 . 1 . Morris and Essex Division

2 . 1 . 1 . Gladstone Branch

2 .1 .2 . Montclair Branch

2.2 . Boonton Line
� An explicit " .NH 0" will reset the

numbering of level 1 to one, as here :

.NH O
Penn Central

1 . Penn Central

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references.) The
sequence

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph, . . .

produces
[1] Text for first paragraph, typed nor

mally for as long as you would like on
as many lines as needed.

[2] Text for second paragraph, . . .

A series of indented paragraphs may be fol
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam
ple, a plain block indent is produced.

.IP
This material will
just be turned into a

- 3 -

block indent suitable for quotations or
such matter.
.LP

will produce
This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example,

.IP first : 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label, requmng
larger indenting for these para
graphs.

second: And so forth .

It is also possible to produce multiple nested
indents; the command .RS indicates that the
next .IP starts from the current indentation
level. Each .RE will eat up one level of
indenting so you should balance .RS and
.RE commands. The .RS command should
be thought of as "move right" and the .RE
command as "move left". As an example

.IP 1 .
Bell Laboratories
.RS
.IP 1 . 1
Murray Hill
. IP 1 . 2
Holmdel
.IP 1 . 3
Whippany
.RS
. IP 1 . 3. 1
Madison
.RE
.IP 1 .4
Chester
.RE
.LP

will result in

1 . Bell Laboratories
1 . 1 Murray Hill
1 .2 Holmdel
1 . 3 Whippany

1 . 3 . 1 Madison
1 .4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur
poses such as setting off a quotation, a para
graph indented on both right and left is
required.

A single paragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining (on the terminal) say

.I
as much text as you want
can be typed here
.R

as was done for these three words. The .R
command restores the normal (usually
Roman) font. If only one word is to be ital
icized, it may be just given on the line with
the .I command,

.I word

and in this case no .R is needed to restore
the previous font. Boldface can be pro
duced by

.B
Text t o be set i n boldface
goes here
.R

and also will be underlined on the terminal
or line printer. As with . 1 , a single word can
be placed in boldface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger) , .SM (make smaller) , and .NL
(return to normal size) . The size change is
two points; the commands may be repeated
for increased effect (here one .NL canceled two
.SM commands) .

If actual underlining as opposed to ital
icizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remembered, and finally placed at the bot
tom of the current page*. By default, foot
notes are 1 11 1 2th the length of normal text,
but this can be changed using the FL regis
ter (see below).

Displays and Tables. To prepare
displays of lines, such as tables, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .DE

• Like this.

- 4 -

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged) ; lines brack
eted by . DS L and .DE are left-adjusted, not
indented, and not re-arranged. A plain .DS
is equivalent to .DS I, which indents and
left-adjusts. Thus,

whereas

these lines were preceded
by .DS C and followed by

a .DE command;

these lines were preceded
by . DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD, .LD, or .ID in place of
the commands .DS C, .DS L, or .DS I
respectively. An extra argument to the .DS
I or .DS command is taken as an amount to
indent. Note : it is tempting to assume that
.DS R will right adjust liries, but it doesn't
work.

Boxing words or lines. To draw rec
tangular boxes around words the command

.BX word

will print lword l as shown. The boxes will
not be neat on a terminal, and this should
not be used as a substitute for italics.
Longer pieces of text may be boxed by
enclosing them with .B l and .B2:

.B l
text . . .
.B2

as has been done here.
Keeping blocks together. If you wish

to keep a table or other block of lines
together on a page, there are "keep -

release" commands. If a block of lines pre
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically
kept together this way. There is also a
"keep floating" command: if the block to be
kept together is preceded by .KF instead of
. KS and does not fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be introduced in the docu
ment.

Nro.ff/Troff commands. Among the
useful commands from the basic formatting
programs are the following. They all work
with both typesetter and computer terminal
output:

.bp - begin new page.

. br - "break", stop running text
from line to line.

.sp n - insert n blank lines.

. na - don't adjust right margins.

Date. By default, documents produced
on computer terminals have the date at the
liottom of each page� documents produced
on the.typesetter don' t. To force the date,
say ".DA". To force no date, say ".ND".
To lie about the date, say " .DA July 4,
1776" which puts the specified date at the
bottom of each page. The command

.ND May 8, 1 945

in " .RP" format places the specified date on
the cover sheet and nowhere else. Place
this line before the title.

Signature line. You can obtain a sig
nature line by placing the command .SG in
the document. The authors' names will be
output in place of the .SG line. An argu
ment to .SG is used as a typing identification
line, and placed after the signatures. The
.SG command is ignored in released paper
format.

Registers. . Certain of the registers
used by -ms can be altered to change
default settings. They should be ·changed
with .nr commands, as with

. nr PS 9

to make the default point size 9 point. If
the effect is needed immediately, the normal

- 5 -

troffcommand should be used in addition to
changing the number register.
Register Defines Takes Default

effect
PS point size next para. 1 0
VS line spacing next para. 1 2 pts
LL line length next para. 6"
LT title length next para. 6"
PD para. spacing next para . 0.3 vs
PI para. indent next para. 5 ens
FL footnote length next FS 1 1/ 1 2 LL
cw column width next 2C 71 1 5 LL
GW intercolumn gap next 2C 1 1 1 5 LL
PO page offset next page 26/27"
HM top margin next page 1 "
FM bottom margin next page 1 "

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively� and similarly LF, CF,
and RF which are strings in the page footer.
The page number on output is taken from
regi�ter PN, to permit changing its output
style. · For more complicated headers and
footers the macros PT and BT can l:Je
redefined, as explained earlier .

A ccents. To simplify typing certain
foreign words, strings representing common
accent marks are defined. They precede the
letter over which the mark is to appear.
Here are the strings:

Input Output Input Output
\ *'e e *-a a
\ *'e e *Ce v

e
* :u ti *,c c
*�e e

Use. After your document is prepared
and stored on a file, you can print it on a
terminal with the command*

nroff - msfile

and you can print it on the typesetter with
the command

troff - ms file

(many options are possible) . In each case,
if your document is stored in several files,
just list all the filenames where we have
used "file". If equations or tables are used,
eqn and/ or tbl must be invoked as prepro
cessors .

• If .2C was used, pipe the nr0ff' output through
col; make the first line of the input ".pi
/usr/bin/col."

References and further study. If you
have to do Greek or mathematics, see eqn
[1] for equation setting. To aid eqn users,
-ms provides definitions of .EQ and .EN
which normally center the equation and set
it off slightly. An argument on .EQ is taken
to be an equation number and placed in the
right margin near the equation. In addition,
there are three special arguments to EQ: the
letters C, I, and L indicate centered
(default) , indented, and left adjusted equa
tions, respectively. If there is both a format
argument and an equation number, give the
format argument first, as in

.EQ L (1 .3a)

for a left-adjusted equation numbered
(1 .3a) .

Similarly, the macros . TS and . TE are
defined to separate tables (see [2]) from text
with a litile space. A very long table with a
heading may be broken across pages by
beginning it with .TS H instead of .TS, and
placing the line . TH in the table data after
the heading. If the table has no heading
repeated from page to page, just use the
ordinary .TS and .TE macros.

To learn more about troffsee [3] for a
general introductidn, and [4] for the full
details (experts only) . Information on
related UNIX commands is in [5] . For jobs
that do not seem well-adapted to -ms, con
sider other macro packages. It is often far
easier to write a specific macro packages for
such tasks ·as imitating particular journals
than to try to adapt -ms.

A cknowledgment. Many thanks are
due to Brian Kernighan for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

[1] B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics - Users Guide
(2nd edition), Bell Laboratories Com
puting Science Report no. 17 .

[2] M. E. Lesk, Tbl - A Program to For
mat Tables, Bell Laboratories Comput
ing Science Report no. 45.

- 6 -

[3] B. W. Kernighan, A Troff Tutorial, Bell
Laboratories, 1 976.

[4] J. F. Ossanna, Nroff/Troff Reference
Manual, Bell Laboratories Computing
Science Report no. 5 1 .

[5] K. Thompson and D . M. Ritchie,
UNIX Programmer 's Manual, Bell
Laboratories, 1 978.

- 7 -

Appendix A
List of Commands

1 C Return to single column format.
2C Start double column format.
AB Begin abstract.
AE End abstract.
AI Specify author's institution.
AU Specify author.
B Begin boldface.
DA Provide the date on each page.
DE End display.
DS Start display (also CD, LD, ID) .

LG Increase type size.
LP Left aligned block paragraph.

ND Change or cartcel date.
NH Specify numbered heading.
NL Return to normal type size.
PP Begin paragraph.

EN End equation. R Return to regular font (usually Roman) .
EQ Begin equation.
FE End footnote.
FS Begin footnote.

I · Begin italics.

IP Begin indented paragraph.
KE Release keep.
KF Begin floating keep.
KS Start keep.

RE End one level of relative indenting.
RP Use released pap�r format.
RS Relative indent increased one level.
SG Insert signature line.
SH Specify section heading.
SM Change to smaller type size.
TL Specify title.

UL Underline one word.

Register Names
The following register names are used by - ms internally. Independent use of these

names in one's own macros may produce incorrect output. Note that no, lower case letters are
used in any - ms internal name.

Number registers used in - ms
DW GW HM IQ LL NA OJ PO T. TV

#T EF H l HT IR LT NC PD PQ TB vs
l T FL H3 IK KI MM NF PF PX TD YE
AV PM H4 IM L 1 MN NS PI RO TN yy
CW FP HS IP LE MO OI PN ST TQ ZN

String registers used in - ms
AS CB DW EZ I KF MR R l RT TL
AB cc DY FA 1 1 KQ ND R2 so TM
AE CD E l FE I2 KS NH R3 S l TQ
AI CF E2 FJ 13 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP RS SG TT

, B CM E4 FN 15 LG OD RC SH UL
l C BG cs ES PO ID LP OK RE SM WB
2C BT CT EE FQ IE ME pp RF SN WH
A l c D EL FS IM MF PT RH SY WT
A2 C l DA EM FV IP MH py RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

\iJj

e

��
t
AU

l
AI

I(p

AE

l_

Figure 1

- 8 -

NH, SH

···--� .. •.

PP,,LP

J
text . . .

I

A Guide to Preparing
Documents with - ms

M. E. Lesk

Bell Laboratories August 1978

This guide gives some simple examples of do
cument preparation on Bell Labs computers,
emphasizing the use of the -ms macro pack
age. It enormously abbreviates information in
1 . Typing Documents on UNIX and GCOS, by

M. E. Lesk:
2. Typesetting Mathematics - User 's Guide,

by B: W. Kernighan and L. L. Cherry: and
3 . Tbl - A Program to Format Tables, by M.

E. Lesk.
These memos are all included in the UNIX
Programmer 's Manual, Volume 2. The new
user should also have A Tutorial Introduction to
the UNIX Text Editor, by B. W. Kernighan.

For more detailed information, read Advanced
Editing on UNIX and A Troff Tutorial, by B. W.
Kernighan, and (for experts) Nroff/Troff Refer
ence Manual by J. F. Ossanna. Information on
related commands is found (for UNIX users) in
UNIX for Beginners by B. W. Kernighan and
the UNIX Programmer 's Manual by K. Thomp
son and D. M. Ritchie.

Contents

A TM
A released paper
An internal memo, and headings .
Lists, displays, and footnotes
Indents, keeps, and double column
Equations and registers
Tables and usage

2
3
4
5
6
7
8

Throughout the examples, input is shown in
this Helvetica sans serif font

while the resulting output is shown in
this Times Roman font.

UNIX Document no. 1 1 1 1

2

Commands for a TM

.TM 1 978-5b3 99999 99999- 1 1
.NO Apri l 1 , 1 976
.TL
The Role of the Al len Wrench i n Modern
Electron ics
.AU "MH 2G- 1 1 1 " 2345
J . Q. Penci lpusher
.AU "MH 1 K-222" 5432
X. Y. Hardwired
.AI
.MH
.OK
Tools
Design
.AB
This abstract should be short enough to
fit on a s ingle page cover sheet.
It m ust attract the reader into sending for
the complete memorandum.
.AE
.cs 1 0 2 1 2 5 6 7
.NH
I ntroduction.
.PP
Now the first paragraph of actua l text ...

Last l ine of text.
.SG MH-1 234-JQP/XYH-unix
.NH
References ...

Commands not needed in a particular format are ig
nored.

@ Bell Laboratori� Cover Sheet for TM

This in/ormation is (or employees or Bell Laboratories. (G£1 13. 9-J)

Title- The Role of the Allen Wrench
in Modern Electronics

Other Keywords- Tools
Design

Date-April 1, 1976

TM- 1978-5b3

Author Location Ext. Charging Case- 99999
J. Q. Pencil pusher MH 20-1 1 1 2345 Filing Case- 99999a
X. Y. Hardwired MH 1K-222 5432

A BSTRACT

This abstract should be short enough to
fit on a single page cover sheet. It must
attract the reader into sending for the com
plete memorandum.

Pages Text 10 Other 2 Total 12

No. Figures 5 No. Tables 6 No. Refs. 7

E-1932-U (6-73> SEE REVERSE SIDE FOR DISTRIBUTION LIST

3

A Released Paper with Mathematics

.EO
de l im $$
.EN
.RP

. . . (as for a TM)

.CS 1 0 2 1 2 5 6 7

.NH
I ntroduction
.PP
The solution to the torque hand le equation
.EO (1)
sum from 0 to inf F (x sub i) = G (x)
. EN
is found with the transformation $ x = rho over
theta $ where $ rho = G prime (x) $ and $theta$
is derived ...

The Role of the Allen Wrench
in Modern Electronics

J. Q. Pencilpusher
X. Y. Hardwired
Bel l Laboratories

M urray Hi l l , New Jersey 07974

ABSTRACT
This abstract should be short enough to fit on a

single page cover sheet. I t must attract the
reader into sending for the complete memoran
dum.

April I , 1976

The Role of the Allen Wrench
in Modern Electronics

J. Q. Pencilpusher
X. Y. Hardwired

Bell Laboratories
Murray Hi l l , New Jersey 07974

1. Introduction
The solution to the torque handle equation = L,F(x,)=G(x) (I)

0
is found with the transformation x=t where p=G'(x) and

fJ is derived from well-known principles.

4

An Internal Memorandum

. 1M

.NO January 24, 1 956

.TL
The 1 956 Consent Decree
.AU
Able, Baker &
Charley, Attys .
. PP
Pla intiff, United States of America, having fi led
its complaint herein on January 1 4, 1 949; the
defendants having appeared and f i led their
answer to such complaint denying the
substantive a l legations thereof; and the parties,
_by their attorneys, ...

@
Bell Laboratories

Subject: The 1956 Consent Decree date: January 24, 1956

from: Able, Baker &
Charley, Attys.

Plaintiff. United States of America. having filed its com
plaint herein O il January 1 4, 1949: the defendants having
appeared and filed their answer to such complaint denying
the substantive allegations thereof: and the parties. by their
attorneys, having severally consented to the entry of this
Final Judgment without trial or adjudication of any issues
of fact or law herein and without this Final Judgment con
stituting any evidence or admission by any party in respect
of any such issues:

Now. therefore before any testimony has been taken
herein, and without trial or adjudication of any issue of fact
or law herein. and upon the consent of al l parties hereto. it
is hereby

·

Ordered. adjudged and decreed as follows:

I . [Sherman Act]
This Court has jurisdiction of the subject matter herein

and of all the parties hereto. The complaint states a claim
upon which relief may be granted against each of the
defendants under Sections I . 2 and 3 of the Act of
Congress of July 2; 1 890. enti tled "An act to protect trade
and commerce against unlawful restraints and monopo
lies .

. . commonly known as the Sherman Act, as amended.

II. [Definitions]
For the purposes of this Final Judgment:
(a) "Western" shall mean the defendant Western Elec

tric Company, I ncorporated.

O t her formats possible (specify before .TU are: .MR
(" memo for record") , .MF (" memo for fi le") , .EG
("engi neer's notes") and .TR (Computing Science
Tech. R eport) .

.NH
Introduction.
.PP
text text text

1 . Introduction
text text text

Headings

.SH
Appendix I
.PP
text text text

Appendix I
tex t tex t text

5

A Simple List

. IP 1 .
J. Penci l pusher and X. Hardwired,
. I
A New Kind of Set Screw,
.R
Proc. I EEE
. 8 75
(1 976), 23-255.
. I P 2.
H . Nai ls and R. I rons,
. I
Fasteners for Printed Circu it Boards,
.R
Proc. ASME
. 8 23
(1 974), 23-24.
.LP (terminates list)

1 . J . Pencil pusher and X . Hardwired, A New Kind
of Set Screw. Proc. IEEE 75 (1 976) , 23-255.

2. H. Nails and R. Irons, Fasteners for Printed Cir
cuit Boards. Proc. ASME 23 (1 974) , 23-24.

D isplays

text text text text text text
.OS
and now
for someth ing
completely different
.DE
text text text text text text

hoboken harrison newark roseville avenue grove
street east orange brick church orange highland ave
nue mountain station south orange maplewood
millburn short hills summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling mill ing
ton lyons basking ridge bernardsville far hills
peapack gladstone
Options: .OS L: left-adjust; .OS C: line-by-line
center; .OS 8: make block, then center.

Footnotes

Among the most important occupants
of the workbench are the long-nosed pl iers.
Without these basic tools*
.FS
• As first shown by Tiger & Leopard
(1 975).
.FE
few assembl ies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants of the work
bench are the long-nosed pliers. Without these basic
tools* few assemblies could be completed. They
may lack the popular appeal of the sledgehammer

• As first shown by Tiger & Leopard (1 975) .

6 .

Multiple Indents

This is ord inary text to point out
the marg ins of the page.
. l P 1 .
First level item
.RS
.IP a)
Second level.
. IP b)
Continued here with another second
level item, but somewhat longer .
. RE
. IP 2.
Return to previous value of the
indent ing at this point.
. I P 3.
Another
l i ne.

This is ordinary text to point out the margins of the
page.
1 . First level item

a) Second level.
b) Continued here with another second level

item, but somewhat longer.
2. Return to previous value of the indenting at this

point.
3. Another line.

Keeps

Lines bracketed by the fol lowing commands are kept
together, and will appear entirely on one page:

.KS not moved .KF may float
.KE through text .KE in text

Double Column

.TL
The Declaration of I ndependence
.2C
.PP
When in the course of human events, it becomes
necessary for one people to dissolve the
polit ical bonds which have connected them with
another, and to assume among the powers of the
earth the separate and equal station to which
the laws of Nature and of Nature's God entitle
them, a decent respect to the opin ions of

The Declaration of Independence

When in the course of they should declare the
human events, it be- causes which impel them
comes necessary for one to the separation.

·

people to dissolve the We hold these truths
political bonds which to be self-evident, that
have connected them all men are created
with another, and to as- equal , that they are en
sume among the powers dowed by their creator
of the earth the separate with certain unalienable
and equal station to rights, that among these
which the laws of Nature are life, liberty, and the
and of Nature's God en- pursuit of happiness.
title them, a decent That to secure these
respect to the opinions rights, governments are
of mankind requires that instituted among men,

7

Equations

A displayed equation is marked
with an equation number at the right margin
by adding an argument to the EO l ihe:
.EO (1 .3)
x sup 2 over a sup 2 - = - sqrt (p z sup 2 +qz +r l
.EN

A displayed equation is marked with an equation
number at the right margin by adding an argument
to the EQ line:

(1 .3)

.EO I (2.2a)
bold V bar sub nu·= -left [pi le (a above b above
c) right 1 + left [matrix (co l (A (1 1) above .
above .) col (. above . above .) col (. above .
above A (33))) right 1 cdot left [pi le (a lpha
above beta above gamma) r ight 1
.EN

_
=
[a] [A (1 1) . .] · [a]

vv b + . . . {3
c . . A (33) y

(2 .2a)

.EO L
F hat (ch i) - mark = · 1 del V I sup 2
.EN
.EO L
l ineup = - { left ({partial V) over (partial x) right)
) sup 2 + { left ({partial V) over {partial y) right
)) sup 2 ------ lambda - > in f
.EN

f<x> = IV V l 2

= 1 �-� r+r �.� r A-=

$ a dot $, $ b dotdot$, $ xi t i lde t imes y vee$:

a ' ii, g x.v. (with delim $$ on, see panel 3) .
See also the equations in the second table, panel 8 .

Some Registers You Can Change

Line length
. nr LL 7i

Title length
.nr LT 7i

Point size
.nr PS 9

Vertical spacing
.nr VS 1 1

Column width
.nr CW 3i

lntercolumn spacing
.nr GW .Si

Margins - head and foot
.nr HM .75i
.nr FM .75i

Paragraph indent
.nr PI 2n

Paragraph spacing
.nr PD 0

Page offset
.nr PO O.Si

Page heading
.ds CH Appendix

(center)
.ds RH 7-25-76

(right)
.ds LH Private

(left)
Page footer

.ds CF Draft
.ds LF . . 1
.ds RF s1m1 ar

Page numbers
.nr % 3

8

Tables

.TS (<iJ indicates a tab)
a l l box ;
c s s AT&T Common Stock
C C C
n n n .
AT&T Common Stock
Year <iJ Price <iJ Dividend
1 97 1 ® 4 1 -54 ® $2.60
2 (jJ 41 -54 (jJ 2. 70
3 (jJ 46-55 (jJ 2.87
4 ® 40-53 ®3.24
5 ® 45-52 ® 3.40

Year Price
! 97 1 4 1 -54

2 4 1 -54
3 46-55
4 40-53
5 45-52
6 5 1 -59

Dividend
$2.60
2 .70
2.87
3 .24
3 .40
.95*

6 ® 5 1 -59 ® .95* * (first quarter only)
.TE
* (first quarter on ly)

The meanings of the key-letters describing the align
ment of each entry are:

c center n numerical
r right-adjust a subcolumn
I left-adjust s spanned

The global table options are center, expand, box,
doublebox, a l lbox, tab (x) and l i nesize (n) .

.TS (with delim $$ on, see panel 3)
doublebox, center;
c c
I I .
Name <iJ Definit ion
.sp
Gamma ®$GAMMA (z) = int sub 0 sup inf \

t sup {z- 1) e sup -t dt$
Sine <iJ $sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error <iJ $ roman erf (z) = 2 over sqrt pi \

int sub 0 sup z e sup {-t sup 2) dt$
Bessel <D$ J sub 0 (z) = 1 over pi \

int sub 0 sup pi cos (z s in theta) d theta $
Zeta <D$ zeta (s) = \

sum from k = 1 to inf k sup -s --(Re·s > 1)$
.TE

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

f(:)= fo
""t= -le -' dt

sin(x)=.l._ (e" -e-") 2i
2 .J: : 2 erf(:) = - e -' dt .J1i 0

1 .J: 1T • lo(:)=- cos(: sin9)d9
1T 0

' (s)= I > -• (Re s > 1)
k = l

Usage

Documents with just text:
troff -ms fi les

With equations only:
eqn files I troff -ms

With tables only:
tbl fi les I troff -ms

With both tables and equations:
tbl fi les leqn l troff -ms

The above generates STA R E output on acos: replace
-st with - ph for typesetter output.

A System for Typesetting 1\'lathematics

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementation of a system for typesetting
mathematics. The language has been designed to be easy to learn and to use by people
(for example, secretaries and mathematical typists) who know neither mathematics nor
typesetting. Experience indicates that the language can be learned in an hour or so, for
it has few rules and fewer exceptions. For typical expressions, the size and font
changes, positioning, line drawing, and the like necessary to print according to
mathematical conventions are all done automatically. For example, the input

sum from i=O to infinity x sub i = pi over 2

produces

The syntax of the language is specified by a small context-free grammar; a
compiler-compiler is used to make a compiler that translates this language into typeset
ting commands. Output may be produced on either a phototypesetter or on a terminal
with forward and reverse half-line motions. The system interfaces directly with text
formatting programs, so mixtures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1 975.

1 . Introduction

"Mathematics is known in the trade as
d(fficult, or penalty, copy because it is slower,
more difficult, and more expensive to set in type
than any other kind of copy normally occurring
in books and journals." [1]

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fonts. An
expression such as

lim (tan x) •in 2' = 1 x-1T/2
requires an intimate mixture of roman, italic and
greek letters, in three sizes, and a special charac
ter or two. ("Requires" is perh�s the wrong
word, but mathematics has its own typographical
conventions which are quite different from those
of ordinary text.) Typesetting such an expression
by traditional methods is still an essentially
manual operation.

A second difficulty is the two dimensional

character of mathematics, which the superscript
and limits in the preceding example showed in its
simplest form. This is carried further by

b l
a o+------�-----b 2 a 1 +-----"----

b 3

and still further by

f aemx�:e -mx

a 2+----=--a 3+ . . .

1 fae mx _.Jb
----=-== log ..:-;::::::-----:...::=
2m M faemx +.Jb

1 t h -1 (fa "") ----- an - e ·
m M .Jb

-1 th-1 (
* lil t) --- co - e ·

m M .Jb

These examples also show line-drawing, built-up
characters like braces and radicals, and a spec
trum of positioning problems. (Section 6 shows

what a user has to type to produce these on our
system.) '

2. Photocomposition

Photocomposition techniques can be used
to solve some of the problems of typesetting
mathematics. A phototypesetter is .a device
which exposes a piece of photographic paper or
film, placing character� wherever they are
wanted. The Graphic Systems phototypesetter [2]
on the UNIX operating system [3] works by shin
ing light through a character stencil. The charac
ter is made the right size by lenses, and the light
beam directed by fiber optics to the desired place
on a piece of photographic paper. The exposed
paper is developed and typically used in some
form of photo-offset reproduction.

On UNIX, the phototypesetter is driven by
a formatting program called TROFF [4] . ::> TROFF
was designed for setting running text. It also
provides all of the facilities that one needs for
doing mathematics, such as arbitrary horizontal
and vertical motions, line-drawing, size changing,
but the syntax for describing these special opera
tions is difficult to learn, and difficult even for
experienced users to type correctly.

For this reason we decided to use TROFF
as an "assembly language," by designing a
language for describing mathematical expres
sions, and compiling it into TROFF.

3 . Language Design

The fundamental principle upon which we
based our language design is that the language
should be easy to use by people (for example,
secretaries) who know neither mathematics nor
typesetting.

This principle implies several things. First,
"normal" mathematical conventions about
operator precedence, parentheses, and the like
cannot be used, for to give special meaning to
such characters means that the user has to
understand what he or she is typing. Thus the
language should not assume, for instance, that
parentheses are always balanced, for they are not
in the half-open interval (a ,b] . Nor should it
assume that that .Ja +b can be replaced by
(a +b) •;,, or that 1 / (1 -x) is better written as
-1 - (or vice versa) .
1 -x

Second, there should be relatively few
rules, keywords, special symbols and operators,
and the like. This keeps the language easy to
learn and remember. Furthermore, there should
be few exceptions to the rules that do exist: if
something works in one situation, it should work
everywhere. If a variable can have a subscript,
then a subscript can have a subscript, and so on

- 2 -

without limit.
Third, "standard" things should happen

automatically. Someone who types
"x=y+z + 1 " should get "x=y +.:: + 1" . Sub
scripts and superscripts should automatically be
printed in an appropriately smaller size, with no
special intervention. Fraction bars have to be
made the right length and positioned at the right
height. And so on. Indeed a mechanism for
overriding default actions has to exist, but its
application is the exception, not the rule.

We assume that the typist has a reasonable
picture (a two-dimensional representation) of the
desired final form, as might be handwritten by
the author of a paper. We also assume that the
input is typed on a compt..er terminal much like
an ordinary typewriter. This implies an input
alphabet of perhaps 1 00 characters, none of them
special.

A secondary, but still important, goal in
our design was that the system should be easy to
implement, since· neither of the authors had any
desire to make a long-term project of it. Since
our design was not firm, it was also necessary
· that the program be easy to change at any time.

To make the program easy to build and to
change, and to guarantee regularity ("it should
work everywhere") , the language is defined by a
context-free grammar, described in Section 5.
The compiler for the language was built using a
compiler-compiler.

A priori, the grammar/ compiler-compiler
approach seemed the right thing to do. Our sub
sequent experience leads us to believe that any
other course would have been folly. The original
language was designed in a few days. Construc
tion of a working system sufficient to try
significant examples required perhaps a person
month. Since then, we have spent a modest
amount of additional time over several years
tuning, adding facilities, and occasionally chang
ing the language as users make criticisms and
suggestions.

We also decided quite early that we would
let TROFF do our work for us whenever possible.
TROFF is quite a powerful program , with a macro
facility, text and arithmetic variables, numerical
computation and testing, and conditional branch.
ing. Thus we have been able to avoid writing a
lot of mundane but tricky software. For exam
ple, we store no text strings, but simply pass
them on to TROFF. Thus we avoid having to
write a storage management package. Further
more, we have been able to isolate ourselves
from most details of the particular device and
character set currently in use. For example, we
let TROFF compute the widths of all strings of

characters; we need know nothing about them.
A third design goal is special to our

environment. Since our program is only useful
for typesetting mathematics, it is necessary that it
interface cleanly with the underlying typesetting
language for the benefit of users who want to set
intermingled mathematics and text (the usual
case) . The standard mode of operation is that
when a document is typed, mathematical expres
sions are input as part of the text, but marked by
user settable delimiters. The program reads this
input and treats as comments those things which
are not mathematics, simply passing them
through untouched. At the same time it con
verts the mathematical input into the necessary
TROFF commands. The resulting ioutput is
passed directly to TROFF where the comments
and the mathematical parts both become text
and/or TROFF commands.

4. The Language

We will not try to describe the language
precisely here; interested readers may refer to
the appendix for more details. Throughout this
section, we will write expressions exactly as they
are handed to the typesetting program
(hereinafter called "EQN") , except that we won't
show the delimiters that the user types to mark
the beginning and end of the expression. The
interface between EQN and TROFF is described at
the end of this section.

As we said, typing x=y+z + l should pro
duce x=y +z + l , and indeed it does. Variables
are made italic, operators and digits become
roman, and normal spacings between letters and
operators are altered slightly to give a more
pleasing appearance.

Input is free-form. Spaces and new lines
in the input are used by EQN to separate pieces
of the input; they are not used to create space in
the output. Thus

X y
+ z + 1

also gives x =y +z + l . Free-form input is easier
to type initially; subsequent editing is also easier,
for an expression may be typed as many short
lines.

Extra white space can be forced into the
output by several characters of various sizes. A
tilde " · " gives a space equal to the normal word
spacing in text; a circumflex gives half this
much, and a tab charcter spaces to the next tab
stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f (t)=21T J sin (wt)dt

. 3 .

we write

f(t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate
that sin. pi, int, and omega are special, and poten
tially worth special treatment. EQN looks up
each such string of characters in a table, and if
appropriate gives it a translation. In this case, pi
and omega become their greek equivalents, int
becomes the integral sign (which must be moved
down and enlarged so it looks "right") , and sin
is made roman, fol lowing conventional
mathematical practice. Parentheses, digits and
operators are automatically made roman wher
ever found.

Fractions are specified with the keyword
over:

a+b over c+d+e =

produces

a +b
c+d+e

Similarly, subscripts and superscripts are
introduced by the keywords sub and sup:

x2+y2=z 2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2's are necessary to mark
the end of the superscripts; similarly the keyword
sup has to be marked off by spaces or some
equivalent delimiter. The return to the proper
baseline is automatic. Multiple levels of sub
scripts or superscripts are of course allowed:
"x sup y sup z" is x v= . The construct "some
thing sub something sup something" is recog
nized as a special case, so "x sub i sup 2" is x,2

instead of x, 2.

More complicated expressions can now be
formed with these primitives:

fJ2l x2 v 2
-· = - +-·
fJx 2 a 2 b 2

is produced by

(partial sup 2 fl over (partial x sup 2)
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces 0 are used to group objects together; in
this case they indicate unambiguously what goes
over what on the left-hand side of the expres
sion. The language defines the precedence of sup
to be higher than that of over. so no braces are
needed to get the correct association on the right
side. Braces can always be used when in doubt
about precedence.

The braces convention is· an example of

the power of using a recursive grammar to define
the language. It is part of the language that if a
construct can appear in some context, then any
expression in braces can also occur in that con
text.

There is a sqrt operator for making square
roots of the appropriate size: "sqrt a+ b" pro
duces .Ja +b , and

is

x = (-b +- sqrt(b sup 2 -4ac } } over 2a

X
-b ± .Jb 2-4ac

2a

Since large radicals look poor on our typesetter,
sqrt is not useful for tall expressions.

Limits on summations, integrals and simi
lar constructions are specified with the keywords
from and to. To get

we need only type

sum from i = O to inf x sub i -> 0

Centering and making the ! big enough and the
limits smaller are all automatic. The from and to
parts are both optional, and the central part (e.g. ,
the !) can in fact be anything:

lim from (x -> pi /2 } (tan-x) = inf

is

lim (tan x)=oo x-1T/2
Again, the braces indicate just what goes into the

from part.
There is a facility for making braces,

brackets, parentheses, and vertical bars of the
right height, using the keywords le./; and right:

left [x+y over 2a right] -=- 1

makes

[\:y] = 1

A let; need not have a corresponding right. as we
shall see in the next example. Any characters
may follow l�f; and right, but generally only vari
ous parentheses and bars are meaningful.

Big brackets, etc., are often used with
another facility, called piles, which make vertical
piles of objects. For example, to get ! 1 if X > 0

sign (x) = 0 if x=O
-1 if x <O

- 4 -

we can type

sign (x) -= = - left (
rpile { 1 above 0 above - 1 }
--!pile {if above if above if}
--!pile (x >O above x = O above x < O}

The construction "left (" makes a left brace big
· enough to enclose the "rpile { . . . }" , which is a
right-justified pile of "above . . . above . . . ".
"!pile" makes a left-justified pile. There are also
centered piles. Because of the recursive language
definition, a pile can contain any number of ele
ments; any element of a pile can of course con
tain piles.

Although EQN makes a valiant attemp! to
use the right sizes and fonts, there are times
when the default assumptions are simply not
what is wanted. For instance the italic sign in the
previous example would conventionally be in
roman. Slides and transparencies often require
larger characters than normal text. Thus we also
provide size and font changing commands: "size
1 2 bold {A-x-=-y}" will produce A X = y.
Size is followed by a number representing a char
acter size in points. (One point is 1/72 inch; this
paper is set in 9 point type.)

If necessary, an input string can be quoted
in " . . . ", which turns off grammatical significance,
and any font or spacing changes that might oth
erwise be done on it. Thus we can say

lim- roman "sup" -x sub n = 0

to ensure that the supremum doesn't become a
superscript:

lim sup x,=O

Diacritical marks, long a problem in tradi
tional typesetting, are straightforward:

i +:r+Ji+X + Y=z +Z

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilities for globally chang
ing default sizes and fonts, for example for mak
ing viewgraphs or for setting chemical equations.
The language allows for matrices, and for lining
up equations at the same horizontal position.

Finally, there is a definition facility, so a
user can say

define name " . . . "
at any time in the document; henceforth , any
occurrence of the token "name" in an expres
sion will be expanded into whatever was inside
the double quotes in its definition . This lets
users tailor the language to their own

specifications, for it is quite possible to redefine
keywords like sup or over. Section 6 shows an
example of definitions.

The EQN preprocessor reads intermixed
text and equations, and passes its output to
TROFF. Since TROFF uses lines beginning with a
period as control words (e.g., ".ce" means
"center the next output line") , EQN uses the
sequence " .EQ" to mark the beginning of an
equation and " .EN" to mark the end. The
".EQ" and ".EN" are passed through to TROFF
untouched, so they can also be used by a
knowledgeable user to center equations, number
them automatically, etc. By default , however,
" .EQ" and " .EN" are simply ignored by TROFF,
so by default equations are printed in-line.

" .EQ" and " .EN" can be supplemented
by TROFF commands as desired; for example, a

.,. centered display equation can be produced with
the input:

.ce

.EQ
x sub i = y sub i . . .
.EN

Since it is tedious to type ".EQ" and
".EN" around very short expressions (sin"gle
letters, for instance) , the user can also define
two characters to serve as the left and right del
imiters of expressions. These characters are
recognized anywhere in subsequent text. For
example if the left and right delimiters have both
been set to "#", the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let x, , y and a be positive

Running a preprocessor is strikingly easy
on UNIX. To typeset text stored in file "f ", one
issues the command:

eqn f I troff

The vertical bar connects the output of one pro
cess (EQN) to the input of another (TROFF).

5. Language Theory

The basic structure of the language is not a
· particularly original one. Equations are pictured

as a set of "boxes," pieced together in various
ways. For example, something with a subscript
is just a box followed by another box moved
downward and shrunk by an appropriate amount.
A fraction is just a box centered above another
box, at the right altitude, with a line of correct
length drawn between them.

The grammar for the language is shown

- 5 -

below. For purposes of exposition, we have col
lapsed some productions. In the original gram
mar, there are about 70 productions, but many
of these are simple ones used only to guarantee
that some keyword is recognized early enough in
the parsing process. Symbols in capital letters
are terminal symbols; lower case symbols are
non-terminals, i .e. , syntactic categories. The
vertical bar I indicates an alternative; the brack
ets (] indicate optional material. A TEXT is a
string of non-blank characters or any string
inside double quotes; the other terminal symbols
represent l iteral occurrences of the corresponding
keyword.

eqn : box I eqn box

box : text
I { eqn }
I box OVER box
I SQRT box
I box SUB box I box SUP box
I (L I C I R] PILE (list }
I LEFT text eqn (RIGHT text]
I box (FROM box l (TO box]
I SIZE text box
I (ROMAN I BOLD I ITALIC] box
I box (HAT I BAR I DOT I DOTDOT I TILDE]
I DEFINE text text

list : eqn I list ABOVE eqn

text : TEXT

The grammar makes it obvious why there
are few exceptions. For example, the observa
tion that something can be replaced by a more
complicated something in braces is implicit in the
productions:

eqn : box I eqn box
box : text I (eqn }

Anywhere a single character could be used, any
legal construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

(a over b) over c

or is it

a over (b over c) ?

To answer questions like this, the grammar
is supplemented with a small set of rules that
describe the precedence and associativity of
operators. In particular, we specify (more or less
arbitrarily) that over associates to the left , so the
first alternative above is the one chosen. On the
other hand, sub and sup bind to the right,

because this is closer to standard mathematical
practice. That is, we assume X 0 b is x <a b l , not (xa) b .

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define sup to have a higher precedence than 2
over, so this construction is parsed as ab instead

1
of a

b .
Naturally, a user can always force a partic

ular parsing by placing braces around expres
sions.

The ambiguous grammar approach seems
to be quite useful. The grammar we use is small
enough to be easily understood, for it contains
none of the productions that would be normally
used for resolving ambiguity. Instead the sup
plemental information about precedence and
associativity (also small enough to be under
stood) provides the compiler-compiler with the
information it needs to make a fast, deterministic
parser for the specific language we want. When
the language is supplemented by the disambi
guating rules, it is in fact LR(l) and thus easy to
parse[5] .

The output code is generated as the input
is scanned. Any time a production of the gram
mar is recognized, (potentially) some TROFF
commands are output. For example, when the
lexical analyzer reports that it has found a TEXT
(i.e., a string of contiguous characters) , we have
recognized the production:

text : TEXT

The translation of this is simple. We generate a
local name for the string, then hand the name
and the string to TROFF, and let TROFF perform
the storage management. All we save is the
name of the string, its height, and its baseline.

As another example, the translation associ
ated with the production

is:

box : box OVER box

- 6 -

Width of output box =
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box =
slightly more than height of bottom input box

String describing output box =
move down;
move right enough to center bottom box;
draw bottom box .(i .e. , copy string for bottom box) ;
move up; move left enough to center top box;
draw top box (i.e., copy string for top box) ;
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally sim
ple semantic actions. Picruring the output as a
set of properly placed boxes makes the right
sequence of positioning commands quite obvi
ous. The main difficulty is in finding the right
numbers to use for esthetically pleasing position:
in g.

With a grammar, it is usually clear how to
extend the language. For instance, one of our
users suggested a TENSOR operator, to make
constructions like

k i
/,, T

Il l

Grammatically, this is easy: it is sufficient to add
a production like

box : TENSOR { list)
Semantically, we need only juggle the boxes to
the right places.

6. Experience

There are really three aspects of
interest-how well EQN sets mathematics, how
well it satisfies its goal of being "easy to use,"
and how easy i t was to build.

The first question is easily addressed. This
entire paper has been set by the program.
Readers can judge for themselves whether it is
good enough for their purposes. One of our
users commented that although the output is not
as good as the best hand-set material, it is still
better than average, and much better than the
worst. In any case, who cares ? Printed books
cannot compete with the birds and flowers of
illuminated manuscripts on esthetic grounds,
either, but they have some clear economic
advantages.

Some of the deficiencies in the output
could be cleaned up with more work on our part.
For example, we sometimes leave too much .a
space between a roman letter and an italic one. 8
If we were willing to keep track of the fonts
involved, we could do this better more of the

time.
Some other weaknesses are inherent in our

output device. It is hard, for instance, to draw a
line of an arbitrary length without getting a per
ceptible overstrike at one end.

As to ease of use, at the time of writing,
the system has been used by two distinct groups.
One user population consists of mathematicians,
chemists, physicists, and computer scientists.
Their typical reaction has been something like :
(1) It's easy to write, although I make the fol

lowing mistakes . . .
(2) How do I do . . . ?
(3) It botches the following things Why

don't you fix them ?
(4) You really need the following features . . .

The learning time is short. A few minutes
gives the general flavor, and typing a page or two
of a paper generally uncovers most of the
misconceptions about how i� works.

The second user group is much larger, the
secretaries and mathematical typists who were
the original target of the system. They tend to
be enthusiastic converts. They find the language
easy to learn (most are largely self-taught) , and
have little trouble producing the output they
want. They are of course less critical of the
esthetics of their output than users trained in
mathematics. After a transition period, most
find using a computer more interesting than a
regular typewriter.

The main difficulty that users have seems
to be remembering that a blank is a delimiter;
even experienced users use blanks where they
shouldn't and omit them when they are needed.
A common instance is typing

f(x sub i)

which produces

instead of

f (x,)

f (x,)
Since the EQN language knows no mathematics,
it cannot deduce that the right parenthesis is not
part of the subscript.

The language is somewhat prolix, but this
doesn't seem excessive considering ·how much is
being done, and it is certainly more compact than
the corresponding TROFF commands. For exam
ple, here is the source for the continued fraction
expression in Section 1 of this paper:

- 7 -

a sub 0 + b sub 1 over
{a sub 1 + b sub 2 over

{a sub 2 + b sub 3 over
{a sub 3 + . . .)))

This is the input for the large integral o f Section
1 ; notice the use of definitions:

define emx "{e sup mx)"
define mab " {m sqrt ab}"
define sa " {sqrt a}"
define sb " {sqrt b)"
int dx over {a emx - be sup -mx} - =
left { !pile {

1 over { 2 mab} -log-
{sa emx - sb} over {sa emx + sb}

above ·
1 over mab - tanh sup -1 (sa over sb emx)

above
-1 over mab - coth sup - 1 (sa over sb emx)

As to ease of construction, we have
already mentioned that there are really t>nly a
few person-months invested. Much of this time
has gone into two things-fine-tuning (what is
the most esthetically pleasing space to use
between the numerator and denominator of a
fraction ?) , and changing things found deficient
by our users (shouldn't a tilde be a delimiter?) .

The program consists of a number of
small, essentially unconnected modules for code
generation, a simple lexical analyzer, a canned
parser which we did not have to write, and some
miscellany associated with input files and the
macro facility. The program is now about 1 600
lines of C [6] , a high-level language reminiscent
of BCPL. About 20 percent of these lines are
"print" statements, generating the output code.

The semantic routines that generate the
actual TROFF commands can be changed to
accommodate other formatting languages and
devices. For example, in less than 24 hours, one
of us changed the entire semantic package to
drive NROFF, a variant of TROFF, for typesetting
mathematics on teletypewriter devices capable of
reverse line motions. Since many potential users
do not have access to a typesetter, but still have
to type mathematics, this provides a way to get a
typed version of the final output which is close
enough for debugging purposes, and sometimes
even for ultimate use.

7. Conclusions

We think we have shown that it is possible
to do acceptably good typesetting of mathematics
on a phototypesetter, with an input language that
is easy to learn and use and that satisfies many
users' demands. Such a package can be imple
mented in short order, given a compiler-compiler

and a decent typesetting program underneath.
Defining a language, and building a com

piler for it with a compiler-compiler seems like
the only sensible way to do business. Our
experience with the use of a grammar and a
compiler-compiler has been uniformly favorable.
If we had written everything into code directly,
we would have been locked into our original
design. Furthermore, we would have never been
sure where the exceptions and special cases were.
But because we have a grammar, we can change
our minds . readily and still be reasonably sure
that if a construction works in one place it will
work everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna,
the author of TROFF, for his willingness to
modify TROFF to make our task easier and for
his continuous assistance during the develop
ment of our program. We are also grateful to A.
V. Aho for help with language theory, to S. C.
Johnson for aid with the compiler-compiler, and
to our early users A. V. Aho, S. I. Feldman, S.
C. Johnson, R. W. Hamming, and M. D. Mcilroy
for their constructive criticisms.

References

[1] A Manual of Style. 1 2th Edition. Univer
sity of Chicago Press, 1 969. p 295.

[2] Model CIAIT Phototypesetter. Graphic Sys
tems, Inc., Hudson, N. H.

[3] Ritchie, D. M. , and Thompson, K. L.,
"The UNIX time-sharing system." Comm.
A CM 17. 7 (July 1 974) , 365-375.

(4] O�sanna, J. F., TROFF User's Manual.
Bell Laboratories Computing Science
Technical Report 54, "1977.

[5] Aho, A. V., and Johnson, S . C., "LR
Parsing." Camp. Surv. 6. 2 (June 1 974) ,
99- 1 24.

[6] B. W. Kernighan and D. M. Ritchie, The C
Programming Language. Prentice-Hall,
Inc., 1 978.

- 8 -

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user's guide for a system for typesetting mathematics, using the photo
typesetters on the UNIXt and GCOS operating systems.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line expres
sions like lim (tan x) sin 2x = 1 or display equations like

x-1T/2

G (z) = e '� G (z) = exp [L
S�k

I = II esk zk/k

k � l k � l

++S,z+ sl;' + . . ·] [!+ S�z'
+ :t�: + . . · I · . .

can be learned in an hour or so.
The language interfaces directly with the phototypesetting language TROFF, so mathemati

cal expressions can be embedded in the running text of a manuscript, and the entire document
produced in one process. This user's guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical
expressions on DASI and GSI terminals and Model 3 7 teletypes.

August 1 5, 1978

tUN IX is a Trademark of Bell Laboratories.

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
EQN is a program for typesetting

mathematics on the Graphics Systems pho
totypesetters on UNIX and GCOS. The EQN
language was designed to be easy to use by
people who know neither mathematics nor •
typesetting. Thus EQN knows relatively little
about mathematics. In particular,
mathematical symbols like + , x ,
parentheses, and so o n have no special
meanings. EQN is quite happy to set garbage
(but it will look good) .

EQN works as a preprocessor for the
typesetter formatter, TROFF[l] , so the nor
mal mode of operation is to prepare a docu
ment with . both mathematics and ordinary
text interspersed, and let EQN set the
mathematics while TROFF does the body of
the text.

On UNIX, EQN will also produce
mathematics on DASI and GSI terminals and
on Model 37 teletypes. The input is identi
cal, but you have to use the programs NEQN
and NROFF instead of EQN and TROFF. Of
course, some things won't look as good
because terminals don't provide the variety
of characters, sizes and fonts that a
typesetter does, but the output is usually
adequate for proofreading.

To use EQN on UNIX,

eqn files I troff

Gcos use is discussed in section 26.

2. Displayed Equations
To tell EQN where a mathematical

expression begins and ends, we mark it with
lines beginning .EQ and .EN. Thus if you
type the lines

.EQ
x=y+z
.EN

your output will look like

x=y+z

The .EQ and .EN are copied through
untouched� they are not otherwise processed
by EQN. This means that you have to take
care of things like centering, numbering,
and so on yourself. The most comn.on way
is to use the TROFF and NROFF macro pack
age package '-ms' developed by M. E.
Lesk [3] , which allows you to center, indent,
left-justify and number equations.

With the '-ms' package, equations are
centered by default. To left-justify an equa
tion, use .EQ L instead of .EQ. To indent it,
use .EQ I. Any of these can be followed by
an arbitrary 'equation number' which will be
placed at the right margin. For example,
the input

.EQ I (3. l a)
X = f(y/2) + y/2
.EN

produces the output

x= f(y/2) +y/2 (3. 1 a)

There is also a shorthand notation so
in-line expressions like 1r ; can be entered
without .EQ and .EN. We will talk about it in
section 1 9.

3. Input spaces
Spaces and newlines within an expres

sion are thrown away by EQN. (Normal text
is left absolutely alone.) Thus between .EQ
and .EN,

x=y+z

and

and

x = y + z

X = y
+ z

and so on all produce the same output

x=y+z

You should use spaces and newlines freely
to make your input equations readable and
easy to edit. In particular, very long lines
are a bad idea, since they are often hard to
fix if you make a mistake.

4. Output spaces
To force extra spaces into the output,

use a tilde ' ' - ' ' for each space you want:

x-=-y_ +_z

gives

x = y + z

You can also use a circumflex " A "., which
gives a space half the width of a tilde. It is
mainly useful for fine-tuning. Tabs may
also be used to position pieces of an expres
sion, but the tab stops must be set by TROFF
commands.

5. Symbols, Special Names, Greek
EQN knows some mathematical sym

bols, some mathematical names, and the
Greek alphabet. For example,

x = 2 pi int sin (omega t)dt

produces

x=21T Jsin (w t) dt

Here the spaces in the input are necessary
to tell EQN that int, pi, sin and omega are
separate entities that should get special
treatment. The sin, digit 2, and parentheses
are set in roman type instead of italic� pi and
omega are made Greek� and int becomes the
integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type J(p;) without leaving spaces
on both sides of the pi. As a result, EQN
does not recognize pi as a special word, and
it appears as f (pi) instead of j (?T) .

- 2 -

A complete list of EQN names appears
in section 23. Knowledgeable users can also
use TROFF four-character names for any
thing EQN doesn't know about, like \ (bs for
the Bell System sign @.
6. Spaces, Again

The only way EQN can deduce that
some sequence of letters might be special is
if that sequence is separated from the letters
on either side of it. This can be done by
surrounding a special word by ordinary
spaces (or tabs or

·
new lines) , as we did in

the previous section.
You can also make special words stand

out by surrounding them with tildes or
circumflexes:.

x-=-rpnnCsin-(-omega-c)-dt

is much the same as the last example,
except that the tildes not only separate the
magic words like sin, omega, and so on, but
also add extra spaces, one space per tilde:

x = 2 1T J sin (w t) dt

Special words can also be separated by
braces { } and double quotes " . . . ", which
have special meanings that we will see soon.

7. Subscripts and Superscripts
Subscripts and superscripts are

obtained with the words sub and sup.

x sup 2 + y sub k

gives

x2+Yk

EQN takes care of all the size changes and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces; x sub2 will give you
xsub2 instead of x2• Furthermore, don't
forget to leave a space (or a tilde, etc.) to
mark the end of a subscript or superscript.
A common error is to say something like

y = (x sup 2) + 1

which causes

y=(x2>+l

instead of the intended

y=(x2)+1

Subscripted subscripts and super
scripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

x sub i sup 2

is

x 2
I

Other than this special case, sub and
sup group to the right, so x sup y sub z

Yz t y means x , no x z·

8. Braces for Grouping
Normally, the end of a subscript or

superscript is marked simply by a blank (or
. tab or tilde, etc.) What if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces { and } to mark the beginning and
end of t!le subscript or superscript:

e sup {i omega t}

is

e tw/

Rule: Braces can always be used to force
EQN to treat something as a unit, or just to
make your intent perfectly clear. Thus:

x sub {i sub 1 } sup 2

is

with braces, but

is

x sub i sub 1 sup 2

X 2 ' I
which is rather different.

Braces can occur within braces if
necessary:

e sup { i pi sup {rho + 1 } }

is

- 3 -

The general rule is that anywhere you could
use some single thing like x, you can use an
arbitrarily complicated thing if you enclose it
in braces. EQN will look after all the details
of positioning it and making it the right size.

In all cases, make sure you have the
right number of braces. Leaving one out or
adding an extra will cause EQN to complain
bitterly.

Occasionally you will have to print
braces. To do this, enclose them in double
quotes, like " {" . Quoting is discussed in
more detail in section 14.

9. Fractions
To make a fraction, use the word over:

a+ b over 2c = 1

gives

a+b
=l

2c

The line is made the right length and posi
tioned automatically. Braces can be used to
make clear what goes over what:

{alpha + beta} over {sin (x) }

is
a+{3

sin (x)

What happens when there is both an over
and a sup in the same expression? In such
an apparently ambiguous case, EQN does the
sup before the over, so

-b sup 2 over pi

-b2 2
is -- instead of - b rr The rules which

1T'
decide which operation is done first in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

10. Square Roots
To draw a square root, use sqrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx +c}

is

Warning - square roots of tall quantities
look lousy, because a root-sign big enough
to cover the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2 }

is

Big square roots are generally better written
as something to the power V2 :

(a 2/ b 2) •;,

which is

(a sup 2 /b sub 2) sup half

11 . Summation, Integral, Etc.
Summations, integrals, and similar

constructions are easy:

sum from i =0 to {i = inf} x sup i

produces

Notice that we used braces to indicate where
the upper part i=oo begins and ends. No
braces were necessary for the lower part
i=O, because it contained no blanks. The
braces will never hurt, and if the .from and to
parts contain any blanks, you must use
braces around them.

The .from and to parts are both
optional, but if both are used, they have to
occur in that order.

Other useful characters can replace the
sum in our example:

int prod union inter

become, respectively,

I IT u n
Since the thing before the .from can be any
thing, even something in braces, .from-to can
often be used in unexpected ways:

lim from {n - > inf} x sub n =0

is

- 4 -

12. Size and Font Changes
By default, equations are set in 1 0-

point type (the same size as this guide) ,
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali
ant attempt to use esthetically pleasing sizes
and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, italic, bold
and fat. Like sub and sup, size and font
changes affect only the thing that follows
them, and revert to the normal situation at
the end of it. Thus

is

and

gives

bold x y

xy

size 14 bold x = y +

size 1 4 {alpha + beta}

X=y+a+�
As always, you can use braces if you want to
affect something more complicated than a
single letter. For example, you can change
the size of an entire equation by

size 1 2 { . . . }

Legal sizes which may follow size are
6, 7, 8, 9, 1 0, 1 1 , 1 2, 14, 1 6, 1 8, 20, 22, 24,
28, 36. You can also change the size by a
given amount� for example, you can say
size + 2 to make the size two points bigger,
or size -3 to make it three points smaller.
This has the advantage that you don't have
to know what the current size is.

If you are using fonts other than
roman, italic and bold, you can say font X
where X is a one character TROFF name or
number for the font. Since EQN is tuned for
roman, italic and bold, other fonts may not
give quite as good an appearance.

The fat operation takes the current
font and widens it by overstriking: fat grad is
V and fat {x sub t} is X;.

If an entire document is to be in a
non-standard size or font, it is a severe nui
sance to have to write out a size and font
change for each equation. Accordingly, you
can set a "global" size or font which

thereafter affects all equations. At the
beginning of any equation, you might say,
for instance,

. EQ
gsize 1 6
gfont R

.EN

to set the size to 1 6 and the font to roman
thereafter. In place of R, you can use any
of the TROFF font names. The size after
gsize can be a relative change with + or -.

Generally, gsize and gfont will appear at
the beginning of a document but they can
also appear thoughout a document: the glo
bal font and size can be changed as often as
needed. For example, in a footnote:!: you
will typically want the size of equations to
match the size of the footnote text, which is
two points smaller than the main text.
Don't forget to reset the global size at the
end of the footnote.

13. Diacritical Marks
To get funny marks on top of letters,

there are several words:

x dot X
x dotdot X
x hat X
x tilde X
x vee x
x dyad x
x bar X
x under �

The diacritical mark is placed at the right
height. The bar and under are made the
right length for the entire construct, as in
x+y+z; other marks are centered.

14. Quoted Text
Any input entirely within quotes

(11 • • • 11) is not subject to any of the font
changes and spacing adjustmeqts normally
done by the equation setter. This provides a
way to do your own spacing and adjusting if
needed:

*Like this one, in which we have a few random
expressions like x, and 1r2• The sizes for these
were set by the command gsize -2.

- 5 -

italic 11Sin(x) ll + sin (x)

is

sin(x) +sin(x)

Quotes are also used to get braces and
other EQN keywords printed:

is

and

is

II { size alpha } 11

{ size alpha }

roman II (size alpha } 11

{ size alpha }

The construction 1111 is often used as a
place-holder when grammatically EQN needs
something, but you don't actually want any
thing in your output. For example, to make
i-Ie, you can't just type sup 2 roman He
because a sup has to be a superscript on
something. Thus you must say

1111 sup 2 roman He

To get a literal quote use "\'" ' . TROFF
characters like \ (bs can appear unquoted,
but more complicated things like horizontal
and vertical motions with \ h and \ v should
always be quoted. (If you've never heard of
\ h and \ v, ignore this section.)

15. Lining Up Equations
Sometimes it's necessary to line up a

series of equations at some horizontal posi
tion, often at an equals sign. This is done
with two operations called mark and lineup.

The word mark may appear once at
any place in an equation. It remembers the
horizontal position where it appeared. Suc
cessive equations can contain one
occurrence of the word lineup. The place
where lineup appears is made to line up with
the place marked by the previous mark if at
all possible. Thus, for example, you can say

.EQ I
x + y mark = z
.EN
. EQ I
x lineup = 1
.EN

to produce

x+y=z

x=1

For reasons too complicated to talk about,
when you use EQN and •-ms', use either
.EQ I or .EQ L. mark and lineup don't work
with centered equations. Also bear in mind
that mark doesn't look ahead;

x mark = 1

x+y lineup =z

- 6 -

isn't going to work, because there isn't ·
room for the x+y part after the mark
remembers where the x is.

16. Big Brackets, Etc.
To get big brackets [1, braces { },

parentheses () , and bars I I around things,
use the left and right commands:

left { a over b + 1 right }
-=- left (c over d right)
+ left [e right 1

is

The res.ulting brackets are made big enough
to cover whatever they enclose. Other char
acters can be used besides these, but the are
not likely to look very good. One exception
is the floor and ceiling characters:

left floor x over y right floor
< = left ceiling a over b right ceiling

produces

Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because they are
made up of three, five, seven, etc. , pieces,
while brackets can be made up of two,

three, etc. Second, big left and right
parentheses often look poor, because the
character set is poorly designed .

The right part may be omitted: a " left
something" need not have a corresponding
"right something". If the right part is omit
ted, put braces around the thing you want
the left bracket to encompass. Otherwise,
the resulting brackets may be too large.

If you want to omit the left part, things
are more complicated, because technically
you can't have a right without a correspond
ing left. Instead you have to say

left '"' right)

for example. The left "" means a " left noth
ing". This satisfies the rules without hurt
ing your output.

17. Piles
There is a general facility for making

vertical piles of things; it comes in several
flavors. For example:

A - =- left [
pile { a above b above c }
-- pile { x above y above z }

right 1
wil l make

The elements of the pile (there can be as
many as you want) are centered one above
another, at the right height for most pur
poses. The keyword above is used to
separate the pieces; braces are used around
the entire list. The elements of a pile can
be as complicated as needed, even contain
ing more piles.

Three other forms of pile exist: /pile
makes a pile with the elements left-justified;
rpile makes a right-justified pile; and cpile
makes a centered pile, just like pile. The
vertical spacing between the pieces is some
what larger for /-, r- and cpiles than it is for
ordinary piles.

roman sign (x)- =
left {

!pile { 1 above 0 above -1 }
-- !pile
{irx > O above irx=O above irx < O}

makes

sign(x) = ��
-1

i f x>O
if x=O
if x < O

Notice the left brace without a matching
right one.

18. Matrices
It is also possible to make matrices.

For example, to make a neat array like

you have to type

matrix {

X; x2

Y; y2

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also
use !col or reo/ to left or right adjust
columns. Each column can be separately
adjusted, and there can be as many columns
as you like.

The reason for using a matrix instead
of two adjacent piles, by the way, is that if
the elements of the piles don't all have the
same height, they won't line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding
what spacing to use.

A word of warning about matrices -
each column must have the same number of
elements in it. The world will end if you get
this wrong.

19. Shorthand for In-line Equations
In a mathematical document, it is

necessary to follow mathematical conven
tions not just in display equations, but also
in the body of the text, for example by mak
ing variable names like x italic. Although
this could be done by surrounding the
appropriate parts with .EQ and .EN, the con
tinual repetition of .EQ and .EN is a nuisance.
Furthermore, with '-ms', .EQ and .EN imply
a displayed equation.

- 7 -

EQN provides a shorthand for short in
line expressions. You can define two char
acters to mark the left and right ends of an
in-line equation, and then type expressions
right in the middle of text lines. To set
both the left and right characters to dollar
signs, for example, add to the beginning of
your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things
like

Let $alpha sub i$ be the primary
variable, and let $beta$ be zero.
Then we can show that $x sub 1 $ is
$> =0$.

This works as you might expect - sp_aces,
newlines, and so on are significant in the
text, but not in the equation part itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that

II
something like L,x, does not interfere with

i=l
the lines surrounding it.

To turn off the delimiters,

.EQ
delim off
.EN

Warning: don't use braces, tildes,
circumflexes, or double quotes as delimiters
- chaos will result.

20. Definitions
EQN provides a facility so you can give

a frequently-used string of characters a
name, and thereafter just type the name
instead of the whole string. For example, if
the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

define xy 'x sub i sub 1 + y sub i sub 1 '

This makes .xy a shorthand for whatever
characters occur between the single quotes
in the definition. You can use any character

instead of quote to mark the ends of the
definition, so long as it doesn't appear inside
the definition.

Now you can use .xy like this:

.EQ
f(x) = xy . . .
.EN

and so on. Each occurrence of .xy will
expand into what it was defined as. Be care
ful to leave spaces or their equivalent
around the name when you actually use it,
so EQN will be able to identify it as special.

There are several things to watch out
for. First, although definitions can use pre
vious definitions, as in

. EQ
define xi ' x sub i '
define xi l ' xi sub 1 '
.EN

don 't define something in terms of itself A
favorite error is to say

define X ' roman X '

This is a guaranteed disaster, since X is now
defined in terms of itself. If you say

define X ' roman "X" '

however, the quotes protect the second X,
and everything works fine.

EQN keywords can be redefined. You
can make I mean over by saying

define I ' over '

or redefine over as I with

define over ' I '

If you need different things to print on
a terminal and on the typesetter, it is some
times worth defining a symbol differently in
NEQN and EQN. This can be done with
ndefine and tdefine. A definition made with
ndefine only takes effect if you are running
NEQN� if you use tdefine, the definition only
applies for EQN. Names defined with plain
define apply to both EQN and NEQN.

21. Local Motions
Although EQN tries to get most things

at the right place on the paper, it isn't per
fect, and occasionally you will need to tune
the output to make it just right. Small extra

- 8 -

horizontal spaces can be obtained with tilde
and circumflex. You can also say back n and
fwd n to move small amounts horizontally.
n is how far to move in 1 / l OO's of an em
(an em is about the width of the letter 'm' .)
Thus back 50 moves back about half the
width of an m. Similarly you can move
things up or down with up n and down n. As
with sub or sup, the local motiox{s affect the
next thing in the input, and this can be
something arbitrarily complicated if it is
enclosed in braces.

22. A Large Example
Here is the complete source for the

three display equations in the abstract of this
guide .

.EQ I
G(z)·mark =- e sup { In - G (z))
-=- exp left (
sum from k> = 1 {S sub k z sup k) over k right)
·=- prod from k > = 1 e sup {S sub k z sup k /k)
.EN
.EQ I
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2) over 2! + ... right)
left (1 + { S sub 2 z sup 2) over 2
+ { s sub 2 sup 2 z sup 4 r over { 2 sup 2 cdot 2! l
+ .. . right) . . .
.EN
.EQ I
lineup == sum from m > =0 left (
sum from
pile { k sub 1 ,k sub 2 , . . . , k sub m > ==0
above
k sub 1 +2k sub 2 + . . . +mk sub m = m)
{ S sub 1 sup {k sub 1)) over { 1 sup k sub 1 k sub 1 !) -
{ S sub 2 sup {k sub 2)) over { 2 sup k sub 2 k sub 2 !) -
.. .
{ S sub m sup {k sub m)) over {m sup k sub m k sub m !)
right) z sup m
.EN

23. Keywords, Precedences, Etc.
If you don' t use braces, EQN will do

operations in the order shown in this list.

dyad vee under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctua
tion marks, and these mathematical words
are converted to Roman font when encoun
tered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det '

These character sequences are recognized
·and translated as shown.

> =
< =
= =
' =
+

- >
<-

.,:.
±

< < <<
> > >>
inf · 00

partial 8
half 112
prime
approx
nothing
cdot
times
del
grad

, . . . ,
sum

int
prod
union
inter

X
\1
\1

I:
f
II
u
n

To obtain Greek letters, simply
them out in whatever case you want:

DELTA 6. iota
GAMMA f kappa K
LAMBDA A lambda A.
OMEGA n mu J.L
PHI <I> nu v

PI II omega (I)
PSI 'I' omicron 0

SIGMA l: phi 1J
THETA e pi 7r

UPSILON Y psi "'
XI - rho p =
alpha a sigma CT

spell

- 9 -

beta f3 tau 1'
chi X theta (}
delta () upsilon v
epsilon E xi �
eta 1) zeta '
gamma 'Y

These are all the words known to EQN
(except for characters with names) , together
with the section where they are discussed.

above 1 7, 1 8 I pile 1 7
back 2 1 mark 1 5
bar 1 3 matrix 1 8
bold 1 2 ndefine 20
ccol 1 8 over 9
col 1 8 pile 1 7
cpile 1 7 reo! 1 8
define 20 right 1 6
de lim 1 9 roman 1 2
dot 1 3 rpile 1 7
dotdot 1 3 size 1 2
down 2 1 sqrt 10
dyad 1 3 sub 7
fat 1 2 sup 7
font 1 2 tdefine 20
from 1 1 tilde 1 3
fwd 2 1 to 1 1
gfont 1 2 under 1 3
gsize 1 2 up 2 1
hat 1 3 vee 1 3
italic 12 , 4, 6
leo I 1 8 { l 8
left 1 6 " " 8, 14
lineup 1 5

24. Troubleshooting
If you make a mistake in an equation,

like leaving out a brace (very common) or
having one too many (very common) or
having a sup with nothing before it (com
mon) , EQN will tell you with the message

syntax error between lines x andy, .file z

where x and y are approximately the lines
between which the trouble occurred, and z is
the name of the file in question. The line
numbers are approximate - look nearby as
well. There are also self-explanatory mes
sages that arise if you leave out a quote or
try to run EQN on a non-existent file.

If you want to check a document
before actually printing it (on UNIX only) ,

eqn files >/dev/n ul l

wil l throw away the output but print the
messages.

If you use something like dollar signs
as delimiters, it is easy to leave one out.
This causes very strange troubles. The pro
gram checkeq (on GCOS, use ./checkeq
instead) checks for misplaced or missing
dollar signs and similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If
you get a message "word overflow" , you
have exceeded this limit. If you print the
equation as a displayed equation this mes
sage will usually go away. The message
"line overflow" indicates you have
exceeded an even bigger buffer. The only
cure for this is to break the equation into
two separate ones.

On a related topic, EQN does not break
equations by itself - you must split long
equations up across multiple lines by your
self, marking each by a separate .EQ EN
sequence. EQN does warn about equ,ations
that are too long to fit on one line.

25 . Use on UNIX
To print a document that contains

mathematics on the UNIX typesetter,

eqn files I troff

If there are any TROFF options, they go after
the TROFF part of the command. For exam
ple,

eqn files I troff -ms

To run the same document on the Gcos
typesetter, use

- 10 -

eqn files I troff -g (other options) I gcat

A compatible version of EQN can be
used on devices like teletypes and DASI and
GSI terminals which have half-line forward
and reverse capabilities. To print equations
on a Model 37 teletype, for example, use

neqn files I nroff

The language for equations recognized by
NEQN is identical to that of EQN, although of
course the output is more restricted.

To use a GSI or DASI terminal as the
output device,

neqn files I nroff -T x

where x is the terminal type you are using,
such as 300 or JOOS.

EQN and NEQN can be used with the
TBL program [2] for setting tables that con
tain mathematics. Use TBL before [N]EQN,
l ike this:

tbl files I eqn I troff
tbl files I neqn I nroff

26. Acknowledgments
We are deeply indebted to J. F.

Ossanna, the author of TROFF, for his wil
l ingness to extend TROFF to make our task
easier, and for his continuous assistance
during the development and evolution of
EQN. We are also grateful to A. V. Aho for
advi<;e on language design, to S. C. Johnson
for assistance with the Y ACC compiler
compiler, and to all 'the EQN users who have
made helpful suggestions and criticisms.

References

[1] J. F. Ossanna, "NROFF/TROFF User's
Manual" , Bell Laboratories Computing
Science Technical Report #54, 1976.

[2] M. E. Lesk, "Typing Documents on
UNIX" , Bell Laboratories, 1976.

[3] M. E. Lesk, "TBL - A Program for
Setting Tables" , Bell Laboratories
Computing Science Technical Report
#49, 1976.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Tbl is a document formatting preprocessor for tro.ff or nro.ff which makes
even fairly complex tables easy to specify and enter. It is available on the PDP
I I UNIX* system and on Honeywell 6000 acos. Tables are made up of columns
which may be independently centered, right-adjusted, left-adjusted, or aligned
by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations, or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the table, and
any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions of dollars)

State Taxes Money Net collected spent
New York 22.91 2 1 .35 - 1 .56
New Jersey 8 .33 6.96 - 1 .37
Connecticut 4. 1 2 3 . 1 0 - 1 .02
Maine 0.74 0.67 -0.07
California 22.29 22.42 + 0. 1 3
New Mexico 0.70 1 .49 + 0.79
Georgia 3.30 4.28 + 0.98
Mississippi 1 . 1 5 2.32 + 1 . 1 7
Texas 9.33 1 1 . 1 3 + 1 .80

January 1 6, 1 979

• UNIX is a Trademark/Service Mark of the Bell System

Introduction.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Tbl turns a simple description of a table into a tro.ff or nroff [1] program (list of com
mands) that prints the table. Tbl may be used on the PDP- 1 1 UNIX [2] system and on the
Honeywell 6000 GCOS system. It attempts to isolate a portion of a job that it can successfully
handle and leave the remainder for other programs. Thus tbl may be used with the equation
formatting program eqn [3] or various layout macro packages [4,5,6] , but does not duplicate
their functions.

This memorandum is divided into two parts. First we give the rules for preparing tbl
input; then some examples are shown. The description of rules is precise but technical, and the
beginning user may prefer to read the examples first; as they show some common table
arrangements. A section explaining how to invoke tbl precedes the examples. To avoid repeti
tion , henceforth read tro.ffas "tro.ffor nro.{f. "

The input to tbl is text for a docum{!nt, with tables preceded by a " . TS" (table start)
command and followed by a " . TE." (table end) command. Tbl processes the tables_, generating
tro.ff formatting commands, and leaves the remainder of the text unchanged. The " . TS" and
" . TE" lines are copied, too, so that tro.ff page layout macros (such as the memo formatting
macros [4]) can use these lines to delimit and place tables as they see fit . In particular, any
arguments on the " . TS" or " . TE" lines are copied but otherwise ignored, and may be used by
document layout macro commands.

The format of the input ·is as follows:

text
.TS
table
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
options ;
format .
data
.TE

Each table is independent, and must contain formatting information followed by the data to be
entered in the table. The formatting information, which describes the individual columns and
rows of the table, may be preceded by a few options that affect the entire table. A detailed
description of tables is given in the next section.

- 2 -

Input commands.
As indicated above, a table contains, first, global option�, then a format section describing

the layout of the table entries, and then the data to be printed. The format and data are always
required, but not the options. The various parts of the teble are entered as follows:

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this
line must follow the . TS line immediately and must contain a list of option names
separated by spaces, tabs, or commas, and must be terminated by a semicolon. The
allowable options are:

center - center the table (default is left-adjust) ;

expand
box
all box

- make the table as wide as the current line length;
- enclose the table in a box;
- enclose each item in the table in a box;

doublebox - enclose the table in two boxes;
tab (x) - use x instead of tab to separate data items.
linesize (n) - set lines or rules (e.g. from box) in n point type;
delim (xy) - recognize x and y as the eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate "need"
(. ne) commands. These requests are calculated from the number of lines in the tables,
and if there are spacing commands embedded in the input, these requests may be inaccu
rate; use normal troffprocedures, such as keep-release macros, in that case. The user who
must have a multi-page boxed table should use macros designed for this purpose, as
explained below under 'Usage. '

2) FoRMAT. The format section of the table specifies the layout of the columns. Each line
in this section corresponds to one line of the table (except that the last line corresponds to
all following lines up to the next . T &, if any - see below) , and each line contains a key
letter for each column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. Each key-letter is one of the following:

L or I to indicate a left-adjusted column entry;

R or r
C or c
N or n

A or a

S or s

to indicate a right-adjusted column entry;
to indicate a centered column entry;
to indicate a numerical column entry, to be aligned with other numerical
entries so that the units digits of numbers line up;

to indicate an alphabetic subcolumn; all corresponding entries are aligned on
the left, and positioned so that the widest is centered within the column (see
example on page 1 2) ;

to indicate a spanned heading, i . e . to indicate that the entry from the previous
column continues across this column (not allowed for the first column, obvi
ously) ; or
to indicate a vertically spanned heading, i .e . to indicate that the entry from the
previous row continues down through this row. (Not allowed for the first row
of the table, obviously) .

When numerical alignment is specified, a location for the decimal point is sought. The
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining
a digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is
centered in the column. However, the special non-printing character string \& may be
used to override unconditionally dots and digits, or to align alphabetic data; this string
lines up where a dot normally would, and then disappears from the final output. In the
example below, the items shown at the left will be aligned (in a numerical column) as

shown on the right:

- 3 -

13
4 . 2
26 .4 . 1 2
abc
abc\&
43\&3 . 22
749 . 12

13
4 . 2

26 .4 . 12
abc

abc
433 .22

749 . 12

Note: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider L or r items (L is used instead of I for
readability; they have the same meaning as key-letters) . Alignment within the numerical
items is preserved. This is similar to the behavior of a type data, as explained above.
However, alphabetic subcolumns (requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this.
This is not true for n type entries.
Warning: the n and a items should not be used in the same column.
For readability, the key-letters describing each column should be separated by spaces.
The end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple for
mat might appear as:

c s s
I n n .

which specifies a table of three columns. The first line of the table contains a heading cen
tered across all three columns; each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data. A sample table in this format
might be:

Overall title
Item-a 34.22 9. 1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:
Horizontal lines - A key-letter may be replaced by '_' (underscore) to indicate a hor

izontal line in place of the corresponding column entry, or by ' = ' to indicate a dou
ble horizontal line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is ignored and a warn
ing message is printed.

Vertical lines - A vertical bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edge of the table. If two vertical bars appear between key-letters, a double vertical
line is drawn.

Space between columns - A number may follow the key-letter. This indicates the
amount of separation between this column and the next column. The number nor
mally specifies the separation in ens (one en is about the width of the letter 'n ') . * If
the "expand" option is used, then these numbers are multiplied by a constant such
that the table is as wide as the current line length. The default column separation

• More precisely, an en is a number of points (1 point = 1/72 inch) equal to half the current type size.

- 4 -

number is 3. If the separation is changed the worst case (largest space requested)
governs.

Vertical spanning - Normally, vertically . spanned items extending over several rows of
the table are centered in their vertical range. If a key-letter is followed by t or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman) . All font names
are one or two letters; a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b, I, and i are shorter synonyms for
fB and fl. Font change commands given with the table entries override these
specifications.

Point size changes - A key-letter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The number may be a
signed digit, in which case it is taken as an increment or decrement from the current
point size. If both a point size and a column separation value are given, one or
more blanks must separate them.

Vertical spacing changes - A key-letter may be followed by the letter v or V and a
number to indicate the vertical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit, in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation value must be separated by blanks or some other specification from a
vertical spacing request. This request has no effect unless the corresponding table
entry is a text block (see below) .

Column width indication - A key-letter may be followed py the letter w or W and a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w, the larg
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value, its width is used. The width is also used as a default
line length for included text blocks. Normal troff units can be used to scale the
width value; if none are used, the default is ens. If the width specification is a unit
less integer the parentheses may be omitted. If the width value is changed in a
column, the last one given controls.

Equal width columns - A key-letter may be followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Note: The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

np l 2w(2 . 5i)fl 6
Alternative notation - Instead of listing the format of successive lines of a table on con

secutive lines of the format section, successive line formats may be given on the
same line, separated by commas, so that the format for the example above might
have been written:

c s s, I n n .
Default - Column descriptors missing from the end of a format line are assumed to be

L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

- 5 -

3) DATA. The data for the table are typed after the format. Normally, each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac
ter is \ is combined with the following line (and the \ vanishes) . The data for different
columns (the table entries) are separated by tabs, or by whatever character has been
specified in the option tabs option. There are a few special cases :

Troff commands within tables - An input line beginning with a ' . ' followed by anything
but a number is assumed to be a command to troffand is passed through unchanged,
retaining its position in the table. So, for example, space within a table may be pro
duced by " .sp" commands in the data.

Full width horizontal lines - An input line containing only the character _ (underscore)
or = (equal sign) is taken to be a single or double line, respectively, extending the
full width of the table.

Single column horizontal lines - An input table entry containing only the character _ or =
is taken to be a single or double line extending the full width of the column. Such
lines are extended to meet horizontal or vertical lines adjoining this column. To
obtain these characters explicitly in a column, either precede them by \& or follow
them by a space before the usual tab or newline.

Short horizontal lines - An input table entry containing only the string _ is taken to be a
single line as wide as the contents of the column. It is not extended to meet adjoin
ing lines.

Repeated characters - An input table entry containing only a string of the form \Rx
where x is any character is replaced by repetitions of the character x as wide as the
data in the column. The sequence of x 's is not extended to meet adjoining
columns.

Vertically spanned items - An input table entry containing only the character string \" wP indicates that the table entry immediately above spans downward over this row. It is "iifJ
equivalent to a table format key-letter of ' A ' .

Text blocks - In order to include a block of text as a table entry, precede i t by T{ and
follow it by T}. Thus the sequence

. . . T{
block of
text

, T} . . .
is the way to enter, as a single entry in the table, something that cannot con
veniently be typed as a simple string between tabs. Note that the T} end delimiter
must begin a line; additional columns of data may follow after a tab on the same
line. See the example on page 10 for an illustration of included text blocks in a
table. If more than twenty or thirty text blocks are used in a table, various limits in
the tro.ffprogram are likely to be exceeded, producing diagnostics such as 'too many
string/macro names' or 'too many number registers. '
Text blocks are pulled out from the table, processed separately by troff, and replaced
in the table as a solid block. If no line length is specified in the block of text itself,
or in the table format, the default is to use L x C I (N + 1) where L is the current line
length, C is the number of table columns spanned by the text, and N is the total
number of columns in the table. The other parameters (point size, font, etc.) used
in setting the block of text are those in effect at the beginning of the table (including
the effect of the •: . TS" macro) and any table format specifications of size, spacing
and font, using the p, v and f modifiers to the column key-letters. Commands
within the text block itself are also recognized, of course. However, troff commands
within the table data but not within the text block do not affect that block.

4)

- 6 -

Warnings: - Although any number of lines may be present in a table, only the first 200
lines are used in calculating the widths of the various columns. A multi-page table,
of course, may be arranged as several single-page tables if this proves to be a prob
lem. Other difficulties with formatting may arise because, in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the " . TS" command was encountered, except for font and size changes indi
cated (a) in the table format section and (b) within the table data (as in the entry
\s+ 3\fldata\fP\s0) . Therefore, although arbitrary rro.ffrequests may be sprinkled in
a table, care· must be taken to avoid confusing the width calculations: use requests
such as • .ps' with care.

ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi
lar lines, as with sub-headings or summarizations, the " . T & " (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS
options ;
format .
data

.T&
format .
data
.T&

format .
data
.TE

as in the examples on pages 10 and 1 2. Using this procedure, each table line can be close
to its corresponding format line.
Warning: it is not possible to change the number of columns, the space between columns.
the global options such as box, or the selection of columns to be made equal width.

Usage.
On UNIX, tbl can be run on a simple table with the command

tbl input-file I troff

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables, the normal command would be

tbl file-1 file-2 . • . I eqn I troff -ms

and, of course, the usual options may be used on the tro.ffand eqn commands. The usage for
nroffis similar to that for tro.ff, but only TELETYPE® Model 37 and Diablo-mechanism (DASI or
GSI) terminals can print boxed tables directly.

For· �he convenience of users employing line printers without adequate driving tables or
post-filters, t here is a special - TX command line option to rbl which produces output that does
not have fractional line motions in it. The only other command line options recognized by rbl
are -ms and -mm which are turned into commands to fetch the corresponding macro files:
llSUally it is more convenient to place these arguments on the rrqff part of the command line.
but they are accepted by rbl as well.

Note that when eqn and tbl are used together on the same file rbl should be used first . If
there are no equations within tables, either order works, but it is usually faster to run rbl first.
since eqn normally produces a larger expansion of the input than rbl. However. if there are
equations within tables (using the delim mechanism in eqn) , rbl must be first or the output will
be scrambled. Users must also beware of using equations in n-style columns: this is nearly

- 7 -

always wrong, since tbl attempts to split numerical format items into two parts and this is not
possible with equations. The user can defend against this by giving the delim(xxJ table option�
this prevents splitting of numerical columns within the delimiters. For example, if the eqn del
imiters are $$, giving delim($$) a numerical column such as " 1 245 $ +- 1 6$" will be divided
after 1 245, n9t after 1 6.

·

Tbl limits tables to twenty columns� however, use of more than 1 6 numerical columns
may fail because of limits in troff, producing the 'too many number registers' message. Troff
number registers used by tbl must be avoided by the user within tables� these include two-digit
names from 3 1 to 99, and names of the forms #x, x+ , x l .Ax, and x-, where x is any lower
case letter. The names ##, #-, and #A are also used in certain circumstances. To conserve
number register names, the n and a formats share a register; hence the restriction above that
they may not be used in the same column.

For aid in writing layout macros; tbl defines a number register TW which is the table
· width; it is defined by the time that the " . TE" macro is invoked and may be used in the

expansion of that macro. More importantly, to assist in laying out multi-page boxed tables the
macro T# is defined to produce the bottom lines and side lines of a boxed table, and then
invoked at its end. By use of this macro in the page footer a multi-page table can be boxed. In
particular, the ms macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the " . TS" macro. If the table start macro is written

.TS H
a line of the form

.TH ·
must be given in the table after any table heading (or at the start if none) . Material up to the
" . TH" is placed at the top of each page of table� the remaining lines in the table are placed on
several pages as required. Note that this is not a feature of tb/, but of the ms layout macros.

Examples.
Here are some examples illustrating features of tbl. The symbol (il in the input 4l represents a tab character.

Input :

.TS
box;
C C C
I l l .
Language (il Authors <il Runs on

Fortran (il Many <i> Almost anything
PL/1 (fl IBM (fl 360/ 3 70
C (fl BTL (fl 1 1/45,H6000,370
BLISS (f) Carnegie-Mellon (fl PDP-10, 1 1
IDS (il Honeywell (il H6000
Pascal (f) Stanford <i> 370
.TE

Output:

Language

Fortran
PL/ 1
c
BLISS
IDS
Pascal

Authors Runs on

Many Almost anything
IBM 360/370
BTL 1 1/45,H6000,370
Carnegie-Mellon PDP- 10, 1 1
Honeywell H6000
Stanford 370

- 8 -

Input :

.TS
all box;
c s s
C C C
n n n .
AT&T Common Stock
Year <I> Price <I> Dividend
1971 <I>41-54 <I>$2 .60
2 <I> 41-54<I>2 . 70
3 <I>46-55 <I>2 . 87
4<I>40-53 <I>3 . 24
5 <I>45-52 <I> 3 .40
6 <I> 5 1-59 <I> . 95*
.TE
* (first quarter only)

Input:

.TS
box;
c s s
c l c l c
l l l l n .
Major New York Bridges

Bridge <I> Designer <I> Length

Brooklyn <I> J . A. Roebling <I> 1 595
Manhattan <I> G. Lindenthal <I> 14 70
Williamsburg <I> L . L . Buck <I> 1600

Queensborough <I> Palmer & <I> 1 1 82
<I> Hornbostel

<I> <I> 1 380
Triborough <I> 0 . H . Ammann <I>_
<I> <I> 383

Bronx Whitestone <I> 0. H . Ammann.<I> 2300
Throgs Neck <I> 0 . H . Ammann <I> 1 800

Output :

AT&T Common Stock .
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 5 1-59 .95*

* (first quarter only)

Output:

Major New York Bridges
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck
Queens borough Palmer &

Hornbostel

Triborough 0. H. Ammann

Bronx Whitestone 0. H. Ammaim
Throgs Neck 0. H. Amma11n
George Washington 0. H. Ammann

George Washington <I> 0 . H . Ammann <I> 3 500
.TE

Length
1 595
1470
1600
1 1 82

1380

383
2300
1800
3500

Input :

.TS
c c
np-2 1 n I .
(J) Stack
(J)_
1 (J) 46
(J)_
2 (J) 23
(J)_
3 <1) 1 5
(J)_
4 <1) 6 . 5
(J)_
5 <1) 2 . 1
(J)_
.TE

Input :

.TS
box;
L L L
L L
L L jiB
L L
L L L .
january (J) february (J) march
april <I> may
june (J)july <I> Months
august <I> september
october (J) november <I> december
.TE

- 9 -

Output:

Stack
46

2 23
3 1 5
4 6.5
5 2. 1

Output:

january
april
june
august
october

february march
may

1 . july Months
september
november december

- 1 0 -

Output: Input :

.TS
box;

Composition of Foods

cfB s s s .
Composition of Foods

.T&
c I c s s
c I c s s
c I c I c I c .
Food � Percent by Weight
\A �
\A � Protein �Fat � Carbo
\ A

(J)
\A �\A �hydrate

-
.T&
I I n I n I n .
Apples � . 4 � . 5 � 1 3 .0
Halibut � 1 8 .4 � 5 .2 � .
Lima beans � 7 . 5 � . 8 � 22 . 0
Milk � 3 . 3 � 4 .0 � 5 . 0
Mushrooms <D 3 . 5 <D . 4 <D 6 . 0
Rye bread (i) 9 . 0 <D . 6 <D 52 .7
.TE

Input:

.TS
all box;
cfl s s
c cw(l i) cw(l i)
lp9 lp9 lp9 .
New York Area Rocks
Era <D Formation (!) Age (years)
Precambrian � Reading Prong � > 1 billion
Paleozoic <D Manhattan Prong <D 400 million
Mesozoic � T {
.na
Newark Basin, incl .
Stockton , Lockatong, and Brunswick
formations; also Watchungs
and Palisades .
T} <D 200 million
Cenozoic <D Coastal Plain (j) T {
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation .
. ad
T}
.TE

Food

Apples
Halibut
Lima beans
Milk
Mushrooms
Rye bread

Output:

Era
Precambrian
Paleozoic
Mesozoic

Cenozoic

Percent by Weight

Protein Carbo-Fat hydrate
.4 . 5 1 3 .0

1 8.4 5 .2 . . .
7 .5 .8 22.0
3 . 3 ,;. 4.0 5.0
3 .5 .4 6.0
9.0 .6 52.7

New York Area Rocks
Formation Age (years)

Reading Prong > 1 billion
Manhattan Prong 400 million
Newark Basin , 200 million
incl. Stockton,
Lockatong, and
Brunswick for-
mations; also
Watchungs and
Palisades.
Coastal Plain On Long Island

30,000 years;
Cretaceous sedi-
ments redepo-
sited by recent
glaciation .

Input :

. EQ
delim $$
. EN

- 1 1 -

Output :

Name

Gamma

Sine

Error

Definition

r (z)= fo=r=-le-' dt
sin (x)=..!. (e':x -e-ix)

2 i
2 r = 2 erf(z)= .,;; Jo e-' dt .TS

doublebox;
c c Bessel 1 .J:7T J0(z)=- cos(zsin9)d9

7T 0
I I .
Name (f) Definition
. sp
. vs + 2p

Zeta
00

' (s)= l: k-s (Re s > l)
k-1

Gamma (f) $GAMMA (z) = int sub 0 sup inf t sup {z- 1) e sup -t dt$
Sine (f) $sin (x) = 1 over 2i (e sup ix - e sup -ix) $
Error (f) $ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup { -t sup 2) dt$
Bessel (f) $ J sub 0 (z) = 1 over pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta (f) $ zeta (s) = sum from k = 1 to inf k sup -s -- (Re-s > 1) $
.vs -2p
.TE

Input :

.TS

Output:

Readability of Text
box, tab (:) ;
cb s s s s
cp-2 s s s s
c I I c I c I c I c
c I I c I c I c I c

Line Width and Leading for 10-Point Type

r2 I I n2 I n2 I n2 I n .
Readability of Text
Line Width and Leading for 1 0-Point Type

Line : Set : 1 -Point : 2-Point : 4-Point
Width : Solid : Leading : Leading : Leading

9 Pica : \-9 . 3 : \-6 .0 : \-5 . 3 : \-7 . 1
1 4 Pica : \-4 . 5 : \-0 . 6 : \-0 . 3 : \- 1 . 7
19 Pica : \-5 .0 : \-5 . 1 : 0 . 0 : \-2 .0
3 1 Pica : \-3 . 7 : \-3 . 8 : \-2 .4 : \-3 . 6
43 Pica : \-9 . 1 : \-9 .0 : \-5 . 9 : \- 8 . 8
.TE

Line
Width
9 Pica

14 Pica
1 9 Pica
3 1 Pica
43 Pica

Set
Solid
- 9. 3
-4.5
- 5.0
-3 .7
-9 . 1

! -Point 2-Point 4-Point
Leading Leading Leading

- 6.0 -5.3 -7 . 1
-0.6 -0. 3 - 1 . 7
- 5 . 1 0.0 - 2.0
-3 . 8 -2.4 - 3 .6
- 9.0 -5.9 -8.8

Input:

.TS
c s
cip-2 s
I n
a n .
Some London Transport Statistics
(Year 1964)
Railway route miles (f) 244
Tube (f) 66
Sub-surface (f) 22
Surface (f) 1 56
.sp . 5
.T&
I r
a r .
Passenger traffic \- railway
Journeys (f) 674 million
Average length (f) 4. 55 miles
Passenger miles (f) 3 ,066 million
·.T&
I r
a r .
Passenger traffic \- road
Journeys (f) 2,252 million
Average length (f) 2 . 26 miles
Passenger miles (f) 5,094 million
.T&
I n
a n .
.sp . 5
Vehicles (f) 12 ,521
Railway motor cars (f) 2,905
Railway trailer cars (f) 1 ,269
Total railway (f) 4, 1 74
Omnibuses (f) 8,347
.T&
I n
a n .
. sp . 5
Staff (f) 73,739
Administrative, etc . (f) 5,582
Civil engineering (f) 5 , 134
Electrical eng . (f) 1 , 714
Mech . eng . \- railway (f)4,3 10
Mech . eng . \- road <J> 9, 1 52
Railway operations (f) 8, 930
Road operations <J> 35,946
Other (f) 2,971
.TE

- 1 2 -

Output:

Some London Transport Statistics
(Year 1 964)

Railway route miles
Tube
Sub-surface
Surface

Passenger traffic - railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

244
66
22

1 56

674 million
4.55 miles

3 ,066 million

2,252 million
2.26 miles

5,094 million

1 2,521
2,905
1 ,269
4, 174
8,347

73,739
5,582
5, 1 34
1 , 714
4,3 1 0
9 , 152
8,930

35,946
2,971

In {Jut:

. ps 8

.vs l Op

.TS
center box;
c s s
ci s s
c c c
lB 1 n .
New Jersey Representatives
(Democrats)
.sp . 5
Name <I> Office address <I> Phone
. sp . 5

- 1 3 -

James J . Florio <l> 23 S . White Horse Pike, Somerdale 08083 <I> 609-627-8222
William J . Hughes <I> 2920 Atlantic Ave . , Atlantic City 08401 <I> 609-345-4844
James J . Howard <l> 80 1 Bangs Ave . , Asbury Park 077 12 <I> 201-774- 1 600
Frank Thompson, Jr . <I> 10 Rutgers Pl . , Trenton 0861 8 <J> 609-599- 1 6 19
Andrew Maguire <I> 1 1 5 W. Passaic St . , Rochelle Park 07662 <I> 201 -843-0240
Robert A . Roe <l> U . S . P . O . , 1 94 Ward St . , Paterson 075 1 0 <I> 201-523-5152
Henry Helstoski <J> 666 Paterson Ave . , East Rutherford 07073 <l> 201 -939-9090
Peter W. Rodino, Jr . <J>Suite 1 435A, 970 Broad St . , Newark 07102 <l> 201 -645-32 1 3
Joseph G . Minish <I> 308 Main St . , Orange 07050 <I> 201 -645-6363
Helen S . Meyner <l> 32 Bridge St . , Lambertville 08530 <J> 609-397- 1 830
Dominick V. Daniels <I> 895 Bergen Ave . , Jersey City 07306 <I> 201-659-7700
Edward J . Patten <I> Natl . Bank Bldg . , Perth Amboy 08861 <I> 201-826-4610
. sp . 5
.T&
ci s s
IB I n .
(Republicans)
.sp .5v
Millicent Fenwick <l>41 N. Bridge St . , Somerville 08876 <J> 201 -722-8200
Edwin B. Forsythe <I> 301 Mill St . , Moorestown 08057 <I> 609-235-6622
Matthew J. Rinaldo <l> 1961 Morris Ave . , Union 07083 <I>20 1 -687-4235
.TE
.ps 1 0
.vs 1 2p

Output:

Name

James J. Florio
William J. Hughes
James J. Howard
Frank Thompson, Jr.
Andrew Maguire
Robert A. Roe
Henry Helstoski
Peter W. Rodino, Jr.
Joseph G. Minish
Helen S. Meyner
Dominick V. Daniels
Edward J. Patten

Millicent Fenwick
Edwin B. Forsythe
Matthew J. Rinaldo

- 1 4 -

New Jersey Representatives
(Democrats)

Office address

23 S. White Horse Pike, Somerdale 08083
2920 Atlantic Ave., Atlantic City 08401
801 Bangs Ave., Asbury Park 07712
10 Rutgers Pl., Trenton 08618
1 15 W. Passaic St. , Rochelle Park 07662
U.S.P.O., 194 Ward St., Paterson 07510
666 Paterson Ave., East Rutherford 07073
Suite 1435A, 970 Broad St., Newark 07102
308 Main St., Orange 07050
32 Bridge St., Lambertville 08530
895 Bergen Ave. , Jersey City 07306
Natl. Bank Bldg., Perth Amboy 08861

(Republicans)
41 N. Bridge St., Somerville 08876
301 Mill St., Moorestown 08057
1 961 Morris Ave., Union 07083

Phone

609-627-8222
609-345-4844
201-774- 1600
609-599- 1619
201-843-0240
201-523-5 1 52
201-939-9090
201-645-3213
201-645-6363
609-397-1 830
201-659-7700
201-826-4610

201-722-8200
609-235-6622
201-687-4235

This is a paragraph of normal text placed here only t
"
o indicate where the left and right margins

are. In this way the reader can judge the appearance of centered tables or expanded tables, and
observe how such tables are formatted.

Input :

.TS
expand;
c s s s
c c c c
l l n n .
Bell Labs Locations
Name <I> Address <I> Area Code <I> Phone
Holmdel <I> Holmdel , N . J . 07733 <I> 20 1 <I> 949-3000
Murray Hill (i) Murray Hill, N . J . 07974 <I> 201 (i) 582-6377
Whippany <I> Whippany, N. J. 0798 1 <I> 201 <I> 386-3000
Indian Hill <I> Naperville, Illinois 60540 <I> 3 1 2 <I> 690-2000
.TE

Output :

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 0798 1
Naperville, Illinois 60540

Area Code
201
201
201
3 1 2

Phone
949-3000
582-6377
386-3000
690-2000

Input:

.TS
box;
cb s s s
c I c I c s
ltiw(li) l 1tw(2i) l 1p8 l lw(l . 6i)p8 .
Some Interesting Places

Name <I> Description <I> Practical Information

T(
American Museum of Natural History
T }<l>T(

- 15 -

The collections fill l l .S acres (Michelin) or 25 acres (MT A)
of exhibition halls on four floors . There is a full-sized replica
of a blue whale and the world's largest star sapphire (stolen in 1964) .
T} <l> Hours<l> I0-5, ex . Sun l l-5, Wed . to 9
\ ·<I>\· <I> Location <I> T (
Central Park West & 79th St .
T}
\·<I> \· <I> Admission <I> Donation: $1 .00 asked
\·<I>\· <I> Subway <I> AA to 8 lst St .
\ ·<I>\· <I> Telephone <I> 212-873-4225

Bronx Zoo <I> T (·
About a mile long and . 6 mile wide, this is the largest zoo in America .
A lion eats 18 pounds
of meat a day while a sea lion eats 15 pounds of fish .
T} <I> Hours<l>T(
10-4:30 winter, to 5:00 summer
T}
\ ·<I>\· <I> Location <I> T(
!85th St . & Southern Blvd, the Bronx .
T}
\· <I>\· <I> Admission <I> $1 . 00, but Tu, We,Th free
\ "<I>\" <I> Subway<l>2, 5 to East Tremont Ave .
\· <I>\· <I> Telephone <I> 212-933- 1 759

Brooklyn Museum <l>T(
Five floors of galleries contain American and ancient art .
There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylvania Station .
T} <I> Hours <I> Wed-Sat, 10-5, Sun 12-5
\ ·<I>\· <I> Location <l>T(
Eastern Parkway & Washington Ave . , Brooklyn .
T}
\·<I>\· <I> Admission <I> Free
\· <I>\· <I> Subway<!> 2,3 to Eastern Parkway .
\ ·<I>\· <I> Telephone <I> 212-638-5000

T(
New-York Historical Society
T }<l>T(
All the original paintings for Audubon's
. I
Birds of America
. R
are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights .
T} <I> Hours<l>T(
Tues-Fri & Sun, 1-5; Sat 10-5
T}
\ ·<I>\· <I> Location <I> T (
Central Park West & 77th St .
T}
\·<I>\- <I> Admission <I> Free
\ "<I>\ "<!>Subway<!> AA to 8 1st St .
\ "<I>\ "<I> Telephone <I> 212-873-3400
.TE

{::·

- 1 6 -

Output:

Some Interesting Places
Name Description Practical Information

American Muse- The collections fill 1 1 . 5 acres Hours 10-5, ex. Sun 1 1-5, Wed. to 9
um of Natural (Michelin) or 25 acres (MT A) Location Central Park West & 79th St.
History of exhibition halls on four Admission Donation: $1 .00 asked

floors. There is a full-sized re- Subway AA to 81st St.
plica of a blue whale and the Telephone 21 2-873-4225
world's largest star sapphire
(stolen in 1 964) .

Bronx Zoo About a mile long and .6 mile - Hours 1 0-4:30 winter, to 5:00 summer
wide, this is the largest zoo in Location 1 85th St. & Southern Blvd, the
America. A liori. eats 1 8 Bronx.

pounds of meat a day while a Admission $1 .00, but Tu,We,Th free

sea lion eats 1 5 pounds of fish. Subway 2, 5 to East Tremont Ave.
Telephone 212-933- 1 759

Brooklyn Museum Five floors of galleries contain · Hours Wed-Sat, 1 0-5, Sun 12-5
American and ancient art. Location Eastern Parkway & Washington
There are American period Ave., Brooklyn.

rooms and architectural orna- Admission Free

ments saved from wreckers, Subway 2,3 to Eastern Parkway.

such as a classical figure from Telephone 2 12-638-5000

Pennsylvania Station.
New- York Histor- All the original paintings for Hours Tues-Fri & Sun, 1 -5; Sat 10-5
ical Society Audubon's Birds of America are Location Central Park West & 77th St.

here, as are exhibits of Ameri- Admission Free
can decorative arts, New York Subway AA to 8 1st St.
history, Hudson River school Telephone 21 2-873-3400
paintings, carriages, and glass
paperweights.

Acknowledgments.
Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted

with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent
on the work of the late J. F. Ossanna, whose assistance with this program in particular had been
most helpful. This program is patterned on a table formatter originally written by J. F. Gimpel.
The assistance of T. A. Dolotta, B. W. Kernighan , and J. N. Sturman is gratefully ack
nowledged.

References.
[1] J . F . Ossanna, NROFFITROFF User 's Manual, Computing Science Technical Report No. 54,

Bell Laboratories, 1 976.

[2] K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Comm. ACM. 17,
pp. 365-75 (1 974) .

[3] B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics ," Comm.
ACM. 18, pp. 1 5 1-57 (1975) .

[4] M . E. Lesk, Typing Documents on UNIX. UNIX Programmer's Manual, Volume 2.

- I 7 -

[5] M. E. Lesk and B. W. Kernighan, Computer Typesetting qf Technical Journals on UNIX, Proc.
AFIPS NCC, vol . 46, pp. 879-888 (1977) . .

[6] J. R. Mashey and D. W. Smith, "Documentation Tools and Techniques," Proc. 2nd Int.
Conf. on Sq{fware Engineering, pp. I 77- I 8 I (October, I 976) .

List of Tbl Command Characters and Words
Command Meaning Section
a A Alphabetic subcolumn 2
all box Draw box around all items 1
b B Boldface item 2
box Draw box around table I
c C Centered column 2
center Center table in page I
doublebox Doubled box around table I
e E Equal width columns 2
expand Make table full line width I
f F Font change 2
i I Italic item 2
I L Left adjusted column 2
n N Numerical column 2
nnn Column separation 2
p P Point size change 2
r R Ri�ht adjusted column 2
s s Spanned item 2
t T Vertical spanning at top 2
tab (x) Change data separator character I
T{ T} Text block 3
v V Vertical spacing change 2
w W Minimum width value 2
.xx Included trqffcommand 3
I Vertical line 2
I I · Double vertical line 2
A Vertical span 2
\" Vertical span 3

== Double horizontal line 2,3
Horizontal line 2 ,3

_ Short horizontal line 3
\Rx Repeat character 3

%%� !&.:!.�\:; '%;";:=)7

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.
The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, . . .) to search through

files of text, but most of them are based on a linear scan through the entire file, using some
deterministic automaton. This memorandum discusses a program which uses inverted indexes1
and can thus be used on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is
made, the files that have been indexed can not be changed without remaking the index. Thus
applications are restricted to those making many searches of relatively stable data. Further
more, these programs depend on hashing, and can only search for exact matches of whole key
words. It is not possible to look for arithmetic or logical expressions (e.g. "date greater than
1 970") or for regular expression searching such as that in lex.2

Currently there are two uses of this software, the refer preprocessor to format references,
and the /ooka/1 command to search through all text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs and their
uses. Section 2 explains the operation of the searching algorithm and describes the data col
lected for use with the looka/1 command. The more important application, refer has a user's
description in section 3. Section 4 goes into more detail on reference files for the benefit of
those who wish to add references to data bases or write new troff macros for use with refer. The
options to make refer collect identical citations, or otherwise relocate and adjust references, are
described in section 5. The UNIX manual sections for refer, looka/1, and associated commands
are attached as appendices.

2. Searching.
The indexing and searching process is divided into two phases, each made of two parts.

These are shown below.
A. Construct the index.

(1) Find keys - turn the input files into a sequence of tags and keys, where each tag
identifies a distinct item in the input and the keys for each such item are the strings
under which it is to be indexed.

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys,
the appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

tUNIX is a Trademark of Bell Laboratories.

1 . D. Knuth, The Art of Computer Programming: Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Mass.
(1977) . See section 6.5.

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39, Bell Laboratories, Mur
ray Hill, New Jersey (D).

- 2 -

(3) Search: Given some keys, look through the files prepared by the hashing and sort
ing facility and derive the appropriate tags.

(4) Deliver - Given the tags, find the original items. This completes the searching pro-
cess.

The first phase, making the index, is presumably done relatively infrequently. It should, of
course, be done whenever the data being indexed change. In contrast, the second phase,
retrieving items, is presumably done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code
which depends on the searching procedure. The search algorithm is involved only in steps (2)
and (3) , while knowledge of the actual data files is needed only by steps (1) and (4) . Thus it is
easy to adapt to different data files or different search algorithms.

To start with, it is. necessary to have some way of selecting or generating keys from input
files. For dealing with files that are basically English, we have a key-making program which
automatically selects words and passes them to the hashing and sorting program (step 2) . The
format used has one line for each input item, arranged as fol lows:

na:me:start,length (tab) key1 key2 key3 . . .

where name i s the file name, start i s the starting byte number, and length i s the number of
bytes in the entry.

These lines are the only input used to make the index. The first field (the file name, byte
position, and byte count) is the tag of the item and can be used to retrieve it quickly. Nor
mally, an item is either a whole file or a section of a file delimited by blank lines. After the
tab, the second field contains the keys. The keys, if selected by the automatic program, are any
alphanumeric strings which are not among the 100 most frequent words in English and which
are not entirely numeric (except for four-digit numbers beginning 19, which are accepted as
dates) . Keys are truncated to six characters and converted to lower case. Some selection is

needed if the original items are ver lrge. We normally just take the first n keys, with n less
than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a
complete English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and
sorted to produce an index. What is wanted, ideally, is a series of lists showing the tags associ
ated with each key. To condense this, what is actually produced is a list showing the tags asso
ciated with each hash code, and thus with some set of keys. To speed up access and further
save space, a set of three or possibly four files is produced. These files are:

File Contents
entry Pointers to posting file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under
each hash code. To speed up searching, the entry file is an array of pointers into the posting
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not
referred to by their complete tag, but just by an address in the tag file, which gives the com
plete tags. The key file is optional and contains a copy of the keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain
all items which were indexed under these keys. The query keys are hashed, and the pointers in
the entry file used to access the lists in the posting file. These lists are addresses in the tag file
of documents posted under the hash codes derived from the query. The common items from

- 3 -

all lists are determined; this must include the items indexed by every key, but may also contain
some items which are false drops, since items referenced by the correct hash codes need not
actually have contained the correct keys. Normally, if there are several keys in the query, there
are not likely to be many false drops in the final combined list even though each hash code is
somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against
the possibility that an item has false-dropped on some hash code in the query, the original
items are normally obtained from the delivery program (4) and the query keys checked against
them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if
the key derivation procedure is complex, it may be preferable to check against the keys fed to
program (2) . In this case the optional key file which contains the keys associated with each
item is generated, and the item tag is supplemented by a string

;start, length

which indicates the starting byte number in the key file and the length of the string of keys for
each item. This file is not usually necessary with the present key-selection program, since the
keys always appear in the original document.

There is also an option (-Cn) for coordination level searching. This retrieves items which
match all but n of the query keys. The items are retrieved in the order of the number of keys
that they match. Of course, n must be less than the number of query keys (nothing is
retrieved unless it matches at least one key) .

As an example, consider one set of 4377 references, comprising 660,000 bytes. This
included 5 1 ,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save
space (at the expense of time) ; 995 of 997 possible hash codes were used. The total set of
index files (no key file) included 17 1 ,000 bytes, about 26% of the original file size. It took 8
minutes of processor time to hash, sort, and write the index. To search for a single query with
the resulting index took 1 .9 seconds' of processor time, while to find the same paper with a
sequential linear search using grep (reading all of the tags and keys) took 1 2.3 seconds of pro
cessor time.

We have also used this software to index all of the English stored on our UNIX system.
This is the index searched by the looka/1 command. On a typical day there were 29,000 files in
our user file system, containing about 152,000,000 bytes. Of these 5,300 files, containing
32,000,000 bytes (about 2 1%) were English text. The total number of 'words' (determined
mechanically) was 5 , 100,000. Of these 227,000 were selected as keys; 1 9,000 were distinct,
hashing to 4,900 (of 5 ,000 possible) different hash codes. The resulting inverted file indexes
used 845,000 bytes, or about 2.6% of the size of the original files. The particularly small
indexes are caused by the fact that keys are taken from only the first 50 non-common words of
some very long input files.

Even this large /ooka/1 index can be searched quickly. For example, to find this document
by looking for the keys "lesk inverted indexes" required 1 . 7 seconds of processor time and sys
tem time. By comparison, just to search the 800,000 byte dictionary (smaller than even the
inverted indexes, let alone the 32,000,000 bytes of text files) with grep takes 29 seconds of pro
cessor time. The looka/1 program is thus useful when looking for a document which you
believe is stored on-line, but do not know where. For example, many memos from the Com
puting Science Research Center are in its UNIX file system, but it is often difficult to guess
where a particular memo might be (it might have several authors, each with many directories,
and have been worked on by a secretary with yet more directories) . Instructions for the use of
the looka/1 command are given in the manual section, shown in the appendix to this memoran
dum.

The only indexes maintained routinely are those of publication lists and all English files.
To make other indexes, the programs for making keys, sorting them, searching the indexes,
and delivering answers must be used. Since they are usually invoked as parts of higher-level
commands, they are not in the default command directory, but are available to any user in the

. 4 .

directory /usr/lib!rejer. Three programs are of interest: mkey, which isolates keys from input
files; inv , which makes an index from a set of keys; and hunt , which searches the index and
delivers the items. Note that the two parts of the retrieval phase are combined into one pro
gram, to avoid the excessive system work and delay which would result from running these as
separate processes.

These three commands have a large number of options to adapt to different kinds of
input. The user not interested in the detailed description that now follows may skip to section
3, · which describes the refer program, a packaged-up version of these tools specifically oriented
towards formatting references.

Make Keys. The program mkey is the key-making program corresponding to step (1) in
phase A. Normally, it reads its input from the file names given as arguments, and if there are
no arguments it reads from the standard input. It assumes that blank lines in the input delimit
separate items, for each of which a different line of keys should be generated. The lines of
keys are written on the standard output. Keys are any alphanumeric string in the input not
among the most frequent words in English and not entirely numeric (except that all-numeric
strings are acceptable if they are between 1900 and 1999) . In the output, keys are translated to
lower case, and truncated to six characters in length; any associated punctuation is removed.
The following flag arguments are recogl).ized by mkey:

-c name
-f name

-i chars

-kn
-In
-nm

-s

- w

Name of file of common words; default i s lusrllib/eign.
Read a list of files from name and take each as an input argu
ment.
Ignore all lines which begin with '%' followed by any character
in chars .
Use at most n keys per input item.
Ignore items shorter than n letters long.
Ignore as a key any word in the first m words of the list of
common English words. The default is 100.
Remove the labels (file:start, length) from the output; just give
the keys. Used when searching rather than indexing.
Each whole file is a separate item; blank lines in files are
irrelevant.

The normal arguments for indexing references are the defaults, which are -c !usr/lib/eign ,
-nlOO, and -13 . For searching, the -s option is also needed. When the big lookall index of
all English files is run, the options are - w , -k50 , and -j (filelist) . When running on textual
input, the mkey program processes about 1000 English words per processor second. Unless the
-k option is used (and the input files are long enough for it to take effect) the output of mkey
is comparable in size to its input.

Hash and invert. The inv program computes the hash codes and writes the inverted files.
It reads the output of mkey and writes the set of files described earlier in this section. It
expects one argument, which is used as the base name for the three (or four) files to be writ
ten. Assuming an argument of Index (the default) the entry file is named lndex.ia , the posting
file /ndex.ib , the tag file /ndex.ic , and the key file (if present) /ndex.id. The inv program recog
nizes the following options:

-a

-d

-hn

Append the new keys to a previous set of inverted files, making
new files if there is no old set using the same base name.
Write the optional key file. This is needed when you can not
check for false drops by looking for the keys in the original
inputs, i.e. when the key derivation procedure is complicated
and the output keys are not words from the input files.
The hash table size is n (default 997) ; n should be prime.
Making n bigger saves search time and spends disk space.

- 5 -

- llul name Take input from file name , instead of the standard input; if u is
present name is unlinked when the sort is started. Using this
option permits the sort scratch space to overlap the disk space
used for input keys.

-n Make a completely new set of inverted files, ignoring previous
files.

-p Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.

-v Verbose mode; print a summary of the number of keys which
finished indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly
linear, however, a guess at the totai timing for inv is 250 keys per second. The space used is
usually of more importance: the entry file uses four bytes per possible hash (note the -h
option) , and the tag file around 1 5-20 bytes per item indexed. Roughly, the posting file con
tains one item for each key instance and one item for each possible hash code; the items are
two byte� long if the tag file is less than 65336 bytes long, and the items are four bytes wide if
the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should be
over-full; for most of the files indexed in this way, there is no other real choice, since the entry
file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an index. It com
bines, as mentioned above, the two parts of phase (B) : search and delivery. The reason why it
is efficient to combine delivery and search is partly to avoid starting unnecessary processes, and
partly because the delivery operation must be a part of the search 9peration in any case.
Because of the hashing, the search part takes place in two stages: first items are retrieved which
have the right hash codes associated with them, and then the actual items are inspected to
determine false drops, i.e. to determine if anything with the right hash codes doesn't really
have the right keys. Since the original item is retrieved to check on false drops, it is efficient to
present it immediately, rather than only giving the tag as output and later retrieving the item
again. If there were a separate key file, this argument would not apply, but separate key files
are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be
in mkey -s output format; all lower case, no punctuation. The hunt program takes one argu
ment which specifies the base name of the index files to be searched. Only one set of index
files can be searched at a time, although many text files may be indexed as a group, of course.
If one of the text files has been changed since the index, that file is searched with fgrep; this
may occasionally slow down the searching, and care should be taken to avoid having many out
of date files. The following option arguments are recognized by hunt:

-a
- e n

- F(ynd)

-g

-i string
- I n

- o string

Give all output; ignore checking for false drops.
Coordination level n; retrieve items with not more than n
terms of the input missing; default CO, implying that each
search term must be in the output items.
" -Fy" gives the text of all the items found; " -Fn"
suppresses them. " -F d" where d is an integer gives the text
of the first d items. The default is -Fy.
Do not use fgrep to search files changed since the index was
made; print an error comment instead.
Take string as input, instead of reading the standard input.
The maximum length of internal lists of candidate items is n;
default 1000.
Put text output (" -Fy") in string; of use only when invoked
from another program.

- 6 -

-p Print hash code frequencies; mostly for use in optimizing hash
table sizes.

-T[ynd) " -Ty" gives the tags of the items found; " - Tn" suppresses
them. " -T d" where d is an integer gives the first d tags. The
default is - Tn .

-t string Put tag output ("-Ty") in string; of use only when invoked
from another program.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be
many false drops on any single term; but a multi-term query will have few false drops on all
terms. Thus if a query is underspecified (one search term) many potential items will be exam
ined and discarded as false drops, wasting time. If the query is overspecified . (a dozen search

. terms) many keys will be examined only to verify that the single i tem under consideration has
that key posted. The variation of search time with number of keys is shown in the table below.
Queries of varying length were constructed to retrieve a particular document from the file of
references. In the sequence to the left, search terms were chosen so as to select the desired
paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so
that the query did not uniquely select . the desired document until four keys had been used.
The same document was the target in each case, and the final set of eight keys are also identi
cal; the differences at five, six and seven keys are produced by measurement error, not by the
slightly different key Hsts.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) (incl. false) Documents (seconds)
1 1 5 3 1 .27 1 68 55 5 .96
2 1 1 0. 1 1 2 29 29 2.72
3 1 1 0 . 14 3 8 8 0.95
4 1 1 0. 1 7 4 1 1 0. 1 8
5 1 1 0 . 19 5 1 1 0 .21
6 1 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer;
however, overspecification is quite cheap. Roughly, the time required by hunt can be approxi
mated as 30 milliseconds per search key plus 75 milliseconds per dropped document (whether it
is a false drop or a real answer) . In general, overspecification can be recommended; it protects
the user against additions to the data base which turn previously uniquely-answered queries into
ambiguous queries.

The careful reader will have noted an enormous discrepancy between these times and the
earlier quoted time of around 1 .9 seconds for a search. The times here are purely for the
search and retrieval: they are measured by running many searches through a single invocation
of the hunt program alone. Usually, the UNIX command processor (the shell) must start both
the mkey and hunt processes for each query, and arrange for the output of mkey to be fed to
the hunt program. This adds a fixed overhead of about 1 . 7 seconds of processor time to any
single search. Furthermore, remember that all these times are processor times: on a typical
morning on our PDP 1 1 170 system, with about one dozen people logged on, to obtain 1 second
of processor time for the search program took between 2 and 1 2 seconds of real time, with a
median of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a sin
gle search may be only 200 milliseconds, after you add the 1 . 7 seconds of startup processor
time and then assume a 4:1 elapsed/processor time ratio, it will be 8 seconds before any
response is printed.

.:.:.% (®]ill!�

- 7 -

3. Selecting and Formatting References for TROFF

The major application of the retrieval software is refer, which is a troff preprocessor like
eqn . 3 It scans its input looking for items of the form

. [
imprecise citation
.]

where an imprecise citation is merely a string of words found in the relevant bibliographic cita
tion. This is translated into a properly formatted reference. If the imprecise citation does not
correctly identify a single paper (either selecting no papers or too many) a message is given.
The data base of citations searched may be tailored to each system, and individual users may
specify their own citation files. On our system, the default data base is accumulated from the
publication lists of the members of our organization, plus about half a dozen personal bibliogra
phies that were collected. The present total is about 4300 citations, but this increases steadily.
Even now, the data base covers a large fraction of local citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn .
. [
kernighan cherry acm 1 97 5
.]
I t scans its input looking for items

This paper was itself printed using refer. The above input text was processed by refer as well as
tb/ and troff by the command

refer memo-file I tbl l troff -ms

and the reference was automatically translated into a correct citation . to the ACM paper on
mathematical typesetting.

The procedure to use to place a reference in a paper using refer is as follows. First, use
the lookbib command to check that the paper is in the data base and to find out what keys are
necessary to retrieve it. This is done by typing lookbib and then typing some potential queries
until a suit;tble query is found. For example, had one started to find the eqn paper shown
above by presenting the query

$ lookbib
kernighan cherry
(EOT) ·

lookbib would have found several items; experimentation would quickly have shown that the
query given above is adequate. Overspecifying the query is of course harmless; it is even desir
able, since it decreases the risk that a document added to the publication data base in the future
will be retrieved in addition to the intended document. The extra time taken by even a grossly
overspecified query is quite small. A particularly careful reader may have noticed that "acm"
does not appear in the printed citation; we have supplemented some of the data base items with
extra keywords, such as common abbreviations for journals or other sources, to aid in search
ing.

If the reference is in the data base, the query that retrieved it can be inserted in the text,
between • (and • I brackets. If it is not in the data base, it can be typed into a private file of

3. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc. Comp. Mach. 18,
pp. l5 1 -1 57 (March 1975).

- 8 -

references, using the format disc111ed in the next section, and then the - p option used to
search this private file. Such a command might read (if the private references are called myfile)

refer -p myfile document I tbl l eqn I troff -ms . . .

where tbl and/or eqn could be omitted if not needed. The use of the -ms macros4 or some
other macro package, however, is essential. Refer only generates the data for the references;
exact formatting is done by some macro package, and if none is supplied the references will not
be printed.

By default, the references are numbered sequentially, and the -ms macros format refer
ences as footnotes at the bottoni of the page. This memorandum is an example of that style.
Other possibilities are discussed in section 5 below.

4. Reference Files.
A reference file is a set of bibliographic references usable with refer. It can be indexed

using the software described in section 2 for fast searching. What refer does is to read the
input document stream, looking for imprecise citation references. It then searches through
reference files to find the full citations, and inserts them into the document. The format of the
full citation is arranged to make it convenient for a macro package, such as the -ms macros, to
format the reference for printing. Since the format of the final reference is determined by the
desired style of output, which is determined by the macros used, refer avoids forcing any kind
of reference appearance. All it does is define a set of string registers which contain the basic

· information about the reference; and provide a macro call which is expanded by the macro
package to format the reference. I t is the responsibility of the final macro package to see that
the reference is actually printed; if no macros are used, and the output of refer fed untranslated
to troff, nothing at all will be printed.

The strings defined by refer are taken directly from the files of references, which are in
the following format. The references should be separated by blank lines. Each reference is a �f_.!_,f __ :_f .. f.:t) sequence of lines beginning with o/o and followed by a key-letter. The remainder of that line, �·

and successive lines until the next line beginning with %, contain the information specified by
the key-letter. In general, refer does not interpret the information, but merely presents it to
the macro package for final formatting. A user with a separate macro package, for example, can
add new key-letters or use the existing ones for other purposes without bothering refer.

The meaning of the key-letters given below, in particular, is that assigned by the -ms
macros. Not all information, obviously, is used with each citation. For example, if a document
is both an internal memorandum and a journal article, the macros ignore the memorandum ver
sion and cite only the journal article. Some kinds of information are not used at all in printing
the reference; if a user does not like finding references by specifying title or author keywords,
and prefers to add specific keywords to the citation, a field is available which is searched but not
printed (K) .

The key letters currently recognized by refer and -ms, with the kind of information
implied, are:

4. M. E. Lesk, Typing Documents on UNIX and GCOS: The -ms Macros for Troff, Bell Laboratories internal
memorandum (1977) .

Key Information specified
A Author's name
B Title of book containing item
C City of publication
D Date
E Editor of book containing item

- 9 -

G Government (NTIS) ordering number
I Issuer (publisher)
J Journal name
K Keys (for searching)
L Label
M Memorandum label

For example, a sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctrl 27
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. ACM
%V 23
%N 1
%P �- 12
%M abcd-78
%D Jan. 1 976

Key Information specified
N Issue number
0 Other information
P Page(s) of article
R Technical report reference
T Title
V Volume number

X or
Y or
Z Information not used by refer

Order is irrelevant, except that authors are shown in the order given. The output of refer is a
stream of string definitions, one for each of the fields of each reference, as shown below .

.] -

.ds [A authors' names . . .

. ds [T title . . .

. ds [J journal . . .

.] [type-number

The refer program, in general, does not concern itself with the significance of the strings. The
different fields are treated identically by refer, except that the X, Y and Z fields are ignored
(see the -i option of mkey) in indexing and searching. All refer does is select the appropriate
citation, based on the keys. The macro package must arrange the strings so as to produce an
appropriately formatted citation. In this process, it uses the convention that the 'T' field is the
title, the 'J' field the journal, and so forth.

The refer program does arrange the citation to simplify the macro package's job, however.
The special macro . 1 - precedes the string definitions and Le special macro •] [follows. These
are changed from the input • I and .) so that running the same file through refer again is harm
less. The .) - macro can be used by the macro package to initialize. The .] [macro, which
should be used to print the reference, is given an argument type-number to indicate the kind of
reference, as follows:

Value
1
2
3
4
5
0

- 10 -

Kind of reference
Journal article
Book
Article within book
Technical report
Bell Labs technical memorandum
Other

The type is determined by the presence or absence of particular fields in the citation (a journal
article must have a 'J' field, a book must have an 'I ' field, and so forth) . To a smali extent,
this violates the above rule that refer does not concern itself with the contents of the citation;
however, the classification of the citation in troff macros would require a relatively expensive
and obscure program. Any macro writer may, of course, preserve consistency by ignoring the
argument to the .] (macro.

The reference is flagged in the text with the sequence

* ([. number* (.]

where number is the footnote number. The strings (. and • 1 should be used by the macro
package to format the reference flag in the text. These strings can be replaced for a particular
footnote, as described in section 5. The footnote number (or other signal) is available -to the
reference macro .] (as the string register (F. To simplify dealing with a text reference that
occurs at the end of a sentence, refer treats a reference which follows a period in a special way.
The period is removed, and the reference is preceded by a call for the string < . and followed
by a call for the string > . For example, if a referen�e follows "end." it will appear as

end* (< .* ([.number* (.]* (> .

where number is the footnote number. The macro package should turn either the string > . or
< . into a period and delete the other one. This permits the output to have either the form
"end[3 11 . " or "end. 3 1 " as the macro package wishes. Note that in one case the period pre
cedes the number and in the other it follows the number.

In some cases users wish to suspend the searching, and merely use the reference macro
formatting. That is, the user doesn't want to provide a search key between . (and • I brackets,
but merely the reference lines for the appropriate document. Alternatively, the user can wish
to add a few fields to those in the reference as in the standard file, or override some fields.
Altering or replacing fields, or supplying whole references, is easily done by inserting lines
beginning with %; any such line is taken as direct input to the reference processor rather than
keys to be searched. Thus

. [
keyl key2 key3 . . .
%Q New format item
%R Override report name
. 1

makes the indicates changes to the result of searching for the keys. All of the search keys must
be given before the first o/o line.

If no search keys are provided, an entire citation can be provided in-line in the text. For
example, if the eqn paper citation were to be inserted in this way, rather than by searching for
it in the data base, the input would read

preprocessor like
.I eqn .
. [..
%A B. W. Kernighan
%A L. L. Cherry

- 1 1 -

%T A System for Typesetting Mathematics
%J Comm. ACM
%V 1 8
% N 3
%P 1 5 1 - 157
%0 March 197 5
.]
It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.
As shown, fields are normally turned into troff strings. Sometimes users would rather

have them defined as macros, so that other trojf commands can be placed into the data. When
this is necessary, simply double the control character % in the data. Thus the input

. [
o/oV 23
%%M
Bell Lahoratories,
Murray Hill, N .J. 07974
.]

is processed by refer into

.ds [V 23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974

The information after %%M is defined as a macro to be invoked by . (M while the information
after %V is turned into a string to be invoked by *((V. At present -ms expects all informa
tion as strings.

5. Collecting References and other Refer Options
Normally, the combination of refer and -ms formats output as troff footnotes which are

consecutively numbered and placed at the bottom of the page. However, options exist to place
the references at the end; to arrange references alphabetically by senior author; and to indicate
references by strings in the text of the form [Name1 975a] rather than by number. Whenever
references are not placed at the bottom of a page identical references are coalesced.

For example, the -e option to refer specifies that references are to be collected; in this
case they are output whenever the sequence

. [
$LIST$
. 1

is encountered. Thus, to place references at the end of a paper, the u�er would run refer with
the -e option and place the above $LIST$ commands after the last line of the text. Refer will
then move all the references to that point. To aid in formatting the collected references, refer
writes the references preceded by the line

.] <

and followed by the line

.) >

- 1 2 -

to invoke special macros before and after the references.
Another possible option to refer is the - s option to specify sorting of references. The

default, of course, is to list references in the order presented. The - s option implies the -e
option, and thus requires a

. [
$LIST$
.]

entry to call out the reference list. The - s option may be followed by a string of letters,
numbers, and ' + ' signs indicating how the references are to be sorted. The sort is done using
the fields whose key-letters are in the string as sorting keys; the numbers indicate how many of
the fields are to be considered, with ' + ' taken as a large number. Thus the default is - sAD
meaning "Sort on senior author, then date." To sort on all authors and then title, specify
- sA+ T. And to sort on two authors and then the journal, write - sA2J.

Other options to refer change the signal or label inserted in the text for each reference.
Normally these are just sequential numbers, and their exact placement (within brackets, as
superscripts, etc.) is determined by the macro package. The - 1 option replaces reference
numbers by strings composed of the senior author's last name, the date, and a disambiguating
letter. If a number follows the l as in - 13 only that many letters of the last name are used in
the label string. To abbreviate the date as well the form -lm,n shortens the last name to the
first m letters and the date to the last n digits. For example, the option - 13,2 would refer to
the eqn paper (reference 3) by the signal Ker75a , since it is the first cited reference by Ker
nighan in 1 97 5.

A user wishing to specify particular labels for a private bibliography may use the -k
option. Specifying - kx causes the field x to be used as a label. The default is L. If this field
ends in - , that character is replaced by a sequence letter; otherwise the field is used exactly as
given.

If none of the refer-produced signals are desired, the -b option entirely suppresses
automatic text signals.

If the user wishes to override the -ms treatment of the reference signal (which is nor
mally to enclose the number in brackets in nrojf and make it a superscript in tro.ff) this can be
done easily. If the lines . (or .) contain anything following these characters, the remainders of
these lines are used to surround the reference signal, instead of the default. Thus, for exam
ple, to say "See reference (2) ." and avoid "See reference. 2" the input might appear

See reference
. [(
imprecise citation . . .
.]) .

1'-l"ote that blanks are significant i n this construction. I f a permanent change is desired i n the
style of reference signals, however, it is probably easier to redefine the strings (. and .) (which
are used to bracket each signal) than to change each citation.

Although normally refer limits itself to retrieving the data for the reference, and leaves to
a macro package the job of arranging that data as required by the local format, there are two
special options for rearrangements that can not be done by macro packages. The -c option
puts fields into all upper case (CAPS-SMALL CAPS in tro.ff output) . The key-letters indicated
what information is to be translated to upper case follow the c, so that - cAJ means that
authors' names and journals are to be in caps. The - a option writes the names of authors last

- 13 -

name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr . The citation form of the Journal
of the ACM, for example, would require both -cA and - a options. This produces authors'
names in the style KERNIGHAN, B. W. AND CHERRY, L. L. for the previous example. The -a
option may be followed by a number to indicate how many author names should be reversed;
- al (without any -c option) would produce Kernighan, B. W. and L. L. Cherry, for example.

Finally, there is also the previously-mentioned -p option to let the user specify a private
file of references to be searched before the public files. Note that refer does not insist on a pre
viously made index for these files. If a file is named which contains reference data but is not
indexed, it will be searched (more slowly) by refer using fgrep. In this way it is easy for users to
keep small files of new references, which can later be added to the public data bases.

Updating Publication Lists

M. E. Lesk

1 . Introduction.
This note describes several commands to update the publication lists. The data base con

sisting of these lists is kept in a set of files in the directory lusr/dictlpapers on the Version 7
UNIXt system. The reason for having special commands to update these fi les is that they are
indexed, and the only reasonable way to find the items to be updated is to use the index. How
ever, altering the files destroys the usefulness of the index, and makes further editing difficult.
So the recommended procedure is to
(1) Prepare additions, deletions, and changes i n separate files.
(2) Update the data base and reindex.
Whenever you make changes, etc. it is necessary to run the "add & index" step before logging
off; otherwise the changes do not take effect. The next section shows the format of the files in
the data base. After that, the procedures for preparing additions, preparing changes, preparing
deletions, and updating the public data base are given.

2. Publication Format.
The format of a data base entry is given completely in "Some Applications of Inverted

Indexes on UNIX" by M. E. Lesk, the first part of this report, and is summarized here via a
few examples. In each example, first the output format for an item is shown, and then the
corresponding data base entry.

Journal article:
A. V. Aho, D. J. Hirschberg, and J. D. Ullman, "Bounds on the Com
plexity of the Maximal Common Subsequence Problem," J. Assoc.
Comp. Mach. . vol. 23 ,. no. 1 , pp. l - 1 2 Oan. 1 976) .

%T Bounds on the Complexity of the Maximal Common
Subsequence Problem
t0•A A. V. Aho
%A D. S. H irschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
%V 23
%N l
%P l - 1 2
%D Jan. 1 976
%M Memo abed . . .

tUN I X is a Trademark o f Bell Laboratories.

- 2 -

Conference proceedings:

Book:

B. Prabhala and R. Sethi, "Efficient Computation of Expressions with
Common Subexpressions, " Proc. 5th A CM -�VIIIf?. o n Principles ol Pro

gramming L anguages. pp. 222-230, Tucson, Ariz. Oanuary 1 97 8) .

0;hA B. Prabhala
'% A R . Sethi
%T Efficient Computation of Expressions with
Common Subexpressions
%J Proc. 5th ACM Symp. on Principles
of Programming Languages
%C Tucson, Ariz.
%0 January 1 978
%P 222-230

B . W. Kernighan and P. J . Plauger, S(}/!ware Tools. Addison-Wesley,
Reading, Mass. (1 976) .

%T Software TQols
'!f.,A B. W. Kernighan
%A P. J. Plauger
%1 Addison-Wesley
%C Reading, Mass.
1Ytl0 1 976

Article within book :
J . W. de Bakker. "Semantics of Programming Languages, " pp . 1 73-227
in -l dl'(lnccs 111 ft(/ormation Systems Science. Vol. :!, ed. J . T. Tou, Ple
num Press, New York, N . Y . 0 969) .

%A J . W. de Bakker
%T Semantics of programming languages
%E J. T. Tou
%B Advances in I n formation Systems Science, Vol. 2
%1 Plenum Press .
%C New York, N . Y .
%0 1 969
%P 1 73-227

Technical Report:
F. E. Allen, "Bi bliography on Program Optimization ," Report RC-
5767, IBM T. J. Watson Research Center, Yorktown Heights, N. Y.
(1 975) .

% A F . E. Allen
%0 1 975
%T Bibl iography on Program Optimization
'rli R Report R C-5·767
% 1 IBM T. J . Watson Research Ce nter
%C Yorktown Heights, N . Y .

- 3 -

Other forms of publication can be entered similarly. Note that conference proceedings are
entered as if journals, with the conference name on a %J line. This is also sometimes appropri
ate for obscure publications . such as series of lecture notes. When something is both a report
and an article, or both a memorandum and an article, enter all necessary information for both;
see the first article above, for example. Extra information (such as "In preparation" or
"Japanese translation") should be placed on a line beginning %0. The most common use of
%0 lines now is for "Also in . . . " to give an additional reference to a secondary appearance of
the same paper.

Some of the possible fields of a citation are:

Letter Meaning Letter Meaning
A Author K Extra keys
B Book including item N Issue number
c City of publication 0 Other
D Date p Page numbers
E Editor of book R Report number
I Publisher (issuer) T Title of item
J Journal name v Volume number

Note that %B is used to indicate the title of a book containing the article being entered; when
an item is an entire book, the title should be entered with a % T as usual.

Normally, the order of items does not matter. The only exception is that if there are
multiple authors (%A lines) the order of authors should be that on the paper. If a line is too
long, it may be continued on to the next line; any line not beginning with % or . (dot) is
assumed to be a continuation of the previous line. Again, see the first article above for an
example of a long title. Except for authors, do not repeat any items; if two %J lines are given,
for example, the first is ignored. Multiple items on the same file should be separated by blank
lines.

Note that in formatted printouts of the file, the exact appearance of the items is deter
mined by a set of macros and the formatting programs. Do not try to adjust fonts, punctuation,
etc. by editing the data base; it is wasted effort. In case someone has a real need for a
differently-formatted output, a new set of macros can easily be generated to provide alternative
appearances of the citations.

3. Updating and Re-indexing.
This section describes the commands that are used to manipulate and change the data

base. It explains the procedures for (a) finding references in the data base, (b) adding new
references, (c) changing existing references, and (d) deleting references. Remember that all
changes, additions, and deletions are done by preparing separate files and then running an
'update and reindex' step.

Checking what 's there now. Often you will want to know what is currently in the data base.
There is a special command !ookbib to look for things and print them out. It searches for arti
cles based on words in the title, or the author's name, or the date. For example, you could find
the first paper above with

lookbib aho ullman maximal subsequence 1976

or

lookbib aho ullman hirschberg

If you don't give enough words, several items will be found; if you spell some wrong, nothing
will be found. There are around 4300 papers in the public file; you should always use this com
mand to check when you are not sure whether a certain paper is there or not.

Additions. To add new papers, just type in, on one or more files, the citations for the new

- 4 -

papers. Remember to check first if the papers are already in the data base. For example, if a
paper has a previous memo version, this should be treated as a change to an existing entry,
rather than a new entry. If several new papers are being typed on the same file, be sure that
there is a blank line between each two papers.

Changes. To change an item, it should be extracted onto a file. This is done with the
command

pub.chg key l key2 key3 . . .

where the items key l , key2, key3, etc. are a set of keys that will find the paper, as in the look
bib command. That is, if

lookbib johnson yacc cstr

will find a item (to, in this case, Computing Science Technical Report No. 32, "Y ACC: Yet
Another Compiler-Compiler, " by S. C. Johnson) then

pub.chg johnson yacc cstr

will permit you to edit the item. The pub. chg comman4 extracts the item onto a file named
"bibxxx" where "xxx" is a 3-digit number, e.g. "bib234". The command will print the file
name it has chosen . If the set of keys finds more than one paper (or no papers) an error mes
sage is printed and no file is written. Each reference to be changed must be extracted with a
separate pub. chg command, and each will be placed on a separate file. You should then edit the
"bibxxx" file as desired to change the item, using the UNIX editor. Do not delete or change
the first line of the file, however, which begins %# and is a special code line to tell the update
program which item· is being altered. You may delete or change other lines, or add lines, as
you wish. The changes are not actually made in the public data base until you run the update
command pub. run (see below) . Thus, if after extracting an item and modifying it, you decide
that you'd rather leave things as they were, delete the "bibxxx" file, and your change request eyJtw
will disappear.

Deletions. To delete an entry from the data base, type the command

pub.del key l key2 key3 . . .

where the items key l , key2, etc. are a set o f keys that will find the paper, as with the lookbib
command. That is, if

lookbib Aho hirschberg ullman

will find a paper,

pub.del aho hirschberg ullman

deletes it. Note that upper and lower case are equivalent in keys. The pub. del command will
print the entry being deleted. It also gives the name of a "bibxxx" file on which the deletion
command is stored. The actual deletion is not done until the changes, additions, etc. are pro
cessed, as with the pub. chg command. If, after seeing the item to be deleted, you change your
mind about throwing it away, delete the "bibxxx" file and the delete request disappears.
Again, if the list of keys does not uniquely identify one paper, an error message is given.

Remember that the default versions of the commands described here edit a public data
base. Do not delete items unless you are sure deletion is proper; usually this means that there
are duplicate entries for the same paper. Otherwise, view requests for deletion with skepticism;
even if one person has no nee� for a particular item in the data base, someone else may want it
there.

If an item is correct, but should not appear in the "List of Publications" as normally pro-
duced, add the line -� '%W

%K DNL

'\

- 5 -

to the item. This preserves the item intact, but implies "Do Not List" to the to the commands
that print publication lists. The DNL line is normally used for some technical reports, minor
memoranda, or other low-grade publications.

Update and reindex. When you have completed a session of changes, you should type the
command

pub. run file 1 file2 .. .

where the names "file 1 ", . . . are the new files of additions you have prepared. You need not
list the "bibxxx" files representing changes and deletions; they are processed automatically.
All of the new items are edited into the standard public data base, and then a new index is
made. This process takes about 1 5 minutes; during this time, searches of the data base will be
slower.

Normally, you should execute pub.run just before you logoff after performing some edit
requests. However, if you don't, the various change request files remain in your directory until
you finally do execute pub.run. When the changes are processed, the "bibxxx" files are
deleted. I t is not desirable to wait too long before processing changes, however, to avoid
conflicts with someone else who wishes to change the same file. If executing pub. run produces
the message "File bibxxx too old" it means that someone else has been editing the same file
between the time you prepared your changes, and the time you typed pub.run. You must delete
such old change files and re-enter them.

Note that although pzib.run discards the "bibxxx" files after processing them, your files of
additions are left around even after pub.run is finished. If they were typed in only for purposes
of updating the data base, you may delete them after they have been processed by pub. run.

Example. Suppose, for example, that you wish to
(1) Add to the data base the memos "The Dilogarithm Function o f a Real Argument" by R.

Morris, and "UNIX Software Distribution by Communication Link, " by M. E. Lesk and
A. S. Cohen;

(2) Delete from the data base the item "Cheap Typesetters" , by M. E. Lesk, SIGLASH
Newsletter, 1973; and

(3) Change "J. Assoc. Camp. Mach." to "Jour. ACM" in the citation for Aho, Hirschberg,
and Ullman shown above.

The procedure would be as follows. First, you would make a file containing the additions, here
called "new. l ", in the normal way using the UNIX editor. In the script shown below, the
computer prompts are in italics.

$ ed new. 1
;.>
a
%T The Dilogarithm Function of a Real Argument
%A Robert Morris
%M abed
%D 1978

%T UNIX Software Distribution by Communication Link
%A M. E. Lesk
%A A. S. Cohen
%M abed
%D 1978
w new. 1
/99
q

Next you would specify the deletion, which would be done with the pub. del command:

- 6 -

$ pub. del lesk cheap typesetters siglash
to which the computer responds:

Will delete: (file. bib/ 76)

% T Cheap Typesetters
'!1,A M. E. Lesk
%J ACM S/GLASH Newsletter
% V 6
%N 4
%P 14- 1 6
%D October 1 9 7 3

And then you would extract the Aho, Hirschberg and Ullman paper. The dialogue involved is
shown below. First run pub. chg to extract the paper� it responds by printing the citation and
informing you that it was placed on file bib/23. That file is then edited.

$ pub.chg aho hirschberg ullman
Extracting as ./ile bib123

- 7 -

% T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. A ho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
% V 23
%N I
%P 1-12
%M abed
%D Jan. 1 9 76

$ ed bib l 23
312
I Associ sf Jl Jour/p
%J Jour. A ssoc. Comp. Mach.
sf Assoc.�/ ACM/p
%J Jour. ACM
1 , $p
%# lusr/dictlpapers/p76 233 245 change
% T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. A ho
%A D. S. Hirschberg
%A J. D. Ulima n
%J Jour. ACM
% V 23
'1/iN I
'ff1P 1 - 12
%M abed
%D Jan. 1 976

w
292
q
$

Finally, execute pub. run, making sure to remember that you have prepared a new file "new. l " :

$ pub.run new. l

and about fifteen minutes later the new index would be complete and all the changes would be
included.

4. Printing a Publication List
There are two commands for printing a publication list, depending on whether you want

to print one person's list, or the list of many people. To print a list for one person, use the ·
pub. indiv command:

pub.indiv M Lesk

This runs off the list for M. Lesk and puts it in file "output". Note that no ' . ' is given after
the initial. In case of -ambiguity two initials can be used. Similarly, to get the list for group of
people, say

- 8 -

pub.org xxx

which prints all the publications of the members of organization xxx, taking the names for the
list in the file lusr/dict/papers/centlistlxxx. This command should normally be run in the back
ground; it takes perhaps 1 5 minutes. Two options are avuilable with these commands:

pub. indiv - p M Lesk

prints only the papers, leaving out unpublished notes, patents, etc. Also

pub. indiv - t M Lesk I gcat

prints a typeset copy, instead of a computer printer copy. In this case it has been directed to an
alternate typesetter with the 'gcat' command. These options may be used together, and may be
used with the pub.org command as well. For example, to print only the papers for all of organi
zation zzz and typeset them, you could type

pub.center - t - p zzz I gcat &

These publication lists are printed double column with a citation style taken from a set of publi
cation list macros; the macros, of course, can be changed easily to adjust the format of the lists.

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

NROFF and TROFF are text processors under the PDP- 1 1 UNIX Time-Sharing Systeml that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu
ment styling, including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usage
The general form of invoking NROFF (or TROFF) at UNIX command level is

nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files con
taining the document to be formatted. An argument consisting of a sing1e minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan
dard input. The options, which may appear in any order so long as they appear before the files, are:

Option Effect

-olist Print only pages whose page numbers appear in list, which consists of comma
separated numbers and number ranges. A number range has the form N-M and
means pages N through M; a initial -N means from the beginning to page N,· and
a final N- means from N to the end.

-nN Number first generated page N.

-sN Stop every N pages. NROFF will halt prior to every N pages (default N= 1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

-mname Prepends the macro file /usr/lib/tmac. name to the input files.

-raN Register a_(one-character) is set to N.

- i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode o f the rd request.

- 1 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

NROFF Only
-Tname Specifies the name of the output terminal type. Currently defined names are 37

for the (default) Model 37 Teletype®, tn300 for the GE TermiNet 300 (or any ter
minal without half-line capabilities) , 300S for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-450 (Diablo Hyterm) .

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-t
-f
- w
-b

- a
-pN

-g

TROFF Only
Direct output to the standard output instead of the phototypesetter.

Refrain from feeding out paper and stopping phototypesetter at the end of the run.

Wait until phototypesetter is available, if currently busy.

TROFF will report whether the phototypesetter is busy or available. No text pro
cessing is done.

Send a printable (ASCII) approximation of the results to the standard output.

Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate _argument; for example,

nroff -o 4, 8-10 -T 300S - mabc file] file2

requests formatting of pages 4, 8, 9, and 1 0 of a document contained in the files named file] and file2,
specifies the output terminal as a DASI-,300S, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively) , and the table
construction preprocessor TBL3. A reverse-line postprocessor COL 4 is available for multiple-column
NROFF output on terminals without reverse-line ability; COL expects the Model 37 Teletype escape
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesetter output on a Tektronix 4014 . For example, in

tbl files I eqn I troff -t options I teat
the first I indicates the piping of TBL's output to EQN's input; the second the .piping of EQN's output to
TROFF's input; and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to
send TROFF (-g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5] .

Joseph F . Ossanna

References

[1] K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1 975) .

[2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories
internal memorandum.

[3] M. E. Lesk, Tbl - A Program to Format Tables, Bell Laboratories internal memorandum.

[4] Internal on-line documentation, on UNIX.

[5] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum.

- 2 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

If No

SUMMARY AND INDEX

Request
Form

Initial
Value• Argument Notes# Explanation

1 . General Explanation
2. Font and Character Size Control
.ps ± N
.ss N
.cs FNM
.bd F N
.bd S F N
.ft F
.fp N F

10 point
1 2/36 em
off
off
off
Roman
R,I,B,S

3. Page Control
.pl ± N 1 1 in
.bp ± N N=1
.pn ± N N=1
.po ± N 0; 26/27 in
.ne N
.mk R none
.rt ± N none

previous
ignored

previous
ignored

1 1 in

ignored
previous ·
N=1 V
internal
internal

E
E
p
p
p
E

v
B:j:,v

v
D,v
D
D,v

Point size; also \s ± N. t
Space-character size set to N/36 em. t
Constant character space (width) mode (font F) . t
Embolden font F by N-1 units. t
Embolden Special Font when current font is .F.t
Change to font F = x, xx, or 1-4. Also \fx, \f(xx, \fN.
Font named F mounted on physical position 1 � N�4.

Page length.
Eject current page; next page number N.
Next page number N.
Page offset.
Need N vertical space (V = vertical spacing) .
Mark current vertical place in register R.
Return (upward only) to marked vertical place.

4 . Text Filling, Adjusting, and Centering
.br B Break.
. fi fill
.nf fill
.ad c adj,both
. na adjust
.ce N off

5. Vertical Spacing
.vs N 1/6in;12pts
.Is N N=1
.sp N
.sv N
. os
.ns space
.rs

adjust

N=1

previous
previous
N=1 V
N=1 V

6. Line Length and Indenting

.II ± N 6.5 in previous

.in ± N N=O previous

.ti ± N ignored

B,E
B,E
E
E
B,E

E,p
E
B,v
v

D
D

Fill output lines .
No filling or adjusting of output lines.
Adjust output lines with mode c.
No output line adjusting .
Center following N input text lines.

Vertical base line spacing (V) .
Output N-1 Vs after each text output line .
Space vertical distance N in either direction.
Save vertical distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off.

E,m Line length.
B,E,m Indent.
B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de xx yy .yy =. . Define o r redefine macro xx; end at call of yy .

. am xx yy .yy =. . Append to a macro .

. ds xx string - ignored Define a string xx containing string .

. as xx string - ignored Append string to string xx.

*Values separated by ";" are for NROFF and TROFF respectively.
#Notes are explained at the end of this Summary and Index
tNo effect in NROFF.
*The use of " · " as control character (instead of ".") suppresses the break function.

- 3 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

Request Initial
Form Value

.rm xx

.rn xx yy

.di XX

.da xx

. wh N xx

. ch xx N

.dt N XX
. it N XX
.em xx none

8. Number Registers
.nr R ± N M
.af R c arabic
.rr R

U No
Argument

ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, and Fields
. ta Nt . . . 0.8; 0.-Sin none
. tc c
. lc c
.fc a b

none

off

none
none
off

Notes

D
D
v
v
D,v
E

u

E,m
E
E

Explanation

Remove request, macro, or string.
Rename request, macro, or string xx to yy.
Divert output to macro xx.
Divert and append to xx.
Set location trap; negative is w.r. t. page bottom .
Change trap location .
Set a diversion trap.
Set an input-line count trap .
End macro is xx.

Define and set number register R; auto-increment by M
Assign format to register R (c=1, i, I, a, A) .
Remove register R.

Tab settings; left type, unless t=R(right) , C (centered) .
Tab repetition character .
Leader repetition character.
Set field delimiter a and pa<;l character b.

10. Input and Ou.tput Conventions and Character Translations
. ec c \
.eo on
.lg N -; on
.ul N off
.cu N off
.uf F Itaiic

\

on
N=l
N= l
Italic

E
E

Set escape character .
Turn off escape character mechanism.
Ligature mode on if N> O.
Underline (italicize in TROFF) N input lines.
Continuous underline in NROFF; like ul in TROFF.
Underline font set to F (to be switched to by ul) .

.cc c E Set control character to c .

. c2 c . E Set nobreak control character to c .

. tr abed. . . . none 0 Translate a to b, etc. on output.

11 . Local Horizontal and Vertical Motions, and the Width Function
12. Overstri!'-e, Bracket, Line-drawing, and Zero-width Functions
13. Hyphenation •

. nh hyphenate

.by N hyphenate
.he c \%
.hw word] . . .

14 . Three Part Titles •

. tl ' left' center' right'

. pc c %

. lt ± N 6.5 in

hyphenate
\%
ignored

off
previous

15. Output Line Numbering •

E
E
E

E,m

. nm ± N M S I off E

. nn N N=l E

16. Conditional Acceptance of Input
.if c anything

No hyphenation.
Hyphenate; N = mode.
Hyphenation indicator character c.
Exception words.

Three part title .
Page number character .
Length of title.

Number mode on or off, set parameters .
Do not number next N lines.

If condition c true, accept anything as input,
for multi-line use \ {anything\} .

- 4 -

••• •• W1 '.;;:#..:'

NROFF/TROFF User's Manual
October 1 1 , 1 976

If No Request
Form

Initial
Value Argument Notes Explanation

. if ! c anything

. if N anything

. if !N anything

.if 'string] ' string]' anything
• if ! 'string] ' string]' anything
. ie c anything
. el anything

17. Environment Switching.
.ev N N=O previous

u
u

u

18. Insertions from the Standard Input
.rd prompt prompt=BEL -
. ex
19. Input/Output File Switching
.so filename
. nx filename
. pi program

20. Miscellaneous
.me e N

end-of-file

E,m

If condition c false, accept anything .
If expression N > 0, accept anything .
If expression N ::::;; 0, accept anything .
If string] identical to string], accept anything .
If string] not identical to string], accept anything.
If portion of if-else; all above forms Oike if) .
Else portion of if-else .

Environment switched (push down) .

Read insertion.
Exit from NROFF/TROFF .

Switch source file (push down). ·
Next file .
Pipe output to program (NROFF only) .

Set margin character c and separation N.
.tm string
. ig yy

off
newline
.yy= • .
all

Print string on terminal (UNIX standard message output) .
Ignore till call of yy .

.pm t Print macro names and sizes;

. fl B
if t present, print only total of sizes.
Flush output buffer .

21 . Output and Error Messages

Notes-
B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
p Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ad 4 ee 1 0 ds 7 fe 9 ie 16 II 6 nh 1 3 pi 19 rn 7
af 8 ee 4 dt 7 fi 4 if 16 Is 5 nm 1 5 pi 3 rr 8
am 7 eh 7 ee 10 fl 20 ig 20 It 14 nn 15 pm 20 rs 5
as 7 es 2 el 16 fp 2 in 6 me 20 nr 8 pn 3 rt 3
bd 2 eu 1 0 em 7 ft 2 it 7 mk 3 ns 5 po 3 so 19
bp 3 da 7 eo 10 he 1 3 le 9 na 4 nx 19 ps 2 sp 5
br 4 de 7 ev 1 7 hw 1 3 lg 10 ne 3 OS 5 rd 1 8 ss 2
e2 10 di 7 ex 18 hy 1 3 l i 1 0 nf 4 pe 14 rm 7 SV 5

- 5 -

ta 9 VS 5
te 9 wh 7
ti 6
tl 14
tm 20
tr 1 0
uf 1 0
u l 1 0

NROFF/TROFF User's Manual
October 1 1 , 1 976

Escape Sequences for Characters, Indicators, and Functions

Section Escape
Reference Sequence

10. 1
10 . 1
2 . 1
2. 1
2 . 1
7

1 1 . 1
1 1 . 1
1 1 . 1
1 1 . 1
4. 1

10 .6
1 0.7
7.3

1 3
2 . 1
7 .1
9 . 1

1 2.3
4.2

1 1 . 1
2.2

1 1 . 1
1 1 .3
12.4
12.4
8

12 . 1
4. 1

1 1 . 1
2.3
9. 1

1 1 . 1
1 1 . 1
1 1 .2
5.2

1 2.2
16
16
10.7

\\
\e.
\'
\'
\-
\.
\ (space)
\0
\ I
\A

\&
\!
\"
\$N
\%
\ (xx
\•x, \•(xx
\a
\b' abc . . . '
\c
\d
\fx, \f (xx, \f N
\h'N '
\kx
\1 'Nc'
\L'Nc'
\nx,\n (xx
\o' abc . . . '
\p
\r
\sN, \s ± N
\t
\u
\v'N '
\w' string'
\x'N '
\zc
\{
\}
\ (newline)
\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
' (acute accent) ; equivalent to \ (aa
• (grave accent) ; equivalent to \ (ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 � N� 9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion (1/2 line in NROFF)
Chang'e to font named x or xx, or position. N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, . . .
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion 0/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \\, \ . , \", \$, \•, \a, \n, \t , and \ (newline) are interpreted in copy mode (§7.2) .

- 6 -

')

NROFF/TROFF User's Manual
October 1 1 , 1 976

Predefined General Number Registers

Section Register
Reference Name

3 %
1 1 .2 ct
7.4 dl
7.4 dn

dw
dy

1 1 .3 hp
15 In

mo
4. 1 nl

1 1 .2 sb
1 1 .2 st

yr

Description

Current page number.
Character type (set by width function) .
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (1 . 7) .
Current day of the month 0 -3 1) .
Current horizontal place on input line.
Output line number.
Current month 0-12) .
Vertical position of last printed text base-line.
Depth of string below base line (generated by width function) .
Height of string above base line (generated by width function) .
Last two digits of current year.

·

Predefined Read-Only Number Registers

Section Register
Reference Name

7.3 .$
. A

1 1 . 1 . H
. T

1 1 . 1 . v
5.2 .a

. c
7.4 • d
2.2 . f
4 . h
6 .i
6 .I
4 .n
3 .o
3 .p
2.3 .s
7.5 .t
4. 1 .u
5 . 1 . v

1 1 .2 .w
. x
. y

7.4 .z

Description

Number of arguments available at the current macro level.
Set to 1 in TROFF, if - a option used; always 1 in NROFF .
Available horizontal resolution in basic units .
Set to 1 in NROFF, if -T option used; always 0 in TROFF .
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N'.
Number of lines read from current input file .
Current vertical place in current diversion; equal to nl, if no diversion .
Current font as physical quadrant 0 -4) .
Text base-line high-water mark on current page or diversion .
Current indent.
Current line length .
Length of text portion on previous output line.
Current page offset.
Current page length.
Current point size.
Distance to the next trap.
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing.
Width of previous character.
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion.

- 7 -

NROFF/TROFF User's Manual
October 1 1 , 1976

1. General Explanation

REFERENCE MANUAL

1.1. Form of input. Input consists. of text lines, which are destined to be printed, interspersed with control
lines, which set parameters ·or otherwise control subsequent processing. Control lines begin with a con
trol character-normally • (period) or • (acute accent) -followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character • suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regis
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis
introduced, two-character name as in \n (xx.

1.2. Formatter and device resolution. TROFF internally uses 43·2 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical resolutions, of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev
ice indicated by the -T option (default Model 37 Teletype) .

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points, V is the current verti
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

i Inch 432 240
c Centimeter 432x50/127 240x50/127
p Pica = 1/6 inch 72 240/6
m Em = S points 6 x S c
n En = Em/2 3 x S C, same as Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space v v

none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as - > (-) are often extra wide. The default scaling is ems for the if'dft
horizontally-oriented requests and functions II, in, ti, ta, It, po, me, \h, and \1; Vs for the vertically- '<i;ff&=?
oriented requests and functions pi, wh, ch, dt , sp, sv, ne, rt, \v , \x, and \L; p for the vs request; and
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis-
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevet;�.t an additional inappropriate 4efault scaling.

NROFF/TROFF User's Manual
October 1 1 , 1 976

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic un: .s.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, I N becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, I N becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

·

.sp l 3.2c

will space in the required direction to 3 .2 centimeters from the top of the page.

1 . 4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators +, -, /, • , % (mod) , and the logical operators < , > , < -, > - , - (or --) ,
& (and) , : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.25i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ± N means that the
argument may take the forms N, + N, or -N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests
ps, ft, po, vs, Is, 11, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2. Font and Character Size Control

2. 1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 1 02 characters. These character sets
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input
in the form \ (xx where xx is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

' acute accent , close quote
' grave accent • open quote
- minus - hyphen

The characters ·, ·; and - may be input by \', \', and \ - respectively or by their names (Table II) .
The ASCII characters @ , # , " , · , ', < , > , \ , { , } , -, " , and exist only on the Special Font and are
printed as a 1 -em space if that Font is not mounted.

e NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters ·as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

- 9 -

NROFF/TROFF User's Manual
October 1 1 , 1976

characters · , · , and _ print as themselves.

2. 2. Fonts. The default mounted fonts are Times Roman (R) , Times Italic (I), Times Bold (B) , and
the Special Mathematical Font (S) on physical typesetter positions 1 , 2, 3, and 4 respectively. These
fonts are used in this document . .The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(xx, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font� characters on that font are automatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
1 1 , 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a · \s ± N (1 � N� 9) to
increment/decrement the size by N; \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.
Request Initial If No
Form Value Argument Notes• Explanation

.ps ± N l O point previous

.ss N 12/36 em ignored

.cs FNM off

.bd F N · off

E

E

p

p

Point size set to ± N. Alternatively imbed \sN or \s ± N.
Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence + N, -N will work because the previ
ous requested value is also remembered. Ignored in
NROFF.

Space-character size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

Constant character space (width) mode is set on for font
F (if mounted) ; the width of every character will be
taken to be N/36 ems. If M is absent, the em is that of
the character's point size; if M is given, the em is M
points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

The characters in font F will be artificially emboldened by
printing each one twice, separated by N-1 basic units. A
reasonable value for N js 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

"Notes are explained at the end of the Summary and Index above.

- 10 -

\

i /

l
/

NROFF/TROFF User's Manual
October 1 1 , 1976

.bd S F N off

.ft F Roman

.fp N F R,I,B,S

3. Page control

previous

ignored

p

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd S B 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named F is
mounted on position N 0 -4) . It is a fatal e�ror if F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I, B,
and S on positions 1 , 2 , 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and -N (N from the bottom) . See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7 .4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level) .

The useable page width on the Graphic Systems phototypesetter is about 7 .54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Initial U No
Form Value Argument Notes Explanation

.pi ± N 1 1 in 1 1 in

.bp ± N

.pn ± N

.po ± N

.ne N

N=l

N=l ignored

0; 26/27 int previous

N=l V

v Page length set to ± N The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register.

B* ,v Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.
Page number. The next page (when it occurs) will have
the page number ± N A pn must occur before the ini
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the %
register.

v Page offset. The current left margin is set to ± N The
TROFF initial value provides about 1 inch of paper mar
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum Oine-length) + (page-offset) is
about 7 .54 inches. See §6. The current page. offset is
available in the .o register.

D,v Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

*The use of " • " as control character (instead of ". ") suppresses the break function.

tValues separated by ";" are for NROFF and TROFF respectively.

- 1 1 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

.mk R none internal

.rt ± N none internal

D

D,v

4. Text Filling, Adjusting, and Centering

distance to the bottom of the page. If D < V, another
line could still be output and spring the trap. In a diver
sion, D is the distance to the diversion trap, if any, or is
very large.

Mark the current vertical place in an internal register
(both associated with the current diversion level) , or in
register R, if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ± N (w.r . t. current place) is given,
the place is ± N from the top of the page or diversion or,
if N is absent, to a place marked by a previous mk. Note
that the sp request (§5 .3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence .mk R . . .
. sp 1\nRu.

4. 1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out
put text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character "\ " (backslash-
space) . The. ah

djusted word spac
(§
i.n
2
g
)
s are uniform in TROFF and the mini�

f
um interword spacing can be t:.".{.�.:.;i:[=�.:;.=:.,: .. ,r.= .. :.i[� controlled wtt the ss request . In NROFF, they are normally nonum orm because of quantization ·.9 .. J

to character-size spaces; however, the command line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
text length on the last line output is available in the .n register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the .h register.

An input text line ending with . , ? , or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§1 0.5) .

4.2. Interrupted text. The copying of a input line in nofi/1 (non-fill) mode can be interrupted by terminat
ing the partial line with a \c. The next encountered input text line will be considered to be a continua
tion of the same line of input text. Similarly, a word within filled text may be interrupted by terminat
ing the word (and line) with \c; the next encountered text will be taken as a continuation of the inter
rupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.

Request
Form

.br

Initial
Value

1/ No
Argument Notes Explanation ·

B Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text

-lines beginning with space characters and empty text
lines (blank lines) also cause a break.

- 1 2 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

.fi fill on

.nf fill on

.ad c adj,both adjust

.na adjust

.ce N off N=1

5. Vertical Spacing

B,E

B,E

E

E

B,E

Fill subsequent output lines. The register .u is 1 in fill
mode and 0 in nofill mode.

Nofill. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
I adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
(line-length minus indent). If N=O, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing: The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs request with a resolution of 1/144 inch = 1/2 point in TROFF, and to the output device
resolution in NROFF. V must be· large enough to accommodate the character sizes on the affected out
put lines. For the common type sizes (9-12 points) , usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 1 0-point type on a 12-point spacing (as in this document) .
The current V is available in the .v register. Multiple- V line separation (e. g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct. requiring the output line containing it
to have extra vertical space before and/ or after it, the extra-line-space function \x' N ' can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame
ter (here ') , the delimiter choice is arbitrary, except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

Request Initial
Form Value

If No
Argument

.vs N 1/6in;12pts previous

.Is N N= 1 previous

Notes Explanation

E,p

E

Set vertical base-line spacing size V. · Transient extra
vertical space available with \x' N ' (see above) .

Line spacing set to ± N. N-1 Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

- 13 -

NROFF/TROFF User's Manual
October 1 1 , 1976

.sp N

.sv N

.os

.ns space

.rs space

Blank text line.

N=1 V

N=1 V

6. Line Length and Indentiqg

B,v

v

D

D
B

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the dis
tance to the top of the page. Forward (downward) .
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below) .

Save a contiguous vertical block of size N. If the dis
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than N, no vertical space is immediately output,
but N is remembered for later output (see os) . Subse
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-space �ode is turned off.

Causes a break and output of a blank line exactly like
sp 1 .

The maximum line length for fill mode may be set with II. The indent may be set with in; an indent
applicable to only the next output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ce. The effect of II,
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .I and .i respectively. The length of three-part titles pro
duced by tl (see §14) is independently set by It.

Request Initial If No
Form Value Argument Notes Explanation

.II ± N 6.5 in previous E,m Line length is set to ± N. In TROFF the maximum
(line-length) + (page-offset) is about 7 .54 inches.

.in ± N N=O

.ti ± N

previous

ignored

B,E,m Indent is set to ± N. The indent is prepended to each
output line.

B,E,m Temporary indent. The next output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed. ·

7. Macros, Strings, Diversion, and Position Traps
7. 1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo
lated by name at any pdint. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created
by de and di, and appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

- 14 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \•x and
\• (xx respectively. String references and macro invocations may be nested.

7. 2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \• are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed new lines indicated by \(newline) are eliminated.
• Comments indicated by \" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9) .
• \\ is interpreted as \.

·

• \. is interpreted as "." .

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \$N, which interpolates
the Nth argument (1 � N � 9) . If an invoked argument doesn't .exist, a null string results. For exam
ple� the macro xx may be defined by

.de xx \"begin definition
Today is \\$1 the \\$2.

\"end definition
and called by

.xx Monday 14th
to produce the text

Today is Monday the 14th.
Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7. 4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and dl respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way

- 15 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the Oth diversion level) . These are the diver- '\,
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt) , the
current vertical place (.d register) , the current high-water text base-line (.h register) , and the current
diversion name (.z register) .

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input
line-count trap. Macro-invocation traps may be planted using wh at any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §TS) . If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail
able in the .t register; if there are no traps between the current position and the bottom of the page , the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt . The .t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

·

Request Initial If No
Form Value A rgument Notes Explanation €{1)
.de xx yy

• am xx yy

.ds +X string -

.as xx string -

.rm xx

.rn XX YY

.di XX

.yy= • •

. yy= . .

ignored

ignored

ignored

ignored

end D

Define or redefine the macro xx. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is
called. In the absence of yy, the definition is terminated
by a line beginning with " .. ". A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. " .. " can be
concealed as \ \ . . which will copy as \ • . and be reread as
tt "

.
Append to macro (append version of de) .
Define a string xx containing string. Any initial double
quote in string is stripped off to permit initial blanks.

Append string to string xx (append version of ds) .

Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

Rename request, macro, or string xx to yy. If yy exists, it
is first removed.

Divert output to macro xx. Normal text processing
occurs during diversion except that page offsetting is not
done. The diversion ends when the request di or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions are
being used.

- 1 6 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

.da xx
.wh N xx

.ch xx N

.dt N XX

.it N XX

.em xx none ·

8. Number Registers

end

off

off

none

D

v

v

D,v

E

Divert, appending to xx (append version of di) .
Install a trap to invoke xx at page position N,· a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by x.x: A zero
N refers to the top of a page. In . the absence of xx, the
first found trap at N, if any, is removed.

Change the trap position for macro xx to be N In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position N in the current diver
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
l lnes don't count) . The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will . be invoked when all input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7) . In addition, the user may define his own named registers. Register names are one
or two characters long and do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1 .4) .

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+ (xx xx incremented by M N+M
\n- (xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default) , decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha
betic according to the format specified by af.
Request Initial If No
Form Value Argument Notes Explanation

.nr R ± N M u The number register R is assigned the value ± N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M

- 17 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

. af R c arabic

.rr R ignored

9. Tabs, Leaders, and Fields

Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0,1 ,2,3 ,4,5, . . .
001 000,001 ,002,003,004,005, . . .

i O,i,ii,iii,iv, v , . . .
I O,I,II,III,IV, V , . . .
a O,a, b,c, . . . ,z,aa,ab, . . . ,zz,aaa, . . .
A O,A,B,C, . . . ,Z,AA,AB, . . . ,ZZ,AAA, . . .

An arabic format having N digits specifies a field width of
N digits (example 2 above) . The read-only registers and
the width function (§1 1 .2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9. 1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string bf repeated charac
ters. The length of the generated entity is governed by internal tab stops specifiable with ta. The
default difference is that tabs generate motion and leaders generate a string of periods; tc and lc offer
the choice of repeated character or motion. There are three types of internal tab stops- /eft adjusting,
right adjusting, and centering. Irr the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac
ters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the width of
next-string.

Tab Length of motion or Location of
type repeated characters next-string
Left D Following D

Right D - W Right adjusted within D
Centered D - W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9. 2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is die dist�nce on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the pad(iing indicator is A, #A XJot right# specifies a right-adjusted string with the
string xxx centered in the remaining space.

- 1 8 -

/ /

/

NROFF/TROFF User's Manual
October 1 1 , 1 976

If No Request
Form

Initial
Value Argument Notes Explanation

.ta Nt . . .

.tc c

. lc c

.fc a b

0.8 ; 0 .5 in none

none none

none

off off

E,m

E

E

Set tab stops and types. t=R, right adjusting; t=C,
centering; t absent, ieft adjusting. TROFF tab stops are
preset every 0.5in.; NROFF every 0.8 in . The stop values
are separated by spaces, and a valu� preceded by + is
treated as an increment to the previous stop value.

The tab repetition character becomes c, or is removed
specifying motion .

The leader repetition character becomes c, or is removed
specifying motion.

The field delimiter is set to a; the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations
1 0. 1. Input character translations. Ways of inputting the graphic character set were discussed in §2. 1 .
The ASCII control characters horizontal tab (§9. 1) , SOH (§9. 1) , and backspace (§10 .3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§ 10.5) . All others are ignored.

The escape character \ introduces escape sequences- causes the following character to mean another
character, or. to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \\. The escape character can be changed with
ec, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan
ism may be turned off with eo, and restored with ec.
Request Initial If No
Form Value Argument Notes Explanation

.ec c \ \ Set escape character to \, or to c, if given .

. eo on Turn escape mechanism ofl.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - ft, fl, ff, ffi, and fH.
They may be input (even in NROFF) by \ (fi, \ (fl, \ (ff, \ (Fi, and \ (FI respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Initial If No
Form Value Argument Notes Explanation

. lg N off; on on Ligature mode is turned on if N is absent or non-zero,
and turned off if N=O. If N=2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.3. Backspacing, underlining, overstriking, etc. · Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in § 1 2 .4. A generalized overstriking function is described in § 1 2. 1 .

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2 (normally Times Italic, see §2.2) . In addition to ft and \f F, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
characters.

- 1 9 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

1/ No Request
Form

Initial
Value Argument Notes Explanation ·

.ul N off N=1

.cu N off N=1

.uf F Italic Italic

E

E

Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a ul will take effect, but the restora
tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre
ment N. If N> 1 , there is the risk that a trap interpo
lated macro may provide text lines within the span;
environment switching can prevent this.

A variant of ul that causes every character to be under
lined in NROFF. Identical to ul in TROFF.

Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman) .

1 0.4. Control characters. Both the control character . and the no-break control character ' may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked ma,cros.

Request Initial If No
Form Value Argument Notes Explanation

.cc c

.c2 c

E

E

The basic control character is set to c, or reset to "." .

The nobreak control character is set to c, or reset to "'".

10.5. Output translation. One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ
ing diversion) .

Request Initial
Form Value

. tr abed.. . . none

If No
Argument Notes Explanation

0 Translate a into b, c into d, etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10. 6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \ !) ; the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10. 7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofilled text) can be split into many physical lines by ending all but the last one
with the escape \. The sequence \ (newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \". The newline at the end of a comment
cannot be concealed. A line beginning with \" will appear as a blank line and behave like .sp 1; a com
ment can be on a line by itself by beginning the line with .\ ".

11. Local Horizontal and Vertical Motions, and the Width Function
11.1 . Local Motions. The functions \v' N' and \h' N' can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

- 20 -

." \

NROFF/TROFF User's Manual
October 1 1 , 1 976

Vertical Effect in
Local Motion TROFF NROFF

\v'N' Move distance N

\u V2 em up V2 line up
\d V2 em down V2 line down
\r 1 em up 1 line up

Horizontal Effect in
Local Motion TROFF NROFF

\h'N' Move distance N
\ (space) Unpaddable space-size space
\0 Digit-size space

\ I 1/6 e m space ignored
\A 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'- 0.4m'2\v'0.4m'\s+ 2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11 .2. Width Function. The width function \w'string' generates the numerical width of string (in basic
units) . Size and font changes may be safely imbedded in string, and will not affect the current environ
ment. For example, .ti -\w'1. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "1. " .
The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3 : 0 means
that all of the characters in string were short lower case characters without descenders (like e) ; 1 means
that at least one character has a descender (like y) ; 2 means that at least one character is tall (like H) ;
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kxword\h' l\nxu+2u' word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions
12. 1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over
strike function \o' string'. The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \o'e\" pro
duces e, and \o'\ (mo\(sl' produces � -
12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\ (ci\ (pl will produce E9, and
\ (br\z\ (rn \ (ul\ (br will produce the smallest possible constructed box Q.
12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
((l l J { � l l J r 1) that can be combined into various bracket styles. The function \b' string' may be used
to pile up vertically the characters in string (the first character on top and

.
the last at the bottom) ; the

characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line (112 line in NROFF) . For example, \b' \Oc\(lf 'E\1\b'\(rc\(rf ' \x' -O.Sm' \x'O.Sm' produces [E) .
12.4. Line drawing. The function \ 1 'Nc' will draw a string of repeated c 's towards the right for a dis- ·
tance N. (\l is \ (lower case L) . If c looks like a continuation of an expression for N, it may insulated
from N with a \&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF) . If
N is negative, a backward horizontal motion of size N is made before drawing the string. Any space
resulting from N I (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _ , underrule _ , and root
en - , the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen
tered on a distance N. As an example, a macro to underscore a string can be written

.de us
\\$1\ l ' I O\(ul'

- 21 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

·

or one to draw a box around a string

.de bx
\ (br\ l\\$1\ j\ (br\ I ' I O\ (rn'\ I ' I O\(ul'

such that

.ul "underlined words"
and

.bx "words in a box"
yield underlined words and I words in a box 1.
The function \L' Nc ' will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in NROFF) , with the first two characters overlapped, if necessary, to form a continu
ous line. The default character is the box rule I (\(br) ; the other suitable character is the bold vertical !
(\(bv) . The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the ·end of the line.

The horizontal and vertical line drawing funct-ions may be used in combination to produce large boxes.
The zero-width box-rule and the 112-em wide underrule were designed to form corners when using 1-em
vertical spacings. For example the macro

.de eb

.sp -1 \"compensate for next automatic base-line spacing

.nf \"avoid possibly overflowing word buffer
\b'- .5n'\L' I\\nau- 1'\l'\\n (.Iu+ 1n\(ul'\L'- I\\nau+1'\I' I Ou - .Sn\(ul' \"draw box �[I!@ .fi

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
using .mk a) as done for this oaragraoh.
13. Hyphenation.
The automatic hyphenation may be switched off and on. When switched on with hy, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus) , em-dashes (\(em), or hyphenation indicator characters-such as mother-in-law-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No
Form Value Argument Notes Explanation

.nb

.hyN

.he c

hyphenate

on,N=1 on, N=l

\% \%

.hw word] . . . ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N;;:::: 1 , or off for
N = 0. If N = 2 , last lines (ones that will cause a trap)
are not hyphenated. For N= 4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive; i. e. N= 14 will invoke all
three ·restrictions.

Hyphenation indicator character is set to c or to the
default \%. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

- 22 -

NROFF/TROFF User's Manual
October 1 1 , 1 97 6

14. Three Part Titles.

implied� i. e. dig-it implies dig-its. This list is exam
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with lt. tl may be used anywhere, and is independent of the normal
text collecting process. A commc;m use is in header and footer macros.

Request Initial If No
Form Value Argument Notes Explanation

.tl ' left' center' right' The strings left, center, and right are respectively left
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over
lapping is permitted. If the page-number character (ini
tially %) is found within any of the fields it is replaced by
the current page number having the format assigned to
register %. Any character may be used as the string del
imiter.

.pc c % off

. It ± N 6.5 in previous

15. Output Line Numbering.

-
The page number character is set to c, or removed. The
page-number register remains %.

E,m Length of title set to ± N. The line-length and the title
length are independent. Indents do not apply to titles�
page-offsets do.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical
spaces, and lines generated by ti are not numbered. Numbering can be temporarily suspended with

6 nn, or with an .nm followed by a later .nm +0 . In addition, a line number indent /, and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number M are to be printed (the others will appear

9 as blank number fields) .

Request Initial
Form Value

.nm ± N M S /

.nn N

If No
Argument

off

N=1

Notes Explanation

E Line number mode. If ± N is given, line numbering is
turned on, and the next output line numbered is num
bered ± N. Default values are M= 1 , S= 1 , and / = 0.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register ln.

E The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M= 3 : .nm 1 3 was
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm + 0 was placed

1 2 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\w'OOOO'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on
numbering with the line number of the next line to be 5 greater than the last numbered line, with

1 5 M= 5, with spacing S untouched, and with the indent I set to 3 .

- 23 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

16. Conditional Acceptance of Input
In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres
sion, string} and string2 are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.
Request Initial If No
Form Value Argument Notes Explanation

.if c anything

. if ! c anything

. if N anything

. if !N anything

. if 'string} ' string2' anything

.if ! 'string] ' string2 ' anything

. ie c anything

• el anything

u
u

u

The built-in condition names are:

Condition
Name

0
e
t
n

If condition c true, accept anything as input; in multi-line
case use \ {anything\} .

If condition c false, accept anything .

If expression N > 0, accept anything .

If expression N � 0, accept anything .

If string] identical to string2, accept anything .

If string] not identical to string2, accept anything.

If portion of if-else; all above forms (like if) .
Else portion of if-else .

True If
Current page number is odd
Current page number is even
Formatter is TROFF
Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font) , anything is accepted as input. If a ! precedes the condi
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \{ and the last line must end with a right delimiter \} .

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:

.if e .tl ' Even Page %"'
which outputs a title if the page number is even; and

.ie \n% > 1 \{\
'sp O.Si
.tl ' Page %'"
'sp lt.2i \}
.el .sp l2.5i

which treats page 1 differently from other pages.

17. Environment Switching.
A number of the parameters that control the text processing are gathered together into an environment,
which can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

- 24 -

NROFF/TROFF User's Manual
October 1 1 , 1 97 6

number registers, and
parameter values.

Request Initial
Form Value

.ev N N=O

macro and string definitions. All environments are initialized with default

U No
Argument Notes Explanation

previous Environment switched to environment 0 � N� 2. Switch
ing is done in push-down fashion so that restoring a pre
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the �tandard Input
The input can be temporarily switched to the system standard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used) . This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key
board, a pipe, or a file.

Request Initial
Form Value

.rd prompt

.ex

U No
Argument Notes Explanation

prompt=BEL- Read insertion from the standard input until two new
lines in a row are found. If the standard input is the
user's keyboard; prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from. the terminal keyboard while output is being printed on the terminal,
the command line option - q will turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§1 9) ; the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching
Request Initial U No
Form Value Argument Notes Explanation

.so filename

.nx filename

.pi program

20. Miscellaneous

Request
Form

.me e N

Initial
Value

end-of-file

U No
Argument

off

Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested.

Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

Pipe output to program (NROFF only) . This request
must occur before any printing occurs. No arguments are
transmitted to program.

Notes Explanation

E,m Specifies that a margin character c appear a distance N to
the right of the right margin after each non-empty text
line (except those produced by tl) . If the output line is
too-long (as can happen in nofill mode) the character will

- 25 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

.tm string newline

. ig YY .yy= . .

.pm t all

.fl

21. Output and Error Messages.

B

be appended to the line. If N is not given, the previous
N is used; the initial N is 0.2 inches in NROFF and 1 em
in TROFF. The margin character used with this para
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. ig behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if t
is given, only the total of the sizes is printed. The sizes
is given in blocks of 1 28 characters.

Flush output buffer. · Used in interactive debugging to
force output.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
UNIX's standard message output. The latter is different from the standard output, where NROFF format
ted output goes. By default, both are written onto the user's terminal; but they can be independently
redirected.

•

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious

�:���d
h:;:����Y

t����l
s

i:�a��:e
o

t�o�t
c���e

t��o��:�n:u�e�e��i���e�o�:� :���i�:so�:;fi;:��:���o� '!!ll:w
an output line that grew too large to tit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation with a *

in NROFF and a -. in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

- 26 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

TUTORIAL EXAMPLES

Tl. Introduction
Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors*
with the intent of easing their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

T2. Page Margins
As discussed in §3 , header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header, and at -N (N
from the page bottom) for the footer. The sim
plest such definitions might be

.de hd \"define header
'sp 1i

.de fo
'bp

.wh 0 hd

.wh - H fo

\"end definition
\"define footer

\"end definition

which provide blank 1 inch top and bottom mar
gins. The header will occur on the first page,
only if the definition and trap exist prior to the

•For example: P. A . Crisman, Ed., The Compatible Time

Sharing System, MIT Press, 1965, Section AH9.01 (Descrip
tion of RUNOFF program on MIT's CTSS system) .

initial pseudo-page transition (§3) . In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and sp that normally
cause breaks are invoked using the no-break con
trol character ' to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd \"header

.if t • tl ' \ (rn "\ (rn' \ "troff cut mark

.if \\n% >1 \{\
'sp IO.Si-1 \"tl base at O.Si
.tl "- % - " \"centered page number
.ps \"restore size
.ft \"restore font
. vs \} \"restore vs
'sp l l .Oi \"space to l .Oi
.ns \"turn on no-space mode

.de fo \"footer

.ps 10 \"set footer/header size

.ft R \"set font

. vs 12p \"set base-line spacing

.if \\n%==1 \ {\
'sp l\\n (.pu-O.Si- 1 \"tl base O.Si up
.tl "- % -" \} \"first page number
'bp

.wh 0 hd
.wh - li fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is drawn in the form of root-en's at each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

- 27 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

much as the base-line spacing. The no-space
mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc,
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow
ing:

. de fo

.nr sl \\n(.s

.ps

.nr s2 \ \n <.s

. ---

.de hd

. ---

.ps \ \n(s2

.ps \\n (sl

\"current size

\"previous size
\"rest of footer

\"header stuff
\"restore previous size
\"restore current size

Page numbers may be printed in the bottom mar
gin by a separate macro triggered during the
footer's page ejection:

.de bn \"bottom number

.tl " - % - ·· \"centered page number

. wh - O.Si- lv bn \"tl base 0.5i up

T3. Paragraphs and Headings
The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base-line spacing, ancl. indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

. de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \"size,

. vs 12p \"spacing,

. in 0 \"and indent

.sp 0.4 \ "prespace

.ne 1 + \ \n (. Vu \"want more than 1 line

.ti 0.2i \"temp inden_t

The first break in pg will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec
tion heading macros to set parameters only once.

The prespacing parameter is suitable for TROFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the .V is the available vertical resolu
tion) .

A macro to automatically number section head
ings might look like:

.de sc \"section

. --- \"force font, etc .

.sp 0.4 \ "prespace

.ne 2.4+\\n (.Vu \"want 2.4+ lines

.fi
\\n+S.

.or S 0 1 \"init S
The usage is .sc, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading, 0.4 line in the. following pg,
and one line of the paragraph text. A word con
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).
Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space .

.de lp

.pg

.in 0.5i
.ta 0.2i 0 .5i
.ti 0
\t\\$1\t\c

\"labeled paragraph

\"paragraph indent
\"label, paragraph

\ "ftow into paragraph

The intended usage is ".lp label" ; label will begin
at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .ta 0.4iR O.Si.
The last line of lp ends with \c so that it will
become a part of the first line of the text that fol
lows .

T4. Multiple Column Output
The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro
duce the bottom margin. The header can initial
ize a column register that the footer will incre
ment and test. The following is arranged for two
columns, but is easily modified for more.

- 28 -

\

)

NROFF/TROFF User's Manual
October p , 1976

.de hd

.nr cl 0 1

.mk

\"header

\ " init column count
\"mark top of text

.de fo \"footer

. ie \ \n + (cl< 2 \ {\

.po +3.4i \"next column; 3 .1 + 0.3

.rt \"back to mark

.ns \ } \"no-space mode

.el \ {\

.po \ \nMu \"restore left margin

'bp \}

.II 3.1i \"column width
.nr M \\n (.o \"save left margin

Typically a portion of the top of the first page
contains full width text; the request for the nar
rower line length, as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing
The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Footnote text and control lines . . .
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com
pletely fit in the available space.

.de hd \"header

.nr x 0 1

.nr y 0 -\\nb

.ch fo -\\nbu

.if \ \n (dn .fz

.de fo

.nr dn 0

.if \\nx \ {\

\ " init footnote count
\"current footer place
\"reset footer trap
\" leftover footnote

\"footer
\"zero last diversion size

.ev 1 \"expand footnotes in ev1

. nf \"retain vertical size

.FN \"footnotes

.rm FN \"delete it

.if "\ \n (.z"fy" .di \"end overflow diversion

.nr x 0 \"disable fx

.ev \}

. ---
'bp

\"pop environment

.de fX \"process footnote overflow

. if \ \nx .di fy \"divert overflow

.de fn \"start footnote

.da FN \"divert (append) footnote

.ev 1 \"in environment 1

.if \ \n + x - 1 .fs \"if first, include separator

.fi \"fill mode

.de ef \"end footnote

.br \"finish output
.nr z \\n (.v \"save spacing
.ev \"pop ev
.di \"end diversion
.nr y -\\n (dn \"new footer position,
.if \\nx - 1 .nr' y - (\\n(.v -\\nz) \

\"uncertainty correction
.ch fo \\nyu \ "y is negative
. if (\\n (nl + lv) > (\\n (.p +\\ny) \
.ch fo \ \n (nlu + 1v \"it didn ;t fit

.de fs
\1' 1i'
.br

\"separator
\" 1 inch rule

.de fz \"get leftover footnote

.fn

.nf \"retain vertical size

.fy \"where fx put it

.ef

.nr b l .Oi \"bottom margin size

. wh 0 hd \"header trap
.. wh 12i fo \"footer trap, temp position
. wh -\\ nbu fx \" fx at footer position
.ch fo -\\ nbu \"conceal fx with fo

The header hd initializes a footnote count regis
ter x, and sets both the current footer trap posi
tion register y and the footer trap itself to a nom
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ
ment 1, and increments the count x; if the count
is one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z. y is then decremented by the size of the

- 29 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

footnote, available in dn; then on the first foot
note, y is further decremented by the difference
in vertical base-line spacings of the two environ
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer- trap is then set
to the lower (on the page) of y or the current
page position (nl) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill
mode in environment 1 , and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is mo:ved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the ·uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish
ing before reaching the fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

T6. The Last Page
After the last input file has ended, NROFF and
TROFF invoke the end macro (§7) , if any, and
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en
\c
'bp

.em en

\"end-macro

will deposit a null partial word, and effect
another last page.

- 30 -

\

'
___)

NROFF/TROFF User's Manual
October 1 1 , 1976

Table I

Font Style Examples

The following fonts are printed in 1 2-point, with a vertical spacing of 14-point, and with non
alphanumeric characters separated by 1,4 em space. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard fonts available from that company.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCD EFG HIJKLMNOPQRSTUVWXYZ
1 234567890
! $ % & (} ' ' * + - . , / : � = ? [l l
• 0 - • _ !,4 liz 3,4 fi fl ff ffi ffl O t I ¢ @ @

Times Italic

abcdefgh(jklmnopqrstuvwxyz
A BCDEFGH/JKLMNOPQRSTU VWXYZ
123456 7890
I $ % & () " * + - . , I : ; = ? [li
• 0 - • - '14 0 3J4 .fi .!i .ff.ffi .lfl O t I ¢ @ @

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
12345.67890
! $ % & (} " * + - . , / : ; = ? l l l
• o - - _ 1/4 1/z 3/.t fi ft ff m m o t ' ¢ ® ©

Special Mathematical Font

" ' \ A _ ' - / < > { } # @ + - = *
a � y B e { � 0 t K A M v g o � p � � r v ¢ x � w
f A 9 A 2 TI I. Y <I> 'l' !1
.J - � � = - = � - - r 1 x + + u n c => c => oo a
§ 'V .., f ex: 0 E *.,..._ @ I O (l l J O i lHl l

- 3 1 -

NROFF/TROFF User's Manual
October 1 1 , 1 976

Table II

Input Naming Conventions for ', ',and
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Char Name Name Char Name Name

close quote fi \ (fi fi
open quote fl \ (fl fl

\ (em 3/4 Em dash ff \ (ff ff
hyphen or ffi \ (Fi ffi

\ (hy hyphen m \ (Fl m
\ - current font minus � \ (de degree

• \ (bu bullet t \ (dg dagger
0 \ (sq square \ (fm foot mark

\ (ru rule ¢ \ (ct cent sign
1/4 \(14 1/4 <!!) \ (rg registered
!f2 \ (12 1/2 @ \ (co copyright
% \ (34 3/4

Non-ASCII characters and ', ·, _ , +, -, -, and • on the special font.
The ASCII characters @, #, " , · , ', < , > , \, {, } , -, A, and _ exist only on the special font and are
printed as a 1-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman) . The special
math plus, minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \(pl math plus K \ (*k kappa
\ (mi math minus A. \ (*I lambda
\ (eq math equals JJ. \ (*m mu

* \ (** math star v \ (*n nu
§ \ (sc section � \ (*c xi

\ (aa acute accent 0 \ (*o omicron
\ (ga grave accent 1T \ (*p pi
\ (ul underrule p \ (*r rho

I \ (sl slash (matching backslash) (j \ (*s sigma
a \ (*a alpha � \ (ts terminal sigma
{3 \(*b beta T \ (*t tau
'Y \ (*g gamma v \ (*u upsilon
8 \ (*d delta cP \ (*f phi
E \ (*e epsilon X \ (*x chi
' \ (*z zeta "' \ (*q psi
'T/ \(*y eta w \ (*w omega
(J \ (*h theta A \ (*A Alp hat

\ (*i iota B \ (*B Betat

- 32 -

\
I

41)

.. ,r:}, ;,:;;=;z:;:_:;

NROFF/TROFF User's Manual
October 1 1 , 1 976

Input Character Input Character
Char Name Name Char Name Name

r \ (*G Gamma I \ (br box vertical rule
� \ (*D Delta * \ (dd double dagger
E \ (*E Epsilont -- \ (rh right hand
z \ (*Z Zetat \Oh left hand
H \ (*Y Etat @ \ (bs Bell System logo
9 \ (*H Theta I \ (or or
I \ (*I lotat 0 \ (ci circle
K \ (*K Kappat (\ (It left top of big curly bracket
A \ (*L Lambda l \ {lb left bottom
M \ (*M Mut l \ (rt right top
N . \ (*N Nut J \ (rb right bot - \ (*C Xi { \{lk left center of big curly bracket :::::.
0 \ (*0 Omicront � \ (rk right center of big curly bracket
II \ (*P Pi I \ (bv bold vertical
p \ (*R Rhot l \Of left floor (left bottom of big
:E \ (*S Sigma square bracket)
T \ (*T Taut J \ (rf right floor (right bottom)
y \ (*U Upsilon r \ {lc left ceiling (left top)
<I> \ (*F Phi 1 \ (rc right ceiling (right top)
X \ (*X Chit
'I' \ (*Q Psi
n \ (*W Omega

��;JI� .J \ (sr square root
\ (rn root en extender

� \ (> = > =
� \ (< = < =
- \ (= = identically equal
- \r= approx =

\{ap approximates
;z: \{ ! = not equal
- \ (-> right arrow

\ (< - left arrow
l \ (ua up arrow
1 \ (da down arrow
X \ (mu multiply

\ (di divide
± \ (+ - plus-minus
u \ (cu cup (union)
n \ (ca cap (intersection)
c \ (sb subset of
:::> \{sp superset of
� \ (ib improper subset
:1 \ (ip improper superset
00 \ (if infinity
(j \{pd partial derivative
\l \ (gr gradient
.., \ (no not

·f@ I \ (is integral sign *8 ?<i:p 0:: \ {pt proportional to
0 \ (es empty set
E \ (mo member of

- 33 -

May 1 5, 1977

Options

-h

-z

Old Requests

.ad c

. so name

New Request

.ab text

.fz F N

Summary of Changes to N/TROFF Since October 1976 Manual

(Nroff only) Output tabs used during horizontal spacing to speed output as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm"s
and diagnostics) .

The adjustment type indicator "c" may now also be a number previously obtained from
the " .j" register (see below) .

The contents of file "name" · will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon return to the file-reading input level.

Prints "text" on the message output and terminates without further processing. If "text"
is missing, "User Abort." is printed. Does not cause a break. The output buffer is
flushed.

forces [ont "F" to be in si�e N. N may have the form N, + N, or -N. For example,
.fz 3 -2

will cause an implicit \s-2 every time font 3 is entered, and a corresponding \s+ 2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently,

.fz S F N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 -3

.fz S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any ".fp" request specifying a font on some position must precede
".fz" requests relating to that position.

New Predefined Number Registers.

.k

.j

. P

. L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line, if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be
saved and later given to the "ad" request to restore a previous mode.

Read-only. · 1 if the current page is being printed, and zero otherwise .

Read-only. Contains the current line-spacing parameter ("Is") .

General register access to the input line-number in the current input file. Contains the
same value as the read-only ".c" register.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems photo
typesetter on the UNIXt and GCOS operating systems. This device is capable of
producing high quality text; this paper is an example of troff output.

The phototypesetter itself normally runs with four fonts, containing
roman, italic and bold letters (as on this page), a full greek alphabet, and a sub
stantial number of special characters and mathematical symbols. Characters can
be printed in a .range of sizes, and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions,
as well as the usual features of a formatter - right-margin justification,
automatic hyphenation, page titling and numbering, and so on. It also provides
macros, arithmetic variables and operations, and conditional testing, for compli
cated formatting tasks.

This document is an introduction to the most basic use of troff. It
presents just enough information to enable the user to do simple formatting
tasks like making viewgraphs, and to make incremental changes to existing
packages of troff commands. In most respects, the UNIX formatter nroff is
identical to troff, so this document also serves as a tutorial on nroff.

August 4, 1978

tUNIX is a Trademark of Bell Laboratories.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
· Murray Hill, New Jersey 07974

1. Introduction

troff [1] is a text-formatting program, writ
ten by J. F. Ossanna, for producing high-quality
printed output from the phototypesetter on the
UNIX and GCOS operating systems. This docu
ment is an example of troff output.

The single most important rule of using
troff is not to use it directly, but through some
intermediary. In many ways, troff resembles an
assembly language - a remarkably powerful and
flexible one - but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, there are pro
grams that provide an interface to troff for the
majority of users. eqn [2] provides an easy to
learn language for typesetting mathematics; the
eqn user need know no troff whatsoever to
typeset mathematics. tbl [3] provides the same
convenience for producing tables of arbitrary
complexity.

For producing straight text (which may
well contain mathematics or tables) , there are a
number of 'macro packages' that define format
ting rules and operations for specific styles of
documents, and reduce the amount of direct
contact with troff. ·In particular, the ' - ms' [4]
and PWB/MM [5] packages for Bell Labs inter
nal memoranda and external papers provide most
of the facilities needed for a wide range of docu
ment preparation. (This memo was prepared
with ' - ms'.) There are also packages for view
graphs, for simulating the older roff formatters
on UNIX and GCOS, and for other special applica
tions. Typically you will find these packages
easier to use than troff once you get beyond the
most trivial operations; you should always con
sider them first.

In the few cases where existing packages
don't do the whole job, the solution is not to
write an entirely new set of troff instructions
from scratch, but to make small changes to adapt
packages that already exist.

In accordance with this philosophy of let
ting someone else do the work, the part of troff
described here is only a small part of the whole,
although it tries to concentrate on the more use
ful parts. In any case, there is no attempt to be
complete. Rather, the emphasis is on showing
how to do simple things, and how to make incre
mental changes to what already exists. The con
tents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and charact�rs
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

1 0. Number registers and arithmetic
1 1 . Macros with arguments
12 . Conditionals
1 3. Environments
1 4. Diversions

Appendix: Typesetter character set

The troff described here is the C-language ver
sion running on UNIX at Murray Hil l , as docu
mented in [1] .

To use troff you have to prepare not only
the actual text you want printed, but some infor
mation that tells how you want it printed.
(Readers who use roff will find the approach
familiar.) For troff the text and the formatting
information are often intertwined quite inti
mately. Most commands to troff are placed on a
line separate from the text itself, beginning with
a period (one command per line) . For example,

Some text.
.ps 14
Some more text.

will change the 'point size', that is, the size of
the letters being printed, to ' 1 4 point' (one point
is 1 /72 inch) like this:

Some text. Some more text.

Occasionally, though, something special
occurs in the middle of a line - to produce

Area = 1r r 2
you have to type

Area = \ (*p\flr\fR\ I\s8\u2\d\sO

(which we will explain shortly) . The backslash
character \ is used to introduce troff commands
and special characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps
sets the point size. One point is 1 /72 inch, so
6-point characters are at most 1 / 1 2 inch high,
and 36-point characters are 1/2 inch. There are 1 5
point sizes, listed below.

6 point: Pack my box with five dozen liquor jugs.
7 point: Pack my box with five dozen liquor jugs.

8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
1 1 point: Pack my box with five dozen

- 2 -

12 point: Pack my box with five dozen

14 point: Pack my box with five

1 6 point 1 8 point 20 point

22 24 28 3 6
If the number after .ps is not one of these

legal sizes, it is rounded up to the next valid
value, with a maximum of 36. If no number fol
lows .ps, troff reverts to the previous size, what
ever it was. troff begins with point size 10, ·

which is usually fine. This document is in 9
point.

The point size can also be changed in the
middle of a line or even a word with the in�line
command \s. To produce

UNIX runs on a PDP-1 1 /45

type

\s8UNIX\s10 runs on a \s8PDP-\s101 1 /45

As above, \s should be followed by a legal point
size, ex�ept that \sO causes the size to revert to
its previous value. Notice that \slOl l can be
understood correctly as 'size 1 0, followed by an
1 1 ' , if the size is legal, but not otherwise. Be
cautious with similar constructions.

Relative size changes are also legal and
useful:

\s- 2UNIX\s+2

temporarily decreases the size, whatever i t is, by
two points, then restores it. Relative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relative
change is restricted to a single digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is set independently of the point size.
Vertical spacing is measured from the bottom of
one line to the bottom of the next. The com
mand to control vertical spacing is .vs. For run
ning text, it is usually best to set the vertical
spacing about 20% bigger than the character size.
For example, so far in this document, we have
used "9 on 1 1 ", that is,

.ps 9

.vs 1 1 p

If we changed to

.ps 9

. VS 9p
the running text would look like this. After a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
taste, depending on how much text you want to
squeeze into a given space, and partly a matter
of traditional printing style. By default, troff
uses 1 0 on 12 .

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 1 2 on 14.

Point size and vertical spacing make a substantial difference in
the amount of text per square inch. For example. 10 on 12 uses about
twice as much space as 7 on 8. This is 6 on 7. which is even smaller. It
packs a lot more words per line. but you can go blind trying to read iL

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vert
ical space. Unadorned, it gives you one extra
blank line (one .vs, whatever that has been set
to) . Typically, that's more or less than you
want, so .sp can be followed by information
about how much space you want -

.sp 2i

means 'two inches of vertical space'.

.sp 2p

means ' two points of vertical space'; and

.sp 2

means 'two vertical spaces' - two of whatever

.vs is set to (this can also be made explicit with

.sp 2v) ; troff also understands decimal fractions
in most places, so

.sp l .S i

i s a space of 1 .5 inches. These same scale fac
tors can be used after . vs to define line spacing,
and in fact after most commands that deal with
physical dimensions.

It should be noted that all size numbers
are converted internally to 'machine units',
which are 1 /432 inch {1/6 point). For most pur
poses, this is enough resolution that you don't
have to worry about the accuracy of the
representation. The situation is not quite so
good vertically, where resolution is 11 144 inch
{1/2 point) .

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at any one time. Normally three fonts
(Times roman, italic and bold) ·and one collec
tion of special characters are permanently
mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456 789
A BCDEFGH/JKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany
of the special font are listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold, use the .ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R; to return to the
previous font, whatever it was, use either .ft P or
just .ft. The 'underline' command

.ul

causes the next input line to print in italics. .ul
can be followed by a count to indicate that more
than one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

boldface text

is produced by

\fBbold\flface\fR text

If you want to do this so the previous font,
whatever it was, is left undisturbed, insert extra
\fP commands, like this:

- 3 -

\fBbold\fP\flface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous
font after each change or you can lose it. The
same is true of .ps and .vs when used without an
argument.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp tells troff
what fonts are physically mounted on the
typesetter:

.fp 3 H

says that the Helvetica font is mounted on posi
tion 3. (For a complete list of fonts and what
they look like, see the troff manual.) Appropriate
.fp commands should appear at the beginning of
your document if you do not use the standard
fonts.

It is possible to make a document rela
tively independent of the actual fonts used to
print it by using font numbers instead of names;
for example, \f3 and .fC3 mean 'whatever font
is mounted at position 3 ' , and thus work for any
setting. Normal settings are roman font on 1 ,
italic on 2, bold on 3, and special on 4 .

There is also a way to get 'synthetic' bold
fonts by overstriking letters with a slight offset.
Look at the .bd command in [1] .

Special characters have four-character
names beginning with \ (, and they may be
inserted anywhere. For example,

'/4 + '12 = %

is produced by

\04 + \02 = \ (34

In particular, greek letters are all of the form
\ (• - , where - is an upper or lower case roman
letter reminiscent of the greek. Thus to get

L.(axf3) - oo

in bare troff we have to type

\ (•S (\ (•a\ (mu\ C•b) \ (- > \ (if

That line is unscrambled as follows:

\ (•S r.
((
\ (•a a
\ (mu X
\ (•b /3
))
\ (->
\ (if 00

A complete list of these special names occurs in
Appendix A.

/

In eqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta) - > inf

which is less concise, but clearer to the unini
tiated.

Notice that each four-character name is a
single character as far as troff is concerned - the
'translate' command

. tr \ (mi\ (em

is perfectly clear, meaning

. tr --

that is, to translate - into -.
Some characters are automatically

translated into others: grave ' and acute '
accents (apostrophes) become open and close
single quotes ,_, ; the combination of " . . . " is gen-
erally preferable to the double quotes " . . . ". Simi-
larly a typed minus sign becomes a hyphen -. To
print an explicit - sign, use \-. To get a
backslash printed, use \e.

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches,
too wide for 8 V2 x l l paper. To reset the line
length, use the .II command, as in

.II 6i

As with .sp, the actual length can be specified in
several ways; inches are probably the most intui
tive.

The maximum line length provided by the
typesetter is 7.5 inches, by the way. To use the
full width, you will have to reset the default phy
sical left margin ("page offset") , which is nor
mally slightly less than one inch from the left
edge of the paper. This is done by the .po com
mand.

.po 0

sets the offset as far to the left as it will go.

The indent command .in causes the left
margin to be indented by some specified amount
from the page offset. If we use .in to move the
left margin in, and .11 to move the right margin
to the left, we can make offset blocks of text:

.in 0.3i

.II -0.3i
text to be set into a brock
.II +0.3i
.in -0.3i

will create a block that looks like this:

- 4 -

Pater noster qui est in caelis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut
in caelo, et in terra. ... Amen.

Notice the use of ' + ' and '-' to specify the
amount of change. These change the previous
setting by the specified amount, rather than just
overriding it. The distinction is quite important:
.ll + li makes lines one inch longer; .II li makes
them one inch long .

With .in, .11 and .po, the previous value is ·
used if no argument is specified .

To indent a single line, use the ' temporary
indent' command .ti. For example, all paragraphs
in this memo effectively begin with the com
mand

.ti 3

Three of what? The default unit for .ti, as for
most horizontally oriented commands Cll, .in,
.po) , is ems; an em is roughly the width of the
letter 'm' in the current point size. (Precisely, a
em in size p is p points.) Althl'ugh inches are
usually clearer than ems to people who don't set
type for a living, ems have a place: they are a
measure of size that is proportional. to the
current point size. If you want to make text that
keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be
specified as scale factors directly, as in . ti 2.5m.

Lines can also be indented negatively if the
indent is already positive:

. ti -0.3i

causes the next line to be moved back three
tenths of an inch. Thus to make a decorative
initial capital, we indent the whole paragraph,
then move the letter 'P' back with a .ti com
mand:

P
ater noster qui est in caelis
sanctificetur nomen tuum; ad
veniat regnum tuum; fiat volun

tas tua, sicut in caelo, et in terra. . . .
Amen.

Of course, there is also some trickery to make
the 'P' bigger (just a '\s36P\s0') , and to move it
down from its normal position (see the section
on local motions) .

5 . Tabs

Tabs (the ASCII 'horizontal tab' character)
can be used to produce output in columns, or to
set the horizontal position of output. Typically
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent, but can be changed by the .ta command.
To set stops every inch, for example,

.ta l i 2i 3i 4i 5i 6i

Unfortunately the stops are left-justified
only (as on a typewriter) , so lining up columns
of right-justified numbers can be painful. If you
have many numbers, or if you need more com
plicated table layout, don 't use troff directly; use
the tbl program described in [3] .

For a handful o f numeric columns, you
can do it this way: Precede every number by
enough blanks to make it line up when typed.

.nf

.ta 1 i 2i 3i
1 tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string
\0. This is a character that does not print, but
that has the same width as a digit. When
printed, this will produce

1
40

700

2
50

800

3
60

900

It is also possible to fill up tabbed-over
space with some character other than blanks by
setting the 'tab replacement character' with the
.tc command:

.ta l .S i 2.5i

.tc \ (ru (\(ru is "-")
Name tab Age tab

produces

Name ------- Age -----

To reset the tab replacement character to a
blank, use . tc with no argument. (Lines can also
be drawn with the \1 command, described in Sec
tion 6.)

troff also provides a very general mechan
ism called 'fields' for setting up complicated
columns. (This is used by tbl). We will not go
into it in this paper.

6. Local Motions: Drawing lines and charac-
ters

Remember 'Area = 1Tr2• and the big 'P'
in the Paternoster. How are they done? troff
provides a host of commands for placing charac
ters of any size at any place. You can use them
to draw special characters or to tune your output
for a particular appearance. Most of these com
mands are straightforward, but messy to read
and tough to type correctly.

If you won't use eqn, subscripts and super
scripts are most easily done with the half-line

local motions \u and \d. To go back up the page
half a point-size, insert a \u at the desired place;
to go down, insert a \d. (\u and \d should always
be used in pairs, as explained below.) Thus

Area = \ (*pr\ u2\ d

produces

Area = 1Tr2

To make the '2' smaller, bracket it with
\s-2 ... \sO. Since \u and \d refer to the current
point size, be sure to put them either both inside
or both outside the size changes, or you will get
an unbalanced vertical motion.

Sometimes the space given by \u and \d
isn' t the right amount. The \v command can be
used to request an arbitrary amount of vertical
motion. The in-line command

\ v' (amount) '

causes motion up or down the page by the
amount specified in ' (amount) ' . For example, to
move the 'P' down, we used

.in +0.6i (move paragraph In)

.11 -0.3i (shorten lines)

. ti -0.3 i (move P back)
\ v'2'\s36P\s0\ v'-2' ater noster qui est
in caelis . . .

A minus sign causes upward motion, while no
sign or a plus sign means down the page. Thus
\ v'-2' Ca!Jses an upward vertical motion of two
line spaces.

There are many other ways to specify the
amount of motion -

\v'O . l i'
\v'3p'
\v' -0.5m'

and so on are all legal. Notice that the scale
specifier i or p or m goes inside the quotes. Any
character can be used in place of the quotes; this
is also true of all other trotf commands described
in this section.

Since troff does not take within-the-line
vertical motions into account when figuring out
where it is on the page, output lines can have
unexpected positions if the left and right ends
aren' t at the same vertical position. Thus \v,
like \u and \d, should always balance upward
vertical motion in a line with the same amount
in the downward direction.

Arbitrary horizontal motions are also avail
able - \h is quite analogous to \v, except that
the default scale factor is ems instead of line
spaces. As an example,

\h' -O . l i'

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the
mathematical symbol ' > > '. The default spacing
is too wide, so eqn replaces this by

> \h' -0.3m'>

to produce >> .
Frequently \h is used with the 'width func

tion' \w to generate motions equal to the width
of some character string. The construction

\w'thing'

is a number equal to the width of ' thing' in
machine units (1 /432 i_nch) . All troff computa
tions are ultimately done in these units. To
move horizontally the width of an 'x', we can
say

\h'\w'x'u'

As we mentioned above, the default scale factor
for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the
motion produced will be far too large. troff is
quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construc
tion, all of the command names in the text, like
.sp, were done by overstriking with a slight
offset. The commands for .sp are

.sp\h' -\w'.sp'u'\h' 1 u'.sp

That is, put out ' .sp' , move left by the width of
'.sp', move right 1 unit, and print ' .sp' again.
(Of course there is a way to avoid typing that
much input for each command name, which we
will discuss in Section 1 1 .)

There are also several special-purpose troff
commands for local . motion. We have already
seen \0, which is an unpaddable white space of
the same width as a digit. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\ (blank) , which is an unpaddable character the
width of a space, \I, which is half that width, \A,
which is one quarter of the width of a space, and
\&, which has zero width. (This last one is use
ful, for example, in entering a text line which
would otherwise begin with a ' . ' .)

The command \o, used like

\o' set of characters'

causes (up to 9) characters to be overstruck, cen
tered on the widest. This is nice for accents, as
in

syst\o"e\ (ga"me t\o"e\ (aa"l\o"e\ (aa"phonique

which makes

- 6 -

systeme telephonique

The accents are \ {ga and \ (aa, or \' and \';
remember that each is just one character to troff.

You can make your own overstrikes with
another special convention, \z, the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed within \o, it
centers the characters on the widest, and there
can be no horizontal or vertical motions, so \z
may be the only way to get what you want:

is produced by

.sp 2
\s8\z\ (sq\s14\z\ (sq\s22\z\ (sq\s36\(sq

The .sp is needed to leave room·for the result.
As another example, an extra-heavy semi

colon that looks like

; instead of ; or ;
can be constructed with a big comma and a big
period above it:

\s +6\z,\ v' -0.25m'.\v'0.25m'\s0

'0.25m' is an empirical constant.
A more ornate overstrike is given by the

bracketing function \b, which piles up characters
vertically, centered on the current baseline.
Thus we can get big brackets, constructing them
with piled-up smaller pieces:

{ [X I }
by typing in only this:

.sp
\b'\ (It\ Ok\ (lb' \b'\ Oc\ (If' x \b'\ (rc\ (rf' \b'\ (rt\ (rk\ (rb'

troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \l'li' draws a
line one inch long, like this: ------
The length can be followed by the character to
use if the _ isn't appropriate; \l'O.Si.' draws a
half-inch line of dots: The construc-
tion \L is entirely analogous, except that it draws
a vertical line instead of horizontal.

7. Strings

Obviously if a paper contains a large
number of occurrences of an acute accent over a
letter 'e', typing \o"e\'" for each e would be a

great nuisance.
Fortunately, troff provides a way in which

you can store an arbitrary collection of text in a
'string', and thereafter use the string name as a
shorthand for its contents. Strings are one of
several troff mechanisms whose judicious use
lets you type a document with less effort and
organize it so that extensive format changes can
be made with few editing changes.

A reference to a string is replaced by what
ever text the string was defined as. Strings are
defined with the command .ds. The line

.ds e \o"e\'"

defines the string e to have the value \o"e\'"
String names may be either one or two

characters long, and are referred to by \•x for
one character names or \•(xy for two character
names. Thus to get telephone, given the
definition of the string e as above, we can say
t\ •el\ •ephone.

as
If a string must begin with blanks, define it

. ds xx " text

The double quote signals the beginning of the
definition. There is no trailing ,quote; the end of
the line terminates the string.

A string may actually be several lines long;
if troff encounters a \ at the end of any line, it is
thrown away and the next line added to the
current one. So you can make a long string sim
ply by ending each line but the last with a
backs lash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will
discuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further in troff, we
need to learn a bit about the macro facility. In
its simplest form, a macro is just a shorthand
notation quite similar to a string. Suppose we

. want every paragraph to start in exactly the same
way - with a space and a temporary indent of
two ems:

.sp

. ti +2m

Then to save typing, we would like to collapse
these into one shorthand line, a troff 'command'
like

• 7 •

.PP

that would be treated by troff exactly as

.sp

. ti +2m

.PP is called a macro. The way we tell troff what

.PP means is to define it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used ' .PP'
for 'paragraph' , and upper case so it wouldn't
conflict with any name that troff might already
know about) . The last line .. marks the end of
the definition. In between is the text, which is
simply inserted whenever troff sees the 'com
mand' or macro call

.PP

A macro can contain any mixture of text and
formatting commands.

The definition of .PP has to precede its
first use; undefined macros are simply ignored .
Names are restricted to one or two characters.

Using macros for commonly occurring
sequences of command� is critically important.
Not only does it save typing, but it makes later
changes much easier. Suppose we decide that
the paragraph indent is too small, the vertical
space is much too big, and roman font should be
forced. Instead of changing the whole docu
ment, we need only change the definition of .PP
to something like

.de PP

.sp 2p

. ti +3m

.ft R

\" paragraph macro

and the change takes effect everywhere we used
.PP.

\" is a troff command that causes the rest
of the line to be ignored. We use it here to add
comments to the macro definition (a wise idea
once definitions get complicated) .

As another example of macros, consider
these two which start and end a block of offset,
unfilled text, like most of the examples in this
paper:

.de BS

. sp
\" start indented block

.nf

. in +0.3i

.de BE

.sp
\" end indented block

.fi

. in -0.3i

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS and .BE, and it will come
out as it did above. Notice that we indented by
.in +0.3i instead of .in 0.3i. This way we can
nest our uses of .BS and BE to get blocks within
blocks.

. If later on we decide that the indent should
be O.Si, then it is only necessary to change the
definitions of .BS and .BE, not the whole paper.

9. Titles, Pages and Numbering

This is an area where things get tougher,
because nothing is done for you automatically.
Of necessity, some of this section is a cookbook,
to be copied literally until you get some experi
ence.

Suppose you want a title at the top of each
page, saying just
----left top center top
In roff, one can say

.he 'left top'center top'right top'

right top ___ _

.fo 'left bottom'center bottom'right bottom'

to get headers and footers automatically on every
page. Alas, this doesn' t work in troff, a serious
hardship for the novice. Instead you have to do
a lot of specification.

You have to say what the actual title is
(easy) ; when to print it (easy enough) ; and what
to do at and around the title line (harder) . Tak
ing these in reverse order, first we define a
macro .NP (for 'new page') to process titles and
the like at the end of one page and the beginning
of the next:

.de NP
'bp
'sp O.Si
. tl 'left top'center top'right top'
'sp 0.3i

To make sure we're at the top of a page, we

- 8 -

issue a 'begin page' command 'bp, which causes
a skip to top-of-page (we'll explain the ' shortly) .
Then we space down half an inch, print the title
(the use of .tl should be self explanatory; later
we will discuss parameterizing the titles) , space
another 0.3 inches, and we're done.

To ask for .NP at the bottom of each page,
we have to say something like 'when the text is
within an inch of the bottom of the page, start
the processing for a new page.' This is done with
a 'when' command .wh:

.wh - l i NP

(No ' . ' is used before NP; this is simply the
name of a macro, not a macro call.) The minus
sign means 'measure up from the bottom of the
page', so ' - 1 i' means 'one inch from the bot
tom'.

The .wh command appears in the input
outside the definition of .NP; typically the input
would be

.de NP .

.wh - l i NP

Now what happens? As text is actually
being output, troff keeps track of its vertical
position on the page, and after a line is printed
within one inch from the bottom, the .NP macro
is activated. On the jargon, the .wh command
sets a trap at the specified place, which is
'sprung' when that point is passed.) .NP causes a
skip to the top of the next page (that's what the
'bp was for) , then prints the title with the
appropriate margins.

Why 'bp and 'sp instead of . bp and .sp?
The answer is that .sp and .bp, like several other
commands, cause a break to take place. That is,
all the input text collected but not yet printed is
flushed out as soon as possible, and the next
input line is guaranteed to start a new line of
output. If we had used .sp or .bp in the .NP
macro, this would cause a break in the middle of
the current output line when a new page is
started. The effect would be to print the left
over part of that line at the top of the page, fol
lowed by the next input line on a new output
line. This is not what we want. Using ' instead
of . for a command tells troff that no break is to
take place - the output line currently being
filled should not be forced out before the space
or new page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .fi .nf .sp . in .ti

All others cause no break, regardless of whether

you use a . or a '. If you really need a break, add
a .br command at the appropriate place.

One other thing to beware of - if you're
changing fonts or ·point sizes a lot, you may find
that if you cross a page boundary in an unex
pected font or size, your titles come out in that
size and font instead of what you intended.
Furthermore, the length of a title is independent
of the current line length, so titles will come out
at the default length of 6.5 inches unless you
change it, which is done with the .It command.

There are several ways to fix the problems
of point sizes and fonts in titles. For the sim
plest applications, we can change .NP to set the
proper size and font for the title, then restore
the previous values, like this:

.de NP
'bp
'sp O.Si
.ft R \" set title font to roman
.ps 1 0 \ " and size t o 1 0 point
.It 6i \" and length to 6 inches
. tl 'left' center' right'
.ps \" revert to previous size
.ft P \" and to previous font
'sp 0.3i

This version of .NP does not work if the
fields in the .tl command contain size or font
changes. To cope with that requires troff's
'environment' mechanism, which we will discuss
in Section 1 3.

To get a footer at the bottom of a page,
you can modify .NP so it does some processing
before the 'bp command, or split the job into a
footer macro invoked at the bottom margin and
a header macro invoked at the top of the page.
These variations are left as exercises.

Output page numbers are computed
automatically as each page is produced (starting
at 1) , but no numbers are printed unless you ask
for them explicitly. To get page numbers
printed, include the character % in the .tl line at
the position where you want the number to
appear. For example

. tl " - % -"

centers the page number inside hyphens, as on
this page. You can set the page number at any
time with either .bp n, which. immediately starts
a new page numbered n, or with .pn n, which
sets the page number for the next page but
doesn't cause a skip to the new page. Again,
. bp +n sets the page number to n more than its
current value; .bp means .bp + 1 .

- 9 -

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and
for defining and using variables with numeric
values, called number registers. Number regis
ters, like strings and macros, can be useful in
setting up a document so it is easy to change
later. And of course they serve for any sort of
arithmetic computation.

Like strings, number registers have one or
two character names. They are set by the .nr
command, and are referenced anywhere by \nx
(one character name) or· \n(xy (two character
name) .

There are quite a few pre-defined number
registers maintained by troff, among them % for
the current page number; n l for the current vert
ical position on the page; dy, mo and yr for the
current day, month and year; and .s and .f for
the current size and font. (The font is a number
from 1 to 4.) Any of these can be used in com
putations like any other register, but some, like
.s and .f, cannot be changed with .nr .

As an example of the use of npmber regis
ters, in the -ms macro package [4] , most
significant parameters are defined in terms of the
values of a handful of number registers. These
include the point size for text, the vertical spac
ing, and the line and title lengths. To set the

· point size and vertical spacing for the following
paragraphs, for example, a user may say

.nr PS 9

.nr VS 1 1

The paragraph macro .PP is defined (roughly) as
follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ft R
.sp 0.5v
.ti +3m

\" reset size
\" spacing
\" font
\" half a line

This sets the font to Roman and the point size
and line spacing to whatever values are stored in
the number registers PS and VS.

Why are there two backslashes? This is
the eternal problem of how to quote a quote .
When troff originally reads the macro definition,
it peels off one backslash to see what's coming
next. To ensure that another is left in the
definition when the macro is used, we have to
put in two backslashes in the definition. If only
one backslash is used, point size and vertical
spacing will be frozen at the time the macro is
defined, not when it is used .

Protecting by an extra layer of backslashes

is only needed for \n, \•, \$ (which we haven't
come to yet), and \ itself. Things like \s, \f, \h,
\v, and so on do not need an extra backslash,
since they are converted by troff to an internal
code immediately upon being seen.

Arithmetic expressions can appear any
where that a number is expected. As a trivial
example,

.nr PS \\n(PS- 2

decrements PS by 2 . Expressions can use the
arithmetic operators + , - , *, I , % (mod), the
relational operators > , > = , < , < = , = , and
! = (not equal) , and parentheses.

Although the arithmetic we have done so
far has been straightforward, more complicated
things are somewhat tricky. First, number regis
ters hold only integers. troff arithmetic uses
truncating integer division, just like Fortran.
Second, in the absence of parentheses, evalua
tion is done left-to-right without any operator
precedence (including relational operators) .
Thus

becomes ' - 1 '. Number registers can occur any
where in an expression, and so can scale indica
tors like p, i, m, and so on (but no spaces) .
Although integer division causes truncation, each
number and its scale indicator is converted to
machine units (1 /432 inch) before any arithmetic
is done, so l i/2u evaluates to O.Si correctly.

The scale indicator u often has to appear
when you wouldn't expect it - in particular,
when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For
example,

. II 7 /2i

would seem obvious enough - 3 112 inches.
Sorry. Remember that the default units for hor
izontal parameters like .II are ems. That's really
'7 ems I 2 inches' , and when translated into
machine units, it becomes zero. How about

.II 7i/2

Sorry, stilt no good - the '2' is '2 ems', so
'7 i/2' is small, although not zero. You must use

. II 7i/2u

So again, a safe rule is to attach a scale indicator
to every number, even constants.

For arithmetic done within a .nr command,
there is no implication of horizontal or vertical
dimension, so the default units are 'units' , and
7i/2 and 7i/2u mean the same thing. Thus

- 1 0 -

. nr II 7i/2

.II \\n (ltu

does just what you want, so long as you don't
forget the u on the .ll command.

11. Macros with arguments

The next step is to define macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when we define
the macro, we have to indicate that some parts
of it will be provided as arguments when the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro .SM
that will print its argument two points smaller
than the surrounding text. That is, the macro
call

.SM TROFF

will produce TROFF.

The definition of .SM is

.de SM
\s- 2\\$1\s+ 2

Within a macro definition, the symbol \\$n
refers to the nth argument that the macro was
called with. Thus \\$1 is the string to be placed
in a smaller point size when .SM is called.

As a slightly more complicated version, the
following definition of .SM permits optional
second and third arguments that will be printed
in the normal size:

.de SM
\\$3\s- 2\\$1 \s+2\\$2

Arguments not provided when the macro is
called are treated as empty, so

.SM TROFF) ,

produces TROFF) , while

.SM TROFF) . (

produces (TROFF) . It is convenient to reverse
the order of arguments because trailing punctua
tion is much more common than leading .

By the way, the number of arguments that
a macro was called with is available in number
register .$,

The following macro .BD is the one used
to make the 'bold roman' we have been using
for troff command names in text. It combines
horizontal motions, width computations, and
argument rearrangement.

.de BD
\&\ \$3\fl\ \$1\h" -\w\ \$1 "u + 1 u"\ \$1\fP\ \$2

The \h and \w commands need no extra
backslash, as we discussed above. The \& is
there in case the argument begins with a period.

Two backslashes are needed with the \ \$n
commands, though, to protect one of them when
the macro is being defined. Perhaps a second
example will make this clearer. Consider a
macro called .SH which produces section head
ings rather like those in this paper, with the sec
tions · numbered automatically, and the title in
bold in a smaller size. The use is

.SH "Section title . . . "

(If the argument to a macro is to contain blanks,
then it must be surrounded by double quotes,
unlike a string, where only one leading quote is
permitted.)

Here is the definition of the .SH macro:

.nr SH 0

. de SH

.sp 0.3i

\" initialize section number

.ft B
.nr SH \\n(SH + 1
.ps \\n(PS - 1
\\n (SH. \\$ 1
. p s \\n(PS
.sp 0.3i
.ft R

\" increment number
\" decrease PS
\" number. title
\" restore PS

The section number is kept in number register
SH, which is incremented each time just before it
is used. (A number register may have the same
name as a macro without conflict but a string
may not.)

We used \\n(SH instead of \n(SH and
\\n(PS instead of \n(PS. If we had used \n(SH,
we would get the value of the register at the time
the macro was defined, not at the time it was
used. If that's what you want, fine, but not here.
Similarly, by using \ \n (PS, we get the point size
at the time the macro is called.

As an example that does not involve
numbers, recall our .NP macro which had a

. tl "left" center; right'

We could make these into parameters by using
instead

so the title comes from three strings called LT,
CT and RT. If these are empty, then the title
will be a blank line. Normally CT would be set

- 1 1 -

with something like

.ds CT - % -
to give just the page number between hyphens
(as on the top of this page) , but a user could
supply private definitions for any of the strings.

12. Conditionals

Suppose we want the .SH macro to leave
two extra inches of space just before section 1 ,
but nowhere else. The cleanest way to do that is
to test inside the .SH macro whether the section
number is 1, and add some space if it is. The .if
command provides the conditional test that we
can add just before the heading line is output:

.if \ \n (SH = 1 .sp 2i \" first section only

The condition after the .if can be any
arithmetic or logical expression. If the condition
is logically true, or arithmetically greater than
zero, the rest of the line is treated as if it were
text - here a command. If the condition is
false, or zero or negative, the rest of the line is
skipped .

It is possible to do more than one com
mand if a condition is true. Suppose several
operations are to be done before section 1 . One
possibility is to define a macro .Sl and invoke it
if we are about to do section 1 (as determined by
an .if) .

.de S 1
--- processing for section 1 ---

.de SH

.if \\n(SH = l .S1

An alternate way is to use the extended
form of the .if, like this:

.if \\n(SH = 1 \ {--- processing
for section 1 ----\)

The braces \ { and \} must occur in the positions
shown or you will get unexpected extra lines in
your output. trotf also provides an ' if-else' con
struction, which we will not go into here.

A condition can be negated by preceding it
with ! ; we get the same effect as above (but less
clearly) by using

. if !\\n (SH> 1 .Sl

There are a handful of other conditions
that can be tested with .if. For example, is the
current page even or odd?

.if e . t1 "even page title"

.if o . t1 "odd page title"

gi�es facing pages different titles when used
inside an appropriate new page macro.

Two other conditions are t and n, which
tell you whether the formatter is troff or nroff.

. if t troff stuff .. .
.if n nroff stuff .. .

Finally, string comparisons may be made
in an .if:

.if 'string 1 ' string2' stuff

does 'stuff' if string] is the same as string2. The
character separating the strings can be anything
reasonable that is not contained in either string.
The strings themselves can reference strings with
\•, arguments with \$, and so on.

13. Environments

As we . mentioned, there is a potential
problem when going across a page boundary:
parameters like size and font for a page title may
well be different from those in effect in the text
wheri the page boundary occurs. troff provides a
very general way to deal with this and similar
situations. There are three 'environments', each
of which has independently settable versions of
many of the parameters associated with process
ing, including size, font, line and title lengths,
fill/ no fill mode, tab stops, and even partially col
lected lines. Thus the titling problem may be
readily solved by processing the main text in one
environment and titles in a separate one with its
.own suitable parameters.

The command .ev n shifts to environment
n; n must be 0, 1 or 2. The command .ev with
no argument returns to the previous environ
ment. Environment names are maintained in a
stack, so

"
calls for different environments may be

nested and unwound consistently.
Suppose we say that the main text is pro

cessed in environment 0, which is where troff
begins by default. Then we can modify the new
page macro .NP to process titles in environment
I like this:

.de NP

.ev 1

. It 6i

.ft R
.ps 1 0

\ " shift to new environment
\" set parameters here

. . . any other processing . . .
.ev \" return to previous environment

It is also possible to initialize the parameters for
an environment outside the .NP macro, but the

- 1 2 -

version shown keeps all the processing in one
place and is thus easier to understand and
change.

14. Diversions

There are numerous occasions in page lay
out when it is necessary to store some text for a
period of time without actually printing it. Foot
notes are the most obvious example: the text of
the footnote usually appears in the input well
before the place on the page where it is to be
printed is reached. In fact, the place where it is
output normally depends on how big it is, which
implies that there must be a way to process the
footnote at least enough to decide its size
without printing it.

troff provides a mechanism called a diver
sion for doing this processing. Any part of the
output may be diverted into a macro instead of
being printed, and then at some convenient time
the macro may be put back into the input.

The command .di xy begins a diversion -
all subsequent output is collected into the macro
xy until the command .di with no arguments is
encountered. Thts terminates the diversion.
The processed text is available at any time
thereafter, simply by giving the command

.xy

The vertical size of the last finished diversion is
contained in the built-in number register dn.

As a ·simple example, suppose we want to
implement a 'keep-release' operation, so that
text between the commands .KS and .KE will not
be split across a page boundary (as for a figure or
table) . Clearly, when a .KS is encountered, we
have to begin diverting the output so we can find
out how big it is. Then when a .KE is seen, we
decide whether the diverted text will fit on the
current page, and print it either there if it fits, or
at the top of the next page if it doesn' t. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \\n(dn> =\\nCt .bp \" bp if doesn't fit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

Recall that number register nl is the current

posttlon on the output page. Since output was
being diverted, this remains at its value when the
diversion started. dn is the amount of text in
the diversion; .t (another built-in register) is the
distance to the next trap, which we assume is at
the bottom margin of the page. If the diversion
is large enough to go past the trap, the .if is
satisfied, and a .bp is issued. In either case, the
diverted output is then brought back with .XX. It
is essential to bring it back in no-fill mode so
trotf will do no further processing on it.

This is not the most general keep-release,
nor is it robust in the face of all conceivable
inputs, but it would require more space than we
have here to write it in full generality. This sec
tion is not intended to teach everything about
diversions, but to sketch out enough that you
can read existing macro packages with some
comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna, the
author of trotf, for his repeated patient explana
tions of fine points, and for his continuing wil
lingness to adapt trotf to make other uses easier.
I am also grateful to Jim Blinn, Ted Dolotta,
Doug Mcilroy, Mike Lesk and fuel Sturman for
helpful comments on this paper.

References

[1] J. F. Ossanna, NROFFITROFF User's
Manual, Bell Laboratories Computing Sci
ence Technical Report 54, 1 97 6.

[2] B. W. Kernighan, A System for Typesetting
Mathematics - User 's Guide (Second Edi
tion), Bell Laboratories Computing Science
Technical Report 1 7, 1 977.

[3] M. E. Lesk, TBL - A Program to Format
Tables, Bell Laboratories Computing Sci
ence Technical Report 49, 1 976.

[4] M. E. Lesk, Typing Documents on UNIX.
Bell Laboratories, 1 978.

[5] J. R. Mashey and D. W. Smith, PWBIMM
- Programmer 's Workbench Memorandum
Macros, Bell Laboratories internal
memorandum.

- 13 -

- 14 -

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character
name on the right.

ff \ (ff fi \ (fi fl \ (fl ffi \ (Fi m \ CFI
\ (ru \ (em 1/4 \04 lf2 \02 3/4 \ (34

© \Ceo 0 \ (de t \ (dg \ (fm ¢ \ (ct
® \ (rg • \ (bu o \ (sq \ (hy

On b<;?ld, \ (sq is •.)

The following are special-font characters:

+ \ (pi \ (mi X \ (mu \ (di
\ (eq - \ (= = � \ (> = � \ (< =

;C \ (!= ± \ (+- \ (no I \ (sl
\ (ap - \ (�= ex: \ (pt \/ \ (gr
\ (-> \ (< - \ (ua 1 \ (da

J \ (is a \ (pd 00 \ (if -J \ (sr
c \ (sb :::> \ (sp u \ (cu n \ (ca
� \Ob � \ (ip E \ (mo 0 \ (es

\ (aa \ (ga 0 \ (ci @ \ (bs
§ \ (sc :j: \ (dd \ Oh -- \ (rh
r \ (It l \ (rt \ (lc \ (rc
\ \ Ob J · \ (rb \ (If \ (rf
� \Ok � \ (rk \ (bv S' \ (ts
I \ (br \ (or \ (ul \ (rn
* \ (••

These four characters also have two-character names. The ' is the apostrophe on terminals: the ' is the
other quote mark.

\' \' \- _

These characters exist only on the special font, but they do not have four-character names:

< > \ # @

For greek, precede the roman letter by \(• to get the corresponding greek: for example, \(•a is a .

a b g d e z y h i k I m n c o p r s t u f x q w
o: � y B e , � 8 t K A M v g o � p u r v ¢ x � w

A B G D E Z Y H I K L M N C O P R S T U F X Q W
A B f � E Z H 9 I K A M N 2 0 ll P r T Y $ X W O

• ;;:;;:::=_»

The C Programming Language - Reference Manual

Dennis M. Ritchie

Bell Laboratories, Murray Hill, New Jersey

This manual is reprinted, with minor changes, from The C Programming Language, by Brian W. Ker
nighan and Dennis M. Ritchie, Prentice-Hall, Inc., 1 978.

1 . Introduction
This manual describes the C language on the DEC PDP- 1 1 , the DEC v AX- 1 1 , the Honeywell 6000,

the IBM System/370, and the lnterdata 8/32. Where differences exist, it concentrates on the PDP- 1 1 , but
tries to point out implementation-dependent details. With few exceptions, these dependencies follow
directly from the underlying properties of the hardware; the various compilers are generally quite compa
tible.

2. Lexical conventions
There are six classes of tokens: identifiers, keywords, constants, strings, operators, and other separa

tors. Blanks, tabs, newlines, and comments (collectively, "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token. is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters I * introduce a comment, which terminates with the characters *f. Comments do not

nest.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the first character must be a letter. The underscore _

counts as a letter. Upper and lower case letters are different. No more than the first eight characters are
significant, although more may be used. External identifiers, which are used by various assemblers and
loaders, are more restricted:

DEC PDP- I I
DEC VAX- I I
Honeywell 6000
IBM 360/370
lnterdata 8/32

2.3 Keywords

7 characters, 2 cases
8 characters, 2 cases
6 characters, 1 case
7 characters, I case
8 characters, 2 cases

The following identifiers are reserved for use as keywords, and may not be used otherwise:

int extern else
char register for ·
float typedef do
double static while
struct go to switch
union return case
long sizeof default
short break entry
unsigned continue
auto i f

The entry keyword is not currently implemented by any compiler but i s reserved for future use. Some

t UNIX is a Trademark of Bell Laboratories.

- 2 -

implementations also reserve the words fortran and asitL

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are

summarized in §2.6.

2.4. 1 l}lteger constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit

zero) , decimal otherwise. The digits 8 and 9 have octal value 10 and 1 1 respectively. A sequence of
digits preceded by Ox or ox (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15 . A decimal constant whose value exceeds the
largest signed machine integer is taken to be long� an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a long

constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in 1 x 1 • The value of a character

constant is the numerical value of the character in the machine's character set.
Certain non-graphic characters, the single quote 1 and the backslash \, may be represented according

to the following table of escape sequences:

newline NL (LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \ I
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1 , 2 , or 3 octal digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit) , which
indicates the character NUL. If the character following a backslash is not one of those specified, the
backslash is ignored.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E. and an

optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.5 Strings
A string is a sequence of characters surrounded by double quotes, as in 11 • • • 11 • A string has type

"array of characters" and storage class static (see §4 below) and is initialized with the given characters.
All strings, even when written identically, are distinct. The compiler places a null byte \0 at the end of
each string so that programs which scan the string can find its end. In a string, the double quote charac
ter 11 must be preceded by a \; in addition, the same escapes as described for character constants may be
used. Finally, a \ and an immediately following newline are ignored.

2.6 Hardware characteristics
The following table summarizes certain hardware properties which vary from machine to machine.

Although these affect program portability, in practice they are less of a problem than might be thought a
priori.

�fiJw

- 3 -

DEC PDP- 1 1 Honeywell 6000 IBM 370 lnterdata 8/32

ASCII ASCII EBCDIC ASCII
char 8 bits 9 bits 8 bits 8 bits
int 1 6 36 32 32
short 1 6 36 1 6 1 6
long 32 36 32 32
float 32 36 32 32
doubl_e 64 72 64 64
range ± 1 0±38 ± 10±38 ± 1 0±76 ± 1 0±76

The v AX- I l is identical to the PDP- 1 1 except that integers have 32 bits.

3. Syntax notation
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal

words and characters in bold type. Alternative categories are listed on separate lines. An optional ter
minal or non-terminal symbol is indicated by the subscript "opt, " so that

(expressionopr l
indicates an optional expression enclosed in braces. The syntax is summarized in § 1 8.

4. What's in a name?
C bases the interpretation of an identifier upon two attributes of the identifier: its storage 'class and its

type. The storage class determines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier's storage.

There are four declarable storage classes: autOmatic, static, external, and register. Automatic vari
ables are local to each invocation of a block (§9.2) , and are discarded upon exit from the block; static
variables are local to a block, but retain their values upon reentry to a block even after control has left
the block; external variables exist and retain their values throughout the execution of the entire program,
and may be used for communication between functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine; like automatic variables they are
local to each block and disappear on exit from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member of the implementation's

character set, and if a genuine character from that character set is stored in a character variable, its value
is equivalent to the integer code for that character. Other quantities may be stored into character vari
ables, but the implementation is machine-dependent.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either short
integers, or long integers, or both, equivalent to plain integers. "Plain" integers have the natural size
suggested by the host machine architecture; the other sizes are provided to meet special needs.

Unsigned integers, declared uns igned, obey the laws of arithmetic modulo 2n where n is the
number of bits in the representation. (On the PDP- 1 1 , unsigned long quantities are not supported.)

Single-precision floating point (float) and double-precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Types char and int of all sizes will collectively be called integral types. float
and double will collectively be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways:

arrays of objects of most types;
functions which return obje�ts of a given type;
pointers to objects of a given type;
structures containing a sequence of objects of various types;
unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

- 4 -

5. Objects and !values
An object is a manipulatable region of storage; an /value is an expression referring to an object. An

obvious example of an !value expression is an identifier. There are operators which yield !values: for
example, if E is an expression of pointer type, then *E is an !value expression referring t�the object to
which E points. The name "!value" comes from the assignment expression E1 = E2 in which the left
operand E1 must be an !value expression. The discussion of each operator below indicates whether it
expects- !value operands and whether it yields an !value.

6. Conversions
A number of operators may, depending on their operands, cause conversion of the value of an

operand from one type to another. This section explains the result to be expected from such conver
sions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be supplemented as
required by the disc•Jssion of each operator.

6 . 1 Characters and integers
A character or a short integer may be used wherever an integer may be used. In all cases the value

is converted to an integer. Conversion of a shorter integer to a longer always involves sign extension;
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent,
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated
by this manual, only the PDP- 1 1 sign-extends. On the PDP- 1 1 , character variables range in value from
- 1 28 to 127; the characters of the ASCII alphabet are all positive. A character constant specified with an
octal escape suffers sign extension and may appear negative; for example, 1 \377 1 has the value -1 .

When a longer integer is converted to a shorter or to a char , it is truncated on the left; excess bits
are simply discarded.

6.2 Float and double
All floating arithmetic in C is carried out in double-precision: whenever a float appears in an

expression it is lengthened to double by zero-padding its fraction. When a double must be converted
to f loat, for example by an assignment, the double is rounded before truncation to float length.

6.3 Floating and integral
Conversions of floating values to integral type tend to be rather mach.ine-dependent; in particular the

direction of truncation of negative numbers varies from machine to machine. The result is undefined if
the value will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of precision occurs if the
destination lacks sufficient bits.

6.4 Pointers and integers
An integer or long integer may be added to or subtracted from a pointer; in such a case the first is

converted as specified in the discussion of the addition operator.
Two pointers to objects of the same type may be subtracted; in this case the result is converted to an

integer as specified in the discussion of the subtraction operator.

6.5 Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to

unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
integer (modulo 2wordsize) . In a 2's complement representation, this conversion is conceptual and there is
no actual change in the bit pattern.

When an unsigned integer is converted to long, the value of the result is the same numerically as
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar way. This pattern will

be called the "usual arithmetic conversions."

First, any operands of type char or short are converted to int , and any of type float are con
verted to double .

- 5 -

Then, if either operand is double , the other is converted to double and that is the type of the
result.
Otherwise, if either operand is long , the other is converted to long and that is the type of the
result.
Otherwise, if either operand is uns igned , the other is converted to unsigned and that is the type
of the result.
Otherwise, both operands must be int , and that is the type of the result.

7 . . Expressions
The precedence of expression operators is the same as the order of the major subsections of this sec

tion, highest precedence first. Thus, for example, the expressions referred to as the operands of + (§7.4)
are those expressions defined in §§7 . 1 -7 .3 . Within each subsection, the operators have the same pre
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of § 1 8.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient, even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (*, +, &, 1 , ") may be rearranged arbitrarily, even in the presence
of parentheses; to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist
ing implementations of C ignore integer overflows; treatment of division by 0, and all floating-point
exceptions, varies between machines, and is usually adjustable by a library function.

7 . 1 Primary expressions
Primary expressi�ils involving • , ->, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)

primary-expression [expression]
primary-expression (expression-listopt)
primary-/value . identifier
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression, provided- it has been suitably declared as discussed below. Its type
is specified by its declaration. If the type of the identifier is "array of . . . ", however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
"pointer to . . . ". Moreover, an array identifier is not an !value expression. Likewise, an identifier which
is declared "function returning . . . ", when used except in the function-name position of a call, is con
verted to "pointer to function returning . . . ".

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int; floating constants are double.

A string is a primary expression. Its type is originally "array of char" ; but following the same rule
given above for identifiers, this is modified to "pointer to char" and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8.6.)

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an !value.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to . . . ", the
subscript expression is int, and the type of the result is " . . . ". The expression E1 [E2] is identical (by
definition) to * ((E1) + (E2 l l . All the clues needed to understand this notation are contained in this sec
tion together with the discussions in §§ 7 . 1 , 7.2, and 7.4 on identifiers, *, and + respectively; § 1 4.3 below
summarizes the implications.

. 6 .

A function call is a primary expression followed by parentheses contammg a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type "function returning . . . ", and the result of the function call is of type " . . . " .
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis i s contextually
declared to represent a function returning an integer; thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type f loat are converted to double before the call; any of type char or
short are converted to int; and as usual, array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion i;> needed, use a cast; see §7.2, 8.7.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. On the other hand, it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points. An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ.

Recursive calls to any function are permitted.
A primary expression followed by a dot followed by an identifier is an expression. The first expres

sion must be an !value naming a structure or a union, and the identifier must name a member of the
structure or union. The result is an !value referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a - and a >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name
a member of that structure or union. The result is an !value referring to the named member of the struc
ture or union to which the pointer expression points.

Thus the expression E1 ->MOS is the same as (*E1) . MOS. Structures and unions are discussed in
§8.5. The rules given here for the use of structures and unions are not enforced strictly, in order to allow
an escape from the typing mechanism. See § 1 4. 1 .

7.2 Unary operators
Expressions with unary operators group right-to-left.

unary-expression:
* expression
& lvaiue
- expression
! expression
- expression
++ /value
-- !value
!value ++
!value --
(type-name) expression

s izeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and the result is an !value
referring to the object to which the expression points. If the type of the expression is "pointer to . . . " ,
the type of the result is " . . . " .

The result of the unary & operator is a pointer to the object referred to by the !value. If the type of
the !value is " . . . ", the type of the result is "pointer to . . . " .

The result of the unary - operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed by subtracting its value from 2 n ,
where n i s the number of bits in an int. There i s no unary + operator.

The result of the logical negation operator ! is l if the value of its operand is 0, 0 if the value of its
operand is non-zero. The type of the result is int. It is applicable to any arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral. 4@® The object referred to by the !value operand of prefix ++ is incremented. The value is the new value tt:NJ
of the operand, but is not an I value. The expression ++x is equivalent to x+=1 . See the discussions of
addition (§7.4) and assignment operators (§7. 1 4) for information on conversions.

- 7 -

The !value operand of prefix -- is decremented analogously to the prefix ++ operator.
When postfix ++ is applied to an !value the result is the value of the object referred to by the !value.

After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the !value expression.

When postfix -- is applied to an !value the result is the value of the object referred to by the !value.
After the result is noted, the object is decremented in the manner as for the prefix -- operator. The type
of the result is the same as the type of the !value expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in §8.7.

The s izeof operator yields the size, in bytes, of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression. This expression is semanti
cally an integer constant and may be used anywhere a constant is required. Its major use is in communi
cation with routines like storage allocators and 1/0 systems.

The sizeof operator may also be applied to a parenthesized type name. I n that case it yields the
size, in bytes, of an object of the indicated type.

The construction sizeof (type) is taken to be a unit, so the expression s izeof (type) -2 is the
same as (s izeof (type)) -2.

·

7.3 Multiplicative operators
The multiplicative operators *· /, and % group left-to-right. The usual arithmetic conversions are

performed.

multiplicative-expression:
expression * expression
expression I expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

The binary 1 operator indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is machine-depen9ent if either operand is negative. On all machines covered
by this manual, the remainder has the same sign as the dividend. It is always true that (a/b) *b + a%b
is equal to a (if b is not 0) .

The binary % operator yields the remainder from the division of the first expression by the second.
The usual arithmetic conversions are performed. The operands must not be float.

7.4 Additive operators
The additive operators + and - group left-to-right. The usual arithmetic conversions are performed.

There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the
original. pointer, and which points to another object in the same array, appropriately offset from the origi
nal object. Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next
object in the array.

No further type combinations are allowed for pointers.
The + operator is associative and expressions with several additions at the same level may be rear

ranged by the compiler.
The result of the - operator is the difference of the operands. The usual arithmetic conversions are

performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the
same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects in the same

- 8 -

array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators
The shift operators << and >> group left-to-right. Both perform the usual arithmetic conversions on

their operands, each of which must be integral. Then the right operand is converted to int; the type of
the result is that of the left operand. The result is undefined if the right operand is negative, or greater
than or equal to the length of the object in bits.

shift-expression:
expression << expression
expression >> expression

The value of E1 <<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are 0-filled.
The value of E1 >>E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical (0-
fill) if E1 is unsigned; otherwise it may be (and is, on the PDP- 1 1) arithmetic (fill by a copy of the sign
bit) .

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; a<b<c does not mean ·

what it seems to.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

\ I

The operators < (less than) , > (greater than) , <= (less than or equal to) and >= (greater than or equal to)
all yield 0 if the specified relation is false and 1 if it is true. The type of the result is int. The usual
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative ���) locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array . .

7. 7 Equality operators

equality-expression:
expression == expression
expression ! = expression

The == (equal to) and the ! = (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus a<b == c<d is 1 whenever a<;b and c<d have the same
truth-value) .

A pointer may be compared to an integer, but the result is machine dependent unless the integer is
the constant 0. A pointer to which 0 has been assigned is guaranteed not to point to any object. and will
appear to be equal to 0; in conventional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged. The usual arithmetic
conversions are performed: the result is the bitwise AND function of the operands. The operator applies
only to integral operands.

7. 9 Bitwise exclusive OR operator

exclusive-or-expression:
expression A expression

The A operator is associative and expressions involving " may be rearranged. The usual arithmetic
conversions are performed: the result is the bitwise exclusive "oR function of the operands. The operator
applies only to integral operands.

7 . 10 Bitwise inclusive OR operator

inclusive-or-expression:
expression I expression

- 9 -

The 1 operator is associative and expressions involving 1 may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

7. 1 1 Logical AND operator

logical-and-expression:
expression && expression

The && operator groups left-to-right. I t returns 1 if both its operands are non-zero, 0 otherwise. Unlike
&, && guarantees left-to-right evaluation; moreover the second operand is not evaluated if the first
operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int ..

7 . 1 2 Logical OR operator

logical-or-expression:
expression I 1 expression

The 1 1 operator groups left-to-right. I t returns 1 if either of its operands is non-zero, and 0 otherwise.
Unlike 1 , I 1 guarantees left-to-right evaluation; moreover, the second operand is not evaluated if the
value of the first operand is non-zero.

'

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7 . 13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is non-zero, the
result is the value of the second expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third expressions to a common type; other
wise, if both are pointers of the same type, the result has the common type; otherwise, one must be a
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second
and third expressions is evaluated.

7 . 14 Assignment operators
There are a number of assignment operators, all of which group right-to-left. All require an !value as

their left operand, and the type of an assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:
/value = expression
/value += expression
/value -= expression
/value *= expression
/value /= expression
/value %= expression
/value >>= expression
/value <<= expression
/value &= expression
/value "= expression
!value I = expression

In the simple assignment with =, the value of the expression replaces that of the object referred to by
the !value. If both operands have arithmetic type, the right operand is converted to the type of the left

- 1 0 -

preparatory to the assignment.
The behavior of an expression of the form E1 op = E2 may be inferred by taking it as equivalent to

E1 = E1 op (E2) ; however, E1 is evaluated only once. In += and -=, the left operand may be a
pointer, in which case the (integral) right operand is converted as explained in §7.4; all right operands
and all non-pointer left operands must have arithmetic type.

The compilers curr:ently allow a pointer to be assigned to an integer, an integer to a pointer, and a
point� to a pointer of another type. The assignment ts a pure copy operation, with no conversion. This
usage is nonportable, and may produce pointers which cause addressing exceptions when used. However,
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable
from a pointer to any object.

7 . 1 5 Comma operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded. The type and value of the result are the type and value of the right operand. This operator
groups left-to-right. In contexts where comma is given a special meaning, for example in a list of actual
arguments to functions (§7. 1) and lists of initializers (§8.6) , the comma operator as described in this sec
tion can only appear in parentheses; for example,

f (�, (t=3 , t+2 l , c)

has three arguments, the second of which has the value 5.

8. Declarations
Declarations are used to specify the interpretation which C gives to each identifier: they do not

necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-list.P, ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of a
sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers0P1
sc-specifier decl-specifiers.P,

The list must be self-consistent in a way described below.

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a "storage class specifier" only for syntactic
convenience; it is discussed in §8.8. The meanings of the various storage classes were discussed in §4.

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be a·n external definition
(§ 10) for the given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com
piler that the variables declared will be heavily used. Only the first few such declarations are effective.
Moreover, only variables of certain types will be stored in registers; on the PDP- I I , they are int, char, • or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied \1)
to them. Smaller, faster programs can be expected if register declarations are used appropriately, but
future improvements in code generation may render them unnecessary.

- 1 1 -

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

The words long, short, and unsigned may be thought of as adjectives; the following combinations are
acceptable.

short int
long int
�signed int
long float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration, it i.s taken to be int.

Specifiers for structures and unions are discussed in §8.5; declarations with typedef names are dis
cussed in §8.8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of

which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-dec/arator:
declarator initializer opt

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of
_the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionopt]

The grouping is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declara

tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier head
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imaJine a declaration

• 1 2 •

T D1

where T is a type-specifier Wke int, etc.) and D1 is a declarator. Suppose this declaration makes the
identifier have type " . . . T," where the " . . . " is empty if D1 is just a plain identifier (so that the type of
x in " int x" is just int). Then if D1 has the form

the type of the contained identifier is " . . . pointer to T."
If D1 has the form

D ()

then the contained identifier has the type " . . . function returning T."
If D1 has the form

D [constant-expression]

or

D []

then the contained identifier has type " . . . array of T." In the first case the constant expression is an
expression whose value is determinable at compile time, and whose type is int. (Constant expressions
are defined pre<;isely in § I S .) When several "array of' specifications are adjacent, a multi-dimensional
array is created; the constant expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage; is given elsewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is calculated from the number of
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a multi-dimensional array) .

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures, unions or functions, although they may return
pointers to such things; there are no arrays of functions, although there may be arrays of pointers to
functions. Likewise a structure or union may not contain a function, but it may contain a pointer to a
function.

As an example, the declaration

int i , dp , f () , * f iP () , (*Pf i l () ;
declares an integer i, a pointer ip to an integer, a function f returning an integer, a function f ip
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is espe
cially useful to compare the last two. The binding of *fip (l is * (f ip (l l , so that the declaration sug
gests, and the same construction in an expression requires, the calling of a function fip, and then using
indirection through the (pointer) result to yield an integer. In the declarator (*Pf i) (l , the extra
parentheses are necessary, as they are also in an expression, to indicate that indirection through a pointer
to a function yields a function, which is then called; it returns an integer.

As another example,

float fa [1 7] , *afp [1 7] ;

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d [3] [5] [7] ;

declares a static three-dimensional array of integers, with rank 3 x 5 x 7. I n complete detail, x3d is an
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d [i] , x3d [i] [j] , x3d [i] [j] [k] may reasonably appear in
an expression. The first three have type "array," the last has type int.

8.5 Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have any

type. A union is an object which may, at a given time, contain any one of several members. Structure
and union specifiers have the same form.

- 1 3 -

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list l
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc
ture member may also consist of a specified number of bits. Such a member is also called a field; its
length is set off from the field name by a colon.

struct�dec/arator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are read left
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word. Fields are assigned right-to-left on the PDP- 1 1 , left-to
right on other machines.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful
.for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a word boundary. The "next field" presumably is a field, not
an ordinary structure member, because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be
unsigned. On the PDP- 1 1 , fields are not signed and have only integer values. In all implementations,
there are no arrays of fields, and the address-of operator & may not be applied to them, so that there are
no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most one of the members can be stored in a union at any
time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse
quent declaration may then use the" third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the declara
tion to be given once and used several times. It is illegal to declare a structure or union which contains
an instance of itself, but a structure or union may contain a pointer to an instance of itself.

- 1 4 -

The names of members and tags may be the same as ordinary variables. However, names of tags
and members must be mutually distinct.

Two structures may share a common initial sequence of members; that is, the same member may
appear in two different structures if it has the same type in both and if all previous members are the same
in both. (Actually, the compiler checks only that a name in two different structures has the same type
and offset in -'both, but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

struct tnode {

} ;

char tword [2 0] ;
int count ; .
struct tnode * left ;
struct tnode *right ;

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s , *Sp ;

declares s t o be a structure of the given sort and sp t o be a pointer t o a structure o f the given sort. With
these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s . left

refers to the left subtree pointer of the structure s; and

s . right->tword [O]

refers t o the first character o f the tword member of the right subtree o f s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded

by =, and consists of an expression or a list of values nested in braces.

initializer:
expression
I initializer-list l
{ initializer-list ,

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list l

All the expressions in an initializer for a static or external variable must be constant expressions.
which are described in § 1 5, or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants, and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0; automatic and
register variables which are not initialized are guaranteed to start off as garbage.

When. an initializer applies to a scalar (a pointer or an object of arithmetic type) , it consists of a sin
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array) then the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate, written in increas
ing subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to
the members of the aggregate. If there are fewer initializers in the list than there are members of the e aggregate, then the aggregate is padded with O's. It is not permitted to initialize unions or automatic
aggregates.

- 1 5 -

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to
be more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate; any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac
ters of the string initialize the members of the array.

For example,

int x [] = { 1 , 3 , 5 } ;

declares and initializes x as a !-dimensional array which has three members, since no size was specified
and there are three initializers.

float y [4] [3] = {
{ 1 , 3 , 5 } ,
{ 2 , 4 , 6 } I
{ 3 , 5 , 7 } ,

} ;

is a completely-bracketed initialization: I , 3 , and 5 initialize the first row of the array y [O] , namely
y [O] [0] , y [O) [1] , and y [O] [2] . Likewise the next two lines initialize y [1] and y [2] . The initial
izer ends early and therefore y [3] is initialized with 0. Precisely the same effect could have been
achieved by

·

float y [4] [3] = {
1 , 3 , 5 , 2 , 4 , 6 , 3 , 5 , 7

} ;

The initializer for y begins with a left brace, but that for y [O] does not, therefore 3 elements from the
list are used. Likewise the next three are taken successively for y [1] and y [2] . Also,

float y [4] [3] { ·
{ 1 } , { 2) , { 3 } , { 4 }

} i
initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.

Finally,

char msg [] = " Syntax error on line %s\n" ;

shows a character array whose members are initialized with a string.

8.7 Type names
In two contexts (to specify type conversions explicitly by means of a ' cast, and as an argument of

s izeof) it is desired to supply the name of a data type. This is aGcomplished using a "type name,"
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator l
* abstract-declarator
abstract-declarator (l
abstract-declarator [constant-expressionopt]

To avoid ambiguity, in the construction

(abstract-declarator l
the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.
For example,

int
int *
int * [3]
int (*) [3]
int * ()
int (*) ()

- 1 6 -

name respectively the types "integer," "pointer to integer," "array of 3 pointers to integers," "pointer
to an array of 3 integers," "function returning pointer to. integer," and "pointer to function returning an
integer."

8.8 Typedef
Declarations whose "storage class" is typedef do not define storage, but instead define identifiers

which can be used later as if they were type keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any declarator
therein become syntactically equivalent to the type keyword naming the type associated with the identifier
in the way described in §8.4. For example, after

typedef int MILES , *KLICKSP ;
typedef struct { double re , im; l complex;

the constructions

MILES distanc e ;
extern KLICKSP metricp ;
complex z , *ZP i

are all legal declarations; the type of distance is int, that of metricp is "pointer to int." and that of @ffi[.}. z is the specified structure. zp is a pointer to such a structure. <t-TfJ
typedef does not introduce brand new types, only synonyms for types which could be specified in

another way. Thus in the example above distance is considered to have exactly the same type as any
other int object.

9. S tatements
Except as indicated, statements are executed in sequence.

9 . 1 Expression statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2 C ompound statement, or block
So that several statements can be used where one is expected. the compound statement (also, and

equivalently, called "block") is provided:

compound-statement:
{ declaration-listopt statement-listopt I

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared. the outer declaration is pushed
down for the duration of the block, after which it resumes its force.

·- 1 7 -

Any initializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations
are not performed. lnitializations of static variables are performed only once when the program begins
execution. Inside a block, extern declarations do not reserve storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the
second case the second substatement is executed if the expression is 0. As usual the "else" ambiguity is
resolved by connecting an else with the last encountered else-less i f.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatenient is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-lopr ; expression-2opr expression-3opr) statement

This statement is equivalent to

expression-] ;
while (expression-2)

statement
expression-3 ;

. Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes 0; the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied whi l e
clause equivalent to while (1) ; other missing expressions are simply dropped from the expansion above.

9. 7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on

the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The state
ment is tyl)ically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in § 15 .

There may also be a t most one statement prefix of the form

- 1 8 -

default :

When the switch statement is executed, its expression is evaluated and compared with each case con
stant. If one of the case constants is equal to the value of the expression, control is passed to the state
ment following the matched case prefix. If no case constant matches the expression, and if there is a
default prefix, control passes to the prefixed statement. If no case matches and if there is no default
then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control, which continues unim
peded across such prefixes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are ineffective.

9.8 Break statement
The statement

break

causes termination of the smallest enclosing whi le, do, for, or switch statement: control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement

continue

causes control to pass to the loop-continuation portion of the smallest enclosing while. do. or for state
ment: that is to the end of the loop. More precisely, in each of the statements

while (. . .)

contin : ;
}

do {

contin :
} while (. . .) ;

for (. . .)

contin : ;

a continue is equivalent to goto con tin. (Following the con tin : is a null statement. §9. 1 3 . !

9. 1 0 Return statement
A function returns to its cailer by means of the return statement. which has one of the forms

return ;
return expression ;

In the first case the returned value is undefined. In the second case. the value of the expression is
returned to the caller of the function. If required, the expression is converted. as if by assignment. to the
type of the function in which it appears. Flowing off the end of a function is equivalent to a return with
no returned value.

9. 1 1 Goto statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (§9. I 2) located in the current function.

9. 1 2 Labeled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function. excluding any sub-blocks in which the same identifier has been
redeclared. See § I I .

- 1 9 -

9. 13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the l of a compound statement or to supply a null
body to a looping statement such as while.

1 0. External definitions
A C program consists of a sequence of external definitions. An external definition declares an

identifier to have storage class extern (by default) or perhaps static, and a specified type. The type
specifier (§8.2) may also be empty, in which case the type is taken to be int. The scope of external
definitions persists to the end of the file in which they are declared just as the effect of declarations per
sists to the end of a block. The syntax of external definitions is the same as that of all declarations,
except that only at this level may the code for functions be given.

10 . 1 External function definitions
Function definitions have the form

jUnction-definition:
decl-specifiersoprfunction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see § 1 1 .2 for the distinc
tion between them. A function declarator is similar to a declarator for a "function returning . . . " except
that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-listopr)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list.
Any identifiers whose type is not given are taken to be int. The only storage class which may be
specified is register; if it is specified, the corresponding actual parameter will be copied, if possible,
into a register at the outset of the function.

A simple example of a complete function definition is

int max (a , b, c)
int a , b , c ;
{

int m;

m = (a > b) ? a : b ;
return ((m > c) ? m c) ;

Here int is the type-specifier; max (a , b , c) is the function-declarator; int a , b , c ; is the
declaration-list for the formal parameters; { . . . l is the block giving the code for the statement.

C converts all float actual parameters to double, so formal parameters declared float have their
declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
parameters declared "array of : .. " are adjusted to read "pointer to . . . ". Finally, because structures,
unions and functions cannot be passed to a function, it is useless to declare a formal parameter to be a
structure, union or function (pointers to such objects are of course permitted) .

- 20 -

1 0.2 External data definitions
An external data definition has the form

data-definition:
declaration

The stor�e class of such data may be extern (which· is the default) or static, but not auto or
register.

1 1 . Scope rules
A C program need not all be compiled at the same time: the source text of the program may be kept

in several files, and precompiled routines may be loaded from libraries. Communication among the func
tions of a program may be carried out both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
"undefined identifier" diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same object.

1 1 . 1 Lexical scope
The lexical scope of identifiers declared in external definitions persists from the definition through

the end of the source file in which they appear. The lexical scope of identifiers which are formal parame
ters ·persists through the function with which they.are associated. The lexical scope of identifiers declared
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

Because all references to the same external identifier refer to the same object (see § 1 1 .2) the com
piler checks all declarations of the same external identifier for compatibility; in effect their scope is
increased to the whole file in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block
constituting a function, any declaration of that identifier outside the block is suspended until the end of
the block.

Remember also (§8 .5) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union members and tags on the other form two disjoint classes which do
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary identifiers. They may be redeclared in inner blocks, but an explicit type must
be given in the inner declaration:

typedef float distanc e ;

auto int distanc e ;

The int must be present in the second declaration, or i t would be taken to be a declaration with no
declarators and type di stancet.

1 1 .2 Scope of externals
If a function refers to an identifier declared to be extern, then somewhere among the files or

libraries constituting the complete program there must be an external definition for the identifier. All
functions in a given program which refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible with those specified by each
function which references the data.

The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in another file. Thus in a multi-file program, an external data
definition without the extern specifier must appear in exactly one of the files. Any other files which
wish to give an external definition for the identifier must include the extern in the definition. The
identifier can be initialized only in the declaration where storage is allocated.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

tit is agreed that the ice is thin here.

- 2 1 -

1 2. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and

inclusion of named files. Lines beginning with # communicate with this preprocessor. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12 . 1 Token replacement
A compiler-control line of the form

#define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. A line of the form

#define identifier (identifier , . . • , identifier) token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub
sequent instances of the first identifier followed by a (, a sequence of tokens delimited by commas, and a
l are replaced by the token string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 1 0�

· int table [TABSIZE] ;

A control line of the form

#undef identifier

causes the identifier's preprocessor definition to be forgotten.

1 2.2 File inclusion
A compiler control line of the form

#include "filename "

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard places. Alterna
tively, a control line of the form

inc lude �kname>

searches only the standard places, and not the directory of the source file.
include's may be nested.

1 2.3 Conditional compilation
A compiler control line of the form

#if constant-expression

checks whether the constant expression (see § 1 5) evaluates to non-zero. A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it has been the
subject of a #define control line. A control line of the form

#ifnde f identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly containing a control line

#else

and then by a control line

#end if

� 22 -

I f the checked condition is true then any lines between #else and #endif are ignored. If the checked
condition isJalse then any lines between the test and an #e.lse or, lacking an #e lse, the #endif, are
ignored.

These constructions may be nested.

1 2.4 Line control
For t�e benefit of other preprocessors which generate C programs, a line of the form

line constant identifier

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifier is
absent the remembered file name does not change.

13. Implicit declarations
It is not always necessary to specify both the storage class and the type of identifiers in a declaration.

The storage class is supplied by the context in external definitions and in declarations of formal _parame
ters and structure members. In a declaration inside a function, if a storage class but no type is given, the
identifier is assumed to be int; if a type but no storage class is indicated, the identifier is assumed to be
auto. An exception to the latter rule is made for functions, since auto functions are meaningless (C
being incapable of compiling code into the stack) ; if the type of an identifier is "funct_ion returning . . . ", it
is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to be
"function returning int" .

1 4. Types revisited
This section summarizes the operations which can be p�rformed on objects of certain types.

1 4. 1 Structures and unions
There are only two things that can be done with a structure or union: name one of its members (by

means of the • operator) ; or take its address (by unary &) . Other operations, such as assigning from or
to it or passing it as a parameter, draw an error message. In the future, it is expected that these opera
tions, but not necessarily others, will be allowed.

§7. 1 says that in a direct or indirect structure reference (with • or ->) the name on the right must
be a member of the structure named or pointed to by the expression on the left. To allow an escape
from the typing rules, this restriction is not firmly enforced by the compiler. In fact, any !value is allowed
before • , and that !value is then assumed to have the form of the structure of which the name on the
right is a member. Also, the expression before a -> is required only to be a pointer or an integer. If a
pointer, it is assumed to point to a structure of which the name on the right is a member. If an integer.
it is taken to be the absolute address, in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are only two things that can be done with a function: call it, or take its address. If the name

of a function appears in an expression not in the function-name position of a call, a pointer to the func
tion is generated. Thus, to pass one function to another, one might say

int f () ;

g (f) ;

Then the definition of g might read

- 23 -

g (funcp)
int (* funcp) () ;

Notice that f must be declared explicitly in the calling routine since its appearance in g (f) was not fol
lowed by (.

14 .3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the

first member of the array. · Because of this conversion, arrays are not !values. By definition, the subscript
operator [] is interpreted in such a way that E1 [E2] is identical to * ((E1) + (E2)) . Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th
member of E1 . Therefore, despite its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank i Xj X · · · X k, then E appearing in an expression is converted to a pointer to an (n- O
dimensional array with rank j x · · · x k. If the * operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to (n-O-dimensional array, which itself
is immediately converted into a pointer.

For example, consider

int x [3] [5] ;

Here x is a 3 x 5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) 5-membered arrays of integers. In the expression x [i L which is equivalent to * (x+i) , x
is first converted to a pointer as described; then i is converted to the type of x. which involves multiply
ing i by the length the object to which the pointer points, namely 5 integer objects. The results are
added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to
the first of the integers. If there is another subscript the same argument applies again; this time the
result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.

14.4 Explicit pointer conversions
Certain conversions involving pointers are permitted but have implementation-dependent aspects.

They are all specified by means of an explicit type-conversion operator, §§7 .2 and 8. 7.
A pointer may be converted to any of the integral types large enough to hold it. Whether an int or

long is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char pointer; it might be used in this way.

extern char *alloc () ;
double *dp ; .

dp = (double *) al loc (s izeof (double)) ;
*dP = 22 . 0 I 7 . 0 ;

al loc must ensure (in a machine-dependent way) that its return value is suitable for conversion to a
pointer to double; then the use of the function is portable.

- 24 -

The pointer representation on the PDP- 1 1 corresponds to a 1 6-bit integer and is measured in bytes.
chars have no alignment requirements; everything else must have an even address.

On the Honeywell 6000, a pointer corresponds to a 36-bit integer; the word part is in the left 18 bits,
and the two bits that select the character in a word just to their right. Thus char pointers are measured
in units of 2 1 6 bytes; everything else is measured in units of 2 1 8 machine words. double quantities and
aggregates containing them must lie on an even word address (0 mod 2 19) .

The IBM 370 and the lnterdata 8/32 are similar. On both, addresses are measured in bytes; elemen
tary objects must be aligned on a boundary equal to their length, so pointers to short must be 0 mod 2,
to int and float 0 mod 4, and to double 0 mod 8. Aggregates are aligned on the strictest boundary
required by any of their constituents.

1 5. Constant expressions
In several places C requires expressions which evaluate to a constant: after case. as array bounds,

and in initializers. In the first two cases, the expression can involve only integer constants, character con
stants, and sizeof expressions, possibly connected by the binary operators

+ * I % &

or by the unary operators

or by the ternary operator

? :

<< >>

Parentheses can be used for grouping, but not for function calls.

! = < > <= >=

More latitude is permitted for initializers; besides constant expressions as discussed abovr:., one can
also apply the unary & operator to external or static objects, and to external or static arrays subscripted
with a constant expression. The unary & can also be applied implicitly by appearance of unsubscripted
arrays and functions. The basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant.

1 6. Portability considerations
Certain parts of C are inherently machine dependent. The· following list of potential trouble spots is

not meant to be all-inclusive, but to point out the main ones.
Purely hardware issues like word size and the properties of floating point arithmetic and integer divi

sion have proven in practice to be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these. particularly sign extension (converting a negative character
into a negative integer) and the order in which bytes are placed in a word, are a nuisance that must be
carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine, as does the set of valid types. Nonetheless, the compilers all do things properly for their own
machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. It is right to left on
the PDP- I I , and v AX- I l , left to right on the others. The order in which side effects take place is also
unspecified.

Since character constants are really objects of type int, multi-character character constants may be
permitted. The specific implementation is very machine dependent, however, because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right-to-left on the PDP- I I and v AX- I l and
left-to-right on other machines. These differences are invisible to isolated programs which do not indulge
in type punning (for example, by converting an int pointer to a char pointer and inspecting the
pointed-to storage) , but must be accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current
PDP- I I compiler will not initialize structures containing bit-fields, and does not accept a few assignment
operators in certain contexts where the value of the assignment is used.

- 25 -

1 7. Anachronisms
Since C is an evolving language, certain obsolete constructions may be found in older programs.

Although most versions of the compiler support such anachronisms, ultimately they will disappear, leav
ing only a portability problem· behind.

Earlier versions of C used the form =op instead of op= for assignment operators. This leads to
ambiguities, typified by

x=-1

which actually decrements X since the = and the - are adjacent, but Which might easily be intended tO
assign -1 to x .

The syntax o f initializers has changed: previously, the equals sign that introduces an initializer was
not present, so instead of

one used

int x = 1 ;

int x 1 ;

The change was made because the initialization

int f (1 +2)

resembles a function declaration closely enough to confuse the compilers.

- 26 -

1 8. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact statement of

the language.

1 8 . 1 Expressions
Th� basic expressions are:

expression:
primary
* expression
& expression
- expression
! expression

- expression
++ /value
-- /value
/value ++
/value --
s izeof expression
(type-name) expression
expression binop expression
expression ? expression : expression
/value asgnop expression
expression 1 expression

primary:
identifier
constant
string
(expression)

primary (expression-listopr)
primary [expression]
/value • identifier

/value:

primary -> identifier

identifier
primary [expression]
/value • identifier
primary -> identifier
* expression
(/value)

The primary-expression operators

() [] ->

have highest priority and group left-to-right. The unary operators

* & ++ s izeof (type-name)

have priority below the primary operators but higher than any binary operator. and group right-to-left.
Binary operators group left-to-right; they have priority decreasing as indicated below. The conditional
operator groups right to left.

- 27 -

binop:
* I %
+
>> <<
< > <= >=

! =
&

&&
I I
? :

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
+= *= I= %= >>= <<= &= A= I =

The comma operator has the lowest priority, and groups left-to-right.

1 8.2 Declarations

declaration:
decl-specifiers init-declarator-listopr ;

decl-specifiers:
type-specifier decl-specifiersopr
sc-specifier decl-specifiersopr

sc-specifier:
auto
static ·
extern
register
typedef

.
type-specifier:

char
short
int
long
uns igned
float
double
struct-or-union-specifier
typedef-name

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

in it-declarator:
declarator initializeropr

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionopr]

- 28 -

struct-or-union-specifier:
struct { struct-decl-list l
struct identifier { struct-decl-list l
struct identifier
union { struct-decl-list l
union identifier { struct-decl-list l
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
de.clarator : constant-expression
: constant-expression

initializer:
= expression

{ initializer-list l
= { initializer-list ,

i nitia lizer-list:
expression
initializer-list , initializer-list
{ initializer-list l

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionopt]

typedef-name:
identifier

1 8.3 Statements

compound-statement:
{ declaration-listopt statement-list0P1 l

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;

- 29 -

if (expression) statement .
i f (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expression-lopr ; expression-2opr ; expression-Jopr) statement
switch (expression) statement
cas e constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

1 8.4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifieroprfunction-declarator function-body

function-declarator:
declarator (parameter-listopr)

parameter-list:
identifier
identifier , parameter-list

function-body:
type-dec/-list function-statement

function-statement:
{ declaration-list0P1 statement-list l

data-definition:

1 8.5 Preprocessor

externopr type-specifieropr init-declarator-list0P1 ;
staticopr type-specifieropr init-declarator-list0P1 ;

- 30 -

#define identifier token-string
#define identifier (tdentifier , . . . , identifier) token-string
#undef identifier
include "filename "
include �kname>
#if constant-expression
ifdef identifier
i fndef identifier
#else
#endif
l ine constant identifier

Recent Changes to C

November 15, 1 9 78

A few extensions have been made to the C language beyond what is described in the reference docu
ment ("The C Programming Language," Kernighan and Ritchie, Prentice-Hall, 1 978) .

1 . Structure assignment

Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison, have
not been implemented.

There is a subtle defect in the PDP-1 1 implementation of functions that return structures: if an inter
rupt o�curs during the return sequence, and the same function is called reentrantly during the interrupt,
the value returned from the first call may be corrupted. The problem can occur only in the presence of
true interrupts, as in an operating system or a user program that makes significant use of signals; ordinary
recursive calls are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax
on p. 1 93 of the C book add

with syntax

enum-specifier

enum-specijier:
enum { enum-list J
enum identifier { enum-list l
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse , burgundy , c laret , winedark } ;

enum color *CP , col ;

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with = appear, then the values of the constants begin at 0 and increase by 1
as the declaration is read from left to right. An enumerator with = gives the associated identifier the
value indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure tags and members, are
drawn from the same· set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types, and lint flags type mismatches. In the PDP-I I implementation all enumeration variables are treated
as if they were int.

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detecting a
number of bugs and obscurities. It enforces the type rules of C more strictly
than the C compilers. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines and/or
operating systems. Another option detects a number of wasteful, or error
prone, . constructions which nevertheless .are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them
for consistency.

The separation of function between lint and the C compilers has both his
torical and practical rationale. The compilers turn C programs into executable
files rapidly and efficiently. This is possible in part because the compilers do
not do sophisticated type checking, especially between separately compiled pro
grams. Lint takes a more global, leisurely view of the program, looking much
more carefully at the compatibilities.

This document discusses the use of lint, gives an overview of the imple
mentation, and gives some hints on the writing of machine independent C
code.

July 26, 1 978

Introduction and Usage

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Suppose there are two C1 source files, filel.c and file2.c, which are ordinarily compiled and
loaded together. Then the command

lint file l .c f.:.e2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi
cal reasons) enforce them. The· command

lint -p file l .c file2.c

will produce, in addition to the above messages, additional messages which relate to tlie porta
bility of the programs to other operating systems and machines. Replacing the -p by -h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying -hp gets the whole works.

The next several sections describe the major messages� the document closes with sections (!IIW discussing the implementation and giving suggestions for writing portable C. An appendix
gives a summary of the lint options.

A Word About Philosophy
Many of the facts which lint needs may be impossible to discover. For example, whether

a given function in a program ever gets called may depend on the input data. Deciding whether
exit is ever called is equivalent to solving the famous "halting problem," known to be recur
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called� this is not neces
sarily so, but in practice is quite reasonable. ·

Lint tries to give information with a high degree of relevance. Messages of the form "xx:x
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages
which lint produces.

Unused Variables and Functions
As sets of programs evolve and develop, previously used variables and arguments to func

tions may become unused� it is not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These "errors of commis
sion" rarely cause working programs to fail, but they are a source of inefficiency, and make
programs harder to understand and change. Moreover, information about such unused vari
ables and functions can occasionally serve to discover bugs� if a function does a necessary job,
and is never called, something is wrong!

- 2 -

Lint complains about variables and functions which are defined but not otherwise men
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern float sin () ;

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they
can be discovered by adding the - x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter
faces; frequently, some of the arguments may be unused in many of the calls. The -v option
is available to suppress the printing of complaints about unused arguments. When -v is in
effect, no messages are produced about unused arguments except for those arguments which
are unused and also declared as register arguments; this can be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undefined, variables is more dis
tracting than helpful. This is when lint is applied to some, but not all, files out of a collection
which are to be loaded together. In this case, many of the functions and variables defined may
not be used, and, conversely, many functions and variables defined elsewhere may be used.
The -u flag may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information
Lint attempts to detect cases where a variable is used before it is set. This is very difficult

to do well; many algorithms take a good deal of time and space, and still produce messages
about perfectly valid programs. Lint detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first assignment to
the variable. It assumes that taking the address of a variable constitutes a "use," since the
actual use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement, since the true flow of control need not be discovered. It does
mean that lint can complain about some programs which are legal, but these programs would
probably be considered bad on stylistic grounds (e.g. might contain at least two goto's) .
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of inefficiencies, and may also be symptomatic of
bugs.

Flow of Control
Lint attempts to detect unreachable portions of the programs which it processes. It will

complain about unlabeled statements immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect
ing the special cases while (1) and for (; ;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an important area of blindness in' the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreach
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the i' ext section) .

One form o f unreachable statement is not usually complained about by lint; a break state
ment that cannot be reached causes no message. Programs generated by yacc, 2 and especially
lex, 3 may have literally hundreds of unreachable break statements. The -0 flag in the C

- 3 -

compiler will often eliminate the resulting object code inefficiency. Thus, these unreached
statements are of little importance, there is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If these messages are desired, lint can
be invoked with the -b option.

Function Values
Sometimes functions return values which are never used; sometimes programs incorrectly

use function "values" which have never been returned. Lint addresses this problem in a
number of ways.

and

Locally, within a function definition, the appearance of both

return (expr) ; ·

return ;

statements is cause for alarm; lint will give the message

function name contains return (e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) return (3) ;
g 0;
}

Notice that, if a tests false, /will call g and then return with no defined return value; this will
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by · this feature; it also
accounts for a substantial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions) .

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of ·
occasions in "working" programs; the desired function value just happened to have been com
puted in the function return register!

Type Checking
Lint enforces the type checking rules of C more strictly than the compilers do. The addi

tional checking is in four major areas : across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional ('? :) , and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of x's can, of
course, be intermixed with pointers to .x's,

The type checking rules also require that, in structure references, the left operand of the ·
- > be a pointer to structure, the left operand of the . be a structure, and the right operand of

- 4 -

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration · variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are = , ini
tialization, = = , ! = , and function arguments and return values.

Type Casts
The type cast feature in C was introduced largely as an aid to producing more portable

programs. Consider the assignment

p - 1 ;
where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char *) 1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments abo\lt casts. When -c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use
On the PDP- 1 1 , characters are signed quantities, with a range from - 128 to 127. On

most of the other C implementations, characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or nonportable. For example, the
fragment

char c;

if((c = getchar ()) < 0)

works on the PDP- 1 1 , but will fail on machines where characters always take on positive
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. In any case, lint will say "nonportable character comparison".

A similar issue arises with bitfields; when assignments of constant values are made to
bitfields, the field may be too small to hold the value. This is especially true because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con
sider that a two bit field declared of type int cannot hold the value 3 , the problem disappears if
the bitfield is declared to have type unsigned.

Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which loses accuracy. This may

happen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the - a flag.

- 5 -

Strange Constructions
Several perfectly legal, but somewhat strange, constructions are flagged by lint; the mes

sages hopefully encourage better code quality, clearer style, and may even point out bugs. The
- h flag is used to enable these checks. For example, in the statement

•p + + ;

the * does nothing; this provokes the message "null effect" from lint. The program fragment

unsigned x ;
if(X < 0) . . .

is clearly somewhat strange; the test will never succeed. Similarly, the test

if(X > 0) .. .

is equivalent to

if(X ! == 0)

which may not be the intended action. Lint will say "degenerate unsigned comparison" in
these cases. If one says

if(1 ! == 0)

lint will report "constant in conditional context", since the comparison of 1 with 0 gives a con
stant result. .

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, niaking such bugs �tremely hard to find. For example, the statements

if(x&077 = = 0) · . . .

or

x << 2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the -h flag is in force lint complains about variables which are redeclared in
inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is con
sidered by many (including the author) to be bad style, usually unnecessary, and frequently a
bug . .

Ancient History
There are several forms of older syntax which are being officially discouraged. These fall

into two classes, assignment operators and initialization.
The older forms of assignment operators (e.g., = +, = - , . . .) could cause ambiguous

expressions, such as

a = - 1 ;
which could be taken as either

a = - 1 ;

or

a = - 1 ; ·

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ =, - =, etc.) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned

- 6 -

operators.
A similar issue arises with initialization. The older language allowed

int x 1 ;
to initialize x to 1 . This also caused syntactic difficulties : for example,

int x (- 1) ;
looks somewhat like the beginning �f a function declaration:

int x (y) { . . .

and the compiler must read a fair ways past x in order to sure what the declaration really is . .
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x = - 1 ;
This is free of any possible syntactic ambiguity.

Pointer Alignment
Certain pointer assignments may be reasonable on some machines, and illegal on others,

due entirely to alignment restrictions. For example, on the PDP- 1 1 , it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun
daries; thus, �ot all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message "possible
pointer alignment problem" results from this situation whenever either the -p or - h flags are
in effect.

Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subexpressions may be

highly machine dependent. For example, on machines (like the PDP- 1 1) in which the stack
runs backwards, function arguments will probably be best evaluated from right-to-left; on
machines with a stack running forward, left-to-right seems most attractive. Function calls
embedded as arguments of other functions may or may not be treated similarly to ordinary
arguments. Similar issues arise with other operators which have side effects, such as the assign
ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in fact, the various C compilers have considerable differences in the order in which they
will evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For
example, the statement

a[i] = b{i+ + 1 ;

will draw the complaint:
warning: i evaluation order undefined

Implementation

t.8 Lint consists of two programs and a driver. The first program is a version of the Portable <:,;;Jf:; C Compiler4, 5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file

- 7 -

which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding
of the context in which it was seen (use, definition, declaration, etc .) , a type specifier, and a
source file name and line number. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about exter
nal names is collected onto an intermediate file. After all the source files and library descrip
tions have been collected, the intermediate file is sorted to bring all information collected about
a given external name together. The second, rather small, program then reads the lines from
the intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available
to both passes of lint.

Portability
C on the Honeywell and IBM systems is used, in part, to write system code for the host

operating system. This means that the implementation of C tends to follow local conventions
rather than adhere strictly to UNIXt system conventions. Despite these differences, many C
programs have been successfully moved to GCOS and the various IBM installations with little
effort. This section describes some of the differences between the implementations, and
discusses the lint features which encourage· portability.

Uninitialized external variables are treated differently in different implementations of C.
Suppose two_ files both contain a declaration without initialization, such as

int a ;
outside of any function. The UNIX loader will resolve these declarations, and cause only a sin
gle word of storage to be set aside for a. Under the GCOS and IBM implementations, this is
not feasible (for various stupid reasons !) so each such declaration causes a word of storage to
be set aside and called a. When loading or library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint is invoked with the - p flag, it will
detect such multiple definitions.

A related difficulty comes from the amount of information retained about external names
during the loading process. On the UNIX system, externally known names have seven
significant characters, with the upper/lower case distinction kept. On the IBM systems, there
are eight significant characters, but the case distinction is lost. On GCOS, there are only six
characters, of a single case. This leads to situations where programs run on the UNIX system,
but encounter loader problems on the IBM or GCOS systems. Lint -p causes all external sym
bols to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX

system are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on
GCOS. Moreover, character strings go from high to low bit positions ("left to right") on
GCOS and IBM, and low to high ("right to left") on the PDP- 1 1 . This means that code
attempting to construct strings out of character constants, or attempting to use characters as
indices into arrays, must be looked at with great suspicion. Lint is of little help here, except to
flag multi-character character constants.

Of course, the word sizes are different ! This causes less trouble than might be expected,
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36
bits) . The main problems are likely to arise in shifting or masking." C now supports a bit-field
facility, which can be used to write much of this code in a reasonably portable way. Frequently,
portability of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing

tUNIX is a Trademark of Bell Laboratories.

41Jv

- 8 -

X & = 0177700 ;

to clear the low order six bits of x. This suffices on the PDP- 1 1 , but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing

X & = - 077 ;

which will work on all these machines.
The right shift operator is arithmetic shift on the PDP- 1 1 , and logical shift on most other

machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP- 1 1 , and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP- 1 1 hardware
which has infiltrated itself into the C language . . If there were a good way to discover the pro
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities has been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, lint has been very helpful in
moving the UNIX operating system and associated utility programs to other machines.

Shutting Lint Up
There are occasions when the programmer is smarter than lint. There may be valid rea

sons for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com
municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob
lems.

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lint, this can be asserted by the
directive

I* NOTREACHED *I
at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking
for the next expression, the directive

I* NOSTRICT *I
can be used; the situation reverts to the previous default after the next expression. The - v
flag can be turned on for one function by the directive

I* ARGSUSED *I
Complaints about variable number of arguments in calls to a function can be turned off by the
directive

- 9 -

I* VARARGS *I

preceding the function definition. In some cases, it is desirable to check the first several argu
ments, and leave the later arguments unchecked. This can be done by following the
V ARARGS keyword immediately with a digit giving the number of arguments which should be
checked; thus,

I* VARARGS2 *I

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

I* LINTLIBRARY *I
at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.

Library Declaration Files
Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are con�tructed from the library directives. These files all begin
with the directive

I* LINTLIBRARY *I

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The V ARARGS and f.:J ARGSUSED directives can be used to specify features of the library functions. c

Lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file, but are not used on a source file,
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a feature!) .

By default, lint checks the programs i t is given against a standard library file, which con
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p flag is in effect, another file is checked containing descriptions of the standard 1/0 library
routines which are expected to be portable across various machines. The -n flag can be used to
suppress all library checking.

Bugs, etc.
Lint was a difficult program to write, partially because it is closely connected with matters

of programming style, and partially because users usually don't notice bugs which cause lint to
miss errors which it should have caught. (By contrast, if lint incorrectly complains about some
thing that is correct, the programmer reports that immediately !)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typedef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the preprocessor to be constructed which checks for things such as unused r.a macro definitions, macro arguments which have side effects which are not expanded at all, or %®f
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There
are many options which serve only to turn off, or slightly modify, certain features. There are

�JJfw

- 1 0 -

pressures to add even more of these options.
In conclusion, it appears that the general notion of having two programs is a good one.

The compiler concentrates on quickly and accurately turning the program text into bits which
can be run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen
trate at one stage of the programming process solely ori the algorithms, data structures, and
correctness of the program, and then later retrofit, with the aid of lint, the desirable properties
of universality and _portability.

- 1 1 -

References

1 . B . W . Kernighan and D . M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978) .

2. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No.
32, Bell Laboratories, Murray Hill, New Jersey (July 1975) .

3. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C Programs
and the UNIX System," Bell Sys. Tech. J. 57 (6) pp. 2021-2048 (1978).

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

fJ;

- 1 2 -

Appendix: Current Lint Options
The command currently has the form

lint [-options] files . . . library-descriptors . . .
The options are
h Perform heuristic checks
p Perform portability checks
v Don't report unused arguments
u Don't report unused or undefined externals
b Report unreachable break statements.
x Report unused external declarations
a Report assignments of long to int or shorter.
c Complain about questionable casts
n No library checking is done
s Same as h (for historical reasons)

Make - A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source.
Make provides a simple mechanism for maintaining up-to-date versions of pro
grams that result from many operations on a number of files. It is possible to
tell Make the sequence of commands that create certain files, and the list of

. files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the Make command
will create the proper files simply, correctly, and with a minimum amount of
effort.

The basic operation of Make is to find the name of a needed target in the
description, ensure that aiL of the files on which it depends exist and are up to
date, and then create the target if it has not been modified since its generators
were. The description file really defines the graph of dependencies; Make does
a depth-first search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for convenient administration.

August 15 , 1978

Make - A Program for Maintaining Computer Programs

I n trod uctio n

S. I. Feldman

Bell Laboratories
Murray H il l , New Jersey 07974

It is common practice to divide large programs into smaller, more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a ma·cro
processor, some may need to be processed by a sophisticated program generator (e.g., Yacc [l]
o r Lex [2]) . The outputs o f these generators may then have to b e compiled with special options
and with certain defin itions and declaratio ns. The code resulting from these transformations
may then need to be loaded together with certain l ibraries under the control of special options.
Related maintenance activities i nvolve running complicated test scripts and install ing validated
modules. Unfortunately, it is very easy for a programmer to forget which files depend on
which others, which fi les have been modified recently, and the exact sequence of operations
needed to make or exercise a new version of the program. After a long editing session, one
may easily lose track of which files have been changed and which object modules are still valid,
since a change to a declaration can obsolete a dozen other fi les. Forgetting to compile a routine
that has been changed or that uses changed declarations will result in ·a program that will not
work, and a bqg that can be very hard to track down. On the other hand, recompiling every
thing in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program
development and maintenance. If the information on inter-file dependences and com mand
sequences is stored in a fi le, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number that ha" e been
edited since the last " make". In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes

think - edit - make - test . . .

Make is most useful for medium-sized programming projects; it does not solve the prob
lems of maintaining multiple source versions or of describing huge programs. Make was
designed for use on Unix , but a version runs on GCOS.

Basic Features
The basic operation of make is to update a target file by ensuring that all of the files on

which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file was last
modified.

To i l lustrate, let us consider a simple example: A program named pro!{ is made by compi l
ing and loading three C-Ianguage files x.c, y. c, and z. c with the IS l ibrary. By convention, the
output of the C compilations will be found in files named x. o, y. o, and z. o. Assume that the
files x. c and y. c share some declarations in a file named defs, but that z. c does not. That is, x. c

- 2 -

and y. c have the l ine

#include "defs"

The following text describes the relationships and operations:

prog : x.o y.o z.o·
cc x.o y .o z.o - IS - o prog

x .o y .o : defs

If this information were stored in a fi le named make.file, the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x. c, y. c, z. c, or defs.

Make operates using three sources of i nformation: a user-supplied description file (as
above) , file names and " last-modified" times from the file system, and built-in rules to bridge
some of the gaps. I n our example, the first l ine says that prog depends on three " . o" files.
Once these object files are current, the second l ine describes how to load them to create prog.
The third l ine says that x. o and y. o depend on the file defs. From the file system, make discov
ers that there are three " . c" files corresponding to the needed " . o" files, and uses built-in
information on how to generate an object from a source fi le (i. e. , issue a "cc - c" command) . .

The following long-winded description fi le is equivalent to the one above, but takes no
advantage of make's i nnate knowledge:

prog : x .o y .o z .o
cc x .o y .o z .o - IS - o prog

x.o : x .c defs
cc - c x.c

y .o : y.c defs
cc - c y.c

z.o : z.c
cc - c z.c

If none of the source or object fi les had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x. c and y. c
(but not z. c) would be recompiled, and then prog would be created from the new " . o" files. If
only the file y. c had changed, only it would be recompiled, but i t would still be necessary to
reload prog.

If no target name is given on the make command l ine, the first target mentioned in the
description is created; otherwise the specified targets are made. The command

make x.o

would recompile x. o if x. c or defs had changed.
If the file exists after the commands are executed, i ts time of last modification is used in

further decisions; otherwise the current time is used. It is often quite useful to include rules
with m nemonic names and commands that do not actually produce a file with that name .
These entries can take advantage of make's ability to generate files and substitute macros.
Thus, an entry "save" might be i ncluded to copy a certain set of files, or an entry "cleanup"

- 3 -

might be used to throw away unneeded intermediate fi les. I n other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were performed. This
technique is useful for maintaining remote archives and l istings.

Make has a simple macro mechanism for substi tu ting in dependency l ines and command
strings. Macros are defined by command arguments or description file l ines with embedded
equal signs. A macro is invoked by preceding the name by a dollar sign; macro names longer
than one character must be parenthesized. The name of the macro is ei ther the single character
after the dollar sign or a name inside parentheses. The fol lowing are valid macro invocations:

$ (CFLAGS)
$2
$ (xy)
$Z
$ (Z)

The last two invocations are identical. $$ is a dollar sign . Al l of these macros are assigned
values during inpu t, as shown below. Four special macros change values during the execution
of the command: $*, $ @ , $? , and $ < . They will be discussed later. The following fragment
shows the use:

OBJECTS = x.o y.o z.o
L IBES = - IS
prog: $ (OBJECTS)

cc $ (OBJECTS) $ (L IBES) - o prog

The command $JJy
make

loads the three object fi les with the IS l ibrary. The co,mmand

make "LIBES = - II - IS"

loads ·them with both the Lex (" - II") and the Standard (" - IS") l ibraries, since macro
definitions on the command l ine override defin i tions in the description. (I t is necessary to
quote arguments with embedded blanks in UNIXt commands.)

The fol lowing sections detail the form of description fi les and the command line, and dis
cuss options and bui lt- in rules in more detai l .

Description Files and Substitutions
A description file contains three types of information: macro defin itions, dependency

information, and executable commands. There is also a comment convention: all characters
after a sharp (#) are ignored, as is the sharp itse lf. Blank l ines and lines beginning with a sharp
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If
the last character of a l ine is a backslash, the backslash, newline, and following blanks and tabs
are replaced by a single blank.

A macro defi nition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digi ts) to the left of the equal sign (trai l ing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
are stripped.) The fol lowing are valid macro defi nitions:

tUN IX is a Trademark of Bell Laboratories.

•

2 = xyz
abc = - II - Iy - IS
LIBES =

- 4 -

The last definition assigns L IBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below) .

·

Other l ines give information about target files. The general form of an entry is:

target ! [target2 . . .] : [:] [dependent! . . .] [; commands] [# . . .]
[(tab) commands] [# . . .]

I tems inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shel l metacharacters "*" and " ?" are expanded.) A command is any
string of characters not i ncluding a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency l ine or on l ines beginning with a tab immedi
ately following a dependency l ine.

A dependency line may have ei ther a single or a double colon. A target name may appear
on more than one dependency l ine, but all of those l ines must be of .the same (single or double
colon) type.
I . For the usual single-colon case, at most one of these dependency lines 'may have a com

mand sequence associated with it. If the target is out of date with any of the dependents
on any of the l ines, and a command sequence is specified (even a null one following a
semicolon or tab) , it is executed; otherwise a default creation rule may be invoked.

2. In the double-colo n ,case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular l ine, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.
If a target must be created, the sequence of commands is executed. Normally, each com

mand line is printed and then passed to a separate invocation of the Shel l after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @
sign) . Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the " - i" flags has been specified on the make command line, if
the fake target name ". IGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some UNIX commands return meaningless status) .
Because each command l ine is passed to a separate invocation of the S hel l , care must be taken
with certain commands (e.g., cd and S hell control commands) that have meani ng only within a
single Shel l process; the results are forgotten before the next l ine is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to
be "made". $? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below) , $ < is the name of the related file
that caused the action, and $* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name " .DEFAULT" are used. If there is no such name, make
prints a message and stops.

Command Usage
The make command takes four kinds of arguments: macro definitions, flags, description

file names, and target file names.

make [flags] [macro definitions] [targets]

- 5 -

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed
and the assignments made. Command-line macros override corresponding definitions found in
the description files.

Next, the flag arguments are examined. The permissible flags are
- i Ignore error codes returned by invoked commands. This mode is entered if the fake tar

get name ". IGNORE" appears in the description file.
- s S ilent mode. Do not print command l ines before executing. This mode i s also entered i f

the fake target name ".SILENT" appears in the description file.
- r Do not use the built-in rules. ·

- n No execute mode. Print commands, but do not execute them. Even l ines begi nning with
an " @ " sign are pri nted.

- t Touch the target files (causing them to be up to date) rather than issue the usual com
mands.

- q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

- p Print ·out the complete· set of macro definitions and ta·rget descriptions
- d Debug mode. Print out detailed information o n files and times examined.
- f Description file name. The next argument is assumed to be the name of a description

file. A file name of " - " denotes the standard input. If there are no " - f " arguments,
the file named mak£�/ife or Make./ife in the current directory is read. The conte nts of the
description files override the built- in rules if they are present) . ·

Finally, the remaining arguments are assumed to be the names of targets to be made; they
are done in left to right order. If there are no such arguments, the first name in the description
files that does not begin with a period is "made" .

I mplicit Rules
The make program uses a table of interesting suffixes and a set of transformation rules to

supply default depende ncy information and impl ied commands. (The· Appendix describes these
tables and means of overriding tnem.) The default suffix list is:

. o

. c

. e

.r

.f
. s

.y

.yr

.ye

. I

Object file
C source file
Efl source file
Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

The fol lowing diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

- 6 -

�� . L . r . e ../ . s .y .yr .ye . / . d

� \ \
.y . I .yr .ye

If the file x. o were needed and there were an x. c in the description or directory, it would
be compiled. If there were also an x. /, that grammar would be run through Lex before compil
i ng the result. However, if there were no x. c but there were an x. /, make would discard the
intermediate C-language fi le and use the direct l ink in the graph above.

It is possible to change the names of some of the compi lers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, Y ACC, Y ACCR, Y ACCE, and L EX. The command

make CC = newcc

wil l cause the " newcc" command to be used instead of the usual C compiler. The macros
CFLAGS, RFL AGS, EFLAGS, YFLAGS, and LFL AGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS = -0"

causes the optimizing C compiler to be used.

Example
As an example of the use of make, we wil l present the description file used to maintain

the make command i tself. The code for make is spread over a number of C source files and a
Yacc grammar. The description file contains:

- 7 -

Description file for the Make command
P = und - 3 1 opr - r2 # send to GCOS to be printed
FILES = Makefile version.c defs mai n.c doname.c misc.c fi les.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main .o doname.o misc.o fi les.o dosys.o gram.o
L IBES = - IS
L INT = l int - p
CFLAGS = - 0
make: $ (OBJECTS)

cc $ (CFLAGS) $ (OBJECTS) $ (L I BES) -o make
size make

$ (OBJECTS) : defs
gram.o: lex.c
cleanup:

-rm * .o gram.c
-du

instal l :
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FI LES) # print recently changed files
pr $? I $P

test:
touch print

make - dp I grep -v TIME > I zap
/usr/bin/mak.e - dp I grep - v TIME > 2zap
diff l zap 2zap
rm l zap 2zap

lint : dosys.c doname.c files.c main .c misc.c version.c gram.c
$ (LI NT) dosys.c doname.c files.c mai n.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $ (FI L ES)

Make usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory containing only the source and description fi le:

cc - c version.c
cc - c mai n.c
cc -c doname.c
cc -c misc.c
cc - c fi les.c
cc -c dosys.c
yacc gram.y
mv y . tab.c gram.c
cc - c gram.c
cc version.o main .o doname.o misc.o files.o dosys.o gram.o - IS - o make
1 3 1 88 + 3348 + 3044 = 1 9580b = 046 1 74b

Although none of the source. files or grammars were mentioned by name in the description fi le,
make found them using its suffix rules and issued the .needed commands. The string of digits

tJJiw

•

- 8 -

results from the "size make" command� the print ing of the command l ine i tself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command, so only the sizes are written.

The last few entries in the description file are useful mai ntenance sequences. The "print"
entry prints only the files that have been changed since the last "make print" command. A
zero-length fi le print is maintained to keep track of the time of the print ing� the $? macro in the
com mand l ine then picks up only the names of the files changed since fl!"int was touched. The
printed output can be sent to a different printer or to a fi le by changing the defini tion of the P

macro:

make print "P = apr - sp"
or

make print " P = cat > zap"

Suggestions and Warnings
The most common difficulties arise from make's specific meani ng of dependency. If file

x. c has a "#include "defs"" l ine, then the object fi le x.o depends on (/c�fs� the source file x. c
-does not. (I f d£�/s is changed, it is not necessary to do anything to the fi le x. c, while it is neces
sary to recreate x. o .)

To discover what make would do, the "- n" option is very useful . The command

make - n

orders make to print out the commands it would issue without actually tak ing the time to exe
cute them. I f a change to a fi le is absolutely certain to be benign (e.g. , adding a new defi nition
to an include file) , the " - t'.' (touch) option can save a lot of time: instead of issui ng a large
nu mber of superfluous recompilations, mak£' updates the modification times on the affected file.
Thus, the command

make - ts

("touch silently") causes the re levant files to appear up to date . Obvious care is necessary,
si nce this mode of operation subverts the inte ntion of make and destroys all memory of the
previous re lationships.

The debugging flag (" - d") causes make to pri nt out a very detailed description of what it
is doing, including the fi le times. The output is vc:rbose, and recommended only as a last
resort.

Acknowledgments
I would l ike to thank S . C. Johnson for suggesting this approach to program maintenance

control. I would l ike to thank S . C. Johnson and H. Gajewska for being the prime guinea pigs
duri ng development of mak£'.

References
I . S. C. Jo hnson, "Yacc - Yet Another Compiler-Compiler" , Bell Laboratories Computing

Scie nce Technical R eport #32, July 1 978.
2 . M . E. Lesk, "Lex - A Lexical Analyzer Generator" , Computing Science Technical

Report #39, October 1 975 .

- 9 -

Appendix. Suffixes and Transformation Rules
The make program i tself does not know what file name suffixes are interesting or how to

transform a file with one suffix into a fi le with another suffix. This information is stored in an
internal table that has the form of a description file. If the " - r" flag is used, this table is not
used.

The l ist of suffixes is actually the dependency list .for the name ".SUFFIXES"; make

looks for a file with any of the suffixes on the l ist. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a " . r"
file to a " . o" file is thus " .r. o" . I f the rule is present and no· explicit command sequence has
been given in the user's description fi les, the command sequence for the rule " .r.o" is used. I f
a command i s generated by using one of these suffixing rules, the macro $* i s given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is
the name of the dependent that caused the action.

The order of the suffix l ist is significant, since i t is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with lt is used. If new names are
to be appended, the user can just add an entry for ".SUFFIXES" in his own description file;
the dependents wil l be added to the usual l ist. A ".SUFFIXES" l ine without any dependents
deletes the current l ist. (It is necessary to clear the current l ist if the order of names is to be
changed) .

·

The following is an excerpt from the default rules file:

.SUFFIXES : .o .c .e . r . f .y .yr .ye . I .s
YACC = yacc
YACCR=yacc - r
Y ACCE = yacc - e
YFL AGS =
LEX = Iex
L FL AGS =
CC = cc
AS = as -
CFLAGS =
RC = ec
RFL AGS =
EC = ec
EFLAGS =
FFLAGS =
.c.o :

$ (CC) $ (CFLAGS) - c $ <
.e .o .r .o .f.o :

.s.o :

.y .o :

.y.c :

$ (EC) $ (RFLAGS) $ (EFLAGS) $ (FFLAGS) - c $ <

$ (AS) - o $ @ $ <

$(Y ACC) $ (YFLAGS) $ <
$ (CC) $ (CFLAGS) - c y . tab.c
rm y.tab.c
mv y.tab.o $@

$ (Y ACC) $ (YFLAGS) $ <
mv y.tab.c $@ •

UNIX Programming - Second Edition

Brian W. Kernighan
Dennis M. Ritchie
Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIXt system. The
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard 110 library. The topics discussed include

• handling command arguments

• rudimentary 1/0� the standard input and output

• the standard 110 library� file system access

• low-level 110: open, read, write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.

There is also an appendix which describes the standard 1/0 library in detail.

November 1 2, 1 978

tUNIX is a Trademark or Bell Laboratories.

. --

UNIX Programming - Second Edition

1 • INTRODUCTION

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill. New Jersey 0797 4

This paper describes how to write programs that interface with the UNIX operating system
in a non-trivial way. This includes programs that use files by name, that use pipes. that invoke
other commands as they run. or that attempt to catch interrupts and other signals during execu
tion.

The document collects material which is scattered throughout several sections of The UNIX
Programmer 's Manual [l) for Version 7 UNIX. There is no attempt to be complete: only gen
erally useful material is dealt with. It is assumed that you will be programming in C, so · you
must be able to read the language roughly up to the level of The C Programming Language [21 .
Some of the material i n sections 2 through 4 is based on topics covered more carefully there.
You should also be familiar with UNIX itself at least to the level of UNIX for Beginners [3] .

2 . BASICS

2 . 1 . Program Arguments

When a C program is run as a command. the arguments on the command line are made
available to the function main as an argument count arqc and an array arqv of pointers to
character strings that contain the arguments. By convention. arqv (0] is the command name
itself. so arqc is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to
the terminal. (This is essentially the echo command.)

main (argc , argv)

int argc ;

char wargv [] ;
{

int i ;

I * echo arguments w /

for (i • 1 ; i < argc ; i++)

printf ("'!lts'!ltc" , argv [i] , (i<argc-1) ? ' ' : ' \ n ' l ;

arqv is a pointer -to an array whose individual elements are pointers to arrays of characters:
each is terminated by \0, so they can be treated as strings. The program starts by printing
arqv (1] and loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them. you must copy them to external variables.

2 . 2 . The •-standard Input" and "Standard Output"

The simplest input mechanism is to read the "standard input. " which is generally the
user's terminal. The function qetchar returns the next input character each time it is called.
A file may be substituted for the terminal by using the < convention: if prog uses qetchar.

fl

- 2 -

then the command line

prog <file

causes prog to read f i le instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program Via
the pipe mechanism:

otherprog I prog

provides the standard input for prog from the standard output of otherprog .

getchar returns the value EOF when it encounters the end of file (or an error) on what
ever you are reading. The value of EOF is normally defined to be -1 , but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character c on the "standard output ," which is also by
default the terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn't exist� if it already exists, its previous contents are overwritten. And a pipe can be used:

prog I otherprog

puts the standard output of prog into the standard input of otherprog .

The function printf, which formats output in various ways, uses -the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order� the output
will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion� it will read the
standard input and break it up into strings, numbers, etc. , as desired. scanf uses the same
mechanism as getchar, so calls to them may also be intermixed. . .

Many programs read only one input and write one output; for such programs 1/0 with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always
enough to get started. Thfs is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input of the next. For example, the following program strips out
all ascii control characters from its input (except for newline and tab) .

include <stdio . h>

main ()
{

I * ccstrip : strip non-graphic characters * I

The line

int c ;
while ((c = getchar ()) ! = EOF)

if ((c >= ' ' && c < 0 1 77) I I c
putchar (c) ;

exit (O) ;

include <stdio . h>

' \ t ' I I c ' \ n ')

should appear at the beginning of each source file. It causes the C compiler to read a file
Uusr/include/stdio. h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat file1 file2 . . . I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exi t at the
end is not necessary to make the program work properly, but it assures that any caller of the

- 3 -

program will see a normal termination status (conventionally 0) from the program when it com
pletes. Section 6 discusses status returns in more detail.

3 . THE STANDARD 1/0 LIBRARY
The "Standard 1 /0 Library" is a collection of routines intended to provide efficient and

portable 1/0 services for most C programs. The standard 1/0 l ibrary is available on each sys
tem that supports C, so programs that confine their system interactions to its facilities can be
transported from one system to another essentially without change.

In this section, we will discuss the basics of the standard 1/0 library. The appendix con
tains a more complete description of its capabilities.

3 . 1 . File Access
The programs written so far have all read the standard input and written the standard out

put, which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

we x . c y . c

prints the number of lines, words and characters i n x . c and y . c and the totals.
The question is how to arrange for the named files to be read - that is, how to connect the

file system names to the 1/0 statements which actually read the data.
·

The rules are simple. Before it can be read or written a file has to be opened by the stan
dard library function fopen. fopen takes an external name (like x . c or y . c) , does some
housekeeping and negotiation with the operating system, and returns an internal name which 1_g1:_,

t b d
.

b t d 't f h til W&-:,.;: mus e use m su sequen rea s or wn es o t e e. '%'1P
This internal name is actually a pointer, called a file pointer, to a structure which contains

information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Us�rs don't need to know the
details, because part of the standard I/0 definitions obtained by including stdio . h is a struc
ture definition called FILE. The only declaration needed for a file pointer is exemplified by

FILE * fp , * fopen () ;

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a
type name, like int, not a structure tag.

The actual call to fopen in a program is

fp = fopen (name , mode) ;

The first argument of fopen is the name of the file, as a character string. The second argu
ment is the mode, also as a character string, which indicates how you intend to use the file.
The only allowable modes are read (" r") , write ("w") , or append (n an) .

I f a file that you open for writing or appending does not exist, i t i s created (if possible) .
Opening an existing file for writing causes the old contents t o be discarded. Trying to read a
file that does not exist is an error, and there may be other causes of error as well (like trying to
read a file when you don't have permission) . If there is any error, fopen will return the null
pointer value NULL (which is defined as zero in s tdio . h) .

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getc and putc are the simplest. getc returns the next character from
a file� it needs the file pointer to tell it what file. Thus

c = getc (fp)

places in c the next character from the file referred to by fp� it returns EOF when it reaches
end of file. putc is the inverse of getc:

- 4 -

putc (c , fp)

puts the character c on the file fp and returns c . getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are pro
vided for them. These files are the standard input, the standard output, and the standard error
output; · the corresponding file pointers are called stdin, s tdout, and s tderr. Normally
these are all connected to the terminal, but may be redirected to files or pipes as described in
Section 2 .2 . stdin, s tdout and stderr are pre-defined in the 1/0 library as the standard
input, output and error files; they may be used anywhere an object of type FILE * can be.
They are constants, however, not variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is
one that has been found convenient for many programs: if there are command-line arguments,
they are processed in order. If there are no arguments, the standard input ·is processed. This
way the program can be used stand-alone or as part of a larger process.

include <stdio . h>

rnain (argc , argv)
int argc ;

I * we : count l ines , words , chars * I

char *argv [] ;
{

int c , i , inword ;
FILE * fp , * fopen () ;
long l inec t , wordct , charct;
long tlinect = 0 , twordct = 0 , tcharct 0 ;

i = 1 ;
fp stdin ;
do {

if (argc > 1 && (fp=fopen (argv [i) , " r")) == NULL) {
fprintf (stderr , "we : can ' t open %s\n" , argv [i] l ;
continue ;

linect = wordct = charct = inword 0 ;
whi le ((c = getc (fp)) ! = EOF) {

charct++ ;
if (c == ' \n ')

linect++ ;
if (c == ' ' I I c == ' \ t ' I I c == ' \n ' l

inword = 0 ;
else if (inword == 0) {

inword = 1 ;
wordct++ ;

printf ("%7 ld %7ld %7ld" , l inect , wordct , charct) ; ·
printf (argc > 1 ? " %s \n" : " \n" , argv [i]) ;
fclose (fp) ;
tl inect += linect ;
twordct += wordct;
tcharct += charct;

while (++i < argc) ;
if (argc > 2 l ·

printf ("%7ld %7ld %7ld total\n" , tlinec t , twordct , tcharct l ;
exit (O) ;

The function fprintf is identical to printf, save that the first argument is a file pointer that
specifies the file to be written.

- 5 -

The function fclose is the inverse of fopen; it breaks the connection between the file
pointer and the external name that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul
taneously, it's a good idea to free things when they are no longer needed. There is also another
reason to call fclose on an output file - it flushes the buffer in which putc is collecting out
put. (fclose is called automatically for each open file when a program terminates normally .)

3 . 2 . Error Handling - Stderr and Exit
stderr is assigned to a program in the same way that stdin and stdout are. Output

written on stderr appears on the user's terminal even if the standard output is redirected. we
writes its diagnostics on stderr instead of stdout so that if one of the files can't be accessed
for some reason, the message finds its way to the user's terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate
program execution. The argument of exit is available to whatever process called it (see Sec
tion 6) , so the success or failure of the program can be tested by another program that uses this
one as a sub-process. By convention, a return value of 0 signals that all is well: non-zero
values signal abnormal situations.

exit itself calls fclose for each open output file, to flush out any buffered output, then
calls a routine named _exit. The function _exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

3 . 3 . Miscellaneous 110 Functions
The standard 110 l ibrary provides several other 1/0 functions besides those we have illus

trated above.
Normally output with putc, etc. , is buffered (except to stderr) : to force it out immedi

ately, use fflush (fp) .

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprintf) that specifies the file from which the input comes: it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for s scanf and into it for sprintf.

fgets (buf , s i z e , fp) copies the next line from fp, up to and including a newline,
into buf; at most s i ze-1 characters are copied; it returns NULL at end of file.
fputs (buf , fp) writes the string in buf onto file fp.

The function ungetc (c , fp) "pushes back" the character c onto the input stream fp: a
subsequent call to getc, fscanf, etc. , will encounter c. Only one character of pushback per
file is permitted.

4 . LOW-LEVEL 110
This section describes the bottom level of 1 /0 on the UNIX system. The lowest level of

1/0 in UNIX provides no buffering or any other services: it is in fact a direct entry into the
operating system. You are entirely on your own, but on the other hand. you have the most
control over what happens. And since the calls and usage are quite simple, this isn't as bad as
it sounds.

4 . 1 . File Descriptors
In the UNIX operating system, all input and output is done by reading or wntmg files.

because all peripheral devices, even the user's terminal, are files in the file system. This means
that a single, homogeneous interface handles all communication between a program and peri
pheral devices.

- 6 -

In the most general case, before reading or writing a file, it is necessary to inform the sys
tem of your intent to do so, a process called "opening" the file. If you are going to write on a
file, it may also be necessary to create it. The system checks your right to do so (Does the file
exist ? Do you have permission to access it ?) , and if all is well, returns a small positive integer
called a .file descriptor. Whenever 110 is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S , . . .) and
WRITE(6, . . .) in Fortran.) All information about an open file is maintained by the system; the
user prograrri refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that comains,
among other things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements
exist to make this convenient. When the command interpreter (the "shell") runs a program, it
opens three files, with file descriptors 0, 1 , and 2, called the standard input, the standard out
put, and the standard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2 , it can do terminal 110
without worrying about opening the files.

If 1/0 is redirected to and from files with < and >, as in

prog <inf ile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file 0 for
input and 1 and 2 for output.

4 . 2 . Read and Write
All input and output is done by two functions called read and write. For both, the first

argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read = read (fd , buf , n) ;

n_written = write (fd , buf , n) ;

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number Of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and -1 indicates an error of some sort. For writing, the ret11rned value is
the number of bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1 , which means one character at a time ("unbuffered") , and 5 1 2 , which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient., but even
character at a time 110 is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any file or device.

- 7 -

#de fine BUFSIZE 5 1 2 I* best size for PDP-1 1 UNIX * I

main ()
{

I • copy input to output • I

char buf [BUFSIZE] ;
int n ;

whi le ((n = read (O , buf , BUFSIZE)) > 0)
write (1 , buf , n) ;

exit (O) ;

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by write: the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines
like getchar, putchar, etc. For example, here is a version of getchar which does
unbuffered input.

#define CMASK 0 3 7 7 I* for making char ' s > 0 • I

getchar () I * unbuffered single character input • I
{

char c ;

return ((read (O , &c , 1) > O l ? c & CMASK : EOF) ;

c must be declared char, because read accepts a character pointer. The character being

�:��n�� ��!:i�:.
m

(��:d
c����a�; 7o73 �� ei�s���r�;:i�:eis

f��s
t
i��e�;����w��� ��� �:���:!��Y "}:;; (flfw

other machines.)
The second version of getchar does input in big chunks, and hands out the characters

one at a time.

#def ine
#de fine

CMASK
BUFSIZE

0377 I * fqr making char ' s > 0 •I
5 1 2

getchar () I * buffered version • I
{

static char
static char
static int

buf [BUFSIZE] ;
•bufp = buf ;
n = 0 ;

if (n == 0) I * buffer is empty • I
n = read (O , buf , BUFSIZE) ;
bufp = buf ;

return ((--n >= 0) ? •bufp++ & CMASK

4 . 3 . Open, Creat, Close, Unlink

EOF) i

Other than the default standard input, output and error files. you must explicitly open files
in order to read or write them. There are two system entry points for this. open and creat
[sic] .

open is rather like the fopen discussed in the previous section. except that instead of
returning a file pointer, it returns a file descriptor, which is just an int.

�lfllfit

- 8 -

int fd;

fd = open (name , rwrnode) ;

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid
file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided
to create new files, or to re-write old ones.

fd = creat (name , pmode) ;

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file
already exists, creat will truncate it to zero length; it is not an error to creat a file that
already exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode
argument. In the UNIX file . system, there are nine bits of protection information associated
with a file, controlling read, write and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal number is most convenient for
specifying the permissions. For example, 0755 specifies read, write and execute permission for
the owner, and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one
file to another. (The main simplification is that our version copies only one file: and does not
permit the second argument to be a directory.)

#define NULL 0
#define BUFSIZE 5 1,2
#de fine PMODE 0 644 I * RW for owne r , R for group , others *I

main (argc , argv)
int argc ;

I * cp : copy f1 to f2 * I

char *argv [] ;

int f1 , f2 , n ;
char buf [BUFSIZE] ;

if (argc ! = 3)
error ("Usage : cp from to" , NULL) ;

if ((f1 = open (argv [1] , 0)) = = -1)
error (" cp : can ' t open %s " , argv [1]) ;

if ((f2 = creat (argv [2] , PMODE)) = = -1)
error (" cp : can ' t create %s " , argv [2]) ;

whi le ((n = read (f1 , buf , BUFSIZE)) > 0)
i f (write (f2 , buf , n) ! = n)

error (" cp : write error " , NULL) ;
exit (O) ;

error (s 1 , s2) I * print error message and die * I
char *S1 , *S2 ;
{

printf (s1 , s 2) ;
printf (" \n") ;
exit (1) ;

- 9 -

As we said earlier, there is a limit (typically 1 5-25) on the number of files which a program
may have open simultaneously. Accordingly, any program which intends to process many files
must be prepared to re-use file descriptors. The routine close breaks the connection between
a file descriptor and an open file, and frees the file descriptor for use with some other file. Ter
mination of a program via exit or return from the main program closes all open files.

The function unlink (fi lename) removes the file fil ename from the file system.

4 . 4 . Random Access - Seek and Lseek
File 1/0 is normally sequential: each read or write takes place at a position in the file

right after the previous one. When necessary, however, ·a file can be read or written in any
arbitrary order. The system call lseek provides a way to move around in a file without actu
ally reading or writing:

lseek (fd , offset, origin) ;

forces the current position in the file whose descriptor is fd to move to posttwn offset,
which is taken relative to the location specified by orig in. Subsequent reading or writing will
begin at that position. offset is a long; fd and origin are int's. origin can be 0, I ,
or 2 to specify that offset is to be measured from the beginning, from the current position,
or from the end of the file �:espectively. For example, to append to a file, seek to the end
before writing:

lseek (fd , OL , 2) ;

To get back to the beginning ("rewind") ,

lseek (fd , OL , 0) ;

Notice the OL argument; it could also be written as (long) 0 .

With lseek, i t is possible to treat files more or less like large arrays, at the price of slower
access. For example, the fol lowing simple function reads any number of bytes from any arbi
trary place in a file.

get (fd , pos , buf , n) I* read n bytes from position pos *I
int fd , n;
long pos ;
char *buf ;
{

lseek (fd , pos , 0) ; I* get to pos * I
return (read (fd , buf , n)) ;

In pre-version 7 UNIX, the basic entry point to the 1/0 system is called seek. s eek is
identical to ls eek, except that its offset argument is an int rather than a long. Accord
ingly, since PDP- 1 1 integers have only 1 6 bits, the offset specified for seek is limited to
65,535 ; for this reason, origin values of 3 , 4, 5 cause seek to multiply the given offset by
5 1 2 (the number of bytes in one physical block) and then interpret origin as if it were 0 , 1 ,
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one
which selects the block, then one which has or igin equal to 1 and moves to the desired byte
within the block.

4 . 5 . . Error Processing
The routines discussed in this section, and in fact all the routines which are direct entries

into the system can incur errors. Usually they indicate an error by returning a value of - 1 .
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines,
when appropriate, leave an error number in the external cell errno. The meanings of the
various error numbers are listed in the introduction to Section II of the UNIX Programmer 's
Manual, so your program can, for example, determine if an attempt to open a file failed

- 1 0 -

because it did not exist or because the user lacked permission to read it. Perhaps more com
monly, you may want to print out the reason for failure. The routine perror will print a mes
sage associated with the value of errno� more generally, sys_errno is an array of character
strings which can be indexed by errno and printed by your program.

5 . PROCESSES
It is often easier to use a program written by someone else than to invent one's own. This

section describes how to execute a program from within another.

5 . 1 . The "System" Function
The easiest way to execute a program from another is to use the standard library routine

system. system takes one argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

main ()
{

system (" date ") ;
I * rest of process ing * I

I f the command string has to be built from pieces, the in-memory formatting capabilities of
sprintf may be useful.

Remember than getc and putc normally buffer their input; terminal 1 10 will not be prop
erly synchronized unless this buffering is defeated. For output, use fflush; for input, see
s etbuf in the appendix.

5 . 2 . Low-Level Process Creation - Ex eel and Execv
If you're not using the standard library, or if you need finer control over what happens, you

will have to construct calls to other programs using the more primitive routines that the stan
dard library's system routine is based on.

The most basic operation is to execute another program without returning, by using the rou
tine execl. To print the date as the last action of a running program, use

exec l (" lbinldate " , "date " , NULL) ;

The first argument to exec l is the file name of the command� you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name) , but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this� the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can't be found or is not executable. If you don't
know where date is located, say

execl (" lbinldatei• , "date " , NULL) ;
exec l (" lusrlbinldate" , "date " , NULL) ;
fprintf (stderr , "Someone stole ' date ' \n") ;

A variant of execl called execv is useful when you don't know in advance how many
arguments there are going to be. The call is

- 1 1 -

execv (f ilename , argp) ;

where argp is an array of pointers to the arguments; the last pointer in the array must be
NULL so execv can tell where the list ends. As with execl, f i lename is the file in which
the program is found, and argp [0] is the name of the program. (This arrangement is identi
cal to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is
located. Nor do you get' the expansion of metacharacters like <, >, *, ? , and [] in the argu
ment list. If you want these, use exec l to invoke the shell sh, which then does all the work.
Construct a string commandl ine that contains the complete command as it would have been
typed at the terminal, then say

exec l (" lbinl sh" , " sh" , "-c " , commandline , NULL) ;

The shell is assumed to be at a fixed place, /bin/ sh. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con
structing the right information in commandl ine.

5 . 3 . Control of Processes - Fork �nd Wait
So far what we've talked about isn't really all that useful by itself. Now we will show how

to regain control after running a program with execl
. or execv. Since these routines simply

overlay the new program on the old one, to save the old one requires that it first be split into
two copies: one of these can be overlaid, while the other waits for the new, overlaying program
to finish . The splitting is done by a routine called fork:

proc_id = fork () ;

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the "process id." In one of these processes (the "child") ,
proc_id is zero. I n the other (the "parent") , proc_id is non-zero: it is the process number
of the child. Thus the basic way to call. and return from, another program is

if (fork () == O J
exec l (" lbinlsh" , " sh" , "-c" , cmd , NULL) ; I * in chi ld *I

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. In the child. the value returned by fork is zero. so it calls execl which does the
command and then dies. In the parent. fork returns non-zero so it skips the exec l . (If
there is any error. fork returns -1) .

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wait:

int status ;

if (fork () == 0 l
execl (. . . l ;

wait (&status l ;

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or
the possibility that there might be more than one child running simultaneously. (The wait
returns the process id of the terminated child, if you want to check it against the value returned
by fork.) Finally. this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in status) . Still, these three lines are the heart of the standard library's
system routine. which we ' I I show in a moment.

The status returned by wait encodes in its low-order eight bits the system's idea of the
child's termination status: it is 0 for normal termination and non-zero to indicate various kinds
of problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to

- 1 2 -

return meaningful status.
When a program is called by the shell, the three file descriptors 0, 1 , and 2 are set up point

ing at the right files, and all other possible file descriptors are available for use. When this pro
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child,. the parent must flush its buffers before the
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor
mation that has been read by the caller.

5 . 4 . Pipes
A pipe is an I/0 channel intended for use between two cooperating processes: one process

writes into the pipe, while the other reads. The system looks after buffering the data and syn
chronizing the two processes. Most pipes are created by the shell, as in

ls I pr

which connects the standard output of ls to the standard input of pr. Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will i l lustrate
how the pipe connection is established and used.

The system call p ipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned; the actual usage is like this:

int fd [2] ;

stat = pipe (fd) ;
if (stat == -1)

I * there was an error . . . * I

fd is an array of two file descriptors, where fd [0] is the read side of the pipe and fd [1] is
for writing. These may be used in read, write and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes
into a pipe which is too full , it will wait until the pipe empties somewhat. If the write side of
the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd , mode) , which creates a process cmd (just as system does) , and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen ("pr" , WRITE) ;

creates a process that executes the pr command; subsequent write calls using the file descrip
tor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other side
of the pipe, then calls the shell (via execl) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work properly. For example, if a child that intends to read fails to close the write end of the
pipe, it will never see the end of the pipe file, just because there is one writer pote}1tially active.

inc lude <stdio . h>

#define
#define
#define
static

READ 0
WRITE
tst (a , b) (mode
int popen_pid ;

popen (cmd , mode)
char *Cmd ;
int mode ;

int p (2] ;

if (pipe (p) < 0)
return (NULL) ;

- 1 3 -

READ ? (b)

i f ((popen_pid = fork ()) == 0) {
close (tst (p (WRITE] , p [READ])) ;
close (tst (O , 1)) ;

(a))

dup (tst (p [READ] , p (WRITE])) ;
c lose (tst (p (READ] , p [WRITE])) ;
execl (" lbinl sh!' , " sh" , " -c " , cmd , 0) ;
_exit (1) ; I * disaster has occurred if we get here * I

i f (popen_pid = = -1)
return (NULL) ;

c los e (tst (p [READ] , p [WRITE])) ;
return (tst (p [WRITE] , p [READ])) ;

The sequence of c loses in the child· is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

c lose (tst (O , 1)) ;
dup (tst (p [READ] , p [WRITE])) ;

are the conventional way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0 , that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it's a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
from the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it rs desirable
to wait for the termination of the child process. First, the return value from pc lose indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unwaited-for children can exist, even if some of them have ter
minated; performing the wait lays the child to rest. Thus:

- 1 4 -

inc lude <s ignal . h>

pclose (fd)
int fd;

I* close pipe fd * I

(
regi ster r , (*hstat) () , (*i stat) () , (*qstat) () ;
int s tatus ;
extern int popen_pid;

c lose (fd) ;
i stat s ignal (SIGINT , SIG_IGN) ;
qstat = s igna l (SIGQUIT , S IG_IGN) ;
hstat = s ignal (S IGHUP , SIG_IGN) ;
whi le ((r = wait (&status)) ! = popen_pid && r ! = -1) ;
if (r == -1)

status = -1 ;
s ignal (S IGINT , i stat) ;
s igna l (SIGQUIT , qstat) ;
s ignal (SIGHUP , hstat) ;
return (status) ;

The calls to s ignal make sure that no interrupts, etc., interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pid; it really should be an array indexed by file descrip
tor. A popen function, with slightly different arguments and return value is available as part
of the standard 110 l ibrary discussed below. ,As currently written, it shares the same limitation.

6 . SIGNALS - INTERRUPTS AND ALL THAT
This section is concerned with how to deal gracefully with signals from the outside world

(l ike interrupts) , and with program faults. Since there's nothing very useful that can be done
from within C about program faults, which arise mainly from i llegal memory references or from
execution of peculiar instructions, we'l l discuss only the outside-world signals: interrupt, which
is sent when the DEL character is typed; quit, generated by the FS character; hangup, caused by
hanging up the phone; and terminate, generated by the kill command. When one of these
events occurs, the signal is sent to all processes which were started from the corresponding ter
minal; unless other arrangements have been made, the signal terminates the process. In the
quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called s ignal. It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file s ignal . h gives names for the various arguments, and should always be included
when signals are used. Thus

include <s ignal . h>

s ignal (SIGINT , SIG_IGN) ;

causes interrupts to be ignored, while

s ignal (SIGINT , SIG_DFL) ;

e restores the default action of process termination . In all cases, s ignal returns the previous
value of the signal. The second argument to s ignal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it already) . In this case, the
named routine will be called when the signal occurs. Most commonly this faci lity is used to

- 1 5 -

allow the program to clean up unfinished business before terminating, for example to delete a
temporary file:

inc lude < s ignal . h>

main ()

{
int onintr () ;

if (s ignal (SIGINT , SIG_IGN) ! = SIG_IGN)
s ignal (S IGINT , onintr l ;

I * Process . . . * I

exit (O) ;

onintr ()

{
unl ink (tempf i le) ;
exit (1) ;

Why the test and the double call to s ignal? Recall that signals like interrupt are sent to
all processes started from a particular terminal. Accordingly, when a program is to be run non
interactively (started by &) , the shell turns off interrupts for it so it won't be stopped by inter
rupts intended for foreground processes. If this program began by announcing that all inter-

����!c��tr���n
b;u�e�� :�e

t�=c�;���� routine regardless, that would undo the shell's effort to {l[tf
The solution, shown above, is to test the state of interrupt handling, and to continue to

ignore interrupts if they are already being ignored. The code as written depends on the fact
that s ignal returns the previous state of a particular signal. If signals were already being
ignored, the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

inc lude <s igna l . h>
inc lude <setjmp . h>
jmp_buf s j buf ;

main ()

{
int (* istat) () , onintr () ;

istat = s ignal (SIGINT , SIG_IGN) ; I * save original status * I
setjmp (s jbuf) ; I * save current stack position * I
if (i stat ! = SIG_IGN)

signal (SIGINT , onintr l ;

I * main proce s s ing loop * I

onintr ()

{
printf (" \ninterrupt\n" l ;

- 16 -

long jrnp (s jbuf) ; I * return to saved state * I

The include file setjmp . h declares the type jmp_buf an object i n which the state can be
saved. s jbuf is such an object; it is an array of some sort. The setjmp routine then saves
the state of things. When an interrupt occurs, a call is forced to the onintr routine, which
can print a message, set flags, or whatever. long jmp takes as argument an object stored into
by set jmp, and restores control to the location after the call to setjmp, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of calling e:)!:i t or long jmp, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that "execution resumes at the exact point it
was interrupted," the program would continue reading the terminal until the user typed another
l ine. This behavior might wel l be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wait, and pause.) A program whose onintr program just sets intflag,
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar () = = EOF)
if (intf lag)

I * EOF caused by interrupt * I
else

I* true end-of-fi le *I

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method
(like " ! " in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork () == 0)
execl (. . . l ;

s ignal (SIGINT , SIG_IGN) ; I * ignore interrupts * I
wait (& status l ; I * unti l the child i s done * I
s ignal (SIGINT , onintr l ; I * restore interrupts * I

Why is this? Again, i t ' s not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard I/0 library function system:

- 1 7 -

inc lude <s ignal . h>

system (s) I * run command string s * I
char * S i

int status , pid , w ;
regi ster int (* istat) () , (*qstat) () ;

if ((pid = fork ()) == 0)
exec l (" lbinlsh" , " sh" , " -c " , s , 0) ;
_exit (1 27) ;

istat = s ignal (SIGINT , SIG_IGN) ;
qstat = s ignal (SIGQUIT , SIG_IGN) ;
whi le ((w = wai t (&status)) ! = pid && w ! = -1)

i f (w == -1)
status =. -1 ;

s ignal (SIGINT , istat) ;
s ignal (SIGQUIT , qstat) ;
return (status) ;

As an aside on declarations, the function s ignal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they
are defined for the PDP- 1 1 ; the definitions should be sufficiently ugly and non portable to
encourage use of the include file.

#define
#define

References

SIG_DFL
SIG_IGN

(int: (*) {)) 0
(int (*) ()) 1

[1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer 's Manual, Bell Laboratories,
1 978 .

[2] B . W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall , I nc . ,
1 978 .

[3] B . W. Kernighan, "UNIX for Beginners - Second Edition ." Bell Laboratories, 1 978 .

- 1 8 -

Appendix - The Standard I/0 Library

D. M R itchie

Bell Laboratories
Murray Hill, New Jersey 07974

The standard 1/0 library was designed with the following goals in mind.
1 . I t must be as efficient as possible, both i n time and i n space, so that there will be n o hesita

tion in using it no matter how critir<>l thf' "l')p!ic� tion.

2. It must be simple to use, and alsc free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

3 . The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP- 1 1 running a version of UNIX.

1 . General Usage
Each program using the library must have the line

inc lude <stdio . h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are
stdin The name of the standard input file

stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually - 1 , and is the value returned by the read routines on end-of-file or error.

NULL is � notation for the null pointer, returned by pointer-valued functiorts to indicate an
error

FILE expands to s truct _iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 5 1 2) of the size suitable for an 110 buffer supplied by the user.
See setbuf, below.

getc , getchar , putc , putchar , feof , ferrer , fileno
are defined as macros. Their actions are described below; they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer a!Jocation and out
put flushing where appropriate. The names stdin, stdout, and stderr are in effect con
stants and may not be assigned to.

2. Calls
FILE * fopen (f ilename , type) char * f i l ename , *type ;

opens the file and, if Qeeded, allocates a buffer for it. fil ename is a character string
specifying the name. type is a character string (not a single character) . It may be " r " ,
"w" , or " a " to indicate intent to read, write, o r append. The value returned i s a file
pointer. If it is NULL the attempt to open failed.

FILE * freopen (fi l ename , type , ioptr) char * f i lename , *type ; FILE *ioptr ;

- 1 9 -

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If e the attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the
new file. Often the reopened stream is stdin or stdout.

int getc (ioptr) FILE *ioptr ;
returns the next character from the stream named by ioptr, which is a pointer to a file
such as returned by fopen, or the name stdin. The integer EOF is returned on end-of
file or when an error occurs. The null character \ 0 is a legal character.

int fgetc (ioptr) FILE * ioptr ;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc (c , ioptr) FILE * ioptr ;
putc writes the character c on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value,
but EOF is returned on error.

fputc (c , ioptr) FILE * ioptr ;
acts like putc but is a genuine function, not a macro.

fclose (ioptr) FILE * ioptr ;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated
by the 1/0 system is freed. fc lose is automatic on normal termination of the program.

fflush (ioptr) FILE * ioptr ;
Any buffered information on the (output) stream named by ioptr is written out. Output
files are normally buffered if and only if they are not directed to the terminal: however,
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is
reopened.

exit (errcode) ;
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls fflush for each output file. To terminate"'without flush
ing, use _exit.

feof (ioptr) FILE * ioptr ;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror (ioptr) FILE * ioptr ;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar () ;
is identical to getc (stdin) .

putchar (c) ;
is identical to putc (c , stdout) .

char * fgets (s , n , ioptr) char * s ; FILE * ioptr ;
reads up to n-1 characters from the stream ioptr into the character pointer s. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument, or NULL if error or end-of-file
occurred.

fputs (s , ioptr) char * S i FILE * ioptr ;
writes the null-terminated string (character array) s on the stream ioptr. No newline is
appended. No value is returned.

ungetc (c , ioptr) FILE * ioptr ;

- 20 -

The argument character c is pushed back on the input stream named by ioptr. Only one
character may be pushed back.

·

printf (format , a1 , . . .) char * format ;
fprintf (ioptr , format , a1 , . . .) FILE * ioptr ; char * format ;
sprintf (s , format , a1 , . . .) char * S , * format ;

printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in section printf(3) of the UNIX Programmer 's Manual.

scanf (format , a1 , . . .) char * format ;
fscanf (ioptr , format , a1 , . . .) FILE * ioptr ; char * format ;
sscanf (s , format , a1 , . . .) char * s , * format;

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control string format, and a set of arguments, each of which must be a
pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items . were found. On end of file, EOF is
returned; note that this is different from 0, which means that the next input character does
not match what was called for in the control string.

fread (ptr , sizeof (*ptr) , nitems , ioptr) FILE * ioptr ;
reads ni tems of data beginning at ptr from file ioptr. No advance notification that binary
110 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwrite (ptr , s i zeof (*ptr) , nitems , ioptr) FILE * i optr ;
Like fread, but in the other direction.

rewind (ioptr) FILE * ioptr ;
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open only for output.

system (string) char * string ;
The string is executed by the shell as if typed at the terminal.

getw (ioptr) FILE * ioptr ;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file
or error, but since this a perfectly good integer feof and ferrer should be used. A "word"
is 1 6 bits on the PDP- 1 1 .

putw (w , ioptr) FILE * ioptr ;
writes the integer w on the named output stream.

setbuf (ioptr , buf) FILE * ioptr ; char *buf ;
setbuf may be used after a stream has been opened but before 110 has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. I t must be a
character array of sufficient size:

char buf [BUFS I Z] ;

fileno (ioptr) FILE * ioptr ;
returns the integer file descriptor associated with the file.

fseek (ioptr , offset , ptrname) FILE * ioptr ; long offse t ;
The location of the next byte i n the stream named by ioptr i s adjusted. offset i s a long
integer. If ptrname is 0 , the offset is measured from the beginning of the file; if ptrname is
1 , the offset is measured from the current read or write pointer; if ptrname is 2, the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When

- 2 1 -

this routine is used on non-Ul\IIX systems. the offset must be a value returned fro m fte l l and
the ptrname must be 0) .
long fte l l (ioptr) F I L E * ioptr ;
The byte cffset, measu red fmm the beginning of the file. 1ssociated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to fseek. so as to position the file to the same place i t was when
fte l l was called.)

getpw (uid, buf) char *buf ;
The password file is searched for the given integer user I D . I f an appropriate l ine is found, i t is
copied into the character array buf. and 0 is returned. If no l ine is found corresponding to the
user I D then 1 is returned.

char *rna l loc (nurn) ;
allocates nurn bytes. The pointer returned is sufficiently well aligned to be usable for any pur
pose. NULL is returned if no space is available.

char *cal loc (nurn , s i z e) ;
allocates space for nurn items each of size s i ze. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose . NULL is returned if no space is
available .

c free (ptr) char *ptr ;
Space is returned to the pool used by cal loc. D isorder can be expected if the pointer was not
obtained from cal loc.

The following are macros whose definitions may be obtained by i ncluding <ctype . h>.

i salpha (c) returns non-zero if the argument is alphabetic.
i supper (c) returns non-zero if the argument is upper-case alphabetic.
is lowe r (c) returns non-zero if the argument is lower-case alphabetic.
i sdigi t (c) returns non-zero if the argument is a digit.
is space (c) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, vertical tab . form feed. space.
i spunct (c) returns non-zero if the argument is any punctuat ion character, i . e . , not a space,
letter, digit or con troi character.

i salnurn (c) returns non-zero if the argument is a :etter or a digit.
i sprint (c) returns non-zero if the argument is pn ntable - a letter, digi t, or punctuation
character.

iscntr l (c) returns non-zero if the argument is a control character.
i sasc i i (c) returns non-zero if the argument is an ascii character, i . e . , less than octal 0200.
toupper (c) returns the upper-case character corresponding to the lower-case letter c .

to lower (c) returns the lower-case character corresponding to the upper-case letter c.

A Tutorial Introduction to ADB

J. F. Maranzano

S. R. Bourne
Bell Laboratories

Murray Hill , New Jersey 07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner
workings of programs. These tools have been available on UNIXt to allow users
to examine "core" files that result from aborted programs. A new debugging
program, ADB, provides enhanced capabilities to examine "core" and other pro
gram files in a variety of formats, run programs with embedded breakpoints and
patch files.

AOB is an indispensable but complex tool for debugging crashed systems
and/or programs. This document provides an introduction to ADB with exam
ples of its use. It ,explains the various formatting options, techniques for
debugging C programs, examples of printing file system information and patch
ing.

May 5, 1 977

tUN IX is a Trademark of Bell Laboratories.

A Tutorial Introduction to ADB

J. F Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1 . Introduction
ADB is a new debugging program that is available on UNIX. I t provides capabilities to

look at "core" files resulting from aborted programs, print output in a variety of formats, patch
files, and run programs with embedded breakpoints. This document provides examples of the
more useful features of ADB. The reader is expected to be familiar with the basic commands
on UNIXt with the C language, and with References 1 , 2 and 3 .

2 . A Quick Survey

2 .1 . Invocation
ADB is invoked as:

adb objfile corefile

where objfile is an executable UNIX file and core,/ile is a core image file. Many times this will
look like:

adb a.out core

or more simply:

adb

where the defaults are a.out and core respectively. The filename minus (-) means ignore this
argument as in:

adb - core

ADB has requests for examining locations in either file. The ? request examines the
contents of oqj/ile, the I request examines the core,/ile. The general form of these requests is:

address ? format

or

address I format

2.2. Current Address
ADB maintains a current address, called dot, similar in function to the current pointer in

the UNIX editor. When an address is entered, the current address is set to that location, so
that:

0126?i

tUN IX i s a Trademark of Bell Laboratories.

- 2 -

sets dot to octal 1 26 and prints the instruction at that address. The request:

. ,tOld

prints 1 0 decimal numbers starting at dot. Dot ends up referring to the address of the last item
printed. When used with the ? or I requests, the current address can be advanced by typing
newline; i t can be decremented by typing � .

Addresses are represented by expressions. Expressions are made up from decimal, octal,
and hexadecimal integers, and symbols from the program under test . These may be combined
with the operators + , - , * , % (integer division) , & (bitwise and) , I (bitwise inclusive or) , #
(round up to the next multiple) , and - (not) . (A l l arithmetic within ADB is 32 bits.) When
typing a symbolic address for a C program, the user can type name or _name; ADB wil l recog
nize both forms.

2.3. Formats
To print data, a user specifies a collection of letters and characters that describe the format

of the printout. Formats are "remembered" in the sense that typi.ng a request without one wi ll
cause the new printout to appear in the previous format. The fol lowing are the most commonly
used format letters.

b
c
0
d
f

s
a
u
n
r

one byte in octal
one byte as a character
one word in octal
one word in decimal
two words in floating point
PDP 11 instruction
a null terminated character string
the value of dot
one word as unsigned integer
print a newline
print a blank space
backup dot

(Format letters are also available for "long" values, for example, ' D' for long decimal, and ' F'
for double floating point .) For other formats see the ADB manual.

2.4. General Request Meanings
The general form of a request is:

address,count command modifier

which sets 'dot' to address and executes the command count times.
The following table i l lustrates some general ADB command meanings:

Command Meaning
? Print contents from a. out file
I Print contents from core file

= Print value of "dot"
Breakpoint control

$ Miscellaneous requests
Request separator
Escape to shell

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q
or $Q (or cntl-D) must be used to exit from ADB.

- 3 -

3. Debugging C Programs

3.1 . Debugging A Core Image
Consider the C program in Figur� 1 . The program is used to illustrate a common error

made by C programmers. The object of the program is to change the lower case "t" to upper
case in the string pointed to by charp and then write the character string to the file indicated by
argument 1 . The bug shown is that the character "T" is stored in the pointer charp instead of
the string pointed to by charp. Executing the program produces a core file because of an out of
bounds memory reference.

ADB is invoked by:

adb a.out core

The first debugging request:

$c
is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one
function (main) was called and the arguments argc and argv have octal values 02 and 0 1 77762
respectively. Both of these values look reasonable; 02 two arguments, 0 1 77762 = address
on stack of parameter vecte>r.
The next request:

$C

is used to giVe a C backtrace plus an interpretation of all the local variables in each !'unction
and their values in octal. The value of the variable cc looks incorrect since cc was declared as a
character.

The next request:

$r

prints out the registers including the program counter and an interpretation of the instruction at
that location.

The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.out file is referenced by ?
whereas the map for core file is referenced by /. Furthermore, a good rule of thumb is to use ?
for instructions and I for data when looking at programs. To print out information about the
maps type:

$m

This produces a report of the contents of the maps. More about these maps later.
I n our example, it is useful to see the contents of the string pointed to by charp. This is

done by:

*charp/s

which says use charp as a pointer in the core file and print the information as a character string.
This printout clearly shows that the character buffer was incorrectly overwritten and helps iden
tify the error. Printing the locations around charp shows that the buffer is unchanged but that
the pointer is destroyed. Using ADB similarly, we could print information about the arguments
to a function. The request:

main.argc/d

prints the decimal core image value of the argument argc in the function main.

- 4 -

The request:

*main.argv ,3/ o

prints the octal values of the three consecutive cells pointed to by argv in the function main.
Note that these values are the addresses of the arguments to main. Therefore:

0177770/s

prints the ASqi value of the first argument. Another way to print this value would have been

*"Is

The " means ditto which remembers the last address typed, in this case main.argc the *
instructs ADB to use the address field of the core file as a pointer.

The request:

. == o

prints the current address (not its contents) i n octal which has been set to the address of the
first argument. The current address, dot, is used by ADB to "remember" its current location.
It allows the user to reference locations relative to the current address, for example:

. - 10/d

3.2. Multiple Functions
. Consider the C program illustrated in Figure 3. This program calls functions .t: g .. and h

until the stack is exhausted and a core image is produced.
Again you can enter the debugger via:

a db

which assumes the names a.out and core for the executable file and core image file respectively.
The request:

$c

will fill a page of backtrace references to .1: g, and h. Figure 4 shows an abbreviated list (typing
DEL will terminate the output and bring you back to ADB request level) .

The request:

,5$C

prints the five most recent activations.
Notice that each function (f;g,h) has a counter of the number of times it was called.
The request:

fcnt/d

prints the decimal value of the counter for the function f Similarly gent and hcnt could be
printed. To print the value of an automatic variable, for example the decimal value of x in the
last call of the function h. type:

h.x/d

It is currently not possible in the exported version to print stack frames other than the most
recent activation of a function. Therefore, a user can print everything with $C or the
occurrence of a variable in the rnost recent call of a function. It is possible with the $C request,
however, to print the stack frame starting at some address as address$C.

- 5 -

3.3. Setting Breakpoints
Consider the C program in Figure 5. This program, which changes tabs into blanks, is

adapted from Sqftware Tools by Kernighan and Plauger, pp. 1 8-27.
We wil l run this program under the control of ADB (see Figure 6a) by:

adb a.out �
Breakpoints are set in the program as:

The requests:

address :b (request!

settab +4 :b
fopen + 4:b
getc +4 :b
tabpos + 4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore
i t is currently not possible to plant breakpoints at locations other than function entry points
without a knowledge of the code generated by the C compiler. The above addresses are
entered as symbol + 4 so that they wil l appear in any C back trace since the first instruction of
each function is a call to the C save routine (csv) . Note that some of the functions are from
the C library.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is bypassed count - 1 times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint is ���� encountered. In our example no command fields are present .

By displaying the original instructions at the function settab we see that the breakpoint is
set after the jsr to the C save routine. We can disp lay the instructions using the ADB request:

settab,5 ? ia

This request displays five instructions starting at settab with the addresses of each location
displayed. A nother variation is:

settab,5 ?i

which displays the instructions with only the starti ng address.
Notice that we accessed the addresses from the a.out file with the ? command. In general

when asking for a printout of multiple items, ADB wil l advance the current address the number
of bytes necessary to satisfy the request: in the above example five instructions were displayed
and the current address was advanced 18 (decimal) bytes.

To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the function settab, one types:

settab +4 :d

To continue execution of the program from the breakpoint type:

:c
Once the program has stopped (in this case at the breakpoint for /open). ADB requests can -be used to display the contents of memory. For example: :@i{;;c

$C

- 6 -

to display a stack trace, or:

tabs,3/8o

to print three l ines of 8 locations each from the array called tabs. By this t ime (at location
./'open) in the C program, setrab has been called and should have set a one in every eighth loca
tion of tabs.

3.4. Advanced Breakpoint Usage
We continue execution of the program with:

:c

See Figure 6b. Getc is cal led three times and the contents of the variable c i n the function
main are displayed each t ime. The single character on the left hand edge is the output from the
C program. On the third occurrence of getc the program stops. We can look at the fu l l buffer
of characters by typing:

ibuf + 6/20c

When we conti nue the program with:

:c

we hi t our first breakpoint at tabpos since there is a tab fol lowing the "This" word of the data.
Several breakpoin ts of tabpos wil l occur unti l the program has changed the tab i nto

equivalent blanks. S ince we fee l that tabpos is worki ng, we can remove the breaKpoint at that
location by:

tabpos + 4 :d

If the program is continued with:

:c

i t resumes normal execution after ADB pri nts the message

a.out :running

The UNIX quit and interrupt signals act on ADB i tse lf rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and contro l is
returned to ADB. The signal is saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handl ing routines. The signal is not passed
on to the test program if:

:c 0

is typed.
Now let us reset the breakpoint at serrab and display the instructions located there when

we reach the breakpoi nt. This is accompl ished by:

settab + 4 :b settab,S ? ia *

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only

• Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these state
ments must be written as:

settab + 4:b settab,S ?ia;O
getc + 4,3:b main.c?C;O
settab + 4:b settab,S ?ia; ptab/o;O

Note that ;0 wil l set dot to zero and stop at the breakpoint.

- 7 -

stop after the third occurrence by typing:

getc +4,3 :b main.c?C *

This request wil l print the local variable c in the function main at each occurrence of the break
point. The semicolon is used to separate mul tiple ADB requests on a single l ine.

\\'arning: sett ing a breakpoint causes the value of dot to be changed; executing the pro
gram under ADB does not change dot. Therefore:

settab +4 :b . , S? ia
fopen + 4:b

wil l prin t the last thing dot was set to (in the example jopen + 4) nor the current location (ser

tab + 4) at which the program is executing.
A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab +4:b settab,S ? ia; ptab/o *

could be entered after typing the above requests:
Now the display of breakpoints:

$b

shows the above request for the sertab breakpoi nt. When the breakpoint at serrab is encoun
tered the ADB requests are executed. Note that the location a t serrab + 4 has been changed to
plant the breakpoint ; a l l the other locations match their original value.

Using the functions, f g and h shown in Figure 3 , we can fo l low the execution of each
function by planting non-stopping breakpoints. We cal l ADB wi th the executable program of
Figure 3 as fol lows:

adb ex3 -

Suppose we enter the fo l lowing breakpoints:

h + 4 :b
g+ 4:b
f+ 4:b
:r

hcnt/d; h.hi/ ; h.hr/
gcnt/d; g.gi/; g.gr/
fcnt/d ; f.fi/; f.fr/

Each request l ine indicates that the variables are printed in decimal (by the specification d) .
Si nce the format is not changed, the d can be left off al l but the first request.

The output in Figure 7 i l lustrates two points. First, the ADB requests in the breakpoint
l ine are not examined unti l the program under test is run. That means any errors in those
ADB requests is not detected unt i l run time. At the location of the error ADB stops running
the program.

The second poi nt is the way ADB handles register variables. ADB uses the symbol table
to address variables. R egister variables, l ike ffi· above, have pointers to uninitialized places on
the stack. Therefore the message "symbol not found".

as:
Another way of getting at the data in this example is to print the variables used in the call

f+ 4:b
g+ 4:b
:c

fcnt/d : f.a/; f.b/; f.fi/
gcnt/d; g.p/; g.q/; g.gi/

The operator I was used instead of ? to read values from the core fi le. The output for each
function, as shown in Figure 7, has the same format. For the function J; for example, it shows
the name and value of the exrernal variable .knr. I t also shows the address on the stack and
value of the variables a. b and ./i.

a «.-»;-

- 8 -

Notice that the addresses on the stack wi l l continue to decrease unt i l no address space is
left for program execution at which t ime (after many pages of output) the program under test
aborts. A display with names would be produced by requests l ike the fo llowing:

f+ 4 :b fcnt/d; f.a/"a ="d; f.b/"b ="d; f.fi/"fi ="d

In th is format the quoted string is printed l i terally and the d produces a decimal display of the
variables. The results are shown in Figure 7 .

3.5. Other Breakpoint Facilities

• Arguments and change of standard input and output are passed to a program as:

:r argl arg2 . . . < in file > outfile

This request k il ls any existing program under test and starts the a. our afresh.
• The program being debugged can be single stepped by:

:s

If necessary, this request wi l l start up the program being debugged and stop after executing
the first i nstruction.

• ADB al lows a program to be entered at a specific address by typing:

address :r

• The count field can be used to skip the first n breakpoints as:

,n : r

The request:

, n :c

may also be used for skipping the first n breakpoints when conti nuing a program.

• A program can be continued at an address different from the breakpoint by:

address:c

• The program being debugged runs as a separate process and can be ki l led by:

:k

4. Maps
UNIX supports several executable file formats. These are used to tell the loader how to

load the program file. Fi le type 407 is the most common and is generated by a C compiler
invocation such as cc pgm.c. A 4 1 0 file is produced by a C compiler command of the form cc
-n pgm.c, whereas a 4 1 1 file is produced by cc -i pgm.c. ADB interprets these different file for
mats and provides access to the different segments through a set of maps (see Figure 8) . To
pri nt the maps type:

$m

In 407 files, both text (i nstructions) and data are intermi xed. This makes i t impossible
for ADB to differentiate data from instructions and some of the printed symbol ic addresses look
incorrect: for example, printing data addresses as offsets from routines.

In 4 1 0 files (shared text) , the instructions are separated from data and ?* accesses the
data part of the a. out file. The ?* request tells A DB to use the second part of the map in the
a. our file. Accessing data in the core file shows the data after i t was modified by the execution

- 9 -

of the program. Notice also that the data segme nt may have grown duri ng program execution.
In 4 1 1 files (separated I & D space) . the instructions and data are also separated. How

ever, in this case , si nce data is mapped through a separate set of segmentation registers, the
base of the data segment is also re lative to address zero . In this case si nce the addresses over
lap it is necessary to use the ? * operator to access the data space of the a. out file. In both 4 1 0
and 4 1 1 files the corresponding core file does not contain the program text.

Figure 9 shows the display of three maps for the same program l inked as a 407, 4 1 0 , 4 1 1 if:: respect ive ly . The b, e , and f fields are used by ADB to map addresses in to file addresses. The
"fl " field is the length of the header at the beginning of the file (020 bytes for an a. out file and
02000 bytes for a core fi le) . The "f2" field is the displacement from the beginn ing of the fi le to
the data. For a 407 file with mixed text and data this is the same as the length of the header:
for 4 10 and 4 1 1 files this is the length of the header plus the s ize of the text portion.

The "b" and "e" fields are the starting and ending locations for a segment. Given an
address, A , the location in the file (e i ther a. out or core) is calcu lated as:

bl� A� el =9 file address = (A - bl) +fl
b2 � A� e2 => file address = (A - b2) + f2

A user can access locations by using the ADB defined variables. The $v reqU!=St prints the vari
ables i nit ial ized by A DB:

b base address of data segment
d length of the data segment
s length of the stack ·
t length of the text
m execution type (407,410,411)

I n Figure 9 those variables not present are zero. Use can be made of these variables by
expressions such as:

< b

in the address field. S imi larly the value of the variable can be changed by an assignment
request such as:

02000> b

that sets b to octal 2000. These variables are useful to know if the file under examinat ion is an
executable or core i mage fi le .

ADB reads the header of the core image fi le to find the values for these variables. If the
second file specified does not seem to be a core fi le. or if it is missing then the header of the
executable file is used instead.

5. Advanced Usage
It is possi ble with ADB to combine formatt ing requests to provide elaborate displays .

Below are several examples.

5 .1. Formatted dump
The l ine:

< b, - 1/4o4'8Cn

prints 4 octal words fol lowed by the ir ASCI I in terpretat ion from the data space of the core

(fl&

image file. Broken down, the various request pieces mean : e
< b The base address o f the data segment.

- 10 -

< b, - 1 Print from the base address to the end of file. A negative count is
used here and elsewhere to loop indefinitely or until some error con
dition (like end of file) is detected.

The format 4o4A8Cn is broken down as follows:

4o Print 4 octal locations.

4 A Backup the current address 4 locations (to the original start of the
field) .

8C Print 8 consecutive characters using an escape convention; each
character in the range 0 to 037 is printed as @ followed by the
corresponding character in the range 0 140 to 0 177 . An @ is printed
as @ @ .

n Print a newline.

The request:

< b, < d/ 4o4A�Cn

could have been used instead to allow the printing to stop at the end of the data segment (<d
provides the data segment size i n bytes) .

The formatting requests can be combined with ADB's ability to read in a script to produce
a core image dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
Sv
==3n
Sm
=3n"C Stack Backtrace"
sc
== 3n"C External Variables"
$e
== 3n"Registers"
Sr
0$s
== 3n" Data Segment"
< b, - 1/Sona

The request 120$w sets the width of the output to 120 characters (normally, the width is
80 characters) . ADB attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest symbolic address
from 255 (default) to 4095. The request == can be used to print literal strings. Thus, headings
are provided in this dump program with requests of the form:

== 3n" C Stack Back trace"

that spaces three lines and prints the literal string. The request Sv prints all non-zero ADB
variables (see Figure 8) . The request O$s sets the maximum offset for symbol matches to zero

- 1 1 -

thus suppressing the printing of symbolic labels in favor of octal values. Note that this is only
done for the printing of the data segment. The request:

< b, - 1/Sona

prints a dump from the base of the data segment to the end of file with an octal address field
and eight octal numbers per line.

Figure 1 1 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump
As another illustration (Figure 1 2) consider a set of requests to dump the contents of a

directory (which is made up of an integer inumber followed by a 1 4 character name) :

adb dir -
-n8t'' Inurn" 8t" N arne"
0, - 1 ? u8t14cn

In this example, . the u prints the inumber as an unsigned decimal integer, the St means that
ADB will space to the next multiple of 8 on the output line, and the 14c prints the 14 character
file name.

5.3. lUst Dump
Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX srstems distri

buted by the UNIX Support Group; see UNIX Programmer's Manual Section V) could be
dumped with the following set of requests:

adb /dev /src -
02000> b

'

?m < b
< b, - 1 ?"flags" 8ton" links,uid,gid" 8t3bn" ,size"Stbrdn" addr" 8t8un" times" 8t2Y2na

In this example the value of the base for the map was changed to 02000 (by saying ?m< b)
since that is the start of an ilist within a file system. An artifice (brd above) was used to print
the 24 bit size field as a byte, a space, and a decimal integer. The last access time and last
modify time are printed with the 2Y operator. Figure 12 shows portions of these requests as
applied to a directory and file system.

5.4. Converting values
ADB may be used to convert values from one representation to another. For example:

072 - odx

will print

072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal) . The format is
remembered so that typing subsequent numbers will print them in the given formats. Charac
ter values may be converted similarly, for example:

prints

'a' - co

a 0141

It may also be used to evaluate expressions but be warned that all binary operators have the �
same precedence which is lower than that for unary operators. i@!t?

- 1 2 -

6 . Patching
Patching files with ADB is accomplished with the write, w or W, request (which is not like

the ed editor write command) . This is often used in conjunction with the locate, I or L request.
In general, the request syntax for 1 and w are similar as follows:

?I value

The request 1 is used to match on two bytes, L is used for four bytes. The request w is used to
write two bytes, whereas W writes four bytes. The value field in ei ther locate or write requests
is an expression. Therefore, decimal 3r1� ,.,,.,., , nuiT'bers, or character strings are supporte-d

In order to modify a file, ADB must be called as:

adb - w filet file2

When called with this option, file I and file 2 are created if necessary and opened for both read
ing and writing.

For example, consider the C program shown in Figure 1 0 . We can change the word
"This" to "The " in the executable file for this program, ex7, by using the following requests:

adb - w ex7 -
?1 'Th '
?W 'The '

The request ?1 starts at dot and stops at the first match of "Th" having set dot to the address of
the location found. Note the use of ? to write to the a.out file. The form ? * would have been
used for a � 1 1 file.

More frequently the request will be typed as:

?1 'Th ' ; ?s

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB
request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program that has
an internal logic flag. The flag could be set by the user through ADB and the program run.
For example:

adb a.out -

:s argl arg2
flag/w 1
:c

The :s request is normally used to single step through a process or start a process in single step
mode. In this case it starts a.ow as a subprocess with arguments argl and arg2. If there is a
subprocess running ADB writes to it rather than to the file so the w request causes flag to be
changed in the memory of the subprocess.

7. Anomalies
Below is a list of some strange things that users should be aware of.

I . Function calls and arguments are put on the stack by the C save routine. Putting break
points at the entry point to routines means that the function appears not to have been
called when the breakpoint occurs.

2 . When printing addresses, ADB uses either text or data symbols from the a.out file. This
sometimes causes unexpected symbol names to be printed with data (e.g. savr5+022) .
This does not happen if ? is used for text (instructions) and I for data.

- 1 3 -

3 . ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements
The authors are grateful for the thoughtful comments on how to organize this document

from R. B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system chanps
necessary to accommodate tracing within ADB. He also participated in discussions durina tbe
writing of ADB. His earlier work with DB and CDB led to many of the features found in ADB.

9 • . References

1 . D . M. Ritchie and K. Thompson, "The UNIX Time-Sharing System." CACM, July,
1 974.

2 . B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1 978.
3 . K. Thompson and D. M. Ritchie, UNIX Programmer's Manual - 7th Edition, 1 978.
4. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1 976.

Figure 1 : C program with pointer bug

struct buf (
int tildes;
int nleft;
char *nextp;
char buff[5 1 2] ;
}bb;

struct buf *obuf;

char *charp "this is a sentence.";

main (argc,argv)
int argc;
char **argv;
(

char cc;

if(argc < 2) (

- 14 -

printf("lnput file missing\n") ;
exit (8);

if((fcreat(argv[l l ,obuf)) < O) (
printf("%s : not. found\n", argv [l]) ;
exit(8) ;

charp = 'T';
printf("debug I %s\n",charp) ;

while (cc= *charp+ +)
putc(cc,obuf) ;

ffiush(obuf) ;

- 1 5 -

Figure 2 : ADB output for C program of Figure 1

adb a.out core
$c
-main (02,0 1 77762)
$C
-main (02,0 1 77762)

argc: 02
argv: 0 1 77762

$r
cc: 02 1 24

ps 0 1 700 1 0
pc 0204 -main + 0 1 52
sp 0 1 77740
r5 0 1 77752
r4 0 1
r3 0
r2 0
r l 0
rO 0 1 24
-main + 0 1 52: mov _o.buf, (sp)
$e
savr5: 0

obuf: 0 -
_charp: 0 1 24

errno: 0 -
fout: 0

$m
text map 'ex 1 '
b 1 = 0 e l = 02360
b2 = 0 e2 = 02360
data map core 1 '
b l = 0 e l = 03 500
b2 = 0 1 75400 e2 = 0200000

fl = 020
f2 = 020

fl = 02000
f2 = 05500

*charp/s
0 1 24: TTTLx

charp/s
_charp: T

_charp+02 : th is i s a sentence.

_charp + 026: I nput fi le missing
main.argc/d
0 1 77756: 2
*main.argv /3o
0 1 77762: 0 1 77770 0 1 77776 0 1 77777
0177770/s
0 1 77770: a.out
*main.argv /3o
0 1 77762: 0 1 77770 0 1 77776 0 1 77777
*" Is
0 1 77770: a.out
. = o

.- 10/d
0 1 77756:
$q

0 1 77770

2

Nh@ x &

- 1 6 -

Figure 3 : Multiple function C program for stack trace illustration

int fcnt,gcnt ,hcnt;
h (x,y)
{

int hi; register int hr;
hi = x + I :
hr = x-y+ I ;
hcn t+ + :
hj:
f(hr, hi) :

g (p,q)
{

int gi; register int gr;
gi = q-p;
gr = q-p+ I ;
gen t+ + :
gj:
h (gr,gi) ;

f(a,b) .;:<-
{

int fi; register inl fr:
fi = a + 2*b:
fr = a + b:
fcnt + + :
fj:
g (fr,fi) ;

main()
{

f(l ' l) :

- 1 7 -

Figure 4 : ADB output for C program of Figure 3

adb
$c
-h (04452,0445 l)
-g(04453,0 1 l l 24)
-r<o2,0445 l >
-h(04450,04447)
-g(0445 1 ,0 1 1 1 20)
-rw2,04447)
-h(04446,04445)
-g(04447 ,0 1 1 1 1 4)
-r<o2,04445)
-h (04444,04443)
HIT DEL KEY
adb
,5$C
-h (04452,0445 1)

x : 04452
y: 0445 1
hi: ?

-g(04453 ,0 1 1 1 24)
p: 04453
q: O l l 1 24 �
gi: 0445 1
gr: ?

-f(02,0445 1)
a: 02
b: 0445 1
fi: 0 1 l l 24
fr: 04453

-h (04450,0444 7)
x: 04450
y: 04447
hi : 0445 1
hr: 02

-g(0445 1 ,0 1 l l 20)
p: 0445 1
q: 0 1 1 1 20
gi: 04447
gr: 04450

fcnt/d
fcnt: 1 1 73

gcnt/d
_gent: 1 1 73
hcnt/d
hcnt: 1 1 72

h.x/d
022004: 2346
$q

- 18 -

Figure 5: C progr.am to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0
#define T ABSP 8

char input[] "data";
char ibuf[5 1 8] ;
int tabs[MAXLINE] ;

main()
(

int col, *ptab;
char c;

ptab = tabs;
settab(ptab) ; /*Set initial tab stops *I
col == 1 ;
if(fopen(input,ibuf) < 0) (

printf("%s : not found\n" ,input) ;
exit(8) ;

l .
while ((c = getc(ibuf)) ! = -1) (

switch(c) (
case '\t': I* TAB */

while(tabpos(col) ! == YES) (•
putchar(' ') ; /* put BLANK •1
col+ + ;

break;
case '\n': /*NEWLINE */

putchar('\n') ;
col = 1 ;

default:
break;

putchar(c) ;
col+ + ;

I* Tabpos return YES if col is a tab stop *I
tabpos(col)
int col;
(

if(col > MAXLINE)
return (YES) ;

else
return (tabs[col]) ;

!* Settab - Set initial tab stops *I
settab(tabp)
int *tabp;
(

int i;

for(i = 0; i < = MAXLINE; i + +)
(i%T ABSP) ? (tabs[i] = NO) : (tabs[i] == YES) ;

- 1 9 -

Figure 6a: ADB output ::or � program of Fig!.lr·� :5

adb a.out
settab + 4:b
fopen + 4:b
getc+ 4:b
tabpos + 4:b
$b
breakpoints
count bkpt
1 -tabpos+ 04
1 getc+ 04
1 _fopen + 04
1 -settab+ 04
settab,S ?ia
-settab: jsr
-settab + 04: tst
-settab + 06 : clr
-settab+ 0 1 2 : cmp
-settab+ 020: bit
-settab+022 :
settab,S ? i
-set tab: jsr

tst
c!r
cmp
bit

: r
a.out: running

command

r5 ,csv
-(sp)
0 1 77770(r5)
$01 20 ,01 77770(r5)
-settab+076

r5, csv
-(sp)
0 1 77770(r5)
$0 1 20 ,01 77770 (r5)
-settab+ 076

breakpoint -settab+04: tst -lsp)
settab + 4:d
:c
a.out: running
breakpoint _fopen + 04: mov 04 (r 5) . nu !st r + 0 1 2
$C
_fopen (02302,02472)
-main (0 1 ,0 1 77770)

col: 0 1
c: . 0
ptab: 03500

tabs,3/8o
03500: 0 1

0 1
0 1

0
0
0

0
0
I)

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

•

- 20 -

Figure 6b: ADB output for C program of Figure 5

:c
a.out: running
breakpoint _getc+04:
ibuf+ 6/20c
_cleanu+0202: This
:c
a.out: running

mov

is

breakpoint -tabpos+04: cmp
tabpos +4:d
settab +4:b settab,S?ia
settab +4 :b settab,S?ia; 0
getc+ 4,3:b main.c?C; 0
settab + 4:b settab,S?ia; ptab/o; 0
$b
breakpoints
count bkpt
1 -tabpos+ 04
3 _getc+04
I _fopen+ 04

command

main.c?C;O

04(r5) ,rl

a test of

$0 1 20,04(r5)

1 -settab+04 settab,S? ia;ptab? o;O
-settab:
-settab+04:
-settab+06:
-settab+012 :
-settab+020:
-settab+022:
0 1 77766:
0 1 77744:
T01 77744:
h01 77744:
i01 77744:
s01 77744:

jsr
bpt
clr
cmp
bit

0 1 77770
@'
T
h

s

rS,csv

0 177770(r5)
$01 20,01 77770(r5)
-settab+076

- 2 1 -

Figure 7 : ADB output for C program with breakpoints
adb ex3 -
h + 4:b hcnt/d; h.hi/; h.hr/
g + 4:b gcnt/d; g.gi/; g.gr/
f+ 4:b fcnt/d; f.fi/; f.fr/
:r
ex3: running
fent: 0

01 77732: 214
symbol not found
f+4:b fcnt/d; f.a/; f.b/; f.fi/
g + 4:b gcnt/d; g.p/; g.q/; g.gi/
h + 4:b hcnt/d; h.x/; h.y/; h.hi/
:c
ex3: running
fent: 0

0177746: I
01 77750: 1
01 77732: 2 14
gent: 0

01 77726: 2
0177730: 3
0177712: 214
hent: 0

01 77706: 2
0 177710: 1
0177672: 2 14
fent: 1

01 77666: 2
0177670: 3
01 77652: 2 14
gent: 1

0177646: 5
01 77650: 8
01 77632: 214 HIT DEL
f+ 4:b fcnt/d; f.a/"a = "d; f.b/"b = "d; f.fi/"fi = "d
g + 4:b gcnt/d; g.p/"p = "d; g.q/"q = "d; g.git'gi = "d
h + 4:b hcnt/d; h.x/" x = "d; h.y/"h = "d; h.hi/"hi = "d
: r
ex3: running
fent: 0

01 77746: a = I
01 77750: b = I
0177732: fi = 214
gent: 0

01 77726: p = 2
0177730: q = 3
01777 12: gi = 214
hent: 0

0177706: X = 2
0177710: y = 1
01 77672: hi = 214
fent: I

01 77666: a = 2
01 7767� b = 3
01 77652: fi = 214 HIT DEL
$q

- 22 -

Figure 8 : ADD address maps
407 .files

a. out hdr text+ data

0 D

core hdr text+ data stack
• • 1

0 D s E

410 .files (shared text)

a. out hdr text data

0 T B D

core hdr data stack
. . . • . . 1

B D s E ' ..

411 ./iles (separated I and D space)

�JIJ; a. out hdr text data

0 T 0 D

core hdr data stack
. 1

0 D s E

The following adb variables are set.

407 410 41 1

b base of data 0 B 0
d length of data D D-B D
s length of stack s s s
t lertgth of text 0 T T

Figure 9 : ADB output for maps
adb map407 core407
$m ' map407' text map
b l = 0 e l
b2 = 0 e2
data map ' core407'
b l = 0 e l
b2 = 0 1 75400 e2
$v
variables
d = 0300
m = 0407
s = 02400
$q

adb map410 core410
$m
text map 'map4 1 0'
b l = 0 e l
b2 = 020000 e2
data map 'core4 1 0'
b 1 = 020000 e 1
b2 = 0 1 75400 e2
$v
variables
b = 020000
d = 0200
m = 041 0
s = 02400
t = 0200
$q

adb map411 core411
$m
text map ' map4 1 1 '
b 1 = 0 e 1
b2 = 0 e2
data map 'core4 1 1 '
b 1 = 0 e 1
b2 = 0 1 75400 e2
$v
variables
d = 0200
m = 04 1 1
s = 02400
t = 0200
$q

- 23 - ·

= 0256 fl = 020
= 0256 f2 = 020

= 0300 fl = 02000
= 0200000 f2 = 02300

= 0200 f1 = 020
= 020 1 1 6 f2 = 0220

= 020200 f1 = 02000
= 0200000 f2 = 02200

= 0200 fl = 020
= 0 1 1 6 f2 = 0220

= 0200 fl = 02000
= 0200000 f2 = 02200

(I

•

- 24 -

Figure 10: Simple C program for illustrating formatting and patching

char
int
int
long
float
char
main ()
{

str1 [] "This is a character string";
one 1 ;
number 456;
lnum 1 234;
fpt 1 .25;
str2 [] "This is the second character string";

one = 2;

- 25 - ·

Figure 1 1 : ADB output illustrating fancy formats
adb map41 0 core410
< b,-1/Sona
020000: 0 0641 24 07155 1 064440 020163 020 14 1

-str1 +016: 06 1541 062564 020162 072 163 064562 063556

number: -
number: 07 10 0 02322040240 - 0 0641 24 07 155 1 064440

_str2 +06: 020 163 064164 0201 45 062563 067543 062 1 56

_str2 +026: 060562 072 143 071 145 07 1440 . 07 1 1 64 067 1 5 1

savr5 +02: 0 0 0 0 0 0 0 0

< b,20/ 4o4" 8Cn
020000: 0 064 124 07 155 1 064440 @'@ 'This i

0201 63 020141 064143 07 1 1 41 s a char
06 1541 062564 020162 072 1 63 acter st
064562 063556 0 02 ring@'@ '@b@'

number: 07 10 0 02322040240 H@a@'@'R@d @@ -
0 064 1 24 07 155 1 064440 @ '@'This i
020163 .064 164 020145 062563 s the se
067543 062 1 56 06 1440 060550 cond cha
060562 072 143 071 145 071 440 racter s
07 1 1 64 067 1 5 1 0 147 0 Iring@ '@'@'
0 0 0 0 @'@'@'@'@'@'@'@'
0 0 0 0 @'@'@'@'@'@'@'@'

data address not found
< b,20/ 4o4" 8t8cna
020000: 0
str l +06: 020163

_str1 +016: 06 1 541
strl +026: 064562

0641 24
020141
062564
063556

07 155 1
064143
0201 62
0 02

064440
07 1 1 4 1
072 1 63

This i
s a char
acter st

ring
_number:
_number: 07 10 0 02322040240 HR
_fpt+02 : 0 064 1 24 07 1 55 1 064440 This i
_str2 +06: 020 163 064164 020 145 062563 s the se
_str2 +016: 067543 062 1 56 06 1440 060550 cond cha
_str2 +026: 060562 072 143 071 145 071440 racter s
_str2 +036: 07 1 1 64 0671 5 1 0 147 0 tring
savr5 +02: 0 0 0 0
savr5 +012: 0 0 0 0
data address not found
< b,l0/2b8t"2cn
020000: 0 0

str 1 :

$Q

0124 0 1 50
0 1 5 1 0163
040 0 1 5 1
0 1 63 040
0141 040
0 143 0 1 50
0141 0 1 62
0141 0143
0 164 0 145

Th
is
i

s
a
ch
ar
ac
te

064143

0 02

061440

0 147 0

071 141

060550

•

- 26 -

. Figure 12: Directory and inode dumps
adb dir -
==nt" lnode"t"Name"
0,- 1 ?ut14cn

I node
0: 652

82
597 1 cap.c
5323 cap
0

adb /dev/src -
02000> b

PP

Name

?m< b
new map
b 1 = 02000
b2 = 0

'/dev/src'
e 1
e 2

$v
variables
b = 02000

= 3 100000000 fl = 0
= 0 f2 >== 0

< b, - 1 ?"flags" Ston" links, uid,gid" 8t3bn" size" Stbrd:n" addr''8t8un" times" 8t2Ytna
02000: flags 073 1 45

links,uid,gid 0 163 0 164 0 141
size 0 1 62 10356
addr 28770 · 8236 25956 27766 25455 8236 25956 25206

02040:

021 00:

times 1 976 Feb 5 08:34:56 1975 Dec 28 10:55: 1 5

flags 024555
links,uid,gid 0 12 0 1 63 0164
size 0 1 62 2546 1
addr 8308 30050 8294 25 1 30 1 5 2 1 6 26890
times 1 976 Aug 17 1 2: 1 6: 5 1 1976 Aug 17 1 2 : 1 6: 5 1

flags 05 1 73
links,uid,gid 0 1 1 0 1 62 0 145
size 0 147 29545
addr 25972 8306 28265 8308 25642 1 5 2 1 6
times 1 977 Apr 2 08:58:01 1 977 Feb 5 1 0:2 1 :44

29806 10784

23 14 25970

MIIIICIOSOPT XENIX VOL. 28
PROGRAMMER'S
MANUAL

XENIXOS
Programmer's Manual

Volume 2B

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement.

©1979, Bell Telephone Laboratories, Incorporated.
Reprinted with permission.

Copyright 1979, Bell Telephone Laboratories, Incorporated.

Holders of a UNIX™software license are permitted to copy this document, or any portion of
it, as necessary for a licensed use of the software, provided this copyright notice and state
ment of permission are included.

8601-100-01

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com
puter program that does input can be thought of as defining an "input
language" which it accepts. An input language may be as complex as a pro
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro
gram. The Yacc user specifies the structures of his input, together with cod� to
be invoked as each such structure is recognized. Yacc turns such a specification
into ·a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(l) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

July 3 1 , 1978

, . , ,,_.,

, .. !. '·(

Y ace: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of cr and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

d�te : month_ name day ',' year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_ name, day, and year are defined elsewhere. The comma "," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1 776
might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name T 'a' 'n' ,
month name : 'F' 'e' 'b' ;

month name : 'D' 'e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi
dual letters, and month_ name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a

- 2 -

month_ name was seen; in this case, month_ name would be a token.
Literal characters such as "," must also be passed through the lexical analyzer, and are

also considered tokens.
Specification files are very flexible. It is realively easy to add to the above example the

rule

date : month '/' day '/' year ;

allowing

7 I 4 I 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with rftinirnat' effort,
and little danger of disrupting existing input. ' ,-

The input being read may not conform to the specifications. These input -errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere. 2, 3, 4 Yacc has been extensively
used in numerous practical applications, including lint, 5 the Portable C Compiler, 6 and a system
for typesetting mathematics. 7

The next several sections describe the basic process of preparing a Yacc specification; Sec
tion 1 describes the preparation of grammar rules, Section 2 the preparation of the user sup
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications .
Names refer to either tokens or nonterminal symbols. Yacc requires token names to be

declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections : the declarations, (grammar)

- 3 -

rules, and programs. The sections are separated by double percent "%%" marks. (The percent
"%" is generally used in Yacc specifications as an escape character.)

In other words, a ful l specification file looks like
declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in I * . . . *1 , as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY ;
A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals . The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot " .", underscore
"_", and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes "'" . As in C, the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\n' newline
'\r' return
'\" single quote "'"
'\ \' backslash "\"
'\t' tab
'\b' backspace
'\f form feed
'\xxx' "xxx" in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in gram
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "!" can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A
A
A

can be given to Yacc as
A

B C D
E F
G

B C D
E F
G

- 4 -

It is not necessary that all grammar rules with the same left side appear together in the gram
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty : ;

Names representing tokens must be declared; this is most simply done by writing

%token namel name2 . . .

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it. accepts the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri
ate; see section 3, below. Usually the endmarker represents some reasonably obvious 1/0
status, such as "end-of-file" or "end-of-record" .

2: Actions
With each grammar rule, the user may associate actions to be performed each time the

rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro
grams, and alter external vectors and variables. An action is specified by one or more state
ments, enclosed in curly braces " {" and "} ". For example,

A

and

XXX

' (' B ') '
{

yyy zzz
{

are grammar rules with actions.

hello (1 , "abc"); }

printf("a message\n") ;
flag = 25; }

To facilitate easy communication between the actions and the parser, the action state
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

- 5 -

{ $$ = 1 ; l

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $ 1 , $2, . . . , which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A B CD ;
for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule
expr '(' expr ') ' ;

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr '(' expr ')' { $$ = $2 ; l

By default, the value of a rule is the value of the first element in it ($1) . Thus, grammar
rules of the form

A B
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B

c
{ $$ = 1; l

{ X = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.
Actions that do not terminate a rule are actually handled by Y ace by manufacturing a new

nonterminal symbol name, and a new rule matching this name to the empty string. The inte
rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

$ACT

A

I* empty 4
{ $$ = 1 ; l

B $ACT C
{ X = $2; Y = $3;)

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, nl, n2)
creates a node with label L, and descendants n1 and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

•

- 6 -

expr expr ' + ' expr
{ $$ = node (' +' , $ 1 , $3) ;

in the specification.
The user may define other variables to be used by the actions. Declarations and

definitions can appear in the declarations section, enclosed in the marks "%{" and "%} " .
These declarations and definitions have global scope, so they are known to the action state
ments and the lexical analyzer. For example,

% { int variable = 0; % }
could b e placed in the declarations section, making variable accessible t o all of the actions. The
Yacc parser uses only names beginning in "yy" ; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyl
val.

The parser and the lexical analyzer must agree on these token numbers in order for com
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion · of
the lexical analyzer might look like:

yylex () {
extern int yylval;
int c;

c = getchar 0;

switch (c) {

case '0' :
case T:

case '9':
yylval = c - '0' ;
return(DIGIT) ;

The intent i s to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error

- 7 -

handling, and should not be used naively (see Section 7) .
As mentioned above, the token numbers may be chosen by Yacc or by the user. In the

default situation, the numbers are chosen by Yacc. The default token number for a literal char
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals) , the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literaL Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk.s These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information) . The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahead token) .
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:
1 . Based on its current state, the parser decides whether it needs a lookahead token to decide

what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.
The shift action is the most common action the parser takes. Whenever a shift action is

taken, there is always a lookahead token. For example, in state 56 there may be an action:
IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack) . The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu
ally it is not; in fact, the default action (represented by a ".") is often a reduce action.

®Ill�

- 8 -

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 1 8
refers to grammar rule 1 8, while the action

IF shift 34
refers to state 34.

Suppose the rule being reduced is
A X y Z

The reduce action depends on the left hand symbol (A in this case) , and the number of sym
bols on the right hand side (three in this case) . To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule) . In effect, these states were the ones put on the stack while recognizing
x, y, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as :

A goto 20
causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $ 1 , $2, etc. , refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example ! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

- 9 -

When Yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram
mar (with some statistics stripped off the end) is:

./

- 1 0 -

state 0
$accept : _rhynne $end

DING shift 3
. error

rhynne goto 1
sound goto 2

state 1
$accept : rhynne _$end

$end accept
. error

state 2
rhynne sound _place

DELL shift 5
. error

place goto 4

state 3
sound DING_DONG

DONG shift 6
. error

state 4
rhynne : sound place_ (1)

reduce 1

state 5
place : DELL (3) -

reduce 3

state 6
sound DING DONG (2) -

reduce 2
Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to conne, in each rule. Suppose the input is

DING DONG D ELL
It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, beconning the
lookahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 beconnes the current state. The next token,
DONG, is read, beconning the lookahead token. The action in state 3 on the token DONG is

- 1 1 -

"shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG
This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2
is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is ''shift 5", so state 5 is
pushed onto the stack, which now has 0, 2 , and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side·, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1 . There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
1 . In state f, the input is read; the endmarker is obtained, indicated by "$end" in the y. output
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr expr ' -' expr
is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram
mar rule does not completely specify the way that all complex inputs should be structured .. For
example, if the input is

expr - expr - expr
the rule allows this input to be structured as either

(expr - expr) - expr
or as

expr - (expr - expr)
(The first is called left association, the second right association) .

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr - expr - expr
When the parser has read the second expr, the input that it has seen:

expr - expr
matches the right side of the grammar rule above. The parser could reduce the input by apply
ing this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:

- 1 2 -

- expr
and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen
expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr
It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr
Now the rule can be reduced once more; the effect is to take the right associative interpreta
tion. Thus, having read

�xpr - expr
the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift I reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce I reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:
1 . In a shift/reduce conflict, the default is t o do the shift.
2 . In a reduce/reduca conflict, the default is to reduce by the earlier grammar rule (in the

input sequence) .
Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.

Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible,

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent , require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program
ming language involving an "if-then-else" construction:

�tat IF ' (' cond ') ' stat
IF ' (' cond T stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-ifrule, and the second the if-else rule.

- 1 3 -

These two rules form an ambiguous construction, since input of the form
IF (C l) IF (C2) S l ELSE S2

can be structured according to these rules in two ways :

or

IF (Cl) {
IF (C2) S l
}

ELSE S2

IF (Cl) {
IF (C2) Sl
ELSE S2
}

The second interpretation is the one given in most programming languages having this con
struct. Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example, con
sider the situation where the parser has seen

IF (Cl) IF (C2) S l
and i s looking at the ELSE. I t can immediately reduce by the simple-if rule t o get

IF (Cl) stat
and then read the remaining input,

ELSE S2
and reduce

IF (Cl) stat ELSE S2
by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of
IF (Cl) IF (C2) Sl ELSE S2

can be reduced by the if-else rule to get
IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) Sl
In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Y ace are best understood by examining the verbose (- v) �Wtion
output file. For example, the output corresponding to the above conflict state might be :

- 1 4 -

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat_ELSE stat

ELSE shift 45
reduce 1 8

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat
and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat
since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by "." , is to be done i(the input symbol is not mentioned explicitly .in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
1 8 :

stat : I F ' (' cond T stat
Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In the y. output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references2, 3, 4 might be consulted; the ser
vices of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con
structions for arithmetic expressions can be naturally described by the notion of precedence lev
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr
and

expr : UNARY. expr
for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and

- 1 5 -

construct a parser that realizes the desired precedences and associativities.
The precedences and associativities are attached to tokens in the declarations section.

This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc,
followed by a list of tokens. All of the tokens .on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind
ing strength. Thus,

%left ' +' · -·
%left · *. · /'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C
is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right '='
%left • +' · -·
%left • *' · /'

%%

expr expr expr
expr ' +' expr
expr expr
expr '*' expr
expr '/' expr
NAME

might be used to structure the input
a = b = C*d - e - f*g

as follows:
a = (b = (((c*d) -e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary · - '; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre
cedence of the grammar rule to become that of the following token name or literal. For exam
ple, to make unary minus have the same precedence as multiplication the rules might resemble:

%left ' +' ' -'
%left '*' 'r

%%

expr expr ' +' expr
expr - expr
expr '*, expr
expr '/' expr

- 1 6 -

' - ' expr %prec '*'
NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:
1 . The precedences and associativities are recorded for those tokens and literals that have

them.
2. A precedence and associativity is associated with each grammar rule; it is the precedence

and associativity of the last token or literal in the body of the rule. If the %prec construc
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a redU<�e/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.
Conflicts resolved by precedence are not counted in the number of shift/reduce and

reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general , feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token "error" is

- 1 7 -

legal. It then behaves as if the token "error" were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form
stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat error ,
Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next '; ' . All tokens after the error and before the next '; ' cannot be shifted, and
are discarded. When the ' ;' is seen, this rule will be reduced, and any "cleanup" action associ
ated with it performed.

Another form of error rul� arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error '\n' { printf("Reenter last line : "); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state
ment

yyerrok ;
in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ yyerrok;

printf("Reenter last line : ") ;
input

$$ = $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might.take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;
in an action will have this effect. For example, suppose the action after error were to call some

- 1 8 -

sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
resynch O ;
yyerrok ;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal
lation to installation) . The function produced by Yacc is called yyparse; it is an integer valued
function. When it is called, it in tum repeatedly calls yylex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1 , or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the �alue 0.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a - ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

main() {
return(yyparse O) ;
}

and
include < stdio.h >

yyerror(s) char *S; {
fprintf(stderr, "%s\n", s) ;
}

The argument to yyerror is a string containing an error message, usually the string "syntax
error" . The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ
ment, it may be possible to set this variable by using a debugging system.

- 1 9 -

9 : Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.
a. Use all capital letters for token names, all lower case letters for nonterminal names. This

rule comes under the heading of "knowing who to blame when things go wrong."
b . Put grammar rules and actions on separate lines. This allows either to be changed without

an automatic need to change the other.
c. Put all rules with the same left hand side together. Put the left hand side in only once,

and let all following rules begin with a vertical bar.
d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon

on a separate line. This allows new rules to be easily added.
e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits) . The user must make up his own mind about these stylistic

. questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules : rules of the form

name name rest_of_rule ;
These rules frequently arise when writing specifications of sequences and lists:

list item
list ' ' item '

and
seq item

seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as
seq item

item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left .
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

fft

seq I* empty *I
seq item

- 20 -

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara
tions, followed by 0 or more statements. Consider:

%{
int dflag�

%}
other declarations . . .

%%

prog decls stats

decls I* empty *I
{ dflag = 1�

decls declaration

stats I* empty *I
{ dflag = 0�

stats statement

other rules . . .
The flag dfiag i s now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

lteserved VVords

Some programming languages permit the user to use words like "if" , which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the pwgramming language. This is extremely hard to do in the framework
of Yacc� it is difficult to pass information to the lexical analyzer telling it "this instance of 'if' is
a keyword, and that instance is a variable" . The user can make a stab at it, using the mechan
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved� that is, be forbidden for use as variable names. There are

- 2 1 -

powerful stylistic reasons for preferring this, anyway.

10 : Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YY ACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be 0 or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence . . .

THE
YOUNG

DOG
{

CRONE
{

$$ = THE; }
$$ = YOUNG;

$$ = DOG; }

if($0 = = YOUNG) {
printf("what?\n") ;
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as Lint S will
be far more silent.

- 22 -

There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:
%union {

body of union . . .
}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the - d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union . . .
} YYSTYPE;

The header file must be included in the declarations· section, by use of %{ and %} .
Once YYSTYPE is defined, the union member names must be associated with the various

terminal and nonterminal names. The construction
< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left < optype> ' +' ' -'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type < nodetype > expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and > , immediately after the first $. An example of this usage is

rule aaa { $ < intval > $ = 3; } bbb
{ fun($< intval > 2, $ < other> O) ;

This syntax has little to recommend it, but the situation arises rarely.
A sample specification is given in Appendix C. The facilities in this subsection are not

triggered until they are used: in particular, the use of %type will tum on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold tnt's, as was true historically.

- 23 -

1 1 : Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature". Their irritating unwillingness to learn how to do things my way has usually led to my
doing things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. 0. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.

- 24 -

References

1 . B. W. Kernighan and D . M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1 978).

2. A. V. Aho and S. C. Johnson, "LR Parsing, " Comp. Surveys 6 (2) pp. 99- 124 (June 1 974) .
3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous

Grammars, " Comm. Assoc. Comp. Mach. 18 (8) pp. 441-452 (August 1 975) .
4. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,

Mass. (1977).
5. S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65 (December

1 977) .
6. S. C. Johnson, "A Portable Compiler: Theory and Practice, " Proc. 5th ACM Symp. on

Principles of Programming Languages, (January 1 978) .
7 . B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.

Assoc. Comp. Mach. 18 pp. 1 5 1- 1 57 (March 1 975).
8 . M. E. Lesk, "Lex - A Lexical Analyzer Generator, " Comp. Sci. Tech. Rep. No. 39,

Bell Laboratories, Murray Hill , New Jersey (October 1 975) .

- 25 -

Appendix A : A Simple Example

This example gives the complete Yacc specification for a small desk calculator� the desk
calculator has 26 registers, labeled "a" through "z" , and accepts arithmetic expressions made
up of the operators + , - , *, I , % (mod operator) , & (bitwise and) , I (bitwise or) , and assign
ment. If an expression at the top level is an assignment� the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an ,example of a Yacc specification, the desk calculator does a reasonable job of show
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules� This job is probably better done by the lexical
analyzer.

% {
include < stdio.h >
include < ctype.h>

int regs [26];
int base;

%}

%start list

%token DIGIT LETTER

%left ' I '
%left '&'
%left ' +'
%left · *' '/' '%'
%left UMINUS I* supplies precedence for unary minus *I

%% I* beginning of rules section *I

list

stat

expr

I* empty *I
list stat '\n'
list error '\n'

{ yyerrok� }

expr
{

LETTER =
{

' (' expr ') '
{

expr ' +' expr
{

expr expr

printf("%d\n", $1) �
expr
regs [$1] = $3; }

$$ - $2� }

$$ $1 + $3�

$$ = $1 $3�

-'<"<.,;!'�

number :

- 26 -

expr , *' expr
{ $$ = $1 * $3;

expr '/'
expr

% { $$ = . $1 I $3;
expr '%' expr

{ $$ $1 % $3;
expr '&' expr

{ $$ = $1 & $3;
expr ' I ' expr

{ $$ = $1 I $3; , -, %prec UMINUS expr
{ $$ - $2; }

LETTER
{ $$ = regs [$1] ;

number

DIGIT
{ $$ = $1; base ($1 = =0) ? 8 10; }

number DIGIT
{ $$ = base * $1 + $2; }

%% I* start of programs *I

yylex () (I* lexical analysis routine *I
I* returns LETTER for a lower case letter, yylval = 0 through 25 *I
I * return DIGIT for a digit, yylval = 0 through 9 *I
I* all other characters are returned immediately *I

int c;

while ((c =getcharO) = = ' ') (/* skip blanks 4 }

I* c is now non blank 4

if(islower(c)) {
yylval = c - a ;
return (LETTER) ;
}

if(isdigit (c)) (
yylval = c - '0';
return(DIGIT) ;
}

return(c) ;
}

- 27 -

Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con
text dependencies, etc. , are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR (2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by ru-colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C IDENTIFiERs.

%token
%token
%token

I* grammar for the input to Yacc *I

I* basic entities
IDENTIFIER
C IDENTIFIER
NUMBER

*I
I* includes identifiers and literals *I
I* identifier (but not literal) followed by colon

I* [0-9] -r *I

I* reserved words : %type = > TYPE, %left = > LEFT, etc. *I

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token
%token
%token

%start

%%

spec

tail

defs

def

rword

MARK
LCURL
RCURL

I* ascii

spec

I
I

I* the %% mark *I
I* the %{ mark *I
I* the %) mark *f

character literals stand for themselves *I

defs MARK rules tail

MARK { In this action, eat up the rest of the file
I* empty: the second MARK is optional *I

I* empty *I
defs def

START IDENTIFIER
UNION { Copy union definition to output)
LCURL { Copy C code to output file) RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT

tag

nlist

nmno

rules

rule

rbody

act

prec

NONASSOC
TYPE

- 28 -

I* empty: union tag is optional 4
' < ' IDENTIFIER ' > '

nmno
nlist nmno
nlist '; nmno

IDENTIFIER
IDENTIFIER NUMBER

I* rules section *I

f* NOTE: literal illegal with %type *I
I* NOTE: illegal with %type *I

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
' I ' rbody prec

I* empty · *I
rbody IDENTIFIER
rbody act

' {' { Copy action, translate $$, etc.) T

I* empty *f
PREC IDENTIFIER
PREC IDENTIFIER act
prec '; '

- 29 -

Appendix C : An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis
cussed in Section 1 0. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations + , - , *, I, unary - , and = (assignment) , and has 26
floating point variables, "a" through "z". Moreover, it also understands intervals, written

(X ' y)
where x is less than or equal to y. There are 26 interval valued variables "A" through "Z"
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double's.
This structure is given a type name, INTERVAL, by using typedej The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari
able values) . Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Y ace is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run .
through Yacc: 1 8 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

2.5 + (3 .5 - 4.)
and

2.5 + (3 .5 ' 4.)
Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the " ," is read; by this time, 2. 5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not , leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general . If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C l ibrary routine atofis used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a s.yntax error in the parser, and
thence error recovery.

%{

include < stdio.h >
include < ctype.h>

typedef struct interval
double lo, hi;
} INTERVAL;

- 30 -

INTERVAL vmul () , vdivO;

double atof() ;

double dreg [26 1;
INTERVAL vreg [26] ;

%}

%start lines

%union
int ivai;
double dval;
INTERVAL vval;
}

%token < ival > DREG VREG f* indices into dreg, vreg arrays *f

%token < dval > CONST f* floating point constant *f

%type < dval > dexp I* expression *I

%type < vval > vexp f* interval expression *f

f* precedence information about the operators *f

%left ' +' ' -·
%left ' *' '/'
%left UMINUS f* precedence for unary minus *f

%%

lines

line

f* empty *f
lines line

dexp '\n'
{

vexp '\n'
{

DREG '
{

VREG

printf("% 15 .8f\n" , $1); }

printf(" (% 1 5. 8f , % 1 5 .8f)\n" , $l .lo, $1 .hi); }
' dexp '\n'

dreg [$1] = $3;
vexp '\n'

dexp

vexp

{
error '\n'

{

CONST
DREG

{
dexp ' +' dexp

{
dexp ' - ' dexp

{
dexp ' *' dexp

{
dexp '/' dexp

{
' -' dexp

{
' (' dexp ') '

{

dexp

- 3 1 -

vreg [$1] = $3; }

yyerrok;

$$ = dreg [$1] ; }

$$ = $ 1 + $3;

$$ = $1 - $3;

$$ $ 1 * $3;

$$ = $1 I $3;
%prec UMINUS
$$ - $2; }

$$ = $2; }

$$.hi = $$.1o $ 1 ; }
' (' dexp ' , ' dexp ') '

{
$$.1o = $2;
$$.hi = $4;
if($$.1o > $$.hi) {

printf("interval out of order\n") ;
YYERROR;

}
VREG

{
vexp ' +'

{

dexp ' + '
{

vexp

dexp

vexp ' *'
{

dexp ' *'
{

}

$$ = vreg [$1] ;
vexp

$$.hi
$$.lo

vexp
$$.hi
$$.lo

vexp
$$.hi
$$.1o

vexp
$$.hi
$$.1o

vexp

=

=
=

=

$1 .h i
$l .lo

$ 1 +
$1 +

$1 .hi
$l .lo

$ 1 -
$ 1 -

+ $3.hi;
+ $3.lo;

$3.hi;
$3.lo;

- $3.lo;
- $3.hi;

$3.1o;
$3.hi;

$$ vmul ($l .lo, $ 1 .hi,
vexp

$3

$$ = vmul ($ 1 , $ 1 , $3) ; }

) ;

vexp '/' vexp
{ if(dcheck ($3)) YYERROR;

$$ = vdiv ($l .lo, $ 1 .hi, $3) ; }

%%

- 32 -

dexp '/' vexp
{ if(dcheck ($3)) YYERROR;

vexp
{

' (' vexp ')'
{

$$ = vdiv ($ 1 , $ 1 , $3) ; }
%prec UMINUS
$$.hi = - $2.lo; $$.Io = - $2.hi;

$$ = $2; }

define BSZ 50 f* buffer size for floating point numbers *f

yylexO {

I * lexical analysis 4

register c;

while ((c =getchar ()) = = ' ') { f* skip over blanks *f }

if(isupper(c)) {
yylval.ival = c - 'A';
return(VREG) ;
}

if(islower(c)) {
yylval.ival = c - ,. a';
return (D REG) ;
}

if(isdigit (c) I I c = ='.') {
f * gobble up digits, points, exponents *f

char buf[BSZ+ 1] , *CP = buf;
int dot = 0, exp = 0;

for(; (cp -buf) < BSZ + +cp,c = getcharO) {

*CP = c;
if (isdigit (c)) continue;
if(c = = ·:) {

if(dot + + I I exp) return (
continue;
}

if(c = = 'e') {

) ; f* will cause syntax error *f

if(exp + +) return ('e') ; f* will cause syntax error *f
continue;
}

f* end of number *f
break;
}

*CP = '\0';
if((cp- buf) > = BSZ) printf("constant too long: truncated\n") ;

- 33 -

else ungetc { c, stdin) ; f* push back last char read *f
yylval.dval = atof(buf) ;
return (CONST) ;
}

return(c) ;
}

INTERVAL hilo (a, b, c, d) double a, b, c, d; (
f* returns the smallest interval containing a, b, c, and d *f
f* used by * , I routines *f
INTERVAL v;

if(a > b) (v.hi
else (v.hi = b;

= a; v.lo = b; }
v.lo = a;

if(c > d) (

else (

if(c > v.hi) v.hi
if(d < v.lo) v.lo
}

c· ,
d· ,

if(d > v.hi) v.hi = d;
if(c < v.lo) v.lo = c;
_}

return(v) ;
}

INTERVAL vmul (a, b, v) double a, b; INTERVAL v; (
return (hilo (a*v.hi , a*v.lo, b*v.hi, b*v.lo)) ;
}

dcheck (v) INTERVAL v; (
if(v.hi > = 0. && v.lo < = 0.) (

printf("divisor interval contains 0.\n") ;
return (1) ;
}

return (0) ;
}

INTERVAL vdiv (a, b, v) double a, b; INTERVAL v; (
return (hilo (a/v.hi, a/v.lo, b/v.hi, b/v.lo)) ;
}

- 34 -

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con
tinuity, but, for various reasons, are not encouraged.
1 . Literals may also be delimited b y double quotes '"" ' .
2. Literals may be more than one character long. If all the characters are alphabetic,

numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.
The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \\ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:
% < is the same as %left
% > is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
% = is the same as %prec

5. Actions may also have the form
= { . . . }

and the curly braces can be dropped if the action is a single C statement.
6. C code between % { and %} used to be permitted at the head of the rules section, as well ·

as in the declaration section.

1 Introduction.

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories

Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au
tomatically to portable Fortran. It is available on the PDP- 1 1 UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler
compiler system.

Table of Contents

1. Introduction. 1
2. Lex Source. 3
3 . Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10

10. Left Context Sensitivity. 1 1
1 1 . Character Set. 12
12 . Summary of Source Format. 12
13 . Caveats and Bugs. 1 3
14. Acknowledgments. 1 3
1 5 . References. 1 3

Lex is a program generator designed for lexical process
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expres
sion matching needed to complete his tasks, possibly in
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user's
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

Source - Lex - yylex

Input - I yylex - Output

An overview of Lex

Figure 1

write processing programs in the same and often inap
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called "host
languages." Just as general purpose languages can pro
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica
tion may be directed to the combination of hardware and
host language appropriate to the task, the user's back
ground, and the properties of local implementations. At
present there are only two host languages, C [l] and For
tran (in the form of the Ratfor language[2]) . ·Lex itself
exists on UNIX, GCOS, and OS/370; but the code gen
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user's expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac
tions for each expression as it is detected. See Figure 1 .

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
[\t1 +$

is all that is required. The program contains a %% delim
iter to mark the beginning of the rules, and one rule.

LEX-2

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates "one or more . . . " ; and the $ indi
cates "end of line," as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\t1 + $
[\t] + printf(" ") ;

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

·

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a iexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc [3] . Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as
signs structure to the resulting pieces. The flow of con
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4] . The automaton is
interpreted, rather than compiled, in order to save !>pace.
The result is still a fast analyzer. In particular, the time

lexical grammar

rules rules

1 1
Lex Yacc

Input- yylex I - I yyparse - Parsed input

Lex with Yacc

Figure 2

taken by a Lex program to recognize and partition an in
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in
clude forward context require a significant amoun.t of re
scanning. What does increase with the number and com
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdejh, Lex will recog
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is :

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog
nized. Thus an individual rule might appear

integer printf("found keyword INT") ;

to look for the string 'integer in the input stream and print
the message "found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function print/ is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com
pound, or takes more than a line, it should be enclosed in

LEX-3

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printH"color") ;
printH"mechanize") ;
printf(" gas") ;

would be a start. These rules are not quite enough, since
the word petroleum would become gaseum; a way of deal
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular" expressions are very similar
to those in QED [5] . A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices , and other features) . The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex
pression

a57D

looks for the string a57D.
Operators. The operator characters are

" \ [] " - ? . • + ! () $ / { } % < >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz" + +"

matches the string xyz + + when it appears. Note that a
part of a string may be quoted. It is harmless but un
necessary to quote an ordinary text character; the expres
sion

"xyz + +"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair [] . The construction
[ab] matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ig
nored. Only three characters are special: these are \ -
and •. The - character indicates ranges. For example,

[a-z0-9< > _]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple
mentation dependent and will get a warning message.
(E.g., [0-z] in ASCII is many more characters than it is in
EBCDIC). Ir

"
it is desired to include the character - in a

character class, it should be first or last; thus

[- +0-9]

matches all the digits and the two signs.
In character classes, the • operator must appear as the

first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

("abc]

matches all characters except a, b, or c, including all spe
cial or control characters; or

is any character which is not a letter. The \ character pro
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

l\40-\ 176]

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 1 76 (tilde) .

Optional expressions. The operator ? indicates an op
tional element of an expression. Thus

LEX-4

ab?c

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat

ed by the operators • and +.

is any number of consecutive a characters, including zero;
while

a +

is one or more instances of a. For example,

[a-z] +

is all strings of lower case letters. And

[A-Za-z] [A-Za-z0-9]*

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

•

Alternation and Grouping. The operator I indicates
alternation :

(ab lcd)

matches either ab or cd. Note that parentheses are used
for grouping, although they are not necessary on the out
side level;

ab lcd

would have sufficed. Parentheses can be used for more
complex expressions :

(ab lcd+) HeO*

matches such strings as abefef, efefef, cdef, or cddd; but
not abc, abed, or abcdef.

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are • and $. If the first character of an expression is
· , the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of ·, complementation of character classes, since
that only applies within the [1 operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline) .
The latter operator is a special case of the I operator char
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by start conditions as ex
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

< x >

using the angle bracket operator characters. If we con
sidered "being at the beginning of a line" to be start con
dition ONE, then the • operator would be equivalent to

< ONE>

Start conditions are explained more fully later.
Repetitions and Definitions. The operators { } specify ei

ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name) . For example

{digit}

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con
trast,

a{ 1 ,5}

looks for 1 to 5 occurrences of a.
Finally, initial % is special, being the separator for Lex

source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, ; as an action

- causes this result. A frequent rule is
·�::;.;:{#

[\t\n]

LEX-5

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character l which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

"\t"
n\n"

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
[a-z]+. Lex leaves this text in an external character ar
ray named yytext. Thus, to print the name found, a rule
like

[a-z] + printf("%s", yytext);

will print the string in yytext. The C function print/ ac-
. cepts a format argument and data to be printed; in this

case·, the format is · "print string" (% indicating data
conversion, and s indicating string type) , and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z] + ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac
tion '? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjust, to
avoid this, a rule of the form [a-z]+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z] + {words + +; chars + = yyleng; }

which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext [yyleng- 1]

in C or

yytext (yyleng)

in Ratfor.

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou
tines are provided to aid with this situation. First,
yymoreO can be called to indicate that the next input ex
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the I operator, but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some
what confusing, so that it might be preferable to write

\" [""] * {
if (yytext [yyleng- 1 1 = = \\')

·yymoreO;
else

. . . normal user processing

which will, when faced with a string such as "abC.," dej
first match the five characters "abC., ; then .the call to
yymoreO will cause the next part of the string, "de/, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor
mal processing".

The function yy/essO might be used to reprocess text in
various circumstances. Consider the C problem of distin
guishing the ambiguity of " =-a". Suppose it is desired
to treat this as " =- a" but print a message. A rule
might be

=- [a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless (yyleng- 1) ;
. . . action for =- . . .
l

which prints a message, returns the letter after the opera
tor to the input stream, and treats the operator as " =-".
Alternatively it might be desired to treat this as " = -a".
To do this, just return the minus sign as well as the letter
to the input:

=- [a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless (yyleng-2);
. . . action for = .. .
l

will perform the other interpretation. Note that the ex
pressions for the two cases might more easily be written

LEX-6

=-I [A-Za-zl

in the first case and

=/- [A-Za-z]

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
" =-3", however, makes

=-/ [" \t\n]

a still better rule.
In addition to these routines, Lex also permits access to

the I/0 routines it uses. They are :
1) input() which returns the next input character;
2) output(c) which writes the character c on the out

put; and
3) unput(c) pushes the character c back onto the in-

put stream to be read later by input().
By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexshf, which is described below under
"Character Set". These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + * ? or $ or containing I implies
lookahead. Lookahead is also necessary to match an ex
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup .

Another Lex library routine that the user will some
times want to redefine is yywrap() which is called when
ever Lex reaches an end-of-file. If yywrap returns a 1 ,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns 1 .

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard I/0 library routines, input,

output, unput, yywrap, and lexshf, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

S Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows :

1) The longest match is preferred.
2) Among rules which matched the same number of

characters, the rule given first is preferred.
Thus, suppose the rules

integer
[a-z] +

keyword action .. . ;
identifier action ... ;

to be given in that order. If the input is integers, it is tak
en as an identifier, because [a-z]+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .• dangerous. For exam
ple,

'.*'

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is
of the form

which, on the above input, will stop after 'first� The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres
sions like .• stop on the current line. Don't try to defeat
this with expressions like f.\nl+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some

LEX-7

Lex rules to do this might be

she s + +;
he h + +;
\n I

where the last two rules ignore everything besides he and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means "go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she { s+ + ; REJECT; }
h e {h + + ; REJECT; }
\n I

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he; in other cases, however,
it would not be possible a priori to tell which input char-
acters were in both classes.

·

Consider the two rules

a [bc] +
a [cd] +

{ . . . ; REJECT; }
{ . . . ; REJECT; }

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input aced agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di
gram to be incremented, the appropriate source is

%%
[a-z] [a-z] {digram [yytext {O]] [yytext [1]] + +; REJECT;}
\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

6 Lex Source Definitions.

Remember the format of the Lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei
ther in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.
As a side effect of the above, lines which begin
with a blank or tab, and which. c'ontain a com
ment, are passed through to the generated pro
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con
vention.

2) Anything included between lines containing only
%{ and %} is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %(and %} , and begining in column 1 , is as
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the [name} syntax in a rule. Using (D) for the digits
and (E) for an exponent field, for example, might abbre
viate rules to recognize numbers:

LEX-8

D
E
%%
{D} +
{D) +"." {D}* ({E}) '?
{D}*" ." {D} + ({E}) '?
{D} + {E}

[0-9]
[TEde] [- +] ? (D} +

printf("integer") ;
I
I

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ.I, which does not
contain a real number, a context-sensitive rule such as

[0-9] +/"."EQ printf("integer") ;

could be used in addition to the normal rule for integers.
The definitions section may also contain other com

mands, including the selection of a host language, a char
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These· possibilities are discussed below
under "Summary of Source Format:" section 12 .

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
1/0 libraries, one for C defined in terms of the C stan
dard library [6] , and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on OS/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor 1/0 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 1/0 li
brary, dependent on Fortran character 1/0, is quite slow.
In particular it reads all input lines as 80Al format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

file using a Ratfor host should begin with the "%R" com
mand.

UNIX. The libraries are accessed by the loader flags
-1/c for C and -1/r for Ratfor; the C name may be abbrevi
ated to -11. So an appropriate set of commands is

C Host Ratfor Host

lex source lex source
cc lex.yy.c -ll -lS rc -2 lex.yy.r -llr

The resulting program is placed on the usual file a. out for
later execution. To use Lex with Yacc see below.
Although the default Lex 1/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given, the
library can be avoided. Note the "-2" option in the Rat
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
"." library. The appropriate command sequences are:

C Host , Ratfor Host

./lex source ./lex source

.Icc lex.yy.c ./lexclib h = .Ire a = lex.yy.r ./lexrlib h =

The resulting program is placed on the usual file .program
for later execution (as indicated by the "h = " option) ; it
may be copied to a permanent file if desired. Note the
"a = " option in the Ratfor compile command; this indi
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver
sion, type

exec 'dot.lex.clist (lex) ' 'sourcename'
exec 'dot.lex.clist (cload)' 1ibraryname membername'

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in your file libraryname.LOAD(membername) as
a completely linked load module. The compiling com
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C
compiled Lex programs on the OS system. Even so, al
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clist (lex) ' 'sourcename'

LEX-9

exec 'dot.lex.clist (rload) ' 1ibraryname membername'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 1 50K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.
1 . Remove all tabs.
2. Change all lower case letters to upper case letters.
3 . Convert the file to an 80-column card image file.

· b. Process the Ratfor through the Ratfor preproces
sor to get Fortran code.

c. Compile the Fortran.
d. Load with the libraries 'hr289.1rl.load' and

'sys l .fortlib'. .
The final load module will only read input in SO-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Y ace •

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylex(), the name required by
Yacc for its analyzer. Normally, the default main pro
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylexO. In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc's names for tokens is to compile
the Lex output file as part of the Yacc output file by plac
ing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better" the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -II -IS

The Yacc library (-ly) should be loaded before the Lex li
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

LEX-10

%%
int k;

l0-91 + I
scanf(- 1 , yytext, "%d", &k) ;
if (k%7 = = 0)

printf("%d", k + 3);
else

printf("%d" ,k) ;

to do just that. The rule [0-9] + recognizes strings of di
gits; scant converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49. 63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%

- "? [0-9] +

- ? [0-9.] +

int k;
I
scanf(- 1 , yytext, "%d", &k);
printf("%d", k%7 = = 0 ? k+3 : k);
l
ECHO;

[A-Za-z] [A-Za-z0-9] + ECHO;

Numerical strings containing a " ." or preceded ·by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a ?b:c means "if a
then b else c" .

For an example of statistics gathering, here is a pro
gram which histograms the lengths of words, where a
word is defined as a string of letters.

%%
[a-z] +

\n
%%
yywrap()
(
int i;

int lengs[lOO];

lengs [yyleng] + +;
I

printf("Length No. words\n") ;
for (i =O; i< 100; i + +)

if (iengs fi] > 0)
printf("%5d% 10d\n" ,i ,lengs [i]);

return (1) ;
l

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return (I); indicates that Lex is to per
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con
tinue reading and processing. To provide a yywrap that

never returns true causes an infinite loop.
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes white space:

w [\tl*

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

ld) lol lul lbl ll l lel (W) (p) lrl lel lcl li l lsl (i) (o) (n) (
printf(yytext [0] = = 'd'? "real" : "REAL") ;
l

Care is taken throughout this prog�m to preserve the
case (upper or lower) of the original program. The condi
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica
tions to avoid confusing them with constants:

" [A 0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of A. There follow some rules to change double
precision constants to ordinary floating constants.

[0-9] + (W) (d) (W) [+-l ? IW} [0-9] + I
[0-9] + (W)"."IW) (d) (W) [+-l ? (W} [0-9] + I
"." IW) [0-9] + (W) {d) IW) [+-] ? (W) [0-9] + (

I * convert constants *I
for(p =yytext; *P ! = 0; p+ +)

I
if (*P = = 'd' I *P = = 'D')

*p = + 'e'- 'd';
ECHO;
l

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds 'e'-'d', which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here) .

LEX- 1 1

{d} {s} {i} {n}
{d} {c) (o} {s}
{d} {s} {q} {r} {t}
{d) {a} {t} {a} {n}

(d} {f} {l} {o} {a} {t} printf("%s",yytext + 1) ;

Another list of names must have initial d changed to ini
tial a:

{d) {l} {o) {g}
{d} {l} {o} {g} 10
{d} {m} {i } {n } 1
{d) {m} {a} {x} 1

I
I
I
{
yytext [OJ = + 'a' - 'd';
ECHO;
l

And one routine must have initial d changed to initial r.

{d) 1 {m} {a} {c} {h} {yytext [O) = + 'r' - 'd';

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick · up longer words as
identifiers and copy some surviving characters:

[A-Za-z) [A-Za-z0-9) *
[0-9) +
\n

I
I
I
ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex
ample, a compiler preprocessor might distinguish prepro
cessor statements and analyze them differently from ordi
nary statements. This requires sensitivity to prior con
text, and there are several ways of handling such prob
lems. The • operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
·a {flag = 'a'; ECHO; }
"b {flag = 'b'; ECHO;}
"c {flag = 'c'; ECHO;}
\n {flag = 0 ; ECHO;}
magic {

switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf("second") ; break;
case 'c': printf("third") ; break;
default: ECHO; break;
l
}

should be adequate.
To handle the same problem with start conditions, each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start name 1 name2 . . .

where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may be referenced at the head of a rule with the < >
brackets:

< name 1 >expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN name ! ;

which changes the start condition to name]. To resume
the normal state,

LEX- 1 2

BEGIN 0;

resets the initial condition of the Lex automaton inter
preter. A rule may be active in several start conditions:

< name 1 ,name2,name3 >

is a legal prefix. Any rule not beginning with the < >
prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
·a
'b
'c
\n
< AA > magic
< BB > magic
< CC > magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB; }
{ ECHO; BEGIN CC;}
{ECHO; BEGIN 0; }
printf("first") ;
printf ("second") ;
printf("third") ;

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user's code.

11 Character Set.

The programs generated by Lex handle character I/0
only through the routines input, output, and unput. Thus
the character representation provided in these .routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the I/0 rou
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine /exshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the I/0 library, the routine lexshf should
also be changed to a compatible version. The Ratfor li
brary I/0 system is arranged to represent the letter a as
in the Fortran value JHa while in C the letter a is
represented as the character constant 'a '. If this interpre
tation is changed, by providing I/0 routines which
translate the characters, Lex must be told about it, by giv
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con
taining only "%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
Thus the next example maps the lower ·and upper case
letters together into the integers 1 through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
1 A a

2 Bb

26 Zz

27 \n

28 +
29
30 0
3 1 1

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou
tines for input and output run almost unmodified on
UNIX, GCOS, and OS/370, they are not really machine
independent, and would not work with CDC or Bur
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A1 format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of
1) Definitions, in the form "name space transla

tion".

2) Included code, in the form "space code".
3) Included code, in the form

%{
code
%}

LEX- 1 3

4) Start conditions, given in the form

%S name 1 name2 . . .

5) Character set tables, in the form

%T
number space character-string

%T

6) A language specifier, which must also precede any
rules or included code, in the form "%C" for C
or "%R" for Ratfor.

7) Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an ar
ray size and x selects the parameter as follows:

Letter
p
n
e
a
k

Parameter
positions
states
tree nodes
transitions
packed character classes

o output array size

Lines in the rules section have the form "expression ac
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X
"x"
\x
[xy]
[x-z]
['x]

X
< y > x
x$
x?
X*
x +
xiY
(x)
x/y
{xx}
x{m,n}

the character "x"
an "x", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z .
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0, 1 ,2, . . . instances of x.
1 ,2 ,3 , . . . instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

13 Caveats and Bugs.

There are pathological expressions which produce ex
ponential growth of the tables when converted to deter
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non
supported features are REJECT, start conditions, or vari
able length trailing context, And any signifi<;:ant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Abo's string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

1 . B . W. Kernighan and D. M. Ritchie, The C Pro
gramming Language, Prentice-Hall, N. J. (1 978) .

2. B. W. Kernighan, Ratfor: A Preprocessor for a
Rational Fortran, Software - Practice and Experi
ence, 5 , pp. 395-496 (1 975) .

3. S. C. Johnson, Yacc: Yet Another Compiler Com
piler, Computing Science Technical Report No.
32, 1 975, Bell Laboratories, Murray Hill, NJ
07974.

4. A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975) .

5. B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No. 5, 1 972, Bell Laboratories,
Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 3 1 , Bell Labora
tories, Murray Hill, NJ 07974.

A Portable Fortran 77 Compiler

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran l.anguage has just been revised. The new language, known as For
tran 77, became an official American National Standard on April 3, 1 978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the first complete Fortran 77 system to be implemented.
This compiler is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNIXt systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the 1/0 system. An appendix describes the Fortran 77 language.

1 August 1 978

tUNIX is a Trademark of Bell Laboratories.

A Portable Fortran 77 Compiler

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1 . INTRODUCTION

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard [1] on April 3 , 1 978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1 966 Standard Fortran (2] . We
report here on a compiler and run-time system for the new extended language. The compiler
and computation library were written by SIF, the I/0 system by PJW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed to be port
able to a number of different machines, to be correct and complete, and to generate code com
patible with calling sequences produced by compilers for the C language [3] . In particular, it is
in use on UNrxt systems. Two families of C compilers are in use at Bell Laboratories, those
based on D . M. Ritchie's PDP- 1 1 compiler[4] and those based on S. C. Johnson's portable C
compiler [5] . This Fortran compiler can drive the second passes of either family. In this paper,
we describe the language compiled, interfaces between procedures, and file formats assumed by
the l/0 system. We will describe implementation details in companion papers.

1 . 1 . Usage

At present, versions of the compiler run on and compile for the PDP- 1 1 , the VAX-
1 1 /780, and the Interdata 8/32 UNIX systems. The command to run the compiler is

f77 flags file . . .

f77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f 77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

.f Fortran source file
.e EFL source file
. r Ratfor source file
.c C source file
.s Assembler source file
.o Object file

The following flags are understood:
-S Generate assembler output for each source file, but do not assemble it. Assem-

tUN IX is a Trademark of Bell Laboratories.

-c
-m

-f

-p
-o f
-w
-w66 ·
-0
-c
-one trip
-u

-u
-I2

-E
-R
-F

- 2 -

bier output for a source file x.f, x.e, x.r, or x.c is put on file x.s.
Compile but do not load. Output for x.f, x.e, x.r, x.c, or x.s is put on file x.o.

Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.
Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.
Generate code to produce usage profiles.
Put executable module on file f. (Default is a. out) .

Suppress all warning messages.
Suppress warnings about Fortran 66 features used.
Invoke the C object code optimizer.
Compile code the checks that subscripts are within array bounds.
Compile code that performs every do loop at least once. (see Section 2 . 10) .
Do not convert upper case letters to lower case. The default is to convert For
tran programs to lower case.
Make the default type of a variable undefined. (see Section 2.3) .
On machines which support short integers, make the default integer constants
and variables short. (-14 is the standard value of this option) . (see Section
2. 14) . All logical quantities will be short.
The remaining characters in the argument are used as an EFL flag argument.
The remaining characters in the argument are used as a Ratfor flag argument.
Ratfor and and EFL source programs are pre-processed into Fortran files, but
those files are not compiled or removed.

Other flags, all library names (arguments beginning -I) , and any names not ending with one of
the understood suffixes are passed to the loader.

1 .2 . Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1 .3 . Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler
intermediate code. Since there are C compilers running on a variety of machines, relatively
small changes will make this Fortran compiler generate code for any of them. Furthermore,
this approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The mathematical functions are computed to at least 63 bit
precision. The runtime 1/0 library makes use of D. M. Ritchie's Standard C I/0 package [8]
for transferring data. With the few exceptions described below, only documented calls are
used, so it should be relatively easy to modify to run on other operating systems.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences
briefly in the Appendix. The most important additions are a character string data type, file
oriented input/output st[ttements, and random access 1/0. Also, the language has been cleaned
up considerably.

In addition to implementing the language specified in the new Standard, our compiler
implements a few extensions described in this section. Most are useful additions to the

- 3 -

language. The remainder are extensions to make it easier to communicate with C procedures
or to permit compilation o� old (1 966 Standard) programs.

2.1 . Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

2.2. Internal Files

The Fortran 77 standard introduces " internal files" (memory arrays) , but restricts their
use to formatted sequential I/0 statements. Our 1/0 system also permits internal files to
be used in direct and unformatted reads and writes.

2.3. Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state
ment is integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an
implicit statement for over.riding this rule. As an aid to good programming practice, we
permit an additional type, undefined. The statement

implicit undefined(a-z)
turns off the automatic data typing mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the -u
compiler flag is equivalent to beginning each procedure with this statement.

2.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures.

2.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
"types" in type statements and in implicit statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro
cedure. Automatic variables may not appear in equivalence, data, or save statements.

2.6 . Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com
ment lines, the first five characters are the statement number, the next is the continuation
character, and the next sixty-six are the body of the line. (If there are fewer than
seventy-two characters on a line, the compiler pads it with blanks; characters after the
seventy-second are ignored) .
In order to make it easier to type Fortran programs, our compiler also accepts input in
variable length lines. An ampersand ("&") in the first position of a line indicates a con
tinuation line; the remaining characters form the body of the line. A tab character in one
of the first six positions of a line signals the end of the statement number and continua
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the compiler.
In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent
with ordinary UNIX system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the -U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of

- 4 -

the flag, keywords will only be recognized in lower case.

2.7 . Include Statement

The statement
include 'stuff '

is replaced by the contents of the file stuff. includes may be nested to a reasonable
depth, currently ten.

2.8. Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary con
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is o, the string is octal, with
digits 0-7. If the letter is z or x, the string is hexadecimal, with digits 0-9, a-f. Thus,
the statements

integer a (3)
data a I b'lO lO' , o '12 ' , z'a' I

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:
\n newline
\t tab
\b backspace
\f form feed
\0 null
\' apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)
\\ \
\x x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 110 system
recognize both the apostrophe (') and the double-quote (") . If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated
quote or backslash escapes.
Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to ease communication with C routines.

2 . 10. Hollerith

Fortran 77 does not have the old Hollerith (n h) notation, though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility
with old programs. In our compiler, Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state
ments.

2 . 11 . Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply
dimensioned array to be represented by a singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be different from 1 . Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1 . A warning message is

- 5 -

printed for each such incomplete subscript.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini
tial value is already past the limit value, as in

do 10 i = 2, 1
The 1 966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
-onetrip compiler flag causes non-standard loops to be generated.

2.13. Commas in Formatted Input

The 1/0 system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lengths given in the format statement.
Thus, the format

(i lO, f20 . 10, i4)
will read the record

-345, .05e-3 , 1 2
correctly.

2.14. Short Integers

On machines that support halfword integers, the compiler accepts declarations of type
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space as
a REAL variable; they are assumed to be of C type long int; halfword integers are of C
type short int.) An expression involving only objects of type integer*2 is of that type.
Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the -12 flag, all small integer constants will
be of type integer*2. If the precision of an integer-valued intrinsic function is not deter
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer*2 when the -I2 command flag is in effect) . When the -I2 option is in effect, all
quantities of type logical will be short. Note that these short integer and logical quantities
do not obey the standard rules for storage association.

2.15. Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations (or, and, xor,
and not) and for accessing the UNIX command arguments (getarg and iargc) .

3 . VIOLATIONS OF THE STANDARD

We know only thre ways in which our Fortran system violates the new standard:

3 . 1 . Double Precision Alignment

The Fortran standards (both 1 966 and 1 977) permit common or equivalence statements to
force a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,C"
equivalence (a(l) , b) , (a(4) ,c)

- 6 -

Some machines (e.g . , Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries� other machines (e.g., IBM 370) , run inefficiently if this
alignment rule is not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on some machines, it
would be necessary to use separate operations to move the upper and lower halves into
the halves of an aligned temporary, then to load that double precision temporary; the
reverse would be needed to store a result. We have chosen to require that all double pre
cision real and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to issue a diagnostic if the source code
demands a violation of the rule.

3.2. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter
nal. Code is correct if there are no character arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro
cessed. (Section 6.3 .2 in the Appendix.) The implementation uses seeks, so if the 'unit is
not one which allows seeks, such as a terminal, the program is in error. (People who can
make a case for using tl should let us know.) A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where sp�cifically required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is neces
sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

4.1 . Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2. Data Representations

The following is a table of corresponding Fortran and C declarations:
Fortran

integer*2 x
integer x
logical x
real x
double precision x
complex x
double complex X

character*6 x

short int x;
long int x;
long int x;
float x;
double x;

c

struct { float r, i; } x;
struct (double dr, di; } x;
char x [6] ;

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory) .

- 7 -

4.3. Return Values

A function of type integer, logical, real, or double precision declared as a C function that
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus,

complex function f(. . .)
is equivalent to

f (temp, . . .)
struct { float r, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character* 1 5 function g(. . .)
is equivalent to

"

g_ (result, length, . . .)
char result [] ;
long int length;

and could be invoked in C by
char chars [1 5] ;

g_(chars, 1 5L, . . .) ;
Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned value is undefined.) The state
ment

call nret(*l , *2, *3)
is treated exactly as if i t were the computed goto

goto (1 , 2, 3) , nret ()

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of
type character or that is a dummy procedure, an argument giving the length of the value is
passed. (The string lengths are long int quanti tie£ passed by value) . The order of arguments is
then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character•7 s
integer b{3)

call sam(f, b (2) , s)
is equivalent to that in

int fO ;
char s[7] ;
long int b [3] ;

sam_(f, &b[l l , s, OL, 7L) ;

- 8 -

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1 "
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major''*
order.

5. FILE FORMATS

5 .1 . Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran I/0 is based on "records". When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran 1/0 system' to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as 1 , the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran 1/0 statements. Each record is preceded
and followed by an integer containing the record's length in bytes.

The Fortran 1/0 system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The I/0 system is permissive and treats the record as
being extended by blanks. On output, the 1/0 system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an error, but
the only effect will be that the single record the user thought he wrote will be treated as more
than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran I/0 system uses only the facilities of the standard C 1/0 library, a widely
available and fairly portable package, with the following two nonstandard features: The 1/0 sys
tem needs to know whether a file can be used for direct 1/0, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there is a
routine canseek which determines if fseek will have the desired effect. Also, the inquire state
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathnameJ Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the I/0 system runs on the PDP- 1 1 , VAX- 1 1/780, and Interdata 8/32 UNIX sys
tems.

- 10 -

APPENDIX. Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1 966 [2] and the
1 977 [1] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1 977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the "/92" document. This draft Standard is writ
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1 . Features Deleted from Fortran 66

1 . 1 . Hollerith

All notions of "Hollerith" (n h) as data have been officially removed, although our com
piler, like almost all in the foreseeable future, will continue to support this archaism.

1 .2 . Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per
missible to jump out of the. range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2 . 1 . Blank Lines

Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external
name:

program work
Block data procedures may also have names.

block data stuff
There is now a rule that only one unnamed block data procedure may appear in a pro
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)
Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick

- 1 1 -

of calling one entry point with a large number of arguments to cause the procedure to
"remember" the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn't work in our
implementation, since arguments are not kept in static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point do variables is very dangerous ·because of the possibility of
unexpected roundoff, and we strongly recommend against their use) . The action of the
do statement is now defined for all values of the do parameters. The statement

do 10 i = I, u, d
performs max(O , l (u-1)/ d J) iterations. The do variable has a predictable value when
exiting a loop: the value at the time � goto or return terminates the loop; otherwise the
value that failed the limit test.

2.5 . Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in

subroutine s(a, * , b, *)
The meaning of the "alternate returns" is described in section 5 .2 of the Appendix.

3. Declarations

3 . 1 . CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character* 1 7 a, b (3,4)
character* (6 +3) c

If the length is omitted entirely, it is assumed equal to 1 . A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like

character* (*) a
(There is an intrinsic function len that returns the actual length of a character string) .
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac
ter of the preceding element, without holes.

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j ,
k , I , m, or n i s of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit real (a-c,g) , complex (w-z) , character*0 7) (s)
declares that variables whose name begins with an a ,b, c, or g are real, those beginning
with w, x, y, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.

- 1 2 -

3.3 . PARAMETER Statement

It is now possible to give a constant a symbolic name, as in
parameter (x = 17, y = x/3, pi = 3 . 1 4 1 59d0, s = 'hello')

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters) .

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in
1 966) . The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables !n common.

real a (-5:3 , 7, m:n) , b (n + 1 :2*n)
The upper bound on the last dimension of an array argument may be denoted by an aster
isk to indicate that the upper bound is not specified:

integer a(5, *) , b (*) , c (O: l , -2:*)

3.5 . SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined. , (The only exceptions are variables that have been defined
in a data statement and never changed) . These rules permit overlay and stack implemen
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, /b/, c
leaves the values of the variables a and c and all of the contents of common block b
unaffected by a return. The simple declaration

save
has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

3.6 . INTRINSIC Statement

All of the functions specified in the Standard are in a single category, "intrinsic func
tions", rather than being divided into "intrinsic" and "basic external" functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1 . Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos
trophe is to be included in a constant, it is repeated:

'abc'
'ain"t'

- 1 3 -

There are no null (zero-length) character strings in Fortran 77 . Our compiler has two
different quotation marks, " ' ' " and " " " . (See Section 2.9 in the main text.)

4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double
slash (" I/") . The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

'ab' // 'cd'
'abed'

are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which
a character string declared adjustable with a " * (*) " modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments) .

4.3. Character String A ssignment

The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a (i , j) (m:n)
is the string of (n- m+ l) characters beginning at the m 'h character of the character array
element a ,i. Results are undefined unless m � n . Substrings may be used on the left
sides of assignments and as procedure actual arguments.

4.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to
real or complex powers. (The principal part of the logarithm is used) . Also, multiple
exponentiation is now defined:

a**b**C = a ** (b**C)

4.6 . Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)
Constant expressions are permitted where a constant is allowed, except in data state
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power) . An adjustable
dimension may now be an integer expression involving constants, arguments, and vari
ables in B common . .
Subscripts may now be general integer expressions; the old c v ± c ' rules have been
removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and I/0 unit numbers may be general integer expressions.

- 14 -

S. Executable Statements

S .l . IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a
"Block If' . A Block If begins with a statement of the form

if (. . .) then
and ends with an

end if
statement. Two other new statements may appear in a Block If. There may. be several

else if(. . .) then
statements, followed by at most one

else
statement. If the logical expression in the Block If statement is true, the statements fol
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures) . A case construct may be rendered

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

else

end if

5 .2 . Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster
isk, as in

call joe G, * 10 , m, *2)

A return statement may have an integer expression, such as
return k

If the entry point has n alternate return (asterisk) arguments and if 1 � k � n , the return
is followed by a branch to the correspohding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Output

6 . 1 . Format Variables

A format may be the value of a character expression (constant or otherwise) , or be stored
in a character array, as in

write (6, ' (iS) ') x

- 1 5 -

6.2. END = , ERR= , and IOSTAT = Clauses

A read or write statement may contain end=, err=; and iostat= clauses, as in
write(6, 10 1 , err= 20, iostat=a(4))
read(5, 10 1 , err= 20, end= 30, iostat= x)

Here 5 and 6 are the units on which the 1/0 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during 1/0, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the 1/0 statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3. Formatted 1/0

6.3.1 . Character Constants

Character constants in formats are copied literally to the output. Character constants can
not be read into.

write (6, ' (i2 ," isn""t " , i l) ') 7, 4
produces

7 isn't 4
Here the format is the character constant

(i2, ' isn"t ' , i l)
and the character constant

isn't
is copied into the output.

6.3.2. Positional Editing Codes

t, tl, tr, and x codes control where the next character is in the record. tr n or nx specifies
that the next character is n to the right of the current position. tin specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon
sidered. tn says that the next character is to be character number n in the record. (See
section 3 .4 in the main text .)

6.3.3. Colon

A colon in the format terminates the I/0 openttion if there are no more data items in the
1/0 list, otherwise it has no effect. In the fragment

x = ' ("hello" , :, " there", i4) '
write (6, x) 1 2
write (6, x)

the first write statement prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I/0 system will not insert the optional plus signs, and
the s format code restores the default behavior of the I/0 system. (Since we never put

- 1 6 -

out optional plus signs, ss and s codes have the same effect in our implementation. >

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, i w. m. It is the same as i w, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case i w. 0 is
special, in that if the value being printed is 0, the output field is entirely blank. i w.l is
the same as i w.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with

· the implementation. (We do not print it.) There is a g w. d format code which is the same
as e w.d and fw. d on input, but which chooses .f or e formats for output depending. on the
size of the number and of d.

6.3.9. "A" Format Code

A codes are used for character values. a w use a field width of w, while a plain a uses the
length of the character item.

6.4. Standard Units

There are default formatted input and output units. The statement
read 1 0, a, b

reads from the standard unit using format statement 10. The default unit may be expli
citly specified by an asterisk, as in

read(*, 10) a,b
Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write (*, 10)

6.5. List-Directed Formatting

List-directed I/0 is a kind of free form input for sequential I/0. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c

- 1 7 -

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 1/0 list is not changed.
Values may be preceded by repetition counts, as in

4* (3. ,2.) 2*, 4*'hello'
which stands for 4 complex constants, 2 null values, and 4 string constants.
For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct 1/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access 110 statements.
Direct access read and write statements have an extra argument, rec= , which gives the
record number to be read or written.

read(2, rec = 13 , err = 20) (a(i) , i = l , 203)
reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below) . Dir�ct access
files may be connected for either formatted or unformatted 1/0.

6. 7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted 1/0 on
internal files. (1/0 is not a very precise term to use here, but internal files are dealt with
using read and write) . There is no list-directed 1/0 on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character*80 x
read(5," (a) ") x
read(x," (i3 , i4) ") n l ,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.
(We also support a compatible extension, direct 1/0 on internal files. This is like direct
1/0 on external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather infor
mation about units and files.

6.8.1 . OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open (1 , file = 'fort.junk')
open takes a variety of arguments with meanings described below.

- 1 6 -

out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw. m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case i w. 0 is
special, in that if the value being printed is 0, the output field is entirely blank. i w.l is
the same as i w.

6.3.8. Floating Point

On input, exponents may start. with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a g w.d format code which is the same
as ew.d and fw.d on input, but which chooses .f or e formats for output depending. on the
size · of the number and of d.

6.3.9. "A" Format Code

A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item.

6.4. Standard Units

There are default formatted input and output units. The statement
read 10, a, b

reads from the standard unit using format statement 10 . The default unit may be expli
citly specified by an asterisk, as in

read(*, 10) a,b
Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write (* , 10)

6.5. List-Directed Formatting

List-directed 1/0 is a kind of free form input for sequential I/0. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c

- 1 7 -

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma, and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the I/0 list is not changed.
Values may be preceded by repetition counts, as in

4* (3 . ,2 .) 2•, 4*'hello'
which stands for 4 complex constants, 2 null values, and 4 string constants.
For output, suitable formats are chosen for each item. The values of character strings are
printed� they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct 1/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access I/0 statements.
D irect access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.

read(2, rec = 13 , err= 20) (a (i) , i =;= l , 203)
reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below) . Dir�ct access
files may be connected for either formatted or unformatted I/0.

6. 7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted 110 on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write) . There is no list-directed 110 on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character*80 x
read(S,"(a) ") x
read(x," (i3 , i4) ") n l ,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.
(We also support a compatible extension, direct I/0 on internal files. This is like direct
I/0 on external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather infor
mation about units and files.

6 .8. 1 . OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open (1 , file = 'fort.junk')
open takes a variety of arguments with meanings described below.

- 1 8 -

unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, 0 through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

iostat= is the same as in read or write.

err= is the same as in read or write.

file = a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the
status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the file will be created if it
doesn't exist, or truncated if it does. The meaning of unknown is processor depen
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen
tial or direct 1/0.

form= formatted or unformatted.

reel= a positive integer specifying the record length of the direct access file being opened.
We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5 . 1 of the text.

blank= null or zero. This parameter has meaning only for formatted 1/0. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fiel9s are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simple example is

close (3, err= 17)

6.8 .3 . INQUIRE

The inquire statement gives information about a unit ("inquire by unit") or a file
(" inquire by file") . S imple examples are:

inquire (unit=3 , namexx)
inquire(file = 'junk', number= n, exist= l)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

iostat= , err= are as before.
exist= a logical variable. The logical variable is set to .true. if the file or unit exists and

is set to .false. o_therwise.
opened= a logical variable. The logical variable is set to .true. if the file is connected to

a unit or if the unit is connected to a file, and it is set to .false. ptherwise.

- 1 9 -

number= an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned .true. if the file has a name, or . false.
otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit) . The name will be the
full name of the file.

access = a character variable to which will be assigned the value 'sequential' if the con
nection is for sequential 1/0, 'direct' if the connection is for direct 1/0. The value
becomes undefined if there is no connection.

sequential= a character variable to which is assigned the value 'yes' if the file could be
connected for sequential 1/0, 'no' if the file could not be connected for sequential
1/0, and 'unknown' if we can't tell.

direct= a character variable to which is assigned the value 'yes' if the file could be con
nected for direct 1/0, 'no' if the file could not be connected for direct 1/0, and 'unk
nown' if we can' t tell.

form = a character variable to which is assigned the value 'formatted' if the file is con
nected for formatted 1/0, or 'unformatted' if the file is connected for unformatted
1/0.

formatted= a character variable to which is assigned the value 'yes' if the file could be
connected for formatted 1/0, 'no' if the file could not be connected for formatted
1/0, and 'unknown' if we can't tell.

unformatted= a character variable to which is assigned th� value 'yes' if the file could be
connected for unformatted 1/0, 'no' if the file could not be connected for unformat
ted 1/0, and 'unknown' if we can't tell.

reel= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value 'null' if null blank control is in
effect for the file connected for formatted 1/0, 'zero' if blanks are being converted to
zeros and the file is connected for formatted 1/0.

The gentle reader will remember that the people who wrote the standard probably weren't
thinking of his needs. Here is an example. The declarations are omitted.

openO, file= "/dev/console")
On a UNIX system this statement opens the console for formatted sequential 1/0. An inquire
statement for either unit 1 or file "/dev/console" would reveal that the file exists, is connected
to unit 1 , has a name, namely "/dev/console", is opened for sequential 1/0, could be connected
for sequential I/0, could not be connected for direct I/0 (can' t seek) , is connected for format
ted 1/0, could be connected for formatted 1/0, could not be connected for unformatted I/0
(can't seek) , has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.

The C version of R atfor is used on UNIX
and on the Honeywel l acos systems. C com
pi lers are not as widely avai lable as Fortran,
however, so there is also a Ratfor written in
i tself and originally bootstrapped with the C ver
sion. The Ratfor version was wri t ten so as to
translate in to the portable su bset of Fortran
described in [I] , so i t is portable, having been
run essential ly without change on at least twelve
dist inct machines. <The main restrictions of the
portable subset are: only one character per
machine word; subscripts in the form C* v ± c;
avoiding expressions in p laces l ike oo loops; con
sistency in subroutine argument usage, and in
COMMON declarations. R atfor i tself wi l l not gra
tui tously generate non-standard Fortran .)

The Ratfor version i s abou t 1 500 l i nes of
R atfor (compared to abo u t 1 000 l ines of C) ; this
compiles into 2500 l ines of Fortran. This expan
sion ratio is somewhat higher than average, s ince
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe
cu tion time of the R atfor version is dominated
by two rou tines that read and write cards.
C learly these routines could be replaced by
machine coded local versions; un less this is
done, the efficiency of other parts of the transla
tion process is largely irrelevant .

4. E X P E R I E N C E

Good Things

' " I t 's so much better than Fortran" is the
most common response of users when asked
how we l l Ratfor meets their needs. A lthough
cynics might consider this to be vacuous. i t does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad language
into qui te a reasonable one. assuming that For
tran data structures are adequate for the task at
hand.

A l though there are no quanti tative resu l ts.
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important . debugging
and subsequent revision are much faster than in
Fortran. Partly this is s imply because the code
can be read. The looping statements which test
at the top instead of the bottom seem to el im-

- 10 -

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course i t is
easy to do structured programming in Ratfor:
this self-discipl ine also con tributes markedly to
re liabi l i ty .

One in teresting and encouraging fact is
that programs wri t ten in Ratfor tend to be as
readable as programs written in more · modern
languages l ike Pascal . Once one is freed from
the shackles of Fortran 's clerical detail and rigid
input format, i t is easy to write code that is read
able, even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth [7) :

A (m + l) = X
for (i = L A (i) 1 = x: i + I)

if (i > m) {
m = i
B (i)

else
B (i) = B i i l + I

A large corpus (5400 l ines) of Ratfor. including
a subset of the Ratfor preprocessor i tself. can be
found in [8) .

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran. and in a few cases this may be difficu l t
to relate back to the offending Ratfor l ine. espe
cially if the implementation conceals the gen
erated Fortran. This problem could be deal t with
by tagging each generated l ine with some indica
tion of the sou rce line that created it. but this is
inherent ly implementation-dependent. so no
action has yet been taken. Error message
interpretation is actual ly not so arduous as might
be thought . S ince R atfor generates no variables.
on ly a s imple pattern of IF's and GOTo's. da ta
related errors l ike missing DI\1 E'JSION statements
are easy to find in the Fortran. Furthermore.
there has been a steady improvement in R atfor's
abi l i ty to catch trivial syn tactic errors l ike unbal
anced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance. especially to ne"'
users. For example. keywords are reserved.
This rarely makes any difference. except for
those hardy souls who want to use an Ari thmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor. and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protect ing every l ine with a

'%' is not really a complete solution. although it
serves as a stop-gap. The best long-term solu
tion is provided by the program. S truct [9] , which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is " unreadable"
because it is not tasteful ly formatted and con
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen
erated Fortran) . but i t has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success - since R atfor is relatively easy to
modify, there are now several dialects of R atfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects l ike code
generation.

5. CONCLUSIONS

R atfor demonstrates that with modest
effort i t is possible to convert Fortran from a bad
language into quite a good one. A preprocessor
is clearly a usefu l way to extend or ameliorate
the facil i ties of a base language.

When designing a language, i t is important
to concentrate on the essential requirement of
providing the user with the best language possi
ble for a given effort. One must avoid throwing
in "features" - things which the user may trivi
al ly construct within the existing framework.

One m ust also avoid getting sidetracked on
irrelevancies. For instance i t seems pointless for
Ratfor to prepare a neatly formatted listing of
either i ts input or i ts output . The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
I t is m uch more importan t that the language pro
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.

Acknowledgements

C. A. R . Hoare once said that "One thing
[the language designer] should not do is to
include untried ideas of his own . " R atfor follows
this precept very closely - everything in it has
been stolen from someone else. M ost of the
control flow structures are taken directly from
the language C [4] developed by Dennis R itchie;
the comment and contin uation conventions are
adapted from Al tran [I O] .

I a m grateful to S tuart Feldman, whose
patient sim ulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He

- l l -

also translated the C parse-tables and Y ACC
parser into Fortran for the first Ratfor version of
Rat for.

References

[!] B. G. Ryder, "The PFORT Verifier, "
So/iware- Practice & Experience. October
1 974.

[2] A merican National Standard Fortran.
American N ational Standards I nstitute,
New York, 1 966.

[3] For- word: Fortran Development Newsletter.

August 1 975 .

[4] B. W. Kernighan ana D. M. R i tchie, The C

Programming Language, Prentice-Hall , I nc . ,
1 978 .

[5] D . M . R itchie and K . L . Thompson, "The
UNIX Time-sharing System. " CA CM, J uly
1 974.

[6] S . C. Johnson, "Y ACC - Yet A nother
Compiler-Compiler. " Bell Laboratories
Computing Science Techn ical Report #32 .
1 978 .

[7] D . E . Knuth, "Structured Programming
with goto S tatements." Computing Surveys,

Decem ber I 974.

[8] B. W. Kernighan and P . J. Plauger.
Soli ware Tools. Addison-Wesley, 1 976.

[9] B . S . Baker, "Struct - A Program which
Structures Fortran", Bell Laboratories
internal memorandum, December I 975.

[I O] A . D . Hal l . "The Al tran System for
Rational F unction Manipulation - A Sur
vey ." CA CM, A ugust I 97 1 .

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRA CT

M4 is a macro processor available on UNIXt and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/1 and C ·since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

• arguments
• condition testing
• arithmetic capabilities
• string and substring functions
• file manipulation

This paper is a user's manual for M4.

July 1, 1 977

tUNIX is a Trademark of Bell Laboratories.

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1] .
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric "token" (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari
ous useful operations; in addition, the user

can define new macros. Built-ins and user
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage

On UNIX, use
m4 (files)

Each argument file is processed in order; if
there are no arguments, or if an argument is
' - ' , the standard input is read at that point.
The processed text is written on the stan
dard output, which may be captured for sub
sequent processing with

m4 (files) > outputfile

On GCOS, usage is identical, but the pro
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter) . stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,
define (N, 100)

if (i > N)

defines N to be 100, and uses this "symbolic

constant" in a later if statement.
The left parenthesis must immediately

follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by ' (' . it is
assumed to have no arguments. This is the
situation for N above� it is actually a macro
with no arguments, and thus when it is used
there need be no (. . .) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.
What happens if N is redefiried? Or,

to say it another way, is M defined as N or
as 100? In M4, the latter is true - M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 1 00� it's just as if
you had said

define(M, 100)

in the first place.
If this isn't what you really want, there

are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the .string N, so
when you ask for M later, you'll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100) .

- 2 -

Quoting

The more general solution is t<;> delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ' and ' is not expanded
immediately, but has the quotes stripped off.
If you say

defl.ne(N, 100)
define (M, 'N')

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out
put, you have to quote it in the input, as in

'define' = 1 ;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen�
that is, it is replaced by 100, so it's as if you
had written

define(lOO, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first
argument of a macro.

If ' and ' are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote ((,))

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine('N')

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine ('define')

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys
tems, so you can tell which one you're
using:

ifdefCunix' , 'define(wordsize,16)')
ifdef('gcos' , 'define(wordsize,36)')

makes a definition appropriate for the partic
ular machine. Don't forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdef('unix' , on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define (bump, $1 == $1 + 1)

generates code to increment its argument by
1 :

bump(x)

is
X = X + 1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

- 3 -

name itself is $0, although that is less com
monly used.) Arguments that are not sup
plied are replaced by null strings, so we can
define a macro cat which simply concaten
ates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus
cat (x, y, z)

is equivalent to
xyz

$4 through $9 are null, since no correspond
ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec
tion are discarded. All other white space is
retained. Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma "protected" by parenth�ses does not
terminate an argument. That is, in

define (a, (b ,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only) . The
simplest is incr, which increments its
numeric argument by 1 . Thus to handle the
common programming situation where you
want a variable to be defined as "one more
than N", write

define(N, 100)
define(N1, 'incr (N)')

Then N1 is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

unary + and -
** or A (exponentiation)
* I % (modulus)
+ -
= = ! = < < = > > =

(not)
& or && (logical and)
I or I I (logical or)

Parentheses may be used to group opera
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela
tion (like 1 >0) is 1 , and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
M to be 2** N + 1. Then

define(N, 3)
define(M, 'evaH2**N + t)')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number) ; it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include (filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude ("silent
include") says nothing and continues if it
can't access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com
mand. M4 maintains nine of these diver
sions, numbered 1 through 9. If you say

divert (n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-

- 4 -

mand; in particular, divert or divert (O)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd (date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns "yes" or "no" if they
are the same or different.

define(compare, 'ifelse($1, $2, yes, non

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse (a, b, c, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if d. is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse (a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abcdef)

is 6, and len ((a,b)) is 5 .
The built-in substr can be used to pro

duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero) , and is n charac
ters long. If n is omitted, the rest of the
string is returned, so

substrCnow is the time', 1)

is
ow is the time

If i or n are out of range, various sensible
things happen.

index (s1, s2) returns the index (posi
tion) in sl where the string s2 occurs, or
- 1 if it doesn't occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac
ter transliteration.

trans lit (s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit (s, aeiou, 12345)

- 5 -

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don't have an entry in t are deleted;
as a limiting case, if t is not present at all ,
characters from f are deleted from s. So

translit (s, aeiou)

deletes vowels from s.
There is also a built-in called dnl

which deletes all characters that follow it up
to and including the next newline; it is use
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the· end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert (- 1)
define(. . .)

divert

Printing

The built-in errprint writes its argu
ments out on the standard error file. Thus
you can say

errprint ('fatal error')

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

3 changequote (L, R)
1 define (name, replacement)
4 divert (number)
4 divnum
5 dnl
5 dumpdef('name', 'name', . . .)
5 errprint (s, s, . . .)
4 eva! (numeric expression)

- 6 -

3 ifdef('name', this if true, this if false)
5 if else (a, b, c, d)
4 include (file)
3 incr(number)
5 index (s 1 , s2)
5 len (string)
4 maketemp (. . . XXXXX . . .)
4 sin elude (file)
5 substr(string, position, number)
4 syscmd (s)
5 translit (str, from, to) ·
3 undefine ('name')
4 undivert (number,number, . . .)

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug Mcilroy, aqd especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve
ments. We are also deeply grateful to
Weythman for several substantial contribu
tions to the code.

References

[1] B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1 976.

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

A BSTRA CT

Sed is a non-interactive context editor that runs on the UNIXt operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perform multiple 'global' editing functions efficiently in one pass

through· the input.
This memorandum constitutes a manual for users of sed.

August 1 5 , 1 978

tUN IX i s a Trademark of Bell Laboratories.

Introduction

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Sed is a non-interactive context editor designed to be especially useful in three cases:
1) To edit files too large for comfortable interactive editing; \
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the

input.
Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.
Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.
The principal loss of functions comparetl to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation) , and lack of immediate verification that a command
has done what was intended.
Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac
tive and non-interactive operation, considerable changes -have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined) , if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem
blance between the two editors is in the class of patterns ('regular expressions') they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer's Manual [1] . (Both code and description were written by Dennis M. Ritchie .)

1 . Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1 . 1 below.
The general format of an editing command is:

[address l , address2] [function] [arguments]
One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.
Tab characters and spaces at the beginning of lines are ignored.

- 2 -

1 .1 . Command-line Flags

Three flags are recognized on the command line :
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after

s functions (see Section 3 .3) ;
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done On fact, before any input file is even opened) , all the editing com
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file) . The commands are com
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.
The default linear order of application of editing commands can be changed by the flow-of
control commands, t and b (see Section 3) . Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3 .6.) .

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

On no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command
2q

will quit after copying the first two lines of the input. The output will be :
In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES : Selecting lines for editing

Lines in the input file (s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.
The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (' { } ') (Sec. 3 .6.) .

- 3 -

2.1 . Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.
As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes (' / ') . The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex , � , at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign ' $' at the end of a regular expression matches the null character at the
end of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period ' . ' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk '* ' matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets ' [] ' matches any character in the string,

and no others. If, however, the first character of the string is circumflex , � , ,
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\(' and '\) ' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression '\d' means the same string of characters matched by an expression
enclosed in '\ (' and '\) ' earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of '\ (' counting from
the left. For example, the expression , �\ (. *\)\ 1 ' matches a line beginning with
two repeated occurrences of the same string.

1 1) The null regular expression standing alone (e.g., '//') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters C $. * [] \ /) as a literal (to match an occurrence of itself
in the input) , precede the special character by a backslash '\' .
For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1 , or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addr�sses than
the maximum allowed is considered an error.
If a command has no addresses, it is applied to every line in the input.
If a command has one address, it is applied to all lines which match that address.
If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

- 4 -

and the process is repeated.
Two addresses are separated by a comma.

Examples:

/an/
/an.*an/
ran/

matches lines 1 , 3, 4 in our sample text
matches line 1
matches no lines

I./ matches all lines
1\.1 matches line 5
/r*an/
/\ (an\) .*\ 1 /

matches lines 1 , 3 , 4 (number = zero !)
matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func
tion name, possible arguments enclosed in angles (< >) , an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3 . 1 . Whole-line Oriented Functions

(2)d -- delete lines
The d function deletes from the file (does not write to the output) all those
lines matched by its address(es) .
It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

(1)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

< text> -- append lines

(l) i\

The a function causes the argument < text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and < text > may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character ('\ ') immediately preceding the new
line. The < text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash) .
Once an a function is successfully executed, < text> will be written to the out
put regardless of wh&t later commands do to the line which triggered it. The
triggering line may be deleted entirely; < text> will still be written to the out
put.
The < text > is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

< text> -- insert lines

(2)c\

- 5 -

The i function behaves identically to the a function, except that < te((t > is
written to the output be.fore the matched line. All other comments about the a
function apply to the i function as well.

< text> -- change lines
The c function deletes the lines selected by its address (es) , and replaces them
with the lines in < text > . Like a and i, c must be followed by a newline hid
den by a backslash; and interior new lines in < text> must be hidden by
backslashes.
The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range ani deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and i, < text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.
After a line has been deleted by a c function, no further commands are
attempted on the corpse.
If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the
a or r functions. (The r function is described in Section 3 .4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The l ist of editing commands:
n
a\
xxxx
d

applied to our standard input, produces:
In Xanadu did Kubhla Khan
xxxx
Where Alph, the sacred river, ran
xxxx
Down to a sunless sea.

In this particular case, the same effect would be produced by ei ther of the two following com
mand lists:

n
i\
xxxx
d

n
c\
xxxx

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.
(2) s< pattern> < replacement> < flags > -- substitute

The s function replaces part of a line (selected by < pattern >) with < replace
ment> . It can best be read:

Substitute for < pattern > , < replacement>

·-

%fl))

- 6 -

The < pattern > argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above) . The only difference between < pattern> and a con
text address is that the context address must be delimited by slash ('/ ') charac
ters; < pattern> may be delimited by any charttcter other than space or new
line.
By default, only the first string matched by < pattern > is replaced, but see the
g flag below.
The < replacement> argument begins immediately after the second delimiting
character of < pattern> , and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)
The < replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in < replacement> . Instead, other char
acters are special:

& is replaced by the string matched by < pattern >
\d (where d is a single digit) is replaced by the ath substring matched

by parts of < pattern > enclosed in '\ (' and '\) ' . If nested sub
strings occur ·in < pattern> , the ath is determined by counting
opening del imiters ('\ (') .
As in patterns, special characters may be made literal by
preceding them with backslash ('\ ') .

The < flags > argument may contain the following flags:
g -- substitute < replacement> for aU (non-overlapping) instances of

< pattern > in the line. After a successful substitution, the
scan for the next instance of < pattern> begins just after the
end of the inserted characters; characters put into the line from
< replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w < filename > -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by < filename > . If
< filename > exists before sed is run, it is overwritten; if not, it
is created.
A single space must separate w and < filename > .
The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below) , combined.

- 7 -

E xamples:

The following command, applied to our standard input,
s/to/by /w changes

produces, on the standard output:
In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 'changes' :
Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:
s/ L , ; ? :1/*P&* /gp

produces:
A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:
/X/s/an/ AN/p

produces (assuming nocopy mode) :
In XANadu did Kubhla Khan

and the command:
/X/s/an/ AN/gp

produces:
In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2) p -- print
The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w < filename > -- write on < filename >
The write function writes the addressed lines to the file named by < filename > .
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.
Exactly one space must separate the w and < filename > .
A maximum of ten different files may be mentioned in write functions and w
flags after s ful}ctions, combined.

(l) r < filename > -- read the contents of a file
The read function reads the contents of < filename > , and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a

- 8 -

functions and the r functions is written to the output in the order that the func
tions are executed.
Exactly one space must separate the r and < filename > . If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Ex3mples

Assume that the file 'note 1 ' has the following contents:
Note : Kubla Khan (more properly Kublai Khan; 1 2 1 6- 1 294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:
/Kubla/r note l

produces:
In Xanadu did Kubla Khan

Note : Kubla Khan (more properly Kublai Khan; 1 2 1 6- 1 294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree :
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the ·
input.

(2)N -- Next line
The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline (s) .

(2) D -- Delete first part of the pattern space
Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline) , read another line from the input. In any case, begin the list of edit
ing commands again from its beginning.

(2)P -- Print first part of the pattern space
Print up to and including the first newline in the pattern space .

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

- 9 -

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.
(2) h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des
troying the previous contents of the hold area) .

(2) H -- Hold pattern space
The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area
The g function copies the contents of the hold area into the_ pattern space (des
troying the previous contents of the pattern space) .

(2)G - - Get contents of hold area
The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange
The exchange command interchanges the contents of .the pattern space and the
hold area.

Example

The commands
l h
ls/ did.*/ I
l x
G
s/\n/ :/

applied to our standard example, produce:
In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2) ! -- Don' t

. The Don 't command causes the next command (written on the same line) , to
be applied to all and only those input lines not selected by the actress part.

(2) { -- Grouping
The grouping command ' { ' causes the next set of commands to be applied (or
not applied) ·as a block to the input lines selected by the addresses of the group
ing command. The first of the commands under control of the grouping may
appear on the same line as the ' { ' or on the next line.

&illle-"'·w .w

- 10 -

The group of commands is terminated by a matching ' } ' standing on a line by
itself.
Groups can be nested.

(O) : < label > -- place a label
The label function marks a place in the list of editing commands which may be
referred to by b and t functions. The < label > may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2) b < label > -- branch to label
The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same < labe l> was encountered. If no colon function with
the same label can be found after all the editing commands have been com
piled, a compile time diagnostic is produced, and no execution is attempted.
A b function with no < labe l> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t < label > -- test substitutions
The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to < label > ; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by :

1) reading a new input line, or
2) executing a t function.

3. 7. Miscellaneous Functions

(1) = -- equals
The = function writes to the standard output the line number of the line
matched by its address.

(1)q -- quit

Reference

The q function causes the current line tp be written to the output (if it should
be) , any appended or read text to be written, and execution to be terminated.

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer 's Manual. Bell Labora
tories, 1978.

Awk - A Pattern Scann i ng and Processi ng Language
(Second Edit ion)

A l}iwl V. Aho

Brian W. Kemighan

Peter J. Weinberger

Bel l La bora tories

M urray H i l l , New J e rsey 07974

A BSTR A C T

A wk is a progra m m i ng language w hose basic o perat ion is t o search a set

of fi les for patterns, and to perform specified actions upon l i nes or fields of
l i nes which contain instances of those patterns. A wk makes certain data selec

tion and transformation operations easy to express; for exam ple, the a �rk pro
gram

length > 7 2

pri n ts a l l i n p u t l i nes whose lehgth exceeds 72 characters; t h e program

N F % 2 = = 0

prints a l l l i nes wi th an even n u m ber of fie lds; and the program

I $1 = log ($1) ; pr int l

replaces the fi rst field of each l i ne by i ts logari t h m .

A wk patterns may include arbitrary boolean com binations of reg u lar

ex pressions a n d of re lational o perators o n stri ngs, n u m bers, fields, variables,
and array eleme nts. Actions may incl ude the same pattern-matching co ns truc

t ions as in patte rns, as wel l as ari t h metic and string expressions and assign
ments, if-else, wh i le, for statements, and m u l t i ple o u t p u t streams.

This report contains a user's g u ide, a discussion of the design and im ple

mentation of a wk , and some t iming statist ics.

Septem ber 1, 1978

Awk - A Pattern Scann i ng and Proce s ing Language
(Second Edit ion)

A lfred V. A h a

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1 . I ntroduction
A wk is a programming language designed

to make many common information retrieval and
text manipulation tasks easy to state and to per
form.

The basic operation of a wk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action wi l l be performed on each
l ine that matches the pattern .

Readers fam iliar with the UNIXt program
grep I wil l recognize the approach , although in
a wk the patterns may be more general than in
grep , and the actions a l lowed are more involved
than merely printing the matching l ine . For
example, the a wk program

(print $3, $ 2)

prints the third a n d second columns o f a table in
that order. The program

$2 - /A l B IC/

prints a l l input l ines with an A , B , or C in the
second field. The program

$1 ! = prev (p rint ; p rev = $ 1 l
prints al l l ines i n which the first field is different
from the previous first field.

1 . 1 . Usage

The command

awk program [fi les]

executes the a wk commands in the string pro
gram on the set of named fi les, or on the stan
dard input if there are no fi les. The statements
can also be p laced in a fi le pfi le, and executed by
the command

tUN I X is a Trademark of Bel l Laboratories.

awk - f pfi le [files]

1 .2. Program Structure

A n a wk program is a sequence of state
ments of the form:

pattern
pattern

action
action

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next l ine is
fetched and the matching starts over.

Either the pattern or the action may be left
out. but not both. I f there is no action for a pat
tern, the matching l ine is simp ly copied to the
output. (Thus a line which matches several pat
terns can be printed several times.) If there is no
pattern for an action, then the action is per
formed for every input l ine. A l ine which
matches no pattern is ignored.

S ince patterns and actions are both
optional, actions must be enclosed in braces to
distingu ish them from patterns.

1 .3. Records and Fields

A wk input is divided into "records" ter
minated by a record separator. The default
record separator is a newline, so by defaul t a wk
processes its input a l ine at a time. The number
of the current record is avai lable in a variable
named NR.

Each input record is considered to be
divided into "fields. " Fields are normal ly
separated by white space - blanks or tabs - but
the input field separator may be changed, as
described below. Fields are referred to as $ 1 ,
$2, and so forth, where $ 1 is the first field, and
$0 is the whole input record itself. Fields may

be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument - Fe may also be used
to set FS to the character c .

I f t h e record separator i s empty, an empty
input l ine is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains the
name of the current input fi le .

1 .4. Print ing

A n action may have no pattern, in which
case the action is executed for all l ines. The
simplest action is to print some or al l of a record;
this is accomplished by the a wk command print.
The a wk program

(print)
prints each record, thus copying the input to the
output intact. M ore useful is to print a field or
fields from each record. For instance,

print $2, $ 1

prints the first two fields in reverse order. I tems
separated by a comma in the print statement will
be separated by the current output field separator
when output . I tems not separated by commas
will be concatenated, so

print $ 1 $2

runs the first a n d second fields together.

The predefined variables NF and NR can
be used; for example

(print NR, NF, $0)

prin ts each record preceded by the record
number and the number of fields.

Output may be diverted to mult iple files;
the program

(print $1 > "foo 1 "; pr int $2 > "foo2")
writes the first field, $ 1 , on the file faa 1 , and
the second field on file foo2. The > > notation
can also be used:

print $1 > > "faa"

appends the output to· the file faa. On each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 > $2

- 2 -

uses the contents of field 2 as a file name.

Naturally there is a l imit on the number of
output files; current ly i t is I 0.

Similarly, output can be piped into another
process (on UNIX only) ; for instance,

print I "mai l bwk"
mails the output to bwk.

The variables OFS and ORS may be used
to change the curren t output field separator and
output record separator. The output record
separator is appended to the output of the print
statement .

A wk also provides the printf statement for
output formatting:

pri ntf format expr, expr, . . .

formats the expressions in the list according to
the specification in format and prin ts them. For
example,

printf "%8.2f % 1 0ld\n", $ 1 , $2

prints $ 1 as a floating poinf number 8 digits
wide, with two after the decimal point, and $2 as
a 1 0-digit long decimal number, followed by a
newline. N o output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2. 1 . BEG I N and END

The special pattern BEG I N matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEG IN and END thus provide a way to gain con
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEG I N (FS = " :")
. . . rest of program . . .

O r t h e input lines may b e counted by

END (print NR)
If BEG I N is present, it must be the first pattern ;
END mu�t be the last if used.

2.2. Regu lar Expressions

The simplest regular expression is a l i teral
string of characters enclosed in slashes, like

/sm ith/

This is actually a complete a wk program which
will print all l ines which contain any occurrence
of the name "smith". If a l ine contains "smith"
as part of a larger word, it wil l also be printed, as
in

blacksm ith ing

A wk regular expressions include the regu
lar expression forms found in the U NIX text edi
tor ed l and grep (without back-referencing) . In
addition, a wk allows parentheses for grouping, I
for alternatives, + for "one or more", and ? for
"zero or one", all as in lex . Character classes
may be abbreviated: [a - zA - Z0 - 9] is the set
of all letters and digits. As an example, the a wk
program

/[Aa]ho I [Ww]einberger I [Kk]ern ighan/

will pr int all l ines which contain any of the
names "Aho ," "Weinberger" or " Kernighan , " '
whether capitalized or not.

Regu lar expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed . Within a regular expression,
blanks and the regular expression metacharacters
are significant . To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

1 \ 1 . *\11

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari
able matches a regular expression (or does not
matc;h it) with the operators - and ! - . The
program

$1 - /[jJ]ohn/

prin ts al l l ines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "St. Johnsbury" , and so on.
To restrict it to exactly [jJ]ohn , use

$1 - r [jJ]ohn$/

The caret · refers to the beginning of a l ine or
field: the dollar sign $ refers to the end.

2.3. Relationa l Expressions

An a wk pattern can be a relational expres
sion involving the usual relational operators < ,
< = , = = , ! = , > = , and > . A n example is

- 3 -

$2 > $ 1 + 1 00

which selects lines where the second field is at
least 1 00 greater than the first field. Similarly,

NF % 2 = = 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 > = "s"

selects lines that begin with an s, t, u , etc. In
the absence of any other information, fields are
treated as strings, so the program

$ 1 > $2

will perform a string comparison .

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators I I (or) , &&
(and) , and ! (not) . For example,

$1 > = "s" & & $1 < "t" & & $1 ! = "smith"

selects l ines where the first field begins with "s",
but is not "smith". & & and I I guarantee that
their operands will be evaluated from left to
right: evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may
a lso consist of two patterns separated by a
comma, as in

pat1 , pat2 (... l
In this case, the action is performed for each line
between an occurrence of pat1 and the next
occurrence of pat2 (inclusive) . For example,

/start/, /stop/

prints all l ines between start and stop, while

NR = = 1 00, NR = = 200 (... l
does the action for lines 1 00 through 200 of the
input.

3. Actions

An a wk action is a sequence of action
statements terminated by newlines or semi
colons. These action statements can be used to
do a variety of bookkeeping and string manipu
lating tasks.

3. 1 . Bu i lt- in Functions

A wk provides a " length" function to com
pute the length of a string of characters. This
program prints each record, preceded by its
length:

{ print length, $01

length by itself is a "pseudo-variable" which
yields the length of the current record;
length (argument) is a function which yields the.
length of its argument, as in the equivalent

{ prfnt length ($0), $01

The argument may be any expression.

A wk also provides the arithmetic functions
sqrt, log, exp, and i nt, for square root, base e
logarithm, exponential, and integer part of their
respective arguments .

The name of one o f these bui lt-in func
tions, witho u t argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 1 0 II length > 20

prints lines whose length is less than l 0 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
I) and is at most n characters long. I f n is omit
ted, the substring goes to the end of s. The
function index(s 1 , s2) ret urns the position
where the string s2 occurs in s 1 , or zero if i t
does not.

The function sprintf (f, e 1 , e 2, ...) produces
the value of the expressions e 1 , e2, etc., in the
printf format specified by f . Thus, for example,

x = sprintf("%8.2f 0/o1 Old", $ 1 , $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign
ments

A wk variables take on numeric (floating
point) or string values according to context. For
example, in

X = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. S trings are converted to
numbers and vice versa wfienever context
demands i t . For instance,

X = "3" + "4"

assigns 7 to x. Strings which cannot be inter-

- 4 -

preted as numbers in a numerical context will
generally have n umeric value zero, but it is
unwise to count on this behavior.

By default , variables (other than b uilt-ins)
are initialized to the nul l string, which has
n umerical value zero; this el iminates the need
for most BEG I N sections. For example, the
sums of the first two fields can be computed by

{ s 1 + = $ 1 ; s2 + = $2 I
END { print s 1 , s2 I

Arithmetic is done internally in floating
point. The arithmetic operators are +, -, * , I,
and % (mod) . The C increment + + and decre
ment - - operators are a lso available, and so
are the assignment operators + =, - = , * = ,
I = , and % = . These operators may al l be used
in expressions.

3.3. Field Variables

Fields in a wk share essentially all of the
properties of variables - they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace tne first field
with a sequence number like this:

{ $1 = NR; print I

or accumulate two fields into a th ird, like this:

{ $1 = $2 + $3; print $0 I

or assign a string to a field:

if ($3 > 1 000)
$3 = "too big"

print

which replaces the third field by " too big" when
it is, and in any case prints the record.

Field references may be numerical expres
sions, as in

[print $i , $ (i + 1) , $ (i + n) I

W hether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 = = $2) ...

fields are treated as strings.

Each input l ine is split into fields au tomati
cally as necessary. It is also possible to split any
variable or string into fields:

n = spl it (s, array, sep)

splits the the string s into array[1] , . . . , array[n] .
The number of elements found is returned. If
the sep argument is provided, i t is used as the
field separator; otherwise FS is used as the
separator.

3.4. Str ing Concatenation

Strings may be concatenated. For example

length ($ 1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

prints the two fields separated by " is " Vari
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array e lements are not declared; they
spring into existence by being mentioned. Sub
scripts may have any non-nul l value, including
non-numeric strings. As an example of a con
ventional n umeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the a wk pro
gram

(x [NR] = $0 l
END (. . . program . . . l

The first action merely records each input line in
the array x.

Array elements may be named by · non
numeric values, which gives a wk a capabil ity
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro
gram

/apple/
/orange/
END

(x ["apple"] + + l
[x ["orange"] + + l
(print x ["apple"] , x ["orange"]

increments counts for the named array elements,
and prints them at the end of the input .

.3.6. Flow-of-Control Statements

A wk provides the basic flow-of-control
statements if-else, whi le , for, and statement
grouping with braces, as in C. We showed the i f
statement in section 3.3 without describing it .
The condition in parentheses is evaluated; if it is
true, the statement fol lowing the if is done. The
else part is optional.

The while statement is exactly l ike that of
C. For example, to prin t al l input fields one per
l ine,

- 5 -

i = 1
whi le (i < = N F) [

print $ i
+ + i

The for statement is also exactly that of C:

for (i = 1 ; i < = NF; i + +)
print $ i

does the same job as the whi le statement above.

There is an alternate form of the for state
ment which is sui ted for accessing the elements
of an associative array:

for (i in array)
statement

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos wil l ensue if i is
altered, or if any new elements are accessed dur
ing the loop.

The expression in the condition part of an
if, wh i le or for can include relational operators
like < , < = , > , > = , = = (" is equal to") , and
! = ("not equal to") ; regular expression matches
with the match operators - and +- ; the logical
operators I I , & & , and ! ; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing whi le or for; the con
t inue statement causes the next iteration to
begin.

The statement next causes a wk to skip
immediately to the next record and begin scan
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in a wk pro
grams: they begin with the character # and end
with the end of the line, as in

pri nt x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep , the first and sim
plest, merely prints al l l ines which match a single
specified pattern. Egrep provides more general
patterns, i .e . , regular expressions in fu l l general
ity; fgrep searches for a set of keywords with a
particularly fast algorithm. Sed l provides most
of the editing faci l i t ies of the editor ed, applied
to a stream of input . None of these programs
provides numeric capabil it ies, logical relations, or
variables.

Lex3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabil i ties. The use of lex , however,
requires a knowledge of C programmi ng, and a
lex program m ust be compi led and loaded before
use, which discourages its use for one-shot appli
cations.

A wk is an attempt to fill in another part of
the matrix of possibi l i t ies. I t provides general
regular expression capabil i t ies and an implicit
input/output loop. B u t i t also provides con
venient numeric processing, variables, more gen
eral selection, and control flow in the actions. I t
does not require compilation or a knowledge of
C . Finally, a wk provides a convenient way to
access fields within l ines; it i s u nique in this
respect.

A wk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and n u meric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

M ost of the effort in developing a wk went
into deciding what a wk should or shou ld not do
(for instance, i t doesn ' t do string substitu tion)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ
ing or debugging the code. We · have tried to
make the syntax powerful but easy to use and
well adapted to scanning fi les. For example, the
absence of declarations and implicit init ializa
tions, while probably a bad idea for a general
purpose programming language, is desirable in a
language that is meant to be used for tiny pro
grams that may even be composed on the com
mand line.

In practice, a wk usage seems to fal l into
two broad categories. One is what m ight be
called "report generation" - processing an input
to extract counts, sums, sub-totals, etc . This
also includes the writ ing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

- 6 -

5. I m p lementation

The actual implementation of a wk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc ;4 the lexical analysis is done
by lex; the regular expression recognizers are
determin ist ic fini te automata constructed directly
from the expressions. An a wk program is
translated into a parse tree wh ich is then directly
executed by a s imple interpreter.

A wk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP- I I /70 of the UNIX
programs we , grep , egrep , fgrep , sed , lex , and
a wk on the following simple tasks:

I . count the number of lines.

2. print all lines containing "doug".

3 . prin t all l ines containing ' 'doug", "ken"
or "dmr".

4. print the third field of each l ine.

5 . prin t the third and second fields of each
line, in that order.

6. append all l ines contammg "doug",
"ken", and "dmr" to files "jdoug",
"jken ", and "jdmr", respectively.

7 . print each line prefixed by "l ine-
number : ".

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input; we have already men
tioned the others. In all cases ·the input was a
file containing I 0,000 lines as created by the
command Is -1; each line has the form

- rw - rw - rw - 1 ava 1 23 Oct 1 5 1 7 :05 xxx

The total length of this input is 452 ,960 charac-
ters. Times for lex do not include com pile or
load.

As might be expected, a wk is not as fast
as the specialized tools we , sed , or the programs
in the grep family, but is faster than the more
general tool lex . In all cases, the tasks were
about as easy to express as a wk programs as pro
grams in these other languages; tasks involving
fields were considerably easier to express as a wk
programs. Some of the test programs are shown
in a wk , sed and lex .

References

1 . K. Thompson and D. M . R itchie, Ui\'1,\
Programmer 's Manual. Bell Laboratories
(M ay 1 97 5) . Sixth Edition

2. B . W. Kern ighan and D. M. R itchie. The C
Programming Language, Prentice-Hal l ,
Englewood C liffs, New Jersey (1 97 8) .

3 . M . E . Lesk, "Lex - A Lexical A nalyzer
Generator," Camp. Sci. Tech. Rep. No.
39, Bel l Laboratories, M urray H i l l , New
Jersey (October 1 9 75) .

4. S . C . Johnson, " Yacc - Yet A nother
Compiler-Compiler, " Camp. Sci. Tech.
Rep. No. 32, Bell Laboratories, M urray
H il l , New Jersey (Ju ly 1 9 75) .

- 7 -

•• .til

Program 2
we 8 .6

grep 1 1 . 7 1 3 . 1
egrep 6.2 1 1 .5
fgrep 7 .7 1 3 .8

sed 1 0.2 1 1 .6
lex 65 . 1 1 50 . 1

a wk 1 5 .0 25.6

3

1 1 .6
1 6 . 1
1 5 .8

1 44.2
29.9

- 8 -

Task
4

29.0
67.7
33 . 3

5

30.5
70.3
38 .9

6 7 8

1 6. 1
1 04.0 8 1 . 7 92.8
46.4 7 1 .4 3 1 . 1

Table I . Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are
shown below. The lex programs are generally
too long to show.

AWK:

1 . END ! print N R)

2. /doug/

3. /ken ldoug ldmr/

4. (pr int $3)

5. (print $3, $ 2)

6. /ken/ ! pr int > "jken" l
/doug/ ! print > "jdoug")
/dmr/ ! pr int > "jdmr")

7. (print NR " : " $0)

8. ! sum = su m + $4)
END ! print sum)

SED:

1 . $ =

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dm r/p
/dmr/d

4 . / [" 1 * [1 * [' 1 * [].\ ([' 1 *\) .*lSI I\ 1 /p

5. ![' 1* [] .\ ([' J .\) [] .\ ([" 1*\) .*ISII\ 2 \1 /p

6 . /ken/w jken
/doug/w jdoug
/dmr/w jdmr

LEX:

1 . % !
int i ;
%)
% %
\n i + + ;

%%
yywrap() I

printf ("%d\n" , i) ;

2. %%
· .*dOUg.*$

\n

printf("%s\n" , yytext) ;

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmetic. It has provi
sion for manipulating scaled fixed-point numbers and for input and output in ,
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

November 1 5 , 1978

tUNIX is a Trademark of Bel l Laboratories.

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNixt time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A - F which are treated as digits with values 10 - 1 5
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ - * % A

The top two values on the stack are added (+) , subtracted (-) , multiplied (*) , divided
(/) , remaindered (%) , or exponentiated n . The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.

SX

lx

- 2 -

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the l is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command l and is treated
as an error by the command L.

d

p

f

X

I . . . I

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi
talized, the top value on the stack is popped and the string execution level is popped by
that value.

< x > x =x ! < x ! > x ! = x

v

c

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

All values on the stack are popped; the stack becomes empty.

i

0

k

z

?

- 3 -

The top value on the stack is popped and used as the number radix for further input: If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 1 6.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation.. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 1 00 stored one digit per byte (centennial digits) . The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 1 57 is 57, 1 . After any arithmetic operation on a number, care is taken that all
digits are in the range 0 - 99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 1 00's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always - 1 and all other digits are in the range 0- 99. The digit preceding the high order - 1
digit is never a 99. The representation of - 1 57 is 43,98, - 1 . We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1 , 3
where the scale has been italicized to emphasize the fact that i t is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic s!ring storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca
tor and DC is done via pointers to these headers.

- 4 -

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. S ince all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in [2] .

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a serLes of read or write calls. The
write pointer is interpreted as the end of the iriformation-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99, - 1 by the digit - 1 . In any case, digits which are not in the range
0 - 99 must be brought into that range, propagating any carries or borrows that result.

- 5 -

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1 . If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

·

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.

- 6 -

Input Conversion and B ase

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A - F correspond to the
numbers 1 0 - 1 5 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the · stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed .. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It wil l work correctly for any base. The command 0 pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output�
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis
ters with the commands s and I. The command sx pops the top of the stack and stores the
result in register x. x can be any character. lx puts the contents of register x on the top of the
stack. The I command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in I J pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers - Programming DC

The load and store commands together with II to store strings, x to execute and the test
ing commands ' < ' , ' > ' , ' = ' , ' ! < ' , ' ! > ' , ' ! = ' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com
mands compare the top two elements on the stack and if the relation holds, execute the register

e that follows the relation. For example, to print the numbers 0-9,

[lip 1 + si li l O > a] sa
Osi lax

- 7 -

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
I also work on registers but not as push-down stacks. 1 doesn't effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into ·the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com

mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general 'PUrpose pro
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket L ..] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1 . 5 and 3 . 5 17 , it seemed reasonable
to give him the result 5.0 1 7 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user

- 8 -

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References

[1] L . L. Cherry, R. Morris, BC - A n A rbitrary Precision Desk-Calculator Language.

[2] K. C. Knowlton, A Fast Storage A /locator, Comm. ACM 8, pp. 623-625 (Oct. 1965) .

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the. PDP- 1 1 under the UNIXt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely· large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage all�cator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundn�d-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are
to do computation with large integers,
to do computation accurate to many decimal places,
conversion of numbers from one base to another base.

November 1 2, 1978

tUNIX is a Trademark of Bell Laboratories.

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precisiOn arithmetic on the UNIXt

time-sharing system [1] . The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility. ·

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal . Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limi.t on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2] . Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714

the program responds immediately with the line
428571

The operators - , *, I , %, and � can also be used� they indicate subtraction, multiplication, divi
sion, remaindering, and exponentiation, respectively. Division of integers produces an .integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the 'unary' minus sign) . The expression

7 + - 3

is interpreted to mean that - 3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with � having the greatest binding power, then * and % and I, and finally + and
- . Contents of parentheses are evaluated before material outside the parentheses . Exponen
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is a Trademark of Bell Laboratories.

a�b�c and a� (b�c)
are equivalent, as ar� the two expressions

a*b*c and (a*b) *c

- 2 -

BC shares with Fortran and C the undesirable convention that
a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x = x + J
has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an = , the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below) . The lines

x = sqrt (1 9 1)
X

produce the printed result
1 3

Bases
There are special internal quantities, called 'ibase' and 'obase' . The contents of 'ibase' ,

initially set to 1 0, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
1 1

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 1 0
Because the number 1 0 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A - F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10- 1 5 respectively. The
statement

ibase = A
will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 1 6.

The contents of 'obase' , initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line

- 3 -

3E8
which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting 'obase' to 1 00000. Strange (i .e. 1 , 0, or negative) output bases are han
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i .e . , more than 1 00 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that ' ibase' and 'obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity 'scale' . The seale of a quotient is the contents of the internal quantity 'scale' .
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled' as if the implit�d multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu
ment and the contents of 'scale' .

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale' , 'ibase' , and 'obase' can be used in expressions just like
other variables. The line

scale = scale + 1
increases the value of 'scale' by one, and the line

scale
causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are not equal to 1 0. The internal computa
tions (which are still conducted in decimal, regardless of t\le bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col
lide with simple variable names. Twenty-six different defined functions are permitted in addi
tion to the twenty-six variable names. The line

- 4 -

define a (x) l
begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace } . Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form
auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a ·value on entry to the function. An example of a function definition is

define a (x ,y) (
auto z
z = x*y
return (z)

The value of this function, when called, will be the product of its two arguments.
A function is called by the appearance of its name followed by a string of arguments

enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b () .

If the function a above has been defined, then the line
a(7,3 . 1 4)

would cause the result 2 1 .98 to be printed and the line
x = a (a (3,4) , 5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element) . The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 204 7.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

f(a [])
define f(a[])
auto a []

- 5 -

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The 'if' , the 'while', and the 'for' statements may be used to alter the flow within pro
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

or

if(relation) statement
while (relation) statement
for (expression 1 ; relation; expression2) statement

if(relation) {statements}
while (relation) {statements}
for (expression 1 ; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form
x > y

where two expressions are related by one of the six relational operators < , > , < = , > = ,
= = , or ! = . The relation ;... = stands for 'equal to' and ! = stands for 'not equal to' . The
meaning of the remaining relational operators is clear.

BEWARE of using = instead of = = in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a comparison.

The 'if' statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con
trol passes to the next statement beyond the range of the while.

The 'for' statement begins by executing 'expression ! ' . Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested, and so on. The typical use of the 'for' statement is for a controlled itera
tion, as in the statement

for (i = l ; i < = lO; i =i + l) i
which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n) {
auto i, x
x = l
for (i = l ; i < =n; i =i + l) x =x*i
return (x)
}

The line
f(a)

- 6 -

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers) .

define b (n,m) {
auto x, j
x = l
for(j = l ; j < =m; j =j + l) x =x* (n -j + l)/j
return (x)
}

The following function computes values of the exponential function by summing the appropri
ate series without regard for possible truncation errors:

scale = 20
define e (x) {

auto a , b , c , d , n
a = 1
b = 1
c = 1
d = O
n = 1
while (l = = l) {

Some Details

a = a*x
b = b*n
c = c + alb
n = n + 1
if(c = =d) return (c)
d = c

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any
where that an expression can. For example, the line

(x =y + 1 7)
not only makes the indicated assignment, but also prints the resulting value .

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a [i = i + 1]
causes a value to be assigned to x and also increments i before it is used as a subscript.

The follo.wing constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

x =y =z is the same as
x = + y
x = - y
X = * y
X =/ y
X =% y
X =� y
x + +
x - -
+ +x
- -x

- 7 -

x = (y =z)
x = x +y
x = x -y
x = x*y
x = x/y
x = x%y
x = x�y
(x = x + 1) - 1
(x = x - 1) + 1
x = x + 1
x = x - 1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x = -y and x = -y. The first replaces x by x - y and the second by -y.

Three Important Things

1. To exit a BC program, type 'quit ' .
2. There is a comment convention identical to that of C and of PL/1. Comments begin

with '/*' and end with ' */ ' .
3 . There i s a library of math functions which may be obtained by typing at command level

be -1
This command will load a set of library functions which, at the time of writing, consists of sine
(named 's') , cosine ('c') , arctapgent ('a') , natural logarithm ('1') , exponential ('e') and Bessel
functions of integer order ('j (n,x) ') . Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical l ibrary routines is discussed elsewhere [3] .

If you type
be file . . .

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in Y ACC [4] ; its original version was written by S. C. Johnson.

References

[1] K . Thompson and D. M. Ritchie, UNIX Programmer 's Manual, Bell Laboratories, 1 978.
[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1 978.
[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories

internal memorandum, 1 975.
[4] S. C. Johnson, YA CC - Yet A nother Compiler-Compiler. Bell Laboratories Computing Sci

ence Technical Report #32, 1 978.
[5] R. Morris and L. L . Cherry, DC - An Interactive Desk Calculator.

- 8 -

Appendix

1. Notation

In the following pages syntactic categories are in italics; literals are in bold; material in
brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state
ments.

2.1 . Comments

Comments are introduced by the characters I* and terminated by *I.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047 . Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of i<jentifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade
cimal digits A- F are also recognized as digits with values 1 0 - 15 , respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

- 9 -

3 . 1 . Primitive expressions

3 . 1 . 1 . Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3 . 1 . 1 . 1 . identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3 . 1 . 1 .2 . array-name (expression I
Array elements are named expressions. They have an initial value of zero.

3 .1 . 1 .3 . scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3 .1 .2 .1 . function-name ([expression [, expression . . .]])
A function call consists of a function name followed by parentheses contain{ng a comma

separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3 .1 .2 .2 . sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3 . 1 .2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3 .1 .2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3 . 1 .3 . Constants

Constants are primitive expressions.

3 . 1 .4 . Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

- 10 -

3.2. Unary operators

The unary operators bind right to left.

3.2 .1 . - expression

The result is the negative of the expression.

3.2 .2 . + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. - - named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

3.2.5 . named-expression - -
The named expression is decremented by one. The result is the value of the named

expression before decrementing.

3.3 . · Exponentiation operator

The exponentiation operator binds right to left.

3.3 .1 . expression A expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso
lute value of the right expression, then the scale of the result is:

min (axb, max (scale, a))

3.4. Multiplicative operators

The operators * , I, % bind left to right.

3.4. 1 . expression * expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a +b, max (scale, a, b))

3.4.2. expression I expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre
cisely, a%b is a- alb*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

• 1 1 •

3.5. Additive operators

The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression = + expression

3.6.3. named-expression = - expression

3.6.4. named-expression = * expression

3.6.5. named-expression = I expression

3.6.6. named-expression = % expression

3.6. 7. named-expression =A expression

The result of the above expressions is equivalent to "named expression = named expres
. sion OP expression", where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression < = expression

4.4. expression > = expression

4.5. expression = = expression

4.6. expression ! = expression

«lw

- 1 2 -

5. Storage classes

There are only two storage classes in BC, global and automatic (local) . Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PLII.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6 .1 . Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur
rounding them with { } .

6.3. Quoted string statements

"any string"
This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5 . While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execu
tion of the statement.

6.6. For statements

for (expression ; relation ; expression) statement

The for statement is the same as
first-expression
while (relation) {

statement
last-expression

All three expressions must be present.

6. 7 . Break statements

break

- 1 3 -

break causes termination of a for or while statement.

6.8. Auto statements

auto ident(fier [,ident(fier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol
lowing the array name by empty square brackets. The auto statement must be the first state
ment in a function definition.

6.9. Define statements

define([parameter [,parameter . . .]]) {
statements)

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return (expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return (0) . The result of the
function is the result of the expression in parentheses.

6 .11 . Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

0. Introduction

UNIXt Assembler Reference Manual

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This document describes the usage and input syntax of the UNIX PDP- 1 1 assembler as.
The details of the PDP- 1 1 are not described.

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler
PAL- l l R, although its internal workings and output format are unrelated. It may be useful to
read the publication DEc- 1 1 -ASDB-D, which describes PAL- 1 1 R, although naturally one must use
care in assuming that its rules apply to as.

As is a rather ordinary assembler without macro capabilities. It produces an output file
that contains relocation information and a complete symbol table; thus the output is acceptable
to the UNIX link-editor /d, which may be used to combine the outputs of several assembler runs
and to obtain object programs from libraries. The output formal has been designed so that if a
program contains no unresolved references to external symbols, it is executable without further
processing.

1 . Usage

as is used as follows:
as [- u] [- o outpur] {ile 1 • • •

If the optional " - u" argument is given, all undefined symbols in the current assembly will be
made undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs
may be written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.out in the current directory;
the " - o" flag causes the output to be placed on the named file. If there were no unresolved
external references, and no errors detected, the output file is marked executable; otherwise , if
it is produced at all , it is made non-executable.

2. Lexical conventions

Assembler tokens include identifiers (alternatively, "symbols" or "names") , temporary
symbols, constants, and operators.

2 .1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period " . " ,
underscore "_" , and tilde " - " as alphanumeric) of which the first may not be numeric. Only
the first eight characters are significant. When a name begins with a tilde, the tilde is discarded
and that occurrence of the identifier generates a unique entry in the symbol table which can

,tii¥:% match no other occurrence of the identifier. This feature is used by the C compiler to place
r�ff@?'

t UNIX is a Trademark of Bell Laboratories.

- 2 -

names of local variables in the output symbol table without having to worry about making them
unique.

2.2 Temporary symbols

A temporary symbol consists of a digit followed by "f" or "b". Temporary symbols are
discussed fully in §5. 1 .

2.3 Constants

An octal constant consists of a sequence of digits; " 8 " and "9" are taken to have octal
value 10 and 1 1 . The constant is truncated to 1 6 bits and interpreted in two's complement
notation.

A decimal constant consists of a sequence of digits .terminated by a decimal point " ." .
The magnitude of the constant should be representable in 1 5 bits; Le. , be less than 32, 768.

A single-character constant consists of a single quote " ' " followed by an ASCII character
not a new-line. Certain dual-character escape sequences are acceptable in place of the ASCII

character to represent new-line and other non-graphics (see String statements, §5 .5) . The
constant's value has the code for the given character in the least significant byte of the word
and is null-padded on the left.

A double-character constant consists of a double quote " '" ' followed by a pair of ASCII
characters not including new-line. Certain dual-character escape sequences are acceptable in
place of either of the ASCII characters to represent new-line and other non-graphics tsee String
statements, §5. 5) . The constant's value has the code for the first given character in the least
significant byte and that for the second character in the most significant byte.

2.4 Operators

There are several single- and double-character operators; see §6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used
within tokens (except character constants) . A blank or tab is required to separate adjacent
identifiers or constants not otherwise separated.

2�6 Comments .

The character " I " introduces a comment, which extends through the end of the line on
which it appears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The text segment is the one in which the assembler begins, and it is the
one into which instructions are typically placed. The UNIX system wil l , if desired, enforce the
purity of the text segment of programs by trapping write operations into it. Object programs
produced by the assembler must be processed by the link-editor ld (using its " -n" flag) if the
text segment is to be write-protected. A single copy of the text segment is shared among all
processes executing such a program.

The data segment is available for placing data or instructions which will be modified dur
ing execution. Anything wJ:tich may go in the text segment may be put into the data segment.
In programs with write-protected, sharable text segments, data segment contains the initialized
but variable parts of a program. If the text segment is not pure, the data segment begins
immediately after the text segment; if the text segment is pure, the data segment begins at the
lowest 8K byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. The length of the

- 3 -

bss segment (like that of text or data) is determined by the high-water mark of the location
counter within it. The bss segment is actually an extension of the data segment and begins
immediately after it. At the start of execution of a program, the bss segment is set to 0. Typi
cally the bss segment is set up by statements exemplified by

lab : . = . + 10
The advantage in using the bss segment for storage that starts off empty is that the initialization
information need not be stored in the output file. See also Location counter and Assignment
statements below.

4. The location counter

One special symbol, " . ", is the location counter. Its value at any time is the offset
within the appropriate segment of the start of the statement in which it appears. The location
counter may be assigned to, with the restriction that the current segment may not change;
furthermore, the value of " . " may not decrease. If the effect of the assignment is to increase
the value of " . " , the required number of null bytes are generated (but see Segments above) .

5. Statements

A source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. There are five kinds of statements: null statements,
expression statements, assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5 .1 Labels

There m:e two kinds of label : name labels and numeric labels. A name label consists of a
name followed by a colon (:) . The effect of a name label is to assign the current value and
type of the location counter " . " to the name. An error is indicated in pass 1 if the name is
already defined; an error is indicated in pass 2 if the " . " value assigned changes the definition
of the label .

A numeric label consists of a digit 0 to 9 followed by a colon (:) . Such a label serves to
define temporary symbols of the form "n b" and " n f " , where n is the digit of the label . As in
the case of name labels, a numeric label assigns the current value and type of " . " to the tem
porary symbol . However, several numeric labels with the same digit may be used within the
same assembly. References of the form " n f " refer to the first numeric label "n :" forward
from the reference; "n b" symbols refer to the first "n :" label backward from the reference.
This sort of temporary label was introduced by Knuth [The Art ol Computer Programming, Vol /:
Fundamental Algorithms] . Such labels tend to conserve both the symbol table space of the
assembler and the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement (which may, however, have labels) . A null state
ment is ignored by the assembler. Common examples of null statements are empty lines or
lines containing only a label .

5.3 Expression statements

An expression statement consists of an arithmetic expression not beginning with a key
word. The assembler computes its { 1 6-bit) value and places it in the output stream, together
with the appropriate relocation bits.

- 4 -

5.4 Assignment statements

An assignment statement consists of an identifier, an equals sign (=) , and an expression.
The value and type of the expression are assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1 , nor is it an error to redefine any symbol by
assignment.

Any external attribute of the expression is lost across an assignment. This means that it
is not possible to declare a global symbol by assigning to it, and that it is impossible to define a
symbol to be offset from a non-locally defined global symbol.

As mentioned, it is permissible to assign to the location counter " . ". It is required, how
ever, that the type of the expression assigned be of the same type as " . ", and it is forbidden
to decrease the value of " . ". In practice, the most common assignment to " . " has the form
" . = . + n" for some number n; this has the effect of generating n null bytes.

5.5 String statements

A string statement generates a sequence of bytes containing ASCII characters. A string
statement consists of a left string quote " < " followed by a sequence of ASCII characters not
including newline, followed by a right string quote " > " . Any of the ASCII characters may be
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol
lows:

\n NL (01 2)
\s SP (040)
\t HT (O i l)
\e EOT (004)
\0 NUL (000)
\r CR (0 1 5)
\a ACK (006)
\p PFX (033)
\\ \
\ > >

The last two are included so that the escape character and the right string quote may be
represented. The same escape sequences may also be used within single- and double-character
constants (see §2.3 above) .

5 . 6 Keyword statements

Keyword statements are numerically the most common type, since most machine instruc
tions are of this sort. A keyword statement begins with one of the many predefined keywords
of the assembler; the syntax of the remainder depends on the keyword. All the keywords are
listed below with the syntax they require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is missing
on the left, a 0 of absolute type is assumed. Arithmetic is two's complement and has 16 bits of
precision. All operators have equal precedence, and expressions are evaluated strictly left to
right except for the effect of brackets.

f!l�

- 5 -

6 .1 Expression operators

The operators are:
(blank) when there is no operand between operands, the effect is exactly the same as if a " + "

had appeared.
+ addition

*

\1
8
I
\ >
\ <
%

subtraction
multiplication
division (note that plain " I " starts a comment)
bitwise and

bitwise or

logical right shift
logical left shift
modulo
a ! b is a or (not b) ; i .e . , the or of the first operand and the one's complement of the
second; most common use is as a unary.
�esult has the value of first operand and the type of the second; most often used to
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets " [] ". (Round parentheses are
reserved for address modes.)

6 .2 Types

The assembler deals with a number of types of expressions. Most types are attached to
keywords and used to select the routine which treats that keyword. The types likely to be met
explicitly are:
undefined

Upon first encounter, each symbol is undefined. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an undefined
expression in pass 2; in pass 1 , it is not (except that certain keywords require operands
which are not undefined) .

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor ld must be used to
load the assembler's output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file .

text The value of a text symbol is measured with respect to the beginning of the text seg
ment of the program. If the assembler output is link-edited, its text symbols may
change in value since the program need not be the first in the link editor's output.
Most text symbols are defined by appearing as labels. At the start of an assembly, the
value of " . " is text 0.

data The value of a data symbol is measured with respect to the origin of the data segment
of a program. Like text symbols, the value of a data symbol may change during a sub
sequent link-editor run since previously loaded programs may have data segments.
After the first .data statement, the value of " . " is data 0.

bss The value of a bss symbol is measured from the beginning of the bss segment of a
program. Like text and data symbols, the value of a bss symbol may change during a
subsequent link-editor run , since previously loaded programs may have bss segments.
After the first .bss statement, the value of " . " is bss 0 . •

- 6 -

external absolute, text, data, or bss

register

symbols declared .globl but defined within an assembly as absolute, text, data, or bss
symbols may be used exactly as if they were not declared .globl; however, their value
and type are available to the link editor so that the program may be loaded with others
that reference these symbols.

The symbols
rO . . . r5
frO . . . fr5
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the six general-purpose, six floating-point, and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of
the corresponding general register names; the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select the routine
which processes the associated keyword statement. The behavior of such symbols
when not used as keywords is the same as if they were absolute.

6.3 Type propagation in expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex to
state but were intended to be sensible and predictable. For purposes of expression evaluation
the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then : If one of the operands is undefined, the result is undefined. If
both operands are absolute, the result is absolute. If an absolute is combined with one of the
"other types" mentioned above, or with a register expression, the result has the register or
other type. As a consequence, one can refer to r3 as "r0 + 3" . If two operands of "other
type" are combined, the result has the numerically larger type An "other type" combined with
an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are :
+ If one operand is text- , data- , or bss-segment relocatable, or is an undefined external , the

result has the postulated type and the other operand must be absolute.
If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand) ; or
the second operand may have the same type as the first (in which case the result is abso
lute) . If the first operand is external undefined, the second must be absolute. All other
combinations are illeg�l.
This operator follows no other rule than that the result has the value of the first operand
and the type of the second.

- 7 -

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations

The keywords listed below introduce statements that generate data in unusual forms or
influence the later operations of the assembler. The metanotation

[stuff] . . .
means that 0 or more instances of the given stuff may appear. Also, boldface tokens are
literals, italic words are substitutable.

7.1 .byte expression [, expression]
The expressions in the comma-separated list are truncated to 8 bits and assembled in suc

cessive bytes. The expressions must be absolute. This statement and the string statement
above are the only ones that assemble data one byte at at time.

7.2 .even

If the location counter " . " is odd, it is advanced by one so the next statement will be
assembled at a word boundary.

7 .3 . if expression

The expression must be absolute and defined in pass 1 . If its value is nonzero, the .if is
ignored; if zero, the statements betw�en the . if and the matching .endif (below) are ignored .
. if may be nested. The effect of .if cannot extend beyond the end of the input file in which it
appears. (The statements are not totally ignored, in the following sense: .ifs and .endifs are
scanned for, and moreover all names are entered in the symbol table. Thus names occurring
only inside an .if will show up as undefined if the symbol table is listed.)

7.4 .endif

This statement marks the end of a conditionally-assembled section of code. See .if above.

7.5 .globl name [, name] . . .
This statement makes the names external. If they are otherwise defined (by assignment or

appearance as a label) they act within the assembly exactly as if the .globl statement were not
given; however, the link editor ld may be used to combine this routine with other routines that
refer these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbols.
As discussed in § I , it is possible to force the assembler to make all otherwise undefined sym
bols external .

7.6 .text

7 .7 .data

7 .8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text,
data, or bss segment respectively. Assembly starts in the text segment. It is forbidden to
assemble any code or data into the bss segment, but symbols may be defined and " . " moved
about by assignment.

- 8 -

7.9 .comm name , expression

Provided the name is not defined elsewhere, this statement is equivalent to
.glob! name
name = expression A name

That is, the type of name is "undefined external" , and its value is expression. In fact the name
behaves in the current assembly just like an undefined external. However, the link-editor ld
has been special-cased so that all external symbols which are not otherwise defined, and which
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the
symbol to hold expression bytes. All symbols which become defined in this way are located
before all the explicitly defined bss-segment locations.

8. Machine instructions

Because of the rather complicated instruction and addressing structure of the PDP- 1 1 , the
syntax of machine instruction statements is varied. Although the following sections give the
syntax in detail , the machine handbooks should be consulted on the semantics.

8 .1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must have one
of the following forms, where reg is· a register symbol, and expr is any· sort of expression:

syntax words mode
reg 0 OO + reg
(reg) + 0 20 + reg
- (reg) 0 40 + reg
expr (reg) 1 60 + reg
(reg) 0 1 0 + reg
* reg 0 1 0 + reg
* (reg) + 0 30 + reg
* - (reg) 0 50 + reg
* (reg) 1 70 + reg
* expr (reg) 1 70 + reg
expr 1 67
$ expr 1 27
* expr 1 77
* $ expr 1 3 7

The words column gives the number of address words generated; the mode column gives the
octal address-mode number. The syntax of the address forms is identical to that in DEC assem
blers, except that "*" has been substituted for " @ " and "$" for "#"; the UNIX typing con
ventions make " @ " and "#" rather inconvenient.

Notice that mode "*reg" is identical to " (reg) "; that "* (reg) " generates an index word
(namely, 0) ; and that addresses consisting of an unadorned expression are assembled as pc
relative references independent of the type of the expression. To force a non-relative refer
ence, the form "*$expr" can be used, but notice that further indirection is impossible.

8.3 Simple machine instructions

The following inst!uctions are defined as absolute symbols:

It

t!Jiw

clc
clv
clz
cln
sec
sev
sez
sen

- 9 -

They therefore require no special syntax. The PDP- 1 1 hardware allows more than one of the
"clear" class, or alternatively more than one of the "set" class to be or-ed together; this may
be expressed as follows :

clc I clv

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the
same segment as the reference, cannot be undefined-external , and its value cannot differ from
the current location of " . " by more than 254 bytes:

br bios
bne bvc
beq bvs
bge bhis
bit bee (= bee)
bgt bee
ble blo
bpi bcs
hmi bes (= bcs)
bhi

bes ("branch on error set") and bee ("branch on error clear") are intended to test the error bit
returned by system calls (which is the c-bit) .

8.5 Extended branch instructions

The following symbols are followed by an expression representing an address in the same
segment as " . ". If the target address is close enough, a branch-type instruction is generated; if
the address is too far away, a jmp will be used.

jbr jlos
jne jvc
jeq jvs
jge jhis
jlt jec
jgt jcc
jle jlo
jpl jcs
jmi jes
jhi

jbr turns into a plain j mp if its target is too remote; the others (whose names are contructed by
replacing the "b" in the branch instruction's name by "j") turn into the converse branch over

tA · t th t t dd (@.fW a Jmp o e arge a ress.
-�,:,:,..1'/

- 10 -

8.6 Single operand instructions

The following symbols are names of single-operand machine instructions. The form of
address expected is discussed in §8. 1 above.

clr sbcb
clrb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb as!
neg aslb
negb jmp
adc swab
adcb tst
sbc tstb

8. 7 Double operand instructions

The following instructions take a general source and destination (§8. 1) , separated by a
comma, as operands.

8.8

mov
movb
cmp
cmpb
bit
bitb
bic
bicb
bis
bisb
add
sub

Miscellaneous instructions

The following instructions have more specialized syntax. Here reg is a register name, src
and dsr a general source or destination (§8. 1) , and expr is an expression:

jsr reg, dsr
rts reg
sys expr
ash src , reg (or, als)
ashe src , reg (or, alsc)
mul src . reg (or, mpy)
div src , reg (or, dvd)
xor reg , dsr
sxt dsr
mark expr
sob reg , expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is
required to be expressible in 6 bits. The expression in mark must be expressible in six bits,
and the expression in sob must be in the same segment as " . ", must not be external
undefined, must be less than " . ", and must be within 5 1 0 bytes of " . " .

6:!��==l?,, ��fi���j�i

- 1 1 -

8.9 Floating-point unit instructions

The following floating-point operations are defined, with syntax as indicated:
cfcc
setf
setd
seti
set I
clrf fast
negf .fdst
absf .fdst
tstf lsrc
movf fsrc. freg (= ldf)
movf freg, .fdsT (= stf)
movif src,freg (= ldcif)
movfi .keg, dst (= stcfi)
movof fsrc,freg (= ldcdf)
movfo freg,fast (= stcfd)
movie src,freg (= ldexp)
movei freg, dst (= stexp)
addf fsrc,freg
subf fsrc,freg
mulf jsrc . . /i"eg
divf jsrc,freg
cmpf jsrc.freg
modf jsrc. ji-eg
ldfps src
stfps ds!
stst dst

fsrc, .fdsr, and ji-eg mean floating-point source, destination, and register respectively. Their syn
tax is identical to that for their non-floating counterparts, but note that only floating registers
0-3 can be a fi'eg.

The names of several of the operations have been changed to bring out an analogy with
certain fixed-point instructions. The only strange case is movf, which turns into either stf or
ldf depending respectively on whether its first operand is or is not a register. Warning: ldf sets
the floating condition codes, stf does not .

9. Other symbols

9 . 1 . .

The symbol " . . " is the relocarion counter. Just before each assembled word is placed in
the output stream, the current value of this symbol is added to the word if the word refers to a
text , data or bss segment location. If the output word is a pc-relative address word that refers
to an absolute location, the value of " . . " is subtracted.

Thus the value of " . . " can be taken to mean the starting memory location of the pro
gram. The initial value of " . . " is 0.

The value of " . . " may be changed by assignment. Such a course of action is sometimes
necessary, but the consequences should be carefully thought out . It is particularly ticklish to

A change " . . " midway in an assembly or to do so in a program which will be treated by the
�% loader, which has its own notions of " . . " .

- 1 2 -

9.2 System calls

System call names are not predefined. They may be found in the file /usr/include/sys.s

10. Diagnostics

When an input file cannot be read, its name followed by a question mark is typed and
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which it occurred. Errors in pass 1
cause cancellation of pass 2. The possible errors are :

)
]
>
*

A

B

E

F

G

M

0
p

R

u
X

parentheses error
parentheses error
string not terminated properly
indirection (*) used illegally
illegal assignment to " . "
error in address
branch address is odd or too remote
error in expression
error in local ("f " or "b ") type symbol
garbage (unknown) character
end of file inside an .if
multiply defined symbol as label
word quantity assembled at odd address
phase error- " . " different in pass 1 and 2
relocation error
undefined symbol
syntax error

Setting Up Unix - Seventh Edition

Charles B. Haley
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The distribution tape can be used only on a DEC PDPl l /45 or PDP1 1 170 with RP03,
RP04, RP05, RP06 disks and with a TUIO, TU1 6, or TE1 6 tape drive. It consists of some prel
iminary bootstrapping programs followed by two file system images; if needed, after the initial
construction of the file systems individual files can be extracted. (See restor(1))

If you are set u p to do it, it might b e a good idea immediately to make a copy of the tape
to guard against disaster. The tape is 9-track 800 BPI and contains some 5 1 2-byte records fol
lowed by many 10240-byte records. There are interspersed tapemarks.

The system as distributed contains binary images of the system and all the user level pro
grams, along with source and manual sections for them-about 2 1 00 files altogether. The
binary images, along with other things needed to flesh out the file system enough so UNIX will
run, are to be put on one file system called the 'root file system' . The file system size required
is about 5000 blocks. The file second system has all of the source and documentation. Alto
gether it amounts to more than 1 8,000 5 1 2-byte blocks.

Making a Disk From Tape

Perform the following bootstrap procedure to obtain a disk with a root file system on it.
I . Mount the magtape on drive 0 at load point.
2 . Mount a formatted disk pack on drive 0 .
3 . Key i n and execute at 1 00000

TUIO
01 2700
172526
01 0040
01 2740
060003
000777

TU1 6/TE1 6
Use the DEC ROM or other
means to load block I
(i .e. second block) at 800 BPI
into location 0 and transfer
to 0 .

The tape should move and the CPU loop. (The TUl O code is not the DEC bulk ROM for
tape; it reads block 0, not block 1 .)

4. If you used the above TUl O code, halt and restart the CPU at 0, otherwise continue to
the next step.

5 . The console should type
Boot

Copy the magtape to disk by the following procedure. The machine's printouts are shown
in italic, explanatory comments are within () . Terminate each line you type by carriage
return or line-feed. There are two classes of tape drives: the name 'tm' is used for the
TU IO, and 'ht' is used for the TU1 6 or TE16 . There are also two classes of disks: 'rp' is

- 2 -

used for the RP03 , and 'hp' is used for the RP04/5/6.
If you should make a mistake while typing, the character '#' erases the last character

typed up to the beginning of the line, and the character ' @ ' erases the entire line typed. Some
consoles cannot print lower case letters, adjust the instructions accordingly.

(bring in the program mkfs)
: tm(0,3) (use 'ht(0,3) ' for the TU16/TE1 6)
file system size: 5000
file system: rp(O,O) (use 'hp(O,O) ' for RP04/5/6)
isize = XX
min = XX
(after a while)
exit called
Boot

This step makes an empty file system.
6. The next thing to do is to restore the data onto the new empty file system. To do this you

respond to the ' :' printed in the last step with
(bring in the program restor)
:tm(0,4) ('ht(0,4) ' for TU16/TE 1 6)
tape ? tm(0,5) (use 'ht(0,5) ' for TU16/TE 1 6)
disk? rp(O,O) (use 'hp(O,O) ' for RP04/5/6)
Last chance before scribbling on disk. (you type return)
(the tape moves, perhaps 5- 10 minutes pass)
end of tape
Boot

You now have a UNIX root file system.

Booting UNIX

You probably have the bootstrap running, left over from the last step above; if not, repeat
the boot process (step 3) again. Then use one of the following:

: rp(O,O) rptmunix (for RP03 and TUl O)
: rp(O,O) rphtunix (for RP03 and TU1 6/TE 1 6)
:hp (O,O) hptmunix (for RP04/5/6 and TUI O)
:hp (O,O) hphtunix (for RP04/5/6 and TU1 6/TE1 6)

The machine should type the following:
mem = .xxx

The mem message gives the memory available to user programs in· bytes.
UNIX is now running, and the 'UNIX Programmer's manual' applies; references below of

the form X (Y) mean the subsection named X in section Y of the manual. The '#' is the
prompt from the Shell, and indicates you are the super-user. The user name of the super-user
is 'root' if you should find yourself in multi-user mode and need to log in; the password is also
'root' .

To simplify your life later, rename the appropriate version of the system as specified
above plain 'unix. ' For example, use mv (1) as follows if you have an RP04/5/6 and a TU 1 6
tape:

mv hphtunix unix

- 3 -

In the future, when you reboot, you can type just
hp(O,O) unix

to the ' : ' prompt. (Choose appropriately among 'hp ' , 'rp ' , 'ht ' , 'tm' according to your
configuration) .

You now need to make some special file entries in the dev directory. These specify what
sort of disk you are running on, what sort of tape drive you have, and where the file systems
are. For simplicity, this recipe creates fixed device names. These names will be used below,
and some of them are built into various programs, so they are most convenient. However, the
names do not always represent the actual major and minor device in the manner suggested in
section 4 of the Programmer's Manual. For example. 'rp3' will be used for the name of the file
system on which the user file system is put, even though it might be on an RP06 and is not
logical device 3. Also, this sequence will put the user file system on the same disk drive as the
root, which is not the best place if you have more than one drive. Thus the prescription below
should be taken only as one example of where to put things. See also the section on ' Disk lay
out' below.

In any event, change to the dev directory (cd(l)) and, if you like, examine and perhaps
change the makefile there (make (1)) .

cd /dev
cat makefile

Then, use one of
make rp03
make rp04
make rp05
make rp06

depending on which disk you have. Then, use one of
make tm
make ht

depending on which tape you have. The file 'rpO' refers to the root file system; 'swap' to the
swap-space file system; 'rp3 ' to the user file system. The devices 'rrpO' and 'rrp3 ' are the 'raw'
versions of the disks. Also, 'mtO' is tape drive 0, at 800 BPI ; 'rmtO' is the raw tape, on which
large records can be read and written; 'nrmtO' is raw tape with the quirk that it does not rewind
on close, which is a subterfuge that permits multifile tapes to be handled.

The next thing to do is to extract the rest of the data from the tape. Comments are
enclosed in () ; don't type these. The number in the first command is the size of the file sys
tem; it differs between RP03 , RP04/5, and RP06.

/etc/mkfs /dev/rp3 74000 (1 53406 if on RP04/5, 322278 on RP06)
(The above command takes about 2-3 minutes on an RP03)
dd if= /dev/nrmtO of= /dev/null bs= 20b files= 6 (skip 6 files on the tape)
restor rf /dev/rmtO /dev/rp3 (restore the file system)
(Reply with a 'return' (CR) to the 'Last chance' message)
(The restor takes about 20-30 minutes)

All of the data on the tape has been extracted.
You may at this point mount the source file system (mount (I)) . To do this type the fol

lowing:
/etc/mount /dev/rp3 /usr

The source and manual pages are now available in subdirectories of /usr.

- 4 -

The above mount command is only needed if you intend to play around with source on a
single user system, which you are going to do next. The file system is mounted automatically
when multi-user mode is entered, by a command in the file /etc/rc. (See 'Disk Layout' below) .

Before anything further is done the bootstrap block on the disk (block 0) should be filled
in. This is done using the command

dd if= /usr/mdec/rpuboot of=/dev/rpO count= 1
if you have the RP03 , or

dd if= /usr/mdec/hpuboot of=/dev/rpO count= 1
if you have an RP04/5/6. Now the DEC disk bootstraps are usable. See Boot Procedures(8)
for further information.

Before UNIX is turned up completely, a few configuration dependent exercises must be
performed. At this point, it would be wise to read all of the manuals (especially 'Regenerating
System Software') and to augment this reading with hand to hand combat.

Reconfiguration

The UNIX system running is configured to run with the given disk and tape, a console,
and no other device. This is certainly not the correct configuration. You will have to correct
the configuration table to reflect the true state of your machine.

It is wise at this point to know how to recompile the system. Print (cat O)) the file
/usr/sys/conf/makefile. This file is input to the program 'make (I) ' which if invoked with
'make all' will recompile all of the system source and install it in the correct libraries.

The program mkconf(l) prepares files that describe a given configuration (See
mkconf(l)) . In the /usr/sys/conf directory, the four files �onf were input to mkconf to pro
duce the four versions of the system xyunix. Pick the appropriate one, and edit it to add lines
describing your own configuration. (Remember the console typewriter is automatically
included; don't count it in the kl specification.) Then run mkconf; it will generate the files l .s
(trap vectors) c.c (configuration table) , and mchO.s. Take a careful look at l.s to make sure that
all the devices that you have are assembled in the correct interrupt vectors. If your
configuration is non-standard, you will have to modify l.s to fit your configuration.

There are certain magic numbers and configuration parameters imbedded in various dev
ice drivers that you may want to change. The device addresses of each device are defined in
each driver. In case you have any non-standard device addresses, just change the address and
recompile. (The device drivers are in the directory /usr/sys/dev.)

The DCl l driver is set to run 4 lines. This can be changed in dc.c.
The D H l l driver is set to handle 3 D H l l 's with a full complement of 48 lines. If you

have less, or more, you may want to edit dh.c.
The DNl l driver will handle 4 ON's. Edit dn.c.
The DU l l driver can only handle a single DU. This cannot be easily changed.
The KLIDL driver is set up to run a single D L l l -A, -B, or -C (the console) and no

DL l l -E's. To change this, edit kl.c to have NKL l l reflect the total number of DLl l -ABC's
and NDL l l to reflect the number of DL l l -E's. So far as the driver is concerned, the
difference between the devices is their address.

All of the disk and tape drivers (rf.c, rk.c, rp.c, tm.c, tc.c, hp.c, ht.c) are set up to run 8
drives and should not need to be changed. The big disk drivers (rp.c and hp.c) have partition
tables in them which you may want to experiment with.

After all the corrections have been made, use 'make (l) ' to recompile the system (or
recompile individually if you wish: use the make file as a guide) . If you compiled individually,
say 'make unix' in the directory /usr/sys/conf. The final object file (unix) should be moved to
the root, and then booted to try it out. It is best to name it /nunix so as not to destroy the

- 5 -

working system until you're sure it does work. See Boot Procedures(8) for a discussion of
booting. Note: before taking the system down, always (! !) perform a sync (l) to force delayed
output to the disk.

Special Files

Next you must put in special files for the new devices in the directory /dev using
mknod (l) . Print the configuration file c.c created above. This is the major device switch of
each device class (block and character) . There is one line for each device configured in your
system and a null line for place holding for those devices not configured. The essential block
special files were installed above; for any new devices, the major device number is selected by
counting the line number (from zero) of the device's entry in the block configuration table.
Thus the first entry in the table bqevsw would be major device zero. This number is also
printed in the table along the right margin.

The minor device is the drive number, unit number or partition as described under each
device in section 4 of the manual. For tapes where the unit is dial selectable, a special file may
be made for each possible selection. You can also add entries for other disk drives.

In reality, device names are arbitrary. It is usually convenient to have a system for deriv
ing names, but it doesn't have to be the one presented above.

Some furtner notes on minor device numbers. The hp driver uses the 0 1 00 bit of the
minor device number to indicate whether or not to interleave a file system across more than
one physical device. See hp(4) for more detail . The tm and ht drivers use the 0200 bit to indi
cate whether or not to rewind the tape when it is closed. The 0 100 bit indicates the density of
the tape on TU1 6 drives. By convention, tape special files with the

.
0200 bit on have an 'n'

prepended to their name, as in /dev/nmtO or /dev/nrmt l . Again, see tm(4) or ht (4) .
The naming of character devices is similar to block devices. Here the names are even

more arbitrary except that devices meant to be used for teletype access should (to avoid confu
sion, no other reason) be named /dev/ttyX, where X is some string (as in '00' or ' library') .
The files console, mem, kmem, and null are already correctly configured.

The disk and magtape drivers provide a 'raw' interface to the device which provides direct
transmission between the user's core and the device and allows reading or writing large records.
The raw device counts as a character device, and should have the name of the corresponding
standard block special file with 'r' prepended. (The 'n' for no rewind tapes violates this rule.)
Thus the raw magtape files would be called /dev/rmtX. These special files should be made.

When all the special files have been created, care should be taken to change the access
modes (chmod (l)) on these files to appropriate values (probably 600 or 644) .

Floating Point

UNIX only supports (and really expects to have) the FP l l -B/C floating point unit. For
machines without this hardware, there is a user subroutine available that will catch illegal
instruction traps and interpret floating point operations. (See fptrap (3) .) To install this subrou
tine in the library, change to /usr/src/libfpsim and execute the shell files

com pall
mklib

The system as delivered does not have this code included in any command, although the
operating system adapts automatically to the presence or absence of the FP l l .

Next a floating-point version of the C compiler in /usr/src/cmd/c should be compiled
using the commands:

cd /usr/src/cmd/c
make fcl
mv fcl /lib/fc l

- 6 -

This allows programs with floating point constants to be compiled. To compile floating point
programs use the • - r flag to cc(l) . This flag ensures that the floating point interpreter is
loaded with the program and that the floating point version of 'cc' is used.

Time Conversion

If your machine is not in the Eastern time zone, you must edit (ed(l)) the file
/usr/sys/h/param.h to reflect your local time. The manifest 'TIMEZONE' should be changed
to reflect the time difference between local time and GMT in minutes. For EST, this is 5*60;
for PST it would be 8*60. Finally, there is a 'DSTFLAG' manifest; when it is 1 it causes the
time to shift to Daylight Savings automatically between the last Sundays in April and October
(or other algorithms in 1 974 and 1 975) . Normally this will not have to be reset. When the
needed changes are done, recompile and load the system using make (l) and install it. (As a
general rule, when a system header file is changed, the entire system should be recompiled. As
it happens, the only uses of these flags are in /usr/sys/sys/sys4.c, so if this is all that was
changed it alone needs to be recompiled.)

Y.ou may also want to look at timezone(3) (/usr/src/libc/gen/timezone.c) to see if the
name of your timezone is in its internal table. If needed, edit the changes in. After timezone.c
has been edited it should be compiled and installed in its library. (See /usr/src/li.bc/(mklib and
com pall)) Then you should (at your leisure) recompile and reinstall all programs that use it
(such as date (l)) .

Disk Layout

If there are to be more file systems mounted than just the root and /usr, use mkfs(l) to
create any new file system and put its mounting in the file /etc/rc (see init (8) and mount { I)) .
(You might look at /etc/rc anyway to see what has been provided for you.)

There are two considerations in deciding how to adjust the arrangement of things on your
disks: the most important is making sure there is adequate space for what is required; secon
darily, throughput should be maximized. Swap space is a critical parameter. The system as dis
tributed has 8778 (hpunix) or 2000 (rpunix) blocks for swap space. This should be large
enough so running out of swap space never occurs. You may want to change these if local wis
dom indicates otherwise.

The system as distributed has all of the binaries in /bin. Most of them should be moved
to /usr/bin, leaving only the ones required for system maintenance (such as icheck, dcheck, cc,
ed, restor, etc.} and the most heavily used in /bin. This will speed things up a bit if you have
only one disk, and also free up space on the root file system for temporary files. (See below) .

Many common system programs (C, the editor, the assembler etc.) create intermediate
files in the /tmp directory, so the file system where this is stored also should be made large
enough to accommodate most high-water marks. If you leave the root file system as distributed
(except as discussed above) there should be no problem. All the programs that create files in
/tmp take care to delete them, but most are not immune to events like being hung up upon,
and can leave dregs. The directory should be examined every so often and the old files deleted.

Exhaustion of user-file space is certain to occur now and then; the only mechanisms for
controlling this phenomenon are occasional use of du(l) , df(l) , quot(l) , threatening messages
of the day, and personal ·letters.

The efficiency with which UNIX is able to use the CPU is largely dictated by the
configuration of disk controllers. For general time-sharing applications, the best strategy is to
try to split user files, the root directory (including the /tmp directory) and the swap area among
three controllers.

- 7 -

Once you have decided how to make best use of your hardware, the question is how to
initialize it. If you have the equipment, the best way to move a file system is to dump it
(dump(l)) to magtape, use mkfs (l) to create the new file system, and restore (restor (I)) the
tape. If for some reason you don't want to use magtape, dump accepts an argument telling
where to put the dump; you might use another disk. Sometimes a file system has to be
increased in logical size without copying. The super-block of the device has a word giving the
highest address which can be allocated. For relatively small increases, this word can be patched
using the debugger (adb (l)) and the free list reconstructed using icheck(l) . The size should
not be increased very greatly by this technique, however, since although the allocatable space
will increase the maximum number of files will not (that is, the i-list size can't be changed) .
Read and understand the description given in file system (5) before playing around in this way.
You may want to see section . rp(4) for some suggestions on how to lay out the information on
RP disks.

If you have to merge a file system into another, existing one, the best bet is to use tarO) .
If you must shrink a file system, the best bet is to dump the original and restor it onto the new
filesystem. However, this might not work if the i-list on the smaller filesystem is smaller than
the maximum allocated inode on the larger. If this is the case, reconstruct the filesystem from
scratch on another filesystem (perhaps using tar(I)) and then dump it. If you are playing with
the root file system and only have one drive the procedure is more complicated. What you do is
the following:
I . GET A SECOND PACK! ! ! !
2 . Dump the current root filesystem (or the reconstructed one) using dump(I) .
3 . �ring the system down and mount the new pack.
4 . Retrieve the WECo distribution tape and perform steps l through 5 at the beginning of

this document', substituting the desired file system size instead of 5000 when asked for
'file system size' . �

5 . Perform step 6 above up to the point where the 'tape' question is asked. At this point
mount the tape you made just a few minutes ago. Continue with step 6 above substituting
a 0 (zero) for the 5 .

New Users
Install new users by editing the password file /etc/passwd (passwd(5)) . This procedure

should be done once multi-user mode is entered (see init(8)) . You'll have to make a current
directory for each new user and change its owner to the newly installed name. Login as each
user to make sure the password file is correctly edited. For example:

ed /etc/passwd
$a
joe : : l 0: l : : /usr/joe:

w
q
mkdir /usr/joe
chown joe /usr/joe
login joe
Is - la
login root

This will make a new login entry for joe, who should be encouraged to use passwd(l) to give
himself a password. His default current directory is /usr/joe which has been created. The
delivered password file has the user bin in it to be used as a prototype.

- 8 -

Multiple Users

If UNIX is to support simultaneous access from more than just the console terminal, the
file /etc/ttys (ttys(S)) has to be edited. To add a new terminal be sure the device is configured
and the special file exists, then set the first character of the appropriate line of /etc/ttys to 1 (or
add a new line) . Note that init.c will have to be recompiled if there are to be more than 1 00
terminals. Also note that if the special file is inaccessible when init tries to create a process for
it, the system will thrash trying and retrying to open it.

File System Health

Periodically (say every day or so) and always after a crash, you should check all the file
systems for consistency (icheck, dcheckO)) . It is quite important to execute sync (8) before
rebooting or taking the machine down. This is done automatically every 30 seconds by the
update program (8) when a multiple-user system is running, but you should do it anyway to
make sure.

Dumping of the file system should be done. regularly, since once the system is going it is
very easy to become complacent. Complete and incremental dumps are easily done with
dumpO) . Dumping of files by name is best done by tarO) but the number of files is some
what limited. Finally if there are enough drives entire disks can be copied using cp(l) , or
preferably with dd0) using the raw special files and an appropriate block size.

Converting Sixth Edition Filesystems

The best way to convert file systems from 6th edition (V6) to 7th edition (V7) format is
to use tarO) . However, a special version of tar must be prepared to run on V6. The following
steps will do this:
1 . change directories to /usr/src/cmd/tar
2 . At the shell prompt respond

make v6tar
This will leave an executable binary named 'v6tar' .

3. Mount a scratch tape.
4. Use tpO) to put 'v6tar' on the scratch tape.
5 . Bring down V7 and bring up V6.
6. Use tp (on V6) to read in 'v6tar' . Put it in /bin or /usr/bin (or perhaps some other pre

ferred location) .
7 . Use v6tar to make tapes of all that you wish to convert. You may want to read the

manual section on tar(1) to see whether you want to use blocking or not. Try to avoid
using full pathnames when making the tapes. This will simplify moving the hierarchy to
some other place on V7 if desired. For example

chdir I usr /ken
v6tar c .

is preferable to
v6tar c /usr/ken

8 . After all of the desired tapes are made, bring down V6 and reboot V7. Use tarO) to read
in the tapes just made.

- 9 -

Odds and Ends

The programs dump, icheck, quot, dcheck, ncheck, and df (source in /usr/source/cmd)
should be changed to reflect your default mounted file system devices. Print the first few lines
of these programs and the changes will be obvious. Tar should be changed to reflect your
desired default tape drive.

Good Luck

Charles B. Haley
Dennis M. Ritchie

I ntroduction

REGENERATING SYSTEM SOFTWARE

Charles B. Haley

Dennis. M. Ritchie
Bell Laboratories

Murray Hill, New Jersey 0 79 74

This document discusses how to assemble or compile various parts of the UNIXt system
software. This may be necessary because a command or library is accidentally deleted or other
wise destroyed; also, it may be desirable to install a modified version of some command or
library routine. A few commands depend to some degree on the current configuration of the
system; thus in any new system modifications to some commands are advisable. Most of the
likely modifications relate to the standard disk devices contained in the system. For example,
the df(l) ('disk free') command has built into it the names of the standardly present disk
storage drives (e.g. '/dev/rfO' , '/dev/rpO') . Df(l) takes an argument to indicate which disk to
examine, but it is convenient if its default argument is adjusted to reflect the ordinarily present
devices. The companion document 'Setting up UNIX ' discusses which commands are likely to

· require changes.

Where Commands and Subroutines Live

The source files for commands and subroutines reside in several subdirectories of the
directory /usr/src. These subdirectories, and a general description of their contents, are
cmd Source files for commands.
libc/stdio Source files making up the 'standard i/o package' .
libc/sys Source files for the C system call interfaces.
libc/gen

libc/crt

libc/csu
games

libF77
libl77
libdbm
libfpsim
libm

Source files for most of the remaining routines described in section 3 of the
manual.
Source files making up the C runtime support package, as in call save-return and
long arithmetic.
Source for the C startup routines.
Source for (some of) the games. No great care has been taken to try to make it
obvious how to compile these; treat it as a game.
Source for the Fortran 77 runtime library, exclusive of 10.
Source for the Fortran 77 IO runtime routines.
Source for the 'data-base manager' package dbm (3) .

Source for the floating-point simulator routine.
Source for the mathematical library.

tUN IX is a Trademark of Bell Laboratories.

- 2 -

libplot Source for plotting routines.

Commands

The regeneration of most commands is straightforward. The 'cmd' directory will contain
either a source file for the command or a subdirectory containing the set of files that make up
the command. If it is a single file the command

cd /usr/src/cmd
cmake cmd_name

suffices. (Cmd_name is the name of the . command you are playing with.) The result of the
cmake command will be an executable version. If you type

cmake -cp cmd_name
the result will be copied to /bin (or perhaps /etc or other places if appropriate) .

If the source files are i n a subdirectory there will be a 'makefile' (see make (1)) to control
the regeneration. After changing to the proper directory (cd (1)) you type one of the following:
make all

make cp

The program is compiled and loaded; the executable is left in the current direc-
tory.
The program is compiled .and loaded, and the executable is installed. Everything
is cleaned up afterwards; for example .o files are deleted.

make cmp The program is compiled and loaded, and the executable is compared against the
one in /bin.

Some of the makefiles have other options. Print (catO)) the ones you are interested in to
find out.

The Assembler

The assembler consists of two executable files: /bin/as and /lib/as2. The first is the 0-th
pass: it reads the source program, converts it to an intermediate form in a temporary file
'/tmp/atmO?' , and estimates the final locations of symbols. It also makes two or three other
temporary files which contain the ordinary symbol table, a table of temporary symbols (like 1 :)
and possibly an overflow intermediate file. The program /lib/as2 acts as an ordinary multiple
pass assembler with input taken from the files produced by /bin/as.

The source files for /bin/as are named '/usr/src/cmd/as/asl ? .s' (there are 9 of them) :
/lib/as2 is produced from the source files '/usr/src/cmd/as/as2 ? .s'; they likewise are 9 in
number. Considerable care should be exercised in replacing either component of the assem
bler. Remember that if the assembler is lost, the only recourse is to replace it from some
backup storage; a broken assembler cannot assemble itself.

The C Compiler

The C compiler consists of seven routines: '/bin/ cc', which calls the phases of the com
piler proper, the compiler control line expander '/lib/cpp', the assembler (�as') , and the loader
('ld') . The phases of the C compiler are '/lib/cO', which is the first phase of the compiler:
'/lib/c l ' , which is the second phase of the compiler; and '/lib/c2' , which is the optional third
phase optimizer. The loss of the C compiler is as serious as that of the assembler.

The source for /bin/cc resides in '/usr/src/cmd/cc.c'. Its loss alone (or that of c2) is not
fatal. If needed, prog.c can be compiled by

/lib/cpp prog.c > tempO
/lib/cO tempO tempi temp2
/lib/ci tempi temp2 temp3
as - temp3
ld - n /lib/ crtO.o a. out - Ic

- 3 -

The source for the compiler proper is in the directory /usr/src/cmd/c. The first phase
(/lib/cO) is generated from the files cOO.c, . . . , c05.c, which must be compiled by the C com
piler. There is also cO. h, a header file included by the C programs of the first phase. To make a
new /lib/cO use

make cO
Before installing the new cO, it is prudent to · save the old one someplace.

The second phase of C (/lib/cl) is generated from the source files clO.c, . . . , c 1 3 .c, the
include-file c l . h, and a set of object-code tables combined into table.o. To generate a new
second phase use

make ci
It i s likewise prudent to save c1 before installing a new version. Io. fact in general i t is wise to
save the object files for the C compiler so that if disaster strikes C can be reconstituted without
a working version of the compiler.

In a similar manner, the third phase of the C compiler (/lib/c2) is made up from the files
c20.c and c2 l .c together with c2.h. Its loss is not critical since it is completely optional.

The set of tables mentioned above is generated from the file table.s. This ' . s' file is not in
fact assembler source; it must be converted by use of the cvopt program, whose source and
object are located in the C directory. Normally this is taken care of by make O) . You might
want to look at the makefile to see what it does.

UNIX

The source and object programs for UNIX are kept in four subdirectories of /usr/sys. In
the subdirectory_ h there are several files ending in ' . h'; these are header files which are picked
up (via '#include .. . ') as required by each system module. The subdirectory dev consists
mostly of the device drivers together with a few other things. The subdirectory sys is the rest
of the system. There are files of the form LIBx in the directories sys and dev. These are
archives (ar (l)) which contain the object versions of the routines in the directory.

Subdirectory conf contains the files which control device configuration of the system. L.s
specifies the contents of the interrupt vectors; c. c contains the tables which relate device
numbers to handler routines. A third file, mch. s , contains all the machine- language code in the
system. A fourth file, mchO. s, is generated by mkconf(l) and contains flags indicating what
sort of tape drive is available for taking crash dumps.

There are two ways to recreate the system. Use
cd /usr/sys/conf
make unix

if the libraries /usr/sys/dev/LIB2 and /usr/sys/sys/LIBI , and also c.o and l.o, are correct. Use
cd /usr/sys/conf
make all

,:@ to recompile everything and recreate the libraries from scratch. This is needed, for example,
- when a header included in several source files is changed. See 'Setting Up UNIX' for other

information about configuration and such.

- 4 -

When the make is done, the new system is present in the current directory as 'unix' . I t
should be tested before destroying the currently running '/unix', this is best done by doing
something like

mv /unix /ounix
mv unix /unix

If the new system doesn' t work, you can sti l l boot . 'ounix' and come up (see boot(8)) . When
you have satisfied yourself that the new system works, remove /ounix.

To install a new device driver, compile it and put it into its l ibrary. The best way to put it
into the library is to use the command

ar uv LIB2 x.o
where x is the routine you just compiled. (All the device drivers distributed with the system
are already in the library.)

Next, the device's interrupt vector must be entered in l.s. This i s probably already done
by the routine mkconf(l) , but if the device is esoteric or nonstandard you will have to massage
l.s by hand. This involves placing a pointer to a callout routine and the device's priority level
in the vector. Use some other device (like the console) as a guide. Notice that the entries in
l.s must be in order as the assembler does not permit moving the location counter ' . ' back
wards. The assembler also does not permit assignation of an absolute number to ' . ' , which is
the reason for the ' . = ZERO + lOO' subterfuge. If a constant smaller than 1 6 (10) is added to
the priority level, this number will be available as the first argument of the interrupt routine.
This stratagem is used when several similar devices share the same interrupt routine (as in
dl l l 's) .

If you have to massage l.s, be sure to add the code to actually transfer to the interrupt
routine. Again use the console as a guide. The apparent strangeness of this code is due to run
ning the kernel in separate I&D space. The call routine saves registers as required and prepares
a C-style call on the actual interrupt routine named after the 'jmp' instruction. When the rou
tine returns, call restores the registers and performs an rti instruction. As an aside, note that
external names in C programs have an underscore ('_') prepended to them.

The second step which must be performed to add a device unknown to mkconf is to add
it to the configuration table /usr/sys/conf/c.c. This file contains two subtables, one for block
type devices, and one for character-type devices. Block devices include disks, DECtape, and
magtape. All other devices are character devices. A line in each of these tables gives all the
information the system needs to know about the device handler; the ordinal position of the line
in the table implies its major device number, starting at 0.

There are four subentries per line in the block device table, which give its open routine,
close routine, strategy routine, and device table. The open and close routines may be nonex
istent, in which case the name 'nulldev' is given; this routine merely returns. The strategy rou
tine is called to do any 1/0, and the device table contains status information for the device.

For character devices, each line in the table specifies a routine for open, close, read, and
write, and one which sets and returns device-specific status (used, for example, for stty and gtty
on typewriters) . If there is no open or close routine, 'nulldev' may be given; if there is no
read, write, or status routine, 'nodev' may be given. Nodev sets an error flag and returns.

The final step which must be taken to install a device is to make a special file for it. This
is done by mknod (1) , to which you must specify the device class (block or character) , major
device number (relative line in the configuration table) and minor device number (which is
made available to the driver at appropriate times) .

The documents 'Setting up Unix' and 'The Unix 10 system' may aid in comprehending
these steps.

- 5 -

The Library libc.a

The l ibrary /lib/libc.a is where most of the subroutines described in sections 2 and 3 of
the manual are kept. This library can be remade using the following commands:

cd /usr/src/libc
sh compall
sh mklib
mv libc.a /lib/libc.a

If single routines need to be recompiled and replaced, use
cc -c -o x.c
ar vr / lib/libc.a x.o
rm x.o

The above can also be used to put new items into the library. See ar (l) , lorder (l) , and
tsort (l) .

The routines i n /usr/src/cmd/libc/csu (C start up) are not i n libc.a. These are separately
assembled and put into /lib. The commands to do this are

cd /usr/src/libc/csu
as - x.s
mv a.out /lib/x

where x is the routine you want.

Other Librar.ies

Likewise, the directories containing the source for the other libraries have files compall
(that recompiles everything) anq mklib (that recreates the l ibrary) .

System Tuning

There are several tunable parameters in the system. These set the size of various tables
and limits. They are found in the file /usr/sys/h/param. h as manifests ('#define's) . Their
values are rather generous in the system as distributed. Our typical maximum number of users
is about 20, but there are many daemon processes.

When any parameter is changed, it is prudent to recompile the entire system, as discussed
above. A brief discussion of each follows:
NBUF This sets the size of the disk buffer cache. Each buffer is 5 1 2 bytes. This number

should be around 25 plus NMOUNT, or as big as can be if the above number of
buffers cause the system to not fit in memory.

NFILE This sets the maximum number of open files. An entry is made in this table every
time a file is 'opened' (see open(2) , creat(2)) . Processes share these table entries
across forks (fork(2)) . This number should be about the same size as NINODE
below. {It can be a bit smaller.)

NMOUNT This indicates the maximum number of mounted file systems. Make it big enough
that you don't run out at inconvenient times.

MAXMEM This sets an administrative limit on the amount of memory a process may have.
It is set automatically if the amount of physical memory is small, and thus should
not need to be changed.

MAXUPRC This sets the m;;tximum number of processes that any one user can be running at
any one time. This should be set just large enough that people can get work done
but not so large that a user can hog all the processes available (usually by
accident !) .

NPROC

NINO DE

SSIZE

SINCR

- 6 -

This sets the maximum number of processes that can be active. It depends on the
demand pattern of the typical user; we seem to need about 8 times the number of
terminals.

This sets the size of the inode table. There is one entry in the inode table for
every open device, current working directory, sticky text segment, open file, and
mounted device. Note that if two users have a file open there is still only one
entry in the inode table. A reasonable rule of thumb for the size of this table is

NPROC + NMOUNT + (number of terminals)

The initial size of a process stack. This may be made bigger if commonly run
processes have large data areas on the stack.
The size of the stack growth increment.

NOFILE This sets the maximum number of files that any one process can have open. 20 is
plenty.

CANBSIZ This is the size of the typewriter canonicalization buffer. It is in this buffer that
erase and kill processing is done. Thus this is the maximum size of an input type
writer line . 256 is usually plenty.

CMAPSIZ The number of fragments that memory can be broken into. This should be big
enough that it never runs out. The theoretical maximum is twice the number of
processes, but this is a vast overestimate in practice. 50 seems enough.

SMAPSIZ Same as CMAPSIZ except for secondary (swap) memory.
NCALL

NTEXT

This is the size of the callout table. Callouts are entered in this table when some
sort of internal system timing must be done, as in carriage return delays for termi
nals. The number must be big enough to handle all such requests.
The maximum number of simultaneously executing pure programs. This should
be big enough so as to not run out of space under heavy load. A reasonable rule
of thumb is about

(number of terminals) + (number of sticky programs)

NCLIST The number of clist segments. A clist segment is 6 characters. NCLIST should be
big enough so that the list doesn' t become exhausted when the machine is busy.
The characters that have arrived from a terminal and are waiting to be given to a
process live here. Thus enough space should be left so that every terminal can
have at least one average line pending (about 30 or 40 characters) .

TIMEZONE The number of minutes westward from Greenwich. See 'Setting Up UNIX' .
DSTFLAG See 'Setting Up UNIX' section on time conversion.
MSGBUFS The maximum number of characters of system error messages saved. This is used

as a circular buffer.
NCARGS The maximum number of characters in an exec (2) arglist. This number controls

how many arguments can be passed into a process. 5 1 20 is practically infinite.
HZ Set to the frequency of the system clock (e.g. , 50 for a 50 Hz. clock) .

UNIX Implementation

K. Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes in high-level terms the implementation of the
resident UNIXt kernel. This discussion is broken into three parts. The first part
describes how the UNIX system views processes, users, and programs. The
second part describes the 1/0 system. The last part describes the UNIX file sys
tem.

1 . INTRODUCTION

The UNIX kernel consists of about 10 ,000 lines of C code and about 1 ,000 lines of assem
bly code. The assembly code can be further broken down into 200 lines incluoed for the sake
of efficiency (they could have been written in C) and 800 lines to perform hardware functions
not possible in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression
"the UNIX operating systeni ." The kernel is the only UNIX code that cannot be substituted by a
user to his own liking. For this reason, the kernel should make as few real decisions as possi
ble. This does not mean to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common divisor of
all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a
great power. It is a soap-box platform on "the way things should be done ." Even so, if "the
way" is too radical, no one will follow it. Every important decision was weighed carefully.
Throughout, simplicity has been substituted for efficiency. Complex algorithms are used only if
their complexity can be localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process.
When a system function is required, the user process calls the system as a subroutine. At some
point in this call, there is a distinct switch of environments. After this, the process is said to be
a system process. In the normal definition of processes, the user and system processes are
different phases of the same process (they never execute simultaneously) . For protection, each
system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all
processes executing the same code. There is no junctional benefit from shared-text segments.
An efficiency benefit comes from the fact that there is no need to swap read-only segments out
because the original copy on secondary memory is still current. This is a great benefit to
interactive programs that tend to be swapped while waiting for terminal input. Furthermore, if
two processes are executing simultaneously from the same copy of a read-only segment, only
one copy needs to reside in primary memory. This is a secondary effect, because simultaneous

tUN IX is a Trademark of Bell Laboratories.

- 2 -

execution of a program is not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an overabundance of primary memory,
that is, when there is enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained from the text table. A
text table entry holds the location of the text segment on secondary memory. If the segment is
loaded, that table also holds the primary memory location and the count of the number of
processes sharing this entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment is loaded onto secondary
memory. If a second process executes a text segment that is already allocated, the entry refer
ence count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As
far as possible, the system does not use the user's data segment to hold system data. In partic
ular, there are no 1/0 buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the
system as a result of memory faults, is used for a stack. The second boundary is only grown
(or shrurik) by explicit requests. The contents of newly allocated primary memory is initialized
to zero.

Also associated and swapped· with a process is a small fixed-size system data segment.
This segment contains all the data about the process that the system needs only when the pro
cess is active. Examples of the kind of data contained in the system data segment are: saved
central processor registers, open file descriptors, accounting information, scratch data area, and
the stack for the system phase of the process. The system data segment is not addressable from
the user process and is therefore protected.

Last, there is a process table with one entry per process. This entry contains all the data
needed by the system when the process is not active. Examples are the process's name, the
location of the other segments, and scheduling information. The process table entry is allo
cated when the process is created, and freed when the process terminates. This process entry is
always directly addressable by the kernel.

Figure 1 shows the relationships between the various process control data. In a sense, the
process table is the definition of all processes, because all the data associated with a process may
be accessed starting from the process table entry.

PROCESS It-------_.,
TAB LE
ENTRY

PROCESS TABLE TEXT TABLE

SYSTEM
DATA
SEGMENT

USE R
DATA
SEGMENT

�����ESS �PACE 1------------'

TEXT
TABLE
ENTRY

R ES I D E N T

,-------,
SWAPPA BLE

USER
TEXT
SEGMENT

Fig. 1 -Process control data structure.

- 3 -

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a
copy of the original process (parent) . There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process was executing from a read-only
text segment, the child will share the text segment.) Copies of all writable data segments are
made for the child process. Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to allow them to select their own
(usually non-identical) destiny. The parent may wait for the_ termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments
of the process for new text and data segments specified in the file. The old segments are lost.
Doing an exec does not change processes; the process that did the exec persists, but after the
exec it is executing a different program. Files that were open before the exec remain open after
the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another pro
gram, say the second pass, then it simply execs the second program. This is analogous to a
"goto." If a program wishes to regain control after execing a second program, it should fork a
child process, have the child exec the second program, and have the parent wait for the child.
This is analogous to a "call." Breaking up the call into a binding followed by a transfer is simi
lar to the subroutine linkage in SL-5 . 1

2.2 . Swapping

The major data associated with a process (the user data segment, the:! system data seg
ment, and the text segment) are swapped to and from secondary memory, as needed. The user
data segment and the system data segment are kept in contiguous primary memory to reduce
swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather
devices, are used, this decision will have to be reconsidered.) Allocation of both primary and
secondary memory is performed by the same simple first-fit algorithm. When a process grows,
a new piece of primary memory is allocated. The contents of the old memory is copied to the
new memory. The old memory is freed and the tables are updated. If there is not enough pri
mary memory, secondary memory is allocated instead. The process is swapped out onto the
secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other
processes in and out of primary memory. It examines the process table looking for a process
that is swapped out and is ready to run. It allocates primary memory for that process and reads
its segments into primary memory, where that process competes for the central processor with
other loaded processes. If no primary memory is available, the swapping process makes
memory available by examining the process table for processes that can be swapped out. It
selects a process to swap out, writes it to secondary memory, frees the primary memory, and
then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly
many processes that are swapped out is to be swapped in? This is decided by secondary storage
residence time. The one with the longest time out is swapped in first. There is a slight penalty
for larger processes. Which of the possibly many processes that are loaded is to be swapped
out? Processes that are waiting for slow events (i.e., not currently running or waiting for disk
I/0) are picked first, by age in primary memory, again with size penalties. The other processes
are examined by the same age algorithm, but are not taken out unless they are at least of some
age. This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary
memory, these algorithms cause total swapping. This is not bad in itself, because the swapping
does not impact the execution of the resident processes. However, if the swapping device must
also be used for file storage, the swapping traffic severely impacts the file system traffic. It is
exactly these small systems that tend to double usage of limited disk resources.

- 4 -

2.3. Synchronization and scheduling

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables
associated with those events. For example, a process that is waiting for any of its children to
terminate will wait for an event that is the address of its own process table entry. When a pro
cess terminates, it signals the event represented by its parent's process table entry. Signaling an
event on which no process is waiting has no effect. Similarly, signaling an event on which
many processes are waiting will wake all of them up. This differs considerably from Dijkstra's
P and V synchronization operations, 2 in that no memory is associated with events. Thus there
need be no allocation of events prior to their use. Events exist simply by being used.

On the negative side, because there is no memory associated with events, no notion of
"how much" can be signaled via the event mechanism. For example, processes that want
memory might wait on an event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the competing processes would
then wake up to fight over the new memory. On reality, the swapping process is the only pro
cess that waits for primary memory to become available.)

I f an event occurs between the time a process decides to wait for that event and the time
that process enters the wait state, then the process will wait on an event that has already hap
pened (and may never happen again) . This race condition happens ·because there is no memory
associated with the event to indicate that the event has occurred; the only action of an event is
to change a set of processes from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit calls to the event-wait
mechanism. If the event in question is signaled by another process, then there is no problem.
But if the event is signaled by a hardware interrupt, then special care must be taken. These
synchronization races pose the biggest problem when UNIX is adapted to multiple-processor
configurations. 3

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of
the processes has called event-wait. The remaining process is the one currently executing.
When it calls event-wait, a process whose event has been signaled is selected and that process
returns from its call to event-wait.

Which of the runable processes is to run next? Associated with each process is a priority.
The priority of a system process is assigned by the code issuing the wait on an event. This is
roughly equivalent to the response that one would expect on such an event. Disk events have
high priority, teletype events are low, and time-of-day events are very low. (From observation,
the difference in system process priorities has little or no performance impact.) All user-process
priorities are lower than the lowest system priority. User-process priorities are assigned by an
algorithm based on the recent ratio of the amount of compute time to real time consumed by
the process. A process that has used a lot of compute time in the last real-time unit is assigned
a low user priority. Because interactive processes are characterized by low ratios of compute to
real time, interactive response is maintained without any special arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking
all system processes first and user processes second. The compute-to-real-time ratio is updated
every second. Thus, all other things being equal, looping user processes will be scheduled
round-robin with a 1-second quantum. A high-priority process waking up will preempt a run
ning, low-priority process. The scheduling algorithm has a very desirable negative feedback
character. If a process uses its high priority to hog the computer, its priority will drop. At the
same time, if a low-priority process is ignored for a long time, its priority will rise.

3. 1/0 SYSTEM

The 1/0 system is broken into two completely separate systems: the block 1/0 system and
the character 1/0 system. In retrospect, the names should have been "structured 1/0' ' and
"unstructured 1/0," respectively; while the term "block 1/0" has some meaning, "character

- 5 -

1/0" is a complete misnomer.
Devices are characterized by a major device number, a minor device number, and a class

(block or character) . For each class, there is an array of entry points into the device drivers.
The major device number is used to index the array when calling the code for a particular
device driver. The minor device number is passed to the device driver as an argument. The
minor number has no significance other than that attributed to it by the driver. Usually, the
driver uses the minor number to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between
the system code and the device drivers is very important. Early versions of the system had a
much less formal connection with the drivers, so that it was extremely hard to handcraft
differently configured systems. Now it is possible to create new device drivers in an average of
a few hours. The configuration table in most cases is created automatically by a program that
reads the system's parts list.

3.1. Block 1/0 system

The model block 1/0 device consists of randomly addressed, secondary memory blocks of
5 1 2 bytes each. The blocks are uniformly addressed 0, 1 , . . . up to the size of the device. The
block device driver has the job of emulating this model on a physical device:

The block I/0 devices are accessed through a layer of buffering software. The system
maintains a list of buffers (typically between 1 0 and 70) each assigned a "device name and a
device address. This buffer pool constitutes a data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is found, the data are made
available to the requester without any physical 1/0. If the block is not in the cache, the least
recently used block in �he cache is renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made available. Write requests are handled in an analo
gous manner. The correct buffer is found and relabeled if necessary. The write is performed
simply by marking the buffer as "dirty." The physical 1/0 is then deferred until the buffer is
renamed.

The benefits in reduction of physical 1/0 of this scheme are substantial, especially consid
ering the file system implementation. There are, however, some drawbacks. The asynchronous
nature of the algorithm makes error reporting and meaningful user error handling almost
impossible. The cavalier approach to I/0 error handling in the UNIX system is partly due to the
asynchronous nature of the block I/0 system. A second problem is in the delayed writes. If
the system stops unexpectedly, it is almost certain that there is a lot of logically complete, but
physically incomplete, 1/0 in the buffers. There is a system primitive to flush all outstanding
I/0 activity from the buffers. Periodic use of this primitive helps, but does not solve, the prob
lem. Finally, the associativity in the buffers can alter the physical 1/0 sequence from that of
the logical I/0 sequence. This means that there are times when data structures on disk are
inconsistent, even though the software is careful to perform I/0 in the correct order. On non
random devices, notably magnetic tape, the inversions of writes can be disastrous. The prob
lem with magnetic tapes is "cured" by allowing only one outstanding write request per drive.

3.2. Character 1/0 system

The character 1/0 system consists of all devices that do not fall into the block I/0 model.
This includes the "classical" character devices such as communications lines, paper tape, and
line printers. It also includes magnetic tape and disks when they are not used in a stereotyped
way, for example, 8'0-byte physical records on tape and track-at-a-time disk copies. In short,
the character 1/0 interface means "everything other than block." 1/0 requests from the user
are sent to the device driver essentially unaltered. The implementation of these requests is, of
course, up to the device driver. There are guidelines and conventions to help the implementa
tion of certain types of device drivers.

- 6 -

3.2.1. Disk drivers

Disk drivers are implemented with a queue of transaction records. Each record holds a
read/write flag, a primary memory address, a secondary memory address, and a transfer byte
count. Swapping is accomplished by passing such a record to the swapping device driver. The
block I/0 interface is implemented by passing such records with requests to fill and empty sys
tem buffers. The character 1/0 interface to the disk drivers create a transaction record that
points directly into the user area. The routine that creates this record also insures that the user
is not swapped during this 1/0 transaction. Thus by implementing the general disk driver, it is
possible to use the disk as a block device, a character device, and a swap device. The only
really disk-specific code in normal disk drivers is the pre-sort of transactions to minimize
latency for a particular device, and the actual issuing of the 1/0 request.

3.2.2. C haracter lists

Real character-oriented devices may be implemented using the common code to handle
character lists. A character list is a queue of characters. One routine puts a character on a
queue. Another gets a character from a queue. It is also possible to ask how many characters
are currently on a queue. Storage for all queues in the system comes from a single common
pool. Putting a character on a queue will allocate space from the common pool and link the
character onto the data structure defining the queue. Getting a character from a queue returns
the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by
passing characters from the user onto a character queue until some maximum number of char
acters is on the queue. The 1/0 is prodded to start as soon as there is anything on the queue
and, once started, it is sustained by hardware completion interrupts. Each time there is a com
pletion interrupt, the driver gets the next character from the queue and sends it to the
hardware. The number of characters on the queue is checked and, as the count falls through
some intermediate level, an event (the queue address) is signaled. The process that is passing
characters from the user to the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very
similar manner.

Another class of character devices is the terminals. A terminal is represented by three
character queues. There are two input queues (raw and canonical) and an output queue. Char
acters going to the output of a terminal are handled by common code exactly as described
above. The main difference is that there is also code to interpret the output stream as ASCII
characters and to perform some translations, e.g. , escapes for deficient terminals. Another
common aspect of terminals is code to insert real-time delay after certain control characters.

Input on terminals is a little different. Characters are collected from the terminal and
placed on a raw input queue. Some device-dependent code conversion and escape interpreta
tion is handled here. When a line is complete in the raw queue, an event is signaled. The code
catching this signal then copies a line from the raw queue to a canonical queue performing the
character erase and line kill editing. User read requests on terminals can be directed at either
the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as charac
ter I/0 drivers. An example is a driver that reads and writes unmapped primary memory as an
I/0 device. Some devices are too fast to be treated a character at time, but do not fit the disk
110 mold. Examples are fast communications lines and fast line printers. These devices either
have their own buffers or "borrow" block 1/0 buffers for a while and then give them back.

- 7 -

4. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of
files is implied by the system. Files are attached anywhere (and possibly multiply) onto a
hierarchy of directories. Directories are simply files that users cannot write. For a further dis
cussion of the external view of files and directories, see Ref. 4.

The UNIX file system is a disk data structure accessed completely through the block 1/0
system. As stated before, the canonical view of a "disk" is a randomly addressable array of
5 12-byte blocks. A file system breaks the disk into four self-identifying regions. The first
block (address 0) is unused by the file system. It is left aside for booting procedures. The
second block (address 1) contains the so-called "super-block. " This block, among other things,
contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a
list of file definitions. Each file definition is a 64-byte structure, called an i-node. The offset of
a particular i-node within the i-list is called its i-number. The combination of device name
(major and minor numbers) and i-number serves to uniquely name a particular file. After the
i-list, and to the end of the disk, come free storage blocks that are available for the contents of
files.

The free space on a disk is maintained by a linked list of available disk blocks. Every
block in this chain contains ll disk address of the next block in the chain. The remaining space
contains the address of up to 50 disk blocks that are also free. Thus with one I/0 operation,
the system obtains 50 free blocks and a pointer where to find more. The disk allocation algo
rithms are very straightforward. Since all allocation is in fixed-size blocks, and there is strict
accounting of space, there is no need to compact or garbage collect. However, as disk space
becomes dispersed, latency gradually increases. Some installations choose to occasionally com
pact disk space to reduce latency.

An i-node contains 1 3 disk addresses. The first 10 of these addresses point directly at the
first 10 blocks of a file'. If a file is larger than 10 blocks (5, 1 20 bytes) , then the eleventh
address points at a block that contains the addresses of the next 1 28 blocks of the file. If the
file is still larger than this (70,656 bytes) , then the twelfth block points at up to 1 28 blocks,
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a "triple indirect" address. The algorithm ends here with the maximum file size of
1 ,082,20 1 ,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new
type of file, the directory. A directory is accessed exactly as an ordinary file. It contains 1 6-
byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at a
known i-number (viz. , 2) . The file system structure allows an arbitrary, directed �raph of direc
tories with regular files linked in at arbitrary places in this graph. In fact, very early UNIX sys
tems used such a structure. Administration of such a structure became so chaotic that later sys
tems were restricted to a directory tree. Even now, with regular files linked multiply into arbi
trary places in the tree, accounting for space has become a problem. It may become necessary
to restrict the entire structure to a tree, and ·allow a new form of linking that is subservient to
the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy
space allocation. With most physical addresses confined to a small contiguous section of disk, it
is also easy to dump, restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied physical I/0 without
adding much execution. The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files containing 1 30M bytes of data-file
content. The overhead G-node, indirect blocks, and last block breakage) is about 1 1 .5M bytes.
The directory structure to support these files has about 1 , 500 directories containing 0.6M bytes
of directory content and about 0.5M bytes of overhead in accessing the directories. Added up
any way, this comes out to less than a 10 percent overhead for actual stored data. Most sys
tems have this much overhead in padded trailing blanks alone.

- 8 -

4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around
access to the i-node. The system maintains a table of all active i-nodes. As a new file is
accessed, the system locates the corresponding i-node, allocates an i-node table entry, and reads
the i-node into primary memory. As in the buffer cache, the table entry is considered to be the
current version of the i-node. Modifications t9 the i-node are made to the table entry. When
the last access to the i-node goes away, the table entry is copied back to the secondary store i
Iist and the table entry is freed.

All 110 operations on files are carried out with the aid of the corresponding i-node table
entry. The accessing of a file is a straightforward implementation of the algorithms mentioned
previously. The user is not aware of i-nodes and i-numbers. References to the file system are
made in terms of path names of the directory tree. Converting a path name into an i-node
table entry is also straightforward. Starting at some known i-node (the root or the current
directory of some process) , the next component of the path name is searched by reading the
directory. This gives an i-number and an implied device (that of the directory) . Thus the next
i-node table entty can be accessed. If that was the last component of the path name, then this
i-node is the result. If not, this i-node is the directory needed to look up the next component
of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of
these are open, create, read, write, seek, and close. The data structures maintained are shown
in Fig. 2.

OPEN F I LE
TABLE

PER·USER OPEN
F I LE TABLE

ACTIVE I ·NODE
TABLE

{F I LE }
MAPPING
ALGOR ITHMS

Fig. 2-File system data structure.

] SWAPPED
PER/USER

] RESIDENT
P E RiSYSTEM

SECONDARY
STO RAGE
PER/
F I LE SYSTEM

In the system data segment associated with a user, there is room for some (usually between 10
and 50) open files. This open file table consists of pointers that can be used to access
corresponding i-node table entries. Associated with each of these open files is a current 1/0
pointer. This is a byte offset of the next read/write operation on the file. The system treats
each read/write request as random with an implied seek to the 1/0 pointer. The user usually
thinks of the file as sequential with the l/0 pointer automatically counting the number of bytes
that have been read/written from the file. The user may, of course, perform random 110 by
setting the l/0 pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common 110 pointer

- 9 -

arid yet have separate 1/0 pointers for independent processes that access the same file. With
these two conditions, the 1/0 pointer cannot reside in the i-node table nor can it reside in the
list of open files for the process. A new table (the open file table) was invented for the sole
purpose of holding the 1/0 pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the same file will only share
the i-node table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open converts a file system
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly
created open file table entry. A pointer to the file table entry is placed in the system data seg
ment for the process. create first creates a new i-node entry, writes the i-number into a direc
tory, and then builds the same structure as for an open. read and write just access the i-node
entry as described above. seek simply manipulates the 1/0 pointer. No physical seeking is
done. close just frees the structures built by open and create. Reference counts are kept on
the open file table entries and the i-node table entries to free these structures after the last
reference goes away. unlink simply decrements the count of the number of directories point
ing at the given i-node. When the last reference to an i-node table entry goes away, if the i
node has no directories pointing to it, then the file is removed and the i-node is freed. This
delayed removal of files prevents problems .arising from removing active files. A file may be
removed while still open. The resulting unnamed file vanishes when the file is closed. This is
a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of
implied seeks ·before each read or write in order to implement first-in-first-out. There are also
checks and synchronization to prevent the writer from grossly outproducing the reader and to
prevent the reader from overtaking the writer.

4.2. Mounted file systems,

The file system of a UNIX system starts with some designated block device formatted as
described above to contain a hierarchy. The root of this structure is the root of the UNIX file
system. A second formatted block device may be mounted at any leaf of the current hierarchy.
This logically extends the current hierarchy. The implementation of mounting is trivial. A
mount table is maintained containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the new i-node is a designated
leaf. If it is, the i-node of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file
lives. Thus a file system consisting of many mounted devices does not have a common pool of
free secondary storage space. This separation of space on different devices is necessary to allow
easy unmounting of a device.

4.3. Other system functions

There are some other things that the system does for the user- a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well
developed because our use of the system in computing science research does not need them.
There are some features that are missed in some applications, for example, better inter-process
communication.

The UNIX kernel is an I/0 multiplexer more than a complete operating system. This is as
it should be. Because of this outlook, many features are found in most other operating systems
that are missing from the UNIX kernel. For example, the UNIX kernel does not support file
access methods, file disposition, file formats, file maximum size, spooling, command language,

&'@b logical records, physical records, assignment of logical file names, logical file names, more than
··<':�'''" one character set, an operator's console, an operator, log-in, or log-out. Many of these things

are symptoms rather than features. Many of these things are implemented in user software
using the kernel as a tool. A good example of this is the command language. 5 Each user may
have his own command language. Maintenance of such code is as easy as maintaining user

- 1 0 -

code. The idea of implementing "system" code with general user primitives comes directly
from MULTICS. 6

References

1 . R. E. Griswold and D . R. Hanson, "An Overview of SL5 ," S/GPLAN Notices 12(4) pp.
40-50 (April 1 977) .

2. E. W. Dijkstra, "Cooperating Sequential Processes," pp. 43- 1 12 in Programming
Languages, ed. F. Genuys,Academic Press, New York (1 968) .

3. J. A. Hawley and W. B. Meyer, "MUNIX, A Multiprocessing Version of UNIX," M.S.
Thesis, Naval Postgraduate School, Monterey, Cal. (1975) .

4. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.
57(6) pp. 1905- 1 929 (1978) .

.

5. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys. Tech. J. 57 (6) pp.
1 97 1 - 1990 (1978) .

6. E. I . Orga�ick, The MULTICS System, M.I.T. Press, Cambridge, Mass. (1972) .

The UNIX 1/0 System

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This paper gives an overview of the workings of the UNIXt I/0 system. It was written
with an eye toward providing guidance to writers of device driver routines, and is oriented more
toward describing the environment and nature of device drivers than the implementation of
that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file sys
tem as discussed in the paper "The UNIX Time-sharing System." A more detailed discussion
appears in "UNIX Implementation;" the current document restates parts of that one, but is
still more detailed. It is most useful in conjunction with a copy of the system code, since it is
basically an exegesis of that code. •;;.

·

Device Classes
There are two classes of device: block and character. The block interface is suitable for

devices lik� disks, tapes, and DECtape which work, or can work, with addressible 5 12-byte
blocks. Ordinary magnetic tape just barely fits in this category, since by use of forward and
backward spacing any block cah be read, even though blocks can be written only at the end of
the tape. Block devices can at least potentially contain a mounted file system. The interface to
block devices is very highly structured; the drivers for these devices share a great many rou
tines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work
must be done by the driver itself.

Devices of both types are named by a major and a minor device number. These numbers
are generally stored as an integer with the minor device number in the low-order 8 bits and the
major device number in the next-higher 8 bits; macros major and minor are available to access
these numbers. The major device number selects which driver will deal with the device; the
minor device number is not used by the rest of the system but is passed to the driver at
appropriate times. Typically the minor number selects a subdevice attached to a given con
troller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate
tables; they both start at 0 and therefore overlap.

Overview of I/0

The purpose of the open and creat system calls is to set up entries in three separate system
tables. The first of these is the u_ofile table, which is stored in the system's per-process data
area u. This table is indexed by the file descriptor returned by the open or creat, and is accessed
during a read, write, or other operation on the open file. An entry contains only a pointer to the
corresponding entry of the file table, which is a per-system data base. There is one entry in the
.file table· for each instance of open or creat. This table is per-system because the same instance
of an open file must be shared among the several processes which can result from .forks after

tUNIX is a Trademark of Bell Laboratories.

- 2 -

the file is opened. A file table entry contains flags which indicate whether the file was open for
reading or writing or is a pipe, and a count which is used to decide when all processes using the
entry have terminated or closed the file (so the entry can be abandoned). There is also a 32-bit
file offset which is used to indicate where in the file the next read or write will take place.
Finally, there is a pointer to the entry for the file in the inode table, which contains a copy of
the file's i-node.

Certain open files can be designated "multiplexed" files, and several other flags apply to
such channels. In such a case, instead of an offset, there is a pointer to an associated multiplex
channel table. Multiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the same
file is opened several times, it will have several entries in this table. However, there is at most
one entry in the inode table for a given file. Also, a file may enter the inode table not only
because it is open, but also because it is the current directory of some process or because it is a
special file containing a currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on
the disk; the modified and accessed· times are not stored, and the entry is augmented by a flag
word containing information about the entry, a count used to determine when it may be
allowed to disappear, and the device and i-number whence the entry came. Also, the several
block numbers that give addressing information for the file are expanded from the 3-byte,
compressed format used on the disk to ffill long quantities.

During the processing of an open or creat call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinding a tape, turning on
the data-terminal-ready lead of a modem, etc .) . However, the close routine is called only when
the last process closes a file, that is, when the i-node table entry is being deallocated. Thus it is
not feasible for a device to maintain, or depend on, a count of its users, although it is quite
possible to implement an exclusive-use device which cannot be reopened until it has been
closed.

When a read or write takes place, the user's arguments and the .file table entry are used to
set up the variables u. u_base, u.u_count, and u.u_offset which respectively contain the (user)
address of the I/0 target area, the byte-count for the transfer, and the current location in the
file. If the file referred to is a character-type special file, the appropriate read or write routine is
called; it is responsible for transferring data and updating the count and current location
appropriately as discussed below. Otherwise, the current location is used to calculate a logical
block number in the file. If the file is an ordinary file the logical block number must be
mapped (possibly using indirect blocks) to a physical block number; a block-type special file
need not be mapped. This mapping is performed by the bmap routine. In any event, the
resulting physical block number is used, as discussed below, to read or write the appropriate
device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each dev
ice provides five routines: open, close, read, write, and special-function (to implement the ioctl
system call) . Any of these may be missing. If a call on the routine should be ignored, (e.g.
open on non-exclusive devices that require no setup) the cdevsw entry can be given as nulldev; if
it should be considered an error, (e.g. write on read-only devices) nodev is used. For terminals,
the cdevsw structure also contains a pointer to the tty structure associated with the terminal.

The open routine is called each time the file is opened with the full device number as
argument. The second argument is a flag which is non-zero only if the device is to be written
upon.

The close routine is called only when the file is closed for the last time, that is when the
very last process in which the file is open closes it. This means it is not possible for the driver
to maintain its own count of its users. The first argument is the device number; the second is a

- 3 -

flag which is non-zero if the file was open for writing in the process which performs the final
close.

·

When write is called, it is supplied the device as argument. The per-user variable
u.u_count has been set to the number of characters indicated by the user; for character devices,
this number may be 0 initially. u.u_base is the address supplied by the user from which to start
taking characters. The system may call the routine internally, so the flag u.u_segfig is supplied
that indicates, if on, that u.u_base refers to the system address space instead of the user's.

The write routine should copy up to u.u_count characters from the user's buffer to the
device, decrementing u.u count for each character passed. For most drivers, which work one
character at a time, the routine cpass() is used tQ pick up characters from the user's buffer.
Successive calls on it return the characters to be written until u.u_count goes to 0 or an error
occurs, when it returns - 1 . Cpass takes care of interrogating u.u_segfig and updating u.u_count.

Write routines which want to transfer a probably large number of characters into an inter
nal buffer may also use the routine iomove(buffer, offset, count, flag) which is faster when many
characters must be moved. Iomove transfers up to count characters into the buffer starting offset
bytes from the start of the buffer; flag should be B_ WRITE (which is 0) in the write case. Cau
tion : the caller is responsible for making sure the count is not too large and is non-zero. As an
efficiency note, iomove is much slower if any of buffer+ offset, count or u.u base is odd.

The device's read routine is called under conditions similar to write, except that u.u_count
is guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available;
it takes care of housekeeping like cpass and returns - 1 as the last character specified by
u.u_count is returned to the user; before that time, 0 is returned. Iomove is also usable as with
write; the flag should be B_READ but the same cautions apply.

The "special-functions" routine is invoked by the stty and gtty system calls as follows: (*p)
(dev, v) where p is a pointer to the device's routine, dev is the device number, and v is a vector.
In the gtty case, the device is supposed to place up to 3 words of status information into the
vector; this will be returned to the caller. In the stty case, v is 0; the device should take up to 3
words of control information from the array u.u_arg[0 . . . 2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is turned into a C-compatible call on the devices's interrupt routine. The interrupt
catching mechanism makes the low-order four bits of the "new PS" word in the trap vector for
the interrupt available to the interrupt handler. This is conventionally used by drivers which
deal with multiple similar devices to encode the minor device number. After the interrupt has
been processed, a return from the interrupt handler will return from th� interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most
of these handlers, for example, need a place to buffer characters in the internal interface
between their "top hair ' (read/write) and "bottom half" (interrupt) routines. For relatively
low data-rate devices, the best mechanism is the character queue maintained by the routines
getc and putc. A queue header has the structure

struct {
int
char
char

} queue;

c_cc;
*c_cf;
*c_cl;

I* character count *I
I* first character *I
I* last character *I

A character is placed on the end of a queue by putc{c, &queue) where c is the character and
queue is the queue header. The routine returns - 1 if there is no space to put the character, 0
otherwise. The first character on the queue may be retrieved by getd&queue) which returns
either the (non-negative) · character or - 1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system
and in the standard system there are only some 600 character slots available. Thus device
handlers, especially write routines, must take care to avoid gobbling up excessive numbers of

- 4 -

characters.
The other major help available to device handlers is the sleep-wakeup mechanism. The

call sleep(event, priority) causes the process to wait (allowing other processes to run) until the
event occurs; at that time, the process is marked ready-to-run and the call will return when
there is no process with higher priority.

The call wakeup(event) indicates that the event has happened, that is, causes processes
sleeping on the event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker-up. By convention, it is the address of some data area used by the
driver, which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened;
they shquld check that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 1 27; a higher numerical value indicates a less-favored
scheduling situation. A distinction is made between processes sleeping at priority less than the
parameter PZERO and those at numerically larger priorities. The former cannot be interrupted
by signals, although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep
with priority less than PZERO on an event which might never occur. On the other hand, calls
to sleep with larger priority may never return if the process is terminated by some signal in the
meantime. Incidentally, it is a gross error to call sleep in a routine called at interrupt time,
since the process which is running is almost certainly not the process which should go to sleep.
Likewise, none of the variables in the user area " u." should be touched, let alone changed, by
an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible
to supply a wakeup, (for example, a device going on-line, which does not generally cause an
interrupt) , the call sleep(&lbolt, priority) may be given. Lbolt is an external cell whose address is
awakened once every 4 seconds by the clock interrupt routine.

The routines sp/4(), spl5(), sp/6(), sp/7() are available to set the processor priority level
as indicated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then 'timeout(func, arg, interval) will be
useful. This routine arranges that after interval sixtieths of a second, the june will be called with
arg as argument, in the style (*jimc) (arg). Timeouts are used, for example, to provide real
time delays after function characters like new-line and tab in typewriter output, and to ter
minate an attempt to read the 201 Dataphone dp if there is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since
it must appear to be positive, and that only a bounded number of timeouts can be going on at
once. Also, the specified june is called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of
buffers containing the images of blocks of data on the various devices. The most important
purpose of these routines is to assure that several processes that access the same block of the
same device in multiprogrammed fashion maintain a consistent view of the data in the block.
A secondary but still important purpose is to increase the efficiency of the system by keeping
in-core copies of blocks that are being accessed frequently. The main data base for this
mechanism is the table of buffers buf Each buffer header contains a pair of pointers (b Jorw,
b back) which maintain a doubly-linked list of the buffers associated with a particular block
device, and a pair of pointers (avJorw, av_back) which generally maintain a doubly-linked list
of blocks which are "free," that is, eligible to be reallocated for another transaction. Buffers
that have 1/0 in progress or are busy for other purposes do not appear in this list. The buffer
header also contains the device and block number to which the buffer refers, and a pointer to
the actual storage associated with the buffer. There is a word count which is the negative of the
number of words to be transferred to or from the buffer; there is also an error byte and a

- 5 -

residual word count used to communicate information from an 1/0 routine to its caller.
Finally, there is a flag word with bits indicating the status of the buffer. These flags will be dis
cussed below.

Seven routines constitute the most important part of the interface with the rest of the sys
tem. Given a device and block number, both bread and getblk return a pointer to a buffer
header for the block; the difference is that bread is guaranteed to return a buffer actually con
taining the current data for the block, while getblk returns a buffer which contains the data in
the block only if it is already in core (whether it is or not is indicated by the B_DONE bit; see
below) . In either case the buffer, and the corresponding device block, is made "busy," so that
other processes referring to it are obliged to wait until it becomes free. Getblk is used, for
example, when a block is about to be totally rewritten, so that its previous contents are not use
ful; still, no other process can be allowed to refer to the block until the new data is placed into
it.

The breada routine is used to implement read-ahead. it is logically similar to bread, but
takes as an additional argument the number of a block (on the same device) to be read asyn
chronously after the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other
processes. It is called, for example, after data has been extracted following a bread. There are
three subtly-different write routines, all of which take a buffer pointer as argument, and all of
which logically release the buffer for use by others and place it on the free list. Bwrite puts the
buffer on the appropriate device queue, waits for the write to be done, and sets the user's error
flag if required. Bawrite places the buffer on the device's queue, but does not wait for comple
tion, so that errors cannot be reflected directly to the user. Bdwrite does not start any 1/0
operation at all, but merely marks the buffer so that if it happens to be grabbed from the free
list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that 1/0 takes place correctly, and that errors are
reflected to the proper user; i t is used, for example, when updating i-nodes. Bawrite is useful
when more overlap is desired (because no wait is required for 1/0 to finish) but when it is rea
sonably certain that the write is really required. Bdwrite is used when there is doubt that the
write is needed at the moment. For example, bdwrite is called when the last byte of a write sys
tem call falls short of the end of a block, on the assumption that another write will be given
soon which will re-use the same block. On the other hand, as the end of a block is passed,
bawrite is called, since probably the block will not be accessed again soon and one might as well
start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively
to the use of the caller, and make others wait, while one of bre/se, bwrite, bawrite, or bdwrite
must eventually be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the
buffer. Since they provide one important channel for information between the drivers and the
block 1/0 system, it is important to understand these flags. The following names are manifest
constants which select the associated flag bits.
B_READ This bit is set when the buffer is handed to the device strategy routine (see below)

to indicate a read operation. The symbol B _ WRITE is defined as 0 and does not
define a flag; it is provided as a mnemonic convenience to callers of routines like
swap which have a separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is
turned on when the operation completes, whether normally as the result of an error.
I t is also used as part of the return argument of getblk to indicate if 1 that the
returned buffer actually contains the data in the requested block.

- 6 -

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an 1/0 or other error
occurred. If it is set the b_error byte of the buffer header may contain an error code
if it is non-zero. If b_error is 0 the nature of the error is not specified. Actually no
driver at present sets b_error; the latter is provided for a future improvement
whereby a more detailed error-reporting scheme may be implemented.

B BUSY This bit indicates that the buffer header is not on the free list, i .e. is dedicated to
someone's exclusive use. The buffer still remains attached to the list of blocks asso
ciated with its device, however. When getblk (or bread, which calls it) searches the
buffer list for a given device and finds the requested block with this bit on, it sleeps
until the bit clears.

B PHYS This bit is set for raw 1/0 transactions that need to allocate the Unibus map on an
1 1170.

B MAP This ·bit is set on buffers that have the Unibus map allocated, so that the iodone rou
tine knows to deallocate the map.

B_ WANTEDThis flag is used in conjunction with the B_BUSY bit. Before sleeping as described
just above, getblk sets this flag. Conversely, when the block is freed and the busy bit
goes down (in brelse) a wakeup is given for the block header whenever B_ WANTED
is on. This strategem avoids the overhead of having to call wakeup every time a
buffer is freed on the chance that someone might want it.

B AGE · This bit may be set on buffers just before releasing them; if it is on, the buffer is
placed at the head of the free list, rather than at the tail. It is a performance heuris
tic used when the caller judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer
should be released when the write has been finished, usually .at interrupt time. The
difference between bwrite and bawrite is that the former starts 1/0, waits until it is
done, and frees the buffer. The latter merely sets this bit and starts 1/0. The bit
indicates that relse should be called for the buffer on completion.

B_DELWRIThis bit is set by bdwrite before releasing the buffer. When getb/k, while searching
for a free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes
the block to be written out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each
block device.

Just as for character devices, block device drivers may supply an open and a close routine
called respectively on each open and on the final close of the device. Instead of separate read
and write routines, each block device driver has a strategy routine which is called with a pointer
to a buffer header as argument. As discussed, the buffer header contains a read/write flag, the
core address, the block number, a (negative) word count, and the major and minor device
number. The role of the strategy routine is to carry out the operation as requested by the
information in the buffer header. When the transaction is complete the B_DONE (and possibly
the B_ERRORJ bits should be set. Then if the B_ASYNC bit is set , brelse should be called;
otherwise, wakeup. In cases where the device is capable, under error-free operation, of
transferring fewer words than requested, the device's word-count register should be placed in
the residual count slot of the buffer header; otherwise, the residual count should be set to 0.
This particular mechanism is really for the benefit of the magtape driver; when reading this
device records shorter than requested are quite normal, and the user should be told the actual
length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header
allocated as discussed above, all that is actually required is that the argument be a pointer to a
place containing the appropriate information. For example the swap routine, which manages
movement of core images to and from the swapping device, uses the strategy routine for this

- 7 -

device. Care has to be taken that no extraneous bits get turned on in the flag word.
The device's table specified by bdevsw has a byte to contain an active flag and an error

count, a pair of links which constitute the head of the chain of buffers for the device (bJorw,
b_back), and a first and last pointer for a device queue. Of these things, all are used solely by
the device driver itself except for the buffer-chain pointers. Typically the flag encodes the state
of the device, and is used at a minimum to indicate that the device is currently engaged in
transferring information and no new command should be issued. The error count is useful for
counting retries when errors occur. The device queue is used to remember stacked requests; in
the simplest case it may be maintained as a first-in first-out list. Since buffers which have been
handed over to the strategy routines are never on the list of free buffers, the pointers in the
buffer which maintain the free list (avJorw, av_back) are also used to contain the pointers
which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp)
arranges that the buffer to which bp points be released or awakened, as appropriate, when the
strategy module has finished with the buffer, either normally or after an error. (In the latter
case the B_ERROR bit has presumably been set .)

The routine geterror(bp) can be used to examine the error bit in a buffer header and
arrange that any error indication found therein is reflected to the user. It may be called only in
the non-interrupt part of a driver when 1/0 has completed (B _DONE has been set) .

Raw Block-device 1/0

A scheme has been set up whereby block device drivers may provide the ability to
transfer information directly between the user's core image and the device without the use of
buffers and in blocks as large as the caller requests. The method involves setting up a
character-type special file corresponding to the raw device and providing read and write routines
which set up what is usually a private, non-shared buffer header with the appropriate informa
tion and call the device's strategy routine. If desired, separate open and close routines may be
provided but this is usually unnecessary. A special-function routine might come in handy,
especially for magtape.

:?.;.: A great deal of work has to be done to generate the "appropriate information" to put in ·
the argument buffer for the strategy module; the worst part is to map relocated user addresses
to physical addresses. Most of this work is done by physio(strat, bp, dev, rw) whose arguments
are the name of the strategy routine strat, the buffer pointer bp, the device number dev, and a
read-write flag rw whose value is either B REA D or B WRITE. Physio makes sure that the
user's base address and count are even (because most devices work in words) and that the core
area affected is contiguous in physical space; it delays until the buffer is not busy, and makes it
busy while the operation is in progress; and it sets up user error return information.

A Tour through the UNIXt C Compiler

The Intermediate Language

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07914

Communication between the two phases of the compiler proper is carried out by means of
a pair of intermediate files. These files are treated as having identical structure, although the
second file contains only the code generated for strings. It is convenient to write strings out
separately to reduce the need for multiple location counters in a later assembly phase.

The intermediate language is not machine-independent; its structure in a number of ways
reflects the fact that C was originally a one-pass compiler chopped in two to reduce the max
imum memory requirement. In fact, only the latest version of the compiler has a complete
intermediate language at all. Until recently, the first phase of the compiler generated assembly
code for those constructions it could deal with, and passed expression parse trees, in absolute
binary form, to the second phase for code generation. Now, at least, all inter-phase informa
tion is passed in a describable form, and there are no absolute pointers involved, so the cou
pling between the phases is not so strong.

The areas in which the machine (and system) dependencies are most noticeable are
1 . Storage allocation for automatic variables and arguments has already been performed, and

nodes for such variables refer to them by offset from a display pointer. Type conversion
(for example, from integer to pointer) has already occurred using the assumption of byte
addressing and 2-byte words.

2 . Data representations suitable to the PDP- 1 1 are assumed; in particular, floating point con
stants are passed as four words in the machine representation.
As it happens, each intermediate file is represented as a sequence of binary numbers

without any explicit demarcations. It consists of a sequence of conceptual lines, each headed by
an operator, and possibly containing various operands. The operators are small numbers; to
assist in recognizing failure in synchronization, the high-order byte of each operator word is
always the octal number 376. Operands are either 16-bit binary numbers or strings of charac
ters representing names. Each name is terminated by a null character. There is no alignment
requirement for numerical operands and so there is no padding after a name string.

The binary representation was chosen to avoid the necessity of converting to and from
character form and to minimize the size of the files. It would be very easy to make each
operator-operand 'line' in the file be a genuine, printable line, with the numbers in octal or
decimal; this in fact was the representation originally used.

The operators fall naturally into two classes: those which represent part of an expression,
and all others. Expressions are transmitted in a reverse-Polish notation; as they are being read,
a tree is built which is isomorphic to the tree constructed in the first phase. Expressions are
passed as a whole, with no non-expression operators intervening. The reader maintains a stack;
each leaf of the expression tree (name, �onstant) is pushed on the stack; each unary operator
replaces the top of the stack by a node whose operand is the old top-of-stack; each binary

tUNIX is a Trademark of Bell Laboratories.

/

- 2 -

operator replaces the top pair on the stack with a single entry. When the expression is com
plete there is exactly one item on the stack. Following each expression is a special operator
which passes the unique previous expression to the 'optimizer' described below and then to the
code generator.

Here is the list of operators not themselves part of expressions.

EOF

marks the end of an input file.

BDA T A ./fag data . . .

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of
words; the first member of the pair is non-zero to indicate that the data continue; a zero
flag is not followed by data and terminates the operator. The data bytes occupy the low
order part of a word.

WDATA./fag data . . .

specifies a sequence of words to be assembled as static data; it is identical to the BDATA
operato� except that entire words, not just bytes, are passed.

PROG

means that subsequent information is to be compiled as program text.

DATA

means that subsequent information is to be compiled as static data.

BSS

means that subsequent information is to be compiled as unitialized static data.

SYMDEF name

means that the symbol name is an external name defined in the current program. It is
produced for each external data or function definition.

CSPACE name size

indicates that the name refers to a data area whose size is the specified number of bytes.
It is produced for external data definitions without explicit initialization.

SSP ACE size

indicates that size bytes should be set aside for data storage. It is used to pad out short
initializations of external data and to reserve space for static (internal) data. It will be
preceded by an appropriate label.

EVEN

is produced after each external data definition whose size is not an integral number of
words. It is not produced after strings except when they initialize a character array.

NLABEL name

is produced just before a BDATA or WDATA initializing external data, and serves as a
label for the data.

- 3 -

RLABEL name

is produced just before each function definition, and labels its entry point.

SNAME name number

is produced at the start of each function for each static variable or label declared therein.
Subsequent uses of the variable will be in terms of the given number. The code genera
tor uses this only to produce a debugging symbol table.

ANAME name number

Likewise, each automatic variable's name and stack offset is specified by this operator.
Arguments count as automatics.

RN AME name number

Each register variable is similarly named, with its register number.

SAVE number

produces a register-save sequence at the start of each function, just after its label (RLA
BEL) .

SETREG number

is used to indicate the number of registers used for register variables. It actually gives the
register number of the lowest free register; it is redundant because the RNAME operators
could be counted instead.

PROFIL
is produced before the save sequence for functions when the profile option is turned on.
It produces code to count the number of times the function is called.

SWIT dejlab line label value . . .

i s produced for switches. When control flows into it, the value being switched on is in the
register forced by RFORCE (below) . The switch statement occurred on the indicated line
of the source, and the label ,number of the default location is defiab. Then the operator is
followed by a sequence of label-number and value pairs; the list is terminated by a 0 label.

LABEL number

generates an internal label . It is referred to elsewhere using the given number.

BRANCH number

indicates an unconditional transfer to the internal label number given.

RETRN
produces the return sequence for a function. It occurs only once, at the end of each func
tion.

EXPR line

causes the expression just preceding to be compiled. The argument is the line number in
the source where the expression occurred.

- 4 -

NAME class type name

NAME class type number

indicates a name occurring in an expression. The first form is used when the name is
external; the second when the name is automatic, static, or a register. Then the number
indicates the stack offset, the label number, or the register number as appropriate. Class
and type encoding is described elsewhere.

CON type value

transmits an integer constant. This and the next two operators occur as part of expres
sions.

FCON type 4-word-value

transmits a floating constant as four words in PDP- 1 1 notation.

SFCON type value

transmits a floating-point constant whose value · is correctly represented by its high-order
word in PDP- 1 1 notation.

NULL

indicates a null argument list of a function call in an expression; call is a binary OP.erator
whose second operand is the argument list.

CBRANCH label cond

produces a conditional branch . . It is an expression operator, and will be followed by an
EXPR. The branch to the label number takes place if the expression's truth value is the
same as that of con d. That is, if cond = I and the expression evaluates to true, the branch
is taken.

binary-operator type

There are binary operators corresponding to each such source-language operator; the type
of the result of each is passed as well. Some perhaps-unexpected ones are: COMMA,
which is a right-associative operator designed to simplify right-to-left evaluation of func
tion arguments; prefix and postfix + + and - - , whose second operand is the increment
amount, as a CON; QUEST and COLON, to express the conditional expression as
'a? (b:c) ' ; and a sequence of special operators for expressing relations between pointers, in
case pointer comparison is different from integer comparison (e.g. unsigned) .

unary-operator type

There are also numerous unary operators. These include ITOF, FTOI, FTOL, LTOF,
ITOL, L TOI which convert among floating, long, and integer; JUMP which branches
indirectly through a label expression; INIT, which compiles the value of a constant
expression used as an initializer; RFORCE, which is used before a return sequence or a
switch to place a value in an agreed-upon register.

Expression Optimization

Each expression tree, as iUs read in, is subjected to a fairly comprehensive analysis. This
is performed by the optim routine and a number of subroutines; the major things done are

- 5 -

1 . Modifications and simplifications of the tree so its value may b e computed more efficiently
and conveniently by the code generator.

2. Marking each interior node with an estimate of the number of registers required to evalu
ate it. This register count is needed to guide the code generation algorithm.
One thing that is definitely not done is discovery or exploitation of common subexpres

sions, nor is this done anywhere in the compiler.
The basic organization is simple: a depth-first scan of the tree. Optim does nothing for

leaf nodes (except for automatics; see below) , and calls unoptim to handle unary operators. For
binary operators, it calls itself to process the operands, then treats each operator separately.
One important case is commutative and associative operators, which are handled by acommute.

Here is a brief catalog of the transformations carried out by by optim itself. It is not
intended to be complete. Some of the transformations are machine-dependent, although they
may well be useful on machines other than the PDP- 1 1 .
1 . As indicated in the discussion of unoptim below, the optimizer can create a node type

corresponding to the location addressed by a register plus a constant offset. Since this is
precisely the implementation of automatic variables and arguments, where the register is
fixed by convention, such variables are changed to the new form to simplify later process
ing.

2. Associative and commutative operators are processed by the special routine acommute.

3 . After processing by acommute, the bitwise & operator is turned into a new andn operator;
'a & b' becomes 'a andn -b' . This is done because the PDP� l l provides no and operator,
but only andn. A similar transformation takes place for ' = &' .

4. Relationals are turned around so the more complicated expression is on the left. (So that
'2 > f(x) ' becomes 'f(x) < 2 ') . This improves code generation since the algorithm
prefers to have the right operand require fewer registers than the left.

5. An expression minus a constant is turned into the expression plus the negative constant,
and the acommute routine is called to take advantage of the properties of addition.

6. Operators with constant operands are evaluated.
7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since

the PDP- 1 1 lacks a general right-shift operator.
8 . A number of special cases are simplified, such as division or multiplication by 1 , and

shifts by 0.
The unoptim routine performs the same sort of processing for unary operators.
1 . '*&x' and '&*x ' are simplified t o 'x' .
2. If r is a register and c is a constant or the address of a static or external variable, the

expressions '* (r+ c) ' and '*r' are turned into a special kind of name node which expresses
the name itself and the offset. This simplifies subsequent processing because such con
structions can appear as the the address of a PDP- 1 1 instruction.

3 . When the unary '&' operator i s applied to a name node of the special kind just discussed,
it is reworked to make the addition explicit again� this is done because the PDP- 1 1 has no
'load address' instruction.

4. Constructions like '*r + + ' and '* - - r' where r is a register are discovered and marked as
being implementable using the PDP- 1 1 auto-increment and -decrement modes.

5.

6.

If ' ! ' is applied to a relational, the ' ! ' is discarded and the sense of the relational is
reversed.
Special cases involving reflexive use of negation and complementation are discovered.

- 6 -

7. Operations applying to constants are evaluated.
The acommute routine, called for associative and commutative operators, discovers clus

ters of the same operator at the top levels of the current tree, and arranges them in a list: for
'a+ ((b +c) + (d +f)) ' the list would be'a,b,c,d,e,r. After each subtree is optimized, the list is
sorted in decreasing difficulty of computation; as mentioned above, the code generation algo
rithm works best when left operands are the difficult ones. The 'degree of difficulty' computed
is actually finer than the mere number of registers required; a constant is . considered simpler
than the address of a static or external, which is simpler than reference to a variable. This
makes it easy to fold all the constants together, and also to merge together the sum of a con
stant and the address of a static or external (since in such nodes there is space for an 'offset'
value) . There are also special cases, like multiplication by 1 and addition of 0.

A special routine is invoked to handle sums of products. Distrib is based on the fact that it is
better to compute 'c 1 *c2*x + c 1 *y' as 'cl * (c2*x + y) ' and makes the divisibility tests required
to assure the correctness of the transformation. This transformation is rarely possible with code
directly written by the user, but it invariably occurs as a result of the implementation of multi
dimensional arrays.

Finally, acorn mute reconstructs a tree from the list of expressions which result.

Code Generation

The grand plan for code-generation is independent of any particular machine; it depends
largely on a set of tables. But this fact does not necessarily make it very easy to modify the
compiler to produce code for other machines, both because there is a good deal of machine
dependent structure in the tables, and because in any event such tables are non-trivial to
prepare.

The arguments to the basic code generation routine rcexpr are a pointer to a tree
representing an expression, the name of a code-generation table, and the number of a register
in which the value of the expression should be placed. Rcexpr returns the number of the regis
ter in which the value actually ended up; its caller may need to proquce a mov instruction if the
value really needs to be in the given register. There are four code generation tables.

Regtab is the basic one, which actually does the job described above: namely, compile
code which places the value represented by the expression tree in a register.

Cctab is used when the value of the expression is not actually needed, but instead the
value of the condition codes resulting from evaluation of the expression. This table is used, for
example, to evaluate the expression after ((. It is clearly silly to calculate the value (0 or 1) of
the expression 'a= = b' in the context 'if (a= = b) . . . '

The sptab table is used when the value of an expression is to be pushed on the stack, for
example when it is an actual argument. For example in the function call 'f(a) ' it is a bad idea
to load a into a register which is then pushed on the stack, when there is a single instruction
which does the job.

The efftab table is used when an expression is to be evaluated for its side effects, not its
value. This occurs mostly for expressions which are statements, which have no value. Thus
the code for the statement 'a = b' need produce only the approoriate mov instruction, and need
not leave the value of b in a register, while in the expression 'a + (b = c) ' the value of 'b =
c' will appear in a register.

All of the tables besides regtab are rather small, and handle only a relatively few special
cases. If one of these subsidiary tables does not contain an entry applicable to the given expres
sion tree, rcexpr uses regtab to put the value of the expression into a register and then fixes
things up; nothing need be done when the table was e.fftab, but a tst instruction is produced
when the table called for was cctab, and a mov instruction, pushing the register on the stack,
when the table was sptab.

- 7 -

The rcexpr routine itself picks off some special cases, then calls cexpr to do the real work.
Cexpr tries to find an entry applicable to the given tree in the given table, and returns - 1 if no
such entry is found, letting rcexpr try again with a different table. A successful match yields a
string containing both literal characters which are written out and pseudo-operations, or macros,
which are expanded. Before studying the contents of these strings we will consider how table
entries are matched against trees.

Recall that most non-leaf nodes in an expression tree contain the name of the operator,
the type of the value represented, and pointers to the subtrees (operands) . They also contain
an estimate of the number of registers required to evaluate the expression, placed there by the
expression-optimizer routines. The register counts are used to guide the code generation pro
cess, which is based on the Sethi-Ullman algorithm.

The main code generation tables consist of entries each . containing an operator number
and a pointer to a subtable for the corresponding operator. A subtable consists of a sequence of
entries, each with a key describing certain properties of the operands of the operator involved;
associated with the key is a code string. Once the subtable corresponding to the operator is
found, the subtable is searched linearly until a key is found such that the properties demanded
by the key are compatible with the operands of the tree node. A successful match returns the
code string; an unsuccessful search, either for the operator in the main table or a compatble key
in the subtable, returns a failure indication.

The tables are all contained in a file which must be processed to obtain an assembly
language program. Thus they are written in a special-purpose language. To provided
definiteness to the following discussion, here is an example of a subtable entry.

%n,aw
F
add A2,R

The '%' indicates the key; the information following (up to a blank line) specifies the code
string. Very briefly, this entry is in the subtable for ' + ' of regtab; the key specifies that the left
operand is any integer, character, or pointer expression, and the right operand is any word
quantity which is directly addressible (e.g. a variable or constant) . The code string calls for the
generation of the code to compile the left (first) operand into the current register ('F') and
then to produce an 'add' instruction which adds the second operand ('A2') to the register
('R') . All of the notation will be explained below.

Only three features of the operands are used in deciding whether a match has occurred.
They are:
1 . Is the type of the operand compatible with that demanded?
2. Is the 'degree of difficulty' (in a sense described below) compatible?
3 . The table may demand that the operand have a '*' (indirection operator) as its highest

operator.
As suggested above, the key for a subtable entry is indicated by a '%,' and a comma

separated pair of specifications for the operands. (The second specification is ignored for unary
operators) . A specification indicates a type requirement by including one of the following
letters. If no type letter is present, any integer, character, or pointer operand will satisfy the
requirement (not float, double, or long) .
b A byte (character) operand is required.
w . A word (integer or pointer) operand is required.
f A float or double operand is required.
d A double operand is required.

- 8 -

A long (32-bit integer) operand is required.
Before discussing the 'degree of difficulty' specification, the algorithm has to be explained

more completely. Rcexpr (and cexpr) are called with a register number in which to place their
result. Registers 0, 1 , . . . are used during evaluation of expressions; the maximum register
which can be used in this way depends on the number of register variables, but in any event
only registers 0 through 4 are available since r5 is used as a stack frame header and r6 (sp) and
r7 (pc) have special hardware properties. The code generation routines assume that when
called with register n as argument, they may use n + I. . . . (up to the first register variable) as
temporaries. Consider the expression 'X+ Y', where both X and Y are expressions. As a first
approximation, there are three ways of compiling code to put this expression in register n.

1 . If Y is an addressible cell, (recursively) put X into register n and add Y to it.
2 . If Y is an expression that can be calculated in k registers, where k smaller than the

number of registers available, compile X into register n, Y into register n + I, and add
register n + I to n.

3 . Otherwise, compile Y into register n , save the result in a temporary (actually, on the
stack) compile X into register n, then add in the temporary.
The distinction between cases 2 and 3 therefore depends on whether the right operand can

be compiled in fewer than k registers, where k is the number of free registers left after registers
0 through n are taken: 0 through n - I are presumed to contain already computed temporary
results; n will, in case 2, contain the value of the left operand while the right is being evaluated.

These considerations should make clear the specification codes for the degree of difficulty,
bearing in mind that a number of special cases are also present :
z is satisfied when the operand is zero, so that special code can be produced for expressions

like 'x = 0' .
1 is satisfied when the operand is the constant 1 , to optimize cases like left and right shift

by 1 , which can be done efficiently on the PDP- 1 1 .
c is satisfied when the operand is a positive (1 6-bit) constant; this takes care of some special

cases in long arithmetic.
a is satisfied when the operand is addressible; this occurs not only for variables and con

stants, but also for some more complicated constructions, such as indirection t.hrough a
simple variable, ' *p + + ' where p is a register variable (because of the PDP- l l 's auto
increment address mode) , and ' * (p+c) ' where p is a register and c is a constant. Pre
cisely, the requirement is that the operand refers to a cell whose address can be written as
a source or destination of a PDP- 1 1 instruction.

e is satisfied by an operand whose value can be generated in a register using no more than k
registers, where k is the number of registers left (not counting the current register) . The
'e' stands for 'easy. '

n is satisfied by any operand. The 'n' stands for 'anything. '
These degrees of difficulty are considered to l ie in a linear ordering and any operand

which satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables are
searched linearly, if a ' 1 ' specification is included, almost certainly a 'z' must be written first to
prevent expressions containing the constant 0 to be compiled as if the 0 were 1 .

Finally, a key specification may contain a ' *' which requires the operand to have an
indirection as its leading operator. Examples below should clarify the utility of this
specification.

Now let us consider the contents of the code string associated with each subtable entry.
Conventionally, lower-case letters in this string represent literal information which is copied
directly to the output. Upper-case letters generally introduce specific macro-operations, some
of which may be followed by modifying information. The code strings in the tables are written
with tabs and new-lines used freely to suggest instruc�ions which will be generated; the table-

- 9 -

compiling program compresses tabs (using the 0200 bit of the next character) and throws away
some of the new-lines. For example the macro 'F' is ordinarily written on a line by itself; but
since its expansion will end with a new-line, the new-line after 'F' itself is dispensable. This is
all to reduce the size of the stored tables.

The first set of macro-operations is concerned with compiling subtrees. Recall that this is
done by the cexpr routine. In the following discussion the 'current register' is generally the
argument register to cexpr; that is, the place where the result is desired. The 'next register' is
numbered one higher than the current register. (This explanation isn't fully true because of
complications, described below, involving operations which require even-odd register pairs.)
F causes a recursive call to the rcexpr routine to compile code which places the value of the

first (left) operand of the operator in the current register.
F1 generates code which places the value of the first operand in the next register. I t is

incorrectly used if there might be no next register; that is, if the degree of difficulty of the
first operand is not 'easy; ' if not, another register might not be available.

FS generates code which pushes the value of the first operand on the stack, by calling rcexpr
specifying sptab as the table.

Analogously,
S, S 1 , SScompile the second (right) operand into the current register, the next register, or onto

the stack.
To deal with registers, there are
R which expands into the name of the current register.
R 1 which expands into the name of the next register.
R + which expands into the the name of the current register plus 1 . It was suggested above

that this is the same as the next register, except for complications; here is one of them.
Long integer variables have 32 bits and require 2 registers; in such cases the next register
is the current register plus 2. The code would like to talk about both halves of the long
quantity, so R refers to the register with the high-order part and R + to the low-order
part.

R - This is another complication, involving division and mod. These operations involve a pair
of registers of which the odd-numbered contains the left operand. Cexpr arranges that the
current register is odd; the R - notation allows the code to refer to the next lower, even
numbered register.

To refer to addressible quantities, there are the notations:
A 1 causes generation of the address specified by the first operand. For this to be legal, the

operand must be addressible; its key must contain an 'a' or a more restrictive
specification.

A2 correspondingly generates the address of the second operand providing it has one.
We now have enough mechanism to show a complete, if suboptimal, table for the +

operator on word or byte operands.

- 10 -

%n,z
F

%n, 1
F
inc R

%n,aw
F
add A2,R

%n,e
F
S 1
add R l ,R

%n,n
ss
F
add (sp) + ,R

The first two sequences handle some special cases. Actually it turns out that handling a right
operand of 0 is unnecessary since the expression-optimizer throws out adds of 0. Adding 1 by
using the 'increment' instruction is done next, and then the case where the right operand is
addressible. It must be a word quantity, since the PDP- 1 1 lacks an 'add byte' instruction.
Finally the cases where the right operand either can, or cannot, be done in the available regis
ters are treated.

The next macro-instructions are conveniently introduced by noticing that the above table
is suitable for subtraction as well as addition, since no use is made of the commutativity of
addition. All that is needed is substitution of 'sub' for 'add' and 'dec' for 'inc.' Considerable
saving of space is achieved by factoring out several similar operations.
I is replaced by a string from another table indexed by the operator in the node being

expanded. This secondary table actually contains two strings per operator.
I' is replaced by the second string in the side table entry for the current operator.

Thus, given that the entries for ' + ' and ' - ' in the side table (which is called instab) are
'add' and 'inc,' 'sub' and 'dec' respectively, the middle of of the above addition table can be
written

%n, 1
F
I' R

%n,aw
F
I A2,R

and it will be suitable for subtraction, and several other operators, as well.
Next, there is the question of character and floating-point operations.

B1 generates the letter 'b ' i f the first operand is a character, 'f' if i t i s float or double, and
nothing otherwise. It Is used in a context like 'movB 1 ' which generates a 'mov' , 'movb' ,
or 'movf' instruction according to the type of the operand.

- 1 1 -

B2 is just like Bl but applies to the second operand.
BE generates 'b' if either operand is a character and null otherwise.
BF generates 'f' if the type of the operator node itself is float or double, otherwise null.

For example, there is an entry in e.ffiab for the ' = ' operator
%a,aw
%ab,a

IBE A2,Al
Note first that two key specifications can be applied to the same code string. Next, observe that
when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruc
tion, a mov or movb as appropriate, does the job. However, when a byte is assigned to a word,
it must pass through a register to implement the sign-extension rules:

%a,n
s
IBI R,A l

Next , there i s the question o f handling indirection properly. Consider the expression ' X
+ *Y' , where X and Y are expressions, Assuming that Y is more complicated than just a vari
able, but on the other hand qualifies as 'easy' in the context, the expression would be compiled
by placing the value of X in a register, that of *Y in the next register, and adding the registers.
It is easy to see that a better job can be done by compiling X, then Y Onto the next register) ,
and producing the instruction symbolized by 'add (Rl) ,R' . This scheme avoids generating the
instruction 'mov (Rl) , R I ' required actually to place the value of *Y in a register. A related
situation occurs with the expression 'X + * (p + 6) ' , which exemplifies a construction frequent
in structure and array references. The addition table shown above would produce

[put X in register R]
mov p,Rl
add $6,Rl
mov (Rl) ,Rl
add Rl ,R

when the best code is
[put X in R]
mov p,Rl
add 6 (R l) ,R

As we said above, a key specification for a code table entry may require an operand to have an
indirection as its highest operator. To make use of the requirement, the following macros are
provided.
F* the first operand must have the form *X. If in particular it has the form * (Y + c) , for

some constant c, then code is produced which places the value of Y in the current regis
ter. Otherwise, code is produced which loads X into the current register.

Fl * resembles F* except that the next register is loaded.
S* resembles F* except that the second operand is loaded.
S 1 * resembles S* except that the next register is loaded.
FS* The first operand must have the form ' *X' . Push the value of X on the stack .
SS* resembles FS* except that it applies to the second operand.
To capture the constant that may have been skipped over in the above macros, there are

- 1 2 -

#1 The first operand must have the form *X; if in particular it has the form * (Y + c) for c a
constant, then the constant is written out, otherwise a null string.

#2 is the same as #1 except that the second operand is used.
Now we can improve the addition table above. Just before the '%n,e' entry, put

%n,ew*
F
S 1 *
add #2(Rl) ,R

and just before the '%n,n' put
%n,nw*

SS*
F
add * (sp) + ,R

When using the stacking macros there is no place to use the constant as an index word, so that
particular special case doesn't occur.

The constant mentioned above can actually be more general than a number. Any quantity
acceptable to the assembler as an expression will do, in particular the address of a static cell,
perhaps with a numeric offset. If x is an external character array, the expression 'x [i + 5] = 0'
will generate the code

mov i ,rO
clrb x + 5 (r0)

via the table entry (in the ' = ' part of e.f/iab)

%e*,z
F
I 'B1 #1 (R)

Some machine operations place restrictions on the registers used. The divide instruction, used
to implement the divide and mod operations, requires the dividend to be placed in the odd
member of an even-odd pair; other peculiarities of multiplication make it simplest to put the
multiplicand in an odd-numbered register. There is no theory which optimally accounts for this
kind of requirement. Cexpr handles it by checking for a multiply, divide, or mod operation; in
these cases, its argument register number is incremented by one or two so that it is odd, and if
the operation was divide or mod, so that it is a member of a free even-odd pair. The routine
which determines the number of registers required estimates, conservatively, that at least two
registers an� required for a multiplication and three for the other peculiar operators. After the
expression is compiled, the register where the result actually ended up is returned. (Divide and
mod are actually the same operation except for the location of the result) .

These operations are the ones which cause results to end up in unexpected places, and
this possibility adds a further level of complexity. The simplest way of handling the problem is
always to move the result to the place where the caller expected it, but this will produce
unnecessary register moves in many simple cases; 'a = b*c' would generate

mov b,rl
mul c,rl
mov rl ,rO
mov rO,a

The next thought is used the passed-back information as to where the result landed to change
the notion of the current register. While compiling the ' = ' operation above, which comes
from a table entry like

I
- 1 3 -

%a,e
s
mov R,A1

it i s sufficient to redefine the meaning of 'R' after processing the 'S' which does the multiply.
This technique is in fact used; the tables are written in such a way that correct code is pro
duced. The trouble is that the technique cannot be used in general, because it invalidates the
count of the number of registers required for an expression. Consider just 'a*b + X' where X
is some expression. The algorithm assumes that the value of a*b, once computed, requires just
one register. If there are three registers available, and X requires two registers to compute,
then this expression will match a key specifying '%n,e' . If a*b is computed and left in register
1 , then there are, contrary to expectations, no longer two registers· available to compute X, but
only one, and bad code will be produced. To guard against this possibility, cexpr checks the
result returned by recursive cails which implement F, S and their relatives. If the result is not
in the expected register, then the number of registers required by the other operand is checked;
if it can be done using those registers which remain even after making unavailable the
unexpectedly-occupied register, then the notions of the 'next register' and possibly the 'current
register' are redefined. Otherwise a register-copy instruction is produced. A register-copy is
also always produced when the current operator is one of those which have odd-even require
ments.

Finally, there are a few loose-end macro operations and facts about the tables. The opera-
tors:
V is used for long operations. It is written with an address like a machine instruction; it

expands into 'adc' (add carry) if the operation is an additive operator, 'sbc' (subtract
carry) if the operation is a subtractive operator, and disappears, along with the rest of the
line, otherwise. Its purpose is to allow common treatment of logical operations, which
have no carries, and additive and subtractive operations, which generate carries.

T generates a 'tst' instruction if the first operand of the tree does not set the condition codes
correctly. It is used with divide and mod operations,. which require a sign-extended 32-bit
operand. The code table for the operations contains an 'sxt' (sign-extend) instruction to
generate the high-order part of the dividend.

H is analogous to the 'F' and 'S' macros, except that it calls for the generation of code for
the current tree (not one of its operands) using regtab. It is used in cctab for all the

· operators which, when executed normally, set the condition codes properly according to
the result. It prevents a 'tst' instruction from being generated for constructions like 'if
(a +b) ... ' since after calculation of the value of 'a+b' a conditional branch can be written
immediately.
All of the discussion above is .in terms of operators with operands. Leaves of the expres

sion tree (variables and constants) , however, are peculiar in that they have no operands. In
order to regularize the matching process, cexpr examines its operand to determine if it is ·a leaf;
if so, it creates a special 'load' operator whose operand is the leaf, and substitutes it for the
argument tree; this allows the table entry for the created operator to use the 'A 1 ' notation to
load the leaf into a register.

Purely to save space in the tables, pieces of subtables can be labelled and referred to later.
It turns out, for example, that rather large portions of the the e.fftab table for the ' = ' and ' = + '
operators are identical. Thus ' = ' has an entry

% [move3 :]
%a,aw
%ab,a

IBE A2,A1
while part of the ' = +' table is

%aw,aw
% [move3]

- 1 4 -

Labels are written as '% [. . . :] ' , before the key specifications; references are written with '% [
. . .] ' after the key. Peculiarities in the implementation make it necessary that labels appear
before references to them.

The example illustrates the utility of allowing separate keys to point to the same code
string. The assignment code works properly if either the right operand is a word, or the left
operand is a byte; but since there is no 'add byte' instruction the addition code has to be res
tricted to word operands.

Delaying and reordering

Intertwined with the code generation routines are two other, interrelated processes. The
first, implemented by a routine called delay, is based on the observation that naive code genera
tion for the expression 'a = b + + ' would produce

mov b,rO
inc b
mov rO,a

The point is that the table for postfix + + has to preserve the value of b before incrementing
it; the general way to do this is to preserve . its value in a register. A cleverer scheme would
generate

mov b,a
inc b

Delay is called for each expression input to rcexpr, and it searches for postfix + + and -
operators. If one is found applied to a variable, the tree is patched to bypass the operator and
compiled as it stands; then the increment or decrement itself is done. The effect is as if 'a =
b; b + + ' had been written. In this example, of course, the user himself could have done the
same job, but more complicated examples are easily constructed, for example 'switch (x + +) ' .
An essential restriction i s that the condition codes not be required. I t would be incorrect to
compile 'if (a + +) . . .' as

tst a
inc a
beq

because the 'inc' destroys the required setting of the condition codes.
Reordering is a similar sort of optimization. Many cases which it detects are useful

mainly with register variables. If r is a register variable, the expression 'r = x + y' is best com
piled as

mov x,r
add y,r

but the codes tables would produce
mov x,rO
add y,ro
mov rO,r

which is in fact preferr.ed if r is not a register. (If r is not a register, the two sequences are the
same size, but the second is slightly faster.) The scheme is to compile the expression as if it
had been written 'r = x; r = + y'. The reorder routine is called with a pointer to each tree that
rcexpr is about to compile; if it has the right characteristics, the 'r = x' tree is constructed and
passed recursively to rcexpr; then the original tree is modified to read 'r = + y' and the calling
instance of rcexpr compiles that instead. Of course the whole business is itself recursive so that

- 1 5 -

more extended forms of the same phenomenon are handled, like •r = x + y I z'.
Care does have to be taken to avoid 'optimizing' an expression like 'r = x + r' into •r =

x; r = + r' . It is required that the right operand of the expression on the right of the • = ' be a
' , distinct from the register variable.

The second case that reorder handles is expressions of the form 'r = X' used as a sube:x-
pression. Again, the code out of the tables for ··x = r = y' would be

mov y,rO
mov rO,r
mov rO,x

whereas if r were a register it would be better to produce
mov y,r
mov r,x

When reorder discovers that a register variable is being assigned to in a subexpression, it calls
rcexpr recursively to compile the subexpression, then fiddles the tree passed to it so that the
register variable itself appears as the operand instead of the whole subexpression. Here care
has to be taken to avoid an infinite regress, with rcexpr and reorder calling each other forever to
handle assignments to registers.

A third set of cases treated by reorder comes up when any name, not necessarily a regis
ter, occurs as a left operand of an assignment operator other than ' = ' or as an operand of
prefix • + + ' o.r • - - ' . Unless condition-code tests are involved, when a subexpression like ' (a
= + b) ' is seen, the assignment is performed and the argument tree modified so that a is its
operand; effectively •x + (y = + z) ' is compiled as 'y = + z; x + y ' . Similarly, prefix incre
ment and decrement are pulled out and performed first, then the remainder of the expression.

Throughout code generation, the expression optimizer is called whenever delay or reorder
change the expression tree. This allows some special cases to be found that otherwise would
not be seen.

Introduction

A Tour Through the Portable C Compiler

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

A C compiler has been implemented that has proved to be quite portable, serving as the
basis for C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370,
and Interdata 8/32. The compiler is highly compatible with the C language standard. 1

Among the goals of this compiler are portability, high reliability, and the use of state-of
the-art techniques and tools wherever practical. Although the efficiency of the compiling pro
cess is not a primary goal, the compiler is efficient enough, and produces good enough code, to
serve as a production compiler.

The language implemented is highly compatible with the current PDP-1 1 version of C.
Moreover, roughly 75% of the compiler, including nearly all the syntactic ahd semantic rou
tines, is machine independent. The compiler also serves as the major portion of the program
lint, described elsewhere. 2

A number of earlier attempts to make portable compilers are worth noting. While on
CO-OP assignment to Bell Labs in 1 973, Alan Snyder wrote a portable C compiler which was
the basis of his Master's Thesis at M.I .T.3 This compiler was very slow and complicated, and
contained a number of rather serious implementation difficulties; nevertheless, a number of
Snyder's ideas appear in this work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an inter
mediate language, perhaps based on three-address code or code for a stack machine, and writing
a machine independent program to translate from the source code to this intermediate code.
The intermediate code is then read by a second pass, and interpreted or compiled. This
approach is elegant, and has a number of advantages, especially if the target machine is far
removed from the host. It suffers from some disadvantages as well. Some constructions, like
initialization and subroutine prologs, are difficult or expensive to express in a machine indepen
dent way that still allows them to be easily adapted to the target assemblers. Most of these
approaches require a symbol fable to be constructed in the second (machine dependent) pass,
and/or require powerful target assemblers. Also, many conversion operators may be generated
that have no effect on a given machine, but may be needed on others (for example, pointer to
pointer conversions usually do nothiJlg in C, but must be generated because there are some
machines where they are significant) .

For these reasons, the first pass of the portable compiler is not entirely machine indepen
dent. It contains some machine dependent features, such as initialization, subroutine prolog
and epilog, certain storage allocation functions, code for the switch statement, and code to
throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C
compiler has roughly ·600 machine dependent lines of source out of 4600 in Pass 1 , and 1000
out of 3400 in Pass 2. In total, 1 600 out of 8000, or 20%, of the total source is machine depen
dent 0 2% in Pass 1 , 30% in Pass 2) . These percentages can be expected to rise slightly as the
compiler is tuned. The percentage of machine-dependent code for the IBM is 22%, for the
Honeywell 25%. If the assembler format and structure were the same for all these machines,

- 2 -

perhaps another 5-10% of the code would become machine independent.
These figures are sufficiently misleading as to be almost meaningless. A large fraction of

the machine dependent code can be converted in a straightforward, almost mechanical way. On
the other hand, a certain amount of the code requres hard intellectual effort to convert, since
the algorithms embodied in this part of the code are typically complicated and machine depen
dent.

To summarize, however, if you need a C compiler written for a machine with a reason
able architecture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is
to give the big picture, rather than discussing the details of a particular machine implementa
tion. After a brief overview and a discussion of the source file structure, the paper describes
the major data structures, and then delves more closely into the two passes. Some of the
theoretical work on which the compiler is based, and its application to the compiler, is discussed
elsewhere.4 One of the major design issues in any C compiler, the design of the calling
sequence and stack frame, is the subject of a separate memorandum. 5

The compiler consists of two passes, pass/ and pass2, that together turn C source code
into assembler code for the target machine. The two passes are preceded by a preprocessor,
that handles the #define and #include statements, and related features (e.g., #ifdef, etc.) . It
is a nearly machine independent program, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first
pass. · This produces as standard output another text file that becomes the standard input of the
second pass. The second pass produces, as standard output, the desired assembler language
source code. The preprocessor and the two passes all write error messages on the standard
error fi le. Thus the compiler itself makes few demands on the I/0 library support, aiding in the
bootstrapping process.

Although the compiler is divided into two passes, this represents historical accident more
than deep necessity. In fact, the compiler can optionally be loaded so that both passes operate
in the same program. This "one pass" operation eliminates the overhead of reading and writ
ing the intermediate fi le, so the compiler operates about 30% faster in this mode. It also occu
pies about 30% more space than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as one,
this document primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also
constructs parse trees for expressions, and keeps track of the types of the nodes in these trees.
Additional code is devoted to initialization. Machine dependent portions of the first pass serve
to generate subroutine prologs and epilogs, code for switches, and code for branches, label
definitions, alignment operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right
parenthesis are copied by the second pass directly to its output file, with the parenthesis
stripped off. Thus, when the first pass produces assembly code, such as subroutine prologs,
etc. , each line is prefaced with a right parenthesis; the second pass passes these lines to through
to the assembler.

The major job done by the second pass is generation of code for expressions. The expres
sion parse trees produced in the first pass are written onto the intermediate file in Polish Prefix
form: first, there is a line beginning with a period, followed by the source file line number and
name on which the expression appeared (for debugging purposes) . The successive lines
represent the nodes of the parse tree, one node per line. Each line contains the node number,
type, and any values (e.g., values of constants) that may appear in the node. Lines represent
ing nodes with descendants are immediately followed by the left subtree of descendants, then
the right. Since the number of descendants of any node is completely determined by the node

-· ©P

- 3 -

number, there is no need to mark the end of the tree.
There are only two other line types in the intermediate file. Lines beginning with a left

square bracket (' [') represent the beginning of blocks (delimited by { . . . } in the C source) ;
lines beginning with right square brackets ('] ') represent the end of blocks. The remainder of
these lines tell how much stack space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the ') ' lines, makes note of the
information in the ' [' and '1 ' lines, and devotes most of its effort to the ' . ' lines and their asso
ciated expression trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees that are built by the first pass
have been declared to have room for the second pass information as well. Instead of writing
the trees onto an intermediate file, each tree is transformed in place into an acceptable form for
the code generator. The code generator then writes the result of compiling this tree onto the
standard output. Instead of ' [' and '] ' lines in the intermediate file, the information is passed
directly to the second pass routines. Assembly code produced by the first pass is simply written
out, without the need for ') ' at the head of each line.

The Source Files

The compiler source consists of 22 source files. Two files, manifest and macdejs, are
header files included with all other files. Manifest has declarations for the node numbers, types,
storage classes, and ·other global data definitions. Macdefs has machine-dependent definitions,
such as the size and alignment of the various data representations. Two machine ·independent
header files, mfile 1 and m/i!e2, contain the data structure and manifest definitions for the first
and second· passes, respectively. In the second pass, a machine dependent header file,
mac2dejs, contains declarations of register names, etc.

There is a file, common, containing (machine independent) routines used in both passes.
These include routines for allocating and freeing trees, walking over trees, printing debugging
information, and printing error messages. There are two dummy files, comml.c and comm2. c,
that simply include common within the scope of the appropriate passl or pass2 header files.
When the compiler is loaded as a single pass, common only needs to be included once: comm2.c
is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For
the moment, we just give a brief description of the files. The first pass is obtained by compiling
and loading scan. c, cgram.c, xdejs.c, pftn. c, trees.c, optim.c, /ocal. c, code. c, and comml.c. Scan. c is
the lexical analyzer, which is used by cgram.c, the result of applying Yacdi to the input grammar
cgram.y. Xdefs.c is a short file of external definitions. Pftn. c maintains the symbol table, and
does initialization. Trees. c builds the expression trees, and computes the node types. Optim.c
does some machine independent optimizations on the expression trees. Comml.c includes com
mon, that contains service routines common to the two passes of the compiler. All the above
files are machine independent. The files local. c and code. c contain machine dependent code for
generating subroutine prologs, switch code, and the like. '

The second pass is produced by compiling and loading reader. c, allo. c, match. c, comml.c,
order. c, local. c, and table. c. Reader. c reads the intermediate file, and controls the major logic of
the code generation. A 1/o. c keeps track of busy and free registers. Match.c controls the match
ing of code templates to subtrees of the expression tree to be compiled. Comm2.c includes the
file common, as in the first pass. The above files are machine independent. Order. c controls the
machine dependent details of the code generation strategy. Loca/2. c has many small machine
dependent routines, and tables of opcodes, register types, etc. Table. c has the code template
tables, which are also clearly machine dependent.

- 4 -

Data Structure Considerations.

This section discusses the node numbers, type words, and expression trees, used
throughout both passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to use
the same symbol name (e.g. , MINUS) for the given operator throughout the lexical analysis,
parsing, tree building, and code generation phases; this requires some synchronization with the
Y ace input file, cgra m.y, as well.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a
unary or binary operator; clearly, it is necessary to know this by the time the parse tree is con
structed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS and
UNARY MINUS are both distinct node numbers. S imilarly, many binary operators exist in an
assignment form (for example, - =) , and the operator ASG may be applied to such node
names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants) , a unary
operator (one descendant) or a binary operator (two descendants) . The macro optype(o) returns
one of the manifest constants L TYPE, UTYPE, or BITYPE, respectively, depending on the
node number o. Similarly, asgop(o) returns true if o is an assignment operator number (= ,
+ = , etc.) , and /ogop(o) returns true if o is a relational or logical (&&, I I , or !) operator.

C has a rich typing structure, w.ith a potentially. infinite number of types. To begin with,
there are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as
UCHAR, USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a
structure) , UNIONTY, and �NUMTY. Then, there are three operators that can be applied to
types to make others: if t is a type, we may potentially have types pointer to t, function returning
t, and array of t 's generated from t. Thus, an arbitrary type in C consists of a basic type, and
zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold
the basic type, and the remaining bits are divided into two-bit fields, containing 0 (no opera
tor) , or one of the three operators described above. The modifiers are read right to left in the
word, starting with the two-bit field adjacent to the basic type, until a field with 0 in it is
reached. The macros PTR, FTN, and AR Y represent the pointer to, function returning, and array
of operators. The macro values are shifted so that they align with the first two-bit field; thus
PTR + INT represents the type for an integer pointer, and

ARY + (PTR < < 2) + (FTN < <4) + DOUBLE
represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives
the basic type. !SPTR (r), /SA R Y(t), and ISFTN(t) ask if an object of this type is a pointer,
array, or a function, respectively. MODTYPE(t. b) sets the basic type of t to b. DECREF(t)
gives the type resulting from removing the first operator from t. Thus, if t is a pointer to t ·, a
function returning t ', or an array of t ', then DECREF(t) would equal t'. INCREF(t) gives the
type representing a pointer to t. Finally, there are operators for dealing with the unsigned
types. /SUNS/GNED(t) returns true if t is one of the four basic unsigned types; in this case,
DEUNSIGN(r) gives the associated 'signed' type. Similarly, UNS!GNABLE(r) returns true if t is
one of the four basic types that could become unsigned, and ENUNS!GN(t) returns the
unsigned analogue of t in this case.

The other important global data structure is that of expression trees. The actual shapes of
the nodes are given in mfilef and mfile2. They are not the same in the two passes; the first pass
nodes contain dimension and size information, while the second pass nodes contain register
allocation information. Nevertheless, all nodes contain fields called op, containing the node
number, and type, containing the type word. A function called tallocO returns a pointer to a
new tree node. To free a node, its op field need merely be set to FREE. The other fields in
the node will remain intact at least until the next allocation.

- 5 -

Nodes representing binary operators contain fields, left and right, that contain pointers to
the left and right descendants. Unary operator nodes have the left field, and a value field called
rval Leaf nodes, with no descendants, have two value fields: /val and rval

At appropriate times, the function tcheckO can be called, to check that there are no busy
nodes remaining. This is used as a compiler consistency check. The function tcopy(p) takes a
pointer p that points to an expression tree, and returns a pointer to a disjoint copy of the tree.
The function wa!k.f(p,fl performs a postorder walk of the tree pointed to by p, and applies the
function f to each node. The function jwa/k (p,J,d) does a preorder walk of the tree pointed to
by p. At each node, it calls a function J, passing to it the node pointer, a value passed down
from its ancestor, and two pointers to values to be passed down to the left and right descen
dants (if any) . The value d is the value passed down to the root. Fwa/k is used for a number
of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be dis
cussed later.

Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building,
optimization, and a number of machine dependent things. This pass is largely machine
independent, and the machine independent sections can be pretty successfully ignored. Thus, ·
they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the
tokens of tlie C language as it encounters them: names, constants, operators, and keywords.
The conceptual simplicity of this job is confounded a bit by several other simple jobs that
unfortunately must go on simultaneously. These include
• Keeping track of the current filename and line number, and occasionally setting this infor

mation as the result of preprocessor control lines.
• Skipping comments.
• Properly dealing with octal, decimal, hex, floating point, and character constants, as well

as character strings.
To achieve speed, the program maintains several tables that are indexed into by character

value, to tell the lexical analyzer what to do next. To achieve portability, these tables must be
initialized each time the compiler is run, in order that the table entries reflect the local charac
ter set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y.
The grammar is relatively readable, but contains some unusual features that are worth com
ment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The prob
lem is to keep track of the basic type and the storage class while interpreting the various stars,
brackets, and parentheses that may surround a given name. The entire declaration mechanism
must be recursive, since declarations may appear within declarations of structures and unions,
or even within a sizeof construction inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to han
dle constructions where a lot of left context information must be kept around. The problem is
that the original PDP- 1 1 compiler is top-down in implementation, and some of the semantics of
C reflect this. In a top-down parser, the input rules are restricted somewhat, but one can natur
ally associate temporary storage with a rule at a very early stage in the recognition of that rule.
In a bottom-up parser, there is more freedom in the specification of rules, but it is more

- 6 -

difficult to know what rule is being matched until the entire rule is seen. The parser described
by cgram. c makes effective use of the bottom-up parsing mechanism in some places (notably
the treatment of expressions) , but struggles against the restrictions in others. The usual result
is that it is necessary to run a stack of values "on the side", independent of the Yacc value
stack, in order to be able to store and access information deep within inner constructions,
where the relationship of the rules being recognized to the total picture is not yet clear.

In the case of declarations, the attribute ihformation (type, etc.) for a declaration is care
fully kept immediately to the left of the declarator (that part of the declaration involving the
name) . In this way, when it is time to declare the name, the name and the type information
can be quickly brought together. The "$0" mechanism of Yacc is used to accomplish this.
The result is not pretty, but it works. The storage class information changes more slowly, so it
is kept in an external variable, and stacked if necessary. Some of the grammar could be consid
erably cleaned up by using some more recent features of Yacc, notably actions within rules and
the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break
or continue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be
structures. Some, or most, of this use of external stacks could be eliminated by redoing the
grammar to use the mechanisms now provided. There are some areas, however, particularly
the processing of structure, union, and enum declarations, function prologs, and switch state
ment processing, when having all the affected data together in an array speeds later processing;
in this case, use of external storage seems essential.

The cgram.y file also contains some small functions used. as utility functions in the parser.
These include routines for saving case values and labels in processing switches, and stacking
and popping values on the external stack described above.

Storage Classes
C has a finite, but fairly extensive, number of storage classes available. One of the com

piler design decisions was to process the storage class information totally in the first pass; by the
second pass, this information must have been totally dealt with. This means that all of the
storage allocation must take place in the first pass, so that references to automatics and parame
ters can be turned into references to cells lying a certain number of bytes offset from certain
machine registers. Much of this transformation is machine dependent, and strongly depends on
the storage class.

The classes include EXTERN (for externally declared, but not defined variables) ,
EXTDEF (for external definitions) , and similar distinctions for UST A TIC and STATIC,
UFORTRAN and FORTRAN (for fortran functions) and ULABEL and LABEL. The storage
classes REGISTER and AUTO are obvious, as are STNAME, UNAME, and ENAME (for
structure, union, and enumeration tags) , and the associated MOS, MOU, and MOE (for the
members) . TYPEDEF is treated as a storage class as well. There are two special storage
classes: P ARAM and SNULL. SNULL is used to distinguish the case where no explicit storage
class has been given; before an entry is made in the symbol table the true storage class is
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made
before the declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate
storage class is kept for each width bit field; a k bit bit field has storage class k plus FIELD.
This enables the size to be quickly recovered from the storage class.

- 7 -

Symbol Table Maintenance.

The symbol table routines do far more than simply enter names into the symbol table;
considerable semantic processing and checking is done as well. For example, if a new declara
tion comes in, it must be checked to see if there is a previous declaration of the same symbol.
If there is, there are many cases. The declarations may agree and be compatible (for example,
an extern declaration can appear twice) in which case the new declaration is ignored. The new
declaration may add information (such as an explicit array dimension) to an already present
declaration. The new declaration may be different, but still correct (for example, an extern
declaration of something may be entered, and then later the definition may be seen) . The new
declaration may be incompatible, but appear in an inner block; in this case, the old declaration
is carefully hidden away, and the new one comes into force until the block is left. Finally, the
declarations may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user
is not always the type entered into the symbol table (for example, if an formal parameter to a
function is declared to be an array, C requires that this be changed into a pointer before entry
in the symbol table) . Moreover, there are various kinds of illegal types that may be declared
which are difficult to check for syntactically (for example, a function returning an array) .
Finally, there is a strange feature in C that requires structure tag names and member names for
structures and unions to be taken from a different logical symbol table than ordinary identifiers.
Keeping track of which kind of name is involved is a bit of struggle (consider typedef names
used within structure declarations, for example) .

The symbol table handling routines have been rewritten a number of times to extend
features, improve performance, and fix bugs. They address the above problems with reasonable
effectiveness but a singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together
with a flag which tells which symbol table should be searched (actually, both symbol tables are
stored in one, and a flag is used to distinguish individual entries) . If the name is found, lookup
returns the index to the entry found; otherwise, it makes a new entry, marks it UNDEF
(undefined) , and returns the index of the new entry. This index is stored in the rval field of a
NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY
MUL nodes for each *, LB nodes for each array descriptor (the right descendant has the dimen
sion) , and UNARY CALL nodes for each function descriptor. This tree is passed to the rou
tine rymerge, along with the attribute type of the whole declaration; this routine collapses the
tree to a single node, by calling ryreduce, and then modifies the type to reflect the overall type
of the declaration.

Dimension and size information is stored in a table called dimtab. To properly describe a
type in C, one needs not just the type information but also size information (for structures and
enums) and dimension information (for arrays) . S izes and offsets are dealt with in the com
piler by giving the associated indices into dimtab. Tymerge and ryreduce call dstash to put the
discovered dimensions away into the dimtab array. Tymerge returns a pointer to a single node
that contains the symbol table index in its rval field, and the size and dimension indices in fields
csiz and cdim, respectively. This information is properly considered part of the type in the first
pass, and is carried around at all times.

To enter an element into the symbol table, the routine de./id is called; it is handed a
storage class, and a pointer to the node produced by f)' merge. De./id calls .tixtype, which adjusts
and checks the given type depending on the storage class, and converts null types appropriately.
It then calls ./ixclass, which does a similar job for the storage class; it is here, for example, that
register declarations are either allowed or changed to auto.

The new declaration is now compared against an older one, if present, and several pages
of validity checks performed. If the definitions are compatible, with possibly some added infor
mation, the processing is straightforward. If the definitions differ, the block levels of the

- 8 -

current and the old declaration are compared. The current block level is kept in bleve/, an
external variable; the old declaration level is kept in the symbol table. Block level 0 is for
external declarations, 1 is for arguments to functions, and 2 and above are blocks within a func
tion. If the current block level is the same as the old declaration, an error results. If the
current block level is higher, the new declaration overrides the old. This is done by marking
the old symbol table entry "hidden", and making a new entry, marked "hiding" . Lookup will
skip over hidden entries. When a block is left, the symbol table is searched, and any entries
defined in that block are destroyed; if they hid other entries, the old entries are "unbidden".

This nice block structure is warped a bit because labels do not follow the block structure
rules (one can do a goto into a block, for example) ; default definitions of functions in inner
blocks also persist clear out to the outermost scope. This implies that cleaning up the symbol
table after block exit is more subtle than it might first seem.

For successful new definitions, ddid also initializes a "general purpose" field, Q{lset, in the
symbol table. It contains the stack offset for automatics and parameters, the register number
for register variables, the bit offset into the structure for structure members, and the internal
label number for static variables and labels. The offset field is set by falloc for bit fields, and
dc/struct for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension
offsets, offset value, and declaration block level. It also has a field of flags, describing what
symbol table the name is in, and whether the entry is hidden, or hides another. Finally, a field
gives the line number of the last use, or of the definition, of the name. This is used mainly for
diagnostics, but is useful to lint as well.

In some special cases, there is more than the above amount of information kept for the
use of the compiler. This is especially true with structures; for use in initialization, structure
declarations must have access to a list of the members of the structure. This list is also kept in
dimtab. Because a structure can be mentioned long before the members are known, it is neces
sary to have another level of indirection in the table. The two words following the csiz entry in
dimtab are used to hold the alignment of the structure, and the index in dimtab of the list of
members. This list contains the symbol table indices for the structure members, terminated by
a - 1 .

Tree Building

The portable compiler transforms expressions into expression trees. As the parser recog
nizes each rule making up an expression, it calls bui/dtree which is given an operator number,
and pointers to the left and right descendants. Bui/dtree first examines the left and right des
cendants, and, if they are both constants, and the operator is appropriate, simply does the con
stant computation at compile time, and returns the result as a constant. Otherwise, buildtree
allocates a node for the head of the tree, attaches the descendants to it, and ensures that
conversion operators are generated if needed, and that the type of the new node is consistent
with the types of the operands. There is also a considerable amount of semantic complexity
here; many combinations of types afe illegal, and the portable compiler makes a strong effort to
check the legality of expression types completely. This is done both for lint purposes, and to
prevent such semantic errors from being passed through to the code generator.

The heart of bui/dtree is a large table, accessed by the routine opact. This routine maps
the types of the left and right operands into a rather smaller set of descriptors, and then
accesses a table (actually encoded in a switch statement) which for each operator and pair of
types causes an action to be returned. The actions are logical or's of a number of separate
actions, which may be car.ried out by bui/dtree. These component actions may include checking
the left side to ensure that it is an !value (can -be stored into) , applying a type conversion to the
left or right operand, setting the type of the new node to the type of the left or right operand,
calling various routines to balance the types of the left and right operands, and suppressing the
ordinary conversion of arrays and function operands to pointers. An important operation is
OTHER, which causes some special code to be invoked in buildtree, to handle issues which are

- 9 -

unique to a particular operator. Examples of this are structure and union reference (actually
handled by the routine stre/J , the building of NAME, ICON, STRING and FCON (floating
point constant) nodes, unary * and &, structure assignment, and calls. In the case of unary *
and &, buildtree will cancel a * applied to a tree, the top node of which is &, and conversely.

Another special operation is PUN� this causes the compiler to check for type mismatches,
such as intermixing pointers and integers.

The treatment of conversion operators is still a rather strange area of the compiler (and of
C !) . The recent introduction of type casts has only confounded this situation. Most of the
conversion operators are generated by calls to tymatch and ptmatch, both of which are given a
tree, and asked to make the operands agree in type. Ptmatch treats the case where one of the
operands is a pointer; tymatch treats all other cases. Where these routines have decided on the
proper type for an operand, they call makety, which is handed a tree, and a type word, dimen
sion offset, and size offset. If necessary, it inserts a conversion operation to make the types
correct. Conversion operations are never inserted on the left side of assignment operators,
however. There are two conversion operators used� PCONV, if the conversion is to a non-basic
type (usually a pointer) , and SCONV, if the conversion is to a basic type (scalar) .

To allow for maximum flexibility, every node produced by buildtree is given to a machine
dependent routine, clocal. immediately after it is produced. This is to allow more or less
immediate rewriting of those nodes which must be adapted for the local machine. The conver
sion operations are given to cloca/ as well; on most machines, many of these conversions do
nothing, and should be thrown away (being careful to retain the type) . If this operation is done
too early, however, later calls to buildtree may get confused about correct type of the subtrees�
thus clocal is given the conversion ops only after the entire tree is built. This topic will be dealt
with in more detail later.

·

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation is
that most of the mess takes place in the machine independent part, where it is may be safely
ignored by the implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine struc
ture; one collection of programs reading constants from the input stream, while another,
independent set of programs places these constants into the appropriate spots in memory. The
dramatic differences in the local assemblers also come to the fore here. The parsing problems
are dealt with by keeping a rather extensive stack containing the current state of the initializa
tion; the assembler problems are dealt with by having a fair number of machine dependent rou
tines.

The stack contains the symbol table number, type, dimension index, and size index for
the current identifier being initialized. Another entry has the offset, in bits, of the beginning of
the current identifier. Another entry keeps track of how many elements have been seen, if the
current identifier is an array. Still another entry keeps track of the current member of a struc
ture being initialized. Finally, there is .an entry containing flags which keep track of the current
state of the initialization process (e.g., tell if a) has been seen for the current identifier.)

When an initialization begins, the routine beginit is called; it handles the alignment restric
tions, if any, and calls instk to create the stack entry. This is done by first making an entry on
the top of the stack for the item being initialized. If the top entry is an array, another entry is
made on the stack for the first element. If the top entry is a structure, another entry is made
on the stack for the first member of the structure. This continues until the top element of the
stack is a scalar. lnstk then r�turns, and the parser begins collecting initializers.

When a constant is obtained, the routine doinit is called; it examines the stack, and does

e; whatever is necessary to assign the current constant to the scalar on the top of the stack. gats
cal is then called, which rearranges the stack so that the next scalar to be initialized gets placed
on top of the stack. This process continues until the end of the initializers; endinit cleans up. If

- 10 -

a { or } is encountered in the string of initializers, it is handled by calling ilbrace or irbrace,
respectively.

A central issue is the treatment of the "holes" that arise as a result of alignment restric
tions or explicit requests for holes in bit fields. There is a global variable, ino.ff, which contains
the current offset in the initialization (all offsets in the first pass of the compiler are in bits) .
Doinit figures out from the top entry on the stack the expected bit offset of the next identifier;
it calls the machine dependent routine inforce which, in a machine dependent way, forces the
assembler to set aside space if need be so that the next scalar seen will go into the appropriate
bit offset position. The scalar itself is passed to one of the machine dependent routines fincode
(for floating point initialization) , incode (for fields, and other initializations less than an int in
size) , and cinit (for all other initializations) . The size is passed to all these routines, and it is up
to the machine dependent routines to ensure that the initializer occupies exactly the right size.

Character strings represent a bit of an exception. If a character string is seen as the ini
tializer for a pointer, the characters making up the string must be put out under a different
location counter. When the lexical analyzer sees the quote at the head of a character string, it
returns the token STRING, but does not do anything with the contents. The parser calls getstr,
which sets up the appropriate location counters and flags, and calls lxstr to read and process the
contents of the string.

If the string is being used to initialize a character array, lxstr calls put byte, which in effect
simulates doinit for each character read. If the string . is used to initialize a character pointer,
lxstr calls a machine dependent routine, bycode, which stashes away each character. The pointer
to this string is then returned, and processed normally by doinit.

The null at the end of the string is treated as if it were read explicitly by lxstr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and
·statements. The statement processing is relatively simple; most of it is carried out in the parser
directly. Most of the logic is concerned with allocating label numbers, defining the labels, and
branching appropriately. An external symbol, reached, is 1 if a statement can be reached, 0
otherwise; this is used td do a bit of simple flow analysis as the program is being parsed, and
also to avoid generating the subroutine return sequence if the subroutine cannot "fall through"
the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose
left descendant is the conditional expression and the right descendant is an ICON node contain
ing the internal label number to be branched to. For efficiency, the semantics are that the label
is gone to if the condition is false.

The switch statement is compiled by collecting the case entries, and an indication as to
whether there is a default case; an internal label number is generated for each of these, and
remembered in a big array. The expression comprising the value to be switched on is compiled
when the switch keyword is encountered, but the expression tree is headed by a special node,
FORCE, which tells the code generator to put the expression value into a special distinguished
register (this same mechanism is used for processing the return statement) . When the end of
the switch block is reached, the array containing the case values is sorted, and checked for
duplicate entries (an error) ; if all is correct, the machine dependent routine genswitch is called,
with this array of labels and values in increasing order. Genswitch can assume that the value to
be tested is already in the register which is the usual integer return value register.

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimiza
tion routine, optim. Actually the word optimization is something of a misnomer; the results are
not optimum, only improved, and the routine is in fact not optional; it must be called for
proper operation of the compiler.

- 1 1 -

Optim is called after an expression tree is built, but before the code generator is called.
The essential part of its job is to call clocal on the conversion operators. On most machines,
the treatment of & is also essential: by this time in the processing, the only node which is a
legal descendant of & is NAME. (Possible descendants of * have been eliminated by buildtree.J
The address of a static name is, almost by definition, a constant, and can be represented by an
ICON node on most machines (provided that the loader has enough power) . Unfortunately,
this is not universally true; on some machine, such as the IBM 370, the issue of addressability
rears its ugly head; thus, before turning a NAME node into an ICON node, the machine depen
dent function andable is called.

The optimization attempts of optim are currently quite limited. It is primarily concerned
with improving the behavior of the compiler with operations one of whose arguments is a con
stant. In the simplest case, the constant is placed on the right if the operation is commutative.
The compiler also makes a limited search for expressions such as

(x + a J + b

where a and b are constants, and attempts to combine a and b at compile time. A number of
special cases are also examined; additions of 0 and multiplications by 1 are removed, although
the correct processing of these cases to get the type of the resulting tree correct is decidedly
nontrivial. In some cases, the addition or multiplication must be replaced by a conversion op to
keep the types from becoming. fouled up. Finally, in cases where a relational operation is being
done, and one operand is a constant, the operands are permuted, and the operator altered, if
necessary, to put the constant on the right. Finally, multiplications by a power of 2 are changed
to shifts.

There are dozens of similar optimizations that can be, and should be, done. It seems
likely that this routine will be expanded in the relatively near future.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In
general, the routines are short, and easy to adapt from machine to machine. The two excep
tions to this general rule are clocal and the function prolog and epilog generation routines,
b.fi:ode and e.fcode.

C/ocal has the job of rewriting, if appropriate and desirable, the nodes constructed by
bui/dtree. There are two major areas where this is important; NAME nodes and conversion
operations. In the case of NAME nodes, clocal must rewrite the NAME node to reflect the
actual physical location of the name in the machine. In effect, the NAME node must be exam
ined, the symbol table entry found (through the rva/ field of the node) , and, based on the
storage class of the node, the tree must be rewritten. Automatic variables and parameters are
typically rewritten by treating the reference to the variable as a structure reference, off the
register which holds the stack or argument pointer; the stre_(routine is set up to be called in this
way, and to build the appropriate tree. In the most general case, the tree consists of a unary *
node, whose descendant is a + node, with the stack or argument register as left operand, and a
constant offset as right operand. In the case of LABEL and internal static nodes, the rval field
is rewritten to be the negative of the internal label number; a negative rval field is taken to be
an internal label number. Finally, a name of class REGISTER must be converted into a REG
node, and the rval field replaced by the register number. In fact, this part of the clocal routine
is nearly machine independent; only for machines with addressability problems (IBM 370
again!) does it have to be noticeably different,

The conversion operator treatment is rather tricky. It is necessary to handle the applica
tion of conversion operators to constants in clocal, in order that aU constant expressions can

8 have their values known at compile time. In extreme cases, this may mean that some simula-··=lff tion of the arithmetic of the target machine might have to be done in a cross-compiler. In the
most common case, conversions from po!nter to pointer do nothing. For some machines, how
ever, conversion from byte pointer to short or long pointer might require a shift or rotate

- 1 2 -

operation, which would have to be generated here.
The extension of the portable compiler to machines where the size of a pointer depends

on its type would be straightforward, but has not yet been done.
The other major machine dependent issue involves the subroutine prolog and epilog gen

eration. The hard part here is the design of the stack frame and calling sequence; this design
issue is discussed elsewhere.5 The routine bfi:ode is called with the number of arguments the
function is defined with, and an array containing the symbol table indices of the declared
parameters. /3./i::ode must generate the code to establish the new stack frame, save the return
address and previous stack pointer value on the stack, and save whatever registers are to be
used for register variables. The stack size and the number of register variables is not known
when b.fi:ode is called, so these numbers must be referred to by assembler constants, which are
defined when they are known (usually in the second pass, after all register variables, automat
ics, and temtJoraries have been seen) . The final job is to find those parameters which may have
been declared register, and generate the code to initialize the register with the value passed on
the stack. Once again, for most machines, the general logic of b,/i:ode remains the same, but the
contents of the prill(lcalls in it will change from machine to machine . e.fi::ode is rather simpler,
having just to generate the default return at the end of a function. This may be nontdvial in
the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as
good a place as any. The C language now supports structure assignment, and the passing of
structures as arguments to functions, and the receiving of structures back from functions. This
was added rather late to C, and thus to the portable compiler. Consequently, it fits in less well
than the older features. Moreover, most of the burden of making these features work is placed
on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is struc
tured around the idea that to compute something, you put it into a register and work on it.
This notion causes a bit of tro1,1ble on some machines (e.g. , machines with 3-address opcodes) ,
but matches many machines quite well. U nfortunately, this notion breaks down with struc
tures. The closest that one can come is to keep the addresses of the structures in registers.
The actual code sequences used to move structures vary from the trivial (a multiple byte move)
to the horrible (a function call) , and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called,
this function has to have some place to put the structure value. If it places it on the stack, it
has difficulty popping its stack frame. If it places the value in a static temporary, the routine
fails to be reentrant. The most logically consistent way of implementing this is for the caller to
pass in a pointer to a spot where the called function should put the value before returning.
This is relatively straightforward, although a bit tedious, to implement, but means that the
caller must have properly declared the function type, even if the value is never used. On some
machines, such as the lnterdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller's stack frame) . The caller takes care of leaving enough
room if the returned value is larger than the arguments. This also assumes that the caller know
and declares the function properly.

The PO P-1 1 and the V A X have stack hardware which is used in function calls and
returns; this makes it very inconvenient to use ei ther of the above mechanisms. In these
machines, a static area within the called functionis allocated, and the function return value is
copied into it on return; the function returns the address of that region. This is simple to
implement, but is non-reentrant. However, the function can now be called as a subroutine
without being properly declared, without the disaster which would otherwise ensue. No matter
what choice is taken, the convention is that the function actually returns the address of the
return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures.
It assumes that functions returning structures actually return a pointer to the structure, and it

- 1 3 -

assumes that a reference to a structure is actually a reference to its address. The structure
assignment operator is rebuilt so that the left operand is the structure being assigned to, but the
right operand is the address of the structure being assigned; this makes it easier to deal with

a = b = c

and similar constructions.
There are four special tree nodes associated with these operations: ST ASG (structure

assignment) , STARG (structure argument to a function call) , and STCALL and UNARY
STCALL (calls of a function with nonzero and zero arguments, respectively) . These four
nodes are unique in that the size and alignment information, which can be determined by the
type for all other objects in C, must be known to carry out these operations; special fields are®
set aside in these nodes to contain this information, and special intermediate code is used to
transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title
"tour" , and partially because they have seemed to cause little trouble. There are some debug
ging flags which may be turned on, by giving the compiler's first pass the argument

- X [flags]
Some of the more interesting flags are - Xd for the defining and freeing of symbols, -Xi for
initialization comments, and -Xb for various comments about the building of trees. In many
cases, repeating the flag more than once gives more information; thus, - Xddd gives more
information than - Xd. In the two pass version of the compiler, the flags should not be set
when the output is sent to the second pass, since the debugging output and the intermediate
code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this
reason the second pass is far harder to discuss in a file by file manner. A great deal of the
difficulty is in understanding the issues and the strategies employed to meet them. Any particu
lar function is likely to be reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy
in the code generator, and will not get too intimate with the details.

Overview.

It is difficult to organize a code generator to be flexible enough to generate code for a
large number of machines, and still be efficient for any one of them. Flexibility is also impor
tant when it comes time to tune the code generator to improve the output code quality. On the
other hand, too much flexibility can lead to semantically incorrect code, and potentially a com
binatorial explosion in the number of cases to be considered in the compiler.

One goal of the code generator is to have a high degree of correctness. It is very desirable
to have the compiler detect its own inability to generate correct code, rather than to produce
incorrect code. This goal is achieved by having a simple model of the job to be done (e.g., an
expression tree) and a simple model of the machine state (e.g. , which registers are free) . The
act of generating an instruction performs a transformation on the tree and the machine state;
hopefully, the tree eventually gets reduced to a single node. If each of these
instruction/transformation pairs is correct, and if the machine state model really represents the

/::@., actual machine, and if the transformations reduce the input tree to the desired single node,
tU h h d " I I b '··:·;§:)? t en t e output co e WI e correct.

- 1 4 -

For most real machines, there is no definitive theory of code generation that encompasses
all the C operators. Thus the selection of which instruction/transformations to generate, and in
what order, will have a heuristic flavor. If, for some expression tree, no transformation applies,
or, more seriously, if the heuristics select a sequence of instruction/transformations that do not
in fact reduce the tree, the compiler will report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations,
- most of this is machine independent, or depends only on simple tables. The flexibility
comes from the heuristics that guide the transformations of the trees, the selection of subgoals,
and the ordering of the computation.

fbe Machine Model

The machine is assumed to have a number of registers, of at most two different types: A
and B. Within each register class, there may be scratch (temporary) registers and dedicated
registers (e.g., register variables, the stack pointer, etc.) . Requests to allocate and free registers
involve only the temporary registers.

Each of the registers in the machine is given a name and a number in the mac2dejs file ;
the numbers are used as indices into various tables that describe the registers, so they should
be kept small. One such table is the rstatus table on file local2. c. This table is indexed by regis
ter number, and contains expressions made up from manifest constants describing the register
types: SAREG for dedicated AREG's, SAREGISTAREG for scratch AREGS's, and SBREG
and SBREGISTBREG similarly for BREG 's. There are macros that access this information:
isbreg(r) returns true if register number r is a BREG, and istreg(r) returns true if register
number r is a temporary AREG or BREG. Another table, rnames, contains the register names;
this is used when putting out assembler code and diagnostics.

The usage of registers is kept track of by an array called busy. Busy[r] is the number of
uses of register r in the current tree being processed. The allocation and freeing of registers
will be discussed later as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying
through to the output unchanged any lines that begin with a ') ', and making note of the infor
mation about stack usage and register allocation contained on lines beginning with '] ' and ' [' .
The expression trees, whose beginning is indicated by a line beginning with ' . ' , are read and
rebuilt into trees. If the compiler is loaded as one pass, the expression trees are immediately
available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first
given the tree; it attempts to delay some postfix + + and - - computations that might reason
ably be done after the smoke clears. It also attempts to handle comma (,) operators by com
puting the left side expression first, and then rewriting the tree to eliminate the operator. Delay
calls codgen to control the actual code generation process. Codgen takes as arguments a pointer
to the expression tree, and a secon<1 argument that, for socio-historical reasons, is called a
cookie. The cookie describes a set of goals that would be acceptable for the code generation:
these are assigned to individual bits, so they may be logically or'ed together to form a large
number of possible goals. Among the possible goals are FOREFF (compute for side effects
only; don't worry about the value) , INTEMP (compute and store value into a temporary loca
tion in memory) , INAREG (compute into an A register) , INTAREG - (compute into a scratch
A register) , INBREG and INTBREG similarly, FORCC (compute for condition codes) , and
FORARG (compute it as a function argument; e.g., stack it if appropriate) .

Codgen first canonicaiizes the tree by calling canon. This routine looks for certain
transformations that might now be applicable to the tree. One, which is very common and very
powerful, is to fold together an indirection operator (UNARY MUL) and a register (REG) ; in
most machines, this combination is addressable directly, and so is similar to a NAME in its

- 1 5 -

behavior. The UNARY MUL and REG are folded together to make another node type called
OREG. In fact, in many machines it is possible to directly address not just the cell pointed to
by a register, but also cells differing by a constant offset from the cell pointed to by the register.
Canon also looks for such cases, calling the machine dependent routine notoff to decide if the
offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095 bytes) .
Another optimization is to replace bit field operations by shifts and masks if the operation
involves extracting the field. Finally, a machine dependent routine, sucomp, is called that com
putes the Sethi-Ullman numbers for the tree (see below) .

After the tree is canonicalized, codgen calls the routine store whose job is to select a sub
tree of the tree to be computed and (usuaily) stored before beginning the computation of the
full tree. Store must return a tree that can be computed without need for any temporary storage
locations. In effect, the only store operations generated while processing the subtree must be as
a response to explicit assignment operators in the tree. This division of the job marks one of
the more significant, and successful, departures from most other compilers. It means that the
code generator can operate under the assumption that there are enough registers to do its job,
without worrying about temporary storage. If a store into a temporary appears in the output, it
is always as a direct result of logic in the store routine� this makes debugging easier.

One consequence of this organization is that code is not generated by a treewalk. There
are theoretical results that support this decision.? It may be desirable to compute several sub
trees and store them before tackling the whole tree� if a subtree is to be stored, this is known
before the code generation for the subtree is begun, and the subtree is computeJ:i when all
scratch registers are available. -

The store routine decides what subtrees, if any, should be stored by making use of
numbers, called Sethi-Uilman numbers, that give, for each subtree of an expression tree, the
minimum number of scratch registers required to compile the subtree, without any stores into
temporaries. 8 These numbers are computed by the machine-dependent routine sucomp, called
by canon. The basic notion is that, knowing the Sethi-Ullman numbers for the descendants of a
node, and knowing the operator of the node and some information about the machine, the
Sethi-Ullman number of the node itself can be computed. If the Sethi-Ullman number for a
tree exceeds the number of scratch registers available, some subtree must be stored. Unfor
tunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple
machines and operators. For the rich set of C operators, and for machines with asymmetric
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the
theory cannot be applied directly. The basic idea of estimation is a good one, however, and
well worth applying� the application, especially when the compiler comes to be tuned for high
code quality, goes beyond the park of theory into the swamp of heuristics. This topic will be
taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored,
and returns the subtree and the associated cookie in the external variables stotree and stocook.
If a subtree has been selected, or if the whole tree is ready to be processed, the routine order is
called, with a tree and cookie. Order·generates code for trees that do not require temporary
locations. Order may make recursive calls on itself, and, in some cases, on codgen� for exam
ple, when processing the operators &&, I I , and comma (' , ') , that have a left to right evaluation,
it is incorrect for store examine the right operand for subtrees to be stored. In these cases,
order will call codgen recursively when it is permissible to work on the right operand. A similar
issue arises with the ? : operator.

The order routine works by matching the current tree with a set of code templates. If a
template is discovered that ·will match the current tree and cookie, the associated assembly
language statement or statements are generated. The tree is then rewritten, as specified by the
template, to represent the effect of the output instruction (s) . If no template match is found,
first an attempt is made to find a match with a different cookie� for example, in order to com
pute an expression with cookie INTEMP (store into a temporary storage location) , it is usually
necessary to compute the expression _into a scratch register first. If all attempts to match the

- 1 6 -

tree fail, the heuristic part of the algorithm becomes dominant. Control is typically given to
one of a number of machine-dependent routines that may in turn recursively call order to
achieve a subgoal of the computation (for example, one of the arguments may be computed
into a temporary register) . After this subgoal has been achieved, the process begins again with
the modified tree. If the machine-dependent heuristics are unable to reduce the tree further, a
number of default rewriting rules may be considered appropriate. For example, if the left
operand of a + is a scratch register, the + can be replaced by a + = operator;· the tree may
then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression
a + = b

where a and b are static variables.
To begin with, the whole expression tree is examined with cookie FOREFF, and no match

is found. Search with other cookies is equally fruitless, so an attempt at rewriting is made.
Suppose we are dealing with the Interdata 8/32 for the moment. It is recognized that the left
hand and right hand sides of the + = operator are addressable, and in particular the left hand
side has no side effects, so it is permissible to rewrite this as

a = a + b

and this is done. No match is found on this tree either, so a machine dependent rewrite is
done; it is recognized that the left hand side -of the assignment is addressable, but the right
hand side is not in a register, so order is called recursively, being asked to put the right hand
side of the assignment into a register. This invocation of order searches the tree for a match,
and fails. The machine dependent rule for + notice5 that the right hand operand is address
able; it decides to put the left operand into a scratch register. Another recursive call to order is
made, with the tree consisting solely of the leaf a, and the cookie asking that the value be
placed into a scratch register. This now matches a template, and a load instruction is emitted.
The node consisting of a is rewritten in place to represent the register into which a is loaded,
and this third call to order returns. The second call to order now finds that it has the tree

reg + b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a
+ = operator, since the left operand is a scratch register. When this is done, there is a match:
in fact,

reg + = b

simply describes the effect of the add instruction on a typical machine. After the add is emit
ted, the tree is rewritten to consist merely of the register node, since the result of the add is
now in the register. This agrees with the cookie passed to the second invocation of order, so
this invocation terminates, returning to the first level. The original tree has now become

a = reg

which matches a template for the store instruction. The store is output, and the tree rewritten
to become just a single register node. At this point, since the top level call to order was
interested only in side effects, the call to order returns, and the code generation is completed;
we have generated a load, add, and store, as might have been expected.

The effect of machine architecture on this is considerable. For example, on the
Honeywell 6000, the machine dependent heuristics recognize that there is an "add to storage"
instruction, so the strategy is quite different; b is loaded in to a register, and then an add to
storage instruction generated to add this register in to a. The transformations, involving as
they do the semantics of C, are largely machine independent. The decisions as to when to use
them, however, are almost totally machine dependent.

Having given a broad outline of the code generation process, we shall next consider the

- 1 7 -

heart of it: the templates. This leads naturally into discussions of template matching and regis
ter allocation, and finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of com
putation around which the compiler is organized. In effect, each template has five logical sec
tions, and represents an assertion of the form:

If we have a subtree of a given shape (1) , and we have a goal (cookie) or goals to achieve
(2) , and we have sufficient free resources (3) , then we may emit an instruction or
instructions (4) , and rewrite the subtree in a particular manner (5) , and the rewritten tree
will achieve the desired goals.
These five sections will be discussed in more detail later. First, we give an example of a

template:
ASG PLUS, INAREG,

SAREG,
SNAME,

TINT,
TINT,
0,
II

RLEFT,
add AL,AR\n11,

The top line specifies the operator (+ =) and the cookie (compute the value of the subtree into
an AREG) . The second and third lines specify the left and right descendants, respectively, of
the + = operator. The left descendant must be a REG node, representing an A register, and
have integer type, while the right side must be a NAME node, and also have integer type. The
fourth line contains the resource requirements (no scratch registers or temporaries needed) ,
and the rewriting rule (replace the subtree by the left descendant) . Finally, the quoted string
on the last line represents the output to the assembler: lower case letters, tabs, spaces, etc. are
copied verbatim. to the output; upper case letters trigger various macro-like expansions. Thus,
AL would expand into the Address form of the Left operand - presumably the register
number. Similarly, AR would expand into the name of the right operand. The add instruction
of the last section might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of
operators, cookies, types, and shapes. In practice, the number of combinations is very large.
Thus, a considerable amount of mechanism is present to permit a large number of subtrees to
be matched by a single template. Most of the shape and type specifiers are individual bits, and
can be logically or'ed together. There are a number of special descriptors for matching classes
of operators. The cookies can also be combined. As an example of the kind of template that
really arises in practice, the actual template for the Interdata 8/32 that subsumes the above
example is:

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT,

0, RLEFTIRESCC,
11 OI AL,AR\n11,

Here, OPSIMP represents the operators + , - , I, &, and �. The 01 macro in the output string
expands into the appropriate I nteger Opcode for the operator. The left and right sides can be
integers, unsigned, or pointer types. The right side can be, in addition to a name, a register, a
memory location whose address is given by a register and displacement (OREG) , or a constant.
Finally, these instructions -set the condition codes, and so can be used in condition contexts: the
cookie and rewriting rules reflect this.

. - 1 8 -

The Template Matching Algorithm.

The heart of the second pass is the template matching algorithm, in the routine match.
Match is called with a tree and a cookie; it attempts to match the given tree against some tem
plate that will transform it according to one of the goals given in the cookie. If a match is suc
cessful, the transformation is applied; expand is c�lled to generate the assembly code, and then
reclaim rewrites the tree, and reclaims the resources, such as registers, that might have become
free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of imple
mentation techniques available for doing this matching. The most naive algorithm simply looks
at the templates one by one. This can be considerably improved upon by restricting the search
for an acceptable template. It would be possible to do better than this if the templates were
given to a separate program that ate them and generated a template matching subroutine. This
would make maintenance of the compiler much more complicated, however, so this has not
been done.

The matching algorithm is actually carried out by restricting the range in the table that
must be searched for each opcode. This introduces a number of complications, however, and
needs a bit of sympathetic help by the person constructing the compiler in order to obtain best
results. The exact tuning of this algorithm continues; it is best to consult the code and com
ments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and
the op of the root, but also the types and shapes of the left and right descendants (if any) of
the tree. A convention is established here that is carried out throughout the second pass of the
compiler. If a node represents a unary operator, the single descendant is always the "left" des
cendant. If a node represents a unary operator or a leaf node (no descendants) the "right"
descendant is taken by convention to be the node itself. This enables templates to easily match
leaves and conversion operators, for example, without any additional mechanism in the match
ing program.

The type matching is straightforward; it is possible to specify any combination of basic
types, general pointers, and pointers to one or more of the basic types. The shape matching is
somewhat more complicated, but still pretty simple. Templates have a collection of possible
operand shapes on whiCh the opcode might match. In the simplest case, an add operation
might be able to add to either a register variable or a scratch register, and might be able (with
appropriate help from the assembler) to add an integer constant (ICON) , a static memory cell
(NAME) , or a stack location (OREG) .

I t is usually attractive to specify a number of such shapes, and distinguish between them
when the assembler output is produced. It is possible to describe the union of many elemen
tary shapes such as ICON, NAME, OREG, AREG or BREG (both scratch and register forms) ,
etc. To l:iandle at least the simple forms of indirection, one can also match some more compli
cated forms of trees; ST ARNM and ST ARREG can match more complicated trees headed by
an indirection operator, and SFLD can match certain trees headed by a FLD operator: these
patterns call machine dependent routines that match the patterns of interest on a given
machine. The shape SWADD may be used to recognize NAME or OREG nodes that lie on
word boundaries: this may be of some importance on word- addressed machines. Finally,
there are some special shapes: these may not be used in conjunction with the other shapes, but
may be defined and extended in machine dependent ways. The special shapes SZERO, SONE,
and SMONE are predefined and match constants 0, 1 , and - 1 , respectively; others are easy to
add and match by using the machine dependent routine special

When a template has been found that matches the root of the tree, the cookie, and the
shapes and types of the descendants, there is still one bar to a total match: the template may
call for some resources (for example, a scratch register) . The routine allo is called, and it
attempts to allocate the resources. If it cannot, the match fails; no resources are allocated. If
successful, the allocated· resources are given numbers 1, 2, etc. for later reference when the

- 1 9 -

assembly code is generated. The routines expand and reclaim are then called. The match rou
tine then returns a special value, MOONE. If no match was found, the value MNOPE is
returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule.
Match is also used to select rewriting rules, although the way of doing this is pretty straightfor
ward. A special cookie, FORREW, is used to ask match to search for a rewriting rule. The
rewriting rules are keyed to various opcodes; most are carried out in order. Since the question
of when to rewrite is one of the key issues in code generation, it will be taken up again later.

Register Allocation.

The register allocation routines, and the allocation strategy, play a central role in the
correctness of the code generation algorithm. If there are bugs in the Sethi-Ullman computa
tion that cause the number of needed registers to be underestimated, the compiler may run out
of scratch registers; it is essential that the allocator keep track of those registers that are free
and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine alto is
called with a word describing the number of A registers, B registers, and temporary locations
needed. The allocation of temporary locations on the stack is relatively straightforward, and
will not be further covered; the bookkeeping is a bit tricky, but conceptually trivial, and
requests for temporary space on the stack will never fail.

Register allocation is less straightforward. The two major complications are pairing and
sharing. In many machines, some operations (such as multiplication and division) , and/or
some types (such as longs or double precision) require even/odd pairs of registers. Operations
of the first type are exceptionally difficult to deal with in the compiler; in fact, their theoretical
properties are rather bad as well.9 The second issue is dealt with rather more successfully; a
machine dependent function called szty(t) is called that returns 1 or 2, depending on the
number of A registers required to hold an object of type t. If szty returns 2, an even/odd pair
of A registers is allocated for each request.

The other issue, sharing, is more subtle, but important for good code quality. When
registers are allocated, it is possible to reuse registers that hold address information, and use
them to contain the values computed or accessed. For example, on the IBM 360, if register 2
has a pointer to an integer in it, we may load the integer into register 2 itself by saying:

L 2,0 (2)
If register 2 had a byte pointer, however, the sequence for loading a character involves clearing
the target register first, and then inserting the desired character:

SR
IC

3 ,3
3 ,0 (2)

In the first case, if register 3 were used as the target, it would lead to a larger number of regis
ters used for the expression than were required; the compiler would generate inefficient code.
On the other hand, if register 2 were used as the target in the second case, the code would sim
ply be wrong. In the first case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible to indicate whether
required scratch registers may be shared with p9ssible registers on the left or the right of the
input tree. In order that a register be shared, it must be scratch, and it must be used only
once, on the appropriate side of the tree being compiled.

The allo routine thus has a bit more to do than meets the eye; it calls .fi"eereg to obtain a
free register for each A and B register request. Freereg makes multiple calls on the routine
usable to decide if a given register can be used to satisfy a given need. Usable calls shareit if the
register is busy, but might be shared. Finally, shareit calls ushare to decide if the desired regis
ter is actually in the appropriate subtree, and can be shared.

Just to add additional complexity, on some ma:chines (such as the IBM 370) it is possible

- 20 -

to have "double indexing" forms of addressing; these are represented by OREGS's with the
base and index registers encoded into the register field. While the register allocation and deal
location per se is not made more difficult by this phenomenon, the code itself is somewhat more
complex.

Having allocated the registers and expanded the assembly language, it is time to reclaim
the resources; the routine reclaim does this. Many operations produce more than one result.
For example, many arithmetic operations may produce a value in a register, and also set the
condition codes. Assignment operations may leave results both in a register and in memory.
Reclaim is passed three parameters; the tree and cookie that were matched, and the rewriting
field of the template. The rewriting field allows the specification of possible results; the tree is
rewritten to reflect the results of the operation. If the tree was computed for side effects only
(FOREFF) , the tree is freed, and all resources in it reclaimed. If the tree was computed for
condition codes, the resources are also freed, and the tree replaced by a special node type,
FORCC. Otherwise, the value may be found in the left argument of the root, the right argu
ment of the root, or one of the temporary resources allocated. In these cases, first the
resources of the tree, and the newly allocated resources, are freed; then the resources needed
by the result are made busy again. The final result must always match the shape of the input
cookie; otherwise, the compiler error "cannot reclaim" is generated. There are some machine
dependent ways of preferring results in registers or memory when there are multiple results
matching multiple goals in the cookie.

The Machine Dependent Interface

The files order. c, loca/2.c, and table.c, as well as the header file mac2dejs, represent the
machine dependent portion of the second pass. The machine dependent portion can be roughly
divided into two: the easy portion 11nd the hard portion. The easy portion tells the compiler the
names of the registers, and arranges that the compiler generate the proper assembler formats,
opcode names, location counterS', etc. The hard portion involves the Sethi - Ullman computa
tion, the rewriting rules, and, to some extent, the templates. It is hard because there are no
real algorithms that apply; most of this portion is based on heuristics. This section discusses
the easy portion; the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy
part is indeed easy. In mac2defs, the register numbers are defined, as well as various parame
ters for the stack frame, and various macros that describe the machine architecture. If double
indexing is to be permitted, for example, the symbol R2REGS is defined. Also, a number of
macros that are involved in function call processing, especially for unusual function call
mechanisms, are defined here.

In loca/2. c, a large number of simple functions are defined. These do things such as write
out opcodes, register names, and address forms for the assembler. Part of the function call
code is defined here; that is nontrivial to design, but typically rather straightforward to imple
ment. Among the easy routines in order. c are routines for generating a created label, defining a
label, and generating the arguments of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on
the target assembler and the design decisions already made about the compiler. Thus they will
not be further treated here.

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the
tree is rewritten, the machine dependent routine nextcook is called with the tree and the cookie;
it suggests another cookie tfiat might be a better candidate for the matching of the tree. If all
else fails, the templates are searched with the cookie FORREW, to look for a rewriting rule.
The rewriting rules are of two kinds; for most of the common operators, there are machine
dependent rewriting rules that may be applied; these are handled by machine dependent func
tions that are called and given the tree to be computed. These routines may recursively call

- 2 1 -

order or codgen to cause certain subgoals to be achieved; if they actually call for some alteration
of the tree, they return 1 , and the code generation algorithm recanonicalizes and tries again. If
these routines choose not to deal with the tree, the default rewriting rules are applied.

The assignment ops, when rewritten, call the routine setasg. This is assumed to rewrite
the tree at least to the point where there are no side effects in the left hand side. If there is
still no template match, a default rewriting is done that causes an expression such as

a + = b

to be rewritten as
a = a + b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field
and b an character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by
the machine dependent routines. For historical reasons, the routines generating the calls return
1 on failure, 0 on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of
the job. In particular, when it returns 0, it must do so with the left hand side in a temporary
register. The default, rewriting rule in this case is to convert the binary operator into the associ
ated assignment operator; since the left hand side is assumed to be a temporary register, this
preserves the semantics and often allows a considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent
routine setincr. If this routine chooses not to deal with the tree, the rewriting rule replaces

X + +

by
((x + = 1) - 1)

which preserves the semantics. Once again, this is not too attractive for the most common
cases, but can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The
machine dependent routine o.ffstar is extremely important for the efficient generation of code.
Ot!star is called with a tree that is the direct descendant of a UNARY MUL node; its job is to
transform this tree so that the combination of UNARY MUL with the transformed tree
becomes addressable. On most machines, qf!star can simply compute the tree into an A or B
register, depending on the architecture, and then canon will make the resulting tree into an
OREG. On many machines, qf!star can profitably choose to do less work than computing its
entire argument into a register. For example, if the target machine supports OREGS with a
constant offset from a register, and qf!star is called with a tree of the form

expr + const

where const is a constant, then qf!star need only compute expr into the appropriate form of
register. On machines that support double indexing, qf!star may have even more choice as to
how to proceed. The proper tuning of qf!star, which is not typically too difficult, should be one
of the first tries at optimization attempted by the compiler writer.

The Sethi-UIIman Computation

The heart of the -heuristics is the computation of the Sethi-Ullman numbers. This compu
tation is closely linked with the rewriting rules and the templates. As mentioned before, the
Sethi-UIIman numbers are expected to estimate the number of scratch registers needed to com
pute the subtrees without using any stores. However, the original theory does not apply to real
machines. For one thing, the theory assumes that all registers are interchangeable. Real
machines have general purpose, floating point, and index registers, register pairs, etc. The

- 22 -

theory also does not account for side effects; this rules out various forms of pathology that arise
from assignment and assignment ops. Condition codes are also undreamed of. Finally, the
influence of types, conversions, and the various addressability restrictions and extensions of
real machines are also ignored.

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly
useful in a real compiler. The notion that one should attempt to estimate the resource needs of
trees before starting the code generation provides a natural means of splitting the code genera
tion problem, and provides a bit of redundancy and self checking in the compiler. Moreover, if
writing the Sethi-Ullman routines is hard, describing, writing, and debugging the alternative
(routines that attempt to free up registers by stores into temporaries "on the fly") is even
worse. Nevertheless, it should be clearly understood that these routines exist in a realm where
there is no "right" way to write them; it is an art, the realm of heuristics, and, consequently, a
major source of bugs in the compiler. Often, the early, crude versions of these routines give
little trouble; only after the compiler is actually working and the code quality is being improved
do serious problem have to be faced. Having a simple, regular machine architecture is worth
quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having
different kinds of registers, and the related problem of needing more than one register (fre
quently a pair) to store certain data types (such as longs or doubles) . There appears to be no
general way of treating this problem; solutions have to be fudged for each machine where the
problem arises. On the Honeywell 66, for example, there are only two general purpose regis
ters, so a need for a pair is the same as the need for two registers. On the IBM 370, the regis
ter pair (0, 1) is used to do multiplications and divisions; registers 0 and 1 are not generally con
sidered part of the scratch registers, and so do not require allocation explicitly. On the Inter
data 8/32, after much consideration, the decision was made not to try to deal with the register
pair issue; operations such as multiplication and division that required pairs were simply
assumed to take all of the scratch registers. Several weeks of effort had failed to produce an
algori thm that seemed to have much chance of running successfully without inordinate debug
ging effort. The difficulty of this issue should not be minimized; it represents one of the main
intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged with a
degree of success on nearly a dozen machines, so the compiler writer should not abandon hope.

The Sethi-UIIman computations interact with the rest of the compiler in a number of
rather subtle ways. As already discussed, the store routine uses the Sethi-UIIman numbers to
decide which subtrees are too difficult to compute in registers, and must be stored. There are
also subtle interactions between the rewriting routines and the Sethi-UIIman numbers. Suppose
we have a tree such as

A - B

where A and B are expressions; suppose further that B takes two registers, and A one. It is
possible to compute the full expression in two registers by first computing B, and then, using
the scratch register used by B, but not containing the answer, compute A. The subtraction can
then be done, computing the expression. (Note that this assumes a number of things, not the
least of which are register-to-register subtraction operators and symmetric registers.) If the
machine dependent routine setbin, however, is not prepared to recognize this case and compute
the more difficult side of the expression first, the Sethi-UIIman number must be set to three.
Thus, the Sethi-UI Iman number for a tree should represent the code that the machine depen
dent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as
* (p + i J

where p is a pointer and i an integer, this can probably be done in one register on most
machines. Thus, its Sethi-UIIman number would probably be set to one. If double indexing is
possible in the machine, a possible way of computing the expression is to load both p and i into

- 23 -

registers, and then use double indexing. This would use two scratch registers; in such a case, it
is possible that the scratch registers might be unobtainable, or might make some other part of
the computation run out of registers. The usual solution is to cause o.lfstar to ignore opportuni
ties for double indexing that would tie up more scratch registers than the Sethi-Ullman number
had reserved.

In summary, the Sethi-Ullman computation represents much of the craftsmanship and
artistry in any application of the portable compiler. It is also a frequent source of bugs. Algo
rithms are available that will produce nearly optimal code for specialized machines, but unfor
tunately most existing machines are far removed from these ideals. The best way of proceeding
in practice is to start with a compiler for a similar machine to the target, and proceed very care
fully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does regis
ter allocation, if appropriate. This routine does relatively little, in general; this is especially true
if the target machine is fairly regular. There are a few cases where it is assumed that the result
of a computation takes place in a particular register; switch and function return are the two
major places. The expression tree has a field, rail, that may be filled with a register number;
this is taken to be a preferred register, and the first temporary register allocated by a template
match will be this preferred one, if it is free. If not, no particular action is taken; this is just a
heuristic. If no register preference is present, the field contains NOPR.EF. In some cases, the
result must be placed in a given register, no matter what. The register number is pJaced in rail,
and the mask MUSTDO is logically or'ed in with it. In this case, if the subtree is requested in
a register, and comes back in a register other than the demanded one, it is moved by calling the
routine rmove. If the target register for this move is busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move
between scratch registers (unless such a move is buried in the depths of some template) . This
simplifies debugging. In some cases, there is a rather strange interaction between the register
allocation and the Sethi-Ullman number; if there is an operator or situation requiring a particu
lar register, the allocator and the Sethi-Ullman computation must conspire to ensure that the
target register is not being used by some intermediate result of some far-removed computation.
This is most easily done by making the special operation take all of the free registers, prevent
ing any other partially-computed results from cluttering up the works.

Compiler Bugs

The portable compiler has an excellent record of generating correct code. The require
ment for reasonable cooperation between the register allocation, Sethi-Ullman computation,
rewriting rules, and templates builds quite a bit of redundancy into the compiling process. The
effect of this is that, in a surprisingly short time, the compiler will start generating correct code
for those programs that it can compile. The hard part of the job then becomes finding and
eliminating those situations where the compiler refuses to compile a program because it knows
it cannot do it right. For example, a template may simply be missing; this may either give a
compiler error of the form "no match for op . . . " , or cause the compiler to go into an infinite
loop applying various rewriting rules. The compiler has a variable, nrecur, that is set to 0 at the
beginning of an expressions, and incremented at key spots in the compilation process; if this
parameter gets too large, the compiler decides that it is in a loop, and aborts. Loops are also
characteristic of botches in the machine-dependent rewriting rules. Bad Sethi-Ullman computa-

@ tions usually cause the scratch registers to run out; this often means that the Sethi-UI Iman
W@W number was underestimafed, so store did not store something it should have; alternatively, it

can mean that the rewriting rules were not smart enough to find the sequence that sucomp
assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to
get a small example program that steps on the bug. Second, turn on various debugging flags in

- 24 -

the code generator, and follow the tree through the process of being matched and rewritten.
Some flags of interest are - e, which prints the expression tree, - r, which gives information
about the allocation of registers, - a, which gives information about the performance of ral/o,
and - o, which gives information about the behavior of order. This technique should allow
most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty
arises because a fix to the particular bug of interest tends to break other code that already
works. Regression tests, tests that compare the performance of a new compiler against the per
formance of an older one, are very valuable in preventing major catastrophes.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number
of diverse machines, and for testing a number of theoretical constructs in a practical setting. It
has many blemishes, both in style and functionality. It has been applied to many more
machines than first anticipated, of a much wider range than originally dreamed of. Its use has
also spread much faster than expected, leaving parts of the compiler still somewhat raw in
shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine could
be generated for many machines directly from the templates; this would give a considerable
boost to the portability and correctness of the compiler, but might affect tunability and code
quality. There is also room for more optimization, both within optim and in the form of a port
able "peephole" optimizer.

On the practical, development side, the compiler could probably be sped up and made
smaller without doing too much violence to its basic structure. Parts of the compiler deserve to
be rewritten; the initialization code, register allocation, and parser are prime candidates. It
might be that doing some or all of the parsing with a recursive descent parser might save
enough space and time to be worthwhile; it would certainly ease the problem of moving the
compiler to an environment where Yacc is not already present.

Finally, I would like to thank the many people who have sympathetically, and even
enthusiastically, helped me grapple with what has been a frustrating program to write, test, and
install. D. M. Ritchie and E. N. Pinson provided needed early encouragement and philosophi
cal guidance; M. E. Lesk, R. Muha, T. G. Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R.
Rowland, S . I. Feldman, and T. B. London have all contributed ideas, gripes, and all, at one
time or another, climbed "into the pits" with me to help debug. Without their help this effort
would have not been possible; with it, it was often kind of fun.

- 25 -

References

1 . B . W . Kernighan and D . M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1 978) .

2 . S. C . Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65 (1978) .
3 . A . Snyder, A Portable Compiler for the Language C, Master's Thesis, M.I.T., Cambridge,

Mass. (1974) .
4. S. C . Johnson, "A Portable Compiler: Theory and Practice, " Proc. 5th ACM Symp. on

Principles of Programming Languages, pp. 97- 104 (January 1 978) .
5 . M . E. Lesk, S . C . Johnson, and D. M. Ritchie, The C Language Calling Sequence, Bell

Laboratories internal memorandum (1 977) . •
6. S. C . Johnson, "Yacc - Yet Another Compiler-Compiler, ' ; Comp. Sci. Tech. Rep. No.

32, Bell Laboratories, Murray Hill, New Jersey (July 1 975) .
7 . A. V. Abo and S . C . Johnson, "Optimal Code Generation for Expression Trees," J.

Assoc. Comp. Mach. 23(3) pp. 488-501 (1 975) . Also in Proc. ACM Symp. on Theory of
Computing, pp. 207-21 7, 1 975.

8. R. Sethi and J. D. Ullman, "The Generation of Optimal Code for Arithmetic Expres
sions, ' ' J. Assoc. Comp. Mach. 17(4) pp. 7 15-728 (October 1 970) . Reprinted as pp. 229-
247 in Compiler Techniques, ed. B . W. Pollack, Auerbach, Princeton NJ (1972) .

9. A . V. Abo, S. C . Johnson, and J. D. Ullman, "Code Generation for Machines with Mul
tiregister Operations, ' ' Proc. 4th ACM Symp. on Principles of Programming Languages, pp.
2 1 -28 (January 1 977) .

A Dial-Up Network of UNIX™ Systems

D. A . Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A network of over eighty UNIXt computer systems has been established
using the telephone system as its primary communication medium. The net
work was designed to meet the growing demands for software distribution and
exchange. Some advantages of our design are:

The startup cost is low. A system needs only a dial-up port, but systems
with automatic calling units have much more flexibility.
No operating system changes are required to install or use the system.
J:he communication is basically over dial-up lines, however, hardwired
communication lines can be used to increase speed.
The command for sending/receiving files is simple to use.

Keywords: networks, communications, software distribution, software
maintenance

August 1 8, 1 978

tUNIX i s a Trademark o f Bell Laboratories.

1. Purpose

A Dial-Up Network of UNIX™ Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

The widespread use of the UNIXt systeml within Bell Laboratories has produced problems
of software distribution and maintenance. A conventional mechanism was set up to distribute
. the operating system and associated programs from a central site to the various users. However
this mechanism alone does not meet all software distribution needs. Remote sites generate
much software and must transmit it to other sites. Some UNIX systems are themselves central
sites for redistribution of a particular specialized utility, such as the Switching Control Center
System. Other sites have particular, often long-distance needs for software exchange; switching
research, for example, is carried on in New Jersey, Illinois, Ohio, and Colorado. In addition,
general purpose utility programs are written at all UNIX system sites. The UNIX system is
modified and enhanced by many people in many places and it would be very constricting to
deliver new software in a one-way stream without any alternative for the user sites to respond
with changes of their own.

Straightforward software distribution is only part of the problem. A large project may
exceed the capacity of a single computer and several machines may be used by the one group of
people. It then becomes necessary for them to pass messages, data and other information back
an forth between computers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have
constructed networks built of hardwired connections only.2. 3 Our network, however, uses both
dial-up and hardwired connections so that service can be provided to as many sites as possible.

2. Design Goals
Although some of our machines are connected directly, others can only communicate

over low-speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may
take considerable time, we spool all work and transmit in the background. We also had to
adapt to a community of systems which are independently operated and resistant to suggestions
that they should all buy particular hardware or install particular operating system modifications.
Therefore, we make minimal demands on the local sites in the network. Our implementation
requires no operating system changes; in fact, the transfer programs look like any other user
entering the system through the nQ.rmal dial-up login ports, and obeying all local protection
rules.

We distinguish "active" and "passive" systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection. Pas
sive systems do not have the hardware to initiate a connection. However, an active system can
be assigned the job of calling passive systems and executing work found there; this makes a
passive system the functional equivalent of an active system, except for an additional delay
while it waits to be polled. Also, people frequently log into active systems and request copying
from one passive system to another. This requires two telephone calls, but even so, it is faster

tUN IX is a Trademark of Bell Laboratories.

- 2 - Nowitz

than mailing tapes.
Where convenient, we use hardwired communication lines. These permit much faster

transmission and multiplexing of the communications link. Dial-up connections are made at
either 300 or 1 200 baud� hardwired connections are asynchronous up to 9600 baud and might
run even faster on special-purpose communications hardware.4• 5 Thus, systems typically join
our network first as passive systems and when they find the service more important, they
acquire automatic calling units and become activ.e systems; eventually, they may install high
speed links to particular machines with which they handle a great deal of traffic. At no point,
however, must users change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool
directory, in which work to be done (files to be moved, or commands to be executed remotely)
is stored. A standard program, uucico, performs all transfers. This program starts by identify
ing a particular communication channel to a remote system with which it will hold a conversa
tion. Uucico then selects a device and establishes the connection, logs onto the remote machine
and starts the uucico program on the remote machine. Once two of these programs are con
nected, they first agree on a line protocol, and then start exchanging work. Each program in
turn, beginning with the calling (active system) program, transmits everything it needs, and
then asks the other what it wants done. Eventually neither has any more work, and both exit.

In this way, all services are available from all sites; passive sites, however, must wait until
called. A variety of protocols may be used; this conforms to the real, non-standard world. As
long as the caller and called programs have a protocol in common, they can communicate.
Furthermore, each caller knows the hours when each destination system should be called. If a
destination is unavailable, the data intended for it remain in the spool directory until the desti
nation machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of
which store proprietary programs and data, illustratives the pervasive need for security and
administrative controls over file access. Each site, in configuring its programs and system files,
limits and monitors transmission. In order to access a file a user needs access permission for
the machine that contains the file and access permission for the file itself. This is achieved by
first requiring the user to use his password to log into his local machine and then his local
machine logs into the remote machine whose files are to be accessed. In addition, records are
kept identifying all files that are moved into and out of the local system, and how the requestor
of such accesses identified himself. Some sites may arrange to permit users only to call up and
request work to be done; the calling users are then called back before the work is actually done.
It is then possible to verify that the request is legitimate from the standpoint of the target sys
tem, as well as the originating system. Furthermore, because of the call-back, no site can
masquerade as another even if it knows all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with other
machines and require a verification of the count at the start of each conversation. Thus, even
if call back is not in use, a successful masquerade requires the calling party to present the
correct sequence number. A would-be impersonator must not just steal the correct phone
number, user name, and password, but also the sequence count, and must call in sufficiently
promptly to precede the next legitimate request from either side. Even a successful
masquerade will be detected on the next correct conversation.

3. Processing
The user has two commands which set up communications, uucp to set up file copying,

and uux to set up command execution where some of the required resources (system and/ or
t& files) are not on the local machine. Each of these commands will put work and data files into
t;.@=,;r the spool directory for execution by uucp daemons. Figure 1 shows the major blocks of the file

transfer process.

- 3 - Nowitz

File Copy

The uucico program is used to perf OJ m all communications between the two systems. It
performs the following functions:

Scan the spool directory for work.
Place a call to a remote system.
Negotiate a line protocol to be used.
Start program uucico on the remote system.
Execute all requests from both systems.
Log work requests and work completions.

Uucico may be started in several ways;
a) by a system daemon,
b) by one of the uucp or uux programs,
c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs
(uucico, uuxqt) to determine the files they should look at, the remote machines they should call
and the order in which the files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program
directory. At the start of the call process, a lock is set on the system being called so that
another call will not be attempted at the same time.

The system name is found in a "systems" file. The information contained for each sys
tem is:

[1] system name,
[2] times to call the system (days-of-week and times-of-day) ,
[3] device or device type to be used for call,
[4] line speed,
[5] phone number,
[6] login information (multiple fields) .
The time field is checked against the present time to see if the call should be made. The

phone number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial
sequences using a "dial-codes" file. This permits the same "phone number" to be stored at
every site, despite local variations in telephone services and dialing conventions.

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an
available device for the connection. The program will try all devices which satisfy [3] and [4]
until a connection is made, or no more devices can be tried. If a non-multiplexable device is
successfully opened, a lock file is created so that another copy of uucico will not try to use it. If
the connection is complete, the login information is used to log into the remote system. Then a
command is sent to the remote system to start the uucico program. The conversation between
the two uucico programs begins with a handshake started by the called, SLA VE, system. The
SLA VE sends a message to let the MASTER know it is ready to receive the system
identification and conversation sequence number. The response from the MASTER is verified
by the SLA VE and if acceptable, protocol selection begins.

- 4 - Nowitz

Line Protocol Selection

The remote system sends a message
P proto-list

where proto-list is a string of characters, each representing a line protocol. The calling program
checks the. proto-list for a letter corresponding to an available line protocol and returns a use
protocol message. The use-protocol message is

Ucode

where code is either a one character protocol letter or a N which means there is no common
protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp
transmission program. Other protocols may be added by individual installations.

VVork Processing

During processing, one program is the MASTER and the other is SLA VE. Initially, the
calling program is the MASTER. These roles may switch one or more times during the conver
sation.

There are four messages used during the work processing, each specified by the first char
acter of the message. They are

S send a file,
R receive a file,
C copy complete,
H hangup.

The MASTER will send R or S messages until all work from the spool directory is complete, at
which point an H message will be sent. The SLA VE will reply with S Y, SN, R Y, RN, HY, HN,
corresponding to yes or no for each request.

The send and receive replies are based on permission to · access the requested
file/directory. After each file is copied into the spool directory of the receiving system, a copy
complete message is sent by the receiver of the file. The message CY will be sent if the UNIX
cp command, used to copy from the spool directory, is successful. Otherwise, a CN message is
sent. The requests and results are logged on both systems, and, if requested, mail is sent to the
user reporting completion (or the user can request status information from the log program at
any time) .

The hangup response is determined by the SLA VE program by a work scan of the spool
directory. If work for the remote system exists in the SLA VE's spool directory, a HN message
is sent and the programs switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

VVhen a HY message is received by the MASTER it is echoed back to the SLA VE and the
protocols are turned off. Each prograll) sends a final "00" message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes
"mail dan" to send mail to user "dan". By writing "mail usg!dan" the mail is sent to user
"dan" on system "usg".

The primary uses of our network to date have been in software maintenance. Relatively
few of the bytes passed between systems are intended for people to read. Instead, new pro
grams (or new versions of programs) are sent to users, and potential bugs are returned to
authors. Aaron Cohen has implemented a "stockroom" which allows remote users to call in

- 5 - Nowitz

and request software. He keeps a "stock list" of available programs, and new bug fixes and
utilities are added regularly. In this way, users can always obtain the latest version of anything
without bothering the authors of the programs. Although the stock list is maintained on a par
ticular system, the items in the stockroom may be warehoused in many places; typically each
program is distributed from the home site of its author. Where necessary, uucp does remote
to-remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on
remote systems are caused by local misconfigurations or old versions of software, or whether
they are bugs that must be fixed at the home site. This helps identify errors rapidly. For one
set of test programs maintained by us, over 70% of the bugs reported from remote sites were
due to old software, and were fixed merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two
different machines. A very useful utility on one machine has been Doug Mcilroy's "diff" pro
gram which compares two text files and indicates the differences, line by line, between them.6
Only lines which are not identical are printed. Similarly, the program "uudiff" compares files
(or directories) on two machines. One of these directories may be on a passive system. The
"uudiff'' program is set up to work similarly to the inter-system mail, but it is slightly more
complicated.

To avoid moving large numbers of usually identical files, uudi/J computes file checksums
on each side, and only moves files that are different for detailed comparison. For large files,
this process can be iterated; checksums can be computed for each line, and onl� those lines that
are different actually moved.

The "uux" command has been useful for providing remote output. There are some
machines which do not have hard-copy devices, but which are connected over 9600 baud com
munication lines to machines with printers. The uux command allows the formatting of the
printout on the local machine and printing on the remote machine using standard UNIX com
mand programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below
shows the real throughput of characters on communication links of different speeds. These
numbers represent actual data transferred; they do not include bytes used by the line protocol
for data validation such as checksums and messages. At the higher speeds, contention for the
processors on both ends prevents the network from driving the line full speed. The range of
speeds represents the difference between light and heavy loads on the two systems. If desired,
operating system modifications can be installed that permit full use of even very fast links.

Nominal speed
300 baud

1 200 baud
9600 baud

Characters/ sec.
27

1 00- 1 10
200-850

In addition to the transfer time, there is some overhead for making the connection and logging
in ranging from 1 5 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte
source program can be transferred in four minutes instead of the 2 days that might be required
to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20
files moved and 5 remote commands executed in a typical day. A more normal traffic out of a
single system would be around a dozen files per day.

The total number of sites at present in the main network is 82 , which includes most of
the Bell Laboratories full-size machines which run the UNIX operating system. Geographically,
the machines range from Andover, Massachusetts to Denver, Colorado.

- 6 - Nowitz

Uucp has also been used to set up another network which connects a group of systems in
operational sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Con
ventional maintenance (a support group which m·ails tapes) has many well-known disadvan
tages.? There are distribution errors and delays, resulting in old software running at remote
sites and old bugs continually reappearing. These difficulties are aggravated when there are 1 00
different small systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it
possible just to send programs directly to the end user who wants them. This avoids the
bottleneck of negotiation and packaging in the central support group. The "stockroom" serves
this function for new utilities and fixes to old utilities. However, it is still likely that distribu
tions will not be sent and installed as often as needed. Users are justifiably suspicious of the
"latest version" that has just arrived; all too often it features the "latest bug." What is needed
is to address both problems simultaneously:
1 . Send distributions whenever programs change.
2 . Have sufficient quality control so that users will install them.
To do this, we recommend systematic regression testing both on the distributing and receiving
systems. Acceptance testing on the receiving systems can be automated and permits the local
system to ensure that its essential work can continue despite the constant installation of changes
sent from -elsewhere. The work of writing the test sequences should be recovered in lower
counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter
system "mail" and "diff," plus the many implied commands represented by "uux." However,
we still need inter-system "write" (real-time inter-user communication) and "who" (list of
people logged in on different systems) . A slow-speed network of this sort may be very useful
for speeding up counseling and education, even if not fast enough for the distributed data base
applications that attract many users to networks. Effective use of remote execution over slow
speed lines, however, must await the general installation of multiplexable channels so that long
file transfers do not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.
1 . By starting your network in a way that requires no hardware or major operating system

changes, you can get going quickly.
2 . Support will follow use. Since the network existed and was being used, system main

tainers were easily persuaded to help keep it operating, including purchasing additional
hardware to speed traffic.

3 . Make the network commands look like local commands. Our users have a resistance to
learning anything new: all the inter-system commands look very similar to standard UNIX

system commands so that little training cost is involved.
4. An initial error was not coordinating enough with existing communications projects: thus,

the first version of this network was restricted to dial-up, since it did not support the vari
ous hardware links between systems. This has been fixed in the current system.

Acknowledgements

We thank G. L. Chesson for his design and implementation of the packet driver and pro
tocol, and A. S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance.

- 7 - Nowitz

References

l . D. M. Ritchie and K . Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.
57(6) pp. 1 905-1929 (1 978) .

2 . T. A. Dolotta, R. C . Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench," Bei! Sys. Tech. J. 57(6) pp. 2 1 77-2200 (1 978) .

3 . G. L . Chesson, "The Network UNIX System, " Operating Systems Review 9 (5) pp. 60-66
(1975) . Also in Proc. 5th Symp. on Operating Systems Principles.

4. A. G. Fraser, "Spider - An Experimental Data Communications System, " Proc. IEEE
Co1!f. on Communications, p. 2 1 F Oune 1 974) . IEEE Cat. No. 74CH0859-9-CSCB.

5. A. G. Fraser, "A Virtual Channel Network," Datamation, pp. 5 1 -56 (February 1 975) .
6 . J. W. Hunt and M. D. Mcilroy, "An Algorithm for Differential File Comparison," Comp.

Sci. Tech. Rep. No. 4 1 , Bell Laboratories, Murray Hill, New Jersey (June 1 976) .
7 . F . P. Brooks, Jr. , The Mythical Man-Month. Addison-Wesley, Reading, Mass. (1 975) .

Uucp Implementation Description

D. A. Nowitz

A BSTRA CT

Uucp is a series of programs designed to permit communication between
UNIX systems using either dial-up or hardwired communication lines. This
document gives a detailed implementation description of the current (second)
implementation of uucp.

This document is for use by an administrator/installer of the system. It is
not meant as a user's guide.

October 3 1 , 1 978

Uucp Implementation Description

D. A. Nowitz

Introduction

Uucp is a series of programs designed to permit communication between UNIXt systems using
either dial-up or hardwired communication lines. It is used for file transfers and remote com
mand execution. The first version of the system was designed and implemented by M. E.
Lesk. 1 This paper describes the current (second) implementation of the system.
Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp
demons. There are three types of files used for the execution of work. Data files contain data
for transfer to remote systems. Work files contain directions for file transfers between systems.
Execution files are directions for UNIX command executions which involve the resources of one
or more systems.
The uucp system consists of four primary and two secondary programs. The primary programs
are:

uucp This program creates work and gathers data files in the spool directory ·for the
transmission of files.

uux

uucico

This program creates work files, execute files and gathers data files for the
remote execution of UNIX commands.
This program executes the work files for data transmission.

uuxqt This program executes the execution files for UNIX command execution.
The secondary programs are:

uulog This program updates the log file with new entries and reports on the status of
uucp requests.

uuclean This program removes old files from the spool directory.
The remainder of this paper will describe the operation of each program, the installation of the
system, the security aspects of the system, the files required for execution, and the administra
tion of the system.

1 . Uucp - UNIX to UNIX File Copy

The uucp command is the user's primary interface with the system. The uucp command was
designed to look like cp to the user. The syntax is

uucp I option I . . . source . . . destination
where the source and destination may contain the prefix system-name! which indicates the sys
tem on which the file or files reside or where they will be copied.
The options interpreted by uucp are:

- d Make directories when necessary for copying the file.

tUN IX is a Trademark of Bell Laboratories.
1 M. E. Lesk and A. S. Cohen, UNIX Software Distribution by Communication Link, private communication.

- 2 -

- c Don't copy source files to the spool directory, but use the specified source
when the actual transfer takes place.

-g letter Put letter in as the grade in the name of the work file. (This can be used to
change the order of work for a particular machine.)

- m Send mail on completion of the work.
The following options are used primarily for debugging:
-r Queue the job but do not start uucico program.
- sdir Use directory dir for the spool directory.
- xnum Num is the level of debugging output desired.

The destination may be a directory name, in which case the file name is taken from the last part
of the source's name. The source name may contain special shell characters such as " ?*[!' . If
a source argument has a system-name! prefix for a remote system, the file name expansion will
be done on the remote system.
The command

uucp * .c usg!/usr/dan
will set up the transfer of all files whose names end with ".c" to the "/usr/dan" directory on
the"usg" machine.
The source and/ or destination names may also contain a -user prefix. This translates to the
login directory on the specified system. For names with partial path-names, the current direc
tory is prepended to the file name. File names with . ./ are not permitted.
The command

uucp usg! -dan/*.h -dan
will set up the transfer of files whose names end with ".h" in dan's login directory on system
"usg" to dan's local login directory.
For each source file, the program will check the source and destination file-names and the
system-part of each to classify the work into one of five types:

[1] Copy source to destination on local system.
[2] Receive files from other systems.
[3] Send files to a remote systems.
[4] Send files from remote systems to another remote system.
[5] Receive files from remote systems when the source contains special shell characters

as mentioned above.
After the work has been set up in the spool directory, the uucico program is started to try to
contact the other machine to execute the work (unless the - r option was specified) .

Type 1

A cp command is used to do the work. The -d and the -m options are not honored in this
case.

Type 2

A one line work file is created for each file requested and put in the spool directory with the fol- ·
lowing fields, each separated by a blank. (All work .files and execute files use a blank as the field
separator.)

[1] R

- 3 -

[2] The full path-name of the source or a -user/path-name. The -user part will be
expanded on the remote system.

[3] The full path-name of the destination file. If the -user notation is used, it will be
immediately expanded to be the login directory for the user.

[4] The user's login name.
[5] A " - " followed by an option list. (Only the - m and - d options will appear in

this list.)

Type 3
For each source file, a work file is created and the source file is copied into a data file in the
spool directory. (A " -c" option on the uucp command will prevent the data file from being
made.) In this case, the file will be transmitted from the indicated source.) The fields of each
entry are given below.

[1] s
[2] The full-path name of the source file.
[3]
[4]
[5]
[6]
[7]

The full-path name of the destination or "user/file-name.
The user's login name.
A " - " followed by an option list.
The name of the data file in the spool directory.
The file mode bits of the source file in octal print format (e.g. 0666) .

Type 4 and Type 5

Uucp generates a uucp command and sends it to the remote machine; the remote uucico exe
cutes the uucp command.

2. Uux - UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution
machine and/or some of the files are remote. The syntax of the uux command is

uux I - 1 I option] . . . command-string
where the command-string is made up of one or more arguments. All special shell characters
such as " < >t" must be quoted either by quoting the entire command-string or quoting the
character as a separate argument. Within the command-string, the command and file names
may contain a system-name! prefix. All arguments which do not contain a " !" will not be
treated as files. (They will not be copied to the execution machine.) The " - " is used to indi
cate that the standard input for command-string should be inherited from the standard input of
the uux command. The options, essentially for debugging, are:

- r Don't start uucico or uuxqt after queuing the job;
- x num Num is the level of debugging output desired.

The command
pr abc I uux - usg! lpr

will set up the output of "pr abc" as standard input to an lpr command to be executed on sys
tem "usg" .
Uux generates an execute file which contains the names of the files required for execution
(including standard input) , the user's login name, the destination of the standard output, and
the command to be executed. This file is either put in the spool directory for local execution or
sent to the remote system using a generated send command (type 3 above) .
For required files which are not on the execution machine, uux will generate receive command
files (type 2 above) . These command-files will be put on the execution machine and executed

- 4 -

by the uucico program. (This will work only if the local system has permission to put files in
the remote spool directory as controlled by the remote USERFILE.)

The execute file will be processed by the uuxqt program on the execution machine. It is made
up of several lines, each of which contains an identification character and one or more argu
ments. The order of the lines in the file is not relevant and some of the lines may not be
present. Each line is described below.

User Line

U user system
where the user and system are the requester's login name and system.

Required File Line

F file-name real-name
where the file-name is the generated name of a file for the execute machine and real-name
is the last part of the actual file name (contains no path information) . Zero or more of
these lines may be present in the execute file. The uuxqt program will check for the
existence of all required files before the command is executed.

Standard Input Line

I file-name
The standard input is either specified by a " < " in the command-string or inherited from
the standard input of the uux command if the " - " option is used. If a standard input is
not specified, "/dev/null" is used.

Standard Output Line

0 file-name system-name
The standard output is specified by a " > " within the command-string. If a standard out
put is not specified, "/dev/null" is used. (Note - the use of " > > " is not imple
mented.)

· Command Line

C command I arguments I . . .
The arguments are those specified in the command-string. The standard input and stan
dard output will not appear on this line. All required .files will be moved to the execution
directory (a subdirectory of the spool directory) and the UNIX command is executed using
the Shell specified in the uucp. h header file. In addition, a shell "PATH" statement is
prepended to the command line as specified in the uuxqt program.
After execution, the standard output is copied or set up to be sent to the proper place.

3. Uucico - Copy In, Copy Out

The uucico program will perform the following major functions:
Scan the spool directory for work.
Place a call to a remote system.
Negotiate a line protocol to be used.
Execute all requests from both systems.
Log work requests and work completions.

Uucico may be started in several ways;

- 5 -

a) by a system daemon,
b) by one of the uucp, uux, uuxqt or uucico programs,
c) directly by the user (this is usually for testing) ,
d) by a remote system. (The uucico program should be specified as the "shell" field in

the "/etc/passwd" file for the "uucp" logins.)
When started by method a, b or c, the program is considered to be in MASTER mode. In this
mode, a connection will be made to a remote system. If started by a remote system (method
d) , the program is considered to be in SLA VE mode.
The MASTER mode will operate in one of two ways. If no system name is specified (- s
option not specified) the program will scan the spool directory for systems to call. If a system
name is specified, that system will be called, and work will only be done for that system.
The uucico program is generally started by another program. There are several options used for
execution:

- rl

- ssys

Start the program in MASTER mode. This is used when uucico is started by a
program or "cron" shell.
Do work only for system sys. If -s is specified, a call to the specified system
will be made even if there is no work for system sys in the spool directory.
This is useful for polling systems which do not have the l)ardware to initiate a
connection.

The following options are used primarily for debugging:
- ddir Use directory dir for the spool directory.
- xnum Num is the level of debugging output desired.

The next part of this section will describe the major steps within the uucico program.

Scan For Work

The names of the work related files in the spool directory have format
type . system-name grade number

where:
Type is an upper case letter, (C - copy command file, D - data file, X - execute file) ;
System-name is the remote system;
Grade is a character;
Number is a four digit, padded sequence number.

The file
C.res45n003 1

would be a work file for a file transfer between the local machine and the "res45" machine.
The scan for work is done by looking through the spool directory for work .files (files with prefix
"C.") . A list is made of all systems to be called. Uucico will then call each system and process
all work files.

Call Remote System

The call is made using information from several files which reside in the uucp program direc
tory. At the start of the call process, a lock is set to forbid multiple conversations between the
same two systems.
The system name is found in the L.sys file. The information contained for each system is;

- 6 -

[1] system name,
[2] times to call the system (days-of-week and times-of-day) ,
[3] device or device type to be used for call,
[4] line speed,
[5] phone number if field [3] is A CU or the device name (same as field [3]) if not ACU,

[6] login information (multiple fields) ,
The time field is checked against the present time to see if the call should be made.
The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into
dial sequences using the L-dialcodes file.
The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available dev
ice for the call. The program will try all devices which . satisfy [3] and [4] until the call is made,
or no more devices can be tried. If a device is successfully opened, a lock file is created so that
another copy of uucico will not try to use it. If the call is complete, the login iriformation (field
[6] of L.sys) is used to login.
The conversation between the two uucico programs begins with a handshake started by the
called, SLA VE, system. The SLA VE sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence number. The response from the
MASTER is verified· by the SLA VE and if acceptable, protocol selection begins. The SLA VE
can also reply with a "call-back required" message in which case, the current conversation is
terminated.

Line Protocol Selection

The remote system sends a message
P proto-list

where proto-list is a string of characters, each representing a line protocol.
The calling program checks the proto-list for a letter corresponding to an available line protocol
and returns a use-protocol message. The use-protocol message is

.Ucode

where code is either a one character protocol letter or N which means there is no common pro
tocol.

Work Processing

The initial roles (MASTER or SLA VE) for the work processing are the mode in which each
program starts. (The MASTER has been specified by the " - r1 " uucico option.) The MASTER
program does a work search similar to the one used in the "Scan For Work" section.
There are five messages used during the work processing, each specified by the first character of
the message. They are;

S send a file,
R receive a file,
C copy complete,
X execute a uucp command,
H hangup.

The MASTER will send R, S or X messages until all work from the spool directory is complete,
at which point an H message will be sent. The SLA VE will reply with SY, SN, R Y, RN, HY,
HN, X Y, XN, corresponding to yes or no for each request.

- 7 -

The send and receive replies are based on permtsswn to access the requested file/directory
using the USERFILE and read/write permissions of the file/directory. After each file is copied
into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message C Y will be sent if the file has successfully been moved from
the temporary spool file to the actual destination. Otherwise, a CN message is sent. (In the
case of CN, the transferred file will be in the spool directory with a name beginning with
"TM'.) The requests and results are logged on both systems.
The hangup response is determined by the SLA VE program by a work scan of the spool direc
tory. If work for the remote system exists in the SLA VE's spool directory, an HN message is
sent and the programs switch roles. If no work exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLA VE and the proto
cols are turned off. Each program sends a final "00" message to the other. The original
SLA VE program will clean up and terminate. The MASTER will proceed to call other systems
and process work as long as possible or terminate if a -s option was specified.

4. Uuxqt - Uucp Command Execution

The uuxqt program is used to execute execute .files generated by uux. The uuxqt program may be
started by either the uucico or uux programs. The program scans the spool directory for execute
.files (prefix "X.") . Each one is checked to see if all the required files are available and if so,
the command line or send line is executed.
The execute .file is described in the "Uux" section above.

Command Execution

The execution is accomplished by executing a sh -c of the command line after appropriate
standard input and stand�rd output have been opened. If a standard output is specified, the
program will create a send command or copy the output file as appropriate.

5 . Uulog - Uucp Log Inquiry

The uucp programs create individual log files for each program invocation. Periodically, uulog
may be executed to prepend these files to the system logfile. This method of logging was
chosen to minimize file locking of the logfile during program execution.
The uulog program merges the individual log files and outputs specified log entries. The output
request is specified by the use of the following options:

- ssys Print entries where sys is the remote system name;
- uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null sys or user means all sys
tem names or users respectively.

6. Uuclean - Uucp Spool Directory Cleanup

This program is typically started by the daemon, once a day. Its function is to remove files
from the spool directory which are more than 3 days old. These are usually files for work
which can not be completed.

The options available are:
- ddir The directory to be scanned is dir.

- m Send· mail to the owner of each file being removed. (Note that most files put
into the spool directory will be owned by the owner of the uucp programs since
the setuid bit will be set on these programs. The mail will therefore most
often go to the owner of the uucp programs.)

- 8 -

- nhours Change the aging time from 72 hours to hours hours.
- ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be

specified.)
,

- x num This is the level of debugging output desired.

7 . Security

The uucp system, left unrestricted, will let any outside user execute any com
mands and copy in/out any file which is readable/writable by the uucp login
user. It is up to the individual sites to be aware of this and apply the protec
tions that they feel are necessary.

There are several security features available aside from the normal file mode protections.
These must be set up by the installer of the uucp system.
- The login for uucp does not get a standard shell. Instead, the uucico program is started.

Therefore, the only work that can be done is through uucico.

A path check is done on file names that are to be sent or received. The USERFILE supplies
the information for these checks. The USERF/LE can also be set up to require call-back for
certain- login-ids. (See the "Files required for execution" section· for the file description.)
A conversation sequence count can be set up so that the called system can be more
confident that the caller is who he says he is.

- The uuxqt program comes with a list of commands that it will execute. A "PATH" shell
statement is prepended to the command line as specifed in the uuxqt program. The installer
may modify the list or remove the restrictions as desired.

- The L.sys file should be owned by uucp and have mode 0400 to protect the phone numbers
and login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be also
owned by uucp and have the setuid bit set.)

8. Uucp Installation

There are several source modifications that may be required before the system programs are
compiled. These relate to the directories used during compilation, the directories used during
execution, and the local uucp system-name.

The four directories are:
lib (/usr/src/cmd/uucp) This directory contains the source files for generating

the uucp system.
program Uusr/lib/uucp) This is the directory used for the executable system pro

grams and the system files.
spool
xqtdir

Uusr/spool/uucp) This is the spool directory used during uucp execution.
Uusr/spoolluucp/ .XQTDIR) This directory is used during execution of exe
cute ./iles.

The names given in parentheses above are the default values for the directories. The italicized
named lib, program, xqtdir, and spool will be used in the following text to represent the appropri
ate directory names.
There are two files which may require modification, the make./ile file and the uucp. h file. The
following paragraphs describe the modifications. The modes of spool and xqtdir should be made
"0777".

- 9 -

Uucp.h modification

Change the program and the spool names from the default values to the directory names to be
used on the local system using global edit commands.
Change the dtdine value for M YNAME to be the local uucp system-name.

makefile modification

There are several make variable definitions which may need modification.
INSDIR This is the program directory (e.g. INSDIR = /usr/lib/uucp) . This parameter is

used if "make cp" is used after the programs are compiled.
IOCTL

PKON

This is required to be set if an appropriate ioctl interface subroutine does not
exist in the standard "C" library� the statement "IOCTL = ioctl.o" is required
in this case.
The statement "PKON= pkon.o" is required if the packet driver is not in the
kernel.

Compile the system The command

make
will compile the entire system. The command

make cp
will copy the commands -to the to the appropriate directories.
The programs uucp, uux, and uulog should be put in "/usr/bin". The programs uuxqt, uucico,
and uuclean should be put in the program directory.

Files required for execution

There are four files which are required for execution, all of which should reside in the program
directory. The field separator for all files is a space unless otherwise specified.

L-devices

This file contains entries for the call-unit devices and hardwired connections which are to be
used by uucp. The special device files are assumed to be in the /dev directory. The format for
each entry is

line call-unit speed
where;

line
call-unit

speed
The line

is the device for the line (e.g. culO) ,
is the automatic call unit associated with line (e.g. cuaO) , (Hardwired lines
have a number "0" in this field.) ,
is the line speed.

culO cuaO 300
would be set up for a system which had device culO wired to a call-unit cuaO for use at 300
baud.

L-dialcodes

This file contains entries wlth location abbreviations used in the L.sys file (e.g. py, mh, boston) .
The entry format is

- 1 0 -

abb dial-seq
where;

is the abbreviation, abb
dial-seq

The line
is the dial sequence to call that location.

py 1 65 -
would be set up so that entry py7777 would send 1 65 - 7777 to the dial-unit.

LOGIN/SYSTEM NAMES

It is assumed that the login name used by a remote computer to call into a local computer is not
. the same as the login name of a normal user of that local machine. However, several remote
computers may employ the same login name.
Each computer is given a unique system name which is transmitted at the start of each call.
This name identifies the calling machine to the called machine.

USER FILE

This file contains user accessibility information. It specifies four types of constraint;
[1] which files can be accessed by a normal user of the local machine,
[2] which files can be accessed from a remote computer,
[3] which login name is used by a particular remote computer,
[4] whether a remote computer should be called back in order to confirm its identity . .

Each line in the file has the following format
login,sys I c I path-name I path-name I . . .

where;
login is the login name for a user or the remote computer,
sys is the system name for a remote computer,
c is the optional call-hack required flag,
path-name is a path-name prefix that is acceptable for user.

The constraints are implemented as follows.
[1] When the progra� is obeying a command stored on the local machine, MASTER

mode, the path-names allowed are those given for the first line in the USERFILE
that has a login name that matches the login name of the user who entered the com
mand. If no such line is found, the first line with a nul/ login name is used.

[2] When the program is responding to a command from a remote machine, SLA VE
mode, the path-names allowed are those given for the first line in the file that has
the system name that matches the system name of the remote machine. If no such
line is found, the first one with a null system name is used.

[3] When a remote computer logs in, the login name that it uses must appear in the
USERFILE. There may be several lines with the same login name but one of them
must either have the name of the remote system or must contain a null system
name.

[4] If the line matched in ([3]) contains a "c", the remote machine is called back
before any transactions take place.

The line

• 1 1 •

u,m /usr/xyz
allows machine m to login with name u and request the transfer of files whose names start with
"/usr/xyz".
The line

dan, /usr/dan
allows the ordinary user dan to issue commands for files whose name starts with "/usr/dan".
The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u, but if its system name is not m, it can only
ask to transfer files whose names start with "/usr/spool".
The lines

root, I
, /usr

allows any user to transfer files beginning with "/usr" but the user with login root can transfer
any file.

L .sys
Each entry in this file represents one system which can be called by the local uucp programs.
The fields are described below.

system name

The name of the remote system.

time

This is a string which indicates the days-of-week and times-of-day when the system should
·be called (e.g. MoTuTh0800- 1 730) .
The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

or it may be Wk for any week-day or Any for any day.
The titne should be a range of times (e.g. 0800 - 1230) . If no time portion is specified,
any time of day is assumed to be ok for the call.

device

This is either A CU or the hardwired device to be used for the call. For the hardwired
case, the last part of the special file name is used (e.g. ttyO) .

speed

This is the line speed for the call (e.g. 300).

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric part.
The abbreviation is one which appears in the L-dialcodes file (e.g. mh5900, bos-
ton995 - 9980) . ·

For the hardwired devices, this field contains the same string as used for the device field.

A
'01&V

- 1 2 -

login

The login information is given as a series of fields and subfields in the format
expect send (expect send I . . .

where; expect is the string expected to be read and send is the string to be sent when the
expect string is received.
The expect field may be made up of subfields of the form

expect! - send- expectl . . .
where the send i s sent if the prior expect i s not successfully read and the expect following
the send is the next expected string.
There are two special names available to be sent during the login sequence. The string
EOT will send an EOT character and the string BREAK will try to send a BREAK charac
ter. (The BREA K character is simulated using line speed changes and null characters and
may not work on all devices and/or systems.)

A typical entry in the L.sys file would be
sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm looks at the last part of the string as illustrated in the password field.

9. Administration

This section indicates some events and files which must be administered for the uucp system.
Some administration can be accomplished by shell .!iles which can be initiated by crontab entries.
Others will require manual intervention. Some sample shell .!iles are given toward the end of
this section.

SQFILE - sequence check file

This file is set up in the program directory and contains an entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system
name of the remote system. The first conversation will add two items to the line, the conversa
tion count, and the date/time of the most resent conversation. These items will be updated
with each conversation. I f a sequence check fails, the entry will have to be adjusted.

TM - temporary data files

These files are created in the spool directory while files are being copied from a remote
machine. Their names have the form

TM.pid.ddd
where pid is a process-id and ddd is a sequential three digit number starting at zero for each
invocation of uucico and incremented for each file received.

After the entire remote file is received, the TM file is moved/copied to the requested destina
tion. If processing is abnormally terminated or the move/copy fails, the file will remain in the
spool directory.
The leftover files should be periodically removed; the uuclean program is useful in this regard.
The command

uuclean - pTM
will remove all TM files older than three days.

- 1 3 -

LOG - log entry files

During execution of programs, individual LOG files are created in the spool directory with infor
mation about queued requests, calls to remote systems, execution of uux commands and file
copy results. These files should be combined into the LOGFILE by using the uulog program.
This program will put the new LOG files at the beginning of the existing LOGFILE. The com
mand

" uulog
will accomplish the merge. Options are available to print some or all the log entries after the
files are merged. The LOGFILE should be removed periodically since it is copied each time
new LOG entries are put into the file.
The LOG files are created initially with mode 0222. If the program which creates the file ter
minates normally, it changes the mode to 0666. Aborted runs r:nay leave the files with mode
0222 and the uu/og program will not read or remove them. To remove them, either use rm,
uuclean, or change the mode to 0666 and let uulog merge them with the LOGFILE.

STST - system status files

These files are created in the spool directory by the uucico program. They contain information
of failures such as login, dialup or sequence check and will contain a TALKING status when to
machines are conversing. The form of the file name is

STST .sys
where sys is the remote system name.
For ordinary failures (dialup, login)_, the file will prevent repeated tries for about one hour. For
sequence check failures, the file must be removed before any future attempts to converse with
that remote system.
If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file
must be removed before a conversation is attempted.

LCK - lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each system
conversing. This prevents duplicate conversations and multiple attempts to use the same dev
ices. The form of the lock file name is

LCK . . str
where str is either a device or system name.. The files may be left in the spool directory if runs
abort. They will be ignored (reused) after a time of about 24 hours. When runs abort and calls
are desired before the time limit, the lock files should be removed.

Shell Files

The uucp program will spool work and attempt to start the uucico program, but the starting of
uucico will sometimes fail. (No devices available, login failures etc.) . Therefore, the uucico
program should be periodically started. The command to start uucico can be put in a "shell"
file with a command to merge LOG files and started by a crontab entry on an hourly basis. The
file could contain the commands

program/uulog
program/uucico - r l

Note that the " - r l " option is required to start the uucico program i n MASTER mode.
Another shell file may be set up on a daily basis to remove TM, ST and LCK files and C. or D.
files for work which can not be accomplished for reasons like bad phone number, login changes
etc. A shell file containing commands like

- 1 4 -

program/uuclean - pTM - pC. - pD.
programluuclean - pST - pLCK - n 1 2

can be used. Note the " - n12" option causes the ST and LCK files older than 1 2 hours to be
deleted. The absence of the " - n" option will use a three day time limit.
A daily or weekly shell should also be created to remove or save old LOGFILEs. A shell like

cp spooVLOGFILE spooVo.LOGFILE
rm spooVLOGFILE

can be used.

Login Entry

One or more logins should be set up for uucp. Each of the "/etc/passwd" entries should have
the "program/uucico" as the shell to be executed. The login directory is not used, but if the
system has a special directory for use by the users for sending or receiving file, it should as the
login entry. The various logins are used in conjunction with the USERFILE to restrict file
access. Specifying the shell argument limits the login to the use of uucp (uucico) only.

File Modes

It is suggested that the owner and file modes of various programs and files be set as follows.
The programs uucp, uux, uucico and uuxqt should be owned by the uucp login with the "setuid"
bit set and only execute, permissions (e.g. mode 041 1 1) . This will prevent outsiders from
modifying the programs to get at a standard shell for the uucp logins.
The L.sys, SQF!LE and the USER FILE which are put in the program directory should be owned
by the uucp login and set with mode 0400.

On the Security of UNIX

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Recently there has been much interest in the security aspects of operating systems and
software. At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of
security which can be provided under the UNIXt system and offers a number of hints on how to
improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense, in
mind� this fact alone guarantees a vast number of holes. (Actually the same statement can be
made with respect to most systems.) The area of security in which UNIX is theoret-ic�lly weakest
is in protecting against crashing or at least crippling the operation of the system. The problem
here is not mainly in uncritical acceptance of bad parameters to system calls- there may be
bugs in this area, but none are known- but rather in lack of checks for excessive consumption
of resources. Most notably, there is no limit on the amount of disk storage used, either ih total.
space allocated or in the number of files or directories. Here is a particularly ghastly shell
sequence guaranteed to stop the system:

while : ; do
mkdir x
cd x

done
Either a panic will occur because all the i-nodes on the device are used up, or all the disk
blocks will be consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number
of processes simultaneously, so unless users are in collusion it is unlikely that any one can stop
the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few
resources available for others. Also, if many large jobs are run simultaneously, swap space may
run out, causing a panic.

It should 'be evident that excessive consumption of disk space, files, swap space, and
processes can easily occur accidentally in malfunctioning programs as well as at command level.
In fact UNIX is essentially defenseless against this kind of abuse, nor is there any easy fix. The
best that can be said is that it is generally fairly easy to detect what has happened when disaster
strikes, to identify the user responsible, and take appropriate action. In practice, we have found
that difficulties in this area are rather rare, but we have not been faced with malicious users,
and enjoy a fairly generous supply of resources which have served to cushion us against
accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unau
thorized perusal and destruction. Here the degree of security seems (almost) adequate theoret
ically, and the problems lie more in the necessity for care in the ·actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together with a
user identification number and a user-group identification number (UID and GID) . Nine of

tUN IX is a Trademark of Bell Laboratories.

- 2 -

the protection bits are used to specify independently permission to read, to write, and to exe
cute the file to the user himself, to members of the user's group, and to all other users. Each
process generated by or for a user has associated with it an effective UID and a real UID, and
an effective and real GID. When an attempt is made to access the file for reading, writing, or
execution, the user process's effective UID is compared against the file's UID; if a match is
obtained, access is granted provided the read, write, or execute bit respectively for the user
himself is present. If the UID for the file and for the process fail to match, but the GID's do
match, the group bits are used; if the GID's do not match, the bits for other users are tested.
The last two bits of each file's protection information, called the set-UID and set-GID bits, are
used only when the file is executed as a program. If, in this case, the set-UID bit is on for the
file, the effective UID for the process is changed to the UID associated with the file; the change
persists until the process terminates or until the UID changed again by another execution of a
set-UID file. Similarly the effective group ID of a process is changed to the GID associated
with a file when that file is executed and has the set-GID bit set. The real UID and GID of a
process do not change when any file is executed, but only as the result of a privileged system
call.

The basic notion of the set-UID and set-GID bits is that one may write a program which
is executable by others and which maintains files accessible to others only by that program.
The classical example is the game-playing program which maintains records of the scores of its
players. The program itself has to read and write the score file, but no one but the game's
sponsor can be allowed unrestricted access to the file lest they manipulate the game to their
own advantage. The solution is to turn on the set-UID bit of the game program. When, and
only when, it is invoked by players of the game, it may update the score file but ordinary pro
grams executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since
executing a directory as a program is a meaningless operation, the execute-permission bit, for
directories, is taken instead to mean permission to search the directory for a given file during
the scanning of a path name; thus if a directory has execute permission but no read permission
for a given user, he may access files with known names in the directory, but may not read (list)
the entire contents of the directory. Write permission on a directory is interpreted to mean that
the user may create and delete files in that directory; it is impossible for any user to write
directly into any directory.

Another, and from the point of view of security, much more serious special case is that
there is a "super user" who is able to read any file and write any non-directory. The super
user is also able to change the protection mode and the owner UID and GID of any file and to
invoke privileged system calls. It must be recognized that the mere notion of a super-user is a
theoretical, and usually practical, blemish on any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories
have the proper protection modes. Traditionally, UNIX software has been exceedingly permis
sive in this regard; essentially all commands create files readable and writable by everyone. In
the current version, this policy may be easily adjusted to suit the needs of the installation or the
individual user. Associated with each process and its descendants is a mask, which is in effect
and -ed with the mode of every file and directory created by that process. In this way, users
can arrange that, by default, all their files are no more accessible than they wish. The standard
mask, set by login, allows all permissions to the user himself and to his group, but disallows
writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to
make one's files inaccessible to others. The lack of sufficiency could follow from the existence
of set-UID programs created by the user and the possibility of total breach of system security in
one of the ways discussed below (or one of the ways not discussed below) . For greater protec
tion, an encryption scheme is available. Since the editor is able to create encrypted documents,
and the crypt command can be used to pipe such documents into the other text-processing pro
grams, the length of time during which cleartext versions need be available is strictly limited.

- 3 -

The encryption scheme used is not one of the strongest known, but it is judged adequate, in
the sense that cryptanalysis is likely to require considerably more effort than more direct
methods of reading the encrypted files. For example, a user who stores data that he regards as
truly secret should be aware that he is implicitly trusting the system administrator not to install
a version of the crypt command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most
demanding user to place the correct protection mode on the files under their control. In partic
ular, it is necessary that special files be protected from writing, and probably reading, by ordi
nary users when they store sensitive files belonging to other users. It is easy to write programs
that examine and change files by accessing the device on which the files live.

On the issue of password security, UNIX is probably better than most systems. Passwords
are stored in an encrypted form which, in the absence of serious attention from specialists. in
the field, appears reasonably secure, provided its limitations are understood. In the current ver
sion, it is based on a slightly defective version of the Federal DES; it is purposely defective so
that easily-available hardware is useless for attempts at exhaustive key-search. Since both the
encryption algorithm and the encrypted passwords are available, exhaustive enumeration of
potential passwords is still feasible up to a point. We have observed that users choose pass
words that are easy to guess: they ar� short, or from a limited alphabet, or in a dictionary.
Passwords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For
example: write a program which types out "login: " on the typewriter and copies whatever is
typed to a file of your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained.
The first thing to keep in mind is that a writable set-UID file can have another program copied
onto it. For example, if the super-user (su) command is writable, anyone can copy the shell
onto it and get a password-free version of su. A more subtle problem can come from set-UID
programs which are not sufficiently careful of what is fed into them. To take an obsolete exam
ple, the previous version of the mail command was set-UID and owned by the super-user.
This version sent mail to the recipient's own directory. The notion was that one should be able
to send mail to anyone even if they want to protect their directories from writing. The trouble
was that mail was rather dumb: anyone could mail someone else's private file to himself. Much
more serious is the following scenario: make a file with a line like one in the password file
which allows one to log in as the super-user. Then make a link named ".mail" to the password
file in some writable directory on the same device as the password file (say /tmp) . Finally mail
the bogus login line to /tmp/ .mail; You can then login as the super-user, clean up the incrim
inating evidence, and have your will.

The fact that users can mount their own disks and t pes as file systems can be another
way of gaining super-user status. Once a disk pack is mounted, the system be·Jieves what is on
it. Thus one can take a blank disk pack, put on it anything desired, and mount it. There are
obvious and unfortunate consequences. For example: a mounted disk with garbage on it will
crash the system; one of the files on the mounted disk can easily be a password-free version of
su; other files can be unprotected entries for special files. The only easy fix for this problem is
to forbid the use of mount to unprivileged users. A partial solution, not so restrictive, would
be to have the mount command examine the special file for bad data, set-UID programs owned
by others, and accessible special files, and balk at unprivileged invokers.

Password Security: A Case History

Robert Morris

Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRA CT

This paper describes the history of the design of the password security
scheme on a remotely accessed time-sharing system. The present design was
the result of countering observed attempts to penetrate the system. The result
is a compromise between extreme security and ease of use.

April 3, 1 978

INTRODUCTION

Password Security: A Case History

Robert Morris

Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

Password security on the UNIXt time-sharing system [1] is provided by a collection of pro
grams whose elaborate and strange design is the outgrowth of many years of experience with
earlier versions. To help develop a secure system, we have had a continuing competition to
devise new ways to attack the security of the system (the bad guy) and, at the same time, to
devise new techniques to resist the new attacks (the good guy) . This competition has been in
the same vein as the competition of long standing between manufacturers of armor plate and
those of armor-piercing shells. For this reason, the description that follows will trace the his- .
tory of the password system rather thim simply presenting the program in its current state. · In
this way, the reasons for ' the design will be made clearer, as the' design cannot be understood
without also understanding the potential attacks.

An underlying goal has · been to provide password security at minimal inconvenience to
the users of the system. For example, those who want to run a completely open system
without passwords, or to have passwords only at the option of the individual users, are able to
do so, while those who reqUire all of their users to have passwords gain a high degree of secu
rity against penetration of the system by unauthorized users.

The password system must be able not only to prevent any access to the system by unau
thorized users (i.e. prevent them from logging in at all) , but it must also prevent users who are
already logged in from doing things that they are not authorized to do. The so called "super
user" password, for example, is especially critical because the super-user has all sorts of per
missions and has essentially unlimited access to all system resources.

Password security is of course only one component of overall system security, but it is an
ess�ntial component. Experience has shown that attempts to penetrate remote-access systems
have been astonishingly sophisticated. · '

� ' (.
Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are

threats at the remote terminal, along the communications link, as well as at the computer itself.
A;lthough the security ·�r � pass�ord t?ncryption algorithm is an interesting intellectual and
mathematical problem, it is only one_ tihy facet of a very large problem. In practice, physical
securi�y of tJle computer, conirminications security of the communications link, and physical
control of, the computer itself loom as far more important issues. Perhaps most important of all
is ,co'ritrol over the actions of ex-employees, since they are not under any direct control and
t,hey ·may_ have iri'timate knowledge about the system, its resources, and methods of access.
Good system security involves realistic evaluation of the risks not only of deliberate attacks but
also of casual unauthorized access and accidental disclosure.

tUNIX is a Trademark of Bell Laboratories.

4IIIr

- 2 -

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual
passwords of all the users, and for that reason the password file had to be heavily protected
against being either read or written. Although historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory for s�veral reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protec
tion can occur when the password file is being edited or otherwise modified. There is no way to
prevent the making of copies by privileged users. Experience with several earlier remote-access
systems showed that such lapses occur with frightening frequency. Perhaps the most memor
able such occasion occurred in the early 60's when a system administrator on the CTSS system
at MIT was editing the password file and another system administrator was editing the daily
message that is printed on everyone's terminal on login. Due to a software design error, the
temporary editor files of the two users were interchanged and thus, ' for a time, the password file
was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone's password must be changed,
usually simultaneously, at a considerable administrative cost This is not a great matter, but far
more serious is the high probability of such lapses going unnoticed by the system administra
tors.

Sec4rity against unauthorized disclosure of the passwords was, in the last analysis, impos
sible with this system because, for example, if the contents of the file system are put on to
magnetic tape for backup, as �l!_ey must be, then anyone who has physical access to the tape can
read anything on it with no restriction. ,

Many programs · must get information of various kinds about the users of the, syst�m, and
these programs in general should have no �pecial permiss.ion to read the password file . . T�e
information which should have been in the password .file actually was distributed (or repli�ated)
into a number of files, all of which had to be updated whenever a user was added to or droppep
from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and
it is not difficult to decide that this can be done by encrypting each user's password, putting
only the encrypted form in the password file, and throwing away his original password (the one
that he typed in) . When the user later tries to log in to the system, the password that he types
is encrypted and compared with the encrypted v�r�ion in the password file. If the two match,
his login attempt is accepted. Such a scheme was first described in� [3, p.9 lff.1. It also s�emed
advisable to devise a system in which neither the password file nor the password program itself
needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find . a means of encryption : that . W�S
very difficult to invert, even when the encryption program is available. Most of the standard
encryption methods used (in the past) for encryption of messag�� are ra,the� easy to invert. ' A
convenient and rather good encryption program happened' to �xist on the system at the time; it
simulated the M-209 cipher machine [4] used by the U.S. Army ' during World 'war Il. · ·It
turned out that the M-209 program was usable, but with � · given 'key, the ciphers prod�c�d by'
this program are trivial to invert. It is a much more difficult m�tter to . find out th,� key given
the cleartext input and the enciphered output of the program. Therefore, the password ·was
used not as the text to be encrypted but as the key, and a constant was encrypted using this
key. The encrypted result was entered into the password file.

- 3 -

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and
the complete password file. Suppose also that he has substantial computing capacity at his
disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a gen
eral method of inverting the encryption algorithm. Very possibly this can be done, but few suc
cessful results have come to light, despite substantial efforts extending over a period of more
than five years. The results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one
succeeds; this is a general cryptanalytic approach called key search. Human beings being what

· they are� there is a strong tendency for people to choose relatively short and simple passwords
that they can remember. Given free choice, most people will choose their passwords from a
restricted character set (e.g. all lower-case letters) , and will often choose words or names. This
human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a
potential password and to check the result against an ent:-y in the password file. The running
time to encrypt one trial password and check the result turned out to be approximately 1 .25
milliseconds on a PDP- 1 1 /70 when the encryption algorithm was recoded for maximum speed.
It is takes essentially no more time to test the encrypted trial password against all the passwords
in an entire password file, or for that matter, against any collect;on of encrypted passwords,
perhaps collect_ed from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters, the
number of such passwords is 2611 • If we suppose that the password consists of printable charac
ters only, then the number of possible passwords is somewhat less than 95 " . (The · standard
system "character erase" and "line kitr ' characters are, for example, not prime candidates.)
We can immediately estimate the running time of a program that will test every password of a
given length with all of its characters chosen from some set of characters. The following table
gives estimates of the running time required on a PDP-1 1 170 to test all possible character
strings of length n chosen from various sets of characters: namely, all lower-case letters, all
lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and
finally all 1 28 ASCII characters.

26 lower-case 36 lower-case letters · 62 alphanumeric 95 printable all 1 28 ASCII
n letters and digits ·characters charact�rs characters
1 30 msec. 40 msec. 80 msec. 1 20 msec. 1 60 msec.
2 800 msec. 2 sec. 5 sec. 1 1 sec. 20 sec.
3 22 sec. · 58 sec. 5 min. 17 min. 43 min.
4 10 min. - 35 miri. 5 hrs. 23 llfS. 93 hrs.
5 4 hrs. 2 1 hrs. 3 1 8 hrs.
6 107 hrs.

One has to conclude that it is no great matte; f'Jr someone with acc:ess to a PDP- 1 1 to test all
lower-case alphabetic strings up to length five and, given access to the machine for, say, several
weekends, to test all such strings up to six characters in length. By using such a program
agaiqst a .collection of actual encrypted passwords, a substantial fraction of all the passwords will
be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to
use a list of names. For ·example, a large commercial dictionary contains typicallly about
250,000 words; these words can be checked in about five minutes. Again, a noticeable fraction
of any collection of passwords will be found. Improvements and extensions will be (and have
been) found by a determined bad guy. Some "good" things to try are:

- 4 -

The dictionary with the words spelled backwards.
A list of first names (best obtained from some mailing list) . Last names, street names,
and city names also work well.
The above with initial upper-case letters.
All valid license plate numbers in your state. (This takes about five hours in New Jer
sey.)
Room numbers, social security numbers, telephone numbers, and the like.
The authors have conducted experiments to try to determine typical users' habits in the

choice of passwords when no constraint is put on their choice. The results were disappointing,
except to the bad guy. In a collection of 3 ,289 passwords gathered from many users over a
long period of time;

·

1 5 were a single ASCII character;
72 were strings of two ASCII characters;
464 were strings of three ASCII characters;
477 were string of four alphamerics;
706 were five letters, all upper�case or all lower-case�
605 were six letters, all lower-case.

. , . , ·

'l '

An additional 492 passwords appeared in various available dictionaries, name lists, and .the like.
A total of 2 ,83 1 , or 86% of this sample of passwords fell int0 :ane of these classes.

There was, of course, considerable overlap between the dictionary results and the charac
ter string searches. The dictionary search alone, which requited only five minutes ,to run, pro-
duced about one third of the passwords. � · .� 1 •

Users could be urged (or forced) to use either longer 'passwords or passwords chosen (rom
a larger character set, or the system could itself choose passwords for the users.

AN ANECDOTE l . '

An entertaining and instructive example is the C}.ttempt made at one installation to force
users to use les� predictable passwords. The users did not choose their own passwords; the sys
tem supplied them. The supplied passwords were eight characters long and were taken from
the character set consisting of lower-case letters and digits. They were generated by a pseudo
random number generator with only 2 1 5 s-tarting values. The time required to search (again on
a PDP- l l /70) through all character strings 9f length 8 from a 36-character alph�bet is 1 1 2
years.

Unfortunately, only .. 2 1 5 of them need be looked at, because that is the numbe� of possible
outputs of the random number generator. The bad guy did, in. fact, generate and .test each of .
these strings and found every one .of the system-generated passwords using a total of only about .
one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH .

1. Slower Encryption · . . , ', '

Obviously, the first algorithm used was far too fast. 'The announcement of the DES,· 1
encryption algorithm [2] by the National Bureau of Standards was timely and fortunate.' The '
DES is, by design, hard to invert, but equally valuable is the fact that it is extremely slow· when
implemented in software. The DES was implemented and used in the following way: The first
ei@ht characters of the user's password are used as a key for the DES; then the algorithm i� .

lin ·if}J used to encrypt a constant. Although this constant is zero at the moment, it is easily accessible
and can be made installation-dependent. Then the DES algorithm is iterated 25 times and the
resulting 64 bits are repacked to become a string of 1 1 printable characters.

- 5 -

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure
passwords. If the user enters an alphabetic password (all 1upper-case or all lower-case) shorter
than six characters, or ·a password from a larger character set shorter than five characters, then
the program asks him to enter a longer password. This further reduces the efficacy of key
search.

These improvements make it exceedingly difficult to find any individual password. The
user is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he
is not prevented from using his spouse's name if he wants to.

3 . . Salted Passwords

· ' The' key search' 'h�chnique is Still likely to turn lip a few ·passwords when it is used on a
hirge collection of passwords, ancl it 'seemed wise to make this task as difficuit as possible. To
this end, wften a ' :password is fii-si 'enteted, the password program obtains a 1 2-bit random
number (by reading the real-time clock) and appends this to 1the password typed in by the user.
The concatenated .. str.ing is encrypted anti both the 1 2-bit ·random quantity (called the salt) and
the '64-b!t result-of the encr-yption are - entered into the password file ..

When tile i.iser latt('r logs in t<)\'the system, the 1 2-blr quantity is extracted from the pass
word file and 'appended to the typed password. The encrypted 're'sult is required, as before, to
be the same as the�rertiai'ning 64 bits in the password file. This .modification does nol increase
the task of fincti·ng any. individual password; starting from scratcb, but now the work of testing a
givert1 character !String against a lar:ge collection of encrypted passwords has been multiplied by
4096 (2 12) . The reason Jfor this is' that there are 4096 encrypted versions of each password and
one of. rhetfl has been picked more or l'ess .at random by the system\'

With this modification, it is·:Tlkely that' the bad guy can spend days of computer time try
ing to find a password on a system with hundreds of passwords, and find none at all. More
important is the fact that it becomes impractical to prepare an encrypted dictionary in advance.
Such an encrypted dictionary cou:ld be used· to crack new· passwords in milliseconds when they
appear.

There is a (not inadvertent) side effect or this modification. : ·ft becomes nearly impossible
to find out whether a person with passwords on two or more sy,sterhs has used the same pass
word on all of. them, unless you,alre�dy know tt.lat.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very
fast. The use of such a chip speeds up the process of password hunting by three orders of mag
nitude. To avert this possibility, one of the internal tables of the DES algorithm (in particular,
the so-called E-table) is changed in a way that depends on the 1 2-bit random number. The E
table is inseparably wired into the DES chip, so that the commercial chip cannot be used.
Obviously, the bad guy could have his own chip designed and built, but the cost would be
unthinkable.

5. A Subtle Point

To login successfully on the UNIX system, it is necessary after dialing in to type a valid
user name, and then the correct password for that user name. It is poor design to write the
login command in such a way that it tells an interloper when he has typed in a invalid user
name. The response to an invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done onl)t
if the user name was valid, because otherwise there was no encrypted password to compare with
the supplied password. The result was that the response was delayed by about one-half second
if the name was valid, but was immediate if invalid. The bad guy could find out whether a par
ticular user name was valid. The routine was modified to do the encryption in either case.

--- �--"-�--.......... -------�-----·----------------------------.. ------------

- 6 -

CONCLUSIONS

On the issue of password security, UNIX .is probably better than most systems. The use
of encrypted passwords appears reasonably secure in the absence of serious attention of experts
in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX sys
tems have instituted what is called an "external security code" that must be typed when dialing
into the system, but before logging in, If this code is changed periodically, then someone wfth.
an old password will likely be prevented from using it .

· ·

Whenever any security procedure is instituted that attempts to deny access to unauthor
ized persons, it is wise to keep a record of both successful and unsuccessful attempts ,to get at
the secured resource. Jus� �� p�t-of�hours. visitor \? a �9f!1Puter cen�er .normally mu;$t not
only identify himself, but .a r�corci is us�ally al�o. kept qf his .e!ltry.)lf.�t so, it is a wise prec:a_u
tion to make and keep a record of.all .attempts to log i.Qto a remote-access time-sharing system, ·. _: . .. •. ' i • ' ,.
and certainly all unsucce��ful attempts. .

Bad guys fall on a spectrum whose one end is someone:W,ith ·ordinary, 1access to a system
and whose goal is to find out a partiGular password (usually. that of the stu�er-uset:J and,, at .the 1
other end, someone who wishes to c.oJlect as much password informa(ion as. po.s�ible from as
many systems as possible. M;�st , o(the work reported here s7�ves to ,(r'�strate the latter

.
type;,

our experience indicates that t�e, former �ype of bad g':lr neye'r was verx. succ;e��ful. ' j '
We recognize that a time-sharing system must operate in a hostile en:vironment.c We ;did

not attempt to hide the security aspects of the operating sys.tern, rthereby playing the CJ.:lstomary
make-believe game in which wea1<nesses of: the sys�em·rare not discussed oo . matter how,.
apparent. Rather we advertised the password algorithm· :and invited attack in the belief that this
approach would minimize futu��· trouble. The approach has Be�_n successfuL

; , ,.: '. ' 1 •
References . r- ·.

· 1 l "

' !. -r

[1] Ritchie, D.M., and Thompson, K.
(July 1974) , pp. 365-375.

The UNIX Time-Sharing S¥stem. Comm. A CM l711

[2]

[3]
[4]

Proposed Federal Information Processing Data , 'Encryption Standard. Federal Register
(40FR 1 2 1 34) , March 1 7, 1975 r� , • . ,. ;

Wilkes, M . V. Time-Sharing Computer Sy�terns. American Elsevier, New York, 0 968) .
U. S. Patent Number 2,089,603 .

. '

'· •·
' j (,

J J;l

2.' I � I . ' < I

•-'
... .

• !
,;

fl � ; f • • :.: . ' '

	Vol. 1
	Vol. 2A
	Vol. 2B

