
DevelopmentS ystem

Programmer's Guide

Information in this docwnentis subject to change without notice and does not represent a
commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Co;rpotation,
The software described in this document is furnished onder a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with

\ the terms of the agreement-. It is against the law to copy this software on magnetic tape,

) dislc1 or any other mediumfor anypurposeotherthan the purchaser's personal use.

Portions © 1980, 1981, 1982, 19831 1984, 1985: 1986t 1987 Microsoft Corporation.
All rights reserved.
Portions© 1983,1984.1985� 1986, 1987The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER

- SQfTWAj!:EAND·SUBDIVISION (b) (2) FORJCTh1lTED·RIGHTS-lNTECHNICAL··
DATA,BOTHAS SETFORTHINFAR52.227-7013.

11Usdocumentwas typeset with an IMAGEN® 8/300Laser Printer.

Micros<� ft. MS... DOS, and XEN!Xare registered trademarks ofMicrosoftCorporation.

IMA GBN isareg:stered trademark oflM.A GEN Corporation.

SCO DoeumentNumber. XG-..6�2:1-87-4.0

(\
I '
�·

Contents

1 Introduction

1.1 Overview 1-1
1.2 Creating Programs 1-1
1.3 Creating andMaintainingLibraries 1-2
1.4 Maintaining Program Source Files 1-2
1.5 Creating Programs With Shell Commands 1-3
1.6 AboutThisGuide 1-3
1.7 Notationa! Conventions 1-4

:!. make: A Program Maintainer
-·

Introduction 2� 1
CreatingaMakefile 2-1
Invokingmake 2-3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

Using Pseudo-Target Names 2-5
UsingMaeros 2-5
UsingShellEnvironmentVariables 2-8
Usingthe Built-InRules 2-9
ChangingtbeBuilt-in Rules 2-10
UsingLibraries 2-12
Troubleshooting 2-13
Using make: An Example 2-14

3 SCCS: A Source Code Control System

3.1 Introduction 3-1
3.2 Basic Information 3-1
3.3 Creating and Using S-files 3-5
3.4 UsingidentificationKeywords 3-14
3.5 UsingS-file Flags 3-16
3.6 ModifyingS-fileinfonnation 3-18
3.7 Printingfroman S-file 3-21
3.8 Editing by Several Users 3-22
3.9 ProtectingS-files 3-24
3.10 Repairing sees Files 3-26
3.11 UsingOtber CommandOptions 3-28

4 lint: A C Program Checker

4.1 Introduction 4-1
4.2 Invokinglint 4-1
4.3 Options 4-2

-i-

4.4 Checking for Unused Variables and Functions 4-3
4.5 CheckingLocalVariables 4-4
4.6 Checking for Unreachable Statements 4-5
4.7 Checkingfor lnfinite Loops 4-6
4.8 Checking Function Return Values 4-6
4.9 Checkingfor UnusedReturnValues 4-7
4.10 CheckingTypes 4-7
4.11 Checking Type Casts 4-8
4.12 Checking for Nonportable Character Use 4-9
4.13 Checking for Assignment oflongs to ints 4-9
4.14 Checking for Strange Constructions 4-9
4.15 Checkingfor Use ofOlder C Syntax 4-11
4.16 Checking Pointer Alignment 4-12
4.17 Checking Expression Evaluation Order 4-12
4.18 EmbeddingDirectives 4-13
4.19 CheckingForUbrary Compatibility 4-14

5 lex: A Lexical Analyzer

5.1 Introduction 5-1
5.2 lexRegnlarExpressions 5-3
5.3 Invokinglex 5-4
5.4 SpecifyingCharacter Ciasses 5-4
5.5 Specifyingan ArbitraryCharacter 5-5
5.6 Specifying OptionalExpressions 5-5
5.7 Specifying Repeated Expressions 5-6
5.8 Specifying Alternation and Grouping 5-6
5.9 SpecifyingContextSensitivity 5-6
5.10 Specifying Expression Repetition 5-7
5.11 Specifying Definitions 5-7
5.12 SpecifyingActions 5-8
5.13 HandlingAmbignousSource Rules 5-12
5.14 SpecifyingLeft Context Sensitivity 5-15
5.15 Specifying Source Definitions 5-17
5.16 lexandyacc 5-19
5.17 Specifying Character Sets 5-23
5.18 Source Format 5-24

6 yacc: A Compiler-Compiler

6.1 Introduction 6-1
6.2 Specifications 6-4
6.3 Actions 6-6
6.4 Lexical Analysis 6-9
6.5 Howthe ParserWorks 6-11
6.6 Ambiguity and Confiicts 6-16
6.7 Precedence 6-21
6.8 Error Handling 6-23

- ii-

C:

6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

The yacc Environment 6-26
Preparing Specifications 6-27
Input Style 6-27
Left Recursion 6-28
Lexical Tie-ins 6-29
Handling Reserved Words 6-30
Simulating Error and Accept in Actions 6-30
Accessing Values in Enclo.si!lgRules· 6-30
Supporting Arbitrary Value Types 6-31
A Small Desk Calculator 6-32
yacc Input Syntax 6-35
An Advanced Example 6-38
Old Features 6-44

7 Using Signals

Introduction 7�1. . . . 7.1
7.2
7.3
7.4
7.5

Using the signal Function 7-1
Catching Several Signals 7-7
Controlling Execution With Signals 7-8
Using Signals in Multiple Processes 7-12

8 Using System Resources

8.1 Introduction 8-1
8.2 Allocating Space 8-1
8.3 LockingFiles 8-4
8.4 UsingSemaphores 8-6
8.5 UsingShared Data 8-13

A M4: A Macro Processor

Introduction A-1
Invoking m4 A-1
DefiningMacros A-2
Quoting A-3
UsingArgnments A-5

A.1
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9
A.lO
A.ll

Using Arithmetic Built-ins A -6
Manipulating Files A-7
Using System Commands A -8
UsingConditionals A-8
ManipulatingStrings A-9
Printing A-11

B XENIX System Calls

B.1 Introduction B-1
B.2 Executable File Format B-1

-iii-

B.3 Revised System Calls B-1
B.4 Version 7 Additions B-3
B.S Changesto theioct!Function B-3
B.6 PatlmameResolution B-3
B.7 Using the mount () and chown 0 Functions B-4
B.8 Super-Block Format B-4
B.9 Separate Version Libraries B-4

- iv -

Chapter l

Intro duction

1.1 Overview 1-1

1.2 CreatingPrograms 1-1

1.3 Creatingand MamtainlngLibraries 1-2

1.4 MalntainlngProgramSource Flles 1-2

- L-5-·CreatingPrograms With ShellCo=ands · 1-3

1.6 About This Guide 1-3

1.7 Notational Conventions 1-4

I
I
I �

Introduction

1.1 Overview

This guide explains how to use the XENIX Development system to create
and maintain C language and assembly language programs. The system
provides a broad spectrum of programs and commands to help you design
and develop applications and system software. These programs and com
mands enable you to create C and assembly language programs for execu
tion on the XENIX system. They also let you debug these programs, auto
mate their creation, and maintain different·versions of the programs you
develop.

The following sections introduce the programs and commands of the
XENIX Development System, and explain the steps you can take to
develop programs for the XENIX system. Most of the programs and com
mands in these introductory sections are fully explained later in this guide.
Some commands mentioned here are part of the XENIX Operating Sys
tem. These are explained in the XENIX User's Guide and XBNIX Opera
tions Guide.

1.2 Creating Programs

The C programming language can meet the needs of most programming
projects. A cdmplete description of how to write, compile, link, and run C
programs under the XENIX operating system is provided in three docu
ments: the C User's Guide, the C Language Reference, and the C Library
Reference.

You may also create assembly language programs using masm(CP), the
XENIX assembler. masm assembles source files and produces relocatable
object files that can be linked to your C language programs with ld(CP).
The ld program is the XENIX linker. It links relocatable object files
created by the C compiler or assembler to produce executable programs.
Note that the cc(CP) command automatically invokes the linker and the
assembler, so use of eithermasmor ld is optional.

You can create source. files for leltical ll!lalyzers and parsers using the pro
gram generators Iex(CP) and yacc(CP). Leltical analyzers are used in pro
grams to pick patterns out of complex input and convert these patterns into
meaningful values or tokens. Parsers arc used in programs to convert
meaningful sequences of tokens and values into actions. The lex program
is the XENIX lexical analyzer generator. It generates lexical analyzers, writ
ten in C program statements, from given specificatinn files. The yacc pro
gram is the XENIX parser generator. It generates parsers, written in C pro
gram statements, from given specification files. lex andyacc are often used
together to make complete programs.

1-1

XENlX Programmer's Guide

You can preprocess C and assembly language source files, or even lel< and
yacc source files using the m4(CP) macro processor. The m4 program per
fonns several preprocessing functions, such as converting macros to their
defined values and including the contents of files into a sou:rcefile,.

1.3 Creatingand MaintalningLibraries

You can create libraries of usefnl C and assembly language f\Ulctions and
programs using the ar and ranlib(CP) programs. ar(CP), the XENIX
archiver, can b e used to create libraries ofrelocatable object files. ranlib,
the XENIX random library generator, converts archive libraries to random
libraries and places a table of contents atthe front of each library.

The lorder(CP) command finds the ordering relation in an object hl>rary.
The lsort(CP) command topologically sorts object libraries so that depen
dencies are apparent.

1.4 Maintaining Program Source FDes

You can automate the creation of executable programs from C and assem
bly language source files and maintain your source files using the make pro
gram and the sees commands.

The make program is the XENIX program maintainer. It automates the
steps reqnlred to create aecutable programs, and provides a mechanism
for ensu:ring up-to-date programs. It is used with medium-scale program-
ming projects. · . ,

The Source Code Control (Sees) commands let you maintain different
versions Qf a single program. The commands compress all versions of a
source file into a single file containing a list of differences. These com
mands also restore compressed files to their original size and content.

Many XENIX commands let you carefully examine a program's source
files. The <lags(CP) command creates a ta!l'! file so that Cfunctions can be
quickly fo\Uld in a set of related C source files. The mkslr(CP) command
creates an error message file by aamining a C source file.

Other commands let you examine object and executable binary files. The
nm(CP) command prints the list ofsymbol names in a program. The hd(C)
command performs a hexadecim� dump of given files, printing files in.a
variety of formats, QOe of which is hexadecimal. The size(CP) command
repQr!s the size of an object file. The strings(CP) command finds and
prints readable text (strings) in an object or other binary file. The
strip(CP) command removes symbols and relocation bits from executable
files. The sum(C) command computes a checksum value for a file and a

1-2

.
i !. ' .

Introduction

count ofits blocks. It is used in looking for bad spots in a file and forverify
ing transmission of data between systems. The xstr command extracts
strings from C programs to implem eot shared strings.

1.5 Creating Programs WithShellCommands

In some cases, it is easier to write a program as a series ofXENIX shell com
mands than it is to create a C language program. Shell commands provide
much of the same control capability as the C language, and give direct
access to all the commands and programs normally available to the XENIX
user.

The csh(C) command invokes the C-shell, a XENIX command inter
preter. The C-shell interprets and executes commands taken from the
keyboard or from a command file. It has a C-like syntax which makes pro
gramming in this command language easy. It also has an aliasing facility,
and a command history mechanism.

1.6 About This Guide

This guide is intended for programmers who are familiar with the C pro
gramming language and with theXENJX system. It is organized as follows:

Chapter 1, "Introduction," introduces the XENlX software development
prQgrams provided with this package and summarizes the organization of
this guide and the conventions used.

Chapter 2, "make: A Program Maintainer," esplains howto autOmate the
development of a program or other project usingthemake program.

Chapter 3, "SCCS: A Source Code Control System," esplainshowto con
trol and maintain .all ver§io!ls Qf 'l project's source files using the sees
commands.

Chapter 4, ''lint: A C Program Checker," describes the XENIX program
checker, lint, and describes the available options.

Chapter 5, "lex: A Lelcical Analyzer," esplains how to create lelcical
analyzers using the program generator le><.

Chapter 6, "yacc: A Compiler-Compiler," explains how to create parsers
using the program generatoryacc.

Chapter 7, "Using Signals, " describes the signal functions. These func
tions let a program process signals that are normally processed by the sys
tem.

1-3

XENIX Programmer's Guide

Appendix A_, "m4: A Macro Processor," explains how to use, create and
process macros using the m4 C functions.

Appendix B, "XENiX System Cslls," explains how to create and use new
XENiX system calls.

C language programmers should read the CUser's Guide for an explanation
of how to compile and debug C language programs.

Assembly language programmers shoUld read the Macro Assembler User's
Guide for an explanation of the XENIX assembler and Chapter 4, "adb" in
the C User's Guide for an explanation of how to debug programs.

Programmers who wish to automate the compilation process of their pro
grams should read Chapter2 for an explanation of the make program. Pro
grammers who wish to organize and maintain multiple versions of their
programs should read Chapter 3 for an explanation of the Source Code
Control System (SCCS) commands.

Special project programmers who need a convenient way to produce lexi
cal analyzers and parsers should read Chapters 6 and 7 for explanations of
the lex and yacc program generators.

1.7 Notational Conventions

This guide uses a number of notational conventions to describe the syntax
ofXENiX commands:

boldface

italics

1-4

Boldface indicates a command, option, flag, or
program name to be entered as shown.

Boldface indicates the name of a library routine,
global varishle, standard type, constant, key
word, or identifier used by the C library. (To
find more information on a given library routine
consult the "Alphabetized List" in your XENiX
Reference for the manual page that describes it.)
Italics indicate a filename. This pertains to
library include filenames (i.e. stdio.h), as well
as, other filenames (i.e. letc/ttys).

Italics indicate a placeholder for a command
argument. When entering a command , a place
holder must be replaced with an appropriate
filename, number, or option.

C:

0

CAPITALS

SMALL CAPITALS

[l

" "

Introduction

Italics indicate a specific identifier, supplied for
variables and functions, when mentioned in
text.

Italics indicate user named routines. (User
named routines are followed by open and close
parentheses, ().)

Italics indicate emphasized words or phrases in
text.

Capitals indicate names of environment vari
ables (i.e. TZand PATH).

Small capitals indicate keys and key sequences
(i.e. RETURN).
Brackets indicate that the enclosed item is
9ptionaL Jf yo11 �o nqt us� the_ optionaLitem,
the program selects a default action to carry out.

Ellipses indicate that you can repeat the preced
ingitem anynumberoftimes.

Vertical ellipses indicate that a portion of a pro
gram example is omitted.

Quotation marks indicate the first use of a
technical term.

Quotation marks indicate a reference to a word
rather than a command.

1-5

c

C)

Replace this Page
with Tab Marked :

make

C hapter 2

make :

A Pro gram Maintainer

2.1 Introduction 2-1

2.2 Creating a Ma.kefile 2-1

2.3 Invoking!UJlke 2�3 · -

2.4 UsingPseudo-Target Names 2-5

2.5 Using Macros 2-5

f\
2.6 Using Shell Environment Variables 2-8 I \..../
2.7 Using theBuilt-InRules 2-9

2.8 Changingthe Built-in Rules 2-10

2.9 Using Libraries 2-12

2.10 Troubleshooting 2-13

2.11 Using make: An Example 2-14

c:

make: A Program Maintainer

2.1 Introduction

The make(CP) program provides an easy way to automate the creation of
medium to large programs. make reads commands from a user-defined
"makefile" that lists the files to be created, the commands that create
them, and the files from which they are created. When you direct make to
create a program, it verifies that each file on which the pro gram depends is
up to date, then creates the program by executingthe given commands. If a
file is not up to date, make updstes it before creating the program. make
updates a program by executing explicitly given commands, or one of the
many built-in commands.

This chapter explains how to use make to automate medium-sized pro
gramming projects. It explains how to create makefiles for each project,
and how to invoke make for creating programs and updating files. For
more details about the program, seemake(CP) in theXENIXReference .

. 2.2 Creating a Makefile

A makefile contains one or more lines of text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has
the form:

target ... : [dependent ... J [;commond .. .]

where target is the filename of the file to be updated, dependent :is the
filename of the file on which the target depends, and command is the
X!ThliX command needed to create the target file. Each dependency line
must have at least one command associated with it, even if it is only the null
command (;).

Yqu may give more than one target filename or dependent filename if
desired. Each filename must be separated from the next by at least one
space. The target filenames must be separated from the dependent
filenames by a colon (:). Filenames must be spelled as defined by the
XENIX system. Shell metacharacters, such as star (*) and question mark
(?), can also be used.

You may give a sequence of commands on the same line as the target and
dependent filenames, if you precede each command with a semicolon (;).
You can give additional commands on following lines by beginning each
line with a tab character. Commands must be given exactly as they would
appear on a shell command line. The at sign (@) may be placed in front of
a command to prevent make from displaying the command before execut
ing it. Shell commands, such as ed(C), must appear on single lines; they
mw;tnot contain thebackslash (\) and newline character combination.

2-1

XEJ\'IX Programmer's Guide

You may add a comment to a makefile by starting the comment with a
number sign (#) and ending it with a newline character. All characters
after the number sign are ignored, Comments may be place at the end of a
dependency line if des:ired. If a command contains a number sign, it must
be enclosed in double quotation marks ('').

If a dependency line is too long, you can continue it by entering a backslash
(\) and a newline character.

The maketile should be kept in the same directory as the given source tiles.
For convenience, the tilenames makefile, Makefile, s.makefile, and
s.Makefile are provided as default filenames. These names are used by
make if no explicit name is given at invocation. You may use one of these
names for your maketile, or choose one of your own. If the tilename begins
with the s. prefix, make assumes that it is an sees tile and invokes the
appropriate sees command to retrieve the last est version of the tile.

To illustrate dependency lines, consider the following example. A pro
gram named prog is made by linking three object tiles, x.o, y.o, and z.o.
These object tiles are created by compiling the C language source filesx.c,
y.c, and z.c. Furthermore, thetiles x.c andy.c contain theline:

#include "defs"

This means that prog depends on the three object files, the object files
depend on the C source tiles, and two of the source files depend on the
include file defs. Yon can represent these relationships in a makefile with
the follo;vinglines:

preg: x.o y.o z.o
cc x.o y.o z.o -o prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

In the first dependency line, progis the target file andx.o, y.o, and z.o are
its dependents. The col11Ill11Ild sequence:

cc x.o y.o z.o -o prog

on the next line tells how to create prog if it is out of date. The program is
out of date if any one of its dependents has been modified since prog was
last created.

2-2

()
I

c�

make: A Program Maintainer

The second, third, and fourth dependency Jines have the same form, with
the x.o,y.o, and z..q files as targets and x.c,y.c, z.c, and defs files as depen
dents. Each dependency line has one command sequence which defines
how to update the given target file.

2.3 Invoking make

Once you have a makefile and wish to update and modify one or more tar
get files in the file, you can invoke make qy typing its name and optional
arguments. The invocation has the form

make [option] . . . [macdef] . . . [target] ...

where optfon is a p:rogram option used to modify program operation, mac�
defis a macro definition used to give a macro a value ormean.ip.g, and target
is the filename of the file to be updated. It must correspond to one of the
target names in the makefi.le. All argumep.ts are option�l. If you give more
than one argument, you must separate them with spaces.

You can direct make to update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makefile,
Makefile, s.makefile, and s.Makefile in the current directory, and uses the
first one it finds as the makefile. For example, assume that the current
makefile contains the dependency Jines given in the last section. Then the
command

make

compares the current date of the prog program with the current date each
of the object files x.o, y.o, and z.o. It recreates prog if any changes have
been made to any object file since prog was last created. It also compares
the current dates of the object files with the dates of the four source files
x.c, y.c, z..c, or defs, and recreates the object files if the source files have
changed. It does this before recreating prog so that the recreated object
files can be used to recreateprog. If none of the source or object files have
been altered since the last time progwas created, make announces this fact
and stops. No files are changed.

You can direct make to update a given target file by giving the filename of
the target. For example,

makex.o

causes make to recompile the x.o file, if the x.c or defs files have changed
since the object file was last created. Similarly, the command

make x.oZ.o

2-3

XENIX Programmer's Guide

causes make to recompile x.o and z.o if the corresponding dependents
have been modified. make processes target names from the command line
in a leftto right order.

You can specify the name of the makefile you wish make to use by giving
the • f option in the invocation. The option has the form

-ffilename

where filename is the name of the makefile. You must supply a full path
name if the file is not in the current directory. For example, the command

make -f makeprog

reads the dependency lines of the makefile named makeprog found in the
current directory. You can direct make to read dependency lines from the
standard input by giving "·" as the filename. make reads the standard input
until the end-of-file character is encountered.

You may use the program options to modify the operation of the make pro
gram. The following list describes some of the options.

-p Prints the complete set of macro definitions and depen
dencylinesin amakefile.

-i Ignores errors returned byXENIX commands.

-k Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

-s Executes commands without displaying them.

-r Ignores the built-in rules.

-n Displays commands btit does not execute them. make even
displays lines beginning with the at sign (@).

-e Ignores any macro definitions that attempt to assign new
values to the shell's environment variables.

-t Changes the modification date of each target file without
recreating the files.

Note that make executes each command in the makefile by passing it to a
separate invocation of a shell. Because of this, care must be taken with cer
tain commands (for example, cd and shell control commands) that have
meaning only within a single shell process; the results are forgotten before
the next line is executed. If an error occurs, make normally stops the com
mand.

2-4

- �

c�

make: A Program Maintainer

2.4 UslngPsendo-TargetNames

It is often useful to Include dependency lines that have psendo-target
names, i.e., names for which no files actually exist or are produced.
Pseudo-target names allow make to perform tasks not directly connected
with the creation of a program, such as deleting old files or printing copies
of source files. For example, the following dependency line removes old
copies of the given object files when the pseudo-target name "cleanup" is
given in the invocation of make.

'

cleanup :
rm x�o y.o z.o

Since no file exists for a given pseudo-target name, the target is always
assUllled to be out of date. Thus, the associat!'d coniinand is always exe
cuted.

make also has built-in pseudo-target names that modify its operation. The
pseudo-target name " .IGNORE" <:auses make to ignoreerrorsduringexe-
cution of commands, allowing make to continue after an error. This is the
same as the · I option. (make also ignores errors for a given command if the
commlllld string begins with a hyphen (-).)
The pseudo-target name ".D EF A UL T," defines the commands to be exe
cuted either when no built-in rule or a user-defined dependency line exists
for the given target. You may give any number of commands with this
name. [f ".DEFAULT" is not used, and an undefined target is given,
make prints a message and stops.

The paeudo-target name ".PRECIOUS" prevents dependents of the
current target from being deleted when make is terminated using the
INTeRRUPT or QUIT key, and the pseudo-target name ".SILENT" has
the same effect as the· s option.

2.5 Using Macros

An important feature of a makefile is that it can contain macros. A macro
is a short name that represents a filename or command option. The mac
ros can be defined whenyouinvokemake, orin themakefileitself.

2-5

XENlX Programmer's Guide

A macro definition is a line containing a name, an e<JUal sigu (�), and a
value. The e<jUal sigu must not be preceded by a colon or a tab . The name
(string of! etters and digits) to the left of the equal sigu (1railing blanks and
tabs are stripped) is assigned the string of characters following the equal
sigu (leading blanks and tabs are stripped.) The following are valid macro
definitions:

2� xyz
ahc= -11 -ly
LIBES =

The last definition assigus ''LIBES" the null s1ring. A macro that is never
explicitly defined has the null s1ring as its value.

A macro is invoked by preceding the macro name with a dollar sigu; macro
names longer than one character must be placed in parentheses. The name
of the macro is either the single character after the dollar sigu or a name
inside. parentheses. The following are valid macro invocations.

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical.

Macros are typically used as placeholders for values that may change from
time to time. For example, the following makefile uses one macro for the
names of object files to be linked and one for the names of the librsry.

OBJECTS -x.o y.o z;o
LIBES � -Iln
prog: $(OBJECTS)

cc $(0BJECTS) $(LffiES) -o prog

lJ thismakefileis invoked with the command:

make

it will load the three object illes with the Iex(CP) library specified with the
-On option.

You may include a macro definition in a command line. A macro
definition in a command line has the same form as a macro definition in a
makeille. lJ spaces are to be used in the definition, double quotation
marks must be used to enclose the definition. Macros in a command line
override corresponding definitions found in the makefile,

2-6

make: A Program Maintainer

For example, the command:

make "LIDES�-lln-lm"

loads, and assignsthehbraryoptions -lln and·lm to "LIDES".

You can modify all or part of the value generated from a macro invocation
without changing the macro itselfbyusingthe "substitution sequence".
The sequence has the form

name :stl�[st2]

where name is the name of the macro whose value is to be modified, stl is
the character or characters to be modified, and st2 is the character or char
acters to replace the modified characters. If st2 is not given, stl is replaced
by a null character.

The substitution sequence is typically used to allow user-defined meta
characters in a makefile. For-example, suppose that " .x!' is to be used as a
metacharacter for a prefix and suppose that a makelile contains the
definition

FJLES � progl.xprog2.xprog3.x

Then the macro invocation

$(FJLES : .x-.o)

generates the value

pmgl.o pmg2.o prog3.o

The actual value of "FJLES" remains unchanged.

make has five built-in macros that can be used when writing dependency
lines. The following is a list of these macros.

$* Contains the name of the current target with the suffix
removed. Thus, if the current target is prog.o, $* contains
prog. It may be used in dependency lines that redefine the
built-in rules.

$@

$<

Contains the full pathname of the current target. It may be
used in dependency lines with user-defined target names.

Contains the filename of the dependent that is more recent
than the given target. It may be used in dependency lines
with built-in target names or the .DJ;:FAULT pseudo-target
name.

2-7

XID'.1X Programmer's Giildi!

$? Contains the filenames of the dependents that are more
recent than the given target. It may be used in dependency
lines with user-defined ta:rget names.

$% Contains the filename of a library member. It may be used
with target library names (see the section "Using Libraries"
later in this chapter). In this case, $@contains thenameof
the library and $% contains the name of the hbrarymember.

You can change the meaning of a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D descriptor contains the
name of the directory containinl(! the given file. If the file is in the current
directory, the macro contains (.). A macro with the F descriptor contains
the name of the given file with the directory name part removed. The D and
Fdeseriptor must notbeused with the$? macro.

2.6 Using Shell Environment Variables

make provides access to current values of the shell's environmentvariables
such as �'HOME", "PATH", and "LOGINH .. make automatically assigns
the value of each shell variable in yonr environment to a macro of the same
name. You can access a variable's value in the same way that you access the
value of explicitly defined macros. For example, in the following depen-·
dency line, "$(HOME)" has the same value as the user's "HOME" vari
able.

prog:
cc $(HOME)/x.o$(HOME)/y.o /usr/publz.o

make assigns the shell variable values after it assigns valnes to the built-in
macros, but before it assigns values to user-specified macros. Thus, you
can override the value of a shell variable by explicitly assigning a value to
the corresponding macro. For example, the following macro definition
causes make to ignore the current value of the "HOME" variable and use
lusrlpu/J instead.

HOME� /usr/pub

If a makefile contain macro definitions that override the cWTent values of
the shell variables, you can direct make to ignore these definitions by uaing
the· e option.

make has two shell variables, "MAKE" and "MAKEFLAGS", that
correspond to two special-purpose macros ..

The "MAKE" macro provides a way to override the · n option and execute
selected commands in a makefile� 'When "MAKE" is used in a command>

2 -8

c:

make: A Program Maintainer

make will always execute that command, even if .. n has been given in the
invocation. The variable maybe set to any value or command sequence.

The "MAKEFLAGS" macro contains one or more make options, and
can be used in invocations of make from within a makefile. You may assign
any make options to "MAKEFLAGS" except -f, - p, and - d. If you do not
assign a value to the macro, make automatically assigns the current options
to it, i.e., the options given in the current invocation.

The "MAKE" and "MAKEFLAGS" variables, together with the - n
option, are typically used to debug makefiles that generate entire software
systems. For example, in the following makefile, setting "MAKE" to
"make" and invoking this file with the -n options displays all the com
mands used to generate the programs progl, prog2, and prog3 without
actually executing them.

system : progl prog2prog3
@echo System complete.

progl : progl.c
$(MAKE)$(MAKEFLAGS) progl

prog2 : prog2.c
$(MAKE) $(MAKEFLAGS) prog2

prog3 : prog3.c
$(MAKE) $(MAKEFLAGS) prog3

2.7 Using theBuilt-JnRules

make provides a set of built-in dependency lines, called built-in rnles, that
automatically check the targets and dependents given in a makefile, and
create up-to-date versions of these files, if necessary. The built-in rules
are identical to user-defined dependency lines except that they use the
suffix of the filename as the target or dependent instead of the filename
itself. For example, make automatically assumes that all files with the
suffix. o have dependent files with the suffixes . c and . s.

When no explicit dependency line for a given file is given in a makefile,
make automatically checks the default dependents of the file. It then
forms the name of the dependents by removing the suffix of the given file
and appending the predefined dependent suffixes. If the given file is out of
date with respect to these default dependents, make searches for a built-in
rule that defines how to create an up-to-date version of the file, then exe
cutes it. There are built-in rules for the following files.

2-9

XENIX Programmer's Guide

.o Object file

.c C sourcefile

. r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C sourcegra:mmar

.yr Yacc-Ratfor source grammar

.l Lex source grammar

For example, if the .filex.o is neede,:l,.and there is anx.c in the description or
directory, it is compiled. If there is also an x.l, that grammar would be run
through.lex(CP) before compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules for creating common files from typical dependents.
Reconsider the example given in the section 2.2, ''Creating a Makefile". In
this example, the program prog depended on three object files x.o, y.o,
and z.o. These files in turn depended on the C language source files x.c,
y.c, and z.c. The files x.c and y.c, also depend on the include file, defs. ln
the original example, eacb dependency and corresponding command
sequence was explicitly given. Many of these dependency lines were
unnecessary, since the built-in rules could have been used instead. The
following is all that is needed to show the relationships between these files:

prog: x.o y.o z.o
cc x.o y.o z.o -o prog

x.o y.o: defs

ln this makefile, prog depends on three object files, and an explicit com
man,sl is given showing how to update prog. However, the second line
merely shows that two objects files depend on the include file defs. No
explicit command sequence is given on how to update them if necessary.
lnstead, inake uses the built-in rules to locate the desired C source files,
compile these files, and create the necessary object files.

2. 8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these
lines or by redefining the commands associated with the .rules. You can
display a complete list of the built-in rules and macros used in the rules by
ente�g:

make -fp - 2>/dev/null </dev/null

The rules and macros are displayed on the standard output.

2 - 10

make: A Program Maintainer

The macros of the built-in dependency lines define the names and options
of the compilers, program generators, and other programs invoked by the
built-in commands. make automatically assigns a default value to these
macros when you start the program. You can change the values by
redefining the macros in you:r makefile. For example, the following built
in rule contains three macros, "CC", "CFLAGS", and "LOADLIDES'':

.c :
$(CC) $(CFLA GS) $< $(1;-0i\...QLffiES) -o $@

You can redefme any of these macros by placing the appropriate macro
definition at the beginning of the makeflle.

You can redefine the action of a built-in rule by giving a new rule in you:r
makefile. A built-in rule has thefoUowingformat:

suffix- rule :
command

where suffix-rule is a combination of suffixes showing the relationship of
the implied target and dependent, and com:rtUind is the XENlX command
required to carry out the rule. If more than one command is needed, they
are given on separate lines.

The new rule must begin with an appropriate suffix-rule. The available
suffix- rules are:

.c .c-
.sh .sh-
.c.o .c-.o
.c-.c .s�o
.s·.o .y.o
.y·.o .l.o
.r.o .y.c
.y·.c .l.c
.c.a .c-.a
.• -.. .h-.h

A tilde () indicates an sees file. A single suffix indicate a rule that makes
an executable file from the given file. For example, the suffix rule ".c" is
for the built-in rule that creates an executable file, from a C source file. A
pair of suffixes indicates a rule that makes one file fiOm the other. For
example, ".c.o" is for the rule that creates an object file (.o) file from a
corresponding C source file (.c).

2-ll.

mlx rrvgraumtet s GUide

Any.commands in tb.e rule may use the built-in macros provided by make.
For example, the following dependency line redefines the action of the .c.o
rule:

.c.o:
cc68 $< -c $* .o

If necessary, you can also create new suffix-rules by adding a list of new
suffixes to a makefile with ".SUFFIXES". This pseudo-target name
defines the suffixes that may be used to make suffix-ru./es for the built-in
rules. The line hastheform:

.SUFFIXES: suffix ...

where suffix is a lowercase letter preceded by a dot (.). If more than one
suffix is given, you must use spaces to separate them.

The order of tb.e suffixes is signi.tlcant. Each suffix is a dependent of the
suffixes preceding it. For example, the suffix list:

.SUFFIXES: .o .c .y .l .s

causes prog.c to be a dependent of pro g. o, and prog. y to be a dependent of
pro g. c.

You can create new suffix-rules by combining dependent suffixes with the
suffix of the intended target. The dependent sufl"l:xmust appear first.

lf a " .SUFFIXES" list appears more than once in a makefile, the suffixes
are combined into a single list. If a " .SUFFIXES" is given without a list, all
su.lfixes areignored.

2.!1 Using Libraries

You can direct make to use a IDe contained in an archive library as a target
or dependent. To do this, you must explicitly name the file you wish to
access by usinga libraryname. A librarynamehasthe form:

lib(member-name)

where lib is the name of the library containing the IDe, and member-nflme is
the name of the file. For example, the library name:

lib temp. a(print.o)

refers to theobjectfileprlnt.o, in the archive library/ibtemp.a.

2-12

make: A Program Maintainer

You can create your own built-in niles for archive libraries by adding the .a
suff"!Xto the suffix list, and creatingnew suffix combinations. For example,
the combination ".c.a" may be used for a rule that defines how to create a
library member from a C source file. Note that the dependent suffix in the
new combination must be different than the suffix of the ultimate file. For
example, the combination " .c.a" can be used for a rule that creates . o files,
but not for one that creates . c files.

The most 'common use of the library naming convention is to create a
makefile that automatically maintains an archive hbrary. For example, the
following dependency lines define the commands required to create a
library, named lib, that co)ltains up to date versions of the files filel.o,
file2.o, andfile3.o.

Jib:

.c.a:

hb (filel.o) lib(file2.o) lib (file3.o)
@echo lib isnowupto date

S(CC) -c $(Cl'LAGS) $<
arrv$@$•.o
rm -u•.o

The .c. a rule shows how to redefine a built-in rule for a library. In the fol
lowing example, the built-in rule is disabled, allowing the first dependency
to create the library;

lib:

.c.a:;

lib(filel.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o�.c)
arrvhb $?
rm$?
@echo lib is now up to date

In this example, a substitution sequence is used to change the value of the
"$?" macro from the names of the object files ''filel.o", qfile2.on � and
((�!o"tQ ('filel.c"11 Hfi1e2.c", and ":file3.c".

2.10 Troubleshooting

Most difficulties in using make arise from make's specific meaning of
dependency. If the filex.c has the following line:

#include "defs"

then the object file x.o depends on deft; the source file x.c does not. (If
defs is changed, it is not necessary to do anything to the file x.c, but it is
necessary to recreate x. o.)

2 - 13

XENIX Programmer's Guide

Use the • n option to get a listing of w!llch commands make will execute,
without actually executing them. Forel!;IU)lple, the command:

make -n

prints out a listing of the commands make would normally execute.

The debugging option, • d, causes make to print out a very detailed descrip
tion of what it is doing, including the file times. The output is verbose, and
recommended only as a last resort.

If a change to a file is small (for example, adding a new definition to an
include file), the • t (touch) option can save a lot of time. Instead of con
stantly recompiling, make updates the modification times on the affected
file. Thus, the command:

make -ts

which stands for touch silently, causes the relevant files to appear up to
date.

2,11 Uslngmake:AnExample

Figure 2-1 gives an example of a makelile, used to maintain the make itself.
The code for make is spread over a number of C source files and a yacc
grammar.

make usually prints out each command before issuing it. The output
shown below results from enteringthe followingcommand:

make

in a directory containing only the source and makefile:

2-14

cc -c vers.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c :files.c
cc -c dosys.c
yacc grru:n.y
mvy.tab .c gram.c
cc -c gram.c
cc vers.o main.o ... dosys.o gram.o -o make
13188+ 3348+ 3044- 19S80b - 046174b

make: A Program Maintainer

Although none of the source files or grammars were mentioned by name in
the makefile, make found them by using its suffix rules and issued the
needed commands. 'l'he string of digits results from the size make com
man.d.

The last few targets in the makefile are useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. A zero-length file, print, is maintained to keep track of
the time of printing; tbe $? macl'o, in the command line, picks up ouly.tbe
names of the files changed since print was touched. The printed outpntcan
then be sent to a different printer, or to a file, by changing !he definition of
thePmacro.

2 - 15

XENIX Programmer's Guide

Figure 2- 1 . Makefile Contents

#Description fileforthemakecommand

#Macro definitions below
P=lpr
FILES = Makefile vers.c defs main.c doname.c misc.c files.cdosys.c\

gram.ylex.c
OBJECTS -vers.o main.o ... dosys.o gram.o
LIBES=
LINT=lint -p
CFLAGS--0

#targets: dependents
#<TAB> actions

make: $(0BJECfS)
cc $(CFLAGS) $(0BJEC'TS) $(LffiES) -o make
size make

$(0BJECfS): defs
gram.o: lex.c

cleanup:
-rm * .o gram..c
-du

install:
@slzemake /usrlbin/make
cp make /usr/bin/make ; rmmake

print: $(FILES) #printrecentlychangedfiles
pr$? I$P

test:

touch print

make -dp lgrep -vTIME>1zap
/usrlbin/make -dp jgrep -vTIME >2zap
diff lzap 2zap
nn lzap2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c grarn.c

arch:

2-16

$(LINT) dosys.c doname.cfiles.c main.c misc.c vers.c grarn.c
rmgram.c

ar uv /sys/source/s2/make.a $(FILES)

L:

Replace this Page
with Tab Marked:

s e e s

••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
" "
• •
"
"
"
"
"
, ,
"
"
"
"
"
"
"
"
"
"
"
"
"
"
, ,
"
"
"
"
"
"
" "
" "
"
"
"
"
"
"
''
"
"
"
"
"
"
"
"
"
"
"
"
''
"

/'
!

Chapter 3

\" SCCS: A Source

Code C ontrol System .

3.1 Introduction 3-1

3.2 Basic Information 3-1
3.2.1 Files andDirectories 3-1
3.2.2 Deltas and SIDs 3-2
3.2.3 Sees Working Files 3-3
3.2.4 sees Command Arguments 3-4
3.2.5 File Administrator 3-5

3.3 Creating and UsingS-files 3-5
3.3.1 Creating an S-file 3-5
3.3.2 Retrievinga File fotReading 3c6
3.3.3 Retrieving aFilefor Editing 3-7
3.3.4 Saving a NewVersionofaFile 3-8
3.3.5 Retrieving a Specific Version 3-9
3.3.6 Changingthe Release Numberofa File 3-10
3.3.7 Creating a Branch Version 3-11
3.3.8 Retrieving a Branch Version 3-11
3.3.9 RetrievingtheMostRecent Version 3-12
3.3.10 Displaying a Version 3-12
3.3.11 SavingaCopyofa NewVersion 3-13
3.3.12 DisplayingHelpfu! Information 3-13

3.4 Using identification Keywords 3-14
3.4. 1 Inserting aKeyword intoa File 3-14
3.4.2 AssigningValues to Keywords 3-15
3.4.3 FordngKeywords 3-15

3.5 Using S-file Flags 3-16
3.5.1 Setting S-fileF!ags 3-16
3.5.2 Using the i Flag 3-16 ·

3.5.3 Using the d F!ag 3-17
3.5.4 UsingthevFlag 3-17
3.5.5 RemovinganS-file Flag 3-17

3.6 ModifyingS-file Information 3-18

3.6.1 Adding Comments 3-18
3.6.2 Changing: Co=ents 3-18
3.6.3 Adding Modification Requests 3-19
3.6.4 ChangingModification Requests 3-20
3.6.5 AddingDescriptive Text 3-20

3.7 Printing from an S-file 3-21
3.7.1 Using a DataS�cification 3-21
3.7.2 Printing a Specific Version 3-22
3.7.3 PrintingLaterand Earlier Versions 3-22

3.8 EditiugbySeveral Users 3-22
3.8.1 Editing Different Versions 3-23
3.8.2 Editing a Single Version 3-23
3.8.3 Saving a Specific Version 3-23

3.9 ProtectingS-files 3-24
3.9.1 Adding a Usertothe User List 3-24
3.9.2 Removing a User from a User List 3-25
3.9.3 Setting the Floor Flag 3-25
3.9.4 SettingtheCeilingF1ag 3-25
3.9.5 Locking a Version 3-25

3.10 RepairingSCCS Files 3-26
3.10.1 CheckinganS-file 3-26
3.10.2 FAiling an S-file 3-27
3.10.3 Changing an S-file's Checksum 3-27
3.10.4 Regenerating a G-filefor Editing 3-27
3.10.5 Restoringa DamagedP-file 3-27

3.11 UsingOtherCo=and Options 3-28
3.11.1 Getting Help With SCCS Co=ands 3-28
3.11.2 Creating a File With the Standard Inp\lt 3-28
3.11.3 StartingAta SpecificRelease 3-28
3.11.4 Adding a Co=ent to the First Version 3-29
3.11.5 Suppressing Normal Olltput 3-29
3.11.6 Includingand Excluding Deltas 3-30
3.11. 7 Listing the Deltas of a Version 3-31
3.11.8 Mapping Lines to Deltas 3-31
3.11.9 NamingLines 3-31
3.11.10 Displayinga Listof Differences 3-32
3.11.11 DisplayingFileinformation 3-32
3.11.12 Removinga Delta 3-32
3.11.13 SearchingforStrings 3-33
3.11.14 ComparingSCCS Files 3-33

SCCS: A Source Code Control System

3.1 Introduction

The Source Code Control System, (Sees) is a collection of XEJ\"IX com
mands that create, maintain, and control special files called sees files.
The sees commands let you create and store multiple versions of a pro
gram or document in a single file, instead of having one file for each ver
sion. The commands let you retrieve any version you wish at any time,
make changes to this version, and save the changes as a new version of the
file, in the sees file.

The sees system is useful wherever you require a compact way to store
multiple versions of the same file. The sees system provides an easy way
to update any given version of a file and explicitly record the changes made.
The commands are typically lllled to control changes to multiple versions
of source programs, but may also be used to control multiple versions of
guides, specifications, and other documentation.

Tltis chapter explains how to make sees Jiles, how to update the Iiles con
tained in sees Jiles, and how to maintain the sees Jiles once they are
created. The following sections describe tbe basic information you need to
start using the sees commands. Later sections describe the commands in
detail.

('
"'--- 3.2 Basic lnfonnation

Tltis section provides some basic information about tbe sees system. In
particular, it describes:

- Files and directories

- Deltas and SIDs

- sees workingfiles

- sees command arguments

- File administration

3.2.1 Files andDirecteries

All sees files (also called s-files) are originally created from text Jiles con-
(taining documents or programs created by a user. The text files must have

been created using aXENIX text editor such as vi(C). Special characters in
tbe lUes are allowed onlyiftbey are also allowed b y the given editor.

3-1

XENIX Programmer's Guide

To simplify s-file storage, all logically related files (e.g., files belonging to
the same project) should be kept in the same directory. Such directories
should contain s-filcs only, and should have read and examine permission
for everyone, and write permission for the user only.

!'lote that you must not use the XENlX Ill(C) comm!ind to create multiple
copies of an s-file.

3.2.2 Deltas andSIDs
Unlike an ordinary textlile, an sees file (or s-lllefor short) contains noth
ing more than lists of changes. Each list ,corresponds to the changes
needed to construct exactly one veroion of the file. The lists can then be
combined to create the desired version from the origirull.

Each list of changes is called a "delta". Each delta has an identification
string called an "SID". The SIDisa stringof at least two, and at mostfour,
numbers separated byperioda. The numbers name the veroion and define
how it is related to other versions. For example, the first delta is usually
numbered 1.1 and the second 1.2.

The first number in any SID is called the "release number''. The release
number usually indicates a group of versions that are similar and generally
compatible. The second number in the SID is the "level number''. It indi
cates major differences between files in the same release.

An SiD may als<l have two optional numbers. The "branch number",
known as the optional third number, indicates changes at a particular
level; and the "sequence number"� the fourth number� indicates changes
at a particular branch. For example, the SIDs 1.1.1.1 and 1.1. 1.2 indicate
two new versions that contain slight changes to the origirull delta 1.1.

An s-lile may at any thne contain several different relaases, levels,
branches, and sequences of the same file. In general, the maximum
number of releases an s-tile may contain is 9999, that :is, release numbers
may range from 1 to 9999. The same limit applies to level, branch, and
sequence numbers.

When you create a new version, the sees system" usuall,Y creates a new SID
by incrementing the level number of the original vers1on. li you wish to
create a new release, you must explicitly instruct the system to do so. A
change to a re]aase number indicates a major new version of the file. How
to create a new version of a file, and change release numbers, are described
later.

The sees system creates a branch and sequence number for the SID of a
new version, only if the next higher level number already exists. For exam
ple, if you change version 1.3 to create a version 1.4 and then change 1.3
again, the sees system creates anew version named 1.3.1.1.

3-2

SCCS: A Source Code Control System

Version numbers can become quite complicated. In general, it is wise to
keep the numbers as simple as possible by carefully planning the creation
of each new version.

3.2.3 sees Working Files

The sees system uses several different kinds of files to complete its tasks.
In- general, these files contain- either actualtext, or information about-the
commands in progress. For convenience, the SCCS system names these
files by placing a prefix before the name of the original file from which all
versions were made. The following is a list of the working files:

s-file A permanent file that contains all versions of the given text
file. The versions are stored as deltas, that is, lists of
changes to be applied to the original file to create the given
version. The name of an s-file is formed by placing the file
prefixs. at the beginning of the original filename.

x-file A temporary copy of the s-file. It is created by sees com
mands which change the s-file. It is used instead of the s-flle
to carry out the changes. When all changes are complete,
the sees system removes the original s-flle and gives the x
file the name of the original s-file. The name of the x-file is
formed by placing the prefixx. at the beginning of the origi
nalfile.

g-flle An ordinary text file created by applying the deltas in a given
s-file to the original file. The g-fi!e represents a copy of the
given version of the original file, and receives the same
filename as the original. When created, a g-file is placed in
the current working directory of the user who requested the
file.

p-file

z-flle

A special file containing information abou;t the versions of
an s-file currently being edited. The p-file is created when a

·g-file is retrieved from the s-file. The p-file exists until all
currently retrieved files have been saved in the s-file; it is
then deleted. TI1e p-file contains one or more entries
describing the SID of the retrieved g-file, the proposed SID
of the new, edited g-file, and the login name of the user who
retrieved the g-file. The p-file name is formed by placing
the prefixp. atthe beginning of the original filename.

A lock file is used by sees commands to prevent two users
from updating a single SCCS file at the same time. Before a
command modifes an sees file, it creates a z-file and
copies its own process ID to it. Any other command which
attempts to access the file while the z-file is present displays
an error message and stops. When the original command

3-3

XEJiiiX Programmer's Guide

!-file

d-file

q-file

has :finished' its tasks, it deletes the z-file before stopping.
The z-file name is formed by plal)ing the prefix z. at the
beginning of the original filename.

A special file containing a list of the deltas required to create
a given version of a file. The l-Jile nameis foi:med by placing
the pre!ixl. atthe beglnningofthe originallilename.

A temporary copy of the g-file used to generate a new delta.

A temporary file used by the delta(CP) command when
updating the p-file; The file is not directly accessible.

In general, a user never directly accesses x�fi.les, z-files, d-files, or q-files.
If a system crash or &milar situation abnormally terminates a command,
the user may wish to delete these files to ensure proper operation of subse
quent sees commands.

3.Z.4 sees Command Arguments

Abnost all sees commands accept two types of arguments: options and
filenames. These appear it! the sees command line immediately after the
coinm.and name�

An option indicates a special action to be taken by the given sees com
mand. An option is usually a lowercase letter preceded by a minus sign (-).
Some options require an additional name orvalue.

A filename indicates the file to be acted on. The syntax for SCCS filenames
is like other XENIX filename syntax. Appropriate pathnames must be
given if required. Some commands also allow directory names. In this
case, all files in the directory are acted on. If the directory contains non
sees and unreadable files, these are ignored. A filename must not begin
with a minus sign (-).
The special symbol - may be used to cause the given command to read a list
of filenames from the standard input. These filenames are then used as
names for the files to be processed. The list must terminate with an end
of-filecharacter.

Any options given with a command apply to all files. TheSCCS commands
process the options bafore any filenames, so the options may appear any
where on the command line.

Filenames are processed left to right. If a command encounters a fatal
error, it stops processing the current file and, if any other files have been
given, begins processing thenext.

3-4

SCCS: A Source Code Conrrol System

:U.S FileAdminlsll'lltor

Every sees file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and there
fore owns it. Before other users can access the file, the administrator must
ensure that they have adequate access. Several sees commands let the
administrator define who has access to the versions in a given s-file. These
are described later.

3.3 Crealing and Using S-tiles

The s-tile is the key element in the sees system. It provides compact
storage for all versions of a given file and automatic maintenance of the
relationships between the versions.

This section explains how to use the admln(CP), get(CP), and delta(CP)
commands to create and use s-files. In particular, it describes how to
create the first version of a file, how to retrieve versions for reading and
editing. and how to save new versions.

3.3.1 Creatlngan S-file

You can create an s-tile from an existing text file using the ·I (for "initial
ize") option of the admin command. The command has the form:

, admin -!filename s.filename

where -ifilename gives the name of the text file from which the s-file is to be
created, ands.filename isthenameofthenews-file. Thename must begin
withs. and must be unique; no other s-file in the same directory may have
the same name. For example, suppose the file named demo.c contains the
followingClanguageprogram:

#include <stdio.h>

main ()
{

printf('Thisisversion 1.1 \n"};
}

To create an s-tile, enter:

admin -idemo.c s.demo.c

This command creates the s-file s.demo.c, and copies the first delta
describing the contents of demo.c to this new file. The first delta is num
bered 1.1.

3 - 5

XENIX rrogranune:rs Guide

After creating an s-tile, the original text file should.be removed using the
nn command, since it is no longer needed. lf you wish to view the text file
or make changes to it, you can retrieve the file using the get command
described in the next section.

When first creating an s-file, the admin command may display the warning
message:

No id keywords (cm7)

In general, this message can be ignored unless you have specifically
included keywords in your file (see the section, "Using Identification Key
words" later in this chapter).

Note that only a user with write permission in the directory containing the
s-file may use the admin command on that file. This protects the file from
administration by unauthorized users.

3.3.2 Retrieving a File for Reading

You can retrieve a file for reading from a given s-file by using the get com
mand. The command hastheform:

get s.filename • . •

where s.filename is the name of the s-tile containing the text file. The com
mand retrieves the lastest version of the text file and copies it to a regular
file. The file has the same name as the s-tile but with thes. removed. It also
has read-onlyfile permissions. For example, suppose the s-tile, s. demo.c,
contsins the first version of the short C program shown in the previous sec-
tion,. To retrieve this program, enter:

gets.demo.c

The command retrieves the program and copies it to the file named
demo. c. You may then display the file just as you do anyother text file.

The command also displays a message which descnbes the SID of the
retrieved file and its size in lines. For example, after retrieving the short C
program froms.demo.c,
the command displays the message:

3-6

1.1
6lines

c:

c�

�CC�: A �ource Code Control �ystem

You may also retrieve more than one file at a time by giving multiple s-file
names in the command line. For example, the command:

get s.demo.c s,def.h

retrieves the contents of the s-files s.demo.c ands.def.h and copies them to
the text files demo. c and de[. h. When giving multiple s-file names in a com
mand, you must separate each with at least one space. When the get com
mand displays information about the files, it places the corresponding
illename before the relevant information.

3.3.3 Retrieving a File for Editing

You can retrieve a file for editing from a given s-file by using the - e (for
"editing'') option of the get command. The command has the form:

get -es.filename . . .

where s.filename is the name of the s�file containing the text file. You may
give more than one filename if you wish. If you do, you must separate each
name with a space.

The command retrieves the lastest version of the text file and copies it to an
ordinary text file. The file has the same name as the s-file but with the s.
removed. It has read and write file permissions. For example, suppose the
s-file, s.denw.c, contains the first version of a C program. To retrieve this
program, enter:

get -e s.demo.c

The command retrieves the program and copies it to the file named
demo.c. You may edit the file just as you do any other text file.

If you give more than one filename, the command creates files for each
corresponding s-file. Since the - e option applies to all the files, you may
edit each one.

After retrievil;Ig a te)\1 file, the command displays a message giving the SID
of the file and its size in lines. The message also displays a proposed SID,
that is, the SID for the new version after editing. For example, after retriev
ing the six-line C program in s.demo.c, the command displays the follow
ingmessage:

1.1
newdelta 1.2
61ines

The proposed SID is 1.2. If more than one file is retrieved, the correspond
ingfilename precedes the relevant information.

3-7

mix rrogrammer s Guide

Note that any changes made to the text file are not immediately copied to
the corresponding s-file. To save these changes, you must use the della
command described in the next section. To help keep track of the current
file version, the get command creates another file, called a p-file, that con
tains information about the text file. This file is used by a subsequent della
command when saving the uew version. The p-file has the same name as
the s-file but begins with ap . . The user must not access the p-file directly.

3.3.4 Saving a NewVersionofa File

You can save a new version of a text file by using the della command. The
command hastheform:

delta s.jilename

where s.jilename is the name of the s-file from which the modified text file
was retrieved. For example, to save changes made to a C program in the
file demo.c (which was retrieved from thefiles.demo.c), enter:

deltas.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature of the changes. It displays the following prompt:

comments?

You may type any text you think appropriate, up to 512 characters. The
comment must end with a newline character. If necessary, you can start a
new line by typing a backslash (\) followed by a newline character. If you
do not wish to include a comment, just !ype a newline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the origin at version'with the new version.
A list of all the changes is copied to the s-file. Thisisthe newdelta.

3-8

SCCS: A Source Code Control SY!ltem

After a command has copied the new delta to the s-file, it displays a mes
sage showing the new SID and the number of lines inserted, deleted, or left
unchanged in the new version. For example, if the C program has been
changed to:

#include <stdio.h>

}
printf{''rbis is version 1.% dO, i);

the�ommanddisplaysthemessage:

1.2
3inserted
l deleted
Sunchanged

Once a new version iS saved, the next get command retrieves the new ver-
/-<· sion. The command ignores previous versions. lf you wish to retrieve a
i previous versipn, ypu JllUs! use the -r option of the get commsnd, as
'---" described in the next section.

3.3.5 Retrieving a Specific Vet$ ion

You can retrieve any version you wish from an s-tile by using the -r (for
"retrleve")ofthe get command. The command has the form:

get [-e J -rSID s.fikname ...

where • e is the edit option, -rSID giv� the SID of the version to be
retrieved, and s.jikname is the name of the s-file containing the file to be
retrieved. You may give more than one filename. The names must be
sep!ll'ated with spaces.

The command retrieves the given version, and copies it to the file having
the same name as s-file, but with the s. removed. The file has read-only
permission unless you also give the · • option. Jf multiple filenames are
given, one text file of the given version is retrieved from each. For exam-
ple, the command:

<

get -r1.1 s.demo.c

3-9

XENIX Programmer's Guide

retrieves version 1.1 from the s-files.denw.c, but the command:

get �e -r1.1 s.demo.c s.def.h

retrieves for editing a version l.l from both s.demo.c and s.def.h. If you
give the numb er of a version that does not exist, the command displays an
error message.

You may omit the level number of a version number if you wish, by just giv
ing the release number. If you do, the command automatically retrieves
the most recent version having the same release number. For example, if
the most recent version in the files. denw.c is numbered 1.4, the command:

get -rl s.demo.c

retrieves version L 4. If there is no version with the given release number,
the command retrieves the most recent version in the previous release.

3.3.6 Changjng the Release Number of a File

You can direct the delta command to change the release 11umber of a new
version of a file by using the -roption of the get command. lil this case, the
get command has the form:

get -e -rrel-num s.jilename •••

where - e is the required edit option, -rrel-num is the new release number
of the file, and s.jilename is the name of the s-tile containing the file to be
retrieved. The new release number must be an entirely new number, that
is, no exlstingversion may have this number. You may give more than one
filename.

The command retrieves the most recent version from the s-file, then
copies the new release number to the p-file. On the subsequent delta com
man(!, the new version is saved usiag the new release number and level
number 1. For example, if the most recent version in the s-file s.demo. c is
1.4, thj) command:

get -e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5. The new
release number applies to the new version only; the release numbers of pre
vinus versions are not aliected. Therefore, if you edit version 1.4 (from
which 2.1 was derived) and save the changes, you create anew version 1.5.
Similarly, if you edit version 2.1, you create a new version 2.2. .

As before, the get command also displays a message showing the current
version number� the proposed version number, and the size of the file in
lines. Similarly, the subsequent delta command displays the new version

3-10

SCCS: A Source Code Control System

number and the number of lines inserted, deleted, and unchanged in the
new file.

3.3.7 Creatinga BranehVerslon

You can create a branch version of a file by editing a version that has been
previously edited. A branch version is simply a version whose SID con
tains a branch and sequence number,

For example, if version 1.4 alreadyexists, the command :

get -e -r1.3 s.demo.c

retrieves version 1.3 for editing and gives 1.3.1. 1 as the proposed SID.

fu general, whenever get discovers that you wish to edit a version that
already has a succeeding version, it uses the first available branch and
sequence numbers for the proposed SID. For example, if you edit version
1.3 a third time, get gives 1.3.2.1 as the proposed SID.

You can save a branch version just like any other version byusiog the delta
command.

3.3.8 Retrieving a Branch Version

You can retrieve a branch version of a file by using the -r option of the get
command.
For example, the command:

get -r1.3.1.1 s.demo.c

retrieves branch version 1.3.1.1.

You may retrieve a branch version for editing by using the - e option of the
get command. When retrieving for editing, get creates the proposed SID
by incrementing the sequence number by one. For example, if you retrieve
branch version 1.3.1.l forediting, get gives 1.3.1.2 as the proposed SID.

As always, the command displays the version number and file size. If the
given branch version does not exist, the command displays an error mes
sage.

You may omit the sequence number if you wish. fu this case, the command
retrieves the most recent branch version with the given branch number.

3 - 1 1

XENlX Programmer's Guide

For example, if the most recent branch version in the s-file s.def.h is
1.3:1.4, the command:

gel -r1.3.1 s.def.h

retrieves version 1.3.1.4.

3.3.9 Retrieving the MostReeentVerslon

You can always retrieve the most recent version of a file by using the - t
option with the get command. For example, the command:

get -t s.demo.c

retrieves the most recent version from the file s.demo.c. You may combine
the .. rand • t options> to retrieve the most recent version of a ·given release
number. For example, if the most recent version with release number 3 is
3.5, then the command:

get -r3 -t s.demo.c

retrieves version 3.5. If a branch version exists that is more recent than ver
sion 3.5 (e.g., 3.2.1.5), then the above command retrieves the branch ver
sion and ignores version 3.5.

3.3.10 Displaying a Version

You can display the contents of a versinn on the standard output by using
the • p option of the get command. For example, the command :

get -p s.demo.c

displays the most recent version in the s-file, s.demo.c, on the standard
output. Similarly, the command:

get -p -r2.1 s.demo.c

displays version 2.1 on the standard output.

3-12

(

(\

SCCS: A Source Code Control System

The . p option is useful for creating g-files with user-supplied names. This
option also directs all output normally sent to the standard output, such as
the SID of the retrieved file, to the standard error file. Thus, the resulting
file contains only the contents of the given version. For example, the com
mand:

get -p s.demo.c >version.c

copies the most recent version in tbe s-tile, s.d�mo.c, to the file version. c.
The SID of the file and its size is copied to the standard error file.

3.3.11 Saving a CopyofaNewVetsion

The delta command normally removes the edited file after saving it in the
s-file. You can save a copy of this file by using the • n option of the delta
command. For e::wnple, the command:

delta -n s.demo.c

first saves a new version in the s-file, s.demo.c, then saves a copy of this
version in the ftle demo.c. You may display the file as desired, but you can
not edit the file.

"-·· 3.3.12 DisplayingHelpfullniormation

An sees command displays an error message whenever it encounters an
error in a file. An error message has the form:

ERROR [filename]: message (code)

where filename is the name of the file being processed, message is a short
description of the error, and code is the error code.

Yon may use the error code as an argumentto the help command to display
additional information about the error. The command has the form:

help code

where code is the error code given in an error message. The command
displays one or more lines of te>.t that explain the error, and suggests a pos
sible remedy. For example, the command:

help col

3-13

XENIX Programmer's Guide

displays the message

col:
"not a sees file"
A file that you tlllnk is aSCCS file
does not begin with the characters "s. ".

The help command can be used at anytime.

3.4 Using Identifu:ation Keywords

The sees system provides several special symbols, called identification
keywords, which may be used in the text of a program or document to
represent a predefined value. Keywords represent a wide range of values,
from the creation date and time of a given file, to the name of the module
containing the keyword. When a user retrieves the file for reading, the sees system automatically replaces any keywords it finds in a given version
of a file with the keyword'svalue.

Thia section explains how keywords are treated by the various sees com
mands, and how you may use the keywords in your own files. Only a few
keywords are described in this section. For a complete list of the key
words, see the section get(eP) in theXENIXReference.

3.4. 1 1nserting a Keyword intn a Flle

You may insert a keyword into any text file. A keyword is simply an upper
case letter enclosed in percent signs (%). No special characters are
required. Forexample, "%I%"is thekeyword representingthe SID ofthe
current version, and "%H%" is the keyword representing the current
date.

When the program is retrieved for reading using the get command, the key
words are replaced by their current values. For example, if the "%M% ",
"<fo:IOk ", and "%H" keywords are used in place of the module name� SID,
and current data in the following program statement:

eharheader[lOO] ="o/oM"k %1% %H% ";

then these keywords are expanded in the retrieved version of the program
as shown below:

charheader[lOO] = "MODNAME 2.3 WIW/71";

The get command does not replace keywords when retrieving a version for
editing. The system assumes that you wish to keep the keywords (and not
theirvalues)whenyousavethenewversion ofthefile.

3-14

C-)
/

SCCS: A Source Code Control System

To indicate that a file has no keywords, the get, delta, and a dnrln com
mands display the message:

Noid keywords (em?)

This message is normally treated as a warning, letting you know that no
keywords are present. However, you may change the operation of the sys
tem to make this a fatal error, as explained later in this chapter.

3.4.2 A.ssigrdng Values tnKeywords

The values of most keywords are predefined by the system, but some, such
as the value for the "%M%" keyword, can be explicitly defined by the
user. To assign a value to a keyword, you must set the corresponding s-file
flag to the desired value. You can do this by using the -f option of the
admln command.

For example, to set the %M% keyword to "cdemo", youmust setthem flag
as shown m the following command;

admin -fmcdemo s.demo.c

This command records "cdemo" as the current value: of the %M% key
word. N ole that if you do not set them flag, the sees system uses the name
of the original text file for %M%, by default.

The t and q i!ags are also associated with keywords. A description of these
flags and the corresponding keywords can be found in the section get(CP)
in the XBNIXReference. You can change keyword values at any tbne.

3.4.3 Forcing Keywords

If a version is found to contain no keywords, you can force a fatal error by
setting the i flag in the given s-Jile. The flag causes the delta and admln
commands to stop processing of the given version and report an error.
The flag is useful for ensuring that keywords are used properly in a given
file.

To set the I flag, you must use the -foption of the admin co=and. For
example, theco=and:

admin -fi s.demo.c

sets the i f!agin the s-file, s.demo.c. lf the given version does not contain
keywords, subsequent delta or admln commands that access this file print
an error message.

3- 15

XENIX Programmer's Guide

Note that if you attempt to set thei flag at the same time that you create au
s-file, aud if the initial text file contains no keywords, the admin commaud
displays a fatal error message, and stops without creating the s-tile.

3.5 UsingS-fileFlags

An s-file flag is a special value that defines how a given sees co=aud will
operate on the corresponding s-file. The s-file flags are stored in the s-file
aud are read by each sees commaud before it operates on the file. S-file
flags affect operations such as keyword checking, keyword replacement
values, aud default values for co=auds.

This section explains how to set aud use s-file flags. It also describes the
action of commonly-used flags. For a complete description of all flags, see
the section adrnin{CP) in theXENIXReference.

3.5.1 SettingS-file Flags

You cau set the flags in a given s-file by using the - f option of the admin
co=aud. The co=audhas theforrn:

admin -fflag s.filename

where -fflag gives the flag to be set, aud s.filename gives the name of the s
filein which the flag is to be set. For example, the commaud:

admin -fi s.demo.c

setsthe iflagin the s-file s.demo.c.

Note that some s-file flags take values when they are set. For example, the
m flag requires that a module name be given. When a value is required, it
mustimmed.iatelyfollowthe:H.agname, as in the command:

admin -fmdmod s.demo.c

which sets the mflag to the module name "dm.od".

3.5.2 Using the iF!ag

The i flag causes the adrnin aud delta co=auds to print a fatal error mes
sage aud stop, if no keywords are found in the given text file. The flag is
used to prevent a version of a file, which contains expanded keywords,
from being saved as a new version. (Saving an expanded version destroys
the keywords for all subsequent versions).

3 - 16

SCCS: A Source Code Control System

When the i flag is set, each new version of a file must contain at least one
keyword. Otherwise, the version cannot be saved.

3.5.3 Using the dll!ag

The d flag gives the default SID for versions retrieved by the get command.
The flagtakes an SID as its value. For example, the command:

admin -fd1.1 s.demo.c

sets the default SID to 1.1. A subsequent get command which does not use
the -r option will retrieve version 1.1.

3.5.4 Using thevFlag

The v flag allows you to include modification requests in an s-ftle.
Modification requests are naiiles or numbers that may be used as a short
hand means of indicating the reason for each new version.

When the v flag is set, the delta cOilll11lll;ld asks for the modification
requests just before asking for comments. The v flag also allows the -m
option to be used in the delta and admin commands.

3.5.5 Removing anS.fi1eFlag

You can remove an s-file flag from an s-file by using the - d option of the
admin command. The command has the form:

admiu -dftag s.jilename

where -dftag gives the name of the flag to be removed and s.ftlename is the
name of the s-file from which the flag is to be removed. For example, the
command:

admiu -dis,demo.c

removes the i flag from the s-file s.demo.c. When removing a flag which
takes a value, onlytheflagnameis required. For example, the command:

admin -dm s.demo.c

removes them flag from the s-tile.

The - d and ·ioptions must not be used at the same time.

3 - 17

XENIX Programmer's Guide

3.6 Modifying S- file Information

Every s-file contains .information about the deltas it contains. Normally,
this .information is maintained by the sees commands and is not directly
accessible by the user. Some .infonnation, however, is specific to the user
who creates the s-file, and may be changed as desired to meet the user's
requirements. This .information is kept .in two special parts of the s-file
called the "delta table" and the "description field' .

The delta table contains .information about each delta, such as the SID and
the date and time of creation. It also contains user-supplied information,
such as comments and modification requests. The description field con
tains a user-supplied description of the s-file and its contents. Both parts
can be changed or deleted at any time to reflect changes to the s-lile con
tents.

3.1).1 Adding Comments

You can add comments to an s-file by using the ·Y option of the delta and
admin commands. This option causes the given text to be copied to the s
file as the comment for the new version. The comment may be any combi
nation of letters, digits, and punctuation symbols. No embedded newline
characters are allowed. If spaces are used, the comment must be enclosed
in double quotes. The complete command must fit on one line. For exam
ple, the command:

delta -y"George Wheeler" s.demo.c

saves the comment "George Wheeler" in the s-files.demo.c.

The • y option is typically used in aball procedures as part of an automated
approach to maintaining files. When the option is used, the delta com
mand .does not print the corresponding comment prompt, so no interac
tion is required. If more than one s-file is given in the command line, the
given comment applies to them all. ·

3.6.2 Changing Comments

You can change the comments in a given s-file by using the cdc command.
The command has the form:

cdc -rSID s.file1W.me

3-18

SCCS: A Source Code Control System

where -rSID gives the SID of the version whose commept is to be changed,
and s.jileflllme is the name of the s-file containing the version. The com
mand asks for a newcomroenthy displa:yingthe prompt:

comments?

You may enter any sequence of characters up to ,512 characters long. The
sequence may contain embedded newline characters lf they are preceded
by.a backslash (\). The sequence must)Je terminated.w:it)l a JlJ;>Fline ch1lr
acter. For example, the command:

cdc -r3.4 s.demo.c

prompts for a new comment for version 3.4.

Although the command does not delete the old comment, it is no longer
directly accessible by the user. The new comment contains the login name
of the user who invoked the cdc command, and the time the comment was
changed.

3.6.3 Adding Modification Requests

You can add modification requests to an s-file, when the v llag is set, by
using the - m option of the dellll and admin commands. A modification
request is a shorthand method of describing the reason for a particularver·
sion. Modification requests are usually names or numbers which the user
has chosen to represent a specific request.

The -m option causes the given command to save the requests following
the option. A request may be any combination of letters, digits, and punc
tuation symbols. 1f you give more than one request, you must separate
them with spaces and enclose the request in double quotes. For example,
the command:

delta -m"error35 optimizelO" s.demo.c

copies the requests llerror35" and "opti.mize10" to s.demo.c, while saving
the new version.

The -m option, when used with the admtn command, mnst be combined
with the -I option. Furthermore, the v flag must be explicitly set with the • f
option. For example, the command:

admin -idef.h -m"errort:f' -fv s.def.h

inserts the modification request "error{)," in the new file s. def.h.

The delta command does not prompt for modification requests if you use
the · m option.

3-19

XENIX Programmer's Guide

3.6.4 Changing Modification Requests

You can change modification requ<lsts, when the v flag is set, by using the
ede command. The command asks for a list of modification requests by
displaying the prompt:

MRs?

You may enteuny number of requests. Each request may have any combi
nation of letters, digits, or punctuation symbols. No more than 512 charac
ters are allowed, and the last request mu.•t be tef!llinated with a newline
character. If you wish to remove a request, you must precede the request
with an exclamation mark (!). For example, the command:

cdc -r1.4 s.demo.c

asks for changes to the modification requests. By responding

MRs? error36 lerror35

the request "erro:r36" is added and "error3S.u is removed.

3.6.5 Adding Descriptive Text

You can add descriptive text to an s-file by using the - t option of the admln
command. Descriptive text is any text that describes the purpose and rea
son for the given s-tile. DescriptiVe text is independent of the contents of
the s-tile, and can only be displayed using the prs command.

The • t option directs the admin to copy the contents of a given file into the
description field of the s-file. The command has the form:

admin -tfilename s.fikname

where -tfikname gives the name of the file containing the descriptive text,
and s.filename is the name of the s-tile to receive the descriptive text. The
file to be inserted may contain any amount of text. For example, the com
mand:

admin -tcdemo s.demo.c

inserts the contents of the file cdemo into the description field of the s-tile
s.demo.c.

The • t option may also be used to ilritialize the description field when creat
ingthes-file. For example, the command:

admin -idemo�c -tcdemo s.demo�c

3-20

C'

SCCS: A Source Code Control System

inserts the contents of the file edema into the new s-file s.demo.c. If - t is
not used, the description field of the new s-file is left empty.

You can remove the current descriptive text in an s-file by using the - t
option without a filename. For example, the command:

admin -t s.demo.c

removes the descriptive. text from the s-file s.demo.c.

3. 7 Printing from an S-file

This section explains how to use the prs command to display information
contained in an s-file. The prs command has a variety of options which
control the display format and content.

3. 7.1 Using a Data Specification

You can explicitly define the information to be printed from an s-file by
using the - d option of the prs command. The command copies user
specified information to the standard output. The command has the form:

prs -dspec s.jilename

where -dspec is the data specification, and s.filename is the name of the s-
filefrom which the information is to be taken.

·

The data specification is a string of data keywords and text. A data key
word is an uppercase letter, enclosed in colons (:). It represents a value
contained in the given s-file. For example, the keyword :1: represents the
SID of a given version, :F: represents the filename of the given s-:file, and
:C: represents the comment line associated with a giv�n v�rsion. Data key
words are replaced by these values when the information is printed.

For example, the command:

prs -d11version: :I: filename: :F: 11 s.demo.c

may produce the line:

version: 2.1 filename: s.demo.c

A complete list of the data keywords is given in the section prs (CP) in the
XEN!XReference.

3-21

XENIX Programmer's Guide

3. 7.2 Printing a Specific Ve..Sion

You can print informatioD. about a specific version in a given s-:file by using
the -roption of the prs command. The command has the form:

prs -rSID s.jilename

where -rSID gives the SID ofthedesired version, ands.jilenameis the name
ofthes-:filecontainingthe version. For example, the command:

prs -r2.1 s.demo.c

prints information about version2.1 in the s-file s.demo.c.

If the -roption is not specified, the command prints information about the
most recently created delta.

3. 7.3 PrintingLaterandEarlierVersions

You can print information about a group of versions by using the - I and - e
options of the prs command. The · I option causes the command to print
information about all versions immediately succeeding the given version.
The - e option causes the command to print information about all versions
immediately preceding the given version. For example, the command:

prs -r1.4 -e s.Q.emo.c

prints all information about versions which precede version 1.4 (e.g., 1.3,
1.2, and 1.1). The command:

prs -r1.4 -I s.abc

prints information about versions which succeed version 1.4 (e.g., 1.5, 1.6,
and 2.1).

If both options are given, information about all versions is printed.

3.8 Editing by Several Users

The sees system allows any number of users to access and edit versions of
a given s-file. Since users are likely to access different versions of the s-file
at the same time, the system is designed to allow concurrent editing of
different versions. Normally, the system allows only one user at a time to
edit a given version, but you can allow concurrent editing of the same ver
sion by setting the j flag in the given s-file.

3-22

---,

SCCS: A Souree Cooo Control System

The following sections explain how to perform concurrent editing, and
how to save edited versions when you have retrieved more than one version
for editing.

3. 8.1 Editing Dilferent Versions

The sees system allows several different versions of a file to b e edited at
the same time. This means a nser can edit version 2.1 while another user
can edit version 1.1. There is no limit to the number of versions which may
be edited at any given time.

When several users edit different versions concurrently, e��.Ch user must
begin work in his own directory. If several users attempt to share a direc
tory, and work on versions from the same s-tile, at the same time, the get
command will refuse to retrieve a version�

3.8.2 Editing a Single Version

You can Jet a single version of a ffie be edited by more than one user by set
tiogthej Hagin the given s-file. The flag causes the get command to check
the p-file, and create a new proposed SID, if the given version is already
being edited.

You can set the flag by using the - f option of the admin command. For
example, the command:

admin -fj s.demo.c

sets the flag for the B"filc, s.demo.c.

When the flag is set, the get command uses the next available branch SID
for each new proposed SID. For example, suppose a user retrieves version
1.4forediting, in theffies.demo.c, and that the proposed versinnis 1.5. If
another user retrieves version 1.4 for editing before the first user has saved
his changes, the proposed version for the new user will be 1.4.1.1, since
version 1.5 is already proposed and likely to be taken. ln no ease will a ver
sion edited bytwo separate users, result in a single new version.

3.8.3 Saving a Specific Version

When editing two or more versions of a file, you can direct the delta com
mand to save a specific version by using the -roption to give the SID of that
version. The command has the form:

delta -rSID s.filename

3-23

XENIX Programmer's (;mde

where -rSID is the SID of the version b<1ing saved, and s.filenam£ is the
name of the s-file to receive the new version. The SID may be the SID of
the version you have just edited, or the proposed SID for the new version.
For example, if you have retrieved version 1.4 for editing (and no version
1.5 exists), both commands:

delta -r1.5 s.demo.c

and

delta -r1.4s.demo.c

save version 1.5.

3.9 Protecting S- 111cs

The sees system uses the normal XENIX system file permissions to pro
tect s-files from changes by unauthorized users. In addition to the XENIX
system protections, the sees system provides two ways to protect the ·
files; the '�user list'-' and the 1'protection:fiags". The user list is a list of login
names and group IDs of users who are allowed to access the s-file and
create new versions of the file. The protection flags are three special s-file
flags that define which versions are currently accessible to authorized
users. The following sections explain how to set and use the user list and
protection flags.

3.9.1 Addlnlla User to the User List

You can <rdd a user or a group of users to the user list of a given s-tile by
using the · a option of the admin command. The ·a option causes the given
name to be added !<> th1> user list. The user list defines who may access and
edit the versionsin thes-file. Thecommand has.theform:

admin -aname s.filename

where -aname gives the login name of the user or the group name of a group
of users to be added to the list, and s.filen(lm£ gives the name of the s-file to
receivethenewusers. For example, thecommand:

admin -ajohnd -asuex -amarketings.demo.c

adds the users "johnd" and "suex", and the group "marketing" to the user
list of the s-tile s.demo.c.

If you create an s-file without giving the -a option, the user list is left
empty, and all users may access and edit the files. When you explicitly give
a user name or names, only those users can access the files.

3-24

(

ci

SCCS: A Source Code Control System

3.9.2 Removiuga Userfrom a UserList

You can remove a user or a group of users from the user list of a given s-file
by using the · e option of the admiu command. The option is similar to the
· a option but performs the opposite operation. The co=and has the
form:

admin -ename s.filename

where -ename is the login name of a user or the group name of a group of
users to be removed from the list, and s.filename is the name of the s-file
from which the names are to be removed. For example, the command:

admin -ejohnd -emarketing s.demo.c

removes the user "johnd" and the group "marketing'' from the user list of
the s-files.denw.c.

3.9.3 Setting the Floor Flag

The floor flag, f, defines the release number of the lowest version a user
may edit iu a given s-file. You can set the fiagby usiugthe . f option of the
admin command. For example, the command:

admin -ff2 s.demo.c

sets the floor to release number 2. If you attempt to retrieve any versions
with a release number less than 2, an error results.

3.9.4 Setting the Ceiling Flag

The ceiling flag, c, defines the release number of the highest version a user
may edit iu a given s-file. You can set the fiagby usiugthe -f option of the
admin command. For example, the command:

admin -fcS s.demo.c

sets the ceiling to release number 5. If you attempt to retrieve any versions
with a release number greater than 5, an error results.

3.9.5 Locking a Version

The lock fl.ag, I, lists by release number all versions in a given s-:file which
are locked against further editing. You can set the fiagbyusiugthe • ffiag of
the admiu co=and. The flag must be followed by one or more release
numbers. Multiplereleasenumbers mustbe separated by commas (,).

3-25

XENIX Programmer's Guide

For example, the command:

admin -fl3 s.demo.c

locks all versions with release nnmber 3 against further editing. The com
mand:

admin -fl4,5,9s.def.h

locks all versions with releasenumbers 4, 5, and 9.

Note that the special symbol "a" may be used to specify all release
numbers. The command:

admin -fla s.demo.c

locks all versions in the file s. demo.c.

3.10 RepairingSCCS Files

The sees system carefully maintains all sees files, making damage to the
files very rare. However, damage can result from hardware malfunctions,
which cause incorrect information to be copied to the file. The following
sections explain how to check for damage to sees files, and how to repair
the damage or regenerate the file.

3:10.1 ehecking anS-file

You can check a file for damage by using the -h option of the admin com
mand. This option causes the checksum of the given s-file to be computed
and compared with the existing sum. An s-file's checksum is an internal
value, computed from the sum of all bytes in the file. If the new and exist
ing checksums are not equal, the command displays the following mes
sage:

corrupted file (co6)

indicating damage to the file. For example, the command:

admin -h s.demo.c

checks the s-file, s.demo.c, for damage by generating a new checksum for
the file, and comparing the new sum with the existing sum.

You may give more than one filename. If you do, the command checks
each file in turn. You may also give the name of a directory, in whic� case,
the command checks all files in the directory.

3-26

SCCS: A Source Code Control System

Since failure to repair a damaged s-file can destroy the file's contents, or
make the file inaccessible, it is a good idea to regularly check all s-files for
damage.

3.10.2 Edltlngan S-file

When an s-file is discovered to be damaged, it is a good idea to restore a
backup. copy of the file from a backup disk, rather than attempting to
repair the file. (Restoring a backup copy of a file is described in the XENIX
Operations GuUJe.) If this is not possible, the file may be edited using a
XENIX text editor.

To repair a damaged s-file, use the description of an s-file given in the sec
tion in the XENIX Reference, to locate the part of the file which is damaged.
Use extreme care when making changes; small errors can cause unwanted
results.

3.10.3 Changingan S-file's Checksum

Alter repairing a damaged s-file, you must change the file's checksum by
using the • z option of the admin command. For example, to restore the
checksumoftherepaired files.demo.c, enter:

admin -z s.demo.c

The command computes and saves the new checksum, replacing the old
sum.

3.10.4 Regenerating a G-file for Editing

You can create a g-file for editing, without affecting the current contents of
the p-file by using the -k option of the get command. The option has the
same affect as the -e option, except that the current contents of the p-file
remain unchanged. The option is typically used to regenerate a g-file that
has been accidentallY removed or destroyed, before it has been saved using
!be delta command.

3.10.5 Restoring a Damaged P-file

The . g option of the get command maybe used to generate a new copy of a
p-file that has been accidentally removed. For eXample, the command:

get -e -g s.demo.c

creates anew p-file entry for the most recent version ins. demo. c. If the file
demo.c already exists, it will not be changed by this command.

3-27

XENIX Programmer's Guide

3.11 Using Other Command Options

Many of the sees commands provide options that control their operation
in useful ways. This section descn'bes these options and explains how you
may me them to perform usefulworl<:.

3.11.1 Getting Help WithSCCS Commands

You can display helpful information about an SCCS command by giving
the name of the command as an argument to the help command. The help
command displays a short explanationofthe command and command syn
tax. For example, the command:

help rmdel

displays the message

rmdel:
rmdcl -rSID lllenarne . . .

3.11.2 Creating a File With the Standard Input

You can direct admin to use the standard input as the source for a new s
llle by using the - i option without a lllename. For example, the command :

admin -i s.demo.c <demo.c

causes admin to create anews-filanamed s.demo.c, which uses thetextfile
demo.c as its first version.

This method of creating a news-file is typically used to connect admin to a
pipe. For example, the command:

catmodl.cmod2.c I admin�is.mod.c

cxeates a new s-tile, s.mod.c, which contains the first version of the con
catenated Illes modl. c and mod2. c.

3.11.3 Starting At a Specific Release

The admin command normally starts numbering versions with release
number 1. You can direct the command to start with any given release
numberbyusingthe -roption. Thecommandhastheform:

admin �rrel-num s.jilename

3-28

c�

SCCS: A Soun:e Code Control System

where -rrel-num gives the value of the starting release number, and
s.filename is the name of the s-file to be created. For example, the com
mand:

admin -idemo.c -r3 s.demo.c

starts with release number 3. The first version is 3.1.

3.11.4 Adding a Comment to theFlrstVersion

You can add a comment to the first version of file by using the -y option of
the admin command whencreatingthes-file. For example, the command:

admin -idemo.c -y"George Wheeler" s.demo.c

insertsthecomment "George Wheeler" in the news-file, s.demo.c.

The comment may be any combination of letters, digits, and punetoation .
symbols. Jf spaces are used, the comment must be enclosed in double
quotes. The complete command must fit on one line.

If the •Y option is not used when creating an s-file, a comment of the fol
Iowingform:

date and time created YY/MM/DD Illi:MM:SS by logname

is automatically inserted.

3.11.5 Suppressing Norntal Output

You can suppress the normal display of messages created by the get com
mand by usmg the· s option. The option prevents information, such as the
SID of the retrieved file, from being copied to the standard output. The
option does not suppress error messages.

The ·• option is often used with the -p option to pipe the output of the get
conirtt!llid to othereommands. For example, the command:

get -p -s s.demo.c j lpr

copies the most recent version in the s-file, s. demo.c, to the line printer.

You can also suppress the normal output of the delta command by using
the • s option. This option suppresses all output normally directed to the
standard output, except for the normal comment prompt.

3-29

XENIX Progrannner's Guide

3.11.6 Including and Excluding Deltas

You can explicitly define which deltas you wish to include, and which you
wish to exclude, when creating a g-file, by using the ·I aud • x options of the
get command .

The • i option causes the command to apply the given deltas when con
sttucting a version. The · x option causes the command to ignore the given
deltas when constructing a version. Both options must be followed by one
or more SIDs. II multiple SIDs are given, they must be separated by com
mas (,). A range of SIDs may be given, by separating two SIDs with a
hYPhen (-). For example, the command;

get -i1.2,1.3 s.demo.c

causesdeltas 1.2 and 1.3 to construct the g-file. The command{

get ··Xl.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 to be ignored when consttuctingthe file.

The · i option is useful if you wish to automatically apply changes to a ver
sion while retrievingitfor editin� For example, the command:

get -e -i4.1 -r3.3 s.demo.c

retrieves version 3.3 for editing. When the file is retrieved, the changes in
delta4.1 are automatically applied to it, makingtheg-file the same as if ver
sion 3.3 had been edited by hand, using the changes in delta 4.1. These
changes can be saved immediately by issuing a delta command. No editing
is required.

The • x option is useful if you wish tp reruove changes performed on a given
version. For example, thecommand:

get -e -xl.S -r1.6s.demo.c

retrieves version 1.6 for editing. When the file is retrieved, the changes in
delta 1.5 are automatically left out of it, making the g-file t):te same as if ver
sion 1.4 bad been changed according to delta 1.6(withno intervening delta
1.5). These changes can be savedimmediately by issuing a delta command.
No editing is required.

When deltas are included or excluded using the· i and • x options, get com
pares them with the deltas that are normally used in consttucting the given
version. II two deltas attempt to change the same line of thu retrieved file,
the command displays a warning message .. The message shows the range of
lines in which the problem may exist. Corrective action, if required, is the
responsibility of the user.

3-30

SCCS: A Source Code Conlrol System

3. 11. 7 Listing the Deltas of a Version

You can create a table showing the deltas required to create a given version
by using the ·I option. This option causes the get command to create an !
file which contains the SIDs of all deltas used to create the given version.

The option is typically used to create a history of a given version's develop
ment. For example, the command:

get -1 s.demo.c

creates a tile named l.demo.c, containing the deltas required to create the
most recent version of demo. c . .

You can display the list of deltas required to create a version by using the
-lp option. The -lp option performs the same function as the · I option,
except it copies the list to the standard output file. For eXample, the com
mand:

get -lp -r2.3 s.demo.c

copies the list of deltas required to create version 2.3 of demo.c to the stan
dard output.

:>rote that the ·I option maybe combined with the · g option to create a list
of deltaswitltout retrievingthe actual version.

3.11.8 Mapping Lines to Deltas

You can map each line in a given version to its corresponding delta by using
the • m option of the get command. This option causes each line in a g-file
to be preceded by the SID of the delta that caused that line to be inserted.
The SID is separated from the beginning of the line by a tab character. The
·m option is typically used to review the history of each line in a given ver
sion.

3.11.9 Naming Lines

You can name each line in a given version with the current module name
(i.e., the value of the %M% keyword) by using the -n option of the get com
mand. This option causes each line of the retrieved file to be preceded by
the value of the %M% keyword and a tab character.

The . n option is typically used to indicate tltat a given line is from the given
tile. When both the -m and - n options are specified, each line begins with
the %M% keyword.

3-31

XENIX Programmer's Guide

3.1L10 Displaying a LlstofDilferences

You can display a detailed list of the dllferences between a new version of a
file and the previous version by using the -p option of the delta command,
This option causes the col111l'lalld to display the dllferences, In a format
similar to the output of the XENIX dllf command.

3.11.11 Displaying File Infonnation

You can display Information about a given version by using the · g option of
the get command. l'his option suppresses the actual retrieval of a version
and causes only the information about the version, such as the SID and
size, to be displayed.

The • g option is often used with the • r option to check for the existence of
a given version. For example_, the command:

get -g -r4.3 s.demo.c

displays Information about version 4.3 in the s-file, s.demo.c. If the ver
sion does not.exist, the command displays an error message.

3.11.12 Removing a Delta

You can remove a delta from an s-file by using the nndel command. The
command has the form:

rmdel -rSID s.filenome

where -rSID gives the SID of the deha to be removed, and s.filename is the
name of the s-file from which the delta is to be removed. The delta must be
the most recently created delta in the s-file. Furthermore, the user must
have write permission in the directory containingthe s-tile, and must either
own the s-file or be the user who created the delta.

For eXl!ll1ple, the command:

rmdel -r2.3 s.demo.c

removes delta 2.3 from thes-file, s.demo.c.

The nndel command will refuse to remove a protected delta, that is, adelia
whose release number is below the current :floor value, above the current
ceiling value, or equal to a current locked value (see the section "Protect
ing S-files" given earlier In this chapter). The command will also refuse to
remove a delta which is currently being edited.

3-32

c
1

('i
\,..__./

c)

SCCS: A Source Code Control System

The nndel command should be reserved for those cases in which
incorrect, global changes were made to an s-file.

Note that nndel changes the type indicator of the given delta from "D" to
"R". A type indicator defines the type of delta. Type indicators are
described in detail in the section in the XENIXReference.

3.11. 13 Searching for Strings

You can search for strings in files created from an s-file by using the what
command. This command searches for the symbol #(@) (the current
value of the %Z% keyword), in the given file. It then prints, on the standard
output, all text immediately following the symbol, up to the next double
quote ("), greater than (>), backslash (\), newline, or (non-printing)
NULL character. For example, if the s-file, s.demo.c, contains the follow
ing line:

char id[] = "%Z% % M% :%I%".i

and the command:

get -r3.4 s.prog.c

is executed, then the command:

what prog.c

displays:

prog.c:
prog.c:3.4

You may also use what to search files that have not been created by SCCS
commands.

3.11.14 Comparing SCCS Files

You can compare two versions from a given s-file by using the sccsdiff
command. This command prints the differences between two versions of
the s-file on the standard output. The command has the form:

sccsdiff -rSIDZ -rSID2 s.fikname

3-33

XENIX Programmer's Guide

where -rSIDl and -rSID2 'f).ve the SIDs of the versions to be compared, and
s.filename is the name of the s-file containing the versions. The version
SIDs must be given in the order in wbicb they were created. For example,
the command:

sccsdiff -r3.4 -r5.6 s.demo.c

displays the differences between versions 3.4 and 5.6. The differeru:es are
displayed in aform similar to theXENIX dllfcommand.

3-34

I '

Replace this Page
with Tab Marked :

lint

• •
..
u
..
14
14
I I
I a
It
u
u
••
It
••
••
I t
••
�·
�·
••
••
••
••
••
• •
le
••
• •
••
••
••
• •
• •
l e
• •
le
le
• •
••
le
le
••
• •
• •
••
le
••
••
• •
••
••
••
••
• •
• •
••
••
••
••
••
,.
, .
••
, .
• •
, .
, .
••
, .
• •
, .
••
• •
• •
• •
, .
••
••
••
• •
• •
• •

C hapter 4

lint: A C Pro gram Che cker

4.1 Introduction 4-1

4.2 Invokinglint 4-1

4.3 Options 4-2

4.4 Checking for Unused Variables and Functions 4-3

4.5 Checking Local Variables 4-4

4.6 Checking for Unreachable Statements 4-5

4. 7 Checking for Infinite Loops 4-6

4.8 Checking Function Return Values 4-6

4.9 Checking for Unused Return Values 4-7

4.10 CheckingTypes 4-7

4.11 Checking Type Casts 4-8

4.12 Checking for Non portable Character Use 4-9

4.13 Checking for Assigomentoflongs to ints 4-9

4.14 Checking for Strange Constructions 4-9

4.15 CheckingforUseofOlderC Syntax 4-11

4.16 Checking Pointer Aligoment 4-12

4.17 Checking Expression Evaluation Order 4-12

4.18 Embedding Directives 4-13

4.19 CheckingForLibraryCompatibility 4-14

lint: A C Program Checker

4.1 Introduction

This chapter explai,ns how to use the C program checker lint(CP). The pro-
�' gram examines C source tiles and warns of errors or misconstructions that (may cause errors during compilation of the file or during execution of the
' compiled file.

In particular, lint checks for:

Unused functions and variables

Unknown values in local variables

Unreachable statements and infinite loops

Unused and misused return values

Inconsistent types and type casts

Mismatched types in assignments

Nonportable and old-fashioned syotax

Strange constructions

Inconsistent pointer alignment and expression evaluation order

The lint program and the C compiler are generally used together to check
and compile C language programs. Although the C compiler rapidly and
efficiently compiles Clangnage source files, it does not perform the sophis
ticated type and error checking required by many programs. The lint pro
gram, on the other hand, provides thorough checking of source files
without compiling.

4.2 Invoking lint

You can invokelintbytyping its name atthe shell command line. The com
mand has the form:

lint[option .. .]filename . . . lib . . .

4- 1

XENIX Programmer's Guide

where option is a command option that defines how the checker should
operate, filename is the name of the C language source file to be checked,
and lib is the name of a library to check. You can give more than one
option, filename, or library name in the command as long as you use spaces
to separate them. If you give two or more filenames, lint assumes that the
files form a complete program and checks the files accordingly. For exam
ple, the command:

lintmain.c add.c

treats main.c and add.c as two parts of a complete program.

If lint discovers errors or inconsistencies in a source file, it produces mes
sages describingthe problem. The message has the form:

filename (num): description

where filename is the name of the source file containing the problem, num
is the numberofthelinein the source containing the problem, and descrip
tion is a description of the problem. For example, the message:

main.c (3): warning: x unused in function main

shows that the variable x, defined in line three of the source file main.c, is
not used anywhere in the file.

4.3 Options

The options available to you may be classed into two categories: those that
instruct lint to suppress certain kinds of complaints, and those that alter
the behavior of lint. "(he following list summarizes both kinds of options:

Suppressive Options

- a Suppresses complaints about assignments of long values to
variables that are not long.

- b Suppresses complaints about break statements that cannot be
reached (programs produced by lex oryacc will often result in a
large number of such complaints).

- c Suppresses complaints about casts that have questionable por
tability.

- h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

4-2

/ \

�:

lint: A C Program Checker

- u Suppresses complaints about functions and external variables
used and not defined, or defined imd not used (tbis option is
suitable forrunningllnt on a subset of files of a larger program).

- v Suppresses complaints about unused argnments in functions.

x Does not report variables referred to by external declarations
but never used.

O!herOptions

- n Does not cbeck compatibility against ei!her the standard or
!he portable lint library.

-p Attempts to checkportabilityto o!her dialects of C.

- llibrary Checks function definitions in the specified lint library. For
example, -lm causesthe libraryllibm.lnto be searched.

4.4 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by secing if
each declared variable and function ls used at least once in the source file.
The program considers a variable or function used if the name appears in at
least one statement. It is not considered U.'<ed if it only appears on the left
side of an assignment. For example, in !he following program fragment:

main O
{

intx,y,z;

x=l; y-2; z=x+y;

!he variables xand yare considered used, butvariablez is not.

Unused variables and functions often occur during the development of
large programs. It is not uncommon for a programmer to remove all refer
ences to a variable or function from a source file, but forget to remove its
declaration. Such unused variables and functions rarely cause working
programs to fail, but do make programs harder to understand and change.
Checking for unused variables and functions can also help you find vari
ables or functions that you intended to use but accidentaily have left out of
!he program.

Note !hat the lint program does not report a variable or function unused if
it is explicitly declared with the extern storage class. Such a variable or
function is assumed to be nsed in another source file.

4-3

XENIX Programmer's Guide

You can direct lint to ignore all the external declarations iu a source file by
usiug the -x (for "external"} option. This option causes the program
checker to skip any liue that begins with the extern storage class. The -x
option is typically used to save time when checking a program, especially if
all external deClarations are known to be valid.

Some programmiug styles require functions that perform closely related
tasks to have the same number and type of argnments, regardless of
whether these arguments are used. Under normal operation, lint reports
any argument not used as an unused variable. You can direct lint to ignore
unused arguments by using the -v option.

The -v option causes lint to ignore all unused function arguments except
for those declared with register storage class. The program considers
unused arguments of this class to be a preventable waste of the register
resourcesofthecomputer.

You can direct lint to ignore all unused variables and functions by using the
-u (for Hunused") option. This option prevents lint from reporting vari
ables and func.tions it considers unused.

The -u option is typically used when checking a source file that contaius
just a portion of a large program. Such source files usually contaiu dec lara
tions of variables and functions that are intended to be used in other source
files and are not explicitly used within the file. Siuce lint can only check the
given file, it assumes that such variables or functions are unused and and
reports them a_s errors Whenever the -u option is not given.

4.5 Checking Local Variables

The lint program checks all local variables to ensure that they are set to a
value before being used. Since local variables have either automatic or
register storage class, their values at the start of the program or function
cannot be known. Using such a variable before assigning a value to it is an
error.

The lint program checks the local variables by searchiugfor the first assign
ment in which the variable receives a value, and for the first statement or
expression in which the variable is used. If the first asSignment appears
later than the first use, lint considers the variableiuappropriatelyused. For
example, iu the program fragment

charc;

if (c !�EOT}
c � getchar(};

lint warns that the the variable cis used before it is assigned.

4-4

('·.
_____/

G

lint: A C Program Checker

If a variable is used in the same statement in which it is assigned for the first
time, lint determines the order of evaluation of the statement and displays
an appropriate message. Forexample, in the program fragment

int i, total;

scanf("%d", &i);
total - total + i;

lint warns that the variable total is used before it is set, since it appears on
the right side of the same statement that assigns its firstvalue.

Static and external variables are always initialized to zero l:>efore program
execution begins, so lint does not report such variables if they are used
before being set to a value.

4.6 Checking for Unreachable Statements

The lint program checks for unreachable statements. Unreachable state
ments are unlabeled statements that immediately follow a goto, break,
continue, or retnm statement. During execution of a program, the
unreachable statements never receive execution control and therefore are
considered wasteful. For example, in the program fragment:

int x,y;

return (x+y);
exit (1);

the function call exit after the return statement is unreac.hab le.

Unreachable statements are common when developing programs contain
inglargn case constructions, or loops containing break and continue state
ments. Such statements are wasteful and should b e removed when con
veulen!.

During normal operation, lint reports all unreachable break statements.
Unreachable break statements are relatively common (some programs
created by the yacc and lex programs contain hundreds), so it maybe desir
able to suppress these reports. You can direct lint to suppress the reports
by using the -b opti<!n.

Note that lint assumes that all functions eventually return control, so it
does not report as unreachable any statement that follows a function that
takes control andneverretumsit. For example, in the program fragment

exit (1);
return;

4-5

XENIX Programmer's Guide

the call to exit causes tile return statement to become an·UJ1Ieacilable state
ment, butllntdoesnot reportit as sucil.

4. 7 Checking for Infinite Loops

The lint program checks for infinite loops and for loops that are never exe
cuted. For example, the statements:

while (l) { }

and:

for (;;){}

are both considered infinite loops. The statements:

while(O) { }

and:

for (0;0;) { }

will be reported as never executed.

Although some valid programs have such loops, they are generally con
sidered errors.

4.8 Checklng FunclionRetum Valoes

The lint program checks to ensure that a function returns a meaningful
value if a return value is expected. Some functions return values that are
never used. Some programs incorrectly use function values that have never
beeu returned. l!nt addresses these problems in a number of ways.

Within a function definition, the appearanceofboth:

return (expr);

and:

return ;

statements is cause for alarm. In this case, lint produces the follcwing
error message:

warning: function filename has return(e); and return;

4-6

lint: A C Program Checker

!tis difficult to detect when a function return is implied by the flow of con
trol reaching the end of the given function. This is demonstrated with a
simple example:

f (a)
{

}

if (a)

g ();
return (3);

If a is false, then /0 will call the function g() and then return with no
defined return value. This will trigger a report from lint. If g(), like exit(),
never returns, the message will still be produced when in fact nothing is
wrong. In practice, potentially serious bugs can be discovered with this
feature. It also accounts for a substantial fraction of the undeserved error
messages produced by lint.

4.9 Checking for Unused Return Values

The lint program checks for cases where a function returns a value, but the
value is rarely if ever used. lint considen; functions that retum unused
values to be inefficient, and functions that return rarely used values to be a
result of bad programming style.

lint also checks for cases where a function does not return a value but the
value is used anyway. This is considered a serious error.

4.10 Checking Types

lint enforces the type checking rules of C more strictly than the C compiler.
The additional checking occurs infourmajor areas:

l. Across certain binary operators and implied assignments

2. At the structure selection operators

3. Between the delinition and uses of functions

4. fu the use of enumerations

There are a number of operators that have an implied balancing between
types of operands. The assignment, conditional, and relational operators
have this property. The argument of a return statement, and expressions
used in initialization also suffer similar conversions. In these operations,
char, short, int, long, unsigned, lloat, and double types may be freely
intermixed. The types of pointers must agree exactly, except that arrays of
x's can be intermixed with pointers to x' s.

4-7

XENIX Programmer's Guide

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (->) must be a pointer to a structure,
the left operand of a period (.) must be a structure, and the right operand
of these operators must be a member of the structure implied by the left
operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The
types float and double may be freely matched, as may the types char,
short, int, and unsigned. Pointers can also be matched with the associated
arrays. Aside from these relaxations in type checking, all actual arguments
must agree in type with their declared counterparts.

lint checks to ensure that enumeration variables or members are not mixed
with other types or other enumerations. It also ensures that the only opera
tions applied to enumerated variables are assignment (=), initialization,
equals (--), and not-equals (!-). Enumerations may also be function
arguments and return values.

4.11 Checking Type Casts

The type cast feature in C was introduced largely as an aid to producing
more portable programs. Consider the assignment:

p- 1 ;

where pis a character pointer. lint reports this as suspect. However, in the
assignment:

p- (char•)l ;

a cast has been used to convert the integer to a character pointer. The pro
grarurner obviously had a strong motivation for doing this, and has clearly
signaled his intentions. On the other hand, if this code is moved to another
machine, it should be looked at carefully. The -c option controls the
printing of comments about casts. When -c is in effect, casts are not
checked, and all legal casts are passed without comment, no matter how
strange the type mixing seems to be.

4-8

lint: A C Program Checker

4.12 Checking forNonportable Character Use

lint flags certain comparisons and assignments as illegal or non portable.
For example, thefragrnent:

charc;

if((c -getcharQ) < 0) . . .

works on some machines, but fails on machines where characters always
take on positive values. ln this case, lin tissues the message:

nonportablecharactercomparison

The solution is to declare c an integer, since getehar is actually returning
integer values.

A simllar issue arises with bitfie!ds. When assignments of constant values
are made to bitfields, the field may be too small to hold the value. This is
especially true where on some machines bitfields are considered as signed
quantities. Although a 2-bit field with int type cannot hold the value 3, a
2-bit field with unsigned typo can.

4.13 Checking for Assignment oflongs to ints

Probleiil!l may arise from the assignment of long values to int values,
because of a loss in accuracy in the assignment. This may happen in pro
grams that have been incompletely converted by changing type definitions
with typedef. When a typedefvariable is changed from intto long, the pro
gram can stop working because some intermediate results may be assigned
to integer values, losing accuracy. Since there are a number of legitimate
reasons for assigning longs to integers, you may wish to suppress detection
of these assignments by using the -a option.

4.14 CheckingforStntnge Constructions

Several perfectly legal but somewhat strange constructions are flagged by
lint. The generated messages encourage better code quality, clearer style,
and may even point out bugs. For example, in the statement

•p++ ;

the star(*) does nothing, so lint prints:

null effect

4-9

XENIX Programmer's Guide

The program fragment:

unsigned x ;
if (x < O) ...

is also considered strange since the test will never succeed.

Similarly, the test

if (x > 0)

is equivalentto

if(x !-0)

which may not be the intended action. In these cases, lint prints themes
sage

degenerate unsigned comparison

Hyouuse:

if(l !-0) ...

then lint reports

constant in conditional context

since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence. Bugs
that arise from misunderstandings about the precedence of operators can
be accentuated by spacing and formatting, making such bugs extremely
hard to find. For example, the statements:

if(x&077--0) ...

or:

x<< 2+ 40

probably do not do what is intended. The best solution is to place
parentheses around such expressions. lint encourages this by printiug an
appropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way
that conflicts with their use in outer blocks. This is legal, but is considered
bad style, usually unnecessary, and frequently points out a bug.

4-10

f
l

(
"--..

lint: A C Progn�m Checker

lf you do not wish these heuristic checks, you can suppress them by using
the -h option.

4.15 Checking Cor Use ofOiderC Syntax

lint checks for older C constructions. These fall into two classes: assign
ment operators and initialization.

The older forms of assignment operators (e.g., -+, =-, ...) can cause
ambiguous expressions, such as:

a=-1 ;

whichcouldbetakenaseither:

a=- 1 ;

or:

a -1;

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer, and preferred operators (e,g.,
+=, -=) have no such ambiguities. To encourage the abandonment of the
older forms, lint checks for occurrences of these old-fashioned operators.

A similar issue arises with initialization. The older language allowed:

int x l ;

to initializexto 1. This causes syntactic difficulties. For example:

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int X (y){ . . .

and the compiler must read past x to determine what the declaration really
is. The problem is even more perplexing when the loitializer involves a
macro. The current C syntax places an equal sign between the variable and
the initializer:

lotx -1 ;

This formisfreeof any possiblesyntactie ambiguity.

4-11

XENIX Programmer's Guide

4.16 Checking Pointer Aligoment

Certain pointer assignments may be reasonable on some machines, and
illegal on others, due to alignment restrictions. For example, on some
machines it is reasonable to assign integer pointers to double pointers,
since double precision values may begin on any integer boundary. On
other _machines, however, double precision values must begin on even
word boundaries; thus, not all such assignments make sense. lint tries to
detect cases where pointers are assigned to other pointers, and such align
ment problems might arise. The message:

possible pointer alignment problem

results from this situation.

4.17 Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate sub expres
sions may be highly machine-dependent. For example, on machines in
which the stack runs backwards, function argnments will probably best be
evaluated from right to left; on machines with a stack running forward, left
to right is probably best. Function calls embedded as arguments of other
funbtions may or may not be treated in the same way as ordinary argu
mentS. Similar issues arise with other operators that have side effects, such
as the assignment operators ari.d the increment and decrement operators.

To ensure maximum efficiency of C on a particular machine, the C
language leaves the order of evaluation of complicated expressions up to
the compiler. Various C compilers have considerable differences in the
order in which they will evaluate complicated expressions. In particular, if
any variable is changed by a side effect, and also used elsewhere in the same
expression, the result is undefined.

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement:

a[i] = b[i++] ;

will draw the comment:

warning: i evaluation orderundefin�d

4-12

line A C Program Checker

4.18 Embedding Directives

There are occasions when the programmer is smarter than lint. There may
be valid reasons for illegal type casts, functions with a variable number of
arguments, and other constructions that lint finds objectionable. More
over, as specified in the above sections, the flow of control information
produced by lint often has blind spots, causing occasional spurious mes
sages about perfectly reasonable programs. Some way of communicating
with lint,-typically to tum off its output, is· desirable,· Therefore, a number
of words are recognized by lint when they are embedded in comments in a
C source file. These words are called directives. lint directives are invisible
to the compiler.

The first directive discussed concerns flow of control information. If a par
ticular place in the program cannot be reached, this can be asserted at the
appropriate spot in the program with the dinective:

/* NOTREACHED */

Similarly, if you desire to tum off strict type checking for the next expres
sion, use the directive:

/* NOSTRICT*/

The situation reverts to the previous default after the next. expression. The
-v option can be turned on for one function with the directive:

I* AROSUSED */

Comments about a variable number of arguments in calls to a function can
be tnmed offbyprecedingtbefunction definition with the directive:

/*VARAROS */

Jn some cases, it is desirable to check the first several arguments, an d leave
the later arguments unchecked. You can define the number of arguments
to be checked by placing a digit (giving this number) immediately after the
VAAAI.WSkeyword. Forexarnple,

/* VARAROS2 */

causes only the first two arguments to be checked. Finally, the directive:

/* LINTLffiRARY*/

at the head of a file identifies this file as a library declaration file, which is
discussed in the next section.

4 - 13

XENlX Programmer's Guide

4.19 CheeklngFor LibraryCompadbWty

lint accepts certain library directives, such as:

-ly

and tests the source files for compatibWty.with these libraries. This testing
is done by accessing library description files whose names are constructed
from the library directives. These files all begin with the directive:

!• UNTLffiRARY */

which is followed by a series of dummy function definitions. These
definitions indicate whether a function returns a value, what type a
function's return type is, and the number and types of arguments espected
by the function. The V ARARGS and ARGSUSED directives can be used
to specify features of the library functions.

lint hbraryfiles are processed almost exactly like ordinary source files. The
only difference is that functions that are defined in a library file, but are not
used in a source file, draw no comments. lint does not simulate a full
library search algorithm, and checks to see if the source files contain
redefinitions of library routines.

By default, lint checks the programs it is given against a standard hbrary
file, which contains descriptions of the programs that are normally loaded
when a C program is run. When the -p option is in effect, the portable
hbrary file is checked. This hbrary contains descriptions of the standard
I/0 library routines which are expected to be portable across various
machines. The -n option can be used to suppress all hbrary checking.

4 - 14

Replace this Page
with Tab Marked :

lex

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
•••
•••
•••
•••
• • •
, ..
, ..
•••
• • •
, ..
• • •
• • •
• • •
• • •
• • •
• • •
, . .
, . .
, . .
, . .
, . .
, . .
•••
•••
• • •
, ..
•••
, . .
•••
•••
, . .
•••
• • •
• • •
•••
•••
• • •
, . .
, . .
•••
•••
, . .
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
• • •
• • •
• • •
• • •
• • •
•••
• • • • • •
, ..
, ..
•••
, . .
, . .
• • •
t!!

C hapter S

C'� lex: A Lexical Analyze r

5.1 Introduction 5-1

5.2 lex Regular Expressions 5-3

5.3 Invoking lex 5-4

5.4 Specifying Character Classes 5-4

5.5 Specifying an Arbitrary Character 5,5

5.6 Specifying Optional Expressions 5-5

5. 7 Specifying Repeated Expressions 5-6

5.8 Specifying Alternation and Grouping 5-6

5.9 Specifying Context Sensitivity 5-6

5.10 SpecifyingExpressionRepetition 5-7

5.11 SpecifyingDefinitions 5-7

5.12 SpecifyingActions 5-8

5.13 HandlingAmbignous Source Rules 5-12

5.14 Specifying Left Context Sensitivity 5-15

5.15 SpecifyingSourceDefinitions 5-17

5.16 lexandyacc 5-19

5.17 SpecifyingCharacter Sets 5-23

5.18 SourceFormat 5-24

lex: A Lexical Analyzer

5.1 Introduction

Iex(CP) is a program generator designed for lexical processing of character
input streams. It accepts a high-level, problem-oriented specification for
character string matching, and produces a C program that recognizes regn
lar expressions. The regular expressions are specified by the user in the
source specifications given to lex. The lex code recognizes these expres
sions in an input stream and partitions the input stream into strings match
ingthe expressions. At the boundaries between strings,-program sections
provided bytheuser are executed. The lex source file associates theregnlar
expressions and the program fragments. As each expression appears in tbe
input to the program written by lex, the corresponding fragment is exe
cuted.

The user supplies the additional code needed to complete his tasks, includ
ing code wntten by other generators. The program that recognizes the
expressions is generated in the from the user's C program fragments. lex is
not a complete langnage, but rather a generator representing a new
langnagefeatureaddedon top of the C programminglangnage.

lex toms the user's expressions and actions (called source in thi• chapter)
into a C program named yylex. The yylex pro gram recognizes expressions
in a stream (called input in this chapter) and performs the specified actions
for each expression as it is detected.

Consider a program to delete from the standard inpnt all blanks or tabs at
the ends of lines. The following lines:

%o/o
[\t]+$;

are all that is required. The program contains a %% delimiter to mark the
beginning of the ruJes, and one other rule. This rule contains a regnlar
expression that matches one or more instances of the characters blank or
tab (written \t for visibility, in accordance with the C langnage convention)
just prior to the end of a line. The brackets indicate the character class
made of blank and tab; the + indicates one or more of the previous item;
and the dollar sign ($) indicates the end of the line. No action is specified,
so the program generated by lex will ignore these characters. Everything
else will be copied. To change any remaining string of blanks or tabs to a
single blank, add another rule:

% %
[\t)+$;
[\t]+ printf(" ");

The finite automaton generated for this source scans for both rules at once,
checks for the termination of a string of blanks or tabs; whether or not
there is a newline character; and then executes the desired rule's action.

5- 1

XENIX Programmer's Guide

The first rule matches all strings of blanks or tabs at the end of lines, and
the second rule matches all remaining strings ofblauks or tabs.

lex can be used alone for simple transformations, orfor analysis and statis
tics gathering on a lexical level. lex can also be used with a parser generator
to perform the lexical analysis phase; it is especially easy to interface lex
and yacc(CP). lex programs recognize only regnlar expressions; yaec
writes parsers that accept a large class of context-free grammars, but
require a lower level analyzer to recognize input tokens. Thus, a combina
tion oflex and yace is often appropriate. When used as a preprocessor for
a later parser generator, lex is used to partition the inpnt stream, and the
parser generator assigns structure to the resulting pieces. Additional pro
grams, written by other generators or by hand, can be added easily to pro
grams written by lex. yace users will realize that the name yylexis what yaec
expects ita lexical analyzer to be named, so that the use of this name by lex
simplifies interfacing.

lex generates a deterministic finite automaton from the regnlar expressions
in the source. The automaton is interpreted, rather than compiled, in
order to save space. The resultis still a fast analyzer. fu particular, the time
taken by alex program to recognize and partition an input stream is propor
tional to the length of the input. Thenumber orthe complexityof lex rules
is not important in determining speed, unless rules which include forward
context require a significant amount of rescanning. What does increase
with the number and complexity of rules is the size of the finite automaton,
and therefore the size of the program generated by lex.

fu a program written by lex, the user's fragments (representing the actions
to be performed as each regnlar expression is found) are gathered as cases
of a switch. The automaton interpreter directs the control flow. Oppor
tunity is provided for the user to insert either declarations or additional
statements in the routine containing the actions, or to add subroutines out
side this action routine.

lex is not limited to source that CIUl be interpreted on the basis of one char
acter lookahead. For example, if there are two rules, one looking for ab
and anothertorabcde.fg, and the input stream isabcdefh, lex will recognize
ab and leave the inpnt pointer just before cil. Such backup is more costly
than the processing of simpler languages.

5-2

lex: A Lexical Analyzer

5.2 lexRegularExpressinns

A regular expression specifies a set of strings to be matched. It contains
text characters (that match the corresponding characters in the strings
being compared) and operator characters (these specify repetitions,
choices, and other features). The letters of the alphabet and the digits are
always text characters. Thus, the regular expression:

integer

matches the stringinregerwhereverit appears and the expression:

a57D

look:sforthestringa57D.

The operator characters are:

"\ [f- ? . •+ IO$ / 0 "!o < >

If any of these characters are to be used literally, they need to b e quoted
individually with a backslash (\), or as a group within quotation marks
("). The quotation mark operator ('') indicates that whatever is contained
between a pair of quotation marks is to be taken as text characters. Thus:

matches the strlngxyz++ wheu it appears. Note that part of a string maybe
quoted. It is harmless, but unnecessary, to quote an ordinary text charac
ter; the expression:

llxyz++"

is the same as the one above. Thus by quoting every nonalphanumeric
character being used as a text character, you do not have to remember the
above list of current operator characters.

An operator character may also be turned into a text character by preced
ingitwith a backslash (\) as in:

xyz\+\+
which is another, less readable, equivalent of the above expressions. The
quotingmecbanismcan also be used to get a blank into an expression. Nor
mally, blanks or tabs end a rule. Any blank character not contained within
brackets must b e quoted. Several normal C escapes with the backslash (\)
are recognized:

\n newline

5-3

XENIX Programmer's Guide

\t tab

\b backspace

\\ backslaab

Sincenewlineis illegalin an expression, a \nmustbe used; itisnotrequired
to escape tab and backspace. Note that every character is aiways a text
character. Exceptions to this are blanks, tabs, newlines and the operator
characters shown in the list above.

5.3 Invoking lex
There are two steps in compillug alex source program. Fmt, the lex source
must be turned into a generated program in the host generai purpose
langaage. Then this program must be compiled and loaded, usuailywith a
library of lex subroutines. The generated program is in a file named
lex.yy.c. The I/O library is defined in termsoftheCstandardlibrary.

The library is accessed by the loader flag -II. So 1111 appropriate set of com
mands is

lex source
cc lex.yy.c -ll

The resUlting program is placed in the file a. out for later execution. To use
lex with yacc see the section "lex and yacc" in this chapter and Chspter 6,
"yacc: A Compiler-Compiler"". Although the default lex II 0 routines use
the C standard library, the lex automata themselves do not. If private ver
sions of input(), output(), and unput() are given, the library can be
avoided.

5.4 Specifying CharaeterCiasses

a asses of characters can be specified using brackets: [and]. The con
strnction:

(abc]

matches a single character, which may be a, b, or c. Within square brack:
ets, most operator meanings are ignored. Only three charac;.ters are spe
ciai: these are the backslash (\), the dash (-), and the caret (), The dash
character indicates ranges. For example:

(a-:d}-9<> _]

indicates the character class contsining all the lowercase letters, the digits,
the angle brackets, and underline. Ranges may be given in either order.

S-4

lex: A Lexical Analyzer

Using the dash between any pair of characters that are not both uppercase
letters, both lowercase letters, or both digits is implementation dependent
and causes a warning message. H it is desired to include the dash in a char
acterclass, itshouldbefirstorlast; thus:

[-+0-9]

matches all the digits and the plus and minus signs.

In character classes, the caret () operator must appear as the first charac
ter after the left bracket; it indicates that the resulting string is to be com
plemented with respectto the computer character set. Thus:

rabc]

matches all characters exx:ept a, /J, or c, including all special or control
characters; or:

ra-zA-Z]

is anycharacterwhichisnot a letter. The hackslash (\)providesan escape
mechanism within character class brackets, so that characters can be
entered literally by preceding them with this character.

S.S Specifying an Arbitrary Character

To match almost any character, the period (.) designates the class of all
characters except a newline. Escaping into octal is possible although non
portable. For example:

[\40-\176]

matches all printable characters in the ASCII character set, from octal 40
(blank) to octal 176 (tilde).

5.6 Specifying Optlouall£JIPressions

The question mark (?)operator indicates an optional element of an expres
sion. Thus:

ab?c

matches either ac or abc. Note that the meaning of the question mark here
differs from its meaning In the shell.

5-5

XENIX Programmer's Guide

5. 7 Spe<ifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus (+) opera
tors. For example:

matches any number of consecutive a characters, including zero; while a+
matches one or more instances of a. For example:

[a-z)+

matches all strings of lowercase letters, and:

[A-Za-z)[A-Za-z0-9)*

matches all alphanumeric strings with a leading alphabetic character. Note
that this is a typical expression for recognizing identifiers in computer
languages.

5.8 Spe<ifying Altemation and Grouping

The vertical bar (I) operator indicates alternation. For example:

(ab lcd)

matches either ab or cd. Note that parentheses are used for grouping,
although they are not necessary at the outside level. For example:

ablcd

would have sufficed in the preceding example. Parentheses should be used
for more complex expressions, such as:

(ab led+)?(ef)*

which matches such strings as abefef, efefef, cdef, and cddd, but not abc,
abed, orabcdef.

5.9 Specifying Context Sensitivity

lex recognizes a small amount of surrounding context. The two simplest
operators for this are the caret (·) and the dollar sigu ($). If the first char
acter of an expression is a caret, then the expression is only matched at the
beginning of a line (after a newline character, or at the beginning of the
input stream). This can never conflict with the other meaning of the caret,
complementation of character classes, since complementation only
applies within brackets. If the very last character is a dollar sigu, the

5-6

C'

G

lex: A Lexical Analyzer

expression is only matched at the end of a line (when immediately followed
by newline). The latter operator is a special case of the slash (/) operator,
which indicates trailing context. The expression:

ab/cd

matches the stringab, but only if followed bycd. Thus:

ab$

is the same as:

abl\n

Left context is handled in lex by specifying start conditions as explained in
section 5.14, "Specifying Left Context Sensitivity". If a rule is only to be
executed when the lex automaton interpreter is in start conditionx, the rule
should be enclosed in angle brackets:

<x>

If we considered start condition ONE as being at the beginning of a line,
then the caret ()operator would be equivalent to:

<ONE>

Start conditions are explained in detail later in this chapter.

5.10 Specifying Expression Repetition

The curly braces ({ and }) specify either repetitions (if they enclose
numbers) or definition expansion (if they enclose a name). For example:

{digit}

looks for a predefined string named digit and inserts it at that point in the
expression.

5.11 Specifying Definitions

The definitions are given in the first part of the lex input, before the rules.
In contrast:

a{1,5}

looks for 1 to 5 occurrences of the character a.

5-7

XENIX Programmer's Guide

Finally, an initial percent sign (%) is special, since it is the separator for
lex source segments.

5.12 Specifying Actions

When an expression is matched by a pattern of text in the input, lex exe
cutes the corresponding action. This section describes some features of lex
which aid in writing actions. Note that there is a default action, which con
sists of copying the input to the output. This is performed on all strings not
otherwise matched. Thus the lex user who wishes to absorb the entire
input, without producing any output, must provide rules to match every
thing. When lex is being used with yacc, this is considered to be the normal
situation. You may consider that actions are done instead of copying the
input to the output; thus, a rule which merely copies can be omitted.

One of the simplest things that can be done is to ignore the input. Specify
ing a C null statement ; as an action causes this result. A frequent rule is:

[\t\n] ;

which causes the three spacing characters (blank, tab, and newline) to be
ignored.

Another easy way to avoid writing actions is to use the repeat action char
acter, I, which indicates that the action for this rule is the action for the
next rule. The previous example could also have been written:

1 1 1 1

''\t"
''\n''

with the same result, although in a different style. The quotes around \n
and \t are not required.

In more complex actions, you often want to know the actual text that
matched some expression like:

[a-z]+

lex leaves this text in an external character array named yytext. Thus, to
print the name found, a rule like:

[a-z]+ printf("""!os", yytext);

5-8

� - -
(
\._ .

lex: A Lexical Analyzer

prints the string in yytext. The C function prlntf{S) accepts a format argu
ment and data to beprinted; in this case, theformat isprintstringwhere the
percent sign (%) indicates data conversion, and thes indicates string type,
and the data are the characters in yytext. This places the matched string on
the output. Thls action is so common that it maybe written as ECHO. For
example:

[a-z}+ ECHO;

is the same as the preceding example. Since the default action is just to
print the characters found, one might ask why give a rule which merely
specifies the default action? Such rules are often required to avoid match
ing some other rule that is not desired. For example, if there is a rule that
matches read, it will normally match the instances of read contained in
bread or readjust; to avoid this, aruleofthefonn:

[a-z]+

is needed. Thisisexplainedfnrtherb elow.

Sometimes it is more convenient to know the end of what bas b een found;
hence lex also provides a count of the number of characters matched in the
variable, yyleng. To count both the number of words and the number of
characters in words in the input, you might enter:

[a-zA-Z]+ {words++; chars+-yyleng;}

which accumulates the number of characters in the words recognized, and
places the result in the variable chars. The last character in the matched
string can be accessed with:

yytext[yyleng-1]

Occasionally, a lex action may decide that a rule has not recognhed the
correct span of characters. Two routines are provided to aid with this
situation. First, yymnre() can he called to indicate that the next input
expression recognized is tube tacked on to the end of this input. Normally,
the next input string will overwrite the current entry in yytext. Second,
yyless(n) may be called to indicate that not all the characters matched by
the currently successful e>.-pression are needed right now. The argument n
indicates the number of characters inyyrextto be retained. Further charac"
ters previously matched are returned to the input. This provides the same
sort oflookahead offered by the slash (/) operator, but in a different form.

5-9

XENIX Programmer's Guide

For example, consider a language that defines a string as a set of characters
between quotation marks ("), and provides that in order to inclnde a quota
tion mark in a string, it must be preceded by a backslash (\). The regular
expression that matches this is somewhat confuaing, so it might be prefer
able to enter:

\"['1* {
if (yytext[yyleng-1]- '\ \ ')

yymore();
else

... normal user processing
}

which, when faced with astringsuchas:

will first match the five characters:

''abc\
and then the call to yymore()will cause thenextpartof the string:

"def

to be tacked on the end. Note that the final quotation mark terminating the
string shouid be picked up in the code labeled normal processing.

The function yyless() might be used to reprocess text in various cir
cumstances. Consider the problem in the older C syntax of distinguishing
the ambiguity of =-a. Suppose it is desired to treat this as =- a and to
then print a message. The followingrulemight apply:

--[a-zA-Z] f.
printff'Operator (--) ambiguous\n");
yyless(yyleng-1);
• • . action for-- • . .

}

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as =-.

5-10

lex: A Lexical Analyzer

Alternatively, it might be desired to treat this as = -o. To do this, just
return the minus sign as well as the letter to the input. The following per
forms the interpretation:

=-[a-zA-Z] {
printf("Operator (--) ambiguous\n");
yyless(yyleng-2);
.H action for- ...
}

Note that the expressions for the two cases could also be written as:

=-/[A -Za-z]

in thefirstease and:

=/-[A-Za-z]

in the second. No backup would be required in the rule action shown
above. It is not necessary to recognize the whole identifier to observe the
ambiguity. The possibility of =-3, however, makes:

=-IPt\nJ

abetter rule.

In addition to these routines, lex also permits access to the I/0 routines it
uses. They include: ·

1. input() which retoms the next input character;

2. output(c)whichwrites thecharacterconthe output;

3. unput(c)which pushesthe charactercback onto the input stream to
bereadlaterbyinput().

By default, these routines are provided as macro definitions, but the user
can override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained or modified consistently. They may be redefined, to cause input
or output to be transmitted to or from strange places, including other pro
grams or internal memory; but the character set used must be consistent in
all routines; a value of zero retomed by input() must mean end -of-file; and
the relationship between unput() and input() must be retained, or the loo
kabead will not work. lex does not look abead at all if it does not have to,
but every rule containing a slash (I) oren ding in one of the following char
acters implies lookabead:

+ * 1 $

5-11

XENIX Programmer's Guide

Lookahead is also necessary to match an expression that is a prefix of
another expressio·n. See below for a discussion of the character set used by
lex. The standard lex library imposes a 100 character limit on backup.

Another lex library routine that you sometimes want to redefine is
yywrap() which is called whenever lex reaches an end-of-file. Ifyywrap()
returns a 1, lex continues with the normal wrapup on end of input. Some
times, however, it is convenient to arrange for more input to arrive from a
new source. ln this case, the user should provide ayywrap() that arranges
for new input and returns 0. This instructs lex to continue processing. The
default yywrap() always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at
the end of a program. Note that it is not possible to write a normal rule that
recognizes end-of-file; the only access to this condition is through
yywrap(). ln fact, unless a private version of input() is supplied, a file con
taining nulls cannot be handled, since a value of 0 returned by input() is
taken to be end-of-file.

5.13 HandlingAmbignous Source Rules

lex can handle ambiguous specifications. When more than one expression
can match the current input, lex chooses the following:

• Thelongestmatchispreferred.

• Among rules that match the same number of characters, the first
given rule is preferred.

For example, suppose thefollowingrules are given:

integer keyword action ... ;
[a-z]+ identifier action . . . ;

If the input is integers, it is taken as an identifier, because:

[a-z]+

matches 8 characters while:

integer

matches only 7. If the input is integer, both rules match 7 characters, and
the keyword rule is selected because it was giveo first. Anything shorter
(e.g., int) does not match the expression integer, so the identifier interpre
tation is used.

5-12

lex: A Lexical Analyzer

The principle of preferring the longest match makes certain constructions
dangerous, such as the following:

/ "" .•
(
�.. Forexample:

c

' .,

might seem a good way of recognizing a string in single quoies. But it is an
invitation for the program to read far ahead, looking for a distant single
quote.

Presented with the input:

�firsf' quoted string here, �secon4"here

the above expression matches:

'first' quoted string here, "second"

which is probably not what was wanted. A better rule to follow is the form:

'r'\nJ*'

which, on the above input, stops after "first". The consequences of errors
like this are mitigated by the fact that the dot (.) operator does not match a
newline. Therefore, no more than one line is ever matched by such expres
sions. Do nottryto defeat this with expressions like:

·

[. \n]+

or their equivalents: the lex generated program will try to read the entire
input file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all
possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to
count occurrences of both she and he in an inputtext. Some of the lex rules
to do this might be:

she s++;
he h++·
\n I ,

where the last two rules ignore everything besides he and she. Remember
that the period (.) does not include the newline. Since she includes he, lex
will normally not recognize the instances of he included in she, since once it
has passed a she, those characters are gone.

5-13

XENIX Programmer's Guide

Sometimes the user would like to override this choice. The action REJECT
means go do the next alternative. It causes whatever rule was second
choice alter the current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really wants to count the
included instances of he. The following can then be applied:

she
he
\n

{s++; REJECT;} fh++; REJECT;}

These rules are one way of changing the previous example to do just that.
After counting each expression, it is rejected; whenever appropriate, the
other expression will then be counted. In this example, the user could note
that she includes he, but not vice versa, and omitthe REJECT action on he;
in other cases, it would not be posSlble to tell which input characters were
in both classes.

Consider the two rules:

afbcj+ { ... ;REJECT;}
a[cd + { ... ; REJECT;}

If the input is ab, ouly the first rule matches, and on ad, only the second
matches. The input string accb matches the first rule for four characters
and then the second rule for three characters. In contrast, the input aced
agrees with the second rule for four characters and then the first rule for
three.

In general, REJECT is useful whenever the purpose of lex is not to partition
the input stream but to detect all examples of some items in the input, and
the instances of these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams overlap, that is
the word "the" is considered to contain both th and he. Assuming a two
dimensional array named digram is to be incremented, the appropriate
source is as follows:

o/o%
[a-zlfa-zJ

\n
{ digram[yytext[OlJ[yytext[l JJ++; REJECT;}

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

5 - 14

lex: A Lexical Analyzer

Remember that REJECT does not rescan the input. Instead, it remembers
the results of the previous scan. This means that if a rule with trailing con
text is found, and REJECT executed, you must not have used unput() to
change the incoming characters from the input stream. This is the only res
triction placed on the ability to manipulate the not-yet-processed input.

5.14 Spedtyingl.eftContext Sensitivity

Sometimes it is desirable to have several sets of lexical rules applied at
different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior context, and there
are several ways of handling such problems. The caret (} operator is a
prior context operator, recognizing immediately preceding left context just
as the dollar sign ($)recognizes immediatelyfollowingright context. Adja
cent left context could be extended, to produce a facility similar to that for
adjacent right context, but it is unlikely to be as useful, since often the
relevant left context appeared some time earlier, such as at the beginning
of aline.

This section describes three means of dealing with different environments:

1. The use of Hags, when only a few rules change from one environ
mentto another.

2. The use of start conditions with rules.

3. TI1e use of multiple lexical analyzers runningtogether.

fu each case, there are rules that recognize the need to change the environ
ment in which the following input text is analyzed, and to set some parame
ter in order to reflect the change. This may be a Hag explicitly tested by the
user's action code; snch afiagis the simplest way of dealing with the prob
lem7 since lex is not involved at all. It may be more convenient, however,
to have lex remember the flags as initial conditions on the rules. Any rule
may be associated with a start condition. It will only be recognized when
lex is in that start condition. The current start condition may be changed at
any time. Finally, if the sets of rules for the different environments are not
similar, clarity may be best achieved by writing several distinct lexical
analyzers, and switehingfrom one to another as desired.

Consider the following problem: copy the input to the output, changing the
word magic to first on every line that began with the letter a; changing
magic to second on every line that begao with the letter b; and changing
magic to third on every line that begao with the letter c. All other words
and all other Jines are left unchanged.

5 - 15

XENIX Programmer's Guide

These rules are so simple that the easiest way to do this job is with the fol
lowingfiag:

int flag;
joo/o
a {fiag-'a'; ECHO;}

) {flag- b'; ECHO;}
c {fiag-'c';ECHO;}

\n {flag- 0 ; ECHO;}
magic {

switch (flag)
{
case �a"': printf("first"); break;
case b': printf("second''); break;
case 'c': printf("third''); break;
default: ECHO; break;

�
should be adequate.

To handle the same problem with start conditions, each start condition
must be introduced to lex in the definitions section with aline reading:

%Start namel name2 . . .

where the conditions may be named in any order. The word Start may be
abbreviated to s or S. The conditions may be referenced at the head of a
rule with angle brackets. For example:

<name!> expression

is a rule that is only recognized when lex is in the start condition namel. To
enter a start condition, execute the action statement:

BEGIN name!;

which changes the start condition to nam.el. To return to the initial state,
enter:

BEGINO;

which resets the initial condition of the lex automaton interpreter. A rule
maybe active in several start conditions; for example:

<nam�l,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is
always active.

5-16

lex: A Lexical Analyzer

The same example as before can also be written as:

%START A A B B CC
jo%
a {ECHO; BEGINAA;} :b {ECHO; BEGIN BB;}
c {ECHO; BEGINCC;}

In {ECHO; BEGINO;}
<AA>magic !'rintf\'first");
<BB>magic printf(' second");
< CC>magic printf("third ");

where the logic is exactly the same as in the previous metb od of handling
the problem, but lex does the work rather than the user's code.

5. 15 Specifying Source Definitions

Remember the format of the lex source:

{definitions}
o/o%
{rules}
% %
{user routines}

So far, only the rules have been descnbed. You will need additional
optio)ls, though, to define variables for use in your program and for use by
lex. These can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. There are three
classes of such things:

1. Any line that is not part of a lex rule or action which begins with a
blank or tnb is copied into the lex generated program. Such source
input prior to the first % % delimiter will be external to any function
in the code; if it appears immediately after the first %%, it appears
in an appropriate place for declarations in the function written by
lex which contains the actions. This material must look like pro
gram fragments, and should precede the first lex rule.

As a side eficct of the nbove, lines that begin with a blank or tnb,
and which contain a comment, are passed through to the generated
program. This can be used to include comments in either the lex
source or the generated code. The comments should follow C
language conventions.

5 - 17

XENIX Programmer's Guide

2. Anything included between lines containing only %{ and %} is
copied out as above. The delimiters are discarded. This format per
mits entering text like preprocessor statements that must begin in
column 1, or copying lines that do not look like programs.

3. Anything after the third % % delimiter, regardless of format, is
copied out after the lex output.

Definitions intended for lex are given before the first % % delimiter. Any
line in this section not contained between %{ and %}, and beginning in
column 1, is assumed to define lex substitution strings. The format of such
lines is:

name translation

and it causes the string given as a translation to be associated with the
name. The name and translation must be separated by at least one blank or
tab, and the name must begin with a letter. The translation can then be
called out by the {name} syntax in a rule. For example, using {D} for the
digits and {E} for an exponent field might abbreviate rules to recognize
numbers:

D
E
% %
{D}+
{D}+"."{D}*({E})?
{D}*"."{D}+({E})?
{D}+{E}

[0-9]
[DEde][-+]?{D}+ rrintf("integer");

printf("real");

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field, but the first requires at least one digit
before the decimal point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by a FORTRAN
expression such as: 35.EQ.I, which does not contain a real number, a
context -sensitive rule such as

[0-9]+/". ''EQ printf("integer");

conld be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default
size of arrays within lex itself for larger source programs. These possibili
ties are discussed in the section "Source Format".

5-18

f\
' .
�·

lex: A Lexical Analyzer

5.16 1exandyacc

If you want to use lex with yacc, note that what lex writes is a program
named yylex(), the name required by yaee for its analp..er. Normally, the
default main program on the lex library calls this routine, but if yacc is
loaded, and its main program is used, yacc will call yylex(). In this case,
eachlexrule shouldend with:

retum{tokeu); ·

where the appropriate token value is returned. An easy way to get access to
yacc'snames for tokens is to compile the lex output file as part of theyacc
output file by placing the line:

#include '1ex.yy.c"

in the last section of yaec inpnt. Supposing the grammar to be named
good, and the lexical roles to be named better, the XENIX command
sequence can be entered as:

yacc good
lex better
cc y.tab.c -ly-11

The yacc library {--ly) sho11ld be loaded before the lex hbrary, to obtrun a
main program which invokes the yacc parser. The generation of lex and
yacc programs can be done in either order.

As a trivial problem, consider cop}ing an input file while adding 3 to every
positive number divisible by7. Here is a suitable lex source program to do
just that:

% %
intk·

(0-9]+ {
'

k� atoi(yytext);
if {k%7==0)

printf("%d", k+3);
else

}
printf{"%d",k);

The rule [0-9]+ recognizes strings of digits; atoi (see atoC(S)) converts the
digits to binary and stores the result in k. The remrunder operator ('Yo) is
used to check whether k is divisible by·/; ifitis, it is incremented by3 asitis
written out. ltmaybe objected that this program wm alter such input items
as49.63 or X7.

S-19

XENIX Programmer's Guide

Furthermore, it increments the absolute value of all negative numbers
divisible by7. To avoid this, just add a few more rules after the active one,
as shown below:

% %
intk;

-?[0-9]+ {
k � atoi(yytext);
printf("%d", k%7�� 0 ? k+3 : k);
}

-1[0-9.]+ ECHO;
[A-Za-z][A-Za-z0-9]+ ECHO;

Numerical strings containing a decimal point or preceded by a letter will be
picked up by one of the last two rules, and not changed. The if-else has
been replaced by a C conditional expression to save space; the for:ma?b:c
means: if a then b else c.

For an example of statistics gathering, the following is a program which
makes histograms of word lengths, where a word is defined as a string of
letters.

int lengs[lOO];
% o/o
[a-z]+ lengs[yyleng]++;
. I
\n
o/o 0/o
yywrapQ
{
inti;
printfC'Length No. words\n");
for(i�O; i<lOO; i++)

if (lengs[i] > 0)
printf("% 5d% lOd\n",i,lengs[iD;

return(!);
}

This program accumulates the histogram, while producing no output. At
the end of the input it prints the table. The final statement return(!); indi
cates that lex is to perform wrapup. If yywrapQ returns zero (false) it
implies that fnrther input is available and the program is to continue read
ing and processing. To provide ayywrapO that never returns true causes an
infinite loop.

5-20

lex: A Lexical Analyzer

As a larger example, here are some parts of a program written to convert
double precision FORTRA,N to single precision FORTRAN. Because FOR
TRAN does not distinguish between upper- and lowercase letters, this rou
tine begins by defining a set of classes including both cases of each letter:

a
b
c

z [zZ]

An additional class recognizes white space:

w [\t]*

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL.

.

{d}{ o}{u}{b }{l}{ e }{W}{p [,{r}{ e}{ c J{i}{s}{l}{o }{n} { }rintf(yytext[OF'd'? "real ' : "REAL);

Care is taken throughout this program to preserve the case of the original
program. The conditional operator is used to select the proper form of the
keyword. The next rule copies continuation card indications to avoid
confusing them with constants:

.,, 'fOJ ECHO;

In the reguiar eXpression, the quotes surround the blanks. It is interpreted
as beginning of line, then live blanks, then anything but blank or zero."
Note the two different meaninl!ll ofthe caret () here. The following is a lex
program that changes double precision constants to ordinarylloating con
stants.

[0-9]+{W}{ d}{W}[+-]?{W}[0-9]+
L0-9]+{W}". "{W}{ d}{W}[+-]?{W}[0-9]+

• "{W}[0-9]+{W}{ d}{W}[+-]?{W}[0-9]+
/*convert constants*/
for{p""j'ytext; *p !� 0; p++)

{
if(*p�- 'd' n•p-- 'D')

*p+= 'e'- 'd';
ECHO;

}

5-21

XEN1X Programmer's Guide

After the floating point constant is recognized, it is scanned by the for
loop, to find theletter"d" o:r;"Dn� The program then adds "'e'-'dm, which
converts it to the next letter of the alphabet. The modified constant, now
single precision, is written out agsin. The following is a series of names
which must be respelled, in order to remove their initial "d". By using the
arrayyytext, the same action suffices for all the names (only a sample of a
rather longlist is given here).

{d}{s}{i}{n}

}�}{�5i�5i:5{t} fd}{a}{t}{a}{n}

{d}{f}{J}{ o }{ a}{t}printf("%s",yytext+ 1);

Another list of names must have the initial d changed to initial a:

i��5a����10 1
{d}{m}{i}{n}l
{d}{m}{a}{x}l {

yytext[O]+="a" -"d";
ECHO;
}

And one routine must have the initial d changed to initial r:

{d}l{m}{a}{c}{h} {
yytext[O]+="r - "d";
ECHO;

}

To avoid such names as dsillx being detected as instances of dsin, some
final rules pick up longerwords as identifiers and copy some surviving char
acters:

[A-Za-z][A-Za-z0-9]*
[0-9]+
\n

ECHO;

Note that this program is not complete; it does not deal with the spacing
problems in FORTRAN or with the use of keywords as identifiers.

5-22

/". '
\�.�

lex: A Lexical Analyzer

5.17 Specifying Character Sets

The programs generated by lex handle character I/0 only through the
input(), outputO, and unput() routines. Thus, the character representation
provided in these routines is accepted by lex and employed to return values
in yytext. For internal use, a character is represented a& a small integer,
and, if the standard library is used, it has a value equal to the integer value
of the bit pattern representing the character on the host computer. Nor
mally, the letter a is represented in the san:te form as the character con
stant:

'a'

If this interpretation is changed, by providing I/0 routines that translate
the characters, lex must be told about it, by giving a translation table. This
table must be in the definitions section, and must be bracketed by lines
containing only % T. The table contains lines of the following form:

{integer} {character string}

which indicate the value associated with each character. For example:

%T
1 A a
2 Bb

26 Z:z
27 \n
28 +
29
30 0
31 1

39 9
%T

This table maps the lowercase and uppercase letters together into the
integers 1 thrmigh26, thenewlineinto 27, the plus(+) and minus (-) into 28
and 29, and the digits into 30through 39. Note the escape for a newline. If
a table is supplied, every character that is to appear either in the rules or in
any valid input must be included in the table. No character may be
assigned the number 0, and no character may be assigned a larger number
than the size of the hardware character set.

5-23

XENIX Programmer's Guide

5.18 Soun:e Fonnat

The general form of a lex source file is:

{definitions}
o/oo/o
{rules}
% %
{user subroutines}

The definitions section contains a combination of:

1. Definitions, in the form "name space translation".

2. Included code, in the form "space code".

3. Included code, in tbe form:

%{
code
%}

4. Start conditions, given in the form:

%S namel name2 ...

5. Character set tables, in tbe form:

%T
number space character-string
%T

6. Changes to internal array sizes, in the form:

5-24

%x nnn

where nnn is a decimal integer representing an array size and x
selects the parameter as follows:

Letter Parameter
p positions
n states
e treenodes
a transitions
k packed characterclasses
o output array size

(.
I
"--·

lex: A Lexical Analyzer

Lines in the roles section have the form:

expression action

where the action maybe continued on succeeding lines by using braces to
delimit it.

Regular expressions in lex use the following operators:

x The character "x".
"x" An "x", even if xis an operator.

\x An "'K', even if xis an operator.

[xy] Thecharacterxory.

[x-z] The characters x, yorz.

rxJ Anycharacterbutx.

X

<y>x

Anycharacterbutnewline.

An xatthebeginningof aline.

An xwhenlexis in start condition y.

x$ Anxattheend ofaline.

Jtl An optionalx.

x* 0,1,2, . . . instances of x.

x+ 1, 2,3, . . . instances of x.

xiY Anxoray.

(x) An x.

x/y Anx, bntonlyiffollowed byy.

{ xx} The translation of xxfrom the definitions section.

x{ m,n} m through n oecurrences ofx.

5-25

Replace this Page
with Tab Marked :

yacc

. .
n
n
n
I t J t
n
n Jt
Jt
Jt
J t
I t
I t
I t
n
n
n
u
J t
• •
u
n
u
u
u I t
It
Jt
u J t
n
n
. .
••
tt
n
. .
. .
. .
II
..
..
..
..
.. II
..
II
It
It
It
I t
I t
I I
I I
I I
I I
. .
. .
I I
, .
, .
I I
I I
I I
I I
I I
• •
• •
I I
I I
I I
I I
,.
I I
,.
I I
I I
I I
I I
I I

/

(

('

C hapter 6

yacc : A C ompiler- C o mp iler

6.1 Introduction 6-1

6.2 Specifications 6-4

6.3 Actions 6-6

6.4 Lexical Analysis 6-9

6.5 How the Parser Works 6-11

6.6 Ambiguity and Conflicts 6-16

6.7 Precedence 6-21

6.8 Error Handling 6-23

6.9 The yacc Environment 6-26

6.10 PreparingSpecifications 6-27

6.11 Input Style 6-27

6.12 Left Recursion 6-28

6.13 Lexical Tie-ins 6-29

6.14 Handling Reserved Words 6-30

6.15 Simulating Error and Accept in Actions 6-30

6.16 Accessing Values in Enclosing Rules 6-30

6.17 SupportingArbitraryValue Types 6-31

6.18 A Small Desk Calculator 6-32

6.19 yacc input Syntax 6-35

6.20 An Advanced Example 6-38

6.21 Old Features 6-44

(

yacc: A Compile.-- Compiler

6.1 Introduction

Computer program input generally bas some structure; every computer
program that accepts input can be thought of as defining an input language
which it accepts. An input language may be as complex as a programming
language, or as simple as a sequence of numbers. Unfortunately, usual
input facilities are limited, difficult to use, and ofte11 lax about checking
tlteirinputsforvalidity.

yacc(CP) provides a general tool for describing the input to a computer
program. The name yacc stands for "yet another compiler�compiler".
The yacc user spacifies tltc structures of his input, togetherwitlt the code to
be invoked as each structure is recognized. yacc turns such a specification
into a subroutine that handles the input process; frequently, it is con
venient and appropriate to have flow control in the user's application han
dledby this subroutine.

The input subroutine produced by yacc calls a user-supplied routioe to
return the next basic input item. Thus, the user can specify his input in
terms of individual input characters, or in terms of higher level constructs
such as names and numbers. The user-supplied routine may also handle
peculiar features such as comment and continuation conventions, which
typically defy easy grammatical specification. Tlte class of specifications
accej)ted is a very general one: LALR grammars with certain rules.

In addition to compilersforC, APL, Pascal, RA TFOR, etc., yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system,
and a FORTRAN debugging system.

yacc provides a general tool for imposing structure on tlte input to a com
puter program. The yacc user prepares a specification of the input pro
cess; this includes rules describing the input structure, the code to be
invoked when these rules are recognized, and a low-level routine to do tlte
basic input. yacc tlten generates a function to control the input process.
This function, called a parser, calls the user-supplied low-level input rou
tine (called tlte lexical analyzer) to pick up the basic items (called tokens)
from the input stream. These tokens are organized according to tlte input
structure rules, called grammar rules. When one of tltese rules has been
recognized, user code supplied for this rule is invoked. Note that actions
have the ability to return values and make use of tlte values of other
actions.

yacc is written in a portable dialect of C and the actions, and output sub
routine, are also written in C. Moreover, many of tlte syntactic conven
tions ofyacc followtlte Clanguage syntax.

6-1

XENIX Programmer's Guide

The heart of the input specification is a collection of grammar rules. Each
ruledescnbes an allowable structure and givesitaname. For example, one
grammar rule might be:

date : month_nameday ',' year ;

Here, date, month.J1.ame, day, and year represent structures of interest in
the input process; presumably, month_name, day, and year are defined
elsewhere. The comma (.) is enclosed in single quotation marks; this
implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance
in controlling the input. Thus, with proper definitions, the input:

July 4, 1776

might be matched bytheabove rule.
An important part of the input process is carried out by the lexical
analyzer. This user routine reads the input stream, recognizing the lower
level structures, and communicates these tokens to the parser. A strecture
recognized by the lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is called a nonterminal symbol. To
avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures
using the lexical analyzer or grammar rules. For example, the rules:

mont1Ln.ame : 'J' 'a''n' ;
month_name : 'F' 'e' 'b' ; ·

montb_naroe : 'D' 'e' 'c' ;

might be used in the above example. The lexical analyzer would only need
to recognize individual letters, and mcnth_name would be a non terminal
symbol. Such low-level rules tend to waste t:il;ne and space, and may com
plicate the specification beyond yacc's ability to deal with it. Usually, the
lexical analyzer would recognize the month names, and return an indica
tion that a month_name was seen; in this case, rnonthJI.ame would be a
token.

Literal characters, such as the comma, must also be passed through the
lexical analyzer and are considered tokens.

6-2

(' .
(

yacc: A Compiler-Compiler

Specification files are very flexible. It is relatively easy to add the follov.ing
rule to the example shown above:

date : month '/' day'l'year ;

allowing:

7/4/1776

as a synonym for:

July4, 1776

In most cases, this new rule could be slipped in to a working system v.ith
minimal effort, and little danger of disrupting existinginput.

The input being read may not conform to the specifications. These input
errors are detected as early as is theoretically possible v.ith a left-to-rigbt
scan; thns, not only is the chance of reading and computingv.ith bad input
data substantially reduced, but the bad data can usually be quicldy found.
Error handling, provided as part of the input specifications, permits the
reentry of bad data, or the continuation of the input process after skipping
over the b ad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self contradictory,
or they may require a more powerful recognition mechanism than that
available to yacc. The former cases represent design errors; the latter
cases can often be corrected by making the lexical analyzer more powerful,
or by rewriting some of the grammar rules. While yacc cannot handle all
possible specifications, its powercomparesfavorablyv.ith similar systems;
moreover, the constructions which are difficult for yacc to handle are also
frequently difficult for you to handle. Some users have reported that the
discipline of formulating valid yacc specifications for their input revealed
errors of conception or design early in the program development stage.

The next several sections describe:

The preparation of grammar rules.

The preparation of the user supplied actions associated v.ith the
grammar rules.

The preparation of!exical analyzers.

The operation of the parser.

- Variousreasons whyyacc maybe unable to produce a parser from a
specification, and what to do about it.

6-3

XENIX Programmer's Guide

A simple mechanism for handling operator precedences in arith
metic expressions.

Error detection and recovery.

The operating environment and special features of the parsers yacc
produces.

Gives some suggestions which should improve the style and
efficiency of the specifications.

6.2 Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed later, it is
often desirable to include the lexical analyzer as part of the specification
file. It may be useful to include other programs as weU. Thus, every
specification file consists of three soctions: the declarations, (grammar)
rules, and programs. The soctions are separated by double percent %%
marks. (The percent sign (%)is generally used inyacc specifications as an
escape character.)

In otherwords, a full specification file is shown as:

declarations
%o/o
rules
%,-o
programs

The declaration soction may be empty. Moreover, if the program section is
omitted, the second % % mark may b e omitted alao; thus, the smallest
legalyacc specification is:

Ofo%
rules

Blanks, tabs, and newlines are ignored; note that they may not appear in
names or multicharacter reserved symbols. Comments may appear wher
ever a name is legal; they are enclosed in/* ... *I, as in C.

The rules section is made up of one or more grammar rules. A grammar
rule has the form:

A : BODY ;

6-4

yaec: A CompUer- CompUer

A represents a non terminal name, and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are yacc

/., punctuation.
I .

0

Names may be of arbitrary length, and may be made up of letters, dot (.),
the underscore (_), and noninitial digits. Uppercase and lowercase letters
are distinct. The names used in the body of a grammar rule may represent
tokens or nonterminal S.)'lllbols.

A literal consist� of a character enclosed in single quotation marks ('). As
in C, the backslash (\)is an escape character within literals, and all the C
escapes are recognized. Thus:

'\n' Newline
'\r' Return
'\" Singlequotationmark
'\ \' Backslash
'\t' Tab
'\b' Backspace
'\f' Fonn feed
'\x:x:x' 'Xx:x" in octal

For a number of technical reasons, the ASCfl NUL character (\0' or 0)
should never be used in grammar rules.

If there are several grammar rules with the same left hand side, then the
vertic.al bar (I) can be used to avoid rewriting the left band side. In addi
tion, the semicolon at the end of a rule can be dropped before a vertical
bar. Thusthegrammarrules:

A : B C D ;
A ; E F ;
A : G ;

can be given to yaee as:

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input much
more readable, and easier to change.

If a nonterminal S.)'lllbol matches the empty string, it can be indicated as
follows:

empty : ;

6-5

XENIX Programmer's Guide

Names representing tokens must be declared; this can be done by entering:

%token namelname2 � · ·

in the declarations section. (See Sections 3 , 5, and 6 in this chapter for a
detailed explanation.) Every nonterniinal symbol must appear on the left
side of at least one rule.

Of all the non terminal symbols, one, called the start symbol, has particnlar
importance. The parser is designed to recognize the start symbol; thus,
this symbol represents the largest, most general structure described by the
grammar rules. By default, the start symbolis taken to be the left hand side
of the :first grammar rule in the rules section. It is possible, and in fact desir
able, to declare the start symbol explicitly in the declarations section using
the %start keyword:

%start symbol

The end of the parser input is signaled by a special token, called the end
marker. If the tokens up to, but not including, the endmarker form a struc
ture which matches the start symbol, the parser function returns to its
caller after the endmarker is seen; it then accepts the input. If the end
markeris seen in any other context, it is an error.

It is the job of the User-supplied lexical analyzer to retum the endmarker
when appropriate; see section 6.3, below. Usually, the endmarker
represents some reasonably obvious I/0 status, such as the end of a file or
the end of a record.

6.3 Actions

With each grammar rule, the user may associate actions to be performed
each time the rule is recognized in the input process. These actions may
return values, and may obtain the values returned by previous actions.
Moreover, the lexical analy.rercan return values for tokens, if desired.

An action is an arbitrary C statement; it can do input and output, call sub
programs, and alter external vectors and variables. An action is specified
by one or more statements, enclosed in curly braces { and }. For example:

A : '(' B ')'
{ hello(1, "abc"); }

6-6

yacc: A Compiler- Compiler

and:

XXX :YYYZZZ
{ printf("a message\n");
flag-25;}

are grammar rules with actions.

T9 _facilitate �sy,�Qffi!IlJ.�I.li.�-�t!Qit_p�twe_ep_ !�� CI.PtioP.� @9_ tlt� J!i3,:r$_e_r,_ tl:t.e
action statements are altered slightly. The dollar sign ($) is used as a signal
to yaccin this context.

To return a value, the action normally !)ets the pseudo-variable $$ to some
value. For example, an action that does nothing but return the value 1 is;

{$$ - 1; }

To obtain the values returned by previous actions and the lexical analyzer,
the action may use the pseudo-variables $1, $2, . . . , which refer to the
values returned by the components of the right side of a rule, reading from
leftto right. Thus, iftheruleis:

A : B C D ;

then $2 has the value returned by C, and $3 the value returned by D.

As a.Illore concrete example, consider the I1.lle:

expr : '(' expr ')' ;

The value returned by this rule is usually the value of the expr in
parentheses. This can be indicated by:

expr : '(' expr ')' { $$ -$2 ; }

By default, the value of a rule is tl1e value of the first element in it ($1).
Thus, grarrmlarrulesoftheform:

A : B ;

do not need to have an explicit action.

In the examples above, all the actions came at the end of fueir rules. Some
linles, it is desirable to get control before a rule is fully parsed. yacc per
mits an action to be written in the middle of a rule as well as at the end. This
rule is assumed to return a value, accessible through the $ mechanism by
the actions to the right of it. In tum, it may access the values returned by
the symbols to its left.

6- 7

XENIX Programmer's Guide

Thus, in the rule:

A : B
{ $$ �1; }
c
{ x � $2; y�$3; }

the effect is to setxto 1, and to setytothe value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new non terminal symbol name, and a new rule matching
this name to the empty string. The interior action is the action triggered off
by recognizing this added rule. yacc actually treats the above example as if
it had been written:

$ACT : /* empty*/
{ $$�1; }

A : B $ACT C
{ x�$2; y�$3; }

In many applications, output is not done directly by the actions; rather, a
data structure, such as a parse tree, is constructed in memory, and
transformations are applied to it before output is generated. Parse trees are
particularly easy to construct, given routines to build and maintain the tree
structure desired. For example, suppose there is a C function node, writ
ten so that the call:

node(L, nl, n2)

creates a node with label L, with the descendants n1 and n2, and returns
the index of the newly created node. Then, a parse tree can be built by sup
plyingactions such as:

expr : expr'+'expr
{ $$�node('+', $1,$3); }

in the specification.

6-8

yacc: A Compiler- Compiler

The mer may define othervariables to be used by the actions. Declarations
and definitions can appear m the declarations section, enclosed in the
marks %{ and %}. These declarations and definitions have global scope,
so they are known to the action statements and the lexical analyzer. For
example:

%{intvariable � O; %}

could be placed in the declarations section, making variable accessible to
all of the actions. The yacc parser uses only names beginning in yy; the user
should avoid such names.

In the examples shown, all the values are integers. A discussion of values of
other types are found in a later section.

6.4 Lexical Analysis

The user must supply a lexical analyzer to read the input stream and com
municate tokens (with values, if desired) to the parser. The icxical
analyzer is an integer-valued function called yylex(). The function returns
an integer, called the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the
external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in
order for conununication between them to take place. The numbers may
be chosen by yacc, or chosen by the user. In either case, the #define
mechanism of C is used to allow the lexical analyzer to return these
numbers symbolically. For example, suppose that the token name DIGIT
has b een defined in the declarations section of the yacc specification file.
The relevant portion of the lexical analyzer might look like the example on
thefollowingpage.

6-9

XENIX Programmer's Guide

yylexO{
extern lot yylval;
intc;

c = getchar();

switch(c) {

case 'O':
case '1':

case '9':
yylval=c-'0';
return(DIGIT);

}

The iotent is to return a token number of DIGIT, and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is
placed io the program section of the specification file, the identifier,
DIGIT, is defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only
pitfall is the need to avoid usiog any token names io the grammar that are
reserved or significant io C or the parser; for example, the use of the token
names if or while will almost certainly cause severe difficulties when th.e lex
ical analyzer is compiled. The token name error is reserved for error han
dliog, and shonld not be used naively.

As mentioned above, the token numbers maybe chosen by �aee or by the
user. In the defanlt situation, the numbers are chosen by yaee. The default
token number for a literal character is the numerical value of the character
io the local character set. Other names are assigned token numbers start
iogat257.

To assign a token number to a token (iocludiog literals), the first appear
ance of the token name or literalio the declarations section can be immedi
ately followed by a nonnegative ioteger. This ioteger is taken to be the
token number of the name or literal. Names andliteralsnot defined by this
mechanism retaio their defanlt defiultlon. It is important that all token
numbers be distioct.

For historical reasons, the endmarker must have token number 0 or nega
tlve. This token number cannot be redefined by the user. Hence, all lexical
analyzers shonld be prepared to return 0 or negative as a token number
upon reaching the end of theirioput.

6-10

yacc: A Compiler-Compiler

A very useful tool for constructing lexical analyzers is lex, dlscussed in a
previous section. These lexical analyzers are designed to work in close har
mony with yacc parsers, The specifications for these lexical analyzers use
regnlar expressions instead of grammar rules. lex can be easily used to pro
duce quite complicated lexical analyzers, but there are some languages
(such as FORTRAN) which do not fit any theoretical framework, and
whose lexical analyzers must be crafted by hand.

6.5 How theParserWorks

yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see
the references for more information). The parser itself, however, is rela
tively simple, and understanding how it works, while not strictly necessary,
wilt nevertheless make treatment of error recovery and ambiguities much
more understandable.

The parser produced byyacc consists of a finite state machine with a slack.
The parser is also capable of reading and remembering the next input
token (called the lookahead token). The current state is always the one on
the top of the stack. The states of the finite state machine are given small
intoger labels; initially, the machine is in state 0, the stack contains only
state O, and the lookahead token has notbeen read.

The machine has four actions avallahle to it, called shift, reduce, accept,
and error. A move oft he parser is done as follows:

1. Based on its current state, the parser decides whetherit needs a loo
k ahead token to decide what action should be done; ifit needs one,
and does not have one, it callsyylex() to obtain the next token.

2. Using the current state, and the lookahead token if needed, the
parser decides on its next action, and carries it out. This may result
in states being pushed onto the stack; or popped of!' of the stack,
and in the lookahead token beingprocessed orleft alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a lookahead token. For example, in
state 56 there maybe an action:

IF shift34

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the
top of the stack). Thelookahead token is cleared.

The reduce action keeps the stack from growing without b ounds. Reduce
actions are appropriate when the parser has seen the rigbt hand side of a

6 - 11

XENlX Programmer's Guide

gnu:nnutr rule, and is prepared to announce that it has seen an instance of
the rule, replacing the right hand side by the left hand side. It may be neces
sary to consult the lookahead token to decide whether to reduce, but usu
ally itis not. In fact, thedehult action (represented by a.)isoften a reduce
action.

Reduce actions are associated with individual grammar rules. Grammar
rules are also given small integer numbers, leading to some confusion. The
action:

. reduce18

refers to grammar rule 18, while the action:

IF shift34

refers to state 34.

Suppose the rule beingredueedis shown on thefollowingpage.

A : xy z ;

The reduce action depends on the left hand symbol {A in this case), and
the number of symbols on the right hand side (three in this case). To
reduce, first pop off the top three states from the stack (In general, the
number of states popped is equal to the number of symbols on the right
side of the rule). In effect, these states were the ones put on the stack while
recognizingx, y, and�. and no longer serve any useful purpose. After pop
ping these states, a state is uncovered which was the state the pat'ller was m
before beginning to process the rule, Using this uncovered state, and the
symbol on the left side of the rule, perform what is in effect a shift of A. A
new state is obtained, pushed onto the stack, and parsing continues.
There are significant differences between the processing of the left hand
symbol and an ordinary shift of a token, however, so this action is called a
gnto action. In particular, the lookahead token is cleared by a shift, and is
not affected by a goto. In any case, the uncovered state contains ali entry
such as:

A goto 20

causing state 20 to be pushed onto the stack, and becom.e th<l current state.

In effect, the reduce action turns back the clock in the parse, popping the
states off the stack to go back to the state where the right hand side of the
rule wasfust seen. The parser then behaves as if it had seen the left side of
the rule at that time. If the right hand side of the rule is empty, no states are
popped off of the stack; the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the rule

6-12

0

yacc: A Compiler- Compiler

is executed before the stack is adjusted. In addition to the stack holding
the states, another stack, running in parallel with it, holds the values
returned from the lexical analyzer and the actions. When a shift takes
place, the external variable, yylval, is copied onto the value stack. After
return from the user code, the reduction is carried out. When the goto
action is done, the external variable, yyval, is copied onto the value stack.
The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job . 'fh_e
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it
has seen, together with the lookahead token, cannot be followed by any
thing that would result in a legal input. The parser reports an error, and
attempts to recover the situation and resume parsing; the error recovery
(as opposed to the detection of error) will be discussed in a later section.

Consider the following example:

%tokenDINGDONGDELL
%%
rhyme : sound place

.

sound : DING DONG
•

place : DELL

When yacc is invoked with the -v option, a file called y.output is pro
duced, with a human-readable description of the parser. They.outputfi!e
corresponding to the above grammar (with some statistics stripped off the
end) is given on the next page.

6-13

XENIX Programmer's Guide

stateO
$accept : ...rhyme $end

DINGshift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_5end

$end accept
. error

state2
rhyme : sound...place

DELL shift S
. error

piacegoto4

state3
sound : DINGJ)ONG

DONGshift6
. error

state4
rhyme : sound place_ (1)

. reduce 1

stateS
place : DELL_(3)

. reduce3

state 6
sound : DING DONG_ (2)

. reduce2

Notice that, in addition to the actions for each state, there is a description
of the parsing rules being procesaed in each state. The underscore charac
ter W is used to indicate what has been seen, and what is yet to come, in

6-14

yacc: A Compiler- Compiler

each rule. Suppose the input is:

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first token,
DING,is read, becoming theiookahead token. The action"in state 0 on
DING is shift 3, so state 3 is pushed onto the stack, and the lookahead
token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on
the token DONG is shift 6, so state 6 is pushed onto the stack, and the loo
kahead is cleared. The stack now contains 0, 3, and 6. In state 6, without
even consulting the lookahead, the parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off of the stack, uncovering state 0. It then checks the description
of state 0, looking for a goto on sound, as shown below:

soundgoto 2

is obtained; meaning state 2is pushed onto the stack, becoming the current
state.

In state 2, the next token, DELL, must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the
lookahead token is cleared. In state 5, the only action is to reduce by rule 3.
This has one symbol on the right hand side, so one state, 5, is popped off,
and state 2is uncovered. The go to in state 2 on place, the left side of rule 3,
is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is
to reduce by rule 1. There are two symbols on the right, so the top two
states are popped off, uncovering state 0 again. In state 0, there is a go to on
rhyme, causing the parser to enter state 1. In state 1, the input is read; the
endmarker is obtained; indicated by a $end in the file. When the end
marker is accepted, the action is called state 1. This successfully ends the
parse.

The reader is urged to consider how the parser works when confronted
with such incorrect strings as DING DONG DONG, DING DONG, DING
DONG DELL DELL, etc. A few minutes spent with this and the other
simple examples will probably be repaid when problems arise in more com
plicated contexts.

6-15

XENIX Programmer's Guide

6.6 Ambiguity and Conftlcls

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule:

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign
between them. Unfortunately, this grammar ruie does not completely
specify the way that all complex inputs should be structured. For example,
if the input is:

expr - e:xpr - e:xpr

the xule allows this inputto be structured as either:

(expr- expr) - e:xpr

or as�

expr - (expr - expr)

(The first is called left association, the second is called right association).

yacc detects such ambiguities when it is attempting to bui.ld the parser. It is
instructive to consider the problem that confronts the parser when it is
given input such as:

expr - e:xpr - e:xpr

When the parser has read the second expr, theinputthathas been read:

expr - e:xpr

matches the right side of the grammar rule above. The parser could reduce
the input by applying this rule. After applying this rule, the input is
reduced to e:xpr (the left side of the rule). The parser would then read the
final part oftheinput:

- expr

and again reduce. The effect of this is to take the left associative interpreta
tion�

Alternatively, when the parser has read:

e:xpr - e:xpr

6-16

c�

yacc: A Compiler- Compiler

it could defer the immediate application of the rule, and continue reading
the input until it comes across:

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them
to expr and leaving:

expr - expr

Now the rule can be reduced once more; the effect is to take the right asso
ciative interpretation. Thus, having read:

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is caiied a shift/reduce conflict. It may also
happen that the parser has a choice of two legal reductions; this is called a
reduce/reduce conflict. Note that there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still pro
duces a parser. It does this by selecting one of the valid steps wherever it
has a choice. A ru1e describing which choice to make in a given situation is
caiied a disambiguatingrule.

yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in
favor of shifts. Rule 2 gives the user rather crude control over the behavior
of the parser in this situation, but reduce/reduce conflicts should be
avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yacc
can construct. The use of actions within rules can also cause conflicts, if
the action must be done before the parser can be sure which rule is being
recognized. In these cases, the application of disambiguating rules is inap
propriate, and leads to an incorrect parser. For this reason, yacc always
reports the number of shift/reduce and reduce/reduce conflicts resolved
by Rule 1 and Rule 2.

In general, whenever it is possible to applydisambiguatingrules to produce
a correct parser, it is also possible to rewrite the grammar rules so that the
same inputs are read, but there are no conflicts. For this reason, most pre
vious parser generators have considered conflicts to be fatal errors. Our

6-17

XF;l\'IK Programmer's Guide

experience h.as suggested that this rewriting is somewhat unnatnral, and
produces slower parsers; thus, yacc will produce parsers even in the pres
ence of conflicts.

As an example of the power of disambiguating rules, consider a fragment
from a progtl!lllming langnage involving an if -then-else constrnctio!l:

stat : IF'(' cond ')' stat
I IF'(' CO!ld ')' stat ELSEstat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat is a non terminal sym
bol describing statements. The first rule will be called tbe simple-if ru1e,
and the second the if -else rule.

These two rules form an ambiguous construction, since input ofthe form

IF (Cl) IF (C2) S1 ELSES2

can be structured :,u;cording to these rules in two ways:

or

IF(Cl){
IF(C2)S1
}

ELSES2

IF (Cl) {
IF(C2)S1
ELSE S2

. }

The second interpretation is the one given in most programming languages
having this constrnct. Each ELSE is associated with tbe last IF immedi
ately preceding . the ELSE. In this example, consider the situation where
the parser has seen:

IF(C1) IF(C2) S1

and is looking at the ELSE. It can immediatelyreducebythesimple-ifru1e
to get:

IF(Cl)stat

6-18

yacc: A Compiler-Compiler

and then read the remaining input:

ELSES2

and reduce:

IF (Cl) stat ELSE S2

by the if-else rule. This leads to groupings ofthe above listed input.

On the other hand, the ELSE may be shifted, S2 read, and the right hand
portion of:

IF (Cl) IF (C2)S1ELSES2

to be reduced by the if -else rule to get:

IF(Cl) stat

which can then be reduced by the simple-if rule. This leads to the second
grouping of the previously listed input, which is usually desired.

Once again, the parser can do two valid things - there is a shift/reduce
conflict. The application of disambiguating rule 1 tells the parser to shift·in
this case, which leads to the desired grouping.

This shift/reduce conflict arises onl:)fwhen there is a particular current
input symbol, ELSE, and particular inputs that have already been seen,
such as:

JF (Cl) IF (C2)Sl

Jn general, there may be many conflicts, and each one will be associated
with an input symbol and a set of previously read inputs . The previously
read inputs are characterized by the state of the parser.

The conflict messages of yacc are \>est understood by examining the ver
bose (-v) option output file. The output corresponding to the above
conflict state might belike the example shown on the next page.

6-19

XENIX Programmer's Guide

23: shift/reduce conflict (shift45, reduce 18) on ELSE

state23

stat : IF (cond) staL (18)
stat : IF (cond) stat . .ELSE stat

ELSE shift 45
. reduce18

The first line describes the conflict, giving the state and the input symbol.
The ordinary state description follows, giving the grammar rules active in
the state, and the parser actions. Recall that the underline marks the por
tion of the grammar rules which have been read. Thus in the example, in
state 23 the parser has read input corresponding to:

IF (cond) stat

and the two grammar rules shown, are active at this time. The parser can
do two possible things. If the input symbol is ELSE, it is possible to shift
into state45. State45willhave, aspartofitsdescription, the line:

stat : IF (cond) stat ELSE_stat

Note that the ELSE will have been shifted in this state. Back in state 23,
the alternative action, described by"." , is to be done if the input symbol is
not mentioned explicitly in the above actions; thus, in this case, if the input
symbolisnotELSE, theparserreducesbygrammarrule 18:

stat : IF '(' cond ')' stat

Once again, notice- that the numbers following shift commands refer to
other states, while the numbers following reduce commands refer to gram
mar rule numbers. In the y.outputfile, the rule numbers are printed after
those rules that can be reduced. In most one states, there will be at most 1
reduce action possible in the state, and this will be the default co=and.
The user who encounters unexpected shift/reduce conflicts will probably
want to look at the verbose output to decide whether the default actions are
appropriate. In really tough cases, the user might need to know more
about the behavior and construction of the parser than can be covered
here. In thls case, one of the references previously shown can be checked;
or the services of a knowledgeable user can be requested.

6-20

yacc: A Compiler· Compiler

6. 7 Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions.
Most of the commonly used constructions for arithmetic expressions can
be naturally described by the notion of precedence levels for operators,
together with information about left or right associativity. It turns out that
ambiguous grammars witl:t !!ppropria(e <:lisambjguating l'!lles cl!n be us�'(! to
create parsers that are faster and easier to write than parse;rs constructed
from unambiguous grammars. The basic notion is to write grammar rules
oftheform:

expr : exprOPexpr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. As disambiguating rules� the user
specifies the precedence of all the operators, and the associativity of the
binary operators. This information is sufficient to allowyacc to resolve the

(�
parsing conflicts in accordance with these ru1es, and construct a parser that

1, realizes the desiroo precedences and associativities.

The precll(iences and associativities are attached to tokens in the declara
tions section. This is done by a series of lines beginning with a yacc key
word: %left, %right, or %nonassoc, followed by a list of tokens. All of
the tokens on the same line are assumed to have the same precedence level
and associativity; the lines are listed in order of increasing precedence.
Thus:

0/oleft'+''�'
0/oleft '*' 'I'

describes the precedence and associativity of the four arithmetic opera
tors. Plus and minus are left associative, and have lower precedence than
star arid slash, which arc also left associative. The keyword %right is used
to describe right associative operators, and the keyword %nonassoc is
used to describe operators, like the operator .LT. in FORTRAN. Thus:

A .LT. B .LT. C

(-- is illegal in FORTRAN, and such an operator would be described with the
'--- keyword %nonassoc in yacc.

6-21

XENIX Programmer's Guide

As an example of the behavior of these declarations, the description:

%right'='
%le.ft '+' '-'
%left '*''P

%%

expr : expr '=' expr ,
expr'+' expr
expr '-' expr
expr '*' expr
expr '/' expr
NAME

might be used to structure tbe input:

a - b - c*d - e - f*g

as follows:

a- (b - (((c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the
same symbolic representatio!l, but have differen,t precedences. An exam
pleis unary and binary '-'; unaryminus may be given the same strength as
multiplication, or even higher,, while binary minus has a lower strength
tban multiplication. The keyword, %prec, changes the precedence level
associated With a particular grammar rule. The % prec appears immedi
ately after the body of the grammar rule, before the action or closing semi
colon, and is followed by a token name or literal. It causes the precedence
of the grammar rule to become that ofthe following token name or literal.
For example, to make unary minus have the same precedence as multipli
cation the rules might resemble:

6-22

%left '+''-'
%left '*' '/'

%%

expr : expr '+' expr
expr '-' expr
expr '*' expr
expr '/' expr
'-' expr %prec '*'
NAME

C-. .

yacc: A Compller· Compiler

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by the %token, as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work
as follows :

L 'fhe precedences and associativities ·are recorded 'for those tokens
and literals that have them.

2. A precedence and associativity is associated wjth each grammar
rule; it is the precedence and associativity of the last token or literal
in the body of the rule. If the % prec construction is used, it over
rides this default. Some grammar rules may have no precedence
and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no pre
cedence and associativity, then the two disambiguating rules given
at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action (shift or
reduce) associated wjth the higher precedence. lf the precedences
are the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. This means
that mistakes in the specification of precedences may disguise errors in the
input grammar; it is a good idea to be sparing with precedences, and use
them in an essentially cookbook fashion, until some experience has been
gained. They. output file is very usefni in deciding whether the parser is
acl\lally doi!lgwhat was intended.

6,8 Error Handling

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary
to reclaim parse tree storage, delete or alter symbol table entries, and, typi
cally, set switches to avoid generating any further output .

It is seldom acceptable to stop all processing when an error is found. It is
more useful to continue scanning the input to find further syntax errors.
This leads to the problem of getting the parser restarted after an error. A

6-23

XENIX Programmer's Guide

general class of algorithms to perform this involves discarding a number of
tokens from the input string, . and attempting to adjust the parser so that
input can continue.

To allow the user some control over this process, yacc provides a s'imple,
but reasonably general feature. The token name e"or is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests
locations where errors are expected, and where recovery might take place.
The parser pops its stack until it enters a state where the tokenerrorislegal.
It then behaves as if the token error were the current lookahead token, and
performs the action encountered. Thelookahead token is thenreset to the
token that caused the error. If no special error rules have been specified,
the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting
an error, remains in an error state until three tokens have been successfully
read and shifted. If an error is detected when the parser is already in error
state, no message is given, and the input token is quietly deleted.

As an example, the following rule:

stat : error

would, in effect, mean that on a syntax error, the parser would attempt to
skip over the statement in which the error was seen. MOre precisely, the
parser will scan ahead, looking for three tokens that might legally follow a
statement, and start processing at the first of these; if the beginnings of
statements are not sufficiently distinctive, it may i:nake a false start in the
middle of a statement, and end up reporting a second error when there
actually is no error.

Actions may be used with these special error rules. These actions might
attemptto reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control.
Somewhat easier are rules such as:

stat : error';'

Here, when there is an error, the parser attempts to skip over the state
ment, but will do so by skipping to the next ';'. All tokens after the error
and before the next �;� cannot be shifted, and are discarded. When the �;�is
seen, this rule will be reduced, and any cleanup action associated with it
performed.

6-24

./� " I
I'-

yacc: A Compiler- Compiler

Another form of error rule arises in interactive applications, where it may
be desirable to permit aline to be reentered after an error. A possible error
rule might be:

input : error '\n' { printf("Reenter line: '); } input
{ $$ � $4;}

There is one potential difficulty with this approach; the parser must
correctly process three input tokens before it admits that it has correctly
resynchronized after the error. If the reentered line contains an error in
the first two tokens, the parser deletes the offending tokens, and gives no
message; tltis is clearly unacceptable. For this reason, there is a mechan
ism that can be used to force the parser to believe that an error has been
fullyrecovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better
written:

input : error'\n'
{yyerrok;
printf("Reenter last line: "); }

input
{ $$ � $4; }

As mentioned above, the token seen immediately after the error symbol is
theinputtoken at which the error was discovered. Sometimes, this is inap
proprinte; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For e"ample, suppose 1he action after
error were to call some sophisticated resynchronization routine, supplied
by the user, that attempted to advance the input to the beginning of the
next valid statement. A fter this routine was called, the next token returned
by yylexwould presumably be the Jlrst token in a legal statement; the old,
illegal token must be discarded, and the error state reset. This could be
donebyarulelike:

stat : error
{ resynch();
yyerrok ;
yyclearin ; }

6-25

XENIX Programmer's Guide

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can
get control to deal with the error actions required by other portions of the
program.

6.9 Theyacc EnvirolUllcnl

When the user inputs a specification to yacc, the output is a file of C pro
gram, called y.tab.c on most systems. The function produced by yaccis
called y;,parseO; it is an integer valued function. When it is called, it
repeatedly calls yylex, the lexical analyzer supplied by the user to obtai11
ill put tokens. Eventually, either an error is detected, in which case (if no
error recovery is possible) yyparse() returns the value 1, or the lexical
analyzer returns the endmarker token and the parser accepts. In this case,
yyparse() returns the value 0.

The user must provide a certain amount of environment for this parser, in
order to obtain a workmg program. For e:xample, as with every Cprogram,
a program called =in() must be defined, that eventually calls yyparse() In
addition, a routille called yyerror() prillts a message when a syntax error is
detected.

These two routilles must be supplied in one form or another by the user.
To ease the initial effort of usillg yacc, a library has been provided with
default versions of main() and yyerror(). The name of this library is system
dependent; on many systems the library is accessed by a -ly argument to
the loader. To show the triviality of these default programs, the source is
given below:

and

mainO{
retum(yyparseO);
}

#include <stdio.h>

:yyerror(s) char *s; {
fprintf(stderr, "o/os\n", s);
}

The argument to yyerror() is a string containing an error message, usually
the stringzyntax error. The average application will want to do better than
this. Ordinarily, the program should keep track of the input line number,
and print it along with the message when a syntax error is detected. The
external integer variable yychar contains the lookabead token number at
the time the error was detected; this may be of some interest m givmg better
diagnostics. Since the 71Ulin() program is probably supplied by the user (to

yacc: A Compiler· Compiler

read arguments, etc.) the yacc library is useful only in &mall projects, or in
the earliest stages oflarger ones.

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of which input symbols have been read, and what
the parser actions are. Depending on the operating environment) it may be
possible to set this variable by using a debugging system.

6.10 Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual sub sections are more or
less independent.

6.1l lnputStyle

It is difficult to provide rules with substantial actions and still have a read
able specification file. Thus, try to be consistent with the following con
ventions when entering a specification file:

1. l,Jse uppercase letters for token names, lowe;rcase"letters fornonter
minal names. This rule llelpsyou to knowwllo to blame when things
go wrong.

2. Put grammar rules and actions on separate lines. This allows either
to be changed without an automatic need to change the other.

3. Put all rnles with the same left hand side together. Put the left hand
side in only once, and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left hand side,
and put the semicolon on a separate line. This allows new rules to
be easily added.

5. Indent rnle bodies by two tab stops, and action bodies by three tah
stops.

The examples in tile text of this section follow this style (where space per
mits). The user must make up his own mind about these stylistic questions;
the central problem, however, is to make tile rules visible through the
scope of action code.

6-27

XENIX Programmer's Guide

6.12 Left Recursion

The algorithm used by the yacc parser encourages so called left recursive
grammar rules of the form:

name : name rest_oLrule ;

These rules frequently arise when writing specifications of sequences and
lists:

list : item
I list ', ' item

and

seq : item
I seq item

In each of these cases, the first rule will be reduced for the first item only,
and the second rule will be reduced for the second and all succeeding
items.

With right recursive rules, such as:

seq : item
l item seq

the parser would be a bit bigger, and the items would be seen, and reduced,
from right to left. More seriously, an internal stack in the parser would be
in danger of overflowing if a very long sequence were read. Thus, the user
shoul9 use left recursion whenever possible.

It is worth considering whether a sequence with zero elements has any
meaning, and if so, consider writing the sequence specification with an
empty rule:

seq : /• empty*/
I seq item

Once again, the first rule would always be reduced exactly once, before the
first item was read, and then the second rule would be reduced once for
each item read. Permitting empty sequences often leads to increased gen
erality. However, conflicts might arise if yacc is asked to decide which
empty sequence it has seen, when it has not seen enough to know!

6-28

yacc: A Compiler- Compiler

6. 13 Lexical Tie-ins

Some lexical decisions depend on context, For ex!lmple, the lexical
analyzer might want to delete blanks normally, but not within quoted
strings. Or names might b e entered into a symbol table in declarations, but
not in expressions.

One way of handling this situation is to create a global flag that is examined
by the leXical a!lalyiier, and set by actions. For exairiple; suppose a pro
gramconsists of 0 or more declarations, followed byOormore statements.
Consider:

%{
intdfiag;

%}
. . . other declarations . . .

% %

prog : decls stats

dec is : /* empty * I
{ dftag= 1; }

I decls declaration

stats :/* empty */
{ dfiag = O; }

I stats statement

... other rules ...

The flag dflag is now 0 when reading statements, and 1, when reading
declarations, except for the first token in the first statement. This token
must b e seen by the parser before it can tell that the declaration section bas
ended and the statements have begun. In many cases, thls single token
exception does not affect the lexical scan.

This kind of back door apProach can b e over done. Nevertheless, it
represents a way of doing some things that are difficult to do otherwise.

6-29

X!L'IIX Programmer's Guide

6.14 Handling Reserved Words

Some programming languages permit the user to use words like if, which
are normally reserved, as label or variable names, provided that such use
does not conflict with the legal use of these names in the programming
language. This is extremely hard to do in the framework of yacc; it is
dlfficult to pass information to the lexical analyzer telling It "this instance
of 'if' is a keyword, and that instance of "if" is a variable". The user can try
this, but it is difficult. It is best that keywords be reserved; that is, be for
bidden for use as variable names.

6. 15 Simulating Error and Accept inActions

The parsing actions of error and accept can be simulated in an action by use of macros YY ACCEPT and YYERROR. YYACCEPT causesyJParseO
to return the value 0; YYERROR causes the parser to behave as if the
current input symbol had been a syntax error;yyerror() is called, and error
recovery takes place. These mechanisms can be used to simulate parsers
with multiple endmarkers or context -sensitive syntax checking.

6.16 Accessing Values in Enclosing Rules

An action may refer to values returned oy actions to the left of the current
rule. The mechanism is simply the same as with ordinary actions, a dollar
sigu followed by a digit, but in this case, the digit may oe 0 or negative.
Consider:

6-30

sent : edj noun verb adj noun
{look atthe sentence ... }

edj : THE {$$ = THE;}
f YOUNG{$$=YOUNG; }

noun : DOG {$$-DOG; }
I CRONE{if($0==YOUNG){

rtf("what?\n");

$$= CRONE;
}

yacc: A Compiler- Compiler

In the action following the word CRONE, a check is made that the preced
ing token shifted was not YOUNG. Obviously, this is only possible when a
great deal is known about what might precede the symbol noun in the
input. There is also a distinctly unstructured flavor about this. Neverthe
less, at times, this mechanism will save a great deal of trouble, especially
when a few combinations are to be excluded from an otherwise regular
structure.

6.17 Supporting Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are
integers. yacc can also support values of other types, including structures.
In addition, yacc keeps track of the types, and inserts appropriate union
member names so that the resulting parser will be strictly type checked.
Theyacc value stack is declared to be a union of the various types of values
desired. The user declares the union, and associates union member names
to each token and non terminal symbol having a value. When the value is
referenced through a $$ or $n construction, yacc will automatically insert
the appropriate union name, so that no unwanted conversions will take
place. In addition, type checking commands such as lint(C), will be far
more silent.

(--� There are three mechanisms used to provide for this typing. First, there is a
""----- way of defining the union; this must be done by the user since other pro

grams, notably the lexical analyzer, must know about the union member
names. Second, there is a way of assOciating a uniop_ member name with
tokens and non terminals. Finally, there is a mechanism for describing the
type of those few values where yacc cannot easily determine the type.

/
("---·

To declare the union, the user includes in the declaration section:

%union{
body of union . . .
}

This declares the yacc value stack, and the external variables yylval and
yyval, to have type equal to this union. If yacc was invoked with the -d
option, the union declaration is copied onto the y.tab. h file. Alternatively,
the union may be declared in a header file, and a typedef used to define the
variable YYSTYPE to represent this union. Thus, the header file might
also have said:

typedef union {
body of union . . .
} YYSTYPE;

The header file must be included in the declaration section, by use of % {
and % }.

6-31

XENIX Programmer's Guide

Once YYSTYPE is defined, the union member names must be associated
with thevarious terminalandnonterminalnames. The construction:

< name>

is used to indicate a union member name. If this follows one of the key
words, o/otoken, o/oleft, %right, and 0/ononassoc, theunionmembername
is associated with the tokens listed. Thus:

%left <optype> '+' '-'

will cause any reference to values returned by these two tokens to be tagged
with the union member name optype. Another keyword, %type, is used
similarly to associate union member names with nonterminaJs. Thus, one
might say:

%type <nodetype> exprstat

A couple of cases remain where these mechanisms are :insufficient. If
there is an action within a rule, the value returned by this action has no
predefined type. Similarly, reference to left context values (such as $0 -
see the previous subsection) leaves yacc with no easy way of knowing the
type. In this case, a type can be imposed on the reference by inserting a
union member name, between < and >, immediately after the fust $. An
example ofthisusageis:

·

rule : aaa { $<intval>$- 3; } bbb
{ fun($<intval>2, $<other>0); }

This syntax has little to recommend it, butthe situation arises rarely.

A sample specification is given in a later section. The facilities in tbis sub
section are not triggered until they are used. In particular, the use of %type
will tum on these mechanisms. When they are used, there is a fairly strict
level of checking. For example, use of $n or $$ to refer to something with
no defined type is diagnosed. If these facilities are not triggered, the yacc
value stack is used to hold int's, as was true historically.

6.18 ASmall DeskCalculator

The following example shows the complete yacc specification for a small
desk calculator. The desk calculator has 26 registers, labeled a through z,
and accepts arithmetic expressions made up of the operators+� -. •, I, %
(mod operator), & (bitwise and), I (bitwise or), and - (assignment). If an
expression at the top level is an assignment, the value is not printed; other
wise it is. As in C, an integer that begins with 0 (zero) is assumed to be
octal; otherwise, it is assumed to be decimal.

6-32

yacc: A Compiler- Compiler

As an example of a yacc specification, the desk calculator does a reason
able job of showing how precedences and ambiguities are used, and
demonstrating simple error recovery. The major oversimplifications are
that the lexical analysis phase is much simpler than for most applications,
and the output is produced immediately, line by line. Note the way that
decimal and octal integers are read in by the grammar rules. This jop is
better done by tbe lexical analyzer.

,.
%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}
%start list

%token DIGIT LETTER

%left!
%left'&'
%left '+"-'
%1eft�.� .. r"%"'
%left UMINUS /*precedence for unary minus */

% % /*beginningofrules section */

list : /* empty •I

I list stat '\n'
list error '\n'

{yyerrok; }

stat : expr
{printf("%d\n", $1); }
LETTER -�- expr

{regs[$1]�$3; }

6-33

XENIX Programmer's Guide

expf : T expf ')'
{ $$=$2;}

I expf '+' expf
{ $$=$1+$3;}

I expf '-' expr
{$$=$1-$3;}

I expr '*' expr
{ $$=$1 * $3;}

1 expr-r expr
{ $$=$1/$3;}

I expr'%' expr
{ $$=$1% $3;}

I expr '&' expr
{ $$ = $1&$3;}

l expr'j'expr
{ $$ = $1 1 $3;}

I '-' expr % prec UMINUS
{ $$ = - $2;}

I LETTER
{ $$ = regs[$1]; }

I number
'

6-34

number : DIGIT
{ $$ = $1; base= ($1==0) ? 8 : 10; }

I number DIGIT
{ $$ =base • $1 + $2; }

%% I* start of programs *I

yacc: A Compiler- Compiler

yylexQ {

lnt c;

I* lexical analysis routine */
!• retums LETIERforalowercaseletter, */
!• yylval-Othrough 25 */
I* retum DIGITfor adigit, *I
I* yylval �Otbrough9 *I
I* all other characters */
I* are returned immediately *I

while((c-getcbarO)- ") { /* skip blanks *I }

/*c isnownonblank *I

if(islower(c)) {
yylval�c- "a";
retum (LETTER);
}

if(isdigit(c)) {
yylval-c - "0';
return(DIGIT) ;
}

return(c);
}

6.19 yacclnputSyntax

This section has a description of the yacc input syntax, as a yacc
specification. Context dependencies, etc., are not considered� Ironically,
the yacc input specification language is most naturally specified as an
LR(2) grammar; the sticky part comes when an identifier is seen in a rule,
immediately following an action. If this identifier is followed by a colon, it
is the start of the next rule; otherwise, it is a continuation of the current
rule, which just happens to have an action embedded in it. · As imple
mented, the lexical analyzer looks ahead after seeing an identifier, and
decides whether the next token (skipping blanks, newlines, comments,
etc.) is a colon. If so, it returns the token CJDENTIFIER. Otherwise, it
returns IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIER, but never as part of a CJDENTIFIER.

6-35

XENIX Programmer's Guide

1* grammar for the input to yacc * 1

1* basic entities *1
%token IDENTIFlER 1* includes identifiers and literals *1
%token CJDENTIFIER /* identifierfollowed bycolon */
%token NUMBER /* [0-9]+ *I

/*reserved words: %type-> TYPE, %left=> LEFT, etc. */

%token LEFf RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */
%token LCURL /* the %{mark *I
%token RCURL /*the%}mark */

I* ascii character literals stand for themselves *I

%start spec

%%

spec : defs MARK rules tali

tali :MARK {Eatup therestofthefile}
(I* empty: the second MARK is optional *I

defs : /• empty*/ l defs def

def : START IDENTIFIER

I
UNION { Copy union definition to output}
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

rword : TOKEN
LEFT
RIGHT
NONASSOC
TYPE

6-36

c·

ci

yacc: A Compiler- Compiler

tag : /* empty: union tag is optional */
I '<' IDENTIFIER '>'

nlist :nmno

I nlist nmno
nlist "," nmno

nmno : IDENTIFIER /*Literalillegalwith %type */
I IDENTIFIER NUMBER /* lllegalwith %type*/

I* rules section *I

rules : C_lDENTIFIER rbody prec
I rules rule

rule : C_lDENTIFIER rbody prec
I 'I' rbody prec

rbody : /*empty*/

I rbody IDENTIFIER
rbody act

act : T { Copy action, translate$$, etc. } '}'

prec : /* empty*/

I
PREC IDENTIFIER
PRE<?, IDENTIFIER act
prec ;

6-37

XENIX Prc,grammer's Guide

6.20 An Advanced Example

This section shows an example of a grammar using some of the advanced
features discussed in earlier sections. The desk calculator example is
modified to provide a desk calculator that doesfloatingpoint interval arith
metic. The calculator understands floating point constants, the arithmetic
operations +, -, *, I, unary-, and= {assignment), and has 26floatingpoint
variables, a through z. Moreover, it also understands intervals, written as:

(x , y)

where x is less than or equal toy. There are 26interval-valued variables A
through Z that may also be used. Assignments return no value, and print
nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and C.
Intervals are represented by a structure, consistingoftheleft and right end
point values, stored as double precision values. This structure is given a
type name, INTERVAL, by using typedef. The yacc value stack can also
contain floating point scalars, and integers (used to index into the arrays
holding the variable values). Notice that this entire strategy depends
strongly on being able to assign structures and unions in C. In fact, many of
the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions:
division by an interval containing 0, and an interval presented in the wrong
order. In effect, the error recovery mechanism of yacc is used to throw
away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (e.g.,
scalar or interval) of intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can
be seen by looking at the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 ' 4.)

Notice that the 2.5 is to be used in an interval valued expression in the
second example, but this fact is not known until the comma (,) is read. By
tills time, 2.5 is finished, and the parser cannot go back and change. More
generally, it might be necessary to look ahead an arbitrary number of
tokens to decide whether to convert a scalar to an interval. This problem is
circumvented by having two rules for each binary interval-valued opera
tor: one when the left operand is a scalar, and one when the left operand is

6-38

c

yacc: A Compiler- Compiler

an interval. In the second case, the right operand must be an interval, so
the conversion will be applied automatically. However, there are still
many cases where the conversion may be applied or not, leading to the
above conflicts. They are resolved by listing the rules that yield scalars first
in the specification file. In this way, the conflicts will be resolved in the
direction of keeping scalar valued expressions scalar valued until they are
forced to become intervals.

This way ofhandlingmultiple types is very instructive, but not very general.
If there were many kinds of expression types, instead of just two, the
number of rules needed would increase dramatically, and the conflicts
even more dramatically. Thus, while this example is instructive, it is better
practice in a more normal programming language environment to keep the
type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment offioatingpoint constants. The Clibraryroutine atof(S) is used
to do the actual conversion from a character string to a double precision
value. If the lexical analyzer detects an error, it responds by returning a
token that is illegal in the grammar, provoking a syntax error in the parser,
and leading to error recovery.

6-39

XENIX Programmer's Guide

6-40

% {

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dregf26];
INTERVAL vreg[26];

%}

%start lines

%union {
int ival;
double dval;
INTERVAL vval;
}

%token <ivai> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floatingpoint constant */

%type <dval> dexp /* expression */

%type <vval> vexp /*interval expression */

c

yacc: A Compiler- Compiler

t• precedence information about the operators *I

%left '+' '-'
%left '*' '/'
%left UMINUS /* precedence for unary minus •t

%%

lines : t• empty •t
I lines line
,

line : dexp '\n'
{printf("% 15.81\n", $1) ; }

l vexp '\n'
{printf("(% 15.8f, % 15.8f)\n", $1.lo, $1.hi); }

I DREG ,_, dexp '\n'
{ dreg[$1] - $3; }

I VREG ,_, vexp '\n'
{vreg[$1] -$3; }

j error '\n'
{yyerrok; }

dexp : CONST
I DREG

{$$-dreg[$1]; }
I dexp '+' dexp

{$$-$1+$3;}
l dexp '-' dexp

{$$-$1-$3;}
I dexp '*' dexp

{$$-$1*$3;}
I dexp 'I' dexp

{$$ -$1/$3 ;}
I '-' dexp % prec UMlNUS

{$$ - - $2; }
I '(' dexp ')'

{$$-$2;}

6-41

XENIX Programmer's Guide

6-42

vexp : dexp
{ $$.hi= $$.lo =$1; }

I '(' dexp ',' dexp ')'
{
$$.lo = $2;
$$.hi = $4;
if($$.lo > $$.hi){

printf("intervalout of order\n'');
YYERROR;

1
I VREG

{ $$=vreg[$1]; }
l vexp '+' vexp

{ $$.hi = $1.hi + $3.hi;
$$.1o = $1.1o + $3.1o; }

I dexp '+'vexp
{ $$.hi = $1 + $3.hi;

$$.1o = $1 + $3.1o; }
I vexp '-' vexp

{$$.hi = $1.hi - $3.lo;
$$.1o = $1.1o - $3.hi;}

I dexp '-' vexp
{$$.hi = $1 - $3.lo;

$$.lo = $1 -$3.hi;}
I vexp '*' vexp

{ $$ = vmul($1.1o, $1.hi, $3); }
I dexp '*'vexp

{ $$=vmul($1, $1, $3); }
I vexp 'I' vexp

{if (dcheck($3)) YYERROR;
$$=vdiv($1.1o, $1.hi, $3); }

I dexp 'I' vexp
{if(dcheck($3))YYERROR;
$$ = vdiv($1, $1, $3); }

1 '-' vexp 'l'oprecUMINUS
{ $$.hi= -$2.lo; $$.1o = -$2.hi; }

I '(' vexp ')'
{ $$ = $2; }

% %

define BSZ 50 1• buffer size for fpnumbers */

/* lexical analysis */

yacc: A Compiler- Compiler

yylex(){
register c;

{I* skip over blanks *I}
while((c- getchar()) -- ' ')

if (isupper(c)){
yylval.ival = c- 'A';
retum(VREG);
}

if (islower(c)){
yylval.ival = c - 'a';
return(DREG);
}

if(isdigit(c) II c--' .'){
I* gobble up digits, points, exponents *I

charbuf[BSZ+l], *cp -buf;
int dot=O, exp= O;

for(; (cp-buf)<BSZ ; ++cp,c-getchar()){

*cp =c;
if (isdigit(c)) continue;
if (c-- '.') {

if (dot++ I I exp) return('.') ;
/* above causes syntax error */

continue;
}

if (c -- 'e') {
if (exp++) return('e');

/* above causes syntax error *I
continue;
}

/* end ofnumber*/
break;
}

*cp= '\0';
if((cp-buf) >- BSZ)

printf("constant too long: truncated\n11);
else ungetc(c, stdin);

I* above pushes back last char read • I
yylval.dval- atof (buf);
return(CONST);
}

return(c);
}

6-43

XENIX Programmer's Gutde

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
I* returns thesmallestintervalcontaininga, b, c, and d *I
/* used by *, I routines */
INTERVALv;

if(a>b) { v.hi � a; v.lo � b ; }
else{ v.hi � b ; v.Io � a ; }

if(c>d) {
if (c>v.hi) v.hi � c ;
if(d<v.lo)v.Io �d;
}

else {
if (d>v.hi)v.hi� d;
if (c<v.lo) v.Io � c;
}

return(v);
}

INTERVALvmul(a, b, v) double a, b ; INTERVALv; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi > � O. && v.Io <�0.){

printf("divisor interval contains 0. \n");
retum(l);
}

retum(O);
}

INTERVAL vdiv(a, b, v) double a, b ; INTERVAL v; {
retum(hilo(alv.hi, alv.Io, b/v.hi, b/v.Io));
}

6.21 Old Features

This section mentions synonyms and features which are supported for his
torical continuity, but, forvariousreasons, are not encouraged.

1. Uterals may also be delimited by double quotation marks ('').

2. Literals may be more than one character long. If all the characters
are alphabetic, numeric, or underscores, the type number of the
literal is defined, just as if the literal did not have the quotation
marks around it. Otherwise, it is difficult to find the value for such

6-44

(
"·

yacc: A Compiler- Compiler

literals. The use of multicharacter literals is likely to mislead those
unfamiliar with yacc, since it suggests that yacc is doing a job that
must be actually done by the lexical analyzer.

3. Most places where '%'islegal, backslash (\) maybe used. In partic
ular, the double backslash (\\) is tbe same as %%, \left the same as
%left, etc.

4. There are a numberof othersynonyms:

% < is the same as %left
% > is the same as %right
%binary and % 2 are the same as % nonassoc
% 0 and 0/aterm arethesameas0/otoken
o/o= is the same as % prec

5. Actionsmayalso have theform

-{ ... }

and the curly braces can be dropped if the action is a single C state
ment.

6. C code between %{ and %} used to be permitted at the head of the
rules section, as well as in the declaration section.

6-45

Replace this Page
with Tab Marked:

Signals

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
�
I
I
I
I
I
I
)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I •

C hapte r 7

"·· Using Signals

7.1 Introduction 7-1

7.2 Using the signal Function 7-1
7.2.1 Disabling a Signal 7-2
7.2.2 Restoring a Signal'sDefault Actinn 7-3
7.2.3 Catchinga Signal 7-4
7.2.4 Restoring a Signal 7-6
7.2.5 ProgramExample 7-6

7.3 CatchingSeveral Signals 7-7

7.4 Controlling Execution With Signals 7-8
7.4.1 Delayinga Signal's Action 7-8

� - , 7.4.2 UsingDelayedSignalsWith SystemFunctions 7-10
r , 7.4.3 Using Signalsin lnteractive Programs 7-10
'"--·

7.5 Using Signals in Multiple Processes 7-12
7.5.1 Protecting Background Processes 7:12
7.5.2 ProtectingParentProcesses 7-13

(
·"---- ·

Using Signals

7.1 Introduction

This chapter explains how to use C library functions to process signals sent
to a program by the XENIX system. A signal is the system's response to an
unusual condition that occurs during execution of a program such as a user
pressing the INTERRUPT key or the system detecting an iiiegal operation.
A signal interrupts normal execution of the program and initiates an action
such as terminating the program or displaying an error message.

The signal(S) function of the standard C library Jets a program define the
action of a signal. The function can be used to disable a signal to prevent it
from affecting the program. It can also be used to give a signal a user
defined action.

The signal function is often used with the setjmp(S) and Iongjmp (see
setime(S)) functions to redefine and reshape the action of a signal. These
functions allow programs to save and restore the execution state of a pro
gram, giving a program a means to jump from one state of execution to
another without a complex assembly language interface.

To use the signalfunction, you must add the line

#include <signal.h>

to the beginning of the program. Thesignal. hfile defines the various mani
fest constants used as arguments by the function. To use the setjmp and
longjmp functions you must add the line

#include <setjmp.h>

to the beginning of the program. The setjmp.h file contains the declaration
for the type jmp_buf, a template for saving a program's current execution
state.

7.2 Using the signal Function

The signal() function changes the action of a signal from its current action
to a given action. Th_e function has. the form

signal (sigtype,ptr);

where sigtype is an integer or a manifest constant that defines the signal to
be changed, andptris a pointer to the function defining the new action or a
manifest constant giving a predefined action. The function always returns
a pointer value. This pointer defines the signal's previous action and may
be used in subsequent calls to restore the signal to its previous value.

The piT may be "SIGJGN" to indicate no action (ignore the signal) or
"SIG...DFL" to indicate the default action. The sigtype may be "SIGINT"

7-1

XENIX Programmer's Guide

for interrupt signal, caused bypressingtheiNTERRUPT key, "SIGQUIT"
for quit signal, caused by pressing the QUIT key, or "SIGHlJP" forhangnp
signal, caused by hanging up the line when connected to the system by
modem. (Other constants for other signals are given in slgnal(S) in the
XE!>'IXReference.)

For example, the function call

signa!(SIGJNT, SIGJGN);

changes the action of the interrupt signal to no action. The signal will have
no effect on the program. The default action is usually to terminate the
program.

The following sections show how to use the signal function to disable,
change, and restore signals.

7.2.1 Disabling a Signal

You can disable a signal, i.e., prevent it from affecting a program, by using
the "SIGJGN" constant with signal. Thefundioncallhastheform

signal(sigtype, SIGJGN);

where sigtype is the manifest constant of the signal you wish to disable. For
example, the function call

signal(SIGINT, SIGJGN);

disables the interrupt signal.

The function call is typically used to prevent a signal from terminating a
program executiogin the background (e.g., a child process that isnotusing
the terminal for input or output). The system passes signals generated
from keystrokes at a terminal to all programs that have been invoked from
that terminal. This means that pressing the INTERRUPT key to stop a pro ·

gram running in the foreground will also stop a program running in the
background if it has not disabled that signal. For example, in the following
program fragment, signal is used to disable the interrupt signal for the
child.

7-2

#include < signal.h>

main()
{

if (fork() --0) {

}

signal(SIGINT, SIG_IG!-.');
I* Child process. */

I* Parent process. *I

}

Using Signals

This call does not affect the parent process which continues to receive
interrupts as before. Note that if the parent process is interrupted, the
child process continues to execut� until it reaches its noimal end.

7.Z.Z Restoring a Signal's Default Action

You can restore a signal to its default action by using the "S I OJ) FL" con-

(�. stantwithslgnal. The function call hastheform

signal (sigtype, SIGDFL);

where sigtype is the manifest constant defining the signal you wish to
restore. For example, the function call

signal (SIGINT, SIGJ)FL) ;

restores the interrupt signal to its default action.

The function call is typically used to restore a signal after it has been tem
porarily disabled to keep it from interrupting critical operations. For
example, in the following program fragment the second call to signal
restores the signal to its default action.

7-3

XENIX Programmer's Guide

#include <signal.h>
#include <stdio.h>

main O
{

}

FILE •fp ;
charrecord[BUFSIZE], filename[lOO];

signal (SIGINT, SIGJGN);
fp = fopen{filename, "a");
fwrite(record, BUF, 1, fp);
signai (SIGINT, SIG....DFL);

In this example, the interrupt_signal is ignored while a record is written to
the file given by''fp".

7.2.3 Catching a Signal

You can catch a signal and define your own action for it by providing a
function that defines the new action and giving the function as au argument
to signal. The function call has the form

signal (sigtype, newptr);

where sigtype is the manifest constant defining the signal to be caught, and
newptr is a pointer to the function defining the new action. For example,
the function call

signal(SIGINT, catch);

changes the action of the interrupt signal to the action defined by the func
tion named catch().

The function call is typically used to let a program do additional processing
before terminating. In the following program fragment, the function
catch() defines the new action for the interrupt signal.

7-4

/ -(
'

#include <signal.h>

main(}
{

}

int catch ();

printf("Press INTERRUPT key to stop.\n");
signal (SIGINT, catch);
while{}{

/*Body•/
}

cateh (}
{

}
printf("Program ternrinated.\n");
ex:it(l};

Using Signals

The catch(} function prints the message "Program terminated" before
stopping the program v;ith the exit(S) function.

A program may redefine the action of a signal at anytime. Thus, many pro
grams define different actions for different conditions. For example, in the
following program fragment the actiol). of the interrupt signal depends on
the return value of a function named keyteJt.

#include <signal.h>

main (}
{

}

int eatchl (), cateh2 (};

if (keytest(}�� 1)
signal(SIGINT, catch1);

else
signai(SIGINT, catch2);

Later the program may change the signal to the other action or even a third
action.

When using a function pointer in the signal call, you must make sure that
the function name is defined before the call. In the program fragment
shown above, catch1 and catch2 are explicitly declared at the beginning of
the main program function. Their formal definitions are assumed to
appear after the signal call.

7-5

XENlX Programmer's Guide

7.2.4 Restoring a Signal

You can restore a signal to its previous value by saving the return value of a
signal call, then using this value in a subsequent call. The function call has
the form:

signal (sigtype, oldptr);

where sigtype is the manifest constant defining the signal to be restored and
oldptris the pointervaluereinrned by a previoussigualcall.

The function call is typically used to restore a signal when its previous
action may be one of many possible actions. For example, in the following
program fragment the previous action depends solely on the return value of
a function keytest.

#include <signal.h>

main O
{

}

int catchl(), catch2();
int (*savesig)();

if (key! est()�� 1)
signal(SIGINT, catch!);

else
signal(SIGINT, catch2);

savesig- signal (SIGINT, SIGJGN);
compute();
signal(SIGINT, savesig);

Iu this example, the old pointer is saved in the variable "savesig''. This
value isreslored after the function compute reinrns.

7.2.5 Program Example

This section shows how to use the signal function to create a modifed ver
sion of the system(S) function. Iu this version, sysl<!m disables all inter
rupts in the parent process until the child process has completed its opera
tion. It then restores the signals to their previous actions.

7-6

('
"'-

#include <stdio.h>
#include <signal.h>

system(s)
char*s.;

t• run command strings •t
{

}

int status, pid, w;
registerint (*isla!)(), (*qstat)();

if ((pid =fork()) == 0) {
execl('1/bin/sh"> 11Sh11J H-e", s, NULL);
exit(127);

}
istat= signal(SIGINT, SIGJGN);
qstat = signal(SIGQUIT, SIGJGN);
while ((w= wait(&status)) l= pid &&w !=-1)

'
if(w==-1)

status=-l;
signal(SIGINT, istat) ;
signal(SIGQUIT, qstat);
return(status);

Using Signals

Note that the parent uses the whlle statement to wait until the child's pro
cess IDHpid"is returned bywait(S). If wait returns the error code ('-1" no
more child processes are left, so the parent returns the error code as its
own status.

7. 3 CaU:hing Several Signals

There are many more signals besides SIGTh"T, SIGQUIT, and SIGHUP.
See the signal(S) manual page for a COillplete list. In the following pro
gram fragment, all signals are caught by the same function. This function
makes use of the specific signal number which is passed as a parameter by
the sysl!\m.

7-7

XENIX Programmer's Guide

#include <signal.h>

maiu()
{

}

inti·
intdatch();

for (i- 1; i <-NSIG; ++i)
signal(i, catch);

,.
* Body
.,

catch(sig)
int sig;
{

}

signal(sig, SIGJGN);
if (sig !- SIGINT && sig !- SIGQUIT && sig !- SIGHUP)

printf(''Oh, oh. Signal %d wasreceived.\n", sig);
unlink(tmpfile);
exit(l);

The constant NSIG, the total number of signals, is defined in the file
signal. h.

Note that the first action of the above catch function is to ignore the
specific signal that was caught. This is necessary because the system
automatically resets a caught signal to its default action.

7.4 Controlling Execution With Signals

Signals dono! need to be used solely as a means of immediately terminating
a program. Many signals can be redefined to delay their actions or even
cause actions that terminate a portion of a program without terminating the
entire program. The following sections describe ways that signals can be
caught and used to provide control of a program.

7.4.1 Delaying a Signal's Action

You can delay the action of a signal bycatchingthe signal and redefining its
action to be nothing more than setting a globally-defined flag. Such a sig
nal does nothing to the current execution of the program. Instead, the pro
gram continues uninterrupted until it can test the flag to see if a signal has
been received. It can then respond according to the value ofthe flag.

7-8

(

(I
�·

Using Signals

The key to a delayed signal is that functions used to catch signals return
execution to the exact point at which the program was interrupted. If the
function returns normally the program continues execution just as if no sig
nal occurred.

Delaying a signal is especially useful in programs that must not be stopped
at an arbitrary point. If, for example, a program updates a linked list, the
action of a signal can be delayed to prevent the signal from interrupting the
update and destroying the list. For example, in thefollowing program frag
ment the function delay() used to catch the interrupt signal sets the
globally-defined flag "sigfiag" and returns immediately to the point of
interruption.

#include <signal.h>

int sigfiag;

main ()
{

int delay();
int (*savesig)();

signal(SIGINT, delay); /* Delay the signal. */
updatelist();
savesig�signal(SIGINT, SIGJGN); /* Disable the signal. *I
if (sigfiag)

}
delay ()
{

I* Process delayed signals if any. */

signal(SIGINT, delay);
sigfia�l;

}
In this example, if the signal is received while updatelist is executing, it is
delayed until after updatelist returns. Note that the interrupt signal is dis
abled before processing the delayed signal to prevent a change to "sigfiag"
when it is being tested.

The first action of the delay function was to recatch the interrupt signal.
This is necessary because the system resets caught signals to their default
action which is normally immediate termination.

7-9

XENIX Programmer's Guide

7.4.2 Using Delayed Signals WithSystemFunctions

When a delayed signal is used to interrupt the execution of a XENIX system
function, such as read() or wait(), the system forces the function to stop
and return an error code. This action, unlike actions taken during execu
tion of other functions, causes all processing performed by the system
function to be discarded. A serious error can occur if a program interprets
a system function error caused by delayed signals as a normal error. For
example, if a program receives a signal when readingtheterminal, all char
acters read before the interruption are lost, making it appear as though no
characters were typed.

Whenever a program intends to use delayed signals during calls to system
functions, the program should include a check of the function return
values to ensure that an error was not caused by an interruption. In the fol
lowing program fragment, the program checks the cnrrent value of the
interrupt flag "intfiag'' to make sure that the value EOF returned by getchar
actually indicates the end of the file.

if (getchar() �� EOF)
if (intfiag)

I* EOF caused by interrupt */
else

/* true end-of-file*/

7.4.3 Using Signals in Interactive Programs

Signals can be used in interactive programs to control the execution of the
program's various commands and operations. For example, a signal may
be used in a text editor to interruptthe current operation (e.g., displaying a
file) and return the program to a previous operation (e.g., waiting for a
command).

To provide this control, the function that redefines the signal's action must
be able to return execution of the program to a meaningful location, not
just the point of interruption. The standard C library provides two func
tions to do this: setjmp and longjmp. The seijmp function saves a copy of
a program's execution state. The longjmp function changes the current
execution state to a previously saved state. The functions cause a program
to continue execution at an old location with old register values and status
as if no operations had been performed between the time the state was
saved and the time it was restored.

The seijmp function has theform

setjmp (buffer);

7-10

Using Signals

where bufferis 1he variable to receive 1he execution state. It must be expli
citly declared with typejmp.J>ufbefore it is used in the call. For example,
in the following program fragment se\lmp copies the execution .of the pro
gram to the variable "oldstate" defined wi1h typejmp.J>uf.

jmp..buf oldstate;

setjmp(oldstate);

Note that aftera setjmp call, the butfervariable contains values for1he pro
gram connter, 1he data and address registers, and 1he process status. These
values must not be modified in anyway.

The longj mp function has the form

longjmp (buffer);

where bufferis the variable containing the execution state. It must contain
values previously saved with a se\lmp function. The fnnction copies the
values in the buffer variable to the program counter, data and address regis
ters, and 1he process status tab !e. Execution continues as if it had just
returned from the setjmp function which saved the previous execution
state. For example, in 1he following program fragment setjmp saves 1he
execution state of the program at 1he location just before the main process
ing loop and longjmp restores it on an interrupt signal.

#include <signal.h>
#include <setjmp.h>

jmp_bufsjbuf;

main()
{

}

intonintr();

setjmp(sjbuf);
signal(SIGINT, onintr);

t• main processing loop */

onintr ()
{

}

printf("\ninterrupt\n'');
longjmp(sjbuf);

In tbis example, 1he action of 1he interrupt signal as defined by onintr is to
print the message Hinterrupt" and restore 1he old execution state. When

7-11

XENIX Programmer's Guide

an interrupt signal is received in the main processing loop, execution
passes to onintr which prints the message., then passes execution back to
the main program function, making it appear as though control is returning
from the seljmp fuuction.

7.5 Using Signals in Multiple Processes

The XENIX system passes all signals generated at a giveo terminal to all
programs invoked at that terminal. This means that a program has poten
tial access to a signal even ifthatprogram is executing in the background or
as a child to some other program. The following sections explain how sig
nals maybe used in multiple processes.

7.5.1 Protecting Background Processes

Any program that has been invoked using the shell's backgrouud symbol
(&) is executed as a b ackgrouud process. Such programs usually do not
use the terminal for input or output, and complete their tasks silently.
Since these programs do not need additional input, the shell automatically
disables the signals before executing the program. This means signals gen
erated at the terminal do not affect execution of the program. This is how
the shell protects the program from signals intended for other programs
invoked from the same terminal.

In some cases, a program that has been invOked as a background process
may also attempt to catch its own signals. If it succeeds, the protection
from interruption given to it by the shell is defeated, and signals intended
for other programs will interrupt the program. To prevent this, any pro
gram which is intended to be executed as a backgrouod process, should
test the current state of a signal before redefining its action. A program
should redefine a signal only if the signal has not been disabled. For exam
ple, in the following program fragment the action of the interrupt signal is
changed oulyifthe signal is not currently being ignored.

#include <signal.h>

main()
{

}

intcatch();

if (signal(SIGINT, SIG..JGN) !- SIG..JGN)
signal(SIG INT, catch);

/* Program body. *I

This step lets a program continue to ignore signals if it is already doing so,
and change the signal if it is not.

7-12

Using Signals

7.5.2 Protecting ParentProcesses

A program can create and wait for a child process that catches its own sig
nals if and only if the program protects itself by disabling all signals before
calling the wait function. By disabling the signals, the parent process
prevents signals intended for the child processes from terminating its call
to wait. This prevents serious errors that may result if the parent process
continues execution before the child processes are finished.

For elill.Dlple, in the following program fragment the interrupt signal is dis
abled in the parent process immediately after the child is created.

#include < signal.h>

main Q
{

int (*saveintr)Q;

}

if (fork()�-o)
exec!(. . .);

saveintr- signal (SIGINT, SlGJGN);
wait(&status);
signal (SIGINT, saveintr);

The signal's action is restored after the wait function re.tums normal con
trol to the parent.

7-13

(
Replace this Page
with Tab Marked: ·

Sys tem
Re sources

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I· I· I
I
I
I·
I· I• I
I
I
I
I
I
I
I
I
I
I·
I· I· I· I
I
I
I
I· I· I
I
I
I
I
!

(
Chapter S

Using Sys tem Res o urce s

8.1 Introduction 8-1

8.2 AllocatingSpace 8-1
8.2.1 AllocatingSpacefora Variable 8-1
8.2.2 Allocating Spaceforan Array 8-2
8.2.3 ReallocatingSpace 8-3
8.2.4 Freeing UnusedSpace 8-3

8.3 LockingFiles 8-4
8.3.1 Preparinga FileforLocking 8-4
8.3.2 LockingaFile 8-5
8.3.3 ProgramExample 8-5

8.4 UsingSemaphores 8-6
8.4.1 CreatingaSemaphore 8-7
8.4.2 Opening a Semaphore 8-8
8.4.3 Requesting ControlofaSemapbore 8-9
8.4.4 Checking the Status of a Semaphore 8-9
8.4.5 Relinquishing Control of a Semaphore 8-10
8.4.6 Program Example 8-10

8.5 UsingShared Data 8-13
8.5.1 Creatinga Shared Data Segment 8-13
8.5.2 Attaching aSharedDataSegment 8-14
8.5.3 Entcring aSharedData Segment 8-15
8.5.4 LeavingaSharedDataSegment 8-16
8.5.5 Getting the Current Version Number 8-17
8.5.6 Waitingfora Versiqn Numb()r 8-1S
8.5.7 Freeing a Shared Data Segment 8-19
8.5.8 ProgramExample 8-19

Using System Resources

S.l lntroduelion

This chapter describes the standard C library functions that let programs
share the resources oftheXENIX system. The functions give a program the
means to queue for the use and control of a given resource and to syn
chronizeits use with use by other programs.

In particular, this chapter explains how to

- Allocatememoryfordynamicallyrequiredstorage

- Lock a file to ensure exclusive use by a program

Use semapho:r;es to control access to a resource

- Share data space to allow interaction between programs

8.2 Allocating Space

Some programs require significant changes to the size of their allocated
memory space during different phases of their execution. The memory
allocation functions of the standard C library let programs allocate space

/� dynamically. This means a program can request a given number of bytes of
(storage forits exclusive use atthe moment it needs the space, then free this
"--· · space afterit bas finished using it.

There are four memOry allocci.tiOD. hinCtiOD.s: malloc1 calloc, realloc, and
free. The71Ul/Joc andcallocfunctions are used to allocate space for the first
time. The functions allocate a given number of bytes and return a pointer
to the new space. Thereal/ocfunction reallocates an existing space, allow
ing it to be used in a different way. The free function returns alincated
space to the system.

8.2.1 Allocating Space fora Variable

The ma/Joc function allocates space for a variable containing a given
numberofbytes. The function call has the form:

malloc (size)

where size is an unsigned number which gives the number of bytes to be
allocated. For example, the function call

table �malloc (4)

allocates four bytes or storage. The function normally returns a pointer to
the starling address of the allocated space, but will return the null pointer
value if there is not enough space to allocate.

8 - 1

XENIX Programmer's Guide

The function is typically used to allocate storage for a group of strings that
vary in length. For example, in the following program fragment mal/oc is
used to allocate space for ten different strings, each of different length.

inti;
char *temp, *strings[lO];
unsigned isize;

for(i�O;i<lO; i++){
scanfC'Ofos", temp);
isize � strlen(temp);
strings[i] � malloc(isize);
}

In this example, the strings are read from the standard input. Note that the
strlen function is used to get the size in bytes of each string.

8.2.2 AllocatingSpaceforan Array

The calloc function allocates storage for a given array and initializes each
element in the new array to zero. The function call has the form:

calloc (n, size)

where n is the number of elements in the array, and size is the number of
bytes in each element. The function normally returns a pointer to the start
ing address of the allocated space, but will return a null pointer value if
there is.not enough mem�ry. For example, the function call

table � calloc (10,4)

allocates sufficient space for a 10 element array. Each element has 4 bytes.

The function is typically used in programs which must process large arrays
without knowing the size of an array in advance. For example, in the fol
lowing program fragment calloc is used to allocate storage for au array of
values read from the standard input.

int i;
char*table;
unsigned inum;

scanf("%d", &inum);
table�calloc (inurn, 4);
for (i�O; i<inum; i++)

scanfC'%d", table[i]);

Note that the number of elements is read from the standard input before
the elements are read.

8-2

Using System Resources

8.2.3 ReaUocatingSpace

The realloc function reallocates the space at a given address without chang
ing the contents of the memory space. The function call has the form:

realloc (ptr, size)

where ptr is a pointer to the starting address of the space to be reallocated,
· and size is an Uri signed number giving the new size in bytes of tbe reallo
cated space. The function normally returns a pointer to the starting
address of tbe allocated space, but will return a null pointer value if there is
not enough space to allocate.

This function is typically used to keep storage as compact as possible. For
example, In the following program fragment ret1lloc is used to remove table
entries.

·

main()
{
char •table;
inti ;
unsignedinum;

for (i=inum; i>-1; i--) {
· printf("%d\n", strings[i]);

strings = realloc(strings, i*4);
}

ln tbis example, an entry is removed after it has been printed at the stan
dard output, by reducing the size of tbe allocated space from its current
length to tbe length given by"i*4".

8.2.4 Freeing Unused Space

Tbe free function frees unused memory space that had been previously
allocated by a malloc, calloc, orreal/ocfilnction call. The function call has
the form:

free(ptr)

where ptr is the pointer to the starting address of the space to be freed. This
pointermust be the return value of a malloc, calloc, or reallocfunction.

Tbe function is used exclusively to free space which is no longer used or to
free space to be used for other purposes. For example, in the following
program fragment free frees the allocated space pointed to by "strings" if
the first element is equal to zero.

8-3

XEN1X Programmer's Guide

main Q
{
char *table;

if (table[OJ-- -1)
free (table);

8.3 Locking Files

Locking a file is a way to synchronize file use when several processes may
require access to a single file. The standard C library provides one file lock
ingfnnction, the locking function. This function locks any given section of
a file, preventing all other processes which wish to use the section from
gaining access. A process may lock the entire file or only a small portion.
In any case, only the locked section is protected; all other sections maybe
accessed by other processes as usual.

File locking protects a file from the damage that may be caused if several
processes try to read or write to the file at the same thne. It also provides
unhindered access to any portion of a file for a eon trolling process. Before
a file can be locked, however, it must be prepared using the open and !seek
functions descnbed in Chapter2, "Usingthe Standard JJO Functions." To
use the locking function, you must add the line

#include <sys/locking.h>

to the beginning of the program. The file sys//ocking. h contains definitions
for the modes used with the function.

8.3.1 Preparing a File for Locking

Before a file can be locked, it must first be opened using the open function,
then properly positioned by using the /seek function to move the file's char
acterpointerto the first byte to be locked.

The open function is used once at the beginning of the program to open the
file. The !seek function may be used anynumberoftimes to move the char
acter pointer to each new section to be locked. For example, the following
statements prepare the first 100 bytes at file position 1(124 from the begin
ning of the reservatlcns file for locking.

8-4

fd- open("reservations", O_RDONL Y);
lseek(fd, la24, 0);

Using System Resoun:es

8.3.2 Locking a File
The locking function locks one or more bytes of a given file. The function

;· callhasthe fonn:
!

(�

Jocking (filedes, mode, size)

wherefiledes is the file descriptor ofthefileto be locked, mode is an integer
value which-defines the type oflock to be applied to·the file ; siz:e·is a long
integer value giving the size in bytes of the £Ortion of the file section to b e
locked o r unlocked. The mode may be ' LOCK" for locking the given
bytes, or "UNLOCK" for unlocking them. For example, in the following
program fragment locking locks 100 bytes at the current character pointer
position in the file given by"fd".

#include <sysflocking.h>

main O
{
intfd;

fd � open("data", O_RDWR);
locking(fd, LOCK, tOOL);

"- The function normally returns the number of bytes locked, but will return
-lifit encounters an error.

8.3.3 Program Example

This section shows how to lock and unlock a small section in a file using the
locking function. In the following program, the function Jocks 100 bytes in
the file data which is opened for reading and writing. The locked portion
ofthe file is accessed, then locking is used again to unlock the file.

8-5

XENIX Programmer's Guide

#include <sysllocking.h>

main()
{
intfd, err;
char*data;

fd = open("data", Q__RDWR);
if (fd =-1)

perror(' ...);
else{

t• OpendataforRIW*/

lseek(fd, lOOL, 0); /* Seek to pos 100 •t
�rr= loeking(fd, LICLOCK, lOOL); I* Loek bytes 100-200 •t
if(err== -1){

}

/* process errorreturn *I
}

t• readorwritebytes 100- 200in the file •t

lseek(fd, lOOL, 0); t• Seek to pos 100 */
loeking(fd, LK_CNLCK, 100L); /• Cnlook bytes l00-200*/

}

8.4 Using Se!Dllphores

The standard C library provides a group of functions, called the sema
phore functions, which maybe used to control the access to a given system
resource. These functions create, open� and request-control of "sema
phores." Semaphores are regular files that have names and entries in the
file system, but contain no data. Unlike other files, semaphores cannot be
accessed by more than one process at a time. A process that wishes to take
control of a semaphore away from another process must wait until that pro
cess relinquishes control. Semaphores can be used to control a system
resource, such as a data file, by requiricg that a process gain control of the
semaphore before attempting to access the resource.

8-6

Using System Resources

There are five semaphore functions: creatsem, opensem, waitsem�
nbwaitsem, and sigsem. The creatsem function creates a semaphore. The
semaphore may then be opened and used by other processes. A process
can open a semaphore with the opensem function and request control of a
semaphore with the waltsem or nbwaitsem function. Once a process has
control of a semaphore it can carry out tasks using the given resource. All
other processes must wait. When a process has finished accessing the
resource, it can relinquish control of the semaphore with the sigsem func
tion. This _lets ()th�r pr()c�"'se.s get CQEt!gJof. tl!� sef!!apl)gre. !l)'ld.115e th.e.
correSponding reSoUrce.

8.4.1 Creating a Semaphore

The creatsem function creates a semaphore, returning a semaphore
number which may be used in subsequent semaphore functions. The func
tion call has the form:

creatsem (sem_name, mode)

where sem.Jiame is a character pointer to the name of the semaphore, and
mode is an integer value which defines the access mode of the semaphore.
Semaphore names have the same syntax as regular file names. The names
must be unique. The function normally returns an integer semaphore
numberwhich may be used in sub sequent semaphore functions to refer to
the semaphore. The function returns -1 if it encounters an error, such as
creating a semaphore that already exists, or using the name of an existing
regular file.

The function is typically used at the beginning of one process to clearly
define the semaphores it intends to share with other processes. For exam
ple, in the following program fragment creatsem creates a semaphore
named "ttyl" before precedingwith its tasks.

main()
{
int ttyl;
FILEfttyl;

ttyl = creatsem("ttyl", Cf/77);
fttyl = fopen("/dev/ttyOl", "w");

I* Program body. •!
}

Note that [open is used immediately after creatsem to open the file
ldev!ttyOI for writing. This is one way to make the association between a
semaphore and a device clear.

The mode ''CJ777" defines the semaphore's access permissions. The per
missions are similar to the permissions of a regular file. A semaphore may

8-7

XENIX Programmer's Guide

have read permission for the owner, for users in the same group as the
owner, and for all other users. The write and execution perm.issiori.s have
no m·eari.ing. Thus, "0777" means read permission for all users.

No more than one process ever need Create a given semaphore; all other
processes simply open the semaphore with the opensem function. Once
created or opened, a semaphore may be accessed only by using the
waitsem, nbwaitsem, or sigsem functions. The creatsem funCtion may be
used more than once duririgexecutioli of a process. In particular, it can be
used to reset a semaphore if a process fails to relinquish control before ter
minating. Before resetting a semaphore, you must remove the associated
semaphore file using the unlink function.

8.4.2 Opening a Semaphore

The opensem function opens an existing semaphore for use by the given
process. The function call has thefonn:

opensem (sem.Jiame)
where semJZame is a pointer to the name of the semaphore. This must be
the same name used when creating the semaphore. The function returns a
semaphore number that may be used in subsequent semaphore functions
to refer to the semaphore. The function · returns -1 if it encounters an
error, such as·- trying to open a semaphore that does not exist or' using the
name of an existingregularfile.

The function is typically used by a process just before it requests control of
a given semaphore. A process need not use the function if it also created
the semaphore. For example, in the following program fragment opensem
is used to open the semaphorenamedsemaphorel.

main O
{
int seml;

if ((seml �opensem("semaphorel")) !� -1)
waitsem(seml);

In this example, the semaphorenumberis assigned to the variable "seml".
If the number is not -1, then "seml" is used in the semaphore function
waitsem which requests control of the semaphore.

A semaphore must not be opened more than once during execution of a
process. Although the opensem function does not return an error value,
opening a semaphore more than once can lead to a system deadlock.

8-8

Using System Resources

8.4.3 Requesting Control of a Semaphore

The wait.<em function requests control of a given semaphore for the calling
process. Jf the semaphore is available, control is given immediately. Oth
erwise, the process waits. The function callhas thefonn:

waitsem (sem.Jium)

where sem.JIIJ.m is the semaphore� number� of t!Ie�semaphore io be con
trolled. If the semaphore is not available (if it is under control of another
process), the function forces the requesting process to wait. li other
processes are already waiting for control, the request is placed next in a
queue of requests. When the semaphore becomes available, the first pro
cess to request control receives it. When this process relinquishes control)
the next process receives control, and so on. The function returns -1 if it
encounters an error such as requesting a semaphore that does not exist or
requesting a semaphore that is locked to a dead process.

The function is used whenever a given process wis
.
hes to access the device

or system resource associated with the semaphore. For example, in the fol
lowing program fragment waitsem signals the intention to write to the file
given by"ttyl".

mainQ
{
intttyl;
FILEfttyl;

waitsem(ttyl �;
fprintf(fttyl, 'Changing tty driver\n ");

The function waits until current controlling processrellnquishes control of
the semaphore before returning to the next statement.

8.4.4 Checking the Status of a Semaphore

The nbwaitsem function checks the current status of a semaphore. li the
semaphore is not available, the function returns an error value. Otherwise,
it gives immediate control of the semaphore to the calling process. The
function ca:ll has the form:

nhwaitsem (sem.J!um)

where sem..Jium is the semaphore number of the semaphore to be
checked. The function returns -1 if it encounters an error such as request
ing a semaphore that does not exist. The function also returns -1 if the pro
cess con trolling the requested semaphore terminates without relinquishing
control ofthe semaphore.

8-9

XENIX Programmer's Guide

The function is typically used in place of waitsem to take control of a sema
phore.

8.4.5 Relinquishing Controlofa Semaphore

The sigsem function causes a process to relinquish control of a given sema
phore and to signal this fact to all processes waiting for the semaphore.
The function call has the form:

sigsem (sem.JZum)

where semJZum is the semaphore number of the semaphore to relinquish.
The semaphore must have been previously created or opened by the pro
cess. Furthermore, the process must have been previously taken control
of the semaphore with the waitsem or nbwaitsem fnnction. The fnnction
returns -lif it encounters an error such as trying to take control of a sema
phore that does not exist.

The fnnction is typically used after a process has finished accessing the
corresponding device or system resource. This allows waiting processes to
take control. For example, in the following program fragment sigsem sig
nals the end of control of the semaphore "ttyl".

main Q
{
intttyl;
FILE temp, fttyl;

waitsem(ttyl);
while ((c-fgetc(temp)) !-EO F)

fputc(c, fttyl);
sigsem(ttyl);

This example also signals the end ofthe copy operation to the semaphore's
corresponding device, given by"fttyl".

Note that a semaphore can become locked to a dead process if the process
fails to signal the end of the control before terminating. In such a case, the
semaphore must be reset by using the creatsemfunction.

8.4.6 Program Example

This section shows how to use the semaphore functions to control the
access of a system resource. The following program creates a child pro
cess and a semaphore. The parent process sleeps while the child process

8-10

Using System Resources

decrements the semaphore 1D 0. When this happens, the child process
exits and the parent process returns a completion message, deletes the
semaphore and exits. Although the program performs no meaningful
work, it clearly illustrates the use of semaphores.

#include <sys/types.h>
#include <sys/ipc.h>
#include < sys/sem.h>

#define KEY (key_t) 10
#defineCOUNT2
#defineBUMP6

mainO
{

intsemid;
ushortvals [COUl'<'T];
struct semb uf sops[COUNT];
inti;

for (i�O; i < coum; i++)
vals[i]�O;

if ((semid- semget(KEY, COUNT, 0666 jiPC_CREA T)) �- -1)
{

}

perror("semid");
exit(-1);

if(semctl(semid, O, SETAll., va!s) - -1)
{

}

perror(''semctl'');
semdel(semid);
exit(-1);

sops[O].sem.Jlum � 0;
sops[O].semJ!g�O;

if (!fork())
{

/* CHILD*/d
sleep(2);
sops[O].sem_op � -1;
for (i � 0; i < BUMP; i++)
{

puts(''BUMP");
if(semop(semid,SOPS,
perror(''S EMOP'');

�xit(l);
-1)

8-11

XENIX P.rogrammer's Guide

}

}

/* PARENT */d
sops[O].sem_op- BUMP;
if (semop(semid, sops, 1)-- -1)
{

}

perror("semop");
semdel(semid);
exit(-1);

sops[O].sem_op-0;
puts\'Enteringsecond semop");
if (semop(semid, sops, 1)-- -1)
{

}

perror("semop");
semdel(semid);
exit(-1);

puts\'Past second semop");
semdel(semid);

semdel(x)
intx·
{

,

}

if (semctl(x, 0, lPC....RMID, o)= -1)
{

}

perror("lPC....RMID'');
exit(-1);

The program contains anumberof global variables. The array"semf" con
tains the semaphore name. The name is used by the creatsem and opensem
functions. The variable "sem_num" is the semaphore·numher. This is the
value returned by creatsem and opensem and eventually used in waitsem
and sigsem. Finally, the variable "holdsem" contains the number of times
each process requests control of the semaphore.

The main program function uses the mktemp function to create a unique
name for the semaphore and then uses the name with creatsem to create the
semaphore. Once the semaphore is created, it begins to create child
processes. These processes will eventually vie for control of the sema
phore. As each child process is created, it opens the semaphore and calls
tbe doit fnnction. When control returns from doit the child process ter
minates. The parent process also calls thedoitfunction, then waits for ter
mination of each child process and finally deletes the semaphore witb tbe
unlink fnnction.

8-12

Using System Resources

The doitfunction calls the waitsem function to request control of the sema
phore. The function waits nntil the semaphore is available, it then prints
the process ID to the standard output, waits one second, and relinquishes
contrel using thesigsemfunction.

Each step of the program is checked for posmble errors. If an error is
encountered, the program calls the err function. This function prints an
error message and terminates the program.

8.5 Using Shared Data

Shared memory is a method by which one process shares its allocated data
space with another. Shared memory allows processes to pool information
in a central location and directly access that information without the bur
den of creating pipes or temporary files.

The extended C library provides several functions to access and control
shared memory. The sdgetfunction creates and/or adds a shared memory
segment to a given process's data space. To access a segment� a process
must signal its intention with the sdenter function. Once a segment has
completed its access, it can signal that it is finished using the the segment
with the sdleave function. The sdfree functinn is used to remove a segment
from a process's data space. Thl' sdgetv and sdwaitv functions are used to
synchronize processes when several are accessing the segment at the same
time.

To use the shared data functions, you must add the line

#include <sd.h>

at the beginning of the program. The sd.h file contains definitions for the
manifest constants and other macros used by the functions.

8.5.1 Creating a Shared Data Segment

The sdget function creates a shared data segment for the current process
and attaches the segment to the process's data space. The function call has
the form:

sdget (path, flag , size, mode)

where path is a character pointer to a valid pathname, flag is an integer
value which defines how the segment should be created, size is a long
integer valne which defines the size in bytes of the segment to be created,
and mode is an integer value which defines the access permissions to b e
given to the segment. The flag may b e a combination of SD_CREAT for
creating the segment, and SD..RDONLY for attaching the segment for
reading only or SD_WRITE for attaching the segment for reading and

8-13

XENIX Programmer's Guide

writing. You may also use SD_UNI.OCK for allowing simultaneous access
by multiple processes. The values can be combined by logically ORing
1hem. The function returns 1he address of the segment if it has been suc
cessfully created. 01herwlse, the function returns -1.

The function is typically used by just one process to create a segment 1hat it
will share wi1h several o1her processes. For example, in the following frag
ment, the program uses sdget to create a segment and attach it for reading
and writing. The address of the new segment is assigned to shared.

#include <sd.h>

msin O
{
char •shared;

shared=sdget("/ttnp/share", SD_CREA TjSD_WRITE, 512L, fJn7);
}

'When the segment is cr�ted, the size "512" and the mode "(]777" are used
to define the segment's size in bytes and access permissions. Access per
missions are similar to permissions given to regular files. A segment may
have read or write permission for the owner of the process, for users
belonging to the same group as the owner, and for allot her users. Execute
perm.issio;n for a segment has no-meaning. For example, the mode t'Om"
means read and write permission for everyone, but "0660'' means read and
write permissions for the owner aod group processes only. When first
created, a segment is filled with zeroes.

Note that the SD_UNLOCK fiagused on systems without hardware support
for shared data may severely degrade the execution performance of the
program.

8.5.2 Attaching a Shared Data Segment

The sdget function cao also be used to attach an existing shared data seg
mentto a process's data space. In this case, thefunction callhastheform

sdget{path, flags)
where path is a character pointer to the pathnameof a shared data segment
created by some other process, and flag is an ioteger value which defines
how the segment should be attached. The flag may be SD...RDONL Y for
attaching the segment for reading only, or SD_ WRITE for attaching the seg
ment for reading and writing. If the function is successful, it returns the
address of the new segment. Otherwise, it returns - 1.

The function can be used to attach any shared data segment a process may
wish to access. For example, io the following fragment, the program uses

S - 14

(�

Using System Resources

sdget to attach the se!!l11ents associated with the files ltmplsharel and
ltmp/share2 for reading and writing. The addresses of the new se!!l11ents
are assigned to the pointer variables sharel and share2.

#include <sd.h>

sharel= sdgnt("/tmp/sharel", SD_WRITE};
share2 = sdget("/tmp/share2", SD_ WRITE);

}

Sdget retums an error value to any process that attempts to access a shared
data segment without the necessary permissions. The segment permis
sions are defined when the se!!l11ent is created.

8.5.3 Entering a Shared Data Segment

Thesdenter signals a process's intention to access the contents of a shared
data se!!l11ent. A process cannot access the contents of the segment unless
it enters these!!l11ent. The function call has the form:

sdenter (addr,flag)

where addr is a character pointer to the se!!l11ent to be accessed, and flag is
an integer value which defines how the se!!l11entis to be accessed. The flag
may be SD_RDONL Y for indicating read only access to the segment,
SD_WRl'I'E for indicating write access to the se!!l11ent, or SD_NOWAIT for
returning an error ifthe se!!l11ent is locked and another process is currently
accessing it. These values may also be combined by logically ORingthern.
The function normally waits for the segment to become available before
allowing access to it. A se!!l11ent is not available if the se!!l11ent has been
created without SD_UNLOCK !lag and another process is currently access
ingit.

Once a process has entered a se!!l11ent it can examine and modify the con
tents of the se!!l11ent. For example, in the followingfra!!l11ent, tbe program
uses sdenterto enter the se!!l11entfor reading and writing, then sets the first
value in the segmentto Oifit is equal to 255.

8-15

XENIX Programmer's Guide

#include <sd.h>

main O
{
char*share;

share - sdget("/tmp/share", SD_WRITE);

sdenter(share, SD_WRITE);
if (share[0] --255)

share[O] - 0;

}
In general, it is unwise to stay in a shared data segment any longer than it
takes to examine or modify the desired location. The sd/eave function
should be used after each access. When in a shared data segment, a pro
gram should avoid using system functions. System functions can disrupt
the normal operations required to support shared data and may cause
some data to be lost. In particular, if a program creates a shared data seg
ment that cannot be shared simultaneously, the program must not call the
fork function whe:r;L it is also accessing that segment.

8.5.4 Leaving a Shared Data Segment

The sdleave function signals a process's intention to leave a shared data
segment after reading or modifying its contents. The function call has the
form:

sdleave (addr)

where addr is a pointer with type char to the desired segment. The func
tion returns -1 if it encounters an error, otherwise it returns 0. The return
value is al'Yays an integer.

The function should be used after each access of the shared data to ter
minate the access. If the segment's lock !lag is set, the function must be
used after each access to allow other processes to access the segment. For
example, in the following program fragment sd/eave terminates each
access to the segment given by "shared".

8-16

(

#include <sd.h>

main Q
{
inti-0;
char c, *share;

Using System Resources

share= sdget('Ytmp/share", SD_RDONL Y);

sdenter(share, SD_RDONL Y);
c= *sbare;

sdleave(share);

while(c!=O){
putchar(c);
I++;

}

}

sdenter(share, SD..RDONL Y);
c = share[i];

sdleave(share);

'�- S.5.5 Gettinglhe CurrentVersion Number

The sdgetv function returns the current version number of the given d8.ta
segment. The function call has lhe form:

sdgetv (addr)

where addr is a character pointer to lhe desired segment. A segment's ver
sion number is initially zero� but it is incremented by one whenever a pro
cess leaves the segment using the sdleave function. Thus, the version
number is a record of the number of times the segment has been accessed.
The function's return value is always an integer. It returns -1 if it
encounters an error.

The function is typically used to choose an action based on the current ver
sion number of the segment. For example, in the following program frag
ment sdgetv deternUnes whether or not sdenter should be used to enter the
segment given byHshared".

8-17

XENIX Programmer's Guide

#include <sd.h>

main Q
{
char *shared;

if (sdgetv(shared) > 10)
sdenter(shared);

In this eXl!lllple, the segmentis entered if the current version number of the
segmentis greaterthan "10".

8.5.6 Waiting fora Version Number

The sdwaitv function causes a process to wait until the version number for
the given segment is no longer equal to a given version number. The func
tion call has the form:

sdwaitv (addr, vrmm)

where addr is a character pointer to the desired segment, and vnum is an
integer value which defines the version number to wait on. The function
normally returns the new version number. It returns � 1 if it encounters an
error. The return value is always an integer.

The function is typically used to synchronize the actions of two separate
processes. For example, in the following program fragment the program
waits while the program corresponding to the version number "mum" per
forms its operations in the segment.

#include <sd.h>

main O
{
char *share;
intchange;

vnum = sdgetv(share);
i=O;
if(sdwaitv(share, vnum)==-1)

fprintf(stderr, "Cannot find segment\n");
else

sden ter(share);

If an error occurs while waiting, an error message is printed.

8-18

(

(

Using System Resources

8.5. 7 Freeing a Shared Data Segment

The sdfree function detaches the current process from the given shared
data segment. The function call has the form:

sdfree (addr)

where addr is a character pointer to the segment to be set free. The func
tion returns the integer value 0, if the segment is freed; · Otherwise, · it
returns-1.

If the process is currently accessing the segment, sdfree automatically calls
sdleave to leave the segmentbeforefreeingit.

The contents of segments that have been freed by all attached processes
are destroyed. To reaccess the segment, a process must recreate it using
thesdgetfunctlon and SD_CREAT flag.

8.5.8 Program Example

This section shows how to use the shared data functions to share a single
data segment between two processes. The following program attaches a
data segment named ltmplshare and then uses it to transfer information to
between the child and parent processes.

#include <sd.h>

mainO
{

char *share, message[12);
int i , vnum;

share-sdget("/tmp/share",SD_CRBATI>D_WRITE, 12, f1171};

if (forkO=-D) {
for (i-D; i<4; i++) {

}

sdenter(share, SD_WRITE);
strncpy{message, share, 12) ;
strilcpy{share,"Shared data", 12);
vnum �sdgetv(share);

sdleave(share);
sdwaitv(share, vnum+ 1);
printf("Child : %d - %s\n", i, message);

8-19

XENIX PrograiiUiler's Golde

}

sdenter(share, SD_WRITE);
strncpy(mess•!f• share, 12);
strncpy(share, 'Shared data", 12);

sdleave(share);
printf('Child: %d- % s\n", i, message);
el<it(O);

for (i=O; i<S;i++){

}

sdenter(share, SD_ WRITE);
strncpy(messaf.e, share, 12);
strncpy(share, 'Data shared", 12);
vnum=sdgetv(share);

sdleave(share);
sdwaitv(share, vnum+l);
printf("Parent: %d- %s\n", i, message);

sdfree(share) ;
}

Jn this program, the child process inherits the data segment created by the
parent process. Each process accesses the segment 5 times. Dnring the
access, a process copies the current contents of the segment to the variable
message and replaces the message with one of its own. R then diS]> lays mes
sage and continues the loop.

To synchronize access to the segment, both the parent and child use the
sdgetv and sdwaitv functions. While a process still has control of the seg
ment, it uses sdgetv to assign the current version number to the ,variable
vnum. It then uses this number In a call to sdwaitv to force itself to wait
until the other process has accessed the segment. Note that the argument
to sdwaitv is actually "vnum+ 1". Slnee vnum was assigned before the
sdleave call, it is exactly one less than the version number after the sdleave
call. It is assigned before the sdleave call to ensure that the other process
does modify the current version number before the current process has a
chance to assign it to vnum.
The last time the child process accesses the segment, it displays the mes
sage and exits without calling the sdwaitv function. This is tn prevent the
process from waiting forever, since the parent has already exited and can
no longer modify the current version number.

8-20

Replace this Page
with Tab Marked:

m4

••
••
••
••
••
• •
, .
, .
••
, .
••
, .
, .
,.
, .
, .
, .
••
, .
• •
,.
, .
, .
, .
, .
, .
, .
,.
, .
• •
••
, .
, .
,.
, .
, .
, .
, .
• •
, .
, .
, .
, .
, .
, .
, .
• •
, .
• •
, .
, .
, .
• •
• •
• •
, .
,.
,.
,.

' ,.
, .
, .
, .
, .
,.
,.
,.
,.
, .
••
••
, .
,.
,.
,.
,.
, .
••
I I
,.
,.
)

Appendix A

M4: A Macro Processor

A.1 Introduction A-1

A.2 Invoking m4 A-1

A.3 Defining Macros A-2

A.4 Quoting A-3

A.S UsingArgnments A-5

A.6 UsingArithmetic Built-ins A-6

A.7 Manipulatingl''ilcs A-7

A.8 UsingSystemCommands A-8

A.9 UsingConditionals A-8

A.lO ManipulatingStrings A-9

A.ll Printing A -11

M4: A Macro Processor

A.l httrodnction

The m4(CP) macro processor defines and processes specially defined
strings of characters called macros. By defining a set of macros to be pro
cessed by m4, a programming language can be enhanced to make it:

- More structured

More readable,

- More appropriate for a particular application

The #define statement in C and the analogous define in Ratfor are exam
ples of the basic facility provided by any macro processor-replacement of
text by other text.

Besides the straightforward replacement of one string of te,xt by another,
m4 provides:

Macros witb arguments

Conditional macro expansions

- Arithmetic expressions

, File manipulation facilities

- Stringprocessingfunctions

The basic operation of m4 is copying its input to its output. As the input is
read, each alphanumeric token (!bat is, string of letters and digits) is
checked. If tbe token is tbe name of a macro, !ben the name of tbe macro
is replaced by its defining text. The resultingstringis reread by m4. Macros
may also be called with arguments, in which case tbe arguments are col
lected and substituted in tbe right places in tbe defining text before m4 res
cans the text.

m4 provides a collection of about twenty built-in macros. ht addition, the
user can define new macros. Built-ins-and user-defined macros work in
exactly the same way, except !bat some of tbe built-in macros have side
effects on the state of the process.

A.2 Invoking m4

The invocation syntax for m4 is:

m4 [tiles)

A - 1

XEl''IX Programmer's Guide

Each file name argument is processed in order. If there are no arguments,
or if an argument is a dash (-), then the standard input is read. The pro
cessed text is written to the standard output, and can be redirected as in the
following example:

m4 filel file2 - > outputfile

Note the use of the dash in the above example to indicate processing of the
standard input, after the files and have been processed bym4.

A.3 Defining Macros

The primary built-in function of m4is define, which is used to define new
macros. The input:

define(name, stuff)

causes the string name to be defined as stuff. All subsequent oe<,-urrences
of name will be replaced by stuff. name must be alphanumeric and must
begin with a Jetter (the underscore (_) counts as a letter). stuff is any text,
including text that contains balanced parentheses; it may stretch over mul
tiple tines.

Thus, as a typical example:

define(N, 100)

if (i > N)

defines "N" to b e 100, and uses this symbolic constant in a later if state
ment.

The left parenthesis must inunediately follow the word define, to signal
that define has arguments. If a macro or built-in name is not followed
inunediately by a left parenthesis, "(", itis assumed to have no arguments.
This is the situation for ('N" above; it is actually a macro with no argu
ments. Thus, when i.t is used, no parentheses are needed following its
name.

You should also notice that a macro name is only recogulzed as such if it
appears surrounded by nonalphanumerics. For example, in:

A-2

define(N, 100)

if (NNN > 100)

M4: A Macro Pro<:essor

the variable HNN_N" is absolutely unrelated to tlte defined macro aN'',
even though it contains three N's.

Tbings maybedefined in terms ofother things. For example:

define(N, 100)
define(M, N)

defines both MandN to be 100.

What happens if "N" is redefined? 0(, to say it another way, is: "M"
defmed as H_NH or as 100? In m4, the latter is true, ctM'' is 100, so even if
"N'' subsequently changes, '(M" does not.

This behavior arises because m4 expands macro names into their defining
text as soon as it possibly can. Here� that means that when the string "N'' is
seen as tbe arguments of define are being collected, it is immediately
replaced by 100; it is just as if you had said :

define(M, 100)

in the first place.

H this isn't what you rea)ly want, there are two ways out of it. The first,
which is specific to this situation, is to interchange the order of the
definitions:

·

define(M, N)
define(N, 100)

Now "M" is defined to be the string "N", so when you ask for '�M'' later7
you will always get the value of "N" at that time (because the "M" will be
replaced by "N" which, in turn, will be replaced by 100).

A.4 Quoting

The more general solution is to delay the expansion of the arguments of
define by quoting them. Any text surrounded by single quotation marks '
and ' is not expanded immediately, but has the quotation marks. stripped
off. Ifyousay:

define(N, 100)
define(M, 'N')

A-3

XENIX Programmer's Guide

the quotation marks around the uN" are stripped off as the argument is
being collected, butthey have served their purpose, and "M" is defined as
the string "N", not 100. The general role is that m4 always strips off one
level of single quotation marks whenever it evaluates something. This is
true even outside of macros. If you want the word t'define" to appear in the
output, you have to quote itinthe input, as in:

'define'= 1;

As another instance of the same thing, which is a bit more surprising, con
sideri'edefiningHNa:

define(N, 100)

define(N, 200)
Perhaps regrettably1 the uN'' in the second definition is evaluated as soon
asit is seen ; that is, it is replaced by 100, so it's asifyouhad written:

define(100, 200)
This statement is ignored by m4, since you can only define things that look
like names, but it obviously does not have the effect you wanted. To really
redefine "N", you must delay the evaluation by quoting:

define(N, 100)

define('N', 200)

Inm4, it is often wise to quote the first argulnent of a macro.

If the forward and backward quotation marks (' arid •) are not convenient
for some reason, the quotation marks can he changed with the built-in
changequote. For example:

changequote([,])

makes the new quotatinn marks the left and tight brackets. You can
restore the original characters with just:

changequote

There are two additional built-ins related to define. The built-in undefine
removes the definition of some macro or built-in:

undefine('N')

A-4

c,

M4: A Macro Processor

removes the definition of "N". Built-ins can be removed with undefine, as
in:

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently
defined. For instance, pretend that either the word "xenix" or "unix" is
defined according to a particular implementation of a program. To per
fonn operations according to which system you have you might say:

ifdef('xenix', 'define(system,1)')
ifdef('unix', 'define(system,2)')

Do not forget the quotation marks in the above example.

Hdef actually permits three arguments: if the name is undefined, the value
ofifdefis then the third argument, as in:

ifdef('xenix', on XENIX, not on XENIX)

A.S Using Arguments

So far we have discussed the simplest form of macro processing-replacing
one string by another (fixed) string. User-defined macros may also have
arguments, so different invocations can have different results. Within the
replacement text for a macro (the second argument of its define) any
occurrence of $n will be replaced by the nth argument when the macro is
actually used. Thus, the macro bump, defined as:

define(bump, $1�$1 + 1)

ge;nerates code to increment its argument by 1:

bump(x)

is:

x�x+ 1

A-5

XENIX Programmer's Guide

A macro can have as many arguments as you want, but only the first nine
are accessible, through$1 to $9. (Themacro name itselfis $0.) Arguments
that are not supplied are replaced by null strings, so we can define a macro
cat which simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus:

cat(x, y, z)

is equivalent to:

The arguments $4 through $9 are null, since no corresponding arguments
were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white space is retained. Thus:

define(a, b c)

Arguments are separated by commas, but parentheses are counted prop
erly, so a comma protected by parentheses does not terminate an argu
ment. That is, in:

define(a, (b,c))

there are only two arguments; the second is literally "(b,c)". And of
course a bare comma or parenthesis can be inserted by quoting it.

A.6 UsingArithmetieBullt-ins

m4 provides two built-in functions for doing arithmetic on integers. The
simplest is incr, which increments its numeric argument by 1. Thus, to
handle the common programming situation where you want a variable to
be defined as one more than N, write:

define(N, 100)
define(Nl, 'incr(N)')

Then "N11' is defined as one more than the current value of �'N".

A-6

M4: A Macro Processor

The more general mechanism for arithmetic is a built-in called eva!, which
is capable of arbitrary arithmetic on integers. It provides the following
operators (in decreasing order of precedence):

unary+ and-
•• or (exponentiation)
• I % (modulus)

-- i= < <- > >=
! (uot)
&or&& (lo�caland)
lor II (logical or)

Parentheses may be used to group operations where needed. All tbe
operands of an expression given to enl must ultimately be numeric. The
numeric value of a true relation (like 1>0) is 1, and false is 0. The precision
in eva! is implementation dependent.

As a simple example, -suppose wewantHM'' to be "2**Nt P'. Then:

define(N, 3)
define(M, 'eva1(2**N+ 1)')

As a matter of principle, it is advisable to quote the defining text for a
macro unless itis very simple indeed (say just a number); it usually gives the
result you want, and is a goodhahitto getinto.

A.7 Manipulating Files

You can include a new file in the input at any time by the built-in function
include:

include(filename)

inserts the contents of filename in place of tbe include command. The con
tents of tbe file is often a set of definitions. The value ofinclnde (that is, its
replacement text) is tbe contents of the file; this can be captored in
definitions, etc.

It is a fatal error if the file named in include cannot be accessed. To get
some control over this situation, the alternate form sinclude can be used;
sinclude (for "silent include") says nothing and continues if it cannot
access the file.

It is also possible to divert the output of m4 to temporary files during pro
cessing, and output fbe collected material upon command. m4 maintains
nine of these diversions, numbered 1 through 9.

A - 7

If you say:

divert(n)

all subsequent output is put onto the end of a temporary file referred to as
"n". Diverting to this file is stopped by another divert command; in partic
ular, divert or dlvert(O) resumes the normal output process.

Diverted text is normally output all at once at the end of processing, with
the diversions output in numeric order. It is possible, however, to bring
back diversions at any time, that is, to append them to the current diver
sion.

undivert

brings back all diversions in numeric order, and undlvertwith arguments
brings back the selected diversions in the order given. The act of undivert
ing discards the diverted stuff, as does diverting into a diversion whose
number is not between 0 and 9inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted
materialisnotrescannedformacros.

The built-in divnum returns the number of the currently active diversion.
This is zero dnringnormal processing.

A.S Using System Commands

You can run any program in the local operating system with the syscmd
built-in. Forexample,

syscmd(date)

runs the date command. Normally, syscmd would be used to create a file
for a suhsequentincinde.

To facilitate making unique filenames, the built-in maketemp is provided,
with specifications identical to the system function mktemp: a string of
"XXXXX" in the argument is replaced by the process id of the current pro
cess*

A.9 Using Conditionals

There is a built-in called If else which enables you to perform arbitrary con
ditional testing. In !be simplest form,

if else(a, b, c, tf)

A -8

M4: A Macro Processor

compares the two strings a and b. Tf these are identical, ifelse retums the
stringc; otherwise it returns d. Thus, we might define a macro called com�
pa_re which compares two strings and returns "yes" or "no, ll they are the
same or different.

define(compare, 'ifelse($1, $2, yes, no)')

Note the quotation marks, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus provides a lim
ited fonn of multi-way decision capability. In the input:

ifelse(a, b, c, d, e,f, g)

if the string a matches the stringb, the result is c. Otherwise, if dis the same
as e, the result is f. Otherwise the result is g. 1f the final argument is omit
ted, the result is null, so:

if else(a, b, c)

is cif a matches b, and null othernise.

A.lO Manipulating Strings

The built-in len returns the length of the string that makes up its argument.
Thus:

len(abcdef)

is6, and:

len((a,b))

is S.

The built -in subs tr can be used to produce substrings of strings. For exam
ple:

substr(s,i,n)

returns the substring of sthat starts at position i (origin zero), and is n char
acters long. Jfnisomitted, therest ofthe string is returned, so:

A-9

XENIX Progranuner's Guide

substr('now is the time', 1)

is:

owis thetime

lf i or n are out of range, various senSlble things happen.

The command:

index(sl ,sZ)

returns the index (position) in sl where the string sZ occurs, or -1 if it does
not occur. Aswithsubstr, the origin forstrings isO.

The built -in trans lit performs character transliteration.

translit(s,f, r)
modifies s by replacing any character found in fby the corresponding char
acter oft. Thatis:

translit(s, aeiou, 12345)

replaces the vowels by the corresponiling digits. lf tis shorter thanf, char
acters that do not have an entry in t are deleted; as a limiting case, if tis not
present at all, characters from fare deleted from s. So:

translit(s, aeiou)

deletes vowels from us'".

There is also a built-in called dnl which deletes all characters that follow it
up to and including tbe next newline. It is useful mainly for tbrowing away
empty lines that otherwise tend to clutter up m4 output. For example, if
you say:

define(N, 100)
defiue(M, 200)
define(L, 300)

tbe newline at the end of each line is not part of the definition, so it is
copied into the output, whcre itmaynotbc wanted. Ifyou add dnl to each
of these lines, the new lines will disappear.

Another way to achieve this is:

A - 10

(
�·

divert(-1)
define(...)

divert

A.U Prinling

M4: A Macro Processor

The built-in errprint writes its arguments out on the standard error file.
Thus, you can say:

errprlnt('f atal error')

Dumpd�f is a debugging aid that dumps the current definitions of defined
terms. If there are no arguments, you get everything; otherwise you get the
onesyou name as arguments. Donot forgetthequotation marks.

A - 11

Replace this Page
with Tab Marked:

Sys te m Calls

App endix B

XENIX System C alls

B.1 Introduction B-1

B.2 Executable File Format B-1

B.3 Revised System Calls B-1

B.4 Version 7 Additions B-3

B.S Changes to the ioctl Function B-3

B.6 Pathname Resolution B-3

B.7 Using the mount () and chown () Functions B-4

c B.8 Super-Block Format B-4

B.9 Separate Version Libraries B-4

c

XENIX System Calls

B.l Introduction

This appendix lists some of the differences between XENIX 2.3, XENIX
3.0, UNIX V7, UNIX System 3.0 and XENIX System V. It is intended to
aid users who wish to convert system cails in existing application programs
for use on other systems.

B.2 Executable File Format

XENIX 3.0, UNIX System 3.0, and XENIX System V execute only !bose
programs with thex. out executable file format. The format is similar to the
old a. out format, but contains additional information about the executable
file such as text and data relocation bases, target machine identification,
word and byte ordering, symbol table, and relocation table format. The
x.outfile also contains the revision number of the kernel which is used dur
ing execution to control access to system functions. XENIX System V has
a segmented x.out header which contains segmentation information, as
well as relocation information. To execute existing programs in a.out for
mat, you must first convert to thex.out format. The format is described in
detail in a.out(F) in. the XENIXReference.

XENIX System V uses little-endian (low order word first iu memory) word
order for longs whereas some XENIX 3.0 systems use big-endian (high
order word first in memory) word order. XENIX System V checks the
x.out header for information about the word order. XENIX System V
maintains fui!XENIX 3.0binarycompatibility. XENIX System V executes
XENIX 3.0 word-swapped (big-endian) executable files as well as XENIX
3.0 and XENIX System V (little-endian) executables. Refer to tbe
machiue(HW) manual page iu tbe XENIX Reference for a complete
description of binary compatibility.

B.3 Revised System Calls

Some system calls in XENIX System V and UNIX System V have been
revised and do not perform the same tasks as the corresponding calls in
previous systems. To provide compatibility for old programs, XENIX Sys
tem V and UNIX System Vmaintaiu both the new and tbe old system calls
and automatically check the revision information in the x.out header to
determine which version of•a system call should be made. The following
table lists the revised system calls and their previous versions.

B-1

XENIX Programmer's Guide

System Call# XENIX 2.3 System3 SystemV
function function function

35 ftime unused unused
38 unused clocal clocal
39 unused setp� setpgrp
40 unused cxemx cxenix
S7 unused utssys utssys
62 clocal fcntl fcntl
63 cxenix ulitnit ulitnit

The cxenix() function provides access to system calls unique to XEI\"IX 3.0
and/or XENIX System V. The cloca/ funtion provides access to all calls
uniquetoan OEM.

The new XENIX System V system calls are accessed via cxenix() system
calls with their numbers. Note that these nwnbers are not regular system
call uwnbers, but cxenix() numbers. To use these calls, the cxenix() sys
tem call is made, with the high byte set to the appropriate number listed
below (i.e., to eall locking, take 40, add 256*1 to it, and pass the resulting
value in ax when trapping into the kernel.) The XENIX 3.0 and System V
system calls are listed at the below.

These calls arevalid forXENIX 3.0and XENIX System V:

cxenix Call#

B-2

0
1
2
3
4
5
6
7
8
9

10
11 ·
12
13
14
15
16
17
18

Function

shutdown OS
record locking
create semaphore
open semaphore
signal semaphore
wait semaphore
nonblockingwaitsem
blocking read check
set stack limit
extended ptracc
change file size
XENIX 2.3ftimecall
sleep for short interval
attach to shared data
release shared data
enter critical region
leave critical region
get shared data version #
wait fo:r new shared data version

System CaD

shutdn
locking
creatsem
opensem
sigsem
waitsem
nbwaitsem
rdchk
stkgrow
xptracc
chsize
ftitne
nap
sdget
sdfree
sdcnter
sdleave
sdgetv
sdwaitv

XEl>UX System Calls

The followingeallsarefoundinXENIX System V only:

cxenixCall# Function

19 change segment size
22 message control

. . 23 . get message queue .

24 send message
25 receive message
26 semaphore control
27 get semaphore set
28 semaphore ops
29 sysV shared memory control
30 sysV createsharedmemory
31 sysV attach shared memory

B.4 Version 7Addltions

System Call

brkctl
msgctl
msgget
msgsnd
msgmv
semctl
semget
semop
sbmctl
shmget
shmat

XENJX System V maintainsannmberofXENJX 3.0and UNJX V7featnres
that were dropped from UNJX System 3.0. In particular, XENJX System V
continues to support the dup2(S) and ftime(S) functions. The ftime func
tion, used with tbe ctime(S) function, provides the default value for the
time zone when the TZ environment variable has not been set. This means
a binary configuration program can b e used to change the default time
zone. No source license is required.

B.S Changes to tbeioctl Function

XENIX 3.0 and UNIX System 3.0 have a full set of XENIX 2.3-comparible
ioctl calls. Furthermore, XENIX 3.0 and XENIX System V have resolved
problems that previously hindered UNJX System 3.0 compatibility. For
convenience, XENIX 2.3-compatible ioctl calls can be en.cuted by a UNIX
System 3.0 e>recutable. The available XENIX 2.3 !oct! calls are:
TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC, TIOCGETC,
TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, and
TIOCSETD.

B.6 Patbname Resolution

If a null patbname is given, XENJX 2.3 interprets tbe name to be tbe
current directory, but UNIX System 3.0 considers the name to be an error.
XENIX 3.0 and XENIX System V use the version number in the x.out

B-3

XENIX Programmer's Guide

header to determine what action to take. A XENIX 2.3 header causes null
path names to be the current directory. Any other version is interpreted as
an error.

If the symbol " . .'' is given as a pathname when in a root directory that has
been defined using the cbroot(S) function, XENIX 2.3 moves to the next
higher directory. XENIX 3.0 also allows the" .. " symbolto cbroot, but res
tricts its use to the super-user. XENIX System V does not allow the " . . "
symbol to chroot.

B. 7 Using the mount () and chown () Functions

XENIX 3.0, and UNIX System 3.0 restrict the use of the mouni(S) system
call to the super-user. XENIX System V does not restrict the use of the
mount system call, usually however, the mount(C) program is only execut
able by the super-user. Also, XENIX System V, 3.0 and UNIX System 3.0
allow the owner of a file to use chown(S) function to change the tile owner
ship.

B.S Super·BlockFonnat

XENIX System V, UNIX System 3.0 and UNIX System 5.0 have new
super-block formats. XENIX System V and XENIX 3.0 use tp.e System 5.0
format, but use a different magic number for eaeh revision. The XENIX
System V and XENIX 3.0 super-blocks have an additional field at the end
which can be used to distinguish between XENIX 2.3, 3.0 and System V
super-blocks. XENIX System V and XENIX 3.0 checkthis magicnumber
at boot time and during a mount. If a XENIX 2.3 super-block is read,
XENIX 3.0 converts it to the new format internally. Similarly, if a XENIX
2.3 super-block is written, XENIX 3.0 converts it back to the old format.
This permits XENIX 2.3 kernels to be run on file systems also usable by
tTh"'X System 3.0.

However, XENIX System V is word-swapped relative to XENIX -86 3.0.
Even though the super-block formats are the same, the order of bytes in
long words is different. XENIX System V can not mount(C) or fsck(C)
XENIX 3.0 filesystems.

B.9 Separate Version Libraries

XENIX System V supports the construction ofXENIX 3.0 executable tiles.
This systems maintains both tbe new and old versions of system calls in
separate libraries.

B-4

!

c

Replace this Page
with Tab Marked :

Index

••
••
I •
I •
• •
I •
I•
I <
••
I<
••
I<
II
I I
I I
I I
I I
I I
I I
..
..
II
II
I I
..
..
..
II
14
H
II
14
II
u
I I
II
I I
u
II
II
II
II
u
u
..
II
II
u
II
u
II
..
..
II
II
II
II
..
..
II
..
..
II
II
u
II
II
14
II
II
II
II
II
. .
II
II
II
II
II
II
II
· -

c

Index

A

-a option
lint 4-9

ar
description 1-2

As
basic tool 1� 1

Assembler see As

B

-b option
lint 4-5

c

C compiler
expression

evaluation order 4-12
lint directives, effect 4-13

C language
yacc 6-1

-c option
lint 4-8

C program
string extraction 1-3

C programming language 1-1
canoe function 8-2
Command

execution 1-3
interpretation 1-3
sees commands see sees

creatsem function 8-7
csh

description 1-3
C-shell

command
history mechanism 1-3
language 1-3

D

Delta see sees
Desk calculator

specifications 6-32

Development system
described 1-1

E

Error message file
creation 1-2

F

File
archives 1-2
block counting 1-2
check sum computation 1-2
error message file see Error message file
locking 8-4
octal dump 1-2
relocation bits removal l-2
removal

sees use see sees
Source Code Control System see SCCS
symbol removal l-2
text search, print 1-2

FORTRAN
conversion program 5-21

free function 8-3

H

-h option
lint 4-11

Hexadecimal dump 1-2

L

ld
basic tool 1-1

lex
0, end of file notation 5-12
action

default 5-8
repetition 5-8
specification 5-8

alternation 5-6
ambiguous source rules 5-12
angle brackets (< >)

operator character 5-3, 5-25
start condition referencing 5-16

I-1

Index

lex (continued)
a.out file

contents 5-4
arbitrary character match 5-5
array size change 5-24
werisk (*)

operator character 5-31 5�25
repeated expression specification 5-6

automaton interpreter
initial condition resetting 5-16

backslash (\)
C escapes 5-3
operator ch....,ter 5-3, 5-2

escape 5-3, 5-5
BEGIN

start condition entry 5-16
blank character

quoting 5-3
rule ending 5-3

blank, tab line beglnningS-17
braces ({)')

expresston repetition 5-7
opexator character 5-25� 5-3

brackets ([D
character class specification 5-4
character class use 5-1
operator character 5-25. 5-3

escape 5-4
buffer overflow 5-13 �es 5-3

character class inclusion 5-5
context sensitivity 5-6
operator

character 5-25, 5-:3
left context recognizing 5-15

string complement 5-5
character

class
notation 5-1
speeiftcatlon 5-4

internal use 5-23
set

specification 5-23
table 5-23, 5-24

translation table see set table
context sensitivity 5-6
copy classes 5-17
dash (-)

character class inclusion 5-5
operator character 5-3, 5-25
rauge indicator 5-4

definition

I-2

character set table 5-23
contents 5-181 5�24
expansion s� 7
fonnat 5-18. 5-24
location 5�18
placement 5� 7

lex (continued)
definition (conlinued)

specification 5-17
delimiter

discard S-18
rule begiunlng marking 5-1
third delimiter, copY 5-18

description 1-1, 5-1
d<>llar sign ($)

context sensitivity 5-6
end of line notation 5-1
operator character 5-3, 5-25

dollar sign ($) operator
right context recognizing 5-15

dot (.) <>perator see period (.)
double precision constant change 5-21
ECHO

format argnmentt data printing 5-9
end-of-file

0 handling 5-12
yywrap routine 5¥12

environment
change S-15

expression
newline Ulegal 5-4
repetition 5-7

external character an'ay 5-8
ftag

environment change 5-15
FORTRAN conversion program 5-21
grouping 5-6
input

description 5-1
end-of-file, 0 notation 5-11
ignoring 5-8
manipulation restriction 5�15

input () routine 5-11
input routine

character I/0 bandling 5-23
invocation 5-4
II 0 librlU}' see Ubrary
110 routine

access 5-11
consistency 5-11

left context 5-7 caret 0 operator 5-15
sensitivity 5�15

lexical analyzer
environment change 5-15

lex.yy.c file 5-4
llbrlU}'

access 5-4
avoidance 5-4
backup limitation 5-12
loading 5-19

line beginning match 5-6
line end match 5-7
-ll llag

library access 5-4

l

lex (continued)
loader flag see -U flag
lookahead characteristic 5-11, 5-9
match count 5-9
matching

occurrence counting 5-13
preferences 5-12

newline
escape 5-23
illegality S-4
matching 5-13

octal escape 5-S
operator characters

see also Specific Operator Character
designated 5-25
escape 5-3, S-4, 5-5
listing 5-3
literal meaning 5-3
quoting 5-3

optional expression
specification 5-5

output (c) routine 5-11
output routine

character JJO handling 5-23
parentheses '(())

grouping 5-6
operator character 5-3, 5-25

parser generator
analysis phase 5-2

percentage sign (%)
delimiter notation (%%) 5-l
operator character 5-3
remainder operator 5-19
source segment separator 5-8

period (.)
arbitrary character match 5-5
newline no match 5-13
operator character 5-3

period (.) operator
designted 5-25

plus sign (+)
operator character 5-3. 5-25
repeated expression specification 5-6

preprocessor statement entry 5-18
question mark (?)

operator character 5-3, 5-25
optional expression specification 5-5

quotation marks, double (") 5-25, 5-3
real numbers role 5-18
regular expression

description 5-3
operators see operator characters

REJECT 5-14
repeated expression

specification 5-6
right context

doUar sign ($) operator 5-15

Index

role
active 5-16
real number 5-18

roles
fonnat 5-25

semicolon (;)
nun statement 5-8

slash (f)
operator character S-3, 5-25
trailing text 5-7

source
copy into generated program 5-17
definitions

specification 5-17
description 5-1
file

format 5-24
fonnat 5-17
interception failure 5-17
program

compilation 5-4
segment separator 5-8

spacing character ignoring 5-8
start

abbreviation 5-16
condition 5-7

entry 5-16
environment change 5-15

fonnat 5-24
location 5-24

statistics gathering 5-20
substitution string

definition see definition
tab line beginning .see blank, tab line

beginning
text character

quoting 5-3
trailing text 5-7
unput

REJECT noncompatible 5-15
unput (c) routine 5-11
unput routine

character JJO handling 5-23
unreachable statement 4-6
vertical bar (I)

action repetition 5-8
alternation 5-6
operator character 5-3, 5-25

wrapup see)'YWI'ap routine
yacc

interface 5-2
tokens 5-19
})'lex () 5-19

library loading 5-19
yyleng variable 5-9
})'less ()

text reprocessing 5-10
})'less (n) 5-9

I-3

Index

yylex () program
contents 5-1
yacc interface 5-19

yymore () 5-9
yytext

external character array 5-8
yywrap () 5-20

routine 5-12
Library

conversion 1-2
maintenance 1-2
ordering relation 1-2
sort 1-2

llnt
-a option 4-9
ARGSUSED directive 4-13, 4-14
argument number comments turnoff 4-13
assignment

in1plied see implied assignment
of long to int

check 4-9
operator

new form 4-11
old fonn, check 4-11
operand type balancing 4-7

-b option 4-5
binary operator� type check 4-7
break statement

unreachable see unreachable break
statement

-c option 4-8
C program check 4-1
C syntax, old formt check 4-11
cast see type cast
conditional operator

operand type balancing 4-7
constant in conditional context 4-10
construction check 4-1. 4-9
control information flow 4-13
degenerate unsigned comparison 4-10
description 4-1
directive

defined 4-13
embedding 4-13

enumeration, type check 4-7
error message) function ruune 4� 7
expression, order 4-12
extern statement 4-3
external declaration, report suppression 4-4
llle

library declaration :file identification 4-13
function

error message 4-7
return value check 4-6
type check 4-7
unused see Ulltlsed function

-h option 4-11
implied assignment� t)pe clleck 4-7
initialization, old style check 4-11

I-4

lint (conffnued) library
compatibility check 4-14

suppression 4-14
directive acceptance 4-14
file processing 4�14

LINTLIBRARY directive 4-13, 4-14
loop check: 4-6
-ly directive 4-14
-n option 4-14
nonportable

character check 4-9
expression evaluation order check 4�12

NOSTRICT directive 4-13
NOTREACHED directive 4-13
operator

operand types balanehtg 4-7
precedence 4-10

output turnoff 4-13
-p option 4-14
pointer

agreement 4-7
alignment check 4-12

program ft0w
·

control 4-5
relational operator

operand type balancing 4-7
scalar variable check 4�12
source file

library compatibility check 4-14
statement

lllllabeled report 4-5
structure selection operator

type check 4-7
syntax 4-1
type cast

check 4-8
comment printing control 4-8

type check
description 4-7
turnoff 4-13

-u option 4·4
unreachable break: statement

repart suppression 4-6
unused argument

report suppression 4-4
unused function

eheck 4-3
unused variable

check 4-3
-v option

tumon 4-13
unused variable report suppression 4-4

VARARGS directive 4-13, 4-14
variable

external variab1e initialization 4-5
inner/outer block conflict 4-10
set/used in1ormation 4-4
static variable initialization 4-5

c

lint (continued)
variable (cominued)

unused see unused variable
-x option 4-4

Loader see ld
Locking files

described 8-4
preparation 8-4
sys/locking.h file 8-4

locking function 8-5
longjmp function 7-11
Loop

lint use see lint
I order

description 1-2

M

m4
description 1-2

:Macros
preprocessing 1-2

Maintainer see Make
make

argument quoting 2-7
backslash (\)

description file continuation 2-2
basic tool 1-2
.c suffix 2-10
command

argument
macro definition 2-6

form 2-1
location 2-1
print without execution 2-14
string

hyphen (-) start 2-5
substitution 2-5

-d option 2-14
.DEFAULT 2-5
dependency line

form 2-1
substitution 2-5

description file
comment convention 2-2
macro definition 2-6

description filename
argument 2-4

dollar sign ($)
macro invocation 2-6

-e option 2-4
equal sign (�)

macro definition 2-6
.f suffix 2-10
file

generation 2-5
time, date printing 2-14

Index

make (continued)
file (continued)

update 2-1
updating 2-14

hyphen (-)
command string start 2-5

-i option 2-4
.IGNORE 2-5
-k option 2-4
.I suffix 2-10
macro

definition
analysis 2-6
argument 2-4
description 2-6

definition override 2-7
invocation 2-6
substitution 2-5
value assignment 2-6

medium sized projects 2-1
-n option 2-14, 2-4
number sign (#}

description file comment 2-2
.o suffix 2-10
object file

suffix 2-10
option argument

use 2-4
-p option 2-4
parentheses (())

macro enclosure 2-6
.PRECIOUS 2-5
program maintenance 2-1
-r option 2-4
.r sufftx 2-10
-s option 2-4
.s suffix 2-10
semicolon (;)

command introduction 2-1
.SILENT 2-5
source file

suffixes 2-10
source grammar

sufftxes 2-10
suffixes

list 2-9
table 2-9

-t option 2-14, 2-4
target

file
pseudo-target files 2-5
update 2-14

filename
argument 2-4

name omission 2-3
touch option see -t option
transformation rules

table 2-9
troubleshooting 2-13

I-5

Index

make (conliluled)
.y suffix 2-10
.yr suffix 2-10

make command
arguments: 2-4
syntax 2-4

malloc function 8-1
Memory

allocating
arrays 8-2
dynamically 8-1
variables 8-1

allocation functions, described 8-1
freeing allocated space 8-3
reallocating 8-3

-n option
lint 4-14

N

nbwaitsem function 8-9
Notational conventions 1-4

0
opensem function 8-8

p
-p option

lint 4-14
Pipe

sees use ... sees
Processes

background 7-12
restoring an execution state 7-11
saving the execution state 7-10

Program
development 1-1
maintainer see Make

R

ranlib
description 1-2

realloc function 8N3
rm command

sees use see sees

I-6

s
sees

@(#) string
file information, search 3-33

-a option
login name addition use 3-24

admin command
file

administration 3-26
checking use 3-26
creation 3-5

use authorization 3-6
administrator

description 3-5
argument

minus sign (-)
use 3-4

types designated 3-4
branch

delta
retrieval 3-11

branch
nwnber

description 3-2
cdc command

commentary change 3-18
ceiling nag

protection 3-25
checksum

file corruption determination 3-26
command

azgument see argument
execution control 3-4
explanallnn 3-28

comments
change procedure 3-18
omission, effect 3-29

corrupted file
determination 3-26
processing restrl<:tions 3-26
restoration 3-27

d fiag
default specification 3-17

-d flag
flags deletion 3-17

-d option
data specification provision 3-21
flag removal 3-17

data keyword
data specification component 3-21
replacement 3-21

data specification
description 3-21

delta
branch delta see branch de1ta

sees (continued)
delta (continued)

command
comments prompt 3-8
file change procedure 3-8
g-file removal 3-13
p-file reading 3-8

defined 3-1, 3-2
exclusion 3-30
inclusion 3-30
interference 3-30
latest release retrieval 3-12
level number see level number
name see SID
printing 3-22, 3-32
range printing 3-22
release number see release number
removal 3-32
table

delta removal, effect 3-33
description 3-18

descriptive text
initialization 3-20
modification 3-20
removal 3-21

d-file
temporary g-file 3-4

diagnostic output
-p option effect 3-13

diagnostics
code as help argument 3-13
form 3-13

directory
file argument application 3-4
use 3-2
x-file location 3-3

-e option
delta range printing 3-22
file editing use 3-7
login name removal 3-25

error message
code use 3-13
fonn 3-13

exclamation point (!)
:MR deletion use 3-20

-f option
flag initialization, modification 3-16
flag, value setting 3-17

file
administration 3-26
change

identification 3-31
major 3-10
procedure 3-8

changes see delta
checking procedure 3-26
comparison 3-33
composition 3-18, 3-2
corrupted file see corrupted file

sees (continued)
file (continued)

creation 3-5

Index

data keyword see data keyword
descriptive text description 3-18
editing, -e option use 3-7
grouping 3-2
identifying information 3-33
link see link
multiple concurrent edits 3-23
name

see also link
arbitrary 3-13
s use 3-5

parameter initialization, modification 3-20
printing 3-21
protection methods 3-24
removal 3-6
retrieval see get command
x-file see x-file

file argument
description 3-4
processing 3-4

file creation
comment line generation 3-29
commentary 3-29
comments omission, effect 3-29
level nwnber 3-29
release number 3-29

file protection 3-24
flags

deletion 3-17
initialization 3-16
modification 3-16
setting, value setting 3-17
use 3-17

floor flag
protection 3-25

-g option
output suppression 3-32
p-file regeneration 3-27

get command
concurrent editing, directory use 3-23
delta inclusion, exclusion check 3-30
-e option use 3-7
file retrieval 3-6
filename creation 3-6
g-file creation 3-3
message 3-6
release number change 3-10

g-file
creation 3-3
creation date, time recordation 3-14
description 3-3
line identification 3-31
line, %M% keyword value 3-31
ownership 3-3
regeneration 3-27
removal, delta command use 3-13

I-7

Index

sees (continued)
g-file (continued)

temporary see d-file
-h option

file audit use 3-26
help command

argument 3-13
code use 3-13
use 3-28

i flag
file creation, e:tfect 3-16
keyword message, error treatment 3-16

-i option
delta inclusion list use 3-30

ID keyword see keyword
identification string see SID
j flag

multiple concurrent edits specification 3-
23

-k option
g-file regeneration 3-27

keyword
data see data keyword
format 3-14
lack, error treatment 3-16
use 3-14

-1 option
delta range printing 3-22
1-file creation 3-31

level number
delta component 3-2
new file 3-29
omission, file retrieval, e:tfect 3-10

!-file
contents 3-4
creation 3-31

link
number restriction 3-2

lock file see z-file
lock flag

R protection 3-25
%M% keyword

g-file line precedence 3-31
-m option

effective when 3-19
file change identification 3-31
new file creation 3-29

minus sign (-)
argument use 3-4
option argument use 3-4

mode
g-file 3-3

MR
commentary supply 3-18
deletion 3-20
new file creation 3-29

multiple users 3-5
-n option

g-file preseiVation 3-13

I-8

sees (continued)
-n option (continued)

%M% keyword value use 3-31
pipeline use 3-31

option argument
description 3-4
processing order 3-4

output
data specification see data specification
piping 3-29
suppression

-g option 3-32
-s option 3-29

write to standard output 3-12
-p option

delta printing 3-32
output e:tfect 3-12

percentage sign (%)
keyword enclosure 3-14

p-file
contents 3-3, 3-8
creation 3-3
delta command reading 3-8
naming 3-3
ownership 3-3
permissions 3-3
regeneration 3-27
update 3-3
updating 3-4

piping 3-29
-n option use 3-31

prs command
file printing 3-21

purpose 3-1
q file

use 3-4
R

delta removal check 3-32
-r option

delta
creation we 3-23
printing use 3-22
file retrieval 3-9
release number specification 3-29

release
number

change 3-2
change procedure 3-10
delta component 3-2
new file 3-29
-r option, specification 3-29

protection 3-25
rm command

file removal3-6
nndel command

delta removal 3-32
-s option

output suppression 3-29

SID
components 3-2
deJta printing use 3-22

sccsdiff command
file comparison 3-33

sequence number
desCription 3-2

-t option
delta retrieval 3-12
flle

initialization 3-21
modification 3-21

tab character
-n option, designation 3-31

user list
empty by default 3-24
login name

addition 3-24
removal 3-25

protection feature 3-24
user nmne

list 3-24
v flag

new file u� 3-17
what command

:file information 3-33
write permission

delta removal 3-32 -x option
delta exclusion list use 3-30

XENIX command
use precaution 3-27

x-file
directory, location 3-3
naming procedure 3-3
permissions 3-3
terupo:rary file copy 3-3
use 3-3

-y option
comments prompt response 3-18
new file creation 3-29

-z key
file audit use 3-27

z-file
lock file use 3�3
ownership 3-3
pennissions 3-3

sees, source code control l-2
sdenter function 8-15
sdfree function 8-19
sdget function 8-13
sdgetv function 8-17
sdleave function 8-16
sdwaitv function 8-18
Semaphore functions� described 8-6
Semaphores

checking status 8-9
creating 8-7
described 8-6

Semaphores (continued)
opening 8-8
relinquishing control 8-10
:requesting control 8-9

setjmp function 7-10
setjmp.h file, described 7-1
Shared data

attaching segments 8-13
creating segments 8-13
described 8-13
entering segments 8-15
freeing segments S-19
leaving segments 8-16
version number 8-17
waiting for segments 8-18

signal function 7-1
signal.h file, described 7-l
Signals

catching 7--4
default action 7-3
delaying an action 7-8
described 7-1
disabling 7-2
redefining 7-4
restoring 7-3, 7-6
SIGJ)FL constmt 7-1
SIGHt;"P constant 7-1
SIG..IGN constant 7-1
SIGINT constant 7-1
SIGQUIT constant 7-1
to a child process 7-13

Index

to background processes 7-12
with interactive programs 7.., 10
with multiple processes 7-12
with system functions 7-10

sigsem function 8�10
Software development

described 1-1
Source Code Control System see SCCS
strip

description 1-2
sum

description 1-2
Svmbol ·

name list 1-2
removal l-2

sync
description 1-3

s)'$/locking.h file 8-4
System

resources 8-1
System resource functions. described 8-1

I-9

Index

T

Tags file
creation 1-2

tsort
description 1-2

u

-u option
lint 4-4

v

-v option
lint 4-13, 4-4

Variables
allocating for arrays 8-2
memory allocation B-1

w

waitsem function 8-9

X

-x option
lint 4-4

XENIX lile
identifying information 3-33

XBNIX Operating system 1-1

y

yacc
% token keyword

union member name association 6-32
0 character

grammar rules, avoidance 6-5
)0 key

endmarker token marker 6-10
accept

action .see parser
simulation 6-30

action
0, negative number 6-30

I-10

yacc (continued)
action (continued)

conftict source 6-17
defined 6-6
error rules 6-24
form 6-45
global flag setting 6-29
input style 6-27
invocation ,6-1
location 6-7
nonterminating 6-8
parser see parser
return value 6-31
statcntent 6-6, 6-9
value in enclosing rules. access 6-30

ampersand (&)
bitwise AND operator 6-32
desk calculator operator 6-32

arithmetic expression
desk calculator 6-32
parsing 6-21
precedence .see precedence

associativity
arithmetic expression parsing 6-21
grammar rule association 6-23
recordation 6-23
token atta(ihment 6-21

asterisk ("')
desk calculator operator 6�32

backslash (\)
escape character 6�5
percentage sign (%) substitution 6-45

binary operator
precedence 6-22

blank character
restrictions 6-4

braces ({ })
action 6-9

dropping 6-45
statement enclosure 6-6

header file enclosure 6-31
colon (:)

identifier, effect 6-35
punctuation 6-5

comments
location 6-4

conflict
associativity .see associativity
disambiguating rules 6-17, 6-18
message 6�19
precedence .see precedence
reduce/reduce coollict 6-171 6-23
resolution, not counted 6-23
shift/reduce conliict 6-17� 6-19, 6-23
source 6-17

declaration
specification file component 6-4
section

header file 6-31

c

c

[J

yacc (continued)
description 1-1
desk calculator

advanced features 6-38
error recovery 6-38
floating point interval 6-38
scalar conversion 6-38
specifications 6-32

dflag 6-29
disambiguating

rule 6-17
rules 6-18

dollar sign ($)
action significance 6-7

empty rule 6-28
enclosing rules, access 6-30
endmarker

lookahead token 6-13
parser input end 6-6
representation 6-6
token number 6-10

environment 6-26
error

action see parser
handling 6-23
nonassociating implication 6-23
parser restart 6-23
simulation 6-30
token

parser restart 6-24
yyerrok statement 6-25

escape characters 6-5
external integer variable 6-27
flag

global flag see global flag
floating point intervals see desk calculator
global flag

lexical analysis 6-29
grammar rules 6-1, 6-2

0 character avoidance 6-5
advanced features 6-38
ambiguity 6-16
associativity association 6-23
C code location 6-45
empty rule 6-28
error token 6-24
format 6-4
input style 6-27
left ,recursion 6-28
left side repetition 6-5
names 6-5
numbers 6-20
precedence association 6-23
reduce action 6-12
reduction 6-13
rewrite 6-17
right recursion 6-28
specification file component 6-4
value 6-7

yacc (continued)
header file

union declaration 6-31
historical features 6-44
identifier

input syntax 6-35
if-else rule 6-18

Index

if-then-else construction 6-18
input

error detection 6-3
language 6-1
style 6-27
syntax 6-35

keyword 6-21
reservation 6-30
union member name association 6-32

left association 6-16
left associative

reduce implication 6-23
%left keyword 6-21

onion member name association 6-32
left recursion 6-28

value type 6-32
%left token

synonym 6-45
lex

interface 5-2
lexical analyzer construction 6-11

lexical analyzer
context dependency 6-29
defined 6-1, 6-9
endmarker return 6-6
floating point constants 6-39
function 6-2
global flag examination 6-29
identifier analysis
lex 6-11
return value 6-31
scope 6-9
specification file component 6-4
tenninal symbol see terminal symbol
token number agreement 6-9

lexical tie-in 6-29
library 6-26, 6-27
literal

defined 6-5
delimiting 6-44
length 6-44

lookahead token 6-11
clearing 6-25
error rules 6-24

LR(2) grammar 6-35
-ly argument, library access 6-26
main program
minos sign (-)

desk calculator operator 6-32
names

composition 6-5
length 6-5

1-11

Index

yacc (continued)
names (conti1Wed)

reference 6-4
token name see token name

newline character
restrictions 6�4

0/nnonassoc keyword 6-21
union member name association 6-32

%nonassoc token
synonyms 6-45

nonassociating
error implication 6-23

nontenninal
name

input style 6-2:1
representation 6-5

symbol 6-2
empty string match 6-5
Ioca.tton 6-6
name see nontermlna.l name
start symbol see start symbol

union member name association 6-32
octal integer

0 beginning 6-32
parser

accept
action 6Ml3
simulation 6-30

actions 6-11
arithmetic expression 6-21
conflict see conflict
creation 6-21
defined 6-1
description 6-U
error

action 6� 13
handllng see error

goto action 6-12
initial state 6-15
input end 6-6
lookahead token 6-11
movement 6-11
names, yy prefix 6-9
nonterminal symbol see nonrerminal
production failure 6-3
reduce action 6-11
restart 6-23
shift action 6-11
start symbol reoognitlon 6-6
token number agreement 6-9

percentage sign (%)
action 6-9
desk calculator mod Operator 6-32
header file enclosure 6-31
precedence keyword 6-21
specification file section separator 6-4
aubstitution 6-45

plus sign (+)
desk calculator operator 6-32

I-12

yacc (continued)
%prec

keyword 6-22
synonym 6-45

precedence
bimuy operuor 6-22
change 6-22
grammar rule association 6-23
keyword 6-21
parsing function 6-21
recordation 6�23
token attachment 6-21
unary operator 6-22

program
specification file component 6-4

punctuation 6-5
quotation m,a.rlcs, double (") 6-44
quotation mll.l'b, single (')

literal enclosure 6-5
reduce

action see parser
command

number reference 6-20
reduce/reduce conflict 6-17, 6-23
reduction conftict

see reduce/reduce conflict
aee shift/reduce conflict

reserved words 6-30
right association 6-16
right associative

shift implication 6-23
%right keyword 6-21

union member name association 6-32
right reeW'sion 6-28
%right token

synonym 6-45
semicolon (;)

input style 6-27
punctuation 6-5

shift
action see parser
command
number reference 6-20

shift/reduce oo:uftict 6-17, 6-19, 6-23
simple-if ru1e 6-18
slash (f)

desk calculator operator 6-32
specification file

contents 6-4
lexical analyzer inclusion 6-4
sections separator 6-4

specification files 6-3
start symbol

description 6-6
location 6-6

symbol synonyms 6-45
tab character

restrictions 6-4
terminal symbol 6-2

c
yacc (continued)

token
associativity 6-21
defined 6-1
error token see error token
name 6-10

declaration 6-6
input style 6-27

names 6-4
number 6-9

agreement 6-9
assignment 6-10
endmarker 6-10

organization 6-1
precedence 6-21

%token
synonym 6-45

%type keyword 6-32
unary operator

precedence 6-22
underscore sign (_)

parser 6-15
union

copy 6-31
declaration 6-31
header file 6-31
name association 6-32

unreachable statement 4-6
-v option

y.output file 6 ... 13
value

stack
declaration 6-31
floating point scalars, integers 6-38, 6-31 ·

typing 6-31
union see union

vertical bar (I)
bitwise OR operator 6-32
desk calculator operator 6-32
grammar rule repetition 6-5
input style 6-27

y.output file 6-13
parser checkup 6-23

y.tab.c file 6-26
y.tab.h file 6-31
YYACCEPT 6-30
yychar 6-26
yyclearin statement 6-25
yydebug 6-27
yyerrok statement 6-25
yyerror 6-26
YYERROR 6-38
yylex 6-26
yyparse

YYACCEPT effect 6-30, 6-26
YYSTYPE 6-32

Index

I-13

�� .
·�·

Replace this Page
with Tab Marked :

C LANGUAGE
REFERENCE

� -

XENIX® System V

Development System

C Language Reference

(
\'-----./

lnlormation in this document is subject to change without notice and does not represent a
commitment on the part of The Santa Cruz Operation� Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreeJnent. It is against the law to copy this software on magnetic tape,
disk, or anyothermediumfor any purposeotherthan the purchaser's personal use.

Portions @ 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987 Microsoft Corporation.
All rights reserved.
Portions@ 1983, 19841 1985, 1986, 1987 The Santa Cruz Operation, Inc.
All rights :reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BEEXPRESSLYSUBJEC!'TO RESTRICTIONSAS SET
FORTH JN SUBDIVISION (b) (3) (li) FOR RESTRICTED RIGHTS IN COMP!ITER
SOFTWAREAND SUBDIVISION(b) (2) FORLIMITED RIGHTSINTECHNICAL
DATA, BOTHASSETFORTHJNFAR52.227-7013.

'Ihls document was typesetwith an IMAGEN® 8/300 Laser Printer.

Microsoft, YS-DOS, and XENIXare registered tradeD1arksofMierosoft Cnrporation.
IMAGEN !sa registered tradeUlark of!MAGEN Corporation.

SCO DocumentN\tmber: XG-6-21-87-4.0

Contents
! ··"--

1 Introduction

1.1 Overview 1-1
1.2 About This Guide 1-2
1.3 Notational Conventions 1-3

2 Elemenls of C

2.1 Introduction Z-1
2.2 Character Sets 2-1
2.3 Constants 2-6
2.4 Identifiers 2-10
2.5 Keywords 2-11
2.6 Comments 2-12
2.7 Tokens 2-12

3 Program Stroctnre

(' 3.1 Introduction 3-1
·"-..._. - 3.2 Source Program 3-1

3.3 Source Files 3-2
3.4 Program Execution 3-5
3.5 Lifetime and Visibility 3-6
3.6 NamingCiasses 3-9

4 Declarations

4.1 Introduction 4-1
4.2 Type Specifiers 4-1
4.3 Declarators 4-5
4.4 Variable Declarations 4-9
4.5 Function Declarations 4-20
4.6 Storage Classes 4-22
4.7 Initialization 4-28
4.8 Type Declarations 4-32
4.9 Type Names 4,34

5 Expressions and Assignmenls

5.1 Introduction 5-1
5.2 Operands S-1
5.3 Operators 5-9
5.4 Assignment Operators 5-22

- i-

5.5 Precedence and Order of Evaluation 5-25
5.6 Side Effects 5-28
5.7 Type Conversions 5-29

6 Statements

6.1 Introduction 6-1
6.2 Break Statement 6-2
6.3 Compound Statement 6-3
6.4 Continue Statement 6-4
6.5 Do Statement 6-5
6.6 Expression Statement 6-6
6.7 For Statement 6-7
6.8 Go to and Labeled Statements 6-8
6.9 If Statement 6-9
6.10 Null Statement 6-11
6.11 Return Statement 6-12
6.12 Switch Statement 6-14
6.13 While Statement 6-16

7 Functions

7.1 Introduction 7-1
7.2 Function Definitions 7-1
7.3 Function Declarations 7-7
7.4 Function Calls 7-9

8 Preprocessor Directives

8.1 Introduction 8-1
8.2 Manifest Constants and Macros 8-1
8.3 Include Files 8-6
8.4 Conditional Compilation 8-7-
8.5 Line Control 8-12

A Differences

A.1 Introduction A-1

B Syntax Summary

B.1 Tokens B-1
B.2 Expressions B-5
B.3 Declarations B-7
B.4 Statements B-10
B.5 Definitions B-11
B.6 Preprocessor Directives B-11

- ii -

C hapter l
i
�. Intro duction

1.1 Overview 1-1

1.2 AboutThis Guide 1-2

1.3 Notational Conventions 1-3

lnlrodnction

1.1 Overview

The C language is a general-purpose programming language well known
for its efficiency, economy, and portabilitjl. While these advantages make
it a good choice for almost any kind of programming, C has proven to be
especially useful in systems programming because it allows programmers
to write fast and compact programs and to transport those programs to
other systems. 1n many cases, well-written C programs are comparable in
speed to assembly language programs and offer the advantages of easier
maintenance and greaterreadabilitjl.

1n spite of C's efficiency and power, it is a relatively small language. C does
not include built-in functions to perform tasks such as input and output,
storage allocation, screen manipulation) and process control. Instead> C
programmers rely on run-time libraries to perform such tasks.

This design contributes to C's adaptability and compactness. Because the
language is relatively confined, it does not assume or impose a particular
programming model. Run-time routines provide support as needed,
allowing the programmer to minimize their use, if desired_, or to tailor run
time routines for special purposes.

The design also helps to isolate language features from processor-specific
features in a particular C implementation, thus aiding programmers who
want to writa portable code. The strict definition of the language makes it
independent of any particular operating system or machine; at the same
time, programmers can easily add system-specific routines to take advan
tage of a particular machine's efficiencies.

Some of the significant features of the C langnage are as follows:

• C provides a full set of k>op, conditional, to control program flow
logically and efficiently and to encourage structured programming.

• Coffers an unusually large set of operators. Many of C's operators
correspond to common machine instructions, allowing a di�ct
translation into machine code. The variety of operators lets the
programmer specify different kinds of operations clearly and with
a minimum of code.

• C's daUJ types include several sizes of integers, single- and double
precision floating-point types. The programmer can design more
complex data types, such as arrays and data structures, to suit
specific program needs.

1-1

C Language Reterenee

• C programmers can dec/are "pointers" to V(lrio.b/es and functions.
A pointer to an item corresponds to the machine address of that
item. Usin!f pointers wisely can increase program efficiency con
siderably, s111Ce pointers let the programmer refer to items in the
same way the machine does. C also supports pointer arithmetic,
allowing the programmer both to access and manipulate memory
addresses directly.

• The C preprocessor, a text processor, acts on the text of files before
compilation. Among its most useful applications for C programs
are the definition of program constants, the substitution of func
tion calls with faster macro look-alikes, and conditional compila
tion. The preprocessoris not limited to processing C files; it can be
used on any text file.

• Cis a flexible language, leaving much ofthe decision-makingup to
the programmer. In keeping with this attitude, C imposes few res
trictions in matters such as type conversion. While this is often an
asset, it is important for C programmers to be thoroughly familiar
with the definition of the language in order to understand how their
programs will behave.

1.2 About This Guide

The XENIX C Language Reference defines the C language as implemented
by Microsoft. It is intended as a reference for programmers who have
experience in C or in another programming language. Knowledge of pro
grammingfnndamentals is assumed.

The run-time hbrary functions available for use in Microsoft C programs
are discussed in the XENIXCLibrary Guide.

Consult the XENIX C Library Guide. for an explanation of how to compile
and link C programs on your system. The XENIX C Library Guide. also
contains information specific to the implementation of Con your system.

This guide is organized as follows:

1-2

Chapter 1, "Introduction" summarizes the organization of the guide
and the conventions used.

Chapter 2, "Elements of C", describes the letters, numbers, and sym
bols that can be used in C programs and the combinations ()f charac
ters that have special meanings to the C compiler.

Chapter 3, "Program Structore", discusses the components and stroc
ture of C programs and explains how C source files are organized.

Introduction

Chapter 4, "Declarations", describes how to specify the attributes of
C variables, functions, and user-defined types. C provides a number
of predefined data types and allows the programmer to declare aggre
gate types and pointers.

Chapter 5� ''Expressions and Assignments", describes tl1e operands
and operators that make up C expressions and assignments. The type
conversions and side effects that may accompany the evaluation of
expressions are also discussed in this chapter.

Chapter 6, "Statements", describes C statements. Statements con
trol the fiow of program execution.

Chapter 7, "Functions", discusses features of C functions. In particu
lar, it explains how to define, declare, •and call a function and
descrihes function parameters and retorn values.

Chapter 8, !{Preprocessor Directives", describes the instructions
recognized by the C preprocessor. The C preprocessor is a text pro
cessor automaticallyinvoked before compilation.

Appendix A, '"Differences", lists the differences between :Microsoft
C and the description ofthe C langnagn found in A ppendixA of The C
Programming Language by Brian W. Kernighan and Dennis M.
Ritchie, published in 1978 by Prentice-Hall, Inc.

Appendix B, "Syntax Summary'', summarizes the syntax of the
Microsoft C language implementation.

The remainder of this chapter describes the notational conventions used
throughout the guide.

1.3 Notational Conventions

This guide uses a number of notational conventions to describe the syntax
ofXENIXcommands:

boldface Boldface indicates a command, option, flag, or
program name to be entered as shown.

Boldface indicates the name of a library routine,
global variable, standard type, constant, key
word, or identifier used by the C library. \fo
find more information on a given library routine
consult the "Alphabetized List" in your XENIX
Reference for the pagn that descnbes it.)

1 - 3

C Language Reference

italics

CAPITALS

SMALL CAPITALS

[]

" ,

1-4

Italics in<licate a filename. This pertains to
library include filenames (i.e. stdio.h), as well
as, other filenames (i.e. letc!ttys).

Italics indicate a placeholder for a command
argument. When entering a command , aplace
holder must be replaced with an appropriate
filename, number� or option.

Italics indicate a specific identifier, supplied for
variables and functions, when mentioned in
text.

Italics indicate user named routines. (User
named routines are followed by open and close
parentheses, ().)

Italics indicate emphasized words or phrases in
text.

Capitals indicate names of environment vari
abies (i.e. TZ and PATH).

Small capitals indicate ke}'ll and key sequences
(i.e. RETURN).

Brackets indicate that the enclosed item is
optional. If you do not use the optional item,
the program selects a default action to carry out.

Ellipses indicate that you can repeat the preced
ingitem anynumberoftimes.

Vertical ellipses indicate that a portion of a pro
gram example is omitted.

Quotation marks indicate the first use of a
technical tenn.

Quotation marks indicate a reference to a word
rather than a command.

/ -

(
\.._ -

Chapter 2

Elements of C

2.1 Introduction 2-1

2.2 Character Sets 2-1
2.2.1 Letters and Digits 2-1
2.2.2 Whitespace Characters 2-2
2.2.3 Punctuation and Special Characters 2-2
2.2.4 Escape Sequences 2-3
2.2.5 Operators 2-5

2.3 Constants 2-7
2.3.1 Integer Constants 2-7
2.3.2 Floating-Point Constants 2-8
2.3.3 Character Constants 2-9
2.3.4 String Literals 2-10

2.4 Identifiers 2-11

2.5 Keywords 2-12

2.6 Comments 2-13

2.7 Tokens 2-13

c

Elements of C

2.1 Introduction

This chapter describes the elements of the C programming language. The
elements of the language are the names, numbers, and characters used to
construct a C program. In particular, this chapter describes:

• Character sets
• Constants
• Identifiers
• Keywords
• Comments
• Token�

2.2 Character Sets

Two character sets are defined for use in C programs, the C character set
and the representable character set. The C character set consists of the
letters, digits, and punctuation marks that have a specific meaning to the C
compiler. C programs are constructed by combining the characters of the
C character set into meaningful statements.

The C character set is a subset of the representable character set. The
representable character set consists of all letters, digits, and symbols that a
user can represent graphically with a single character. The extent of the
representable character set depends on the type of terminal, console, or
character device being used.

A C program can contain only characters from the C character set, except
that string literals, character constants, and comments can use any
representable character. Each character in the C character set has an
explicit meaning to the C compiler. The compiler generates error mes
sages when it encounters misused characters or characters not belonging to
the C character set.

The followiog sections describe the characters and symbols of the C char
acter set and explain how and when to use them.

2.2.1 Letters and Digits

The C character set includes the uppercase and lowercase letters of the
English alphabet and the ten decimal digits oftheArabic number system:

Uppercase English letters:
A B C D EFG H IJKLMN OPQRS T UVWXYZ
Lowercase English letters:
a b c d ef ghij k i m n o p q rs t u v w x y z
Decimal digits:
0 1 2 3 4 5 6789

2-1

C Language Reference

These letters and digits can be used to form the constants, identifiers, and
keywords described later in this chapter.

The C compiler treats uppercase and lowercase letters as distinct charac
ters. If a lowercase "a" is specified in a given item� you cannot substitute an
uppercase ''A" in its place; you must use the lowercase letter.

2.2.2 Whites pace Characters

Space, tab, linefeed, carriage return, form feed, vertical tab, and newline
characters are called whitespace characters because they serve the same
purpose as the spaces between words and lines on a printed page. These
characters separate user-defined items, such as constants and identifiers,
from other items within a program.

The C compiler ignores whitespace characters unless they are used as
separators or as components of character constants or string literals. This
means you can use extra whitespace characters to make a program more
readable. Comments (see Section 2.6) are also treated aswhitespace.

2.2.3 Punctnation and Special Characters

The punctnation and special characters in the C character set are used for a
variety of purposes, from organizing the text of a program to defining the
tasks to be carried out by the compiler or by the compiled program. Table
2.1 lists these characters:

2-2

I
I r�
I �
I

c

Character

?

(
)
[
1
{
}
<
>

Table 2.1

Punctuation and Special Characters

Name

Comma
.. Pe:rjo!i

Semicolon
Colon
Question mark
Single quotation
Double quotation
Left parenthesis
Right parenthesis
Left bracket
Right bracket
Left brace
Right brace
Left angle bracket
Right angle bracket

Character

I
I
\

%
&

•

+

Elements of C

Name

Exclamation mark
Vertical bar
Forward slash
Backslash
Tilde
Underscore
Number sign
Percent sign
Ampersand
Caret
Asterisk
Minus sign
Equal sign
Plus sign

These characters have special meaning to the C compiler. Their use in the
C language is described throughout this guide. Punctuation characters in
the representable character set that do not appear in this list can be used
only in string literals, character constants, and comments.

2.2.4 Escape Sequences

Escape sequences are special character combinations that represent whi
tespace and nongraphic characters in strings and character constants.
They are typically used to specify actions such as carriage returns and tab
PlOVe�ents on terminals and printers and to provide literal representa
tions of characters that normally have special meanings, such as the double
quote CJ character. An eSCape sequence consists of a backslash followed
by a letter or combination of digits. Table 2.2 1ists the C language escape
sequences:

2-3

C Language Reference

Escape Sequence

\n
\t
\v
\b
\r
\f
\'
\"
\\
\ddd

\xdd

Table2.2

Escape Sequences

Name

Newline

Horizontal tab

Vertical tab
Backspace
Carriage return

Form feed

Single quote

Double quote

Backs lash

ASCII charru;ter

in octal notation

ASCII character
in hexadecimal notation

H the backslash precedes a character not included in the list above, the
backslssh is ignored and that character ls represented literally. For exam
ple, the pattern "\c" represents the character "c" in a string literal or char
acter constant.

The sequences "\ddd" and "\xdd " allow any character in the ASCII char
acter set to be given as a three-digit octal or a two-digit hexadecimal char
acter code. For example, the backspace character can be given as "\010"
or"\x08"� The ASCIInull character can be given as "\0" or"\xO".

Only octal digits can appear in an octal escape sequence, and at least one
digit must appear. However, fewer than three digits can be specified. For
example, the backspace character can also be given as "\10' . Similarly, a
hexadecimal escape sequence must contain at least one digit, but the
second digit can be omitted. The hexadecimal escape sequence for the
backspace character can be given as "\x8". However, when using octal
and hexadecimal escape sequences in strings, it is safer to give all three
digits of the octal or hexadecimal escape sequence, Otherwise, the charac
ter following the escape sequence may be interpreted as part of the
sequence, if it happens to be an octal or hexadecimal digit.

Escape sequences allow nongraphic control characters to be sent to a
display device. For example, the escape character, "\033", is often used as
the first character of a control command for a tenninal or printer.

2-4

/

C _

c �

Elements of C

Nongraphic characters should always be represented by escape sequences.
Placing a nongraphic character in a C program has unprediCtable results.

The backslash character (\) used to introduce escape sequences also func
tions as a continuation character in strings and in preprocessor defi
nitions. When a newline character follows the backslash, the newline is
disregarded, and the next line is treated as part of the previous line.

2.2.5 Operators

Operators are special character combinations that specify how values are
to be transformed and assigned. The compiler interprets each of these
character combinations as a single unit, called a "token" (see Section 2. 7).

Table 2.3 1ists the characters that form C operators and gives the name of
each operator. Operators must be specified exactly as they appear in the
tables; with no whitespace between the characters of multicharacter
operators. The sizeof operator is not included in this table; it consists of a
keyword (sizeof) rather than a symbol.

2-5

C Language Reference

Operator

+

•
I
%
<<
>>
<

>

f=
&
1
&&
I I
'
?:
++

1-

>>
<<
&-
r

Table 2.3

Operators

Name

Logical NOT
Bitwise complement
Addition
Subtraction, arithmetic negation
Multiplication, indirection
Division
Remainder
Slrlftleft
Shift rij;ht
Less than
Less than or equal
Greater than
Greater than or equal
Equality
Inequality
Bitwise AND, address-of
Bitwise inclusive OR
Bitwise exclusive OR
Logical AND
Logical OR
Sequential evaluation
Conditional•
Increment
Decrement
Simple assignment
Addition assignment
Subtraction assignment
Multiplication assignment
Division assignment
Remainder assignment
Right sbift assignment
Left shift assignment
Bitwise AND assignment
Bitwise inclusive OR assignment
Bitwise exclusive OR assignment

"The conditional operator is a ternary operator, nota multicharacter operator.
The form of a. coru.htional expression is: expression ? expression : expre.s,don

See Chapter 5, "Expressions and Assignments," for a complete descrip
tion of each operator.

2-6

Elements of C

2.3 Constants

A cons1ant is a number� a character, or a string of characters that can be
used as a value in a program. The value of a constant does not change from
execution to execution.

The C language has four kinds of constants: integer constants, floating
point constants, character constants, and string literals. The following
sections define the format and use of each.

2.3.1 Integer Constants

An integer constant is a decimal, octal, or hexadecimal number that
represents an integer value. A decimal constant has thefonn:

digits

where digits are one or more decimal digits (Othrough 9).

An octal constant has the form:

Oodigits

where odigits are one or more octal digits (Othrough 7). The leading zero is
required.

A hexadecimal constant has the form:

Oxhdigits

where Migits is one or more hexadecimal digits (0 through 9 and either
uppercase or lowercase Ha"through "f"). The leading zero is required and
must be followed by "x".

No whitespace characters can appear between the digits of an integer con
stant. Table2.4illustrates the form ofintegerCQnstants:

Decimal C onstants

10

132

32179

Table2.4

Integer Constants

Octal Constants

012

0204

076663

Hexadecimal Constants

Oxaor OxA
Ox84

Ox7db3or0x7DB3

Integer constants always specify positive values. If negative values are
required, the minus sign (-)canbeplaced in frontoftheconstant to form a

2-7

C Language Reference

constant expression with a negative value. The minus sign is treated as an
arithmetic operator.

Every integer constant is given a type based on its value. A constant's type
determines what conversions must be performed when the constant is used
in an expression or when the minus sign (-) is applied. Deehnal constants
are considered signed quantities and are given int type, or long type if the
size of the value requires it.

Octal and hexadecimal constants are also given int type, or long type if the
size of the value requires it. However, unlike other signed numbers, octal
and hexadecimal constants are not sign -extended in type conversions.

The programmer can direct the C compiler to force anyintegnr conslanl lo
have long type by appending the letter "!" or "L" to the end of the con
stant. Table 2.5 illustrates long integer constants:

Decimal Constants
lOL

79l

Table 2.S

Long Integer Constants

Octal Constants

OUL

01151

Hexadecimal Constants

OxaLorOxAL

Ox4fl or0x4Fl

Types are described in Chapter 4, �'Declarations"," and conversions are
described in Chapter 5, "Expressions and Assignments"."

2.3.2 Floating-Point Constants

A floating-point constant i• a decimal number representing a signed real
number. The value of a signed real number includes an integer portion, a
fractional portion, and an exponent. Floating-point constants have the
form:

[digits][.digits][E[-]digits]

where digits are one or more decimal digits (Othrough 9), and E (or e) is the
exponent symbol. Either the digits before the deehnal point (the integer
portion of the value) or the digits after the decimal point (the fractional
portion) can be omitted, but not both. The exponent consists of the
exponent symbol followed by a possibly negative constant integer value.
The decimal point can be omitted only when an exponent is given. No whi
tespace characters can separate the digits or characters of the constant.

Floating-point constants always specify positive values. If negative values
are required, the minus sign (-) can be placed in front of the constant to

2-8

(\ '----·

(
�·

Elemenls of C

form a constant floating-point expression with a negative value. The minus
sign is treated as an arithmetic operator.

The following examples illustrate some of the forms of floating-point con
stants and expressions:

15.75
1.575E1
1575e-2 ····
-0.0025
-2.5e-3
25E-4

Tlie integer portion of the floating-point constant can be omitted, as
shown in the following examples:

.75

.0075e2
- .125
-.175E-2

All floating-point constants have type double.

2.3.3 ChancterConstanls

A character constant is a letter, digit, punctuation .character, or escape
sequence enclosed in single quotation marks. The value of a character
constant is the character itself. Character constants consisting of more
than one character or escape sequence are not allowed.

A character constant has the form:

'char'

where char can be any character from the representable character set
(including any escape sequence) except a single. quotation mark ('), a
backslllSb, (\), <;>r a newline character. To use a single quotation mark or
backslash character as a character constant, precede it with a backslash as
shown in Table 2.6. To represent a newline character, use the escape
sequence '\n'.

2-9

C Language Reference

Table2.6

Examples otCharacterConstants

Constant
'a'

'?'
'\b'

'\xlB'
'\"
'\\'

Value
Lowercase a

Question mark

Backspace

ASCII escape character

Single quotation mark

Backsblsh

Character constants have type char and consequently are sign -extended in
type conversions (see Section 5.7 of Chapter 5, "Expressions and Assign
ments").

2.3.4 String Literals

A string literal is a sequence of letters, digits, and symbols enclosed in dou
ble quotation marks. A string literal is treated as an array of characters;
each element of the array is a single character value.

The form of a string llieral is:

"characters"

where characters are one or more characters from the representable char
acter set, excluding the double quotation mark ("), the backslash (\), and
the newline character. To use. the newline character in a string, type a
backslash immediately followed by a newline character. The backslash
causes the newline character to be ignored. This allows the programmer to
form string literals that occupy more than one line. Forel!:lmlple, the string
literal:

"Long strings can be bro\
ken into two pieces."

is identical to the string:

''Long strings can be broken into two pieces."

To use the double quotation mark or backslash character within a string
literal, precede it with abackslash, as shown in thefollowingel!:lmlples:

2-10

'This is a string literal."
''Enter a number between 1 and 100 \n Or press Return"
"First\ \Second"
"\"Yes, ldo,\"she said."

Elements of C

Notice that escape sequences (such as \n and \") can appear in string
literals.

The characters of a string are stored in order at contignous memory loca
tions. A null character (\) is automatically appended to mark the end of
the string. Each string in a program is considered to be a distinct item. If
two identical strings appear in a program, they each receive distinct storage
space.

String literals have the type char []. This means a string is an array whose
elements have type char. The number of elements in the array is the
number of characters in the string literal plus one, since the null character
stored after the last character counts as an array element.

2. 4 Identifiers

Identifiers are the names you supply for the variables, functions, and labels
used in a given program. You can create an identifier by declaring it with
the associated variable or function. You can use the identifier in later state
ments within the program to refer to the given item. (Declarations are
described in Chapter 4, "D�larattons" .. ")

An identifier is a sequence of one or more letters, digits, or underscores (_)
that begins with a letter or underscore. Any number of characters are
allowed in a given identifier, but only the first 31 characters are significant
to the compiler. (Other programs that read the compiler output, such as
the linker, may use fewer characters.) Use leading underscores with care.
Identifiers beginning with an underscore can conflict with the names of
hidden system routines and produce errors.

The following are examples of identifiers:

j
cnt
templ
top_of_page
skip12

The C compiler considers uppercase and lowercase letters to be separate
and distinct characters. Thus, you can create distinct identifiers that have

2-11

C Language Reference

the same spelling but different cases for one or more of the letters. For
example, each ofthefollowingidenlifiers is unique:

add
ADD
Add
aDD

The C compiler does not allow identifiers that have the same spelling and
case as a Clanguage keyword. Keywords are described in Section 2.5.

The linker may further restrict the number and type of characters for glo
bally visible symbols. Furthermore, unlike the compiler, the linker may
not distinguish between uppercase and lowercase letters. Consult your
linker documentation for information on naming restrictions imposed by
the linker.

2.5 Keywords

Keywords are predefined identifiers that have special meaning to the C
compiler. They can be used only as defined. The names of program items
may not conftictwith the keywords listed below:

om to default lloat register •witch
break do for return t.ypedef
ease double goto short union
ehar else if sizeof unsigned
const enum int static void
continue extern long struet while

Keywords cannot be redefined. However, you can specify text to be substi
tuted for keywords before compilation by using C preprocessor directives
(see Chapter 8, "Preprocessor Directives"").

The cons! keyword is reserved for future use but is not yet implemented in
the language.

The following identifiers may be keywords in some implementations; (see
your system documentation for details):

2 - 12

far
fortran
huge
near
pascal

c

Elements of C

2.6 Comments

A comment is a sequence of characters that is treated as a single white
space character by the compiler but is otherwise ignored. A comment has
the followingform:

I* characters •t

Here characters can be any combination of characters from the represent
able character set, including newline characters but excluding the combi
nation ((*/". This means that comments can occupy more than one line,
but they cannot be nested.

Comments are typically used to document the statements and actions of a
C language source program. They can appear anywhere a whites.pace char
acter is allowed. Since the compiler ignores the characters of the com
ment, keywords can appear in comments without producing errors.

The following examples illustrate some comments:

I* Comments can separate and document
lines of a program. •t

I* Comments can contain keywords such as for
and while. •t

, .. .
Comments can occupy several lines.

*******••································!

Since comments cannot contain nested comments, the following example
causes an error:

I* You cannot /* nest */ comments *I

The compiler recognizes the first "*/", after the word "nest", as the elld of
the comment. The compiler attempts to process the remaining text and
produces an error when it cannot do so.

To suppress compilation of a large portion of a program or a program seg
ment that contains comments, use the #if preprocessor directive instead
of comments (see Section 8.4of Chapter 8, "Preprocessor Directives").

2.7 Tokens

When the compiler processes a program, it breaks the program down into
groups of characters known as "tokens." A token is a unit of program text

2 - 13

C Language Reference

that has meaning to the compiler and that cannot be broken down further.
The operators, constants, identifiers, and keywords described in this
chapter are examples of tokens. Punctuation cbnracters such as brackets
([]), braces ({ }), angle brackets (< >), parentheses, and commas are also
tokens.

Tokens are delimited by wbitespace characters and by other tokens, snch
as operators and punctuation symbols. To prevent the compiler from
breaking an item down into two or more tokens, wbitespacecharacters are
prohibited between the characters of identifiers, multicharacteroperators,
and keywords.

When the compiler interprets tokens, it incorporates as many characters as
possible into a single token before moving on to the ne:xt token. Because
of this behavior, tokens not separated by wbitespace may not be inter
preted in the way expected.

For example, in the following expression, the compiler first makes the
longest possible operator (++) from the three plus sigos, and then
processes the remaining plus slgo as an addition operator (+):

i+++j

This expression is interpreted as "(i++) + (j)", not "(i) + (++j)". Use whi
tespace and parentheses to clarifyyourintent in such cases.

2 - 14

(. '

(__./

Chapter 3

Pro gram Structure
--····· --- ·-----· -·---------

3.1 Introduction 3-1

3.2 Source Program 3-1

3.3 Source Files 3-2

3.4 Program EXecution 3-5

3.5 Lifetime and Visibility 3-6

3.6 Naming Classes 3-9

Program Structure

3.1 Introduction

This chapter descnbes the structure of C language source programs and
defines terms used laterin this guide to describe the Clanguage. It provides
an overview of C language features that are described in detail in other
chapters. In particular, the syntax and meaning of declarations and
definitions are discussed in Chapter 4, "Declarations", a and Chapter 7,
�'Functions." The C preprocessor is described in Chapter 8� "Preproces
sor Directives."

3.2 Source Program

A C source program is a collection of one or more directives, declarations,
and/ or definitions. "Directives" instruct the C preprocessor to perform
specific actions on the text of the program prior to compilation. "Declara
tions" establish the names and attnbutes of variables, functions, and types
used in the program.

��Definitions" are declarations that also define variables and functions. A
variable definition gives the initial value of the declared variable, in addi
tion to its name and type. The definition causes storage to be allocated'for
the variable. A function definition specifies the function b ody, a com
pound statement containing the declarations and statements that consti
tute the function. The function definition also gives the function name,
formal parameters, and retum type.

A source program can have any number of directives, declarations, and
definitions. Each must have the appropriate syntax as described in this
guide. They can appear in any order in the program, although the order
affects how variables aod functions can be used in the program (see Sec
tion 3.5).

A nontrivial program always contains at least one definition, a function
definition. The function defines the action to be taken by the program.
The following example illustrates a simple C source program.

3 - 1

C Language Reference

Example

int x = l ·
, . v:.nable definitions .,

inty = 2;

extern int printf(char *,);
/* Function declaration *I

main()

{
/* Function definition for main function */

int z·
i• Variable declarations *I

intw;

z = y + x;
I* Executable statements */

w = y - x;
printf("z= %d \nw= %d \n", z, w);

}

This source program defines the function named main and declares the
function printf. Thevariablesx andy are defined with variable definitions;
the variablesz and w are just declared.

3.3 Source Files

Source programs can be divided into one or more separate source files. A
C source file is a text file that contains all or part of a C source program. It
may, for example, contain just a few of the functions needed by the pro
gram. When the ,source program is compiled, the individual source files
that make up the program must be compiled individually and then linked.
Separate source files can also be combined to form larger source files
before compilation by using the #include directive, discussed in Chapter
8, ''Preprocessor Directives."

A source file can contain any combination of complete directives, declara
tions, and definitions. Items such as function definitions or large data
structures cannot be split between source files.

3-2

(
"'·

c

Program Structure

A source file need not contain any executable statements. It is sometimes
useful to place variable definitions in one source file and then declare refer
ences to these variables in other source files that use them. This makes the
definitions easy to find and modify if necessary. For the same reason, man
ifest constants and macros (discussed in chapter 8, ''Preprocessor Direc
tives") are often organized into separate include files and inserted into
source files where required.

Directives in a source file apply to that source file and its iricludeil files only.
Moreover, each directive applies only to the portion of the file following
the directive. H a common set of directives is to be applied to a source pro
gram, then all source files in the program must contain these directives.

The following is an example of a C source program contained in two source
files. The main() and max() functions are assumed to be iri separate files,
and execution of the program is assumed to begin with the main() func
tion.

3-3

C Language Reference

Example

/**
Source file 1 - main function

**/

#define ONE 1
#define TWO 2
#define THREE 3

extem int max(int, int);
I* Function declaration */

main O

{

}

I* Function definition *I

int w � ONE x�TWO y �THREE·
int z = O· ' ' '

z � max(x,y);
w � max(z,w);

,
Source file 2 -max function

.. ,

intmax(a, b)
I* Function definition */

int a, b ;
{

}

if (a > b)
return (a);

else
retum (b);

In the first source file, the function max() is declared without being
defined. This is known as a "forward declaration". The function
definition for main() includes function calls to max().

The lines beginning with a number sign (#) are preprocessor directives.
These directives instruct the preprocessor to replace the identifiers ONE,
TWO, and THREE with the specified number in the first source file. The
directives do not apply to the second source file.

The second source file contains the function definition for max(). This
definition satisfies the calls to max() in the first source file. Once the
source files are compiled, they can be linked and executed as a single pro
gram.

3-4

ProgramSil'ucture

3.4 Program Execution

Every program must have a primary (main) program function. This func
tion serves as the startingpomtfor program execution and usually controls
execution of the program by directing the calls to other functions in the
program. A program usually stops executing at the end of the main func
tion, although it can stop at other points in the program, depending on the
execution environment.

The source program usually has more than one function, each designed to
perform one or more specific tasks. The main() function can call these
functions to perform the tasks. When a function is called, execution
begins at the first statement in the called function. The function returns
control when a return statement is executed or the end of the function is
encountered.

All functions, including the main() function, can be declared to have
parameters. Functions called by other functions receive values for the
parameters from the calling functions. Parameters of the main() function
can be declared to receive values passed to the main function from outside
the program (for example, from the command line when the program is
executed).

Traditionally, the first three parameters of the main function are declared
to have the names argc, argv, and envp. The argc parameter is declared to
hold the total number of arguments passed to the main function. The argv
parameter is declared as an array of pointers, each element of which points
to a string representation of an argument passed to the main() function.
The envp parameter is a pointer to a table of string values that set up the
environment in which the program executes.

The operathag system supplies values for the argc, argv, and envp parame
ters, and the user supplies the actual arguments to the main function. The
argument-passing convention in use on a particular system is determined
by the operating system rather than by the C language. See your system
documentation for details.

Formal parameters to functions must be deelared when tbe function is
defined. Function defirdtions are described in more detail in Section 7.2 of
Chapier 7, "F1,mctions". Function declarations are discussed in Section
4.5 ofChapter4, "Declarations".

3-5

C Language Reference

3.5 Ufetime and Visibility

Two concepts, ''lifetime'1 and "visibility," are important in understanding
the structure of a C program. The lifetime of a variable or function can be
either "global" or "local." An item with a global lifetime has storage and a
defined value throughout the duration of the program. An item with a local
lifetime is allocated new storage each time the "block" in which it is
defined or declared is entered. When the block is exited, the local item
loses its storage, and hence its value. Blocks are delined and discussed
below.

An item is said to be "visible" in a block or source fileifthe type and name
of the item are known in the block or source file. An item can also be "glo
ballyvisib le," which means that it is visible, or Cllll b e made visible through
appropriate declarations, throughout all the source files that constitute the
program. Visibility between source Illes (also known as "linkage") is dis
cussed in greater detail in Section 4.6 of Chapter4, "Declarations."

A block is a compound statement. Coml?ound statements consist of
declarations and statements, as described m Section 6.3 of Chapter 6,
ustatements" ." The bodies of C fnnctions are compound statements.
Blocks can be nested; function bodies frequently contain blocks, which in
tum can contain blocks.

Declarations and definitions within blocks are said to occur at the "internal
leveL" Declarations and definitions outside of all blocks occur at the
'<external level."

Both variables and functions can be declared at the external level or at the
internal level. Variables can also be defined at the internal level, but func
tions can ouly be defined at the external level.

All functions have global lifetimes, regardless of where they are declared.
Variables declared at the external level always have global lifetimes. Vari
ables declared at the internal level usually have local lifetimes; however,
the storage class specifiers static and extern can be applied to declare glo
bal variables or references to global variables within a block. See Section
4.6 of Chapter4 "Declarations," for a discussion of these options.

Variables declared or defined at the external level are visible from the point
at which they are declared or delined to the end of the source file. These
variables can be made visible in other source files with appropriate
declarations, as described in Section 4.6 of Chapter 4, "Declarations"."
However, variables that are given stalic storage class at the external level
are visible onlywithin the source file in which they are delined.

In general, variables declared or defined at the internal level are visible
from the point at which they are first declared or delined to the end of the
block in which the definition or declaration appears. These variables are
called local variables. If a variable declared inside a block has the same

3-6

/

Program Structure

name as a variable declared at the elC!emal level, the block definition super
sedes the elC!emal level definition of the variable for the duration of the
block. The visibility of the elC!emal level variable is restored when the
block is exited.

Block visibility can nest. This means that a block nested inside another
block can contain declarations that redefine variables declared in the outer
block. The redefinition ofthevariableholdsin the inner block, but the ori
ginal definition is restored when control returns to the outer block. Vari
ables from outer blocks are visible inside all inner blocks, as long as they
are not redefined in the inner blocks.

Functions with static storage class are visible only in the source file in
which they are defined. All other functions are globally visible. See Sec
tion 4.5 of Chapter 4, "Declarations''," for more information on function
declarations.

Table 3.1 summarizes the main factors that determine the lifetime and visi
bility of functions and variables. The table is not, however, intended to
cover all cases. Refer to the above discussion and to Section 4.6 of
Chapter 4, "Declarations," form ore detailed information.

Table 3.1

Summary ofLifetime and Visibilit;y

Storage
Class

Level Item Specifier Lifetime Visibility

External Variable stodc: Global Restricted
declaration to single

source file

Variable extern Global Remainder
declaration of source file

Function stodc Global Restricted
declaration to single

or definition source file

Function extern Global Remainder

declaration ofsourcefi.le

or definition
Internal Variable extern or Global Block

definition or static
declaration

Variable auto or Local Block

definition or register
declaration

The following program example illustrates blocks, nesting, and visibility of
variables.

3-7

C Language Reference

Example

I* idef"med at external level *I
int i = 1;

/*maio function defined at external level*/
mainQ
{

I* prints 1 (value of extemal leveli) */
printf("%d\n", i);

/* first nested block •/
{

/* i and j defined at internal level*/
int i-2, j=3;

,. prints 2, 3 .,
printf("%d\n%d\n", i, j);
t• second nested block •t
{

J• iis redefined *I
int i=O;

/* prints0, 3 */
printf("%d\n%d\n", i,j);

t• end of second nested block *I
}

I* prints 2 (outer definition restored) *I
printf("% d\n", i);

I* end offlrstnested block */
}

/* prints 1
• (external level definition restored)
*I
printf('"lo d\n", i);

}

fu this example, there are four levels of visibility: the external level and
three block levels. Assuming that the function printfis defined elsewhere
in the program, the main() function prints out the values 1, 2, 3, 0, 3, 2, 1.

3-8

Program Structure

3.6 Naming Classes

In any C program, identifiers are used to refer to many different kinds of
items. When you write a C program, you provide identifiers for the func
tions, variables, formal parameters, union members, and other items the
program uses. C allows you to use the same identifier for more than one
program item, as long as you follow the rules outlined in this section.

The compiler" sets . up "naming classes" to distinguish between the
identifiers for different kinds of items. The names within each class must
be unique to avoid conflict, but an identical name can appear in one or
more naming classes. This means that you can use the same identifier for
two or more different items if the items are in different naming classes. The
context of a given identifier in the program allows the compiler to resolve
thereferencewithoutambiguity.

The kinds of items you can name in C programs, and the rules for naming
them, are described below:

Variables and Functions The names of variables and functions are in
a naming class with formal parameters and
enumeration constants. Variable and func
tion names must, therefore, be distinct
from other names in this class with the same
visibility.

Formal Parameters

However, variable names can be redefined
within program blocks, as described in Sec
tion 3.5. Function names can also be
redefined in this manner.

The names of formal parameters to a func
tion are grouped with the names of the
function's variables, so the formal parame
ter names should be distinct from the vari
able names. Redeclaring formal parame
ters within the function causes an error.

Enumeration Constants Enumeration constants are in the same
naming class as variable and function
names. This means that names of enu
meration constants must be distinct from
all variable and function names with the
same visibility and distinct from the names
of other enumeration constants with the
same visibility. However, like variable
names,. the names of enumeration con
stants have nested visibility, meaning that
they can be redefined within blocks. See
Section3.5.

C Language Reference

Tags

Members

Statement Labels

TypedefNames

Example

struct student {
char student[20];
int class;
in tid;
} student;

Enumeration, structure, and union tags are
grouped together in a single naming class.
Each enumeration:, structure, or union tag
must be distinct from other tags with the
same visibility. Tags do not conflict with
any other names.

The members of each structure and union
form a naming class. The name of a
member must, therefore, be unique within
the structure or union, but it does not have
to be distinct from any other name in the
program.

Statement labels form a separate naming
class. Each statement label must be distinct
from all other statement labels in the same
function. Statement labels do not have to
be distinct from any other names or from
label names in other functions.

The names of types defined with typedef
are treated as keywords. No other names
with the same visibility are allowed to have
the same spelling and case as a typedefkey
word.

Structure tags, structure members, and variable names are in three
different naming classes, so no conflict occurs between the three items
named student in the above example. The compiler determines how to
interpret each occurrence of student by its context in the program. For
example, when student appears afterthestmct keyword, it is known to be a
structure tag. When student appears after either of the member selection
operators "." ot "->", the name refers to the structure member. In other
contexts, the identifier student refers to the structure variable.

3 - 10

c_

Chapter 4

Declaratio ns

4.1 Introduction 4-1

4.2 Type Specifiers 4-1

4.3 Declarators 4-5
4.3.1 Pointer, Array, and Function Declarators 4-6
4.3.2 ComplexDeclarators 4-6

4.4 Variable Declarations 4-9
4.4.1 Simple Variable Declarations 4-10
4.4.2 Enumeration Declarations 4-10
4.4.3 Structure Declarations 4-12
4.4.4 Union Declarations 4-15
4.4.5 Array Declarations 4-16
4.4.6 Pointer Declarations 4-18

4.5 FunctionDeclarations 4-20

4.6 Storage Oasses 4-22
4.6.1 Variable Declarations at the External Level 4-23
4.6.2 Variable Declarations a !the Internal Level 4-26
4.6.3 Function Declarations 4-28

4.7 Initialization 4-28
4.7.1 Fundarnental and Pointer Types 4-29
4.7.2 AggregateTypes 4-30
4.7.3 Stringinitializers 4-32

4.8 TypeDeclarations 4-32
4.8.1 Structure, Union, and Enumeration Types 4-32
4.8.2 typedefDeclarations 4-33

4.9 Type Names 4-34

.�-

Declarations

4.1 Introduction

This chapter describes the form and constituents of Cdeclarations for vari
ables, functions, and types. Cdeclarationshave the form:

[sc-specq!er 1 [type-specifier 1 declarator[=lnitializer] [,declarator . . .]

where sc-specifwr is a storage class specifier, type-specq!eris the name of a
defined type, declarator is an identifier that can be modified to declare a
pointer, array or function, and inititll�er gives a value or sequence of
values to be assigned to the variable beingdeelared.

All C variables must be explicitly declared before they are used. C func
tions can be declared explicitly in a function declaration or implicitly by
callingthe function before it is declared or defined.

The C Iangnage defines a standard set of data types. You can add to that set
by declaring new data types based on types already defined. You can
declare arrays, data structures, and pointers to both variables and func
tions.

C declarations require one or more "declarators". A declarator is an
identifier that can be modified with brackets ([]), asterisks (*), or
parentheses to declare an array, pointer, or function type. When you
declare simple variables (such as character, integer, and floating-point
values), or structures and unions of simple variables, the declarator is just
an identifier.

Four storage class specifiers are defined in C: auto, extern, register, and
sialic. The storage class specifier of a declaration effects how the declared
item is stored and initialized and which portions of a program can refer
ence it. The location of the declaration within the source program and the
presence or absence of other declarations of the variable are also impor
tant factors in determining the visibility of variables.

Although function declarations are presented in Section 4.5 of this
chapter, f11nction definitions are described in Section 7.2 of Chapter 7,
uFunctions"."

4.2 1)pe Specifiers

The C Iangnage provides definitions for a set of basic data types, called the
"fundamental" types. Their names are listed in Table 4.1.

4-1

C Language Reference

Integral Types'

char

int

shortint

longint

unsigned char
unsigned int

unsigned short int

unsigned long int

Table 4.1

Fundamental Types

Floating-Point
Types4

ftoat

double (also called
longftoat)

"Used to deela.revariab1es and function return types.
hUsed only to declare :function return types.

Other

Enumeration types are also considered fundamental types; type specifiers
for enumeration types are discussed in Section 4.8.1. The cbar, int, short
int, and long int types, together with their unsigned counterparts, are
called "integral" types. The float and double type specifiers refer to
"floating-point" types.

The void type can only be used to decinre functions that return no value.
Function types are diseussedin Section4.5.

You can create additional type specifiers with typedef declarations, dis
cussed inSection 4.8.2.

Variable and function declarations can use any ofthe integral or floating
point type specifiers listed above. You can abbreviate some type
specifiers, as shown in Table 4.2.

4-2

/

(-
'

'....._ __./

Type Speclbr

char

m t

sborllnt

long lnt

unsjgned char

unsigned int

unsigned shortint

unsigned longint

float

long float

Table 4.2

Type Specifiers and Abbreviations

Declarations

Abbreviation

short

long

unsigned

unsigned short

unsigned long

double

Table 4.3 summarizes the storage associated with each fundamental rype
and gives the range of values that can be stored in a variable of each rype.
Since the void rype does not apply to variables, it is not inclnded in the
table.

Table4.3

Storage and Range ofVahtes for Fundamental Types

Range ofV a lues
T,pe Storage (Intemal)

char I byte -128to 127

lot implementation-
dependent

short 2bytes -32,768to 32,767

long 4bytes -2,147 ,483,648to 2,147,483,647

unsigned char lbyte Oto255

unsigned· implementation-
dependent

unsigned short 2bytes Oto 65,535

unsigned long 4bytes 0 to 4,294,967,295

I! oat 4 bytes IEEE standard notation;
see discussion below.

double S bytes ffiEE standard notation;
see discussion below�

4-3

C Language Reference

The char type is used to store a letter, digit, or symbol from the represent
able character set, The integer value of a character is the ASCII code
corresponding to that character. Since the char type is interpreted as a
signed 1-byte integer, values in therange -128to 127 are permitted for char
varinbles, although only the values from 0 to 127 have character
equivalents.

Notice that the storage and range associated with the int and unsigned int
types are not defined by the C language. Instead, the size of an int (signed
or unsigned) corresponds to the natnral size of an integer on a given
machine. For example, on a 16-bit machine the int type is usually 16 bits,
or 2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes.
Thus, the int type is equivalent either to the short int or the long int type,
depending on the implementation. Similarly, the unsigned int type is
equivalent either to the unsigned short or unsigned long type.

The int and unsigned int type specifiers are widely used in C programs
because they allow a particular machine to handle integer values in the
most efficient way for that machine. However, since the size oftheintand
unsigned int types varies, programs that depend on a specific int size may
be nonportable. Expressions involving the slzeof operator (discussed in
Section 5.3.4 of Chapter 5, "Expressions and Assignments") can be used
in place of hard -coded data sizes to increase the portability of the code.

The type specifiers intand unsigned int (or simply uJIJligned) are used to
define certain featnres of the C language (for instance, in defining the
ernun type later in Section 4.8.1). In these cases, the definition of int and
UJIJligned int for a partieuiar implementation determines the actual
storage�

The range of values for a variable lists the minimum and maximum values
that can be represented internally in a given number of bits. However,
because of C's conversion rules (discussed in detail in Chapter 5, "Expres
sions and Assignments"), it is not always possible to use the maximum or
minimum for a variable of a given type in an expression.

For example, the constant-expression -32,768 consists of the arithmetic
negation operator (-) applied to the constant value 32,768. Since 32,768 is
too large to represent as a short, it is given long type, and the constant
expression -32,768 consequently has long type. · The value -32,768 can
only be represented as a shortby type-castingittotheshorttype. No infor
mation is lost in the type east, since -32,768 can be represented internally
in 2 bytes of storage space.

Similarly, a value such as 65,000 can only be represented as an uJIJllgned
shortbytype-casting the value to unsigned short type or by giving the value
in octal or hexadecimal notation. The value 65,000 in decimal notation is
considered a signed constant, and is given long type because 65,000 does
not :tit into a short. This long value can then be cast to the unsigned short

4-4

Declarations

type without loss of information, since 65,000 will fit into 2 bytes of storage
space when it is stored as an unsigned number.

Octal and hexadecimal constants are considered unsigned quantities, even
though they are given int or long type, because they have the special pro
perty of representing a bit pattern. Thus, octal and hexadecimal constants
are not sign-extended in type conversions.

Boating-point numbers use the IEEE (Institute of Electrical and Elec
tronics Engineers, Inc.) format. Values with float type have 4 bytes, con
sisting of a sigo bit, a 7-bit excess 127 binary exponent, and a 24-bit
mantissa. The mantissa represents a number between 1.0 and 2.0. Since
the high-order bit of the mantissa is always 1, it is not stored in the number.
This representation gives an exponent range of 10 to the (+ or -) 38th
power and up to seven digits of precision. The maximum value of a ftoatis
normally 1. 701411E38.

Values with double type have 8 bytes. The format is similar to thefloatfor
mat, except that the exponent is 11 bits excess 1023, and the mantissa has
52 bits {plus the implied high-order 1 bit). This gives an exponent range of
10to the (+ or-) 306th power and up to 15 digits of precision.

(' 4.3 Declarators

Syntax

identifier
declarator[]
declarator[constant-expression]
*declarator
declarator()
declarator(arg-type-list)
(declarator)

C allows the programmer to declare arrays of values, pointers to values,
and function=returning values of specified types. To declare these items,
you must use a "declarator".

A declarator is an identifier possibly modified with brackets some combi
nation of {[]), parentheses, and asterisks (*) to declare an array, pointer,
or function type. Declarators appear in the pointer, array, and function
declarations described in later sections of this chapter (Sections 4.4.6,
4.4.5, and 4.5, respectively). This section discusses the rules for forming
and interpreting declarators.

4-5

C Language Reference

4.3.1 Pointer, Array, andFunction Declarators

When a declarator consists of an unmodified identifier, the item being
declared has an unmodified type. Asterisks (•) can appear to the left of an
identifier; modifying it to a pointer type. If the identifier is followed by
brackets ([)), the type is modified to an artay type. If the identifier is fol
lowed by parentheses, the type is modified to a function =returning type.

A declarator does not constitute a complete declaration; a type sp�cifier
must be included as well. The type specifier gives the type of the elements
for an array type, the type of object addressed by a pointer type, and the
return type of a function.

The section's on pointer, array, and function declarations later in this
chapter discuss each type of declaration in detail (see Sections 4.4.6, 4.4.5,
and 4.5, respectively). The following examples illustrate the simplest
forms of declarators:

Examples

1. int list[20);

2. char*cp;

3. doublefunc(void);

The above examples declare: 1. an arrayofintvalues (list); 2. a pointer to a
char value (cp); and 3. a function with no arguments returning a double
value (fimc).

4.3.2 ComplexDeclarators

Any declarator can be enclosed in parentheses. Parenth�ses are typically
used to specify a particular interpretation of a "coinplex". ,declarator, as
discussed below. A "complex" declarator is an identifier qualified by more
than one array, pointer, or function modifier.

Various combinations of the array, pointer, and function modifiers can be
applied to a single identifier. Some combinations are illegal. An array can
not be composed of functions, and a function cannot return an array or a
function.

In interpreting complex declarators, brackets and parentheses (on the
right of the identifier) take precedence over asterisks (on the left of the
identifier). Brackets and parentheses have the same precedence and asso
ciate left to right. The type specifier is applied as the last step, when the
declarator has been fully interpreted. Parentheses can be used to override

4-6

Declarations

the default association order in a way that forces a particular interpreta
tion.

A simple rule that can be helpful in interpreting complex declarators is to
read them "from the inside out." Start with the identifier and look to the
right for brackets or parentheses. mterpret these (if any), then look to the
left for asterisks. If you encounter a right parenthesis at any stage, go baek
and apply these rules to everything within theparentllese� !?.!lf''Je proceed
ing. As the last step, apply the type specifier. To illustrate this rule , the
stepsarenumberedlnorderlnthefollowingexample:

c�a r � (� (�v � r) ()) [lO] ;

7 6 4 2 1 3 5

1. The identifier varis declared as
2. a pointerto
3. afunctionretuming
4. a pointer to
5. an arrayoflOelements, which are
6. pointersto
7. cbarvalues.

The following examples provide further illustration and show how
parentheses can affect the meaning of a declaration.

Examples:

1. t• array of pointers to intvalues •t
int '"var[5];

2. t• pointer to array ofintvalues */
int ('"var)[5];

3. /* function retumingpointerto long*/
long '"var(iong,long);

4. I* pointer to function returning long */
long (*var)(long,long);

5. /* arrayofpointerstofunctions
returning structures */

struct both {
inta;
charb;
} (*var[J)(structboth, struct both);

4-7

C Language Reference

6. I* function returning pointer
to an array of double values */

double (*Var(double (•)[3]))[3];

7. I* array of arrays of pointers
to pointers to unions *I

union sign {
int K'
unsi�edy;
} **Var[5][5];

8. /* array of pointers to arrays
of pointers to unious •1

union sign *(*Var[S])[S];

In the first example, the array modifier has higher priority than the pointer
modifier, so var is declared to be an array. The pointer modifier applies to
the type of the array elements; the elements are pointers to intvalues.

In the second example, parentheses alter the meaning of the declaration in
the first example. Now the pointer moditler has higher priority than the
array modifier, and varis declared to be a pointer to an array of 5 intvalues.

Fun�tion moditlers also have higher priority than pointer modifiers, so the
third example declares var to be a pointer to a function retnrning a long
value. The function is declared to take two long values as arguments.

The fourth example is similar to the second example. Parentheses give the
pointer modifier higher priority than the functipn modifier, and var is
declared to be a pointer to a function returning a long value. Again, the
function takes two lpng arguments.

The elements of an array may not be functions, but the fifth example
demonstrates how to decinre an array of pointers to functions instead. In
this example var is declared to be an array of pointers to functions return
ing structures with two members. The arguments to the functions are
declared to he two structures with the same structore type, both. Notice
that the parentheses surrounding "*var[)" are required. Without them,
the declaration is an illegal attempt to declare an array of functions, as
shown below:

/*H.-LEGAL*/
struct both •var[J(struct both, struct both);

The sixth example shows how to declare a function returning a pointer to
an array, since functions retorning arrays are illegal. Here varis declared to
be a function returning a pointer to an array of 3 double values. The func
tion' var takes one argument; the argument, h'ke the return value, is a

4-8

Declarations

pointer to an arrayof3 double values. The argument type is given by a com
plex abstract declarator. The parentheses around the asterisk in the argu
ment type are required; without them, the argument type would be an array
of 3 pointers to double values. See Section 4.9, "Type Names," for a dis
cussion and examples of abstract declarators.

A pointer can point to another pointer, and an array can contain array ele
ments, as the seventh example shows. Here var is an array of 5 elements.
Each element is a 5-element array of pointers to pointers to unions with
two members.

The eighth example shows bow the placement of parentheses alters the
meaning of the declaration. In this example, var is a 5-element array of
pointers to 5-element arrays of pointers to unions.

4.4 Variable Declara lions

This section descnbes the form and meaning of variable declarations. In
particular, it explains how to declare the following:

Simple variables Single value variables with integral or
floating-point type.

Enumeration variables Simple variables with integral type that hold
one value from a set of named integer con
stants.

Structures Variables composed of a collection of values
that may have different types.

Unions Variables composed of several values of
different types occupying the same storage
space.

Arrays Variables composed of a collection of ele
ments with the same type.

Pointers Variables that point to other variables. These
variables contain variable locations (in the
form of addresses) instead of values.

The variable declarations discussed in this section have the general form:

[sc-specifier] type-speclfter declarator [, declarator . . .]

where type-specifier gives the data type of the variable and declarator is the
variable's name, possibly modified to declare an array or a pointer type.
More than one variable can be defined in the declaration by givingmultiple
declarators, separated by commas.

The sc-specifier gives the storage class of the variable. In some contexts,
variables can be initialized when they are declared. Storage classes and ini
tialization are discussed in Sections 4.6 and 4. 7, respectively.

4-9

C Language Reference

4.4.1 Simple Variable Declarations

Syntax

sc-specifier type-specifier identifier[, Identifier ...] ;

A declaration for a simple variable defines the variable's name and type. It
can also define the variable's storage class, as described later in Section
4.6. The variable's name is the Identifier given in the declaration. The
type-specifier gives the name of a defined data type, as described below.

You can define several variables in the same declaration by giving a list of
identifiers separated by commas (,). Each identifier in the lis! names a vari
able. All vanables defined in the declaration have the same type.

Examples

1. intx;

2. unsigned long reply, flag;

3. double order;

The first example defines a simple variable x. This variable can hold any
value in the set defined bytheint type in a particalarimplementation.

The second example defines two variables, reply and flag. Both variables
have unsigned long type and hold unsigned integer values.

The third exainple defines a variable order that has double type. F1oating
pointvaluesca.nhe assigned to this variable.

4.4.2 Enumeration Declarations

Syntax

enum[tag]{enum-ltrt} identifier[, Identifier ...];
enum tag Identifier [, identifier ...];

An enumeration declaration gives the name of the enumeration variable
and defines a set of named integer constants (the "enumeration set"). A

4-10

(
"------··

Declarations

variable declared to have enumeration type stores any one of the values of
the enumeration set defined by that type. The integer constants of the
enumeration set have int type; thus, the storage associated with an
enumeration variable is the storage required for a single intvalue.

Enumeration declarations begin with the enum keyword and have two
forms, as shown above. In the first form, the values and names of the
enumeration set are specified in the enum-list, described in detail below.
The optional tag is an identifier that names the enumeration type defined
by the enum-Iist. The identifier names the enumeration variable. More
than one enumeration variable can be defined in the declaration.

The second form uses an enumeration tag to refer to an enumeration type.
The enum-li.st does not appear in this type of declaration because the
enumeration type is defined elsewhere. An error is generated if the given
tag does not refer to a defined enumeration type or if the named type is not
currently visible.

An enum-li.st has the following form:

identifi£r [=constant-expression]
[, identifier [=constant-expression]]

Each identifi£r names a value of the enumeration set. By default, the first
identifier is associated with the value zero, the next identifier is associated
with the value one, and so on through the last identifier appearing in the
declaration. The name of an enumeration constant is equivalent to its
value.

The phrase "= constant-expression" overrides the default sequence of
values. An identifier followed by the phrase "= constant-expression" is
associated with the value given by constant-expression. The constant
expression must have int type and can be negative. The next identifier in the
list is associated with the value of "constant-expression + 1", unless it is
explicitly given another value.

An enu.ineration set can contain duplicate constant values, bUt each
identifier in an enumeration list must be unique, that is, different from all
other enumeration identifiers with the same visibility. For example, the
value zero (0) could be given to two different identifiers, null and zero, in
the same set. The identifiers in the list must also be distinct from other
identifiers with the same visibility, including ordinary variable names and
identifiers in other enumeration lists. Enumeration tags must be distinct
from other enumeration, structure, and union tags with the same visibility.

4-11

C Language Reference

Examples

1. enum day{
saturday,
sunday�O,
monday,
tuesday,
wednesday,
thursday,
friday
} workday;

2. today� wednesday;

3. enum day holiday;

The first example defines an enumeration type named day and declares a
variable named workday with that enumeration type. The value Ois associ
ated with saturday by default. The identifier sunday is explicitly set to 0.
The remaining identifiers are given the values 1 through 5 by default.

In the second example, a value from the set is assigned to the variable
today. Notice that the name of the enumeration constant is used to assign
the value.

In the third example, a variable named holiday is declared to have the
enumeration type day. Since the day type was previously declared, only
the enumeration tag is necessary in this declaration.

4.4.3 Structure Declarations

Syntax

s truct [tag] {member-declaration-list} declarator[, declarator . • .];
s truct tag declarator[, declarator . ..];

A structure declaration defines the name of the structure variable and
specifies a sequence of variable values (called "members" of the structure)
that can have different types. A variable with structure type holds the
entire sequence defined by that type.

Structure declarations begin with the struct keyword and have two forms,
as shown above. In the first form, the types and names of the structure
members are specified in the member-declaration-list, descnbed in detail

4-12

Declarations

below. The optional tag is an ideotlfier that names the structure type
defined by the member-declaration-list.

Eacl1 declarator gives the name of a structure variab !e. The declarator may
also modify the type of the variable to a pointer to the structure type, an
array of structures, or a function returning a structure.

The second form uses a structure tag to refer to a structure type. The
member-declaration-list does not appear in this type of .declaration
becllllse the structure type is defined elsewhere. The structure type
definition must be visible for a tag declaration to be used, and the
definition must appear prior to the tag declaration, unless the tag is used to
declare a pointer variable or a typedef structure type. These declerations
can use a structure tag before the structure type is defined, as long as the
structure definition is visible to the declaration.

A member-declaration-list is a list of one or more variable or bitfield
declarations. Each variable declared in the member-declaration-list is
defined as a member of the structure type. Variable declarations within
member declaration lists have the same form as the variable declerations
discussed in this chapter, except that the declarations do not contain
storage class specifiers orinitializers. The structure members can have any
variable type: fundamental, array, pointer, union, or structure.

(A member cannot be declared to have the type of the structure ln which it
� appears. However, a member can be declared as apointer tothe structure

type ln which it appears. This allows you to create linked lists of structures.

Bitllelds

A bitfield declaration has the following form:

type-specifier [Identifier] :constant-expression;

The hitlleld consists of the number of bits specified by constant
expression. The type-specifier for a bitfield declaration must specify an
unsigned integral type, and the constant-expression must be a non
negative integer value. Arrays of bitfields, pointers to bitfields, and func
tions returning bitllelds are not allowed. The optional identifier names the
bitlleld. An unnamed bitfield whose width is specified as zero (0) has a spe
cial function: it guarantees that storage for the member following it in the
declaration list begins on an lnt boundary.

The identifiers ln a structure declaration list must be unique within that list.
It is not necessary for the identifiers in the list to be distinct from ordinary
variable names or from identifiers in other structur� declaration lists.
Structure tags must be distinct from other structure, union, and enumera
tion tags having the same visibility.

4-13

C Language Reference

Structure members are stored sequentially in the same order in which they
are declared. The first member has the lowest memory address and the last
member the highest. The storage for each member begins on a memory
boundary appropriate to its type. Therefore, unnamed blanks can occut
between the members of a structure in memory.

Bitfields are not stored across boundaries of their declared type. For
eXlliJlple, a bitfield declared with unsigned int type is either packed into the
space remaining in the previous intorit begins anewinl.

Examples

1. struct {
floatx,y;

} complex;

2. structemployee {
char name[20];
in tid;
long class;

}temp;

3. struct employee student, faculty, staff;

4. struct sample{
charc;
float *pf;
struct sample *next;

} x;

5. struct {
unsigned icon : 8;
unsigned color : 4;
unsigned underline : 1;
unsigned blink : 1;

} screen[25][80];

The first example defines a structnre variable named complex. This struc
ture has two members with float type, x and y. The structure type is not
named.

The second example defines a structure variable named temp. The struc
ture has three members, name, id, and class, The name member is a 20-

4-14

Declarations

element array and id and class are simple members with int and long cype,
respeetively. The identifier employee is the structure tag.

The third example defines three structnre variables: student, faculty, and
staff. Each structure has the s;nne listof three members. The members are
declared to have the structure type employee, defined in the previous exam
pie.

The fourth example defines a structure variable lli!ID.ed x. The'first two
members of the structure are a char variable and a pointer to a Hoat value.
The third member, next, is declared as a pointer to the structure cype being
defined (sample).

The fifth example defines a two-dimensional array of structures named
screen. The array contains 2,000 elements. Each element is an individual
structure containing four bitfield members: icon, color, underline, and
blink.

4.4.4 Union Declarations

Syntax

union [tag] {member-declaration-list} declarator[. declarator .. .];
union tag declarator[, declarator . • •];

A union declaration defines the name of the union variable and specifies a
set of variable values (called "members" of the union) that can have
different cypes. A variable with union cype stores any single value defined
by that lype.

Union declarations have the same forms as structure declarations except
that they begin with the union keyword instead of the struct keyword. The
same rules govern structure and union declarations, except that bitfield
members are not allowed in unions.

The storage associated with a union variable is the storage required for the
longest member of the union . When a smaller member is used, the union
variable may contmn unused memory space. AU members are stored in the

(same memory space and start at the same address. The stored value is

\ overwritten each time a value is assigned to a different member . ._/

C Language Refenmce

Examples

1. union sign {
intsvar;
unsigned uvar;

} number;

2. union{
char*a, b;
float f[20];

}jack;

3. union{
struct{

char icon;
unsigned color : 4;

} window1, window2, window3, window4;
} screen[25][80];

The first example defines a union variable named number that has two
members: svar, a signed integer, and uvar, an unsigned integer. This
declaration allows the current value of number to be stored as either a
signed or an unsigned value. The nnion type is named sign.

The second example defines a union variable named jack. The members
of the union are, in order7 a pointer to a ehar value, a char value, and an
array of float values. The storage allocated for jack is the storage required
for the 20-element array f, since /is the longest member of the union. The
union type is unnamed.

The third example defines a two-dimensional array of unions named
screen. The array contains 2,000 elements. Each element is an individual
union with four members: windowl, window2, window3, and window4,
where each member is a structure. Each union element holds one of the
four possible structnr;l members at any given time. Thus, the screen vari
able is a composite of up to four different "windows."

4.4.S Array Declarations

Syntax

type-specifie
.
r dedarator[constant- expression];

type-specifier declarator [];

4-16

r .
v

Declarations

A declaration for an array defines the name of the array and the type of
each element. It can also define the number of elements in the array. A
variable with array type is considered a pointer to the type of the array ele
ments, as described in Section 5.2.2 of Chapter 5, "Expressions and
Assignments".

Array declarations have two forms, as shown above. The declarator gives
the variable name, and may modify the variable's type. The brackets ([])
following the declarator modify the declarator to array type. The
constant-expression inside the brackets defines the number of elements in
the array. Each element has the type given by the type-specifier. The type
specifier can specify any type exceptvoid and function types.

The second form omits the consmnt-expression in brackets. This form can
be used only if the array is initialized, declared as a formal parameter, or
declared as a reference to an array explicitly defined elsewhere in the pro
gram.

Arrays of arrays (''multidimensional" arrays) are defined by giving a list of
bracketed constant-expressions following the array declarator.

type-specifier declarator[constant-expression] [constant-expression] . . •

Each constant-expression in brackets defines the number of elements in a
given dimension. Two-dimensional arrays have two bracketed expres
sions, three-dimensional arrays have three) and so on. When a multidi
mensional array is declared within a function, the first constant .. expression
can be omitted if the array is initialized, declared as a formal parameter, or
declared as a reference to an array explicitly defined elsewhere in the pro
gram.

Arrays of pointers to various types can be defined by using complex
declarators, as described earlier in Section 4.3.2.

The storage associated with an array type is the storage reqnlred for all of its
elements. The elements of an array are stored in contiguous and increasing
memory locations, from the first element to the last. No blanks occur
between the elements of an array in storage.

Arrays are stored by row. For example, the following array consists of 2
rows with 3 columns each:

cbar A[2][3];

Tbe 3 columns of the first row are stored first, followed by the 3 columns of
the second row.

4-17

C Language Reference

To refer to an individual element of an array, use a subscript eXpression,
discussed in Section 5.2.5ofChapter 5, "Expressions and Assignments".

Elillmples

1. int scores[lO], game;

2. float matri:x[10][15];

3. struct {
f1oatx,y;
}complex[lOO];

4. char •name[20];

The first example defines an array variable named scores with 10 elements,
eaeh of which has lnt type. The variable named game is declared as a sim
plevariable with lnttype.

The second example defines a two-dimensional array named matrix. The
array has 150elements, each having Boat type.

The third example defines an array of structures. This array has 100 ele
ments. Eaeh element is a structure containing two members.

The fourth example defines an array of pointers. The array has 20 ele
ments. Each element is a pointer to aeharvalue.

4.4.6 Pointer Declarations

Syntax

type-specifier •declararor;

A pointer decinration defines the name of the pointervariable and the type
of the object to which the variable points. The declarator defines the
variable's name, and may modify its type. The type-specifier gives the type
oftheobject. The type can be any fundamental, structure, or nnion type.

Pointer variables can also point to fnnctions, arrays, and other pointers.
To declare morecomplexpointertypes, refer toSection4.3.2.

4-18

(

Declarations

A pointer to a structure or union type can be declared before the structure
or union type is defined, as long as the structure or union type definition is
visible at the time of the declaration. Such declarations are allowed
heeause the compiler does not need to know the size of the structure or
union to allocate space for the pointer variat>le. The pointer is declared by
using the structure or union tag. See the fourth example below.

A variable declared as a pointer holds a memory address. The amount of
storage required for an address and the meaning of the address depends on
the given implementation of the compiler. Pointers to different types are
not guaranteed to have the same length.

fn some implementatinns the special keywords near and far are available
to modify the size of a pointer. See your system documentation for more
information.

Examples

2. int "pointers[lO];

3. int(*pointer)[lO];

4. struct list*next, *previon:s;

5. struct list {
char*token;
intcount;
structlist •next;

} line;

The first example defines a pointer variable named message. It points to a
variable with char type.

The second example defines an array of pointers named pointers. The
array has 10 elements. Each element is a pointer to a variable wjth int type.

The third example defines a pointer variable named pointer. It points to an
arraywith lOelements. Each element in this array has inttype.

The fourth example defines two pointer variables that point to the ;'true
lure type list. This declaration can appear before the definition of the list
structure type (see the next example), as long as the list type definition has
the same visibility as the declaration.

The fifth example declares the variable line to have the structure type
named list. The list structure type is defined to have three members. The

4-19

C Language Reference

first member is a pointer to a char value, the second is an intvalue, and the
tlllrd is a pointer to another lil"tstructure.

4.5 Function Declarations

Syntax

[type-specifier]declarator([arg-type-lil"t]) [, declarator . . .];

A function declaration defines the name and returu type of a function, and
possibly establishes the types and number of arguments to the function.
Function declarations, also called forward declarations, do not define the
function body or parameters. Instead they permit the attributes of the
function to be known before the function is defined. Function definitions
are described in detail in Section 7.2 of Chapter 7, "Functions"."

The declarator of the function declaration names the function, and the
type-specifier gives the function's returu type. H the type-specifier is omit
ted from a function declaration, the return type of the function is assumed
to be int.

Function declarations may include either the extern or the static storage
class specifier. Storage class specifiers are discussed in Section 4.6.

Argument Type List

The arg-type-lil"t establishes the number and types of the arguments to the
function. It has the following form:

[type-name][, type-name . . .][,]

The first type-name gives the type of the first argument to the function, the
second type.:.1name gives the type of the second argument, and so on. Each
type-name is separated from the next by a comma. If the arg-type-Iii"/ ends
with a comma, the number of arguments to the function is variable. How
ever, the function is expected to have at least as many arguments as there
are type- names before the terminating comma. H the arg-type-li<t con
tains only a single comma, the number of arguments to the function is vari
able and may be zero.

A type-name for a fundamental, structure, or union type consists of the
type specifier for that type (such as int). The type-names for pointers,
arrays, and functions are formed by combining a type specifier with an

4-20

,... ..
r

�;

Declarations

t'abstract declarator/} that is, a declarator without an identifier. Section
4.9explains how to fonn and interpret abstract declarators.

The special keyword void can be used in place of the arg- type-list to
declare a function that has no arguments. The compiler displays a warning
message if a call to the function or the function definition specifies argu
ments.

One other special construction is allowed in the arg- type-list. The phrase
void • specifies an argument of any pointer type. This phrase can be used in
the arg-type-list as if it were a type-name.

The arg- type-list may be omitted altogether. The parentheses after the
function identifier are still required, but they are empty, In this form, the
function declaration establishes neither the number nor the types of argu
ments to the function. When this information is omitted, the compiler
does not perform any type-checking between the actual arguments in a
function call and the formal parameters of the function definition. See
Section 7.4of Chapter?, "Functions,,, for details.

Return Type

Functions can return values of any type except arrays and functions. Thus,
the type-specifier of a function declaration can specify any fundamental,
structure, or union type. The function identifier can be modified 'With one
or more asterisks (*) to declare a pointer return type.

Although functions are not allowed to return arrays and functions, they
can return pointers to arrays and functions� Functions that return pointers
to array or function types are declared by modifying the function identifier
with asterisks (•), brackets ([]), and parentheses to form a complex
declarator. Forming and interpreting complex declarators is discussed in
Section 4.3.2.

Examples

i. intadd(int, int);

2. char *strfind(char *,);

3. void draw(void);

4. double (*sum(double, double))[3];

5. int (*(*select)(void))(int)

4-21

C Language Reference

6. char *p;
short *q;
int prt(void *);

The first example declares a function named add that takes two int argu
ments and returns anintvalue.

The second example declares a function named strjind, which returns a
pointer to a char value. The function takes at least one argument, a
pointer to a char value. The argument type list ends with a comma, indicat
ingthatthe function maytakemore arguments.

The third example declares a function with void return type (returning no
value). The argument-type-list is also void, meaning no arguments are
expected for this function.

In the fourth example, sum is decliD-ed as a function returning a pointer to
an array of 3 double values. The sum function takes two arguments, each a
double value.

In the fifth example, the function named select is declared to return a
pointer to a function taking no arguments and returning a pointer. The
pointer return value points to a function taking one int argument and
returning an int value.

In the sixth example, the functionprtis declared to take a pointer argument
of any type and to return an int. Either the char pointer p or the short
pointer q could be passed as an argument to prt without producing a type
mismatch waroing.

4.6 Storage Classes

The storage class of a variable determines whether the item has a "global"
or "local" lifetime. An item with a global lifetime exists and has a value
!hrougbout the duration of the program. All functions have global life
times.

Variables with local lifetimes are allocated new storage each time execu
tion control passes to the block in which they are defined. When execution
passes out of the block, the variables no longer have meaningful values.

Althougb C defines only two types of storage classes, four storage class
specifiers are available. They are:

4-22

auto
register
static
extern

Declarations

Items with auto and register class have local lifetimes. The static and
extern specifiers refer to items with global lifetimes.

The four storage class specifiers have distinct meanings because storage
class specifiers affect the visibility of functions and variables as well as their
storage class. The term "visibility" refers to the portion of the source pro
gram in which the variable or function can b e referenced. An item with a
global lifetime exists throughout the execution of the source program, but
it may not be "visible" in all parts of the program. Visibility and the related
concept of lifetime are discussed in Section 3.5 of Chapter 3, "Program
Structure."

The placement of variable or function declarations within source files also
affects storage class and visibility. Declarations outside of all function
definitions are said to occur at the "extemal leve1;" declarations within
function definitions occur at the Hffiternallevel."

The exact meaning of each storage class specifier depends on whether the
declaration occurs at the external or the internal level and whether the item
declared is a variable or a function. The following sections describe the
meaning of storage class specifiers in each kind of declaration. They also
explain the default behavior when the storage class specifier is omitted
from a variable or function declaration.

4.6.1 Variable Declarations at theExtemalLevel

Variable declarations at the eJc"temal level use the static and extem storage
class specifiers or omit the storage class specifier entirely. The auto and
register storage class specifiers are not allowed at the extern allevel.

Variable declarations at the external level are either deflnitu:ms of variables
or references to variables defined elsewhere. An eltternal varial:ile declara
tion that also initializes the variable (implicitly or explicitly) is a definition
of the variable. Definitions at the external level can take several forms:

1. A variable can be defined at the external level by declaring it with
the static storage class specifier. The static variable can be expli
citly initialized, as described in Section 4. 7. If the initializer is omit
ted, the variable is automatically initialized to zero at compile time.
Thus, 'tstatic int k = 16;" and static int k; are both considered
definitions.

2. A variable is defined when it is explicitly initialized at the external
level. For example, "int j = 3;" is a variable definition.

Once a variable is defined at the external level, it is visible throughout the
remainder of the source file in which it appears. The variable is not visible
above its definition in the same source file, nor is it visible in other source
files of the program, unless a reference is declared to make it visible, as
described below.

4-23

C Language Reference

A variable can b e defined at the external level only once within a source
file. If the stati£ storage class specifier is given, another variable with the
same name can be defined with the static storage class specifier in a
different source file. Since each stati£ definition is visible only in its own
source file, no conflict occurs.

The extern storage class specifier is used to declare a reference to a variable
defined elsewhere. These declarations can be used to make a definition in
another source file visible or to make a variable visible above its definition
in the same source file. Once a reference to the variable is declared at the
external level, the variable is visible throughout the remainder of the
source file in which the declared reference occurs.

Declarations that use the extern storage class specifier are not allowed to
contain initiallzers, since they refer to vl!rlables whose values are already
defined.

For an extern reference to be valid, the variable to which it refers must b e
defined once, and only once, at the external level. The definition can be in
any of the source files that make up the program.

One speeial case is not covered by the rules outlined above. You can omit
both the storage class specifier and the initialjzer from a variable declara
tion at the extemal level. For example� the declaration "int n;'' is a valid
external declaration. This declaration can have one of two different mean
ings, depending on the context:

1. Jf a variable by the same name is defined at the external level else
where in the program, the declaration is taken to be a reference to
that variable, exactly as if the extern storage class specifier had boon
used in the declaration.

2. If no such definition is present, the declared variable is allocated
storage at link tbue and initialized to zero. If more than one such
declaration appears in the program, storage is allocated for the larg
est size declared for the variable. For example, if a program con
tains two uninitialized declarations of i at the external level, "inti;"
and �'chari;'', storage space for an intis allocated fori at link time.

4-24

Example

,•...
SOURCE FILE ONE

.. ,

extemint i;
I* reference to i, defined below�/ .

mainQ
{

}

i++·
l*iequals4*/

next();

int i = 3;
/*definitionofi */

next()
{

}

i++·
pru;tf{"%d\n", i);

/*iequals S •/
other();

, •..••••••••.•••.....................••.•••.••...
SOGRCEFILETWO

...•.. ,

extern int i;
!• reference to i in first source file */

other()
{

}

i++;
printfC'%d\n", i);

1• i equaJs·fi *I

Declarations

The two source files contain a total of three external declarations of i. Only
one declaration contains an initialization: that declaration, "int i = 3;'\
defines the global variable i with initial value 3. The extern declaration of i
at the top of the first source file makes the global variable visible above its
definition in the file. Without the extern declaration, the main() fu1;1ction
could not reference the global variable i. The extern declaration of iin the
second source file makes the global variable visible in that source file.

4-25

C Language Reference

All three functions perform the same task: they increase i and print it.
(Assume thatthe printffunction is defined elsewhere in the program.)The
values printed are 4, 5, and 6.

If the variable i had not been initialized, it would have been automatically
set to zero at link time. The values printed in this case would be 1, 2, and 3.

4.6.2 Variable Declarations at the Internal Level

Any of the four storage class specifiers can be used for variable declara
tions at the internal level. When the storage class specifier is omitted from
a variable declaration at the internal level, the default storage class is auto.

The auto storage class specifier declares a variable with a local lifetime.
The variable is visible only in the block in which it is declared. Declara
tions of auto variables can include initializers, as discussed later in this
chapter. Variables with auto storage class are not initialized automatically,
so they should be explicitly initialized when declared or assigned initial
values in statements within the block. If not initialized, the values of auto
variables are undefined.

The register storage class specifier tells the compiler to give the variable
storage in a register, if possible. Register storage usually results in faster
access time and smaller code size. Variables declared with register storage
class have the same visibility as au to variables.

The number of registers that can be used for variable storage is machine
dependent. If no registers are available when the compiler encounters the
register declaration, the variable is given auto storage class and stored in
memory. The compiler assigns register storage to variables in exactly the
same order in which the declarations appear in the source file. Register
storage (if available) is only guaranteed forint and pointer types.

A variable declared at the internal level with the static storage class
specifier has a global lifetime. The variable is visible only within the block
in which it is declared. Uulike auto variables, variables declared as static
retain their values when the block is exited.

Declarations of static variables can include initializers. If not explicitly ini
tialized, a static variable is automatically set to zero. Initialization is per
formed once, at compile time; the static variable is not reinitialized each
time t�e block is entered.

A variable declared with the extern storage class specifier is a reference to a
variable with the same name def\ned at the external level in any of the
source files of the program. The purpose of the internal extern declaration
is to make the external-level variable definition visible within the block.

4-26

(
',

L

Declarations

The internal extern declaration does not cltange the vimb:ility of the global
variable m any other part of the program.

Example

inti = 1 ;

main()
{ /*referencetoi, defioed above */

extern int i;

}

I* initial value is zero; a is
visible onlywithio mam *I

static int a;

I* b is stored io aregister,
if possible * I

registerint b = O;

I* default storage class is auto *I
iot e =O;

/* values printed are 1, 0, 0, 0*/
printf("%d\n%d\n%d\n%d\n", i, a, b, e);
other();

other()
{

}

/*iisredefined */
iot i = 16;

/* this a is visible onlywithio other */
static int a = 2;

/* values printed are 16, 4 *I
printf('%d\n%d\n", i, a);

Tlte variable i is defined at tlte external level with initial value 1. A refer
ence to the external-level iis declared io tlte main() function with an extern
declaration. The static variable a is automatically set to zero, since theini-

4-27

C Ll!nguage Reference

tializer is omitted. The call to prlntf (assuming the prlntf function os
defined elsewhere in the source program) prints out the values 1, 0, 0, 0.

In the other function, the variable lis redefined as a local variable with ini
tial value 16. This does not affect the value of the external-level i. The vari
able a is declared as a static variable and initialized to 2. This a does not
conflict with thea in main, since thevisibilityof staticvariablesatthe inter
nal levelis restricted to the block in which they are declared.

The variable a is increased by 2, giving 4 as the result. If the other function
were called again in the same program, the initial value of a would be 4.
Internal static variables retain their values when the block in which they
are declared is exited and reentered.

4.6.3 Function Declarations

Function declarations can use either the static or the extern storage class
specifier. Functions always have global lifethnes.

The visibility rules for functions are slightly different from the rules for vari
ables. Function declarations at the intemal levelhave the same meaning as
function declarations at the external level. This means that functions can
not have block viaibility, and the visibility of functions cannot be nested.
A function declared to be static is visible only within the source file in
which it is defined. Any function in the same source file can call the static
function, but functions in other source files cannot. Another static func
tion by the same name can be declared in a different source file without
conflict.

Functions declared as e:<tem are viaible throughout all the source files that
constitute the program (unless they are later redeclared as static). Any
function can call an extern function.

Function declarations th at omit tbe storage class specifier default to
extern.

4. 7 Initialization

A variable can be set to an initial value by applying an initiallzer to the
declarator in the variable declaration. The value or values of the initiali7£r
are assigned to the variable. The initializer is preceded by an equal sign (=),
as shown below:

= initiali:::er

Variables of any type can be initialized, with the restrictions outiined
below. Functions do not takeinitializers.

4-28

(' ,

Declarations

Declarations that use the extern storage class specifier cannot contain ini
tializers.

Variables declared at the external level can be initialized; if not explicitly
initialized, they are set to zero at compile time. A ny variable declared with
the static storage class specifier can be initialized. Initializations of s ta tic
variables are performed once, at compile time. If not explicitly initialized,
static variables are automatically set to zero.

Initializations of auto and register variables are performed each time exe
cution control passes to the block in which they are declared. If the initial
izer is omitted from the declaration of an auto or register variable, the ini
tial value of the variable is undefined.

Initializations of auto aggregate types {arrays, structures, and unions) are
prohibited. Only static aggregates and aggregates declared at the external
level can be initialized.

The initial values for external variable declarations and for all static vari
ables, whether external or intemcll, must be constant-expressions.
Constant-expressions are described in Section 5.2.10 of Chapter 5,
"Expressions and Assignments." Automatic and register variables can be
initialized with either constant or variable values.

Sections 4.7.1 and 4. 7.2 describe how to initialize variables of fundamen
tal, pointer, and aggregate types.

4. 7.1 Fundamental and PointerTypes

Syntax

var=expression

The value of expression is assigned to the variable. The conversion rules
for assignment apply.

Examples

1. int x= 10;

2. registerint *px=O;

4-29

C Language Reference

4. int *b � &x;

In the ,first example, x is initialized to the constant-expression 10. In the
second example, the pointer px is initialized to zero, producing a ''null"
pointer. The tbird example uses a constant-expression to ioitlalizec. The
fourtb example ioitializex the pointer b with the address of another vari
able�x.

4.7.2 Aggregate Types

Syntax

var� {inilia/i::er·list}

An initiali::er-list is a list of ioitlalizers separsted by commas. Each ioitial
izer in the list is either a constant-expression or an initializer- li.st. Thus, a
brace-enclosed list can appear within another iniliali:zer-list. This is useful
for initializing aggregate members of an aggregate, as shown in the exam
ples below.

For each initializer·list, the values of the constant-expressions are
assigned in order to the members of the aggregate variable. When a union
is initialized, the initia/izer-listmnst be a single constant-expression. The
value of the constant-expression is assigned to the first member of the
union�

If there are fewer values in an initializer- listthan there are in the aggregate
type, the remaining members or elements are initialized to zero. Giving too
many initial values for the aggregate type causes an error. These rules appjy
to each embedded iniliali:zer-list, as well as to the aggregate as a whole.

For example:

iut P[4][3]�{
{ 1, 1, 1 },
{2, 2, 2 }.
{3, 3, 3,},
{ 4,4, 4,},

};

declares Pasa 4x 3 array and initializes the elements of its first row to 1, the
elements of its second row to 2, and so on through the fourth row. Notice
that the initiali::er-list for the third and fourth rows contains commas after
the last constant-expression. The last inilialtzer- list ("{ 4, 4, 4, }") is also

4-30

(

Declarations

followed by a comma. These extra commas are permitted but are not
required; the required commas are those that separate constant
expressions and initializer-lists.

If there is no embndded initiatiur list for an aggregate member, values are
simply assignnd in order to each member of the sub aggregate. Thus, the
aboveinitia1izationis equivalent to:

intP[4][3]={
1, 1, 1, 2, 2, 2, 3, 3,3, 4, 4,4

};

Braces can also appear around individualinitializers in the list.

Examples

1. struct list {
int i, j, k;
float m[2][3];
} x={

1,
2,
3,
{4.0, 4.0, 4.0}

};

2. union{
char x[2][3];
int i, j, k;
} y={

{'1'},
{'4'}

};

In the first example, the threeintmembers ofx are initialized to 1, 2, and 3,
respectively. The three elements in the first row of m are initialized to 4.0;
the elements oftheremainingrowofmare initialized to zero by default.

In the second example the union variable y is initializnd. The first element
of the union is an array, so theinitiatiuris an.aggregateinitializer. Theini
tializer list "{'1'}" gives values to the first row of the array. Since only one
value appears in the list, the element in the first column is initiatiud to the
character "1", and the remaining two elements in the row are initialized to
zero (the null character), by default. Similarly, the first element of the

4-31

C Language Reference

second row of "x" is initialized to the charaCter '�4", and the remaining two
elements in the row are initialized to zero.

4.7.3 Strlng initiallzers

An array can be initialized with a string literal. For example:

char code[]- "abc";

initializes code as a four-element array of characters. The fourth clement is
the null character that terminates all string literals.

If the array size is specified and the stringis longerthan the specified size of
the array, the extra characters are simply discarded. The following
declaration initializes code as a three-clement character array:

char code[3] - "abed";

Only the first three characters of the initializer are assigned to code. The
character "d" and the null character are discarded. Note that some com
pilers retura a warning message when this happens.

If the string is shorter than the specified size of the array, the remaining ele
ments of the array are initialized to zero (the null character).

4.8 Type Declarations

A type declaration defines the name and members of a structure or union
type, or the name and enumeration set of an enumeration type. The name
of a decinred iype can be used in variable or function declarations to refer
to that type. This is useful if many variables and functions have the same
iype.

A typedef declaration defines a type specifier for a type. These declara
tions are used to set up shorter or more meaaingful names foriypes already
de tined by C or for iypes declared by the user.

4.8. 1 Struetnre, Union, and Enumeration Types

Declarations of structure, union, and enumeration types have the same
general form as variable declarations of those types. In type declarations,
the variable identifier is omitted, since no variable is declared. The tag is
mandatory; it names the structure, union, or enumeration type. The
member- declaration-list or enum-list defining the type must appear in the

4-32

Declarations

type declaration ; the abbreviated form of variable declarations, in which a
tag refers to a type defined elsewhere, is not legal for type declarations.

Examples:

1. enum status{
loss '"" -1,
bye,
tie=O,
win
};

2. struct student {
char name[ZO);
intid� class;
};

The first example declares an enumeration type named statu.<. The name
of the type can be used in declarations of enumeration variables. The
identifier lo&ris explicitly set to -1. Both bye and tie are associated with the
value 0, and win is given the value 1.

The second example declares a structure type named student. A structure
variable can be declared to have student type with a declaration such as
"struct student employee;".

4.8.2 eypedefDeclaratlom

Syotax

eypedef type· specifier declarator [, declarator . . •);

A typedef declaration is analogous to a variable declaration except that the
typedefkeyword appears in place of a storage class specifier. The dec lara·
tion is interpreted in the same way as variable and function declarations,
but the identifier, instead oftakingon the type specified by the declaration,
becomes a new keyword for the type.

typedef does not create types. It creates synonyms for existing types or
names for types that could be sp·ecified in other ways. Any type can be
declared with typedef, including pointer, function, and array types. A

4-33

C Language Reference

typedef name for a pointer to a structure or union type can be declared
before the structure or union type is defined, as long as the definition has
the same visibility as the declaration.

Examples

1. typedef int WHOLE;

2. typedef struct club {
charname[30];
int size, year;
} GROUP ;

3. typedefGROUP*PG;

4. typedefvoidDRA WF(int, int);

The first example declares WHOLE to be a synonym forint.

The second example declares GROUP as a structure type with three
members. Since a structure tag, club, is also specified, either the typedef
name (GROUP) or the structure tag can be used in declarations.

The third example uses the previous typedef name to declare a pointer
type. The type PG is declared as a pointer to the GROUP type, which in
turn is defined as a structure type.

The final example provides the type DRA WF for a function returning no
value and taking two int argwnents. This means, for example, that the
declaration "DRA WF box;" is equivalent to the declaration "void
box(int, int);".

4.9 Type Names

A "type name" specifies a particular data type. Type names are used in
three contexts: in the argument type lists of function declarations, in type
casts, and in sizeof operations. Argument type lists are discussed in Sec
tion 4.5. Type casts and sizeof operations are discussed in Section 5.7.2
and 5.3.4, respectively, of Chapter 5, "Expressions and Assignments".

The type names for fundamental, enumeration, structure, and union types
are simply the type specifiers for those types.

4-34

Declarations

A type name for a pointer, array, or function type has the forni:

type-speci{zer abstract- declarator

An abstract declarator is a declarator without an identifier, consisting
solely of one or more pointer, array, or function modifiers. The pointer
modifier (*) always appears before the identifier in a declarator, while array
([]) and function (()) modifiers appear after the identifier. It is thus possi
ble to determine where the identifier would appear in an abstract declara
tor and to interpret the declarator accordingly.

Abstract declarators can be complex. Parentheses in a complex abstract
declarator specify a particular interpretation, just as they do for the com
plexdeclarators in declarations.

When you give a function type with an abstract declarator, you can include
the function's argument type list, which also consists of type names. See
the second aud fourth examples below.

The abstract declarator "()" alone is not allowed because it is ambiguous.
It is impossible to determine whether the implied identifier belongs inside
the parentheses (in which case it is an unmodified type) or before the
parentheses (a function typ�),

The type specifiers established through typedef declarations also qualify as
type names.

Examples:

1. long*

2. double *(double, double)

3. int (•)[5]

4. int (*)(void)

The first example gives the type name for "pointer to long" type.

The second example is the type name for a function that takes two double
arguments and retoms a pointer to a double value.

The third aud fourth examples show how parentheses modify complex
abstract declarators. Example 3 gives the name for a pointer to an array of
five int values. Example 4 names a pointer to a function taking no argu
ments and returning an int.

4-35

C hapter S
�-

c Expres sions and Assignme nts

c�

5.1 Introduction 5-1

5.2 Operands 5-1
5.2.1 Constants 5-1
5.2.2 Identifiers 5-2
5.2.3 Strings 5-2
5.2.4 FunctionCalls 5-3
5.2.5 Subscript Expressions 5-3
5.2.6 Mel]lber Selection Expressions 5-6
5.2. 7 Expressions with Operators 5-7
5.2.8 ExpressionsinParentheses 5-8
5.2.9 Type-Cast Expressions 5-8
5.2.10 Constant-Expressions 5-8

5.3 Operators 5-9
5.3.1 Usual Arithmetic Conversions 5-9
5.3.2 ComplementOperators 5-10
5.3.3 ;Indirection and Address-of Operators 5-11
5.3.4 Sizeof Operator 5-12
5.3.5 Multiplicative Operators 5-13
5.3.6 Additive Operators 5-14
5.3.7 ShiftOperators 5-16
5.3.8 Relatiolllll Operators 5 -17
5.3.9 Bitwise Operators 5-18
5.3.10 LogicalOperators 5-19
5.3.11 SequentiaiEvaluationOperator 5-20
5.3.12 Conditional Operator 5-21

5.4 Assignment Operators 5-22
5.4.1 Lvalue Expressions 5-22
5.4.2 Unary increment and Decrement 5-23
5.4.3 SimpleAssignment 5-23
5.4.4 CompoundAssignment 5-24

c; 5.5 Precedence and Orderof Evaluation 5-25

5.6 SideEffects 5-28

5. 7 Type Conversions 5-29
5.7.1 AssignmentConversions 5-29

5.7.2 Type-Cast Conversions 5-34
5.7.3 Operator Conversions 5-34
5. 7.4 Function -Call Conversions 5-35

Expressions and Assignments

5.1 1ntroduction

This chapter describes how to form expressions and make assignments in
the C language. An expression is a combination of operands and operators
that yields ("expresses") a single value. An operand is a constant or vari
able value that is manipulated in the expression. Each operand of an
expression is also an expression, since it represents a single value. Opera
tors specify how the operand or operands of the expression are manipu
lated.

· · · · ·· · · ·· ·

In C� assignments are considered expressions. An assignment yields a
value. Its value is the value being assigued. In addition to the sim pie assign
ment operator (=), C offers complex assignment operators that both
transform and assign their operands.

The value resulting from an expression's evaluation depends on the rela
tive precedence of operators in the expression and side effects, if present.
The precedence of operators determines the grouping of operands in an
expression. Side effects are changes caused bytheevaluation of an expres
sion. In an expression with side effects, the evaluation of one operand can
affect the value of another. With some operators, the order in which
operands are evaluated also affects the result of the expression.

The value represented by each operand in an expression has a type, which
may be converted to a different type in certain contexts. Type conversions
take place in assignments, type casts, function calls, and operations.

5.2 Operands

A C operand is a constant, an identifier, a string, a function call, a sub
script expression, a member selection expression, or a more complex
expression formed by combining operands with operators or enclosing
operands in parentheses. Any operand that yields a constant value is
called a "constant-expression."

Every operand has a type. The following sections discuss the type of value
each kind of operand represents. An operand can be castfrom its original
type to another type by means of a "type-cast" operation. A type-cast
expression can also form an operand of an expression.

5.2.1 Constants

A constant operand has the value and type of the constant value it
represents. A character constant has char type. An integer constant can
bave either lnt or long type, depending on the integer's size and how the
value was specified. Floating-point constants always have double type.

5-l

C Language Reference

String literals are considered arrays of characters and are discussed in Sec
tion 5.2.3.

5.2.2 Iden1iliers

An identifier names a variable or function. Every identifier has a type,
which is established when the identifier is declared . The value of an
identifier depends upon its type, as follows:

• Identifiers of integral and floating-point types represent values of
the corresponding type.

• An identifier of enum type represents one constant value of a set of
constant values. The value of the identifier is the constant value. Its
type is int, by definition of theennm type.

• An identifier of struct or union type represents a value of the
specified structorunion type.

• An identifier declared as a pointer represents a pointer to the
specified type.

• An identifier declared as an array represents a pointer whose value
is the address of the first element of the array. The type addresSed
by the pointer is the type of the first element of the array. For
example, if series is declared to be a ten-element integer array, the
identifier series expresses the address of the array, while the sub
script expression "series[n]" (where nis an integer in the range zero
to nine) refers to a variable integer element of series. Subscript
expressions are discussed in Section 5.2.5.

The address of an array does not change during the execution of
the program, although the values of the individual elements can
chan!��'· The pointer value represented by an array identifier is not
a vanable, and an array identifier cannot form the left-hand
operand of an assignment operation.

• An identifier declared as a function represents a pointer whose
value is the address of the function. The type addressed by the
pointer is a fl.IDction returning a value of a specified type. The
address of a function does not chnnge during the execution of a
program; only the return value varies. Thus, function identifiers
c.annot be left-hand operands in assignment operations.

5.2.3 Strings

A string literal consists of a list of characters enclosed in double quotes, as
shown below:

tlstring"

A string literal is stored as an array of elements with char type. The string
literal represents the address of the fust element of the array. The address

5-2

Expressions and Assignments

of the string's first element is a constant, so the value represented by a
string expression is a constant.

Since string literals are effectively pointers, they can be used in contexts
that allow pointer values, and they are subject to the same restrictions as
pointers. String literals have one additional restriction: they are not vari
ables and cannot be left-hand operands in assignment operations.

The last character of·a string is always the null character, "\()". The null
character is not visible in the string expression, but it is added as the last
element when the string is stored. Thus, the string abc actnally has four
characters rather than three.

5.2.4 Function Calls

Syntax

expression (expression-list)

A function call consists of an expression followed by an expression-list in
parentheses, where expression evaluates to a function address (for exam
ple, a function identifier), and expression-list is a list of expressions whose
values, the actual arguments, are passed to the function. The expression"
listcan be empty.

A function call expression has the value and type of the function's return
value. lf the function's retom type is void, the function call expression also
has void type. If control retoms fro!Il the called function without execu
tion of a retnm statement, the value of the function call is undefined.

See Section 7.4 of Chapter 7, "Functions," for a detailed discussion of
function calls.

5.2. 5 SubscriptExpressions

Syntax

expressionl [expression2]

A subscript expression represents the value at the address that is e:xpres
si.on2 positions beyond expresswnl. expressi.onl is any pointer value (such

5-3

C Language Reference

as an array identifier) and expression2 is an integer value. expression2must
be enclosed in brackets ([]).

Subscript expressions are generally used to refer to array elements, but a
sub script can be applied to any pointer.

The subscript expression is evaluated by adding tbe integer value (expres
sion2) to the pointer value (expressionl), then applying the indirection
operator (*) to tbe result. (See Section 5 .3.3 for a discussion of tbe indirec
tion operator.) In effect, for a one-dimensional array, the following four
expressions are equivalent, assuming that a is a pointer and b is an integer.

a[b]
*(a + b)
*(b + a)
b(a]

According to the conversion rules of tbe addition operator (see Section
5.3.6), the integer value is converted to an address offset by multiplying it
by the length of the type addressed by the pointer.

For example, suppose the identifier line refers to an array of int values. To
evaluate the expression line[!], the integer value i is multiplied by the length
of an int. The converted value of i represents i int positions. This con
verted value is added to the original pointer value (line) to yield an address
that is offset i intpositionsfrom line.

As the last step in evaluatiog the subscript expression, the indirection
operator is applied to the new address. The result is the value of the array
element at that position (intuitively, line[I]).

Notice that tbe subscript expression:

line[O]

yields the value of the ·first element of a line, since the offset from tbe
address represented by a line is zero. Similarly, an expression such as:

line[5]

refers to the element offset five positions from line, or the sixth element of
the array.

Multidimensional Array References

A subscript expression can be subscripted, as follows:

expression! [expression2] [expression3] . • .

5-4

Expressions and Assignments

Sub script expressions associate left to right. The leftmost sub script eXpres
sion, expression1[expression2], is evaluated first. The address that results
from adding expression] and expression2 forms the pointer expression to
which expression3 is added. The indirection operator (*) is applied after
the last subscripted expression is evaluated. However, the indirection
operator is not applied at all if the final pointer value addresses an array
type. Seethe thirdexamplebelow.

Expressions with multiple subscripts refer to elements of multidimensional
arrays. A multidimensional array is an array whose elements are arrays.
The first element of a three-dimensional array, for example, is an array
with two dimensions.

Examples:

int prop[3][4][6];
int i� "'ip;

1. i � prop[O][O)[l);

2. i� prop[2][1][3];

(
'· 3. ip-propj1][1];
'--··

The array named prop has 3.elements, each of which is a 4-by-6array of int
values�

Example 1 shows how to refer to the second individual int element of prop.
Arrays are stored by row, so the last subscript varies fastest.

The second example shows a more complex reference to an individual ele
ment of prop. To evaluate the expression, the first subscript, 2, is multi
plied by the size of a 4-by-6 int array and added to the pointer value prop.
The result points to a 6-element array, the third element of the selected 4-
by-6array.

Next, the second subscript, l, is multiplied by the size of the 6-element int
array and added to the address represented by prop[2].

Each element of the 6-element array is an int value, so the final subscript,
3, is multiplied by the size of an int before it is added to prop[2] [1]. The

�- resultingpointeraddresses the fourth element of the 6-elementarray.
I
'�/ The last step in evaluating the expressionprop[2] [1] [3] applies the indirec

tion operator to the pointer value. The result is the int element at that
address.

5-5

C Language Reference

Example 3 shows a case where the irulirection operator is not applied. The
expression prop[2] [1] iS a valid reference to the 3-di.mensional array prop;
the result of the expression is a pointer value that addresses an array with 1
dimension. Since the pointer value addresses an array type, the indirection
operatods not applied.

5.2.6 Member Selection Expressions

Syntax

expression.identifier
expression-> idenrlfier

Member selection expressions refer to members of structures an.d unions.
A member selection expression has the value and type of the selected
member.

In the :first fonn, uexpression.identifier'j) expression represents a value of
struct or union type. The identifier names a member of the specified struc
ture or union.

In the second form, "expression->identifier" � expression represents a

pointer to a structure or union. The identifier names a member of the
specified structure or union.

The two forms of member selection expressions have a similar effect. ht
fact, expressions involving the pointer selection operator (->) are short
hand versions of expressions using the period (.) in cases where the expres
sion before the ee:riod consists of the indirection operator (*) applied to a
pointer value. (fhe indirection operator iS discussed in Section 5.3.3.)
Thus:

expression-> identifier

is equivalentto:

(*expression).identifier

when expression iS a pointer value.

5-6

(. ''-..._.· !

Examples

struct pair {
inta;
intb ·
stru�t pair *sp;
} item, list[lO];

1. item.sp = &item;

2. (item.sp)->a�24;

3. Iist[8].b � 12;

Expressions and Assignments

In the first example, the address of the item structure is assigned to the sp
member of the structure. This means that item contains a pointer to itself.

In the second example, the pointer expression "item.sp" is used with the
pointer selection operator (->)to assign a value to the member a.

The third example shows how to select an individual structure member
from an array of structures.

5.2. 7 Expressions with Operators

Expressions with operators can be unary, binary, or ternary expressions.
A unary expression consists of an operand prefixed by an unary operator
("unop") or an operand enclosed in parentheses and preceded by the
sizeofkeyword:

unop operand
sizeof (operand)

A binary expression consists of two operands joined by a binary operator
("binop"):

operand binop operand

A ternary expression consists of three operands joined by the ternary (? :)
operator:

operand ? operand : operand

Assignment expressions use unary or binary assignment operators. The
unary assignment operators are the increment (++) and decrement (�-)
operators.- The binary assignment operators are the simple assignment
operator (�) and tbe compound assignment operators (referred to as

5-7

C Language Reference

"compound-assign-ops"). Each compound assignment operator is a
combination of another binary operator with the simple assignment opera
tor. The forms of assignment expressions are:

operand++
operand-
++operand
--operand
operand -operand
operand compound-assignment- op operand

5.2.8 Expressions in Parentheses

Any operand can be enclosed in parentheses. The parentheses have no
effect on the type or value of the enclosed expression. For emmple, in the
expression:

(10+5)/5

the parentheses around "10 + 5" mean that the value of "10 + 5" is the left
operand of the "/" (division) operator. The result of "(10+ 5) f 5" is 3.
Without the parentheses, "10+ 5/5" would evaluate to 11.

Although. parentheses affect the way operands are grouped in an expres
sion, they cannot guarantee a particular order of evaluation for the expres
sion.

5.2.9 Type-Cast Expressions

A type-cast expression has the followingfonn:

(type-name)operand

Type-cast conversions are discussed in Section 5. 7.2; type names are dis
cussed in Section 4.9of Chapte::r4, "Declarations". :n

5.2.10 Constant-Expressions

A constant-expression is any expression that evaluates to a constant. The
operands of a constant-expression can be integer constants, character
constants, floating-point constants, enumeration constants, � casts to
integral and floating-point types, and other constant-expreSSlons. The
operands can be combined nnd modified using operators, as described in
Section 5.2. 7, with some restrictions.

5-8

Expressions and Assignments

Constant-expressions may not use assignment operators (see Section 5.4)
or the binary sequential evaluation operator (,). The unary address-of
operator (&) can be used only in certain initializations (see the last para
graph of Section 5.2.10).

Constant-expressions used in preprocessor directives are subject to addi
tional restrictions, and are consequently known as restricted� constant
expressions. A restricted� constantwexpression cannot contain sizeof
expressionst enumeration, constants, or type casts to any type. It can; ,how
ever, contain the special constant-expression �'defined(identifier)". See
Section 8.2.1 of Chapter 8, "Preprocessor Directives", for details.

These additional restrictions also apply to constant-expressions used to
initialize variables at the' external 1eve1. However, such expressions are
allowed to apply the unary address-of operator (&) to other external-level
variables with fundamental, structure, and union types and to external
level arrays subscripted with a constant-expression. ln these expressions,
a constart-expression not involving the address-of operator can be added
to or subtracted from the address expression .

5.3 Operators

C operators take one operand (unary operators), two operands (binary
operators), or three operands (the ternary operator).

Unary operators prefix their operand and associate right to left. C's unary
operators are:

- - l Complement operators
• & lndirectien and address-of operators
slzeof Sizeoperator

Bioaryoperators associateleft to right. The binary operators are: • I % Multiplicative operators
+ - Additive operators
< < > > Shiftoperators
< > <• >• •• !• Relational operators
& I ' Bitwise operators
&& I I Logical operators
, Sequential evaluation operator

C has one ternary operator, the conditional operator (? :). It associates
right to left.

5.3.1 Usual ArlthmeticConverslons

Most C operators perform type conversions to bring the operan ds of an
expression to a common type or to extend short values to the integer size
used in machine operations. The conversions performed by C operators
depend on the specific operator and the type of the operand or operands.
However, many operators perform similar conversions on operands of

5-9

C Language Reference

integral and floating-point types. These conversions are known as "arith
metic" conversions because they apply to the types of values ordinarily
used in arithmetic.

The arithmetic conversions summarized below are called the "usual arith
metic conversions. n The discussion of each operator :in the following sec
tions specifies whether the operator performs the usual arithmetic conver
sions and also specifies the additional conversions, if any� the operator
performs.

The specific path of each type of conversion is outHned in Section 5. 7.

The usual arithmetic conversions proceed in order as follows:
1. Any operands of Hoattype are converted to double type.
2. If one operand has double type, the other operand is converted to

double.
3. Any operands of char or short type are converted to int.
4. Any operands of unsigned char or unsigned short type arc con

verted to unsigned int type.
5. If one operand is of type unsigned long, the other operand is con

verted to unsigned long.
6. If one operand is of type long, the other operand is converted to

long.
7. If one operand is of type unsigned int, the other operand is con

verted tounsigned int.

5.3.2 Complement Operators

Arithmetic Negation (-)

The arithmetic negation operator(-) produces the negative (two'scomple
ment)ofitsoperand.

The operand must be an integral or floating-point value.

The usual arithmetic conversions are performed.

Bitwise Complement C)

The bitwise complement operator r) produces the bitwise complement of
its operand. The operand must be of integral type. The usual arithmetic
conversions are performed. The result has the type of the operand after
conversion.

5-10

(, I
_/

Expressions and Assignrnenls

Logical NOT (!)

The logical NOT operator (!) produces the value zero if its operand is true
(nonzero) and the value one if its operand is false (zero). The result has int
type. The operand must be an integral, floating-point, or pointer value.

Examples:

1. shortx- 987;
x:- -x;

2. unsignedshorty=Oxaaaa;
y - '"'y;

3. if(!(x < y));

fu the first example, the newva!ue of xis the negative of 987, or-987.

fu the second example, the new value assigned to y is the one's comple
mentoftbe unsigned valueOxaaaa, or0x5555.

fu the third examyle, if x is greater than or equal to y, the result of the
expression is one (true). If xis lessthany, theresult is zero (false).

5.3.3 Indirection and Address- ofOperarors

Indirection (*)

The indirection operator (*) accesses a value indirectly, through a pointer.
The operand must be a pointer value. The result of the operation is the
value to which the operand points. The result type is the type addressed by
the pointer operand. If the pointervalue is null, the resultis unpredictah Je.

Address-of (&)

The address-of operator (&) takes the address of its operand. The
operand can be any value that can appear as the left-han.d value of an
assignment operation. (Assignment operations are discussed in Section
5.4.) The result of the address operation is a pointer to the operand. The
type addressed by the pointeris the type of the operand.

The address-of operator cannot be applied to a bitfield member of a struc
rore, nor can it be applied ro anidentifierdeclaredwith the register storage
class specifier.

5 - 11

C Language Reference

Examples:

int *pa, x;
int a[20];

1. pa- &a[5];

2, x= *pa;

In the first example, the address-of operator (&) takes the address of the
sixth element of the array a. The result is stored in the pointer variable pa.

The indirection operator (*) is used in the second example to access the int
value at the address stored in pa. The value is assigned to the integer vari
ablex.

5.3.4 SizeofOperator

The sizeof operator determines the amount of storage associated with an
identifier or a type. A sizeof expression has the form:

sizeof(name)

where name is either an identifier or a type name. The type name may not
be void. The value of a sizeofexpression is the amount of storage, in bytes,
associated with the named identifier or type.

When the sizeof operator is applied to an array identifier, the result is the
size of the entire array in bytes rather than the size of the pointer
represented by the array identifier.

When the sizeof operator is applied to a structure or union type name, or to
an identifier of structure or union type, the result is the actual size in bytes
of the structnre or union, which may include internal and trailing padding
used to align. the members of the structure or union on memory boun
daries. Thus, the result may not correspond to the size calculated by adding
up the storage requirements of the members.

Example:

buffer- calloc(lOO, sizeof (int));

With the sizeof operator you can avoid specifying machine-dependent
data sizes in your program. The above example uses the sizeof operator to
pass the size of an in.t, which varies across machines. as an argument to a

5-12

Expressions andAsslgnmenls

function named calloc. The value returned by the function is stored in
buffer.

i
\. 5.3.5 Multiplicative Operators

The multiplicative operators perform multiplication (*), aivision (/), and
remainder (%) operations. The operands of the remainder operator (%)
must be integral; the multiplication (*) and . division (/) operators take
integral and floating-point operands. The types of the operands can be
different. The multiplicative operators perform the usual arithmetic
conversions on the operands. The type of the result is the type of the
operands after conversion.

The conversions performed by the multiplicative operators make n o provi
sion for overflow or underflow conditions. Information is lost lf the result
of a multiplicative operation cannot be represented in the type of the
operandsafterconversion.

Multiplication (*)

The multiplication operator (*) specifies that its two operands are to be
r multiplied.
(
"-·

(

Division (/)

The division operator (/) specifies that its first operand is to be <livided by
the second. When two integers are divided, the result, if not an integer, is
truncated. Jf both operands are positive or unsigned, the result is trun
cated toward zero. The <lirection of truncation when either operand is
negative may be either toward or away from zero, depen<ling on the imple
mentatinn. Division by zero gives unpredictable results.

Remainder(%)

The result of the remainder operator (%) is the remainder when the first
operand is divided by the second.

Examples:

"- · int i = 10, j = 3, n;
doublex=2.0, y;

5 - 13

C Language Reference

2. n � i ! j ;

3 . n = i �o j ;

In the first example, xis multiplied by ito give the value 20. 0. The result has
double type.

In the second example, 10 is divided by 3. The result is truncated toward
zero, yielding the integer value 3.

In the third example, n is assigned the integer remainder 1 when 10 is
divided by 3.

5.3.6 Additive Operators

The additive operators perform addition (+) and subtraction (-). The
operands can be integral or floating-point values; some additive opera
tions can also be performed on pointer values, as outlined under the dis
cussion of each operator. The usual arithmetic conversions are performed
on integral and floating-point operands. The type of the result is the type
of the operands after conversion.

The conversions performed by the additive operators make no provision
for overflow or underflow conditions. Information is lost if the result of an
additive operation cannot be represented in the type of the operands after
conversion.

Addition (+)

The addition operator (+) specifies addition of its two operands. The
operands can have integral or floating-point types, as described above, or
one operand can be a pointer and the other an integer. When an integer is
added to a pointer, the integer value (!) is converted bymultiplyingitbythe
length of the value addressed by the pointer. After conversion, the integer
value represents i memory positions, where each position has the length
specified by the pointer type. When the converted integervalue is added to
the pointer value, the result is a new pointer value expressing the address i
positions from the original address. The new pointer value addresses the
same type as the original pointer value.

Subtraction (-)

The subtraction operator (-) subtracts its second operand from the first.
The operands can be integral or floating-point values, as described above.
The subtraction operator al'so allows the subtraction of an integer from a
pointer value and the subtraction of two pointer values.

5-14

Expressions and Assignments

When an integer value is subtracted from a pointer value, the same conver
sions take place as with addition of a pointer and integer. The subtraction
operator converts the integer value with respect to the type addressed by
the pointer value. The result is the memory address i positions before the
original address, where i is the integer value and each position is the length
of the type addressed by the pointer value. The new pointer points to the
type addressed by the original pointer value.

Two pointer values can be subtracted if they point to the same type. The
difference between the two pointers is converted to a signed integer value
by dividing the difference by the length of the type the pointers address.
The result represents the number of memory positions of that type
between the two addresses. The result is only gnaranteed to be meaningful
for two elements of the same array, as discussed below.

Pointer Arithmetic

Additive operations involving a pointer and an integer generally give mean
ingful results only when the pointer operand addresses an array member
and the integer value produces an offset within the hounds of the same
array. The conversion of the integer value to an address offset assumes that
only memory positions of the same size lie between the original address
aod the address plus offset.

This assumption is valid for array members. An array is by definition a
series of values of the same type; its elements reside in contiguous memory
locations. Storage of any types except array elements is not guaranteed to
be completely filled. That is, blanks can occur between memory positions,
even positions of the same type. Adding to or subtracting from addresses
referring to anyvalues hut array elements gives unpredictable results.

Similarly, the conversion involved in the subtraction of two pointer values
assumes that only values of the same type, with no blanks, lie between the
two addresses given by the operands.

Additive operations between pointer and integer values on machines with
segmented archltecture must take the segment addressing conventions
into account. In some cases these operations may not he valid. See your
system documentationformoreinformation.

Examples:

int i - 4,j";
floatx[lO ;
float *px;

5- 15

C Language Reference

1. px= &x[4] + i;

2. j = &x[i] - &x[i-2];

In the first example, lhe integer operand i is added to lhe address of the
fiflh element of x. The value of i is multiplied by the length of a float and
added to "&x[4]" . Theresultingpointervalueis lhe addressof "x(8)".

In the second example, the address of the third element of x ("x[i-2]") is
subtracted from the address of the fifth element of x ("x[i]"). The
difference is divided by the length of a float. The result is the integer value
-2.

5.3. 7 Shift Operators

The shift operators shift their first operand left (<<) or right (>>) by the
number of positions the second operand specifies. Both operands must be
integral values. The usual arithmetic conversions are performed. The type
of the result is the type of the operands after conversion.

For leftward shifts, the vacated right bits are filled with zeros. In a right
ward shift, the method of filling left bits depends on the type (after conver
sion) of the first operand. If it is unsigned, vacated left bits will be filled
with zeros. Otherwise, vacated left bits are filled with copies ofthe sign bit.

The result of a shift operation is undefined if the second operand is nega
tive.

The conversions performed by the shift operators make no provision for
overflow or underflow conditions. Information is lost if the result of a shift
operation cannot be represented in the type of the first operand after
conversion.

Example:

unsigned intx: y, z;

x =OxOOaa;
y=Ox5500;

z = (x < < 8) + (y >> 8);

In the above example, x is shifted left by 8 positions andy is shifted right 8
positions. The shifted values are added, giving0xaa55, and assigned toz.

5 - 16

I . '

Expressions and Assignments

5.3.8 Relational Operators

The binary relational operators test their first operand against the second
to determine if the relation specified by the operator holds true. The result
of a relational expression is either one (if the tested relation holds} or zero
(if it does not}. The type of the result is int. The relational operators test
the following relationships.

< First operand less than second operand
> First operand greater than second operand
<� First operand Jess than or equal to second operand
> = First operand greater than or equal to second operand

First operan d equal to second operand
!= First operand not equal to second operand

The operands can have integral, floating-point, or pointer type. The types
of the operands can be different. The usual arithmetic con versions are per
formed on integr.il and floating-point operands.

One or both operands of the equality (��} and inequality (!=} operators
can have enum type. An enum value is converted in the same manner as an
intvalue.

The operands of any relational operator can be two pointers to the same
type. For the equality (==} and inequality (!-) operators the result of the
comparison reflects whether the two pointers address the same memory
location. The result of pointer comparisons involving the other operators
(<, > , <=, >=) reflects the relative position of two memory addresses.

Since the address of a given value is arbitrary, comparisons between the
addresses of twe unrelated values are generaliy meaningless. Comparisons
between the addresses of different elements of the same array can be use
ful, h owever, since array elements are guaranteed to b e stored in order
from the first element to the last. The address of the first array element is
"less than" the address of the last element.

A pointer value can be compared for equality (=�}or inequality (!=} to the
constant value zero (0). A pointer with a value of zero does not point to a
memory location: it is called a "null" pointer. A pointer value is equal to
zero only if it is explicitly given that value through assignment or initializa
tion.

5-17

C Language Reference

Examples:

intx=O,y=O;

l. x < y

2. x> y

3. x <=y

4. x>=y

5. x==y

6. x !=y

When x and y are equal, expressions 3, 4, and 5 have the value one and
expressions 1, 2, and 6have the value zero.

5.3.9 Bitwise Operators

The bitwise ORerators perform bitwise AND (&), inclusive OR (1), and
exclusive OR 0 operations. The operands of bitwise operators must have
integral type, but their types can be different. The usual arithmetic conver
sions are performed. The type of the result is the type of the operands after
conversion.

Bitwise AND (&)

The bitwise AND (&) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are ones, the
correspondin!l bit of the result is set to one. Otherwise, the corresponding
result bit is set to zero.

Bitwise Inclusive OR <I>

Tbe bitwise inclusive OR (I) operator compares eachbit of its :6.rst operand
to the corresponding bit of the second operand. If either of the compared
bits is a one, the corresponding bit of the result is set to one. Otherwise,
both bits are zeros, and the corresponding result bit is set to zero.

Bitwise Exclusive OR ()
Tbe bitwise exclusive OR () operator compares each bit of its first
operand to the corresponding bit of the second operand. If one of the

5-18

/
\.

\
)

Expressions and Assignments

compared bits is a zero and the other bit is a one, the correspondiog bit of
the result is set to one. Otherwise, the correspondiog result bit is set to
zero.

Examples

short 1-0xabOO;
short j-Oxabcd;
short n;

1. n•i&j;

2. n - i li;

3. n-i''j;

The result assigned to nw thefirstexampleisthesameasl, OxabOO. The bit
wise inclusive OR in the second example results in the value Oxabcd, while
the bitwise exclusive ORin the third example produces OxOOcd.

5.3.10 Logical Operators

The logical operators perform logical AND (&&) and OR (I D operations.
The operands of the logical operators must have integral, fioatmg-point,
or pointer type. The types oftheoperands can be different.

The operands of logical AND and OR expressions are evaluated left to
right. lithe value of the first operand is sufficient to determine the result of
the operation, the second operand is not evaluated.

These operators do not perform the standard aritbmetic conversions.
Instead, they evaluate each operand in terms of its equivalence to zero. A
pointer has a value of zero onlyif itis explicitly set to zero through assign
ment or initialization.

The result of a logical operation is either zero or one, as described below.
The type ofthe re.'!ll!tis int.

·

Logical AND (&&)

The logical AND operator (&&) produces the value one if both operands
have nonzero values. II eitheroperandisequal to zero, the result is zero. If
the first operand of a logical AND operation has a value of zero, the
second operand is not evaluated.

C Language Reference

Logical OR <II>

The logical OR operator (I I) performs an inclusive OR on its operands. It
produces the value zero if both operands have zero values. If either
operand has a nonzero Value, the result is one. If the :first operand ofa logi
cal OR operation has a nonzero value, the second operand is not
evaluated.

Examples:

.intx, y;

1. if(x < y && y < z)
printf ("xis less than z\n");

2. if(x•-J.]] x--z)
printf ("'xis equal to eithery or z\n'');

In the :first example, the printffunction is called to print a message if xis less
thany andy is less than z. If xis greaterthany, "y < z"isnot evaluatedand
nothing is printed.

In the second example, a message is printed if xis equalto eitheryor z. Ifx
is equal toy, �'x=z"is notevaluated.

5.3.11 Sequential Evaluation Operator

The sequential evaluation operator (,) evaluates its two operands sequen
tially from left to right. The result of the operation has the value and type of
the right operand. The types of the operands are unrestricted. No conver
sions are performed.

This operator (also called the "comma" operator) is typically used to
evaluate two or more expressions in contexts that allow only one expres
sion to appear.

Examples:

1. for (i - j - l; i + j < 20;i+-i, j--);

2. f(x, y+ 2, z);
f((x--, y + 2), z) ;

5-20

Expressions and Assignments

In the :first example, each operand of the for statement's third expression is
evaluated independently. The left operand, "i += i," is evaluated first,
then uj--" is evaluated.

As shown in the second example, the comma character is used in other
contexts as a separator. In the first function call, three arguments,
separated by commas� are passed to the called function: x, ((y + 2u � and z.
The use of the comma character as a separator must not be confused with
its use as an operator; the two functions are completely different. .

In the second function call, parentheses force the compiler to interpret the
first comma as the sequential evaluation operator. This function call
passes two arguments to f. The first argument is the result of the sequential
evaluation operation "(x--, y + 2}", which has the value aod type of the
expression "y + 2"; the second argument isz.

5.3.12 Conditional Operaror

C bas one ternary operator, the conditional operator (? :) . Its form is:

operandi ? operand2 : operand3

operandi is evaluated in terms of its equivalence to zero. It must have
integral, floating-point, or pointer type. If operandl has a nonzero valne,
operand2 is evaluated and the result of the expression is the value of
operand2. If operandi evaluates to zero, operand3 is evaluated, and the
result of the expression is the value of operand3. Notice that either
operand2 or operand3is evaluated, but not both.

The type of the result depends on the types of the second and third
operands, as follows:

1. If both the second and third operands have integral or floating
point type (their types can be different}, the usual arithmetic
conversions are performed. The type of the result is the type of the
operands after conversion.

2. Both the second and third operands can have the same structure,
union, or pointer type. The type of the result is the same structure,
union, or pointer type.

3. One of the second or third operands can be a pointer and the other a
constant-expression with the value zero. The type of the result is
the pointer type.

C Example:
j = (i < O) ? (-i) : (i);

5-21

C Langnage Reference

The above example assigns the absolute value of ito j. If lis less thau zero,
-iis assigned toj. Ifiis gneaterthau or equalto zero, lis assigned to j.

5.4 Assignment Operators

C's assignment operators can both transform and assign_values in a single
operation. Using a compound assignment operator to replace two
separate operations can reduce code size and improve program efficiency.
The assignment operators are listed and descnbed below:

++

·�

< < �
> > �
&�
1-

Unary increment operator
Unary decrement operator
Simple assignment operator
Multiplication assignment operator
Division assignment operator
Remainder assignment operator
Addition assignment operator
Subtraction assignment operator
Left shift assignment operator
Right shift assignment operator
Bitwise AND assignment operator
Bitwise inclusive OR assignment operator
Bitwise exclusive OR assignment operator

In assignment, the type of the right-hand value is converted to the type of
the left-hand value. The specific path of the conversion depends on the
two types and is outlined in detail in Section 5.7.

5.4.1 LvalueExpressions

An assignment operation specifies that the value of the right-hand
operand is to be assigned to the storage location named by the left-hand
operand. Thus, the left-hand operand of an assignment operation (or the
single operand of a unary assignment expression) must be an expression
referring to a memory location. Expressions that refer to memory locations
are called "lvalue" expressions. A variable name is such an expression: the
name of the variable denotes a storage location, wbile the value of the vari
able is thevalueresiding attbat location.

The C expressions that may be !value expressions are:

• identifiers of chpracter, integer, fioating-point, pointer, enumera
tion, structure., or union type

• subscript ([]) expressions, except when a subscript expression
evaluates to a pointer to an array

• member selection expressions (-> and .), if the selected member
is one of the above expressions

S-22

(

Expressions and Assignments

• unary indirection (•) expressions, except when such expressions
refer to arrays

• t)'pe caststo pointertypes
• an lvalue expression :in parentheses

5.4.2 UnaeylncrementandDecrement

The unary assignment operators (++ and --) increase and decrease their
operand, respectively. The operand must have integr_al, floating-point, or
pointer type, and must be an !value e><pression.

Operands of integral or fioating-point type are increased or decreased by
the integer value 1. The type of the result is the type of the operand. An
operand of pointer type is increased or decreased by the size of the object it
addresses. An increased pointer points to the next object; a decreased
pointer points to the previous object.

An increment (++) or decrement (--) operator can appear either before
or after its operand. When the operator prefixes its operand, the result of
the expression is the increased or decreased value of the operand. When
the operator postfixes its operand, the immediate result of the expression
is the value of the operand before it is in creased or decreased. After that

r-. result is noted in context, the operand is increased or decreased.

Examples:

1. if (pos++ > 0)
*ptt = *qtt;

2. if (Iine[--i] != '\n')
return;

In the first example, the variable posis compared to zero, then increased by
one.

In the second example, the variable iis decreased before it is used as a sub
script to line.

1
.. 5.4.3 Simple Assignment

L The simple assignment operator (�) performs assignment. The right
operand is assigned to the left operand; the conversion rules for assign
ment (discussed in Section 5. 7. 1) apply.

5-23

C Language Reference

Example:

doublex;
int y;

x-y;

The value of y is converted to double type and assigned to x.

5.4.4 Compound Assignment

The compound assignment operators consist of the simple assignment
operator combined with another binary operator. Compound assignment
operators perform the operation specified by the additional operator, then
assign the reaalt to the left operand. A compound assignment expression
such as:

expressionl + = expression2

can be understood as:

expression]� expres.sionl + expression2

However� the compound assignment expression is not equivalent to the
expanded version because the compound assignment expression evaluates
expression] only once, while in the expanded version expression] is
evaluated twice: in the addition operation and in the assignment operation.

Each compound assignment operator performs the conversions that the
corresponding binary operator performs, and restricts the types of its
operands accordingly. The result of a compound assignment operation
has the value and type of the left operand.

Example:

#def!neMASK Oxffff

n j= MASK;

In this example, a bitwise inclusive OR operation is performed on n and
MASK, and the reaalt is assigned to n. The manifest constant MASK is

5-24

Expressions and Assignments

defined with a #define preprocessor directive, discussed iu Section 8.2.1
of Chapter8, "Preprocessor Directives"."

(� 5.5 Precedence and OrderofEvaluation

The precedence and associativity of C operators affect the grouping and
evaluation of operands in an expression. An operator)s precedence is
meaningful only in the presence of other operators having higher or lower
precedence. Expressions involving higher precedence operators are
evaluated first.

Table 5.1 summarizes the precedence and associativity of C operators.
The operators are listed in order of precedence from the highest to the
lowest. 'Where several operators appear together in a line or large brace,
they have equal precedence and are evaluated according to their associa�
tivity, that is, either left to right or right to left.

5-25

C Language Reference

Table5.1

Preeedenee and AssoclatlvityofC Operators

Operator• S,O.bol

() [] . ->
- - , . &
++ sizeof casts
• I o/o
+ -
<< >>
< > <- >=
= !=

&

&&
II
? :
- ·- I= %=
+- -= < <= >>-
&= 1- ·-

Type ofOperation

Expression

Unary•

Multiplicative

Additive

Shift

Relational (inequality)

Relational (equality)

Bitwise AND

Bitwise exclusive OR

Bitwise inclusive OR

Logical AND

Logical OR

Conditional

Simple and
compound
assignmentc

Sequential evaluation

Associativity

Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

4 Operators are listed in descending order of precedence. Where several operators
appear in the same line or in a large brace, they have equal precedence.

& All unary operators have equal precedence.

cAll simple and compound assignment operators have equal precedence.

As Table 5.1 sbows, operands consisting of a constant, an identifier, a
string, a function call, a subscript expression, a member selection expres
sion, or a parenthetical expression bave highest precedence and associate
left to right. Type-cast conversions have the same precedence and associ
ativity as the unary operators.

An expression can contain several operators with equal precedence. When
several such operators appear at the same level in an expression, evalua
tion proceeds according to the associativity of the operator, either right to
left or left to right. The result of expressions involving multip!e
occurrences of multiplication (*), addition (+), or binary bitwise (&, J,)
operators at the same level is indifferent to the direction of evaluation. The
compiler is free to evaluate such expressions in any order, even when
parentheses in the expression appear to specify a particular order.

5 - 26

/
I
\

c

Expressions and Assignments

Only the sequential evaluation operator (,) and the logical AND (&&) and
OR (I D operators guarantee a particular order of evaluation for the
operands. The sequential evaluation operator (,) is guaranteed to evaluate
its operands from left to right.

The logical operators also guarantee to evaluate their operands left to right.
However, the logical operators evaluate the minimum number of operands
necessary to determine the result of the expression. Thus, some operands
of the expression may not be evaluated. For example, in the expression "x
&& y++" , the second operand, "y++" , is evaluated only if x is true
(nonzero). Thus,y is notin,creased whenxisfalse (zero).

'

The examples below show the default grouping for several expressions:

Examples:

Expression

1. a & b lie
2. a � b l c
3. q &&r lis--

Default Grouping

(a & b) lie
a� (b lie)
(q &&r) lis--

In the first example, the bitwise AND operator (&) has higher precedence
than the logical OR operator (I I), so "a & b" forms the first operand of the
logical OR operation.

In the second example, the logical OR operator (I D has higher precedence
than the simple assignment operator (�), so "b I I c" is grouped as the
right-hand operand in the assignment. Notice that the value assigned to a
is either zero or one.

The third example shows a correctly formed expression that may produce
an unexpected result. The logical AND operator (&&) has higher pre
cedence than the logical OR operator (I D. so "q && r" is grouped as an
operand. Since the logical operators guarantee evaluation of operands
from left to right, "q &&r" is evaluated before "s--"-. However, if "q &&
r" evaluates to a nonzero value, "s--" is not evaluated, and "s" is not
decreased. To correct this problem, "s--" should appear as the first
operand of the expression or should be decreased in a separate operation.

The following example shows an illegal expression that produces a pro
gram error:

Example:

lllegalExpression
p �� O ? p +� 1: p +�2

Default Grouping
(p = O ? p +� 1 : p) +� 2

5-27

C Language Reference

In this example, the equality operator (-) has the highest precedence, so
"p - 0" is grouped as an operand. The ternary operator (? :) has the next
highest precedence. Its first operand is "p �· and its second operand is
"p +- 1" � However, the last operand of the temary operator is considered
to be ''p" rather than "p += 2", since this occurrence of p binds more
closely to the ternary operator than it does to the compound assignment
operator. A syntax error occurs because ((+• 2" does not have a left-hand
operand.

To prevent errors of this kind, and to produce more readable code, the use
of parentheses is reco=ended. The above example can be corrected and
clarified through the use of parentheses, as shown here:

(p- 0) ? (p +- 1) : (p+-2)

5.6 Side Effects

"Side effects" are changes in the state of the machine that take place as a
result of evaluating an expression. Side effects occur whenever the value of
a variable is changed. Any assignment operation has side effects, and any
call to a function that contains assignment operations has side effects.

The order of evaluation of side effects is implementation-dependent,
except where the compiler guarantees a particular order of evaluation, as
outtioed in Section5.5.

For example, side effects occur in the followingfunction call:

add (i+ l, i=j + 2)

The arguments of a function call can be evaluated in any order. The
expression "i + 1" may be evaluated before ni = j + 2", or vice versa, with
different results in each case.

Unary increment and decrement operations involve assignment and can
cause side effects, as shown in the following example:

d - 0;
a = b++=c++ = d++;

The value of a is unpredictable. The initial value of d (zero) could be
assigned to c, then to b, and then to a before any of the variables are
increased. In this case a would be equal to zero.

A second method of evaluating this expression begins by evaluating the
operand "c++ = d++". The initial value of d (zero) is assigned to c, and
then both d and c are increased. Next, the increased value of c (one) is
assigned to b and b is increased. Finally, the increased value of b is
assigned to a. In this case, thefinalvalueofa is two.

5-28

c

Expressions and Assignments

Since the C language does not define the order of evaluation of side effects,
both of these evaluation methods are correct and either can be imple
mented. Statements. that depend on a particular order of evaluation for
side effects produce non portable and unclear code.

5. 7 Type Conversions

Type conversions take place when a value is. assigned to a variable of a
different type, when a value is explicitly cast to another type, when an
operator converts the type of its operand or operands before performing
an operation, and when a value is passed as an argument to a function. The
rules governing each kind of conversion are outlined below.

5. 7.1 Assignment Conversions

In assignment operations, the type of the value being assigned is converted
to the type of the variable receiving the assignment. C allows conversions
by assignment between integral and floating-point types, even when the
conversion entails loss of information. The methods of carrying out the
conversions depend upon the type, as follows:

Conversions from Signed Integral Types

A signed integer is converted to a shorter signed integer by truncating the
high-order bits and is converted to a longer signed integer by sign
extension. Conversion of signed integers to floating-point values takes
place without loss of information, except that some precision can be lost
when a long value is converted to a float. To convert a signed integer to an
unsigned integer, the signed integer is converted to the size of the unsigned
integer and the result is interpreted as an unsigned value.

Conversions from signed integral types are summarized in Table 5.2.

5-29

C Language Reference

Table5.2

Conversions from Signed Integral Types

From To Method

char mort Sign-extend.

char lcmg Sign-extend.

char unsigned char Preserve pattern; high-order bit loses function as
sign bit.

char unsigned short Sign-extend to short; convert short to unsigned
short.

char unsigned long Sign-extend to long; convert
longtounsignedlcmg.

char float Sign-extend to long; convert long: to Hoat.

ch.., double Sign-extend to long; convert long to double.

- char Preserve low-order byte�

short long Sign-extend.

short unsigned char Preserve low-order byte .

short uns:igned short Preserve bitpattem; high-order bit loses function as
sign bit.

short unsigned long Sign-extend to long; convert long to unsigned long.

sbort float Sign-ertend to long; convert long to ftoat.

short double Sign-extend to long; convert long to double.

long char Preserve low-order byte.

long short Preservelow-orderword.

long unsigned c::har Preserve low-order byte.

long unsigned short Preserve low-order word.

long unsigned ktng Preserve bit pattern; high-order bit loses function as
sign bit.

long float Represent as a ftoat; .if the long cannot be
represented exactly, some loss of preci&ion occurs.

long double Represent as a double; if the long cannot be
represented exactly as a double� some loss of preci-
sionoccurs.

Note: The int type is equivalent either to the short type or to the long type, depe-nding on
the implementation. Conversion of anintvalue proceeds as for a short: or a long, which�
ever is appropriate.

5-30

c

Expressions and Assignments

Conversions from Unsigned Integral Types

An unsigned integer is converted to a shorter unsigned or signed integer by
truncating the high-order bits. An unsigned integer is converted to a
longer unsigned or signed integer by zero-extending. Unsigned values are
converted to floating-point values by first converting to a signed integer of
the same size, then converting that signed value to a floating-point value.

When an unsigned integeris converted to a signed integer of the same size,
no change in the bit pattern occurs. However, the value represented
changes if the sign bit is set.

Conversions from unsigned integral types are summarized in Table 5.3.

5-31

C Language Reference

Table 5.3

Conversions from Unsigned Integral Types

From To Method

unsigned char char Preserve bit pattern; high-order bit
becomes sign bit.

unsigned char short Zero-extend.

unsigned char long Zero-extend.
unsigned char unsigned short Zero-extend.
unsigned char unsignedlong Zero-extend.
unsigned char float Convert to long; convert long to

float.

unsigned char double Convert to long; convert long to
double.

unsigned short char Preserve low-order byte.
unsigned short short Preserve bit pattern; high-order bit

becomes sign bit.
unsigned short long Zero-extend.
unsigned short unsigned char Preserve low-order byte.
unsigned short unsigned long Zero-extend.
unsigned short float Convert to long; convert long to

float.

unsigned short double Convert to long; convert long to
double.

unsigned long char Preserve low-order byte.
unsigned long short Preserve low-order word.
unsigned long long Preserve bit pattern; high -order bit

becomes sign bit.
unsigned long unsigned char Preserve low-order byte.
on signed long unsigned short Preserve low-order word.
unsigned long float Convert to long; convert long to

float.

unsigned long double Convert to long; convert long to
double.

Note: The unsigned int type is equivalent either to the unsigned short type or to
the unsigned long type, depending on the implementation. Conversion of an
unsigned int value proceeds as for an unsigned short or an unsigned long, which
everis appropriate.

5-32

(__/

Expressions and Assignments

Conversions from Floating-Point Types

A float value converted to a double undergoes no change in value. A dou
ble converted to a float is represented exactly, if possible. If the value is too
large to fit into a float, precision is lost.

A floating-point value is converted to an integer value by converting to a
long. Conversions to other integer types take place as for a long, The
deciinaJ portion ofthe floating-point value is discarded m -the conversion .
to a long. If the result is still too large to fit into a long, the result of the
conversion is undefined.

Conversions from floating-point types are swnrnarized in Table 5.4:

Table 5.4

Conversions from Floating- Point Types

From

Hoat

float

float

To

char

short

long

ftoat unsigned short

:float u nsigned long

float double

double char

double short

double long

double unsigned short

double u nsigned long

double float

Method

Convert to long; convertJ()ng to char�

Convert to long; convert long to short.

Truncate at decimal point; if result is too large
to be represented as a long� result is
undefined.

Convert to long; convert 1ong to unsigJied
short.

Convert to long; convert long to unsigned
long.

Change internal representation.

Convert to float; convert float to char.

Convert to float; convert float to short.

Truncate at decimal point; if result is too large
to be represented as a long, result is
undefined.

Convert to long; convert long- to unsigned
short.

Convert to long; convert long to unsigned
long.

Represent as a float; if the double value can
not be represented exactly as a float, loss of
precision occurs; if the value is too large to be
represented in afloat1 the result is undefined.

5-33

C Language Reference

Conversions from Other Types

An enum value is an int value, by definition of the en urn type. Conversions
to and from an enum value proceed as for the int type. An intis equivalent
to either a short or a long, depending on the implementation.

No conversions between structure or union types are allowed.

A pointer value behaves like an unsignedintegervaluein conversions, with
the size of the pointer determined by the implementation. Conversions to
and from a pointer type proceed as for an unsigned integer of the appropri
ate size, except that pointers cannot be converted to floating-point types.

A pointer to one type of value can be converted to a pointer to a different
type. The result may be undefined, however, because of the alignment
requirements and sizes of different types in storage. In some implementa
tions the near and far keywords modify pointer sizes. Conversions
between near and far pointers may produce meaningless addresses.

The void type has no value, by definition. Therefore, it cannot be con
verted to any other type, nor can any value be converted to void by assign
ment. However, a value can be explicitly cast to void, as discussed in Sec
tion 5.7.2.

5. 7.2 Type- Cast Conversions

Explicit type conversions can be made by means of a type cast. A type cast
has the form:

(type-name)operand

where type- name specifies a particular type and operand is a value to be
converted to the specified type. (Type names are discussed in Section 4.9
of Chapter4, "Declarations".")

The conversion of operand takes place as though it had been assigned to a
variable of the named type. The conversion rules for assignments (out
lined in Section 5.7.1) apply to type casts as well. The type name void can
be used in a cast operation, but the resulting expression cannot be assigned
to any item.

5. 7.3 Operator Conversions

The conversions performed by C operators depend on the operator and on
the type of the operand and operands. Many operators perform the "usual
arithmetic conversions," which are outlined in Section 5.3.1.

5-34

l

Expressions and Assignments

C permits some arithmetic with pointers. fu pointer arithmetic, integer
values are converted to express memory positions. See the discussions of
additive operators (Section 5.3.6) and subscript expressions (Section
5.2.5) for details.

5. 7.4 Function· Call Conversions

The type of conversion performed on the arguments in a function call·
depends on whether a forward declaration with declared argument types is
present for the called function.

If a forward declaration is present, and it includes declared argnment
types, the compiler performs type-checking. Tbe type-checking process
is outlined in detail in Section 7.4.1 of Chapter?, "Functions"."

If no forward declaration is present, or if the forward declaration omits the
argument type list, the only conversions performed on the argmnentsin the
function call are the usual arithmetic conversions. These conversions are
performed independently on each argument in the call. This means that a
float value is converted to a double; a char or short value is converted to an
lnt; and an unsigned char or unsigned short is converted to an unsigned
int.

5-35

C hapter 6

Statements

6.1 Introduction 6-1

6.2 Break Statement 6-2

6.3 Compound Statement 6-3

6.4 Continue Statement 6-4

6.5 Do Statement 6-5

6.6 F,xpression Statement 6-6

6.7 For Statement 6-7

6.& Go to and Labeled Statements

6.9 If Statement 6-9

6.10 Null Statement 6-11

6.11 Return Statement 6-12

6.12 Switch Statement 6-14

6.13 While Statement 6-16

6�8

(
�

Statements

6.1 Introduction

The statements of a C program control the :flow of program execution. In
C, as in other programming languages, several kinds of statements are
available to perform loops, to select other statements to be executed, and
to transfer control. This chapter describes C statements in alphabetical
order, as follows:

break statement
compound statement
continue statement
do statement
expression statement
for statement
goto statement
if statement
null statement
return statement
switch statement
while statement

C statements consist of keywords, expressions, and other statements.
The keywords that appear in C statements are:

break do if
case else return
continue Cor switch
defauJt go to while

The expressions in C statements are the expressions discussed in Chapter
5, "Expressions and Assignments"." Statements appearing within C
statements may be any of the statements discussed in this chapter.

A statement that forms a component of another statement is called the
"body'' of the enclosing statement. Frequently the statement body is a
�'compound" statement (i.e., a single statement), is composed of one or
more statements.

The compound statement is delimited by braces. All other C statements
end with a semicolon.

Any C statement may be prefixed with an identifying label cop.sisting of a
name and a colon. Statement labels are recognized only by the go to state
ment and are therefore discussed with the go to statement.

When a C program is executed, its effect is that of the execution of the
statements in order of their appearance in the program, except where a
statement explicitly transfers control to another location.

6-1

C Language Reference

6.2 Break Statement

Syntax

break;

Execution

The break statement terminates the execution of the smallest enclosing
do, break, switch, or while statement in which it appears. Control passes
to the statement following the terminated statement. A break statement
appearing outside any do, for, switch, or while statement causes an error.

Within nested statements, the break stattllllent terminates only the do,
for, switch, or while statement immediately enclosing it. To transfer con
trol out of the nested structure altogether, a return or go to statement can
be used.

Example:

for(l-O;i < LENGTH - 1; i++) {
for(j =O;j < WIDTH -l;j++) {

if (lines(llfj] == '\0') {
leng!hs(i] = j ;

}
}

}
break;

The above example processes an array of variable length strings stored in
lines. The break statement causes an exit from the interior for loop after
the terminating null character (\0) of each string is found and stored in
lengthsft1. Contrul then retnrns to the outer for loop. The variable i is
increased and the process is repeated until i is greater than or equal to
LENGTH-1.

6-2

I

6.3 Compound Statement

Syntax

{
[declaration]

statement
[statement]

}

Execution

Statements

AU statements within a compound statement are executed in the order of
their appearance. The single exception to this is where one of the state
ments causes a logical branch,

Example:

if (i > 0){
line�]-x;
x++;
i--;

}

A compound statement typically appears as the body of another state
ment such as the iJ' statement. In the above example, if i is greater than
zero, aU of the statements in the compound statement are executed in
order.

Labeled Statements

Like other C statements, any of the statements in a compound statement
may carry a label. Transfer into the compound statement by means of a
go to is therefore possible. However, transferring into a compound state
ment is dangerous when the compound statement includes declarations
that initialize variables. Declarations in a compound statement precede

6 - 3

C Language Reference

the executable statements, so transferring directly to an executable state
ment within the compound statement bypasses the initia1i:lations. The
results are unpredictable.

6.4 Continue Statement

Syntax

continue;

Execution

The eontlnue statement passes control to the next iteration of the do, for,
or while statement in which it appears, bypassing any remaining state
ments in the do, for, or while statement body. Within a do or a while state
ment, the next iteration begins with the reevaluation of the do or while
statement's expression. Within a for statement, the next iteration starts
with the evaluation of the for statement's loop- expression. It proceeds
with the evaluation of the conditional expression and subsequent termi-
nation or reiteration of the statement body.

·

Example:

while (i-- > 0) {
x- f(i);
if(x--1)

continue;
y=x *x;

}

The statement body is executed if i is greater than zero. First, "f(i)" is
assigned to x. Then, if x is equal tp 1, the eontlnne statement is executed.
The rest of the statements in the body are ignored, and execution resumes
at the top of the loop with the evaluation of"i-- > 0".

6-4

I

6.5 Do Statement

Syntax

do
statement
while (expression);

Execution

Statements

The body of a do statement is executed one or more times until expression
becomes false. First, the statement body is executed. Then expression is
evaluated. If expression is false (zero), the do statement terminates and
control passes to the next statement in the program. If expression is true
(nonzero), the statement body is executed again, and expression is tested
again. The statement body is executed repeatedly until expression
becomes false.

The do statement may also terminate with the execution of a break, go to,
or return statement within the statement body.

Example:

do{
y-f(x);
x--;

}while (x> 0);

The two statements "y = f(x);" and "x--;" are executed, regardless of the
initial value of x. Then ''x > 0" is evaluated. If x is greater than zero, the
statement body is e�ecuted �gain :md "x > 0" is re�v�q�t�d. The _state
ment body is executed repeatedly so long as x remains greater than zero.
Execution of the do statement terminates when x becomes zero or nega
tive.

•

6-5

C Language Referenee

6.6 Expression Statement

Syntax

expression;

Exec:ution

The expression is evaluated, according to the rules outlined in Chapter 5,
"Expressions and Assignmentsn."

Examples:

l. x=(y+3);

2. x++;

3. f(x);

In C, assignments are expressions; the value of the expression is the value
being assigned (sometimes called the "right-hand value"). In the first
example, x is assigned the value of "y + 3". In the second example, x is
increasedbyl.

The third example shows a function call expression. The value of the
expression is the value, if any, returned by the function. If a function
returns a value, the expression statement usually incorporates an assign
ment to store the returned value when the function is called. If the return
value is not assigned, as in the example, the function call is executed but
the return value, if any, is not used.

6-6

Statements

6. 7 For Statement

Syntax

for ([init-expression]; [cond-expression]; [loop- expression))
statement;

Execution

The body of a for statement is executed zero or more times until the
optional cond-expression becomes false. The !nit-expression and ioop
expression are optional expressions that can be used to initialize and
modify values duringtheforstatemen t's execution.

The first step in the execution of the for statement is the evaluation of
init-expression, if present. Next, cond-expresslon is evaluated, with three
possible results:

1. If the conditional e>.pression is true (nonzero), the statement body
is executed; then loop-expression, if present, is evaluated; then the
process begins again with the evaluation of cond-expression.

2. If the conditional expression is omitted, the conditional expres
sion is considered true; execution proceeds exactly as described
above. A for statement lacking cond-expression terminates only
upon the execution of a break, go to, or retumstatcmentwithin the
statement body.

3. If tbe conditional expression is false, execution of tbe for state
ment terminates and control passes to the next statement in the
program.

A for statement may also terminate with the execution of a break, return,
or goto statement within tbe statement b ody.

Example:

for (i = space= tab = 0; i < MAX; i++) {
if (Jine[i]== '\Ox20')

}

space++;
if (line[i] == '\t') {

tab++;
line[i] ='\Ox20';

}

6-7

C Language Reference

The above example counts space (\Ox20) and tab (\t) characters in the
array of characters named line and replaces each tab character with a
space. First, i, space, and tab are initialized to zero. Then i is compared
to the constant MAX; if i is less than MAX, the statement body is exe
cuted. Depending on the value of line[t1 the body of one or neither of the
if statements is executed. Then i is increased and tested against MAX.
The statementbodyisexecuted repeatedlyaslongas iislessthanMAX.

6.8 Goto and Labeled Statements

Syntax

gotoname;

name: statement

Exe�tion

Thegoto statement transfers control directly to the statement specified by
name. The labeled statement is executed immediately after the go to state
ment is executed. An error results if no statement with the given label
resides in the same function or if an identical label appears before more
than one statement in the same function.

A statement label is meaningful only to a goto statement. When a labeled
statement is encountered in any other context, the statement is executed
without regard to the label.

Example:

6-8

if (error code > 0)
go to exit;

exit:
return (errorcode);

c!

Statements

In the example, a goto statement transfers control to the point labeled exit
when an error occUJ"S.

Forming Labels

A label name is simply an identifier, formed by following the same rules
that govern the construction of identifiers (see Section 2.4 of Chapter 2,
"Elements of C"). Each statement label must be distinct from other
statement labels and identifiers in the same function.

6.9 IfStatement

Syntax

if (expression)
statement!
(else
statement2]

Execution

The body of an if statement is executed selectively, depending on the
value of expression. First, expression is evaluated. If expression is true
(nonzero), the statement inunediately following it is executed. If expres
sion is false, the statement following the else keyword is executed. JI
expression is false and the else clause is omitted, the statement following
expression is igaored. Control then passes from the if statement to the
next stetement in the program.

6-9

c Language Reference

Example:

if(i > O)
y�xli;

else{

}

x=i;
y- f(x);

In the example, the statement "y - xli;" is executed if i is greater than
zero. If i is less than or equal to zero, i is assigned to x and "f(x)" is
assigned toy. Notice that the statement forming the if clause ends with a
semicolon.

Nestin11

C does not offer an �'else ifH statement. but the same effect is achieved by
nesting if statements. An if statement may be nested in either the If clause
or the else clause of another if statement.

When nesting if statements and else clauses, use braces to group the state
ments and clauses into compound statements that clarify your intent. In
the absence of braces, the compiler resolves ambiguities by pairing each
else with the most recent iflacking an else.

Examples:

1. if (i > 0) /*Without braces •/
if(i > i)

x=j;
else

x - i;

2. if (i > 0){ /* With braces */
if (i > i)

x=j;
}
else

x=i;

In the first example, the else is associated with the inner If statement. If i
is less than or equal to zero, no value is assigned tox.

6-10

Statements

In the second version, the braces surroundingtheinner ir statement make
the else clause part of the outer ifstatement. If i is less than or equal to 0, i
is assigned tox.

6.10 NuDSmtement

Synmx

Execution

A null statement is a statement containing only a semicolon. It may
appear wher�ver a statement is expected. Nothing happens when a null
statement is executed .

Example:

for (i=O; i < lO;Jine[i++] =O)

Statements such as do, for, If, and white require that an executable state�
men! appear as the statement body. The null statement satisfies the syn�
tax requirement in cases that do not need a substantive statement body.
In the above example, the third expression of the for statement initializes
the first ten elements of line to zero. The statement body is a null state
ment, since no further statements are necessary.

Labeling a Null Statement

The null statement, like any other C statement, may be prefixed by an
identifying label. To label an item that is not a statement, such as the clos�
ing brace of a compound statement, you can insert and label a null state
ment immediately before the item to get the same effect.

6�11

C Language Reference

6.11 Return Statement

Syntax

return [expression];

Execution

The return statement terminates the execution of the function in which it
appears and returns control to the calling function. Elrecution resumes in
the calling function at the point just after the call. The value of expression,
if present, is returned to the calling function. If expression is omitted, the
retumvalueofthefunction isundefined.

Example:

mainQ
{

}

y-sq(x);
draw(x; y);

sq(x)
intx;
{

return (x • x);

}

voiddraw(x,y)
intx, y;
{

return;

}

6-12

Statements

The main() function calls two functions, sq() and draw. () The sq() func
tion returns the value of "x • x'' to 11Ulin. () The return value is assigned to
y. The draw() function is declared as a void function and does not return
a value. An attempt to assign the return value of draw() would cause an
error.

By convention, parentheses enclose the expression of .the return state
ment, as shown above. The language does not require the parentheses.

Omitting lbe Return Statement

Jf no return statement appears in a function definition, control automati
cally returns to the calling function after the last statement of the called
function. The return value of the called function is undefined. Jf a return
value is not required, the function should be declared to have void return
type.

C Language Reference

6.12 Switch Statement

Syntax

switch (expression) {
[declaration]

[case constant-expression :]

[statement]

[default :
statement]
[case constant-expression :]

[statement]

}

Execution

The switch statement transfers control to a statement within its body.
The statement receiving control is the statement whose case constant
expression matches the value of the expression in parentheses. Execution
of the statement body begins at the selected statement and proceeds
through the end of the body or until a statement transfers control out of
the body.

The default statement is executed if no case constqnt-expression is equal
to the value of the switch expression. If the default statement is omitted,
and no case match is found, none of the statements in the switch body are
executed.

6-14

Statements

The switch expression must be an integral or enum value. If the expres
sion is shorter than an int, it is widened to an int value. Each ease
corutam-expression is then cast to the type of the switch expression. The
value of each case constant-expression must be unique within the state
ment body.

The case and default labels of the switch statement body are significant
only in the initial test that determines the starting point for execution of
the statement body, All statements appearing .between the statement
where execution starts and the end of the body are executed regardless of
their labels, unless a statement transfers control out of the body entirely.

Declarations may appear at the head of the compound statement forming
the switch body, but initializations included in the declarations are not
performed. The effect of the switch statement is to transfer control
directly to an executable statement within the body, bypassing the lines
that contsin initializa(ions.

Elmmples:

1. switch (c){
case 'A':

capa++;
case 'a':

lettera++;
default :

total++;
}

2. switch (i) {
ease -l:

n++;
break;

case O :
z++;
break;

ease l :

}

p++;
break;

In the first example, aU three statements of the switch body are executed if
c is equal to 'A '. Execution control is transferred to the first statement
("capa++;") and continues in order through the rest of the body. If c is
equal to 'a', letter a and total are increa.<�ed. Only total is increased if c is
not equal to :A' or 'a '�

6-15

C Language Reference

In the Sl'Cond example, a bl'1?ak statement follows each statement of the
switch body. The break statement forces an exit from the switch after one
statement in the body is eXeCuted. If i is equal to -1, only n is increased.
The bftak following the statement '(n -7-+ ;" causes execution control to
pass out of the switch body, bypassing the remaining statements. Simi
larly, if i is equal to 0, only z is increased; if i is equal to 1, only p is
increased. The tin(\1 break statement is not strictly necessary, since con
trol will pass out of the body at the end of thecomponnd statement, but it
is included for consistency.

Multiple Labels

A statement may carry multiple case labels, as the following sample
shows:

case 'a' :
case'b' :
case 'c' :
case "d' :
case "'e' :
case 'f' : hexcvt(c);

Although any statement within the body of the switch statement may be
labeled, no statement is required to carry a label. Statements without
labels may be freely intermingled with labeled statements. Keep in mind,
however, that once the switch statement passes control to a statement
within the body, all succeeding statements in the block are executed,
regardless of their labels.

6.13 While Statement

Syntax

while (expression)
statement

Execution

The body of a while statement is executed zero or more times until expres
sion becomes false. First, expression is evaluated. If the expression is ini
tially false (zero), the body of the while statement is never executed, and
control passes from the while statement to the next statement in the pro
gram. If expression is true (nonzero), the body of the statement is

6-16

Statements

executed. Following each execution of the statement body, expression is
reevaluated. The body is executed repeatedly as long as expression
remains true.

The while statement may also terminate with the execution of a break�
go to, orretorn within the statement body.

Example:

while (i >� 0){
stringl[i] � string2[i];
i--;

}

The above example copies characters fromstring2to stringl. If lis greater
than or equal to zero, string2[i) is assigned to stringl[i] and i is decreased.
When i reaches or falls below 0, execution of the wlille statement ter
minates.

6-17

/
I

C hapter 7

Functions

7.1 Introduction 7-1

7.2 FunctionDefinitions 7-1
7.2.1 Storage Oass 7-2
7.2.2 Return Type 7-2
7.2.3 Fonnal Parruneters 7-4
7.2.4 Function Body 7-6

7.3 Function Declarations 7-7

7.4 FunctionCalls 7-9
7.4.1 ActualArguments 7-11
7.4.2 Callswith aVariable Number ofArguments 7-13
7.4.3 Recursive Calls 7-15

('
\.__/

Functions

7.1 Introduction

A function is an independent collection of declarations and statements,
usually designed to perform a specific task. C programs have at least one
main function and may have other functions. The sections of this chapter
describe howto define, declare, and call C functions.

A function definition specifies the name oftbe function, its formal parame
ters, and tbe declarations and statements that define its action. The func
tion definition can also give tbe return type of the function and its storage
class.

A function declaration establishes the name, return type, and storage class
of a function whose explicit definition is given at another point in tbe pro
gram. The number and types of arguments to the function can also b e
specified in tbe function declaration . This allows the compiler t o compare
tbe types of the actual arguments and the fonnal parameters of a function.
Function declarations are optioual for functions whose return type is int.
To ensure correct behavior, functions with otber return types must be
declared before they are called.

A function call passes execution control from the calling function to tbe
called function. The actual arguments, if any, are passed by value to tbe
called function. Execution of a return statement in the called function
returns control and possibly a value to the calling function.

7.2 FonctionDellnitinns

A function definition specifies tbename, formal parameters, and body of a
function. It may also define tbe function'sreturn type and storage class. A
function definition has tbefollowingform:

[sc-speclfier][type-specifier] declarator([parameter-list])
[parameter-declarations]
jUnction· body

The sc·specifier gives tbe function's storage class, which must be eitber
static or extern. The type-specifier and declilrator together specify tbe
function's return type and name. The parameter· list is a list (possibly
empty) of formal parameters to be used by the function. The parameter·
declarations establish the types of the formal parameters. The jUnction
body is a compound statement containing local variable declarations and
statements. The following sections describe tbe parts of tbe function
definition in detail.

7- 1

C Language Reference

7.2.1 Storage Class

The storage class specifier in a flmction definition gives the function either
static or extern storage class. A function with static storage class is visible
only in the source file in which it is defined. All other functions, whether
they are given extern storage class explicitly or implicitly, are visible
throughout all the source files that constitute the program.

The storage class specifier is required in a function definition in only one
case: when the function is declared elsewhere in the same source file with
the static storage class specifier.

The static storage class specifier can also be used when defining a function
previously declared in the same source file without a storage class specifier.
Normally, a function declared without a storage class specifier defaults to
the extern class. However, if the function definition explicitly specifies the
static class, the function is given static class instead.

When the storage class specifier is omitted from a function definition, the
storage class defaults to extern. The extern storage class specifier can be
explicitly specified in the function definition� but it is not required.

7.2.2 RetnrnType

The return type of a function defines the size and type of value returned by
the function. The type declaration has the form:

[type-specifier] declarator

where type-specifier, together with the de�larator, define the function's
return type and name. If no type- specifier is given, the return type intis
assumed.

The type-specifier can specify any fundamental, structure, or union type.
The declarator consists of the function identifier, possibly modified to
declare a pointer type. Functions cannot return arrays or functions, but
they can return pointers to any type, including arrays and functions.

The return type given in the function definition must match the return type
in declarations of the function elsewhere in the program. Functions with
intreturn type do not have to be declared before they are called. Functions
with other return types cannot be called before they are either defined or
declared.

·

A function's return value type is used only when the function returns a
value. A function returns a value when a return statement containing an
expression is executed. The expression is evaluat'ed, converted to the
return value type if necessary, and returned to the point of call. If no
return statement is executed, or if the executed return statement does not

7-2

(

Functlons

contain an expression, the return value of the function is undefined. If the
calling function expects a return value, the behavior of your program is also
undefined.

Examples:

1. /*return typeisint*/
static add (x, y)
intx, y;
{

}
return (x+y);

2. typedef struct {
charname[20];
intid;
long class;

} STUDENT;

{

/*return type is STUDEI'>'T */
STUDENT sortstu (a, b)
STUDENT a, b;

return ((a.id < b.id) ? a : b);
}

3. /*return type is charpointer */
char•smallstr(sl, s2)
char sl[], s2(];
{

}

inti;

i•O·
wrule (sl[i] != '\Q' &.&. s2[i] != '\()')

i++·
if (sl�] ' '\0')

return (sl);
else

retum (s2);

In tbe first example, the return type of add is intby default. The function
· has static storage class, which means it can be called only by functions in
tbe same source file.

7-3

C Language Reference

The second example defines tbe STUDENT type with a typedef declara
tion and defines tbe function sortstu() to have STUDENT return type. The
function selects and returns one ofits two structure arguments.

The third example defines a function returning a pointer to an array of
characters. The function takes two character arrays (strings) as arguments
and returns a pointer to tbe shorterof tbe two strings. A pointer to an array
points to tbe type of the array elements. Thus, tbe return type of the func
tion is pointer to char.

7.2.3 Fonna!Parameturs

Formal parameters are variables tbat receive values passed to a function by
a function call. The formal parameters are declared in a parameter list at
tbe beginning of the function declaration. The parameter list defines tbe
names of tbe parameters and tbe order in which tbey take on values in tbe
function call.

The parameter list has the form:

([identifier[, identifier]] ...)

where each identifier names a parameter. The parentheses are required.

Parameter declarations define tbe type and size of values stored in tbe for
mal parameters. These declarations have tbe same form as other variable
declarations (see Section 4.4 of Chapter 4, "Declarations"). A formal
parameter can have any fundamental, structure� union, pointer, or array
type.

A parameter can only have auto or register storage class. If no storage
class is given� auto storage is assumed. If a formal parameter is named in
tbe parameter list but is not declared, tbe parameter is assumed to have int
type. Formal parameters can be declared in any order.

The identifiers of the formal parameters are used in the function body to
refer to tbe values passed to tbe function. These identifiers cannot be used
for variable declarations within the function body.

The type of the formal parameter should correspond to the type of tbe
actual argument and to tbe type of the corresponding argument in the argu
ment type list for the function, if present. If tbe function has a variable
number of arguments, tbe user is responsible for determining tbe number
of arguments passed and for retrieving additional arguments from tbe stack
within tbe body of the function.

The compiler performs the usual arithmetic conversions independently on
each formal parameter and on each actual argument, if necessary. After
conversion, no fonnal parameter is shorter than an int, and no formal

7-4

Functions

parameter has float type. This means, for example, that declaring a formal
parameter as a char has the same effect as declaring it an int.

The converted type of each formal parameter determines how the argu
ments placed on the stack by the function call are interpreted. A type
mismatch between an actual and a formal parameter can cause the argu
ments on the stack to be misinterpreted. For example, if a 16-bit pointeds
passed as an actual argument, then declared as a long formal parameter,
the first 32 bits on the stack are stored in the long formal parameter, This
error creates problems not only with the long formal parameter, but with
any formal parameters that follow it. Errors of this kind can be detected
through diligent use of argument type lists in function declarations.

Example:

struct student {
char name[20];
in tid;
long class;
struct student *nextstu;

}student;

mainQ
{

intmatch (struct student •, char •);

if (match (student.nextstu,
student.name) > 0){

} }

match (r, n)
struct student *r;
char *n;
{

}

int i=O;

while (r->name[i] == n[i])
if (r->name[i++]=='\0')

return (r->id);
retum(O);

7-5

C Language Reference

The example contains a structure type declaration, a forward declaration
of the function match(), a call to match, and the definition of the match()
function. Notice that the same name, student, can be used without conflict
both for the structnre tag and for the structnre variable name.

The match() function is declared to have two arguments, the first a pointer
to the student structure type and the second a pointer to a char type.

The two formal parameters of the match() function are r and n. The
parameter r is declared as a pointer to the student structnre type. The
parameter n is declared as a pointer to a char type.

The function is called with two arguments, both members of the student
structure. Because there is a forward declaration of match, the compiler
performs type-checking between the actual argnments and the argument
type list and between the actual arguments and the formal parameters.
Since the types match, no warnings or conversions are necessary.

Note that the array name given as the second argument in the call evaluates
to a char pointer. The corresponding formal parameter is also declared as
a char pointer, and is used in subscripted expressions as though it were an
array identifier. Since an array identifier evaluates to a pointer expression,
the effect of declaring the formal parameter as char **n is the same as
declaring it char n[].

Within the function, the local variable iis defined and used to keep track of
the current position in the array. The function returns the id structure
member if the name member matches the array n. Otherwise, it returns
zero.

7.2.4 Function Body

The function body is simply a compound statement. The compound state
ment contains the statements that define the function's action and can also
contain declarations of variables used by these statements. See Section 6.3
of Chapter 6, "Statements", for a discussion of compound statements.

All variables declared in the function body have auto storage type unless
otherwise specified. Wben the function is called, storage space for the
local variables is created and local initializations are performed. Execution
control passes to the first statement in the compound statement and con
tinues sequentially until a return statement or the end of the function body
is encountered. Control then passes back to the point of call.

A return statement containing an expression must be executed if the func
tion is to return a value. The return value of a function is undefined if no
return statement is executed or if the return statement does not include the
optional expression.

7-6

(

("--·

Functions

7.3 Function Declar:ltions

A function declaration defines the name, return type, and storageclass of a
given function, and may establish the type of some or all of the function's
arguments. See C".Jupter 4, "Declarations" 1 for a detailed description of
the syntax of function declarations.

Functions can be declared implicitly or with forward declarations. The
return type of a function declared either implicitly or with a forward
declaration must agree with the retnm type specified in the function
definition.

An implicit declaration occurs whenever a function is called without being
previously defined or declared. The C compiler implicitly declares the
function to have int return type. By default, the function is declared to
have extern storage class. The function definition can redefine the storage
class to static, provided the function definition is given later in the same
source file.

A forward declaration establishes the attributes of a function, allowing the
declared function to be called before it is defined or to be called from
another source file. If the storage class specifier static is given in a forward
declaration, the function has static class. The function definition must
also specify the static class. If the storage class specifieris extern oris omit
ted, the function- has ex:tem class. However, the function definition can
redefine the storage class as static, provided the functinn definition
appears below the declaration in the same source file.

Forward declarations have several important uses. They establish the
return type for functions that retnm any type of value but int. (Functions
that return int values can also have forward declarations, but do not
require them.) Functions with non-intretun1 types cannot be called before
they are either declared or defined; the compiler assumes that the called
functionhasintretum type.

·

Forward declarations can be used to establish the types of arguments
expected in a function call. The optional argument type list of a forward
declaration gives the type and number of arguments expected. (The
number of arguments can be variable.) The argument type list is a list of
type names corresponding to the expression list in the function calL

If no argument type list is supplied, no type-checking is performed. Type
mismatches between aetna! arguments and formal parameters are silently
accepted. Type-checking is discussed further in Section 7 .4. 1.

7-7

C Language Reference

Forward declarations are also used to declare pointers to functions before
the functions are detined.

Eumple:

mainO
{

inta�O, b = l;
f!oatx=2.0, y=3.0;
double realadd(double, double);

a=intadd (a, b);
x= realadd(x, y) ;

}
intadd(a, b)
inta, b ;
{

return (a+ b);
}
double realadd(x, y)
double x, y;
{

return(x+y);

}
In tbe example, tbe function intadd() is implicitly declared to return an int
value, since it is called before it is defined. The compiler does not check
the types of tbe arguments in the call because no argument type list is avail
able.

The function rea/add() returns a double value instead of an int. The for
ward declaration of rea/add in tbe main() function allows the rea/add()
function to be called before it is detined. Notice !bat tbe definition of
rea/add() matches the forward declaration by specifying tbe double return
type.
The forward declaration of rea/add() also establishes tbe type of its two
arguments. The actual arguments match tbe types given in the forward
declaration and also match the typesoftheformal parameters.

7-8

Functions

7.4 Function Calls

A function call is an expression that passes control and zero or more actual
arguments to a function. A function call has the form:

expression (expression-list)

where expression evaluates to a function address and expression- list is a list
of expressions whose values, the actual arguments, are passed to the fune
tion. The expression-list can be empty.

When the function call is executed, the expressions in the function expres
sion list are copied� converted as necessary, and then passed to formal
parameters of the called function. The first expression in the list always
corresponds to the first formal parameter of the function, the second
expression corresponds to the second formal parameter, and so on
through the end of the list. Since the called function works with copies of
the actual arguments, any changes "it makes to the arguments are not
reflected in the original values from which the copies were made.

Execution control then passes to the first statement in the function. The
execution of a return statement in the body of the function returns control
and possibly a value In the calling function. If no return statement is exe
cuted, control returns to the caller after the last statement of the called
function is executed. The return value is undefined.

The expressions in the function call's expression list can be evaluated in
any order, so expressions with side effects have unpredictable results. The
only guarantee the compiler makes is that all side effects in the expression
list are evaluated before control passes to the called function.

The only requirement in calling a function is for the expression before the
parentheses to evaluate to a function address. This means that a function
can be called through any function pointerexpression. It may be helpful to
remember that a function is called in the same manner it is declared. For
instance, when declaring a function, the name of the function is given, fol
lowed by an argument type list in parentheses. To call the function, only
the name of the function is required, followed by an expression list in
parentheses. The iodirection operator (•) is not required to call the func
tion; the name of the function evaluates to the function address,. which is
used to call the function.

The same principle applies when calling a function through a pointer. For

("

example, supposea function pointeris declared as follows :

�" int (*fpointer)(int, iot);

7-9

C Language Reference

The identifier jpointer is declared to point to a function taking two int argu
ments and returning an int value. A function call through jpointer might
look like this:

(*fpointer)(3,4)

The indirection operator (*) is used to obtain the address of the function to
which jpointer points. The function address is then used to call the func
tion.

Examples:

1. double *realcomp(double, double);
double a, b, "rp;

rp -realcomp(a, b);

2. main()
{

7-10

longlift(int), step(int), drol'(int);
void work (int, long (*)(int));
int select_, count;

.

select =!;
switch (select) {

case l:work(count, lift);
break;

case2: work(count, step);
break;

case3: work(count, drop);

default:
break;

(
'

void work (n, func)
intn·
Jong(•func)(int);

{ int i;

}

long j ;

for (i=j =0; i < n; i++)
j += (*func)(i);

Functions

In the first example, the realcomp() function is called in the statement rp
realcomp(a, b);. Two double arguments are passed to the realcomp()
function. There! urn value, a pointer to a double, is assigned to rp.

In the second example, the function call:

work (count, lift);

in main() passes an integer variable and the address of the function lift() to
the function work(). Notice that the function address is passed simply by
giving the function identifier, since a function identifier evaluates to a
pointer expression. To use a function identifier in this way, the function
must be declared or defined before the identifier is used. Otherwise, the
identifier is not recognized. In this case, a forward declaration for work()
is given at the beginning of the main() function.

The formal parameter func in work() is declared to be a pointer to a func
tion taking one intargnment and returning along. The parentheses around
the parameter name are required; without them, the declaration would
specify a function returning a pointer to a long.

The function work() calls the selected function by using the function call:

(*func)(i);

One argument, i, is passed to the called function.

7.4.1 Actual Arguments

An actual argument can be any value with fundamental, structure, union,
or pointer type. Although arrays and functions cannot be passed as param
eters, pointers to these items can be passed.

All actual arguments are passed by value. A copy of the actual argnment is
assigned to the corresponding formal parameter. The function uses this
copy without affecting the variables from which it was originally derived.

7-11

C Language Reference

Pointers provide a way to access a value by reference from a function.
Since a pointer to a variable holds the address ofthe variable, the function
can use this address to access the value of the variable. Pointer argUments
allow a function to access arrays and functions, even though arrays and
functions cannot be passed as arguments.

Each expression in a function call is evaluated and converted as follows. If
an argnment type list for the called function is available, the usual arith
metic conversions are performed independently on each expression in the
expression list and on each type in the argument type list. Each expression
in the expression list is then compared with the type name that occupies the
corresponding position in the argnment type list. The value of the expres
sion is converted (if necessary) to the named type as if by assignment.

Next, the converted expression is compared with the type of the formal
parameter that has the same place in the parameter list as the expression
has in the expression list. (The formal parameters also undergo the usual
arithmetic conversions before the comparison.) No conversions are per
formed, but the compiler produces warning messages as if the expressions
were assigned to the formal parameters.

The number of expressions given in the expression list must match the
number of formal parameters, unless the function's forward declaration
explicitly specifies a variable number of arguments. In this case, the com
piler checks as many arguments as there are type names in the argument
type list and converts them, if necessary, as described above. If there are
additional actual argnments in the function call, each additional argnment
undergoes the usual arithmetic conversions, but is not otherwise converted
or checked.

If the argnment type list contains the special type ni).IIle void, the compiler
expects zero �ctual arguments in the function call and zero formal parame
ters. It produces a warning message if it finds otherwise.

If the argnment type list is empty (omitted) or the called function has no
forward declaration, the compiler performs no type-checking, either for
type or for number of argnments. In tlris case, the actual argnments in the
function call, if any, undergo the usual arithmetic conversions indepen
dently before they are placed on the stack.

The type of each formal parameter also undergoes the usual arithmetic
conversions. The converted type of each formal parameter determines
how the argnments on the stack are interpreted. If the type of the formal
parameter does not match the type of the actual argnment, the data on the
stack can be misinterpreted.

Type mismatches betWeen actual and formal parameters can produCe seri
ous errors, particularly when the mismatches entail size differences. Keep
in mind that these errors are not detected unless an argnment type list is
given in the forward declaration of the function.

7-12

Functions

Example:
/

(
main()
{

void swap(int •, int •); . . intf'f:}.Y;

swap(&x, &y);

}

void swap (a, b)
int *a, *b;
{

intt;

t - •a;
*a=*b;
*b - t;

/ ' }
I,
,, In the above example, the swap() function is declared in main() to have

two arguments, both pointers to integers. The formal parameters a and b
are also declared as pointers to integer variables. In the function call:

swap (&x, &y)

the address of x is stored in a and the address of y is stored in b. There are
two names, or aliases> for the same location. References to **a and **bin
swap are effectively references to x and y in main(). The assignments
within swap change the contents ofx andy.

The compiler performs type-checking on the arguments to swap because
an argument type list is present in the forward declaration of swap. The
types of the actual arguments match both the argument type list and the for
mal parameters.

7.4.2 CaDs with a Variable Number of Arguments

To call a function with a variable number of argwnents, the programmer
simply gives any number of arguments in the function call. In the forward
declaration of the function (if there is one), a variable number of argu
ments is specified by placing a comma at the end of the argument type list
(see Section 4.5 of Chapter 4, "Declarations"). One argument must be
present in the function call for each type name specified in the argument

7-13

C Language Reference

type list. If only a comma (but no type names) is given, no arguments are
required when calling the function. Refer to Yarargs(F) in the XENIX
Referenceforinformation on using variable arguments lists.

All the arguments given in the function call are placed on the stack. The
number of fonnal parameters declared for the function determines how
many of the arguments are taken from the stack and assigned tothe formal
parameters. The programmer is responsible for retrieving any additional
arguments from the stack and for determining how many arguments are
present.

Example:

mainO
{

int scores (int,) ;
int count, average, i;

average - scores (count, 14, 96, 82);

}

scores (number)
:int nUmber;
{

}

int *ip, total = 0, i;
ip- &number+ 1;

for (i-1;i <- number;i++, ip++)
total +- *ip;

if (number > 0)
return (total/nUmber);

return (-1);

The above example shows a function named scores() that takes a variable
number of arguments. The forward declaration of scores in main() estab
lishes that scores() has at! east one argument, an int. The comma at the end
of the argument type list means that there may be more undeclared argu
ments.

7-14

Functions

In the call to scores, four actual arguments are passed. The first argument is
checked for compatibility with the argument type list and the formal
parameter of scores. Since the types match, no conversions or warning
messages are necessary.

In the definition of the scores() function, one formal parameter is
declared. The additional arguments are retrieved by taking the address of
the previous argument (number in the first case), increasing it, and retriev
ing the value at that address. This procedure works because arguments
passed to a function are stored in order on the stack.

Tbe number argument is assumed to hold the number of additional argu
ments, so its value controls how many additional arguments are retrieved
from the stack. When number arguments have been retrieved and added to
the total, the average of the scores is returned to the main function. The
value -1 is returned if number is zero.

7.4.3 Recursive Calls

Any function in a C program can be called recursively. A function can
therefore call itself. The C compiler allows any number of recursive calls
to a function. On each call, new storage is allocated for the formal parame
ters and for the auto and register variables so that their values in previous,
unfinished calls are not overwritten. Previous parameters are inaccessible
to all versions of the function except the versinn in which they were
created.

Notice that variables declared with global storage do not require new
storage with each recursive call. Their storage exists for the lifetime of the
program. Each reference to such a variable accesses the same storage area.

Although the C compiler defines no limit on tbe number of times a func
tion can be called recursively, the operating environment may impose a
practical limit. Since each recursive call requires additional stack memory,
too many recursive calls can cause a stack overflow.

7- 15

C hapter S

Preproce s s o r Directives

8.1 Introduction 8-1

8.2 Manifest Constants and Macros 8-1
8.2.1 DefineDirective 8-2
8.2.2 Undefine Directive 8-5

8.3 Include Files 8-6

8.4 Conditional Compilation 8-7
8.4.1 lf, Elif, Else, and Endif Directives 8-8
8.4.2 lfdef and lfndef Directives 8-11

8.5 Line Control 8-12

(

PreprocessorD:irectives

8.1 Inlroduction

The C preprocessor is a text processor used to manipulate the text of a
source file before compilation. The compiler ordinarily invokes the
preprocessor in its first pass, but !he preprocessor can also be invoked
separately to process text without compiling. This chapter explains the
main tasks performed by preprocessor directives and describes each direc
tive in detail.

Preprocessor directives are typically used to make source progr!'mls easy·to
modify and to compile in different execution environments. Directives in
the source file instruct the preprocessor to perform specific actions. For
example, the preprocessor can replace tokens in the text, insert the con
tents of other files into the source file, and suppress compilation of a por
tion of the file byremovingblocks of text.

The C preprocessor recognizes the following directives:

#define
#elif
#else
#endif
#if

#ifdef
#ifndef
#include
#line
#undef

The number sign (#) must be the first nonwhitespace character on the line
containing the directive. Whitespace characters can appear between the
number sign and the first letter of the directive. Some directives are fol
lowed by arguments or values, as deScribed below. Directives can appear
anywhere in a source file, but they apply only to the remainder of the
source file in which they appear.

8.2 Manifest Constants and Macros

The #define directive is typically used to associate meaningful identifiers
with constants) keywords. and commonly used statements or expressions.
Identifiers that represent constants are called "manifest constants."
Identifiers that represent statements or expressions are called "macros."

Once an identifier is defined, it cannot be redefined to a different value
'Witbout first removing the definition. However) the identifier can be
redefined with exactly the same definition. Thus, a program is allowed to
contain more than one occurrence of the same definition.

8-1

C Language Reference

The #undef directive removes the definition of an identifier. Once the
definition has been removed, the identifier can be redefined to a different
value. Sections 8.2.1 and 8.2.2 discuss the #define and #undef directives
respectively.

Macros can be defined to look and act like function calls. Because macros
do not generate aetna! fllliction calls, replacing function calls with macros
can improve execution time� However, macros create problems if they are
not defined and used with care. Macro definitions with arguments may
require the use of parentheses to preserve the proper precedence in an
expressinn. In addition, macros may not handle expressions with side
effects correctly. See the examples in Section 8.2.1 for details.

8.2.1 Define Directive

Synlax

#define fiJentlfr,r text
#define fiJentifier (parameter-list) text

The #define directive substitntes the given text for subsequent occurrences
of the specified identifier in the source file. The fiJentlfier is replaced only
when it forms a token. (Tokens are described in Chapter 2, "Elements of
C," and in AppendixB.) For instance, theidentlf�eris not replaced when it
occurs within strings or as part of a longer identifier. ·

If a parameter-list appears after the fiJentifier, the #define directive
replaces each occurrence of fiJentifr.r(argument-list) with a version of rext
modified by substitnting aetna! arguments forf ormal parameters.

The text consists of a series of tokens, such as keywords, constants, or
complete statements. One or more whitespacc characters must separate
the text from the Identifier (or from the closing parenthesis of the
parameter-list). If the text is longer than one line, it can be continued onto
the next line byprecedingthe newline character with abackslash (\).

The text can also be empty. The effect of this option is to remove instances
of the given fiJentifier from the source file. The identlfr,r is still considered
deftned, however, and yields the value 1 when tested with the #if directive
(discussed later in this chapter).

The parameter- list, when given, consists of one or more formal parameter
names separated by commas. Each name in the list must be unique, and
the list must be enclosed iu parentheses. No spaces between the identifr.r
and theopeniugparenthesis are allowed.

8-2

,.�-

PreprocesS or Directives

Formal parameter names appear in text to mark the places where actual
values will be substituted. Each parameter name can occur more than
once in the text, and the names can appear in any order.

The actual arguments following an instance of the identifier in the source
file a're matched to the formal parameters of the parameter� list, and the text
is modified by replacing each formal parameter with the corresponding
aetna! argnment. The actual argument-list and the formal parameter-list
-must have the same number-of arguments. - - · -··-·· - -- - - - - .. ··· ----· ----.. - -

Arguments with side effects sometimes cause macros to produce unex
pected results. A macro definition may contain more than one occurrence
of a given formal parameter. If that formal parameter is replaced by an
expression with side effects, the expression, with its side effects, is
evaluated more than once (see Example 4 below).

Examples:

1. #define WIDTH 80
#defineLENGTH (WIDTH+lO)

2. #define FILEMESSAGE "Attempt to create\
file failed because of insufficient space"

3. #defineREGl
#define REG2
#defineREG3

register
register

4. #defineMAX(x,y) ((x) > (y)) ? (x) : (y)

5. #defineMULT(a,b) ((a) ' (b))

The first example defines the identifier WIDTH as the integer constant 80,
and defines LENGTH in terms of WIDTH and the integer constant 10.
Each occurrence of LENGTH is replaced with "(WIDTH + 10)," which is
in tum replaced with the expression "(80 + 10)." The parentheses around
"WIDTH + 10" are important because they control the interpretation in a
statement such as the following: ·

var� LENGTH * 20;

After the preprocessing stage_ the statement becomes:

var� (80+ 10) • 20;

or 1800.

8-3

C Language Reference

Without parenth('S<'s, the result is:

var-80+ 10*20;

which evaluates to 280 because the multiplication operator (*) has higher
precedence than the addition operator (+).

The second example defines the identifier FILEMESSAGE. The
definition is extended to a second line bynsing the backslash escape char
acter(\).

The third eXlllllple defines three identifiers, REGl, R,EG2, and REG3.
REGl and REG2 are defined as the keyword register. The definition of
REG3 is empty, so each occurrence of REG3 is removed from the source
file. These directives can be used to ensure that the program's most impor
tant variables (declared with REGl and REG2) are given register storage.
See the discussion of the #it directive later in Section 8.4.1 for an
expanded version of this example.

The fourth example defines a macro named MAX. Each occurrence of the
identifier MAX following the definition in the source file is replaced by the
expression "((x) > (y)) ? (x) : (y)," where actual values replace the parame-
rersx andy. For example, the occurrence: .

MAX(1,2)

is replaced with:

((1) > (2))? (1) : (2)

and the occurrence:

MAX(i.slm

is replaced with:

((i) > (s[i])) ? (i) : (s[iD

This macro is easier to read than the correspondingexpression, makingthe
source program easier to understand.

Notice that arguments with side effects may cause this macro to produce
unexpected results. For example, the occurrence "MAX(i, s(i++D" is
replaced with "((i) > (s[i++])) ? (i) : (s[i++))". The expression "(s[i++])" is
evaluated twice, so by the time the ternary expression has been fully
evaluated, i has increased by two. The result of the ternary expression is
unpredictable, since the operands of the ternary expression can be
evaluated in any order, and the value of i varies depending on the evalua
tion order.

8-4

l

Preprocessor Directives

The fifth example defines the macro MULT. Once the macro is defined, an
occurrence such as "MULT(3, 5)" is replaced by "(3) • (5)". The
parentheses around the parameters are important because they control the
interpretation when complex expressions form the arguments to the
macro. For instance, the occurrence "MULT(3 + 4, 5 + 6)" is replaced by
"(3 + 4) • (5 + 6)" which evaluates to 77. Without the parentheses, the
result is "3 + 4 • 5 + 6," which evaluates to 29 because the multiplication
operator (•) has higher precedence than the addition operator (+).

8.2.2 Undefine Directive

Syntax

#undefidentifier

The #undef directive removes the current definition of identifier. The
preprocessor ignores subsequent occurrences of identifier. To remove a
macro definition using #undef, give only the macro identifier. Do not give
a parameter list.

The #undef directive is typically paired with a #define directive to create a
region in a source program in which an identifier has a special meaning.
For example, a specific function of the source program can use manifest
constants to define environment-specific values that do not affect the rest
of the program. The #undef directive also works with the #if directive (see
Section 8.4.1)to control compilation of portions of the source program.

Example:

#defiue WIDTH 80
#defiue ADD(X, Y) (X) + (Y)

#undefWIDTH
#undefADD

In this example, the #undef directive removes definitions of a manifest
constant and a macro. Note that only the identifier of the macro is given.
The #undef directive can also be applied to an identifier that has no previ-.
ous definition. This ensures that the identifier is undefined.

8-5

C Language Reference

8.3 Inclnde Files

Syntax

#Include pathname
#lnelnde < patlt.name >

The #Include directive adds the contents of a given "include file" to
another file. Constant and macro definitions can be organized into include
files and added to any source file by using #Include directives. Include files
are also useful for incorporating declarations of external variables and
complex data types. The types need only be defined and nam.ed once in an
include file created forth at purpose.

The #htc!ude directive tells the preprocessor to treat the contents of the
named file as if they appeared in the source program at the point of the
directive. The new text can also contsin preprocessor directives. The
preprocessor carries out directives in the new text, then continues process
ing the original text of the source file.

The pathname is a filename optionally preceded by a directory
specification. It must name an existing file. The syntax of the file
specification depends on the specific operating system on which the pro
gramis compiled.

The preprocessor uses the concept of a "standard" directory or directories
to search for included files. The location of the standard directories for
include files depends on the implementation and the operating syste:rrL
See your system documentation for a definition of the standard direc
tories.

The preprocessor stops searching as soon as it finds a file with the given
name. If a complete, unambiguous pathname for the include file is given,
either in double quotation marks (" ") or in angle brackets (< >), the
preprocessor searches only that pathuame and ignores the standard direc
tories.

If the file specification does not give a complete pathname, and the file
specification is enclosed in double quotation marks, the preprocessor
searches for the file in the same directory as the including file first (the
"current working directory''). It then searches directories specified in the
compiler command line and finally searches the standard directories.

If the file specification is enclosed ht angle brackets, the preprocessor does
not search the current working directory. ·It begins by searching for the file

8-6

(
\
''- .

Preprocessor Directives

in directories specified in the compiler command line and then searches
the standard directories.

An #include <lirective can be nested. In other words, the directive can
appear in a file named by another #include directive. When the preproces
sor encounters the nested #include directive, it processes the named file
and inserts it into the current file. The preprocessor uses the same search
procedures outlined above In searchingfornested include files.

The new file can also contain #Include directives. NeSting can continue up
to ten levels. Once the nested #include is processed, the preprocessor
continues to insert the enclosing include file into the original source file.

Examples:

1. #include <stdio.h>

2. #include "defs.h"

The first example adds the contents 9f the file named stdio.h to the source
program. The angle brackets cause the preprocessor to search the stan
dard directories for stdio.h, after searching directories specified in the
command line.

The second example adds the contents of the file specified by defs.h to the
source program. The double quotation marks mean that the directorycon
tainingthecurrent source file is searched first.

8.4 Conditional Compilation

This section describes the syntax and use of directives that control "condi
tional compilation." These directives allow for suppressing compilation of
portions of a source file. They test a constant-expression or an identifier to
determine which text blocks are passed on to the compiler and which are
removed from the source file in the preprocessing stage.

8-7

C Language RefeRnee

8.4.1 Ir, Ellf, Else, and EndifDirectives

Syntax

#it restricted-constant- expression
[text}

{ #elifrestrlcted-constant- expression
textJ

[#ellf restricted- constant-expression
textJ

.
[#else

text}
#endif

The #it directive, together with the #ellf, #else, and #endif directives,
controls compilation of portions of a SOUl'Ce file. Each #if directive in a
soUl'ce file must be matched by a closing #endif directive. Zero or more
#ellf directives can appear between the #if and #endif directives, but at
most one #else directive is allowed. The #else directive, if present, must
be the last directive b efore #endif.

The preprocessor selects one of the given blocks of textfor furtherprocess
ing. A te.ttblockis any sequence oftext. It can occupy more than one line.
Usually the text block is program text that has meaning to the compiler or
the preprocessor. However, this is not a requirement; the preprocessor
can be used to process anykind oftext.

The selected text is processed by the preprocessor and passed to the com
piler. If the text contains preprocessor directives, those directives are car
ried out.

Any text blocks not selected by the preprocessor are removed from the file
in the preprocessing stage and are therefore not compiled.

The preprocessor selects a single text block by evaluating the restricted
constant-expressions following each #if or #elif directive until a true
(nonzero) restricted-constant-expression is found. All text between the
first true restricted-constant-expression and the next number sign (#) is
selected.

If no restricted-constant-expression is true, or if there are no #elif direc
tives, the preprocessor selects the text after the #clse clause. If the #else

8-8

(
"--·

Preprocessor Directives

clause is omitted, and no restricted• constant-expression in the #If block is
true, no text is selected.

Each restricted-constant-expression follows the rules for restricted
constant-expressions discussed in Section 5.2.10 of Chapter 5, "Expres
sions and A ssignments1'. Such expressions cannot contain sizeof expres
sions, type casts, or enumeration constants� but they can contain the spe
cial constant-expression "defined(identifier)." This constant-expression
is considered true (nonzero) if tbe given i4entifier is curreJJtly defined. Oth c
erwise, the condition is false (zero). An identifier defined as empty text is
considered defined.

The #lf, #elif, #else, and #endlf directives can nest in the text portions of
other #If directives. When nested, each #else, #ellf, and #endlfdirective
belongs to the closest preceding #If directive.

Examples:

1. #lf defined(CREDrr)
ereditQ;

#ellf defined (DEBIT)
debitO;

#else
printerrorQ;

#endif

2. #lfDLEVEL > 5
#define SIGNAL 1
#ifSTACKUSE-� 1

#defineSTACK 200
#else

#defineSTACK 100
#end if

#else
#define SIGNAL 0
#lfSTACKUSE= l

#define STACK 100
#else

#defineSTACK 50
#endif

#end if

8-9

C Language Reference

3. #ifDLEVEL==O
#define STACKO

#elif DLEVEL==l
#define STACK 100

#elif DLEVEL > 5
display(debugptr);

#else
#define STACK200

#endif
4. #define REG 1 · register

#define REG2 register

#if defined(M_86)
#defineREG3
#define REG4
#define REGS

#else
#define REG3 register
#if defined(M_68000)

#define REG4 register
#define REGS register

#endif
#end if

1n the first example, the #if and #endif directives control compilation of
one of three function calls. The function call to credit is compiled if the
identifier CREDIT is defined. If the identifier DEBIT if; defined, the func
tion call to debit is compiled. Ifneitheridentifier is defined, the call to prin·
terror is compiled. Note that CREDIT and credit are distinct identifiers in
Cbecause their cases are different.

The next two examples assume a previously defined manifest constant,
DLEVEL. The second example shows two sets of nested #if, #else, and
#endif directives. The first set of directives is processed on1yif "D LEVEL
> S"is true. Otherwise, the second set is processed.

1n the third example, #elif and #else directives are used to make one of
four choices, based on the value of DLl':VEL. The manifest constant
STACK is set to 0, 100, or 200, depending on the definition of DLl':VEL. If
DLEVEL is not defined, "display(debugptr);" is compiled and STACK is
not defined.

The fourth example uses preprocessor directives to control the meaning of
register declarations in a portable source file. The compiler assigns regis·
ter storage to varisbles in the same order in which the register declarations
appear in the source file. If a program contains morereglsterdeclarations
than the machine can accommodate, the compiler honors earlier declara
tions over later ones. Loss of efficiency can occur if the variables declared
later are more heavily used.

8-10

c

Preprocess or Directives

The definitions listed above can be used to give priority to the most impor
tant register declarations. REGJ and REG2 are defined as the register key
word to declare register storage for the two most important variables in the
program. For example, in the following fragment, b and c have higher
priority than a ord:

func(a)

REG3inta;

{

}

REGlintb;
REG2 int c;
REG4intd;

WhenM_86is defined, the preprocessor removes the REG3identifierfrom
the file by replacing it with empty text. This prevents a from receiving
register storage at the expense of b and c. When M_68000 is defined, all
four variables are declared to have register storage. When neither M_86
nor M_68000is defined, a, b, and c are declared with register storage.

8.4.2 IfdefandlfndefDir!>ctives

Syntax

#ifdef identifier
#ifndef identifier

The #ifdef and #ifndef directives accomplish the same task as the #if
directive used with "defined{identijier) ." These directives can be used any
where #if can be used. These directiVes are provided only for compatibil
ity with previous versions of the language. The "defined{identifier)"
constant-expression used with the #if directive is preferred.

When the preprocessor encounters an #ifdef directive, it checks to see
whether the identifier is currently defined. H so, the condition is true
(nonzero). Otherwise, the condition is false {zero).

The #ifndef directive checks for exactly the opposite condition checked
by #ifdef. If the identifier has not been defined (or its definition has been

8 - 11

C Language Reference

removed with #unilel), the condition is true (nonzero). Otherwise, the
condition is false (7.ero).

8.5 Line Control

Syntax

#line constant [''filename"]

The #line directive instructs the preprocessor to change the compiler's
internally stored line number and filename to a given line number and
filename. The compiler uses the internally stored line number and
filename to refer to errors encountered during compilation. The line
number normally refers to the current input line; the filename refers to the
current input file. The line number is increased after each line is pro
cessed.

Changing the line number and filename causes the compiler to ignore the
previous values and to continue processing with the new values. The #line
directive is typically used by program generators to cause error messages to
refer to the original source file instead of the generated program.

The constant value in the #line directive is any integer constant. The
filename can be any combination of characters. It must be enclosed in dou
ble quotation marks ("''). Ifjilena- is omitted, the previous filename
remains unchanged.

The current line number and filename are always avallable through the
predefined identifiers _JJNE__ and _...FILE__. The _ _LINE__ and
_ _FILE __ identifiers can be used to insert self-descriptive error messages
into the program text.

Examples:

1. #line 151 "copy.c"

2. #define ASSERT(cond) · if(!cond)\
{printf("assertion error line o/od, file(o/os)\n", \
_ _LINE__,_.YILE..._);}else;

In the first example, the internally stored line numberis set to 151 and the
filename is changed to copy. c.

8-12

(

Preprocess or Directives

In the second example, the macro ASSERT uses the predefined identifiers
"_..LrnE __ , and " _ _FILE__" to display an error message about the
source file if a given "assertion" is not true.

8 - 13

Appendix A

Differences

A.l Introduction A-1

(

Differences

A.l Introduction

This appendix summarizes differences between Microsoft C and the
description of the C language found in Appendix A of The C Programming
Language by Brian W. Kemigban and Dennis M. Ritchie, published in
1978 by Prentice-Hall, Inc. The differences are listed with cross
references to the corresponding section numbers in The C Programming
Language.

SectipnNumberip . . Kernighanand Ritchie M1crosoftC

2.2 Identifiers (including those used in preproces
sor directives) are significant to 31 characters.
External identifiers are also siguificant to 31
characters.

2.3 The identifiers asm and entry are no longer
keywords. New keywords are const, enum and
void. (The const keyword is not 'yet imple
mented but is reserved for future use.) The
identifiers far, fortran, huge, near, and pascal
may be keywords, depending on whether the
corresponding options are enabled when a pro
gram is compiled {see your system documenta
tion).

2.4.1 Hexadecimal and octal constants are treated as
unsigned values and are not sign-extended in
type conversions.

2.4.3 Hexadecimal bit patterns consisting of a
backslash (\), the Jetter "x," and up to two hex
adecimal digits are permitted as character con
stants (for example, \x12).

2.6

4

Microsoft C defines two additional escape
sequences: the sequence \v represents a verti
cal tab (VT), and the sequence \" represents
the double quote character.

Character constants always have type char,
with the result that they are sigu-extended in
type conversions.
The short type is always 16 bits in length, the
long type 32 bits. The size of an intis machine
dependent. On 8086/80286processors an intis
16 bits long, and on 68000 and 80386 machines
it is 32 bits.
The char type is sigued, with the result that a
char value is sign-extended in type conver
sions.

A - 1

C Language Reference

6.5

6.6

7.2

7.14

8.2

8.4.

8.5

8.6

9.7

12

A - 2

Two additional unsigned types are supported:
unsigned char and nnsigned long.

Microsoft C offers an additional fundamental
type, the enum (enumeration) type. The void
type is defined as the retnm type of functions
that do not return a value.
The keyword unsigned can be applied as an
adjective to any integer type (char, int, short,
or long). When unsigned stands alone, it is
taken to mean unsigned Int.
The arithmetic conversions carried out by the
Microsoft C Compiler are outlined in Sections
5.3.1 and 5.7 of Chapter 5, "Expressions and
Assignments". Although compatible with the
Kernighan and Ritchie conversions, the
Microsoft C conversions are spelled out in
greater detail, including the specific path for
each typeof conversion.
In connection with the sizeof operator, a byte
is defined as an 8-bit quantity.
A structure can be assigned to another struc
ture of the same type.
The keywords enum and void are additional
type specifiers. Additional acceptable combi-

. nations are unsigned char, uuigned short,
unsigned shon int, unsigned long, and
unsigned long Int.
Optional argument type lists can be included in
function declarations to notify the compiler of
the number and types of arguments expected in
a function cail.
Bitfields must be declared unsigned.

Then!lllles of structure and union members are
not required to be distinct from structure and
union tags or from the names of other vari
ables.

No relationship exists between the members of
two different strncture types.
Unions can be initialized by giving a value for
the first member of the union.
The expression of a switch statement has enum
or integral type. Each of the case constant
expressions is cast to the typeoftheexpresslon.
The number sign (#) introducing the prepro
cessor directive can be preceded by any com hi-

f\
' .

"� .

12.3

14.1

17

nation of whitespace characters. Whitespace
can also occur between the number sign and
the preprocessor keyword.
The new combination #If defined(identifier) is
intended to supplant tl1e #lfdef and #lfndef
directives. Use of the latter directives is
discouraged.

The new directive#ellf.(clse�if) is designed for
nsc in #if and #if defined blocks.
A structure or union can be assigned to
another structure or union of the same type.
Structures and unions can be passed by value
to functions andretorned by functions.

In expressions involving"->," the expression
before the arrow must have the same type (or
be cast to the same type) as the structure to
which the member on the right-hand side o f
the arrow belongs.
The listed anachronisms are not recognized.

A �3

Appendix B

Syntax Summary

B.1 Tokens B-1
B.l.l Keywords B-1
B.l.2 Identifiers B-1
B.l.3 Constants B-2
B.l.4 Strings B-4
B.l.5 Operators B-4
B.l.6 Separators B-5

B.2 Expressions B-5

B.3 Declarations B-7

B.4 Statements B-10

I B.5 Definitions B-11 ' "
B.6 Preprocessor Directives B-11

(

B.l Tokens

keyword
identifier
cortStant
strtng
operator
separator

B.l.l Keywords

auto default
break do
case double
char else
constt enum
continue extern

Syntax Sunuruu:y

float register S\litcb
for return cypedef
go to short union
if sizeof unsigned
int :static void
long stroct whiJe

The following identifiers may be keywords, dependiog on whether the
corresponding option is enabled when the program is compiled. See your
system documentation for details.

far
fortran
huge
near
pascal

B.l.2 Identifiers

identifier:
letter
underscore
identifier letter
identifier underscore
identifier digit

tNotyetimplemented.

B - 1

C Language Reference

letter: one of:
a b c d e f g h i j k l m
n o p q r stuv wxyz
A B CD EFGHIJKLM
N O PQ R S T UV WXYZ

underscore:

digit: one of:
0 123456789

B.1.3 Constants

B-2

constant:
integer-constant
long-constant
floating-point- constant
char-constant
enum� constant

integer- constant:
0
decimal- constant
octal- constant
hexadecinuJ:l- constant

decimal-constant:
nonzero-digit
decimal-constant digit

nonzero-digit: one of:
1 23456789

octal-constant:
Ooctal-digit
octal-constant octal- digit

octal- digit: one of:
0 1234567

(
hexadecimal-constant:

Oxhexadecimal-digit
OXhexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-digit: one of:
0123456789
a b c d e f
A B C D EF

long-constant:
integer-constant 1
integer-constant L

floating-point-constant:
fractional- constant exponent
fractional- constant
digit-seq exponent

fractional-constant:
digit-seq . digit-seq
. digit-seq
digit-seq .

digit-seq:
digit
digiJ-seq digit

exponent:
esigndigit-seq
Esign digit-seq
e digit-seq
Edigit-seq

sign:
+

char-constant:
'char'

Syntax Summacy

B-3

C Language Reference

char:
rep-char
escape� sequence

rep-char:
Any single representable character except !he single quote ('),
backslash (\), or newline character.

escape-sequence: one of:

\' \" \\ \ddd 'widd \b
\f \n \r \t \v

enum-constant:
Identifier

B.l.4 Strings

string-literal:

char-seq

char-seq:
char
char-seq char

B.l.S OpeNton

operator: one of:

++
• I

>> < <-
1- I

&& I I
·- ,_ cro-
&- - '"'
[] 0

B-4

%
>
&
+-
>>-
?:
->

+
<<
>--

<<-

'
\

('

B.1.6 Separators

separator: one of:

[
•

B.2 Expressions

{ }

Syntax Summary

In this section (B.2), the brackets shown are part of the syntax for the
language and should be interpreted literally.

expression:
identifier
constant
string
expression(expression-list)
expression()
expression[expression]
expression.identifier
expression-> identifier
unary-expression
binary-expression
ternary-expression
assignment-expression
(expression)
(type-name)expression
constant-expression

expression-list:
expression
expression-list, expression

unary-expression:
unop expression
sizeof(expression)

unop: one of:
- - ! . &

B-5

C Language Reference

B-6

/value:
identifier
expression[expression]
expression .expression
expression->expression
*expression
(type-name)expression
(/value)

type-name:
See Section B.3, "Declarations."

binary-expression:
expression binopexpression

binop: one of:

• I % +
< < > > < > <-
>- !- & I

&& I I

ternary-expression:
expression ? expression : expression

assignment-expression:
lvalue++
lvalue--
++lvalue
--/value
lvalue assignment-op expression

assignment- op: one of:

*= I= %= +=
<<- >>- &- I= -

(

(

(
\
'-- -

constant-expression:
identifier
constant
(type-name)constant-expression
unary-expression
binary-expression
ternary-expression
(constant-expression)

B.3 Declarations

Syntax Summary

In this section (B.3), the brackets shown are part of the syntax for the
language and should beinterpreted literally.

declaration:
sc-specifier type-specifier declarator-list;
type-specifier declarator- list;
sc-specifier declarator-list;
type-specifier;
typedef type-specifier declarator-list;

sc-specifier:
auto
extern
register
static

B-7

C Language Reference

B-8

type-specifier:
char
double
enum-specifier
float
int
long
longint
short
shortint
struct-specifier
typedef-name
union- specifier
unsigned
unsigned char
unsigned int
unsigned long
unsigned long int
unsigned short
unsignedshortint

en urn-specifier:
en urn tag { enum-li<t}
en urn { enum-li<t}
enumtag

tag:
identifier

enum-li<t:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier� constant-expression

struct-specifier:
struct tag {member-declaration-li<t}
struct {member-declaration-li<t}
structtag

member-declaration-li<t:
member-declaration
member-declaration-li<t member-declaration

member-declaration:
type-specifier declarator- list;
type-specifier identifier : constant-expression;
type-specifier : constant-expression;

declarator-list:
declarator
declarator = initializer
declarator-list , declarator

declarator:
identifier
declarator[]
declarator[constant-expression]
*declarator
declarator()
declarator(arg-type-list)
(declarator)

arg-type-list:
type-name
arg-type-list, type-name
arg-type-list,
void
'

void*

type-name:
type-specifier
type-specifier abstract- de clara tor

abstract-declarator:
•

[]
(arg- type-list)
*abstract-declaratvr
abstract-declarator "'
abstract-declarator[]
abstract-declarator[constant-expression]
[]abstract-declarator
[constant-expression]abstract-declarator
abstract-declarator()
abstract-declarator(arg-type-list)
(abstract-declarator)

Syntax Summary

B-9

c.; Language Reference

initializer:
expression
{initializer- list}

initia/izer-/ist:
initia/izer
initializer-list, initializer

typedef-name:
identifier

union-specifier:
union tag {member- declaration-list}
onion {member-declaration-list}
union tag

B.4 Statements

In this section (B.4), brackets enclose optional portions of the syntax.

B-10

statemem:
break;
ease constant .. expression : statement
compound-statement
continue;
default: statement
dostatementwhile (expression);
expression;
for ([expression]; [expression];[expression])statement;
goto idemifier;
identifier : statemem
if (expression) statemem [else statement]

;,turn [expression];
switch (expression) statement
while Cexpression) statement

compound-statement:
{[declaration-list] [statement-list]}

declaration-list:
declaration
declaration- list declaration

(

Syntax Summary

statement-list:
statement
statement-list statement

B.5 Definitions

In this section (B.S), brackets enclose optional portions of the ayntax.

definitinn:
function-definition
data-definitinn

function- definition:
[sc-specifier] [type-specifier] declarator ([parameter-list])

[parameter-decs] compound-statement

parameter-list:
identifier
parameter-list , identifier

parameter-decs:
dec/aratinn
dec/aratinn-list declaratin n

data-definition:
declaration

B.6 Preprocessor Directives

In tbis section (B.6), brackets enclose optional portions ofthe syntax.

B - 11

C Language Reference

B - 12

directive:

#define identifier[([parameter- list])] [token-seq]
#elifrestricted-constant-expression
#else
#endlf
#lfrestricted-consltlnt-expression
#lfdefidentifier
#lfndefidentifier
#InClude <stri.Jtg>
#InClude string
#line digit-seq
#line digit-seq stri.Jtg
#undef identifier

token-seq:
token
token· seq token

restricted-constant-expression:
defined (identifier)
Any constant- expression except for sbeof expressions,
casts, and enumeration constants.

tenox
Typewritten Text

tenox
Typewritten Text

tenox
Typewritten Text

tenox
Typewritten Text
C User's GuideContents and Introduction Missing

tenox
Typewritten Text

Chapter 2

C C : A C Compiler

2.1 Overview 2-1

2.2 Filename Conventions 2-1

2.3 Thecc CommandLine 2-1

2.4 Command Line Options 2-2
2.4.1 Alphabetical List of Options 2-3
2.4.2 Everyday Options -c, -o, -LARGE 2-4
2.4.3 ListingOptions -S,-L,-Fa,-Fc,-Fl,-Fm,-Fs 2-5
2.4.4 Unker Options -1,-s,-F,-i,-SEG,-nl,-compat 2-6
2.4.5 PreprocessorOptions-I,-D,-P,-E,-EP,-C,-X,-u,-U 2-8
2.4.6 Optimization Optiol!S -0, -CSON, -CSOFF 2-10
2.4.7 DataA!igrunent Options-pack, -Zp1, -Zp2, -Zp4 2-11
2.4.8 DOS Cross Development Options -dos, -FP 2-12
2.4.9 Model and Segment Options-M,-ND,-NT,-NM 2-12
2.4.10 Compiler Pass Options -d, -z 2-15
2.4.11 OtherOptions -W, -w, -p, -K, -Fo, -V 2-15

2.5 Memory Models 2-17
2.5.1 ImpureSmal!Model 2-17
2.5.2 Pure Smal! Model 2-17
2.5 .3 Middle Model 2-18
2.5.4 Large Model 2-18
2.5.5 Huge Model 2-18
2.5.6 Huge Model Address Calcnlations 2-19
2.5. 7 Mixed and Hybrid Models 2-20
2.5 .8 Table of Pointer and Integer Sizes 2-21
2.5.9 Table of Default Names 2-21

2.6 Special Keywords 2-21
2.6.1 Thenear, farandhugekeywords 2-22
2.6.2 ThepascalandfortrauKeywords 2-23

CC: A C Compile.-

2.1 Overview

This chapter describes how to use the C compiler, cc. It describes filename
conventions, the command line, the many options, the com piling and link-

'� iogprocesses, the different memory model configurations, and the special
keywords.

Jt is assumed that you are familiar wit]l the C language and that you know
how to create C language programs using a text editor. The strocture and
syntax of C are explained in theXENlX C Language Reference. Jl you need
help with a text editor, see Chapter 2 of the XENIX User's Guide. For a
complete list and explanation of the messages produced by the C compiler
and link editor, see Appendix B of theXE NIX C User's Guide.

2.2 Filename Conventions

There are several kinds of files that can be put on the cc command line and
several kinds oUiles that are produced as output. cc assumes that the suffix
of afile'snameidentifies that file. A file whose name ends in '.c' is assumed
to be C source, and conversely, if a file contains C source, its name must
end in '.c'. Here are thefilenamingconventions thatcc follows:

I Tvu, • nfl?IIA
I r<o.

File
I Masm Source

ile
I f.lh.,rv File
I Prenroce«erl C Snnrce

A s��hlerListin�
I C Source Li<rlin�
, T.ink Man T.istin"

Snff'IX
.r.
.h
.s
.o
a
.i
.L
.S

�m•n

Include files are never put on the cc command line but the '. h' is still a con
ventional suffix. It stands for ''header" becanse include files are generally
put at the top (head) of C source files.

2.3 TheccCommandLine

The arguments to cc consist of files and options. The simplest command
would be:

cc t.c

ec translates the C source in the file t. c into object code, links it together
with the standard C library and produces an executable output file, named
a.outbydefault.

2 - 1

C User's Guide

To execute lhe program one simply enters:

a.out

cc invokes lhe compiler passes for each C source file and the XENIX ·'-
assembler, masm, for each assembly language source file. Files are pro-
cessed in the order that they are found on the command line. The cc and
masm commands iguore all object (. o) and library (.a) files until all source
files have been compiled or assembled.

Bolh the compiler and the assembler generate files with ' .o' suffixes. These
files contain relocatable object code. The object files have the same names
as the source files but different suffixea. When the compiler and the assem
bler have successfully completed their code generation, they pass control
to the link editor, ld. The link editor joins the object files with the library
files) resolves external references and outputs an executable file.

Another example:

cc -0 figure.c mach.s util.o -o calc -hn

The -0 option tells cc to "optimize" the generated code. The C source
figure.c will be compiled and the assembler source mach.s will be assem
bled. Assuming there are no syntsx errors, this invocation of cc will pro
duce two new object files named figure.o and mach.o. These two object
filea are linked together with util.o {from a previous cc) and the math
hbrary (-Im) to produce an executable output file. The -o option causes
this file to be named calc instead of a.out.

Following nonnal Unix conventions, if a single '.c' file is compiled and
linked at once, the �.a' file will be removed. If there is an environment vari
able named QUIETCC that is setto a non-null value, then ccwillnotecho
the filename when compiling a single '.c' file. If there are multiple source
files, the filename will still be echoed before each compilation is done.

2.4 Command Line Optinns

There are many options available to control the actions of cc. These are
presented in two formats. First, a table arranged in alphabetical order is
presented with a brief expinnation of each option. The options are then
arranged in functional groups with complete descriptions of their syntax
and use.

2-2

CC: A C Compiler

2.4.1 Alphabetical List of Options

-c

-c
-compat

-CSOFF

-CSON

Creates object modules but does not call the linker.
(2.4.2)
Preserves comments when preprocessing a file (only
valid when used with -P, -E, or-EP). (2.4.5)
Makes the executable output binary compatible
across several machines and systems. (2.4.4)
'>'<'hen used with -0, turns off common subexpres
sion optimization. (2.4.6)
When used with -0, turns on common subexpres
sion optimization. (2.4.6)

-d Shows the passes as they are executed. (2.4.10)
-Dname[=string] Defines name to the preprocessor. The value is

-dos
�E

-EP
-Fnum

-Fa[name]

-Fc[name]

-Fename
-B[name]

-Fm[name]
-Foname

-FPxx

-Fs[name]
-g

-i

-Jpat/mame

-K
-!name

-L

either string or 1 if "-string" is not given. (2.4.5)
Makes a program to run on DOS, notXENIX. (2.4.8)
Preprocesses each source file sending the result to
the standard output. Prepends a #line directive.
(2.4.5)
Same as -Ebutwithoutthe #line directive. (2.4.5)
Sets the size of the program stack. num is in hexade
cimal. (2.4.4)
Makes an assembly source listing in source.s. Con
tinues with the link. (2.4.3) In all of the -Fx listing
options the name of the listing file can be controlled
with name.
Makes a merged C and assembly listing in source.L.
(2.4.3)
Names the executable program file name.
Makes an assembly and object code listing in
source.L. (2.4.3)
Makes a link map listing in a.map. (2.4.3)
Renames the object file to name. Note that name is
required with this option. (2.4.11)
Controls floating point operations when used with
-dos. (2.4.8)
Makes a C source listing in source.S. (2.4.3)
Includes symbol information for sdb(CP). (Tbis is
equivalent to the -Zioption.)
Creates separate instruction and data spaces in small
model programs. (2.4.4)
Adds pothname to the list of directories to be
searched for include files. (2.4.5)
Removes stack probes. (2.4.11)
Searches library name for unresolved function refer
ences. (2.4.4)
Makes an assembly aud object code listing in
source.L. (2.4.3)

2-3

C User's Guide

-LARGE

-Mstring

-n

-NDname
-nl num

-NMname
-NT name
--o name

-O[stringl
-p
-P

-pack
-s

-S
-SEG

-u
-Udefinitinn
-Vstring

-w

-Wnum

-X

-z
-Zt
-Zpl, 2,4

Uses the large model passes. Available only on
machiues that support large model programs. (2.4.2)
Sets the memory model, word otder, data threshold,
machiue type, enables special keywords and non
ANSI extensions. string is a series of letters from
"smlh0123ebdt''. (2.4.9)
Sets pure text model. This is equivalent to the -i
option. (2.5.2)
Renamesthe data segmentto name. (2.4.9)
Restricts the length of external symbols to num.
(2.4.4)
Renames the module to name. (2.4. 9)
Renames the text segmentto name. (2.4.9)
Renames the executableoutputfile to name. Default
is a. out. (2.4.2)
Optimizes the generated code. (2.4.6)
Generates codeforprofiling. (2.4.11)
Preprocesses the C source putting the result in
source.i. (2.4.5)
Packs stmcture members. (2.4.6)
Strips the symbol table from the executable output.
(2.4.4)
Makes an assemblylistinginsource.s. (2.4.3)
Sets the maximum number of segments the linker
can handle to num. (2.4.4)
Removesailmanifestdefines. (2.4.5)
Removes the given manifest definition. (2.4.5)
Copies the string to the object file. Used for version
control. (2.4.11)
Suppresses warning messages from the compiler.
(2.4.11)
Sets the output level for compiler wamingmessages.
(2.4.11)
Removes lusrlinclude from the list of files to be
searched for #include files. (2.4.5)
Shows the passes but does not execute them. (2.4.10)
Includes information used by the symbolic debugger
(sdb)in the output file.
Options for data aligrunent consistent with different
processors (applies to 80386 processors only).
(2.4.7)

Z.4.Z Everyday Options -c, -o, -LARGE

The -c option creates a linkable object file for each source file but does
not link these files. No executable program is created. This option
suppresses the invocation of the !ink editor.

2-4

CC: A C Compiler

cc -c subr.c

The -o option allows you to specify an executable filename other than the

\ default filename, a.out.
___ .-

cc -o calc arith.c sqrt.c util.o

Thenewnamemaynotendin '.o'or '.c'.

If cc gives the error message "out of heap space", using the -LARGE
option may help. -LARGE tells the driver to use a different set of large
model compiler passes which may enable you to compile larger source
files. On machines that do not support large model programs the only
alternative is to split the source files in to smaller pieces.

cc -LAROE monster.c

Z.4.J Listing Options -S,-L,-Fa,-Fc,-FI,-Fm,-Fs

Assembly language listing files are used by programmers who wish to debug
their program with adb(CP). Since adb recognizes machine instructions
instead of the C source statements, an assembly language listing is helpful
for debugging.

The -S option creates an assembly source listing of the compiled C source
file and copies the listing to a file with a name the same as the source file but
with a ' .s' suffix.

cc -S bug.c

The -L option creates an assembler listing file contsiningobject code and
assembly source instructions. The listing is copied to a tile with a name the
same as the source file but with a '.L' suffiJ<.

cc -L hardbug.c

The -L option does not produce code suitable for assembly. It is provided
so the compilation can be stopped and the intermediate assembly source
studied.

The -Fx options (where X =a, e, 1, m or s) produce a variety oflistings.

2-5

C User's Guide

X Tvne ofListin" Default Sull'ix
a Assemhlv .s
c Meroed Assemblv and (Source .L
I A and Obiect Code .L

m Unlr�on .man
s r .s

All of the -Fx options can be called in the following ways to control the
name of thelistingfile:

For example,

cc -Felis! confusing.c

produces a listing file named "llst.L" containing the generated llllsen:tbly
code interleaved with the C source.

-Fa and -FI produce the same listings as -S and -L respectively. The
difference is that -S and -L stop after producing the listings and do not -�
callthelin.ker. -Fa and -FI willcontinne on to call the lJnker.

In all the listing files, the names of globally visible functions and variables
begin with an underscore. This is important to keep in mind when writing
assembler programs that interface with C code.

JI you request optimization with -0, the listing files will reflect the optim
ized code. Since optimization involves rearrangement of code, the
correspondence between your C source and the generated code may not be
clear. This is especially true with the -Fe option where the C source is
int9"leaved with the generated assembly code.

2.4.4 LinkerOptions -J,-s,-F,-i,-SEG,-ul,-compat

The options in this section have no effect unless cc will becallJngthe lin.ker.
JI the -c option is given, the linker is not called and these options will be
ignored.

The -1 optinn causes the specified library to be searched for unresolved
references to functions. A library is a convenient way to store a large col
lection of object files. The XENIX system provides several libraries, the
most important of which is the standard C library. Functions in this library
are automatically linked to your program wheneveryouinvoke the cc com
piler without the -c option.

2-6

()

CC: A C Compiler

Library files in the command line are examined only if there are unresolved
external references encountered from previous ()bject files. Library files
must have been processed with ranlib(CP). For information on the library
format, see ar(F) and the XENIX C Library Guide.

The cc command does not search a library until it encounters the -1
option, so the placement of the option is important. The option must fol-
19W th� nam�s ofany so�e files containing calls to functions in the given
library. Note that the name provided with the -1 option comprises only a
partofthe actuallibrary name. Thus,

cc backgammon.c -!curses

would cause the library /lib/Siibcurses.a to be searched. The 'S' stands for
"small" and denotes thememocy modeL It would be 1M' or'L' if the -Mrn
or -Mloptions were used. cc first looks in /lib for the requested hbrary. If
it is not there it checks lusr/lib. If it is not there either, ce stops and does
not call the tinker.

The size of an executable file can be reduced by using the -s option to strip
the symbol table leaving only object code. The symbol table contains
information about code relocation and program symbols. The debugger
adb uses the symbol table to look up symbolic references to variables and
functions when debugging. The information in this table is not required for
normal execution and can be removed when the program has been com
pletely debugged.

The command strip(CP) may also b e used to strip the symbol table.

cc -s secret.c

The -F option allows you to set the size of the program stack to num bytes.
The program stack is used for storage of function parameters and
automatic variables. This option is passed to !be link editor. Note that the
stack size is given in hexadecimal. This option does not apply to the 80386,
which has a variable stack.

cc -F 2000 okay.c

On 286 machines the stack size defanlts to 1000 (hexadecimal). On 8086
machines the defanlt is a variable stack. This means that the stack size
starts at the top of a full 64 Kbyte data segment and grows down until it
reaches data. This is usefnl for program development but once a program
is debugged, performance can be eubanced by fixing the stack size. A
sufficient stack size must be anticipated before the compilation of the pro
gram.

The -i option creates separate instruction and data spaces for small model
programs. When the output file is executed, the program text al)d data
areas are allocated separate physical segments. The text portion is read-

2-7

C User's Guide

only and may be sbared by all users executing the file. This option is
implied when creating middle or large model programs. This option is
passed to the link editor.

cc -i small.o

The -SEG option on ec sets the maximum number of segments that the
linker can handle. This number defaults to 128 and can be as large as 1,024.
If 1,024 is too small use the -NT option to reduce the number of different
segment names.

cc -SEG 800 aa.oab.o ... zz.o

The -nl option sets the maximum length of external symbols to num.
Names longer than num are truncated before being copied to the external
symboltable.

cc -nl 10 trunk.c

The -compat flag is used to create a program that is binary compatible
one which can be run, unchanged, on any of these systems:

XENIX-286 System V
XENIX-286 3.0
XENIX-8086 System V

It is a linker flag because it effects the values in the :x.out header and the
searching of special libraries. Note tbat using any options other than ·MO
will guarantee incompatibility on 8086 processors.

2.4.5 PreprocessorOptions-I,-D,· P ,. E,-EP ,. c,.x,- u,· U

The C compiler invokes the C preprocessor m its first pass. The preproces
sor manipulates the contents of a source file prior to compilation.

The preprocessor recognizes a number of directives embedded in the text
of the source file. These directives are frequently used to make a program
capable of compiling in a number of different execution environments.

Directives in the source file instruct the preprocessor to perform specific
actions. For example, the preprocessor can replace tokens in the text,
insert the contents of other files into the source lile before compilation,
and suppress compilation of a portion of the file. For a detailed descrip
tion of preprocessor directives (and instructions on their uses), see the
XENIX CLanguage Reference.

The -I option adds the specified pathname to a list of directories to be
searched when a #include directive is processed. If an included file cannot

2-8

CC: A C Compiler

be found in the directories in this list, directories in the standard list
(/usr/include, /usr/lib, current directory) are searched.

cc -I/usr/stefanis charlie.c

The -D option defines a name to the preprocessor (as if defined by a
#define directive in the source). This sets the value of name to 1. It is also
possible to set the value of name to a given string.

cc -DWHITE-345 colour.c

The -P option preprocesses the source file and copies the result to a file
'With thesamenamebutwith a'' .-l'' suffix.

The -E option is similar to the -P option except that the result is directed
to the standard output. Jn addition, a #line directive (with the current
input line number and source file name) is placed at the beginning of the
output for each file. If the output is recompiled, the #line directive ensures
that the line numbers and filenames are correct in error messages.

The -EP option works in the same fashion as the -E option but does not
insert #line directives.

The -c option instructs the preprocessor to preserve comments in the
source. It may only be used in conjunction with the -P, -E and -EP
options.

The -X option removes the standard directories from the list of direc
tories to be searched for #inclul)e files.

There are several "manifest defines" which the preprocessor defines for
you. They relate to the type of cpu, the operating system, and the model
configuration. They all begin with "M_" for ��manifest":

M.J86
1\UffiNJX
M..SYS3andM..SYSm
M..SYS5 andM..SYSV
M.JliTFIELDS
M..WORDSWAP

M..JEQ86, MJ186, MJ286, orMJ386
M.J86SM, M.J86MM, or M.J86LM
M..SDATA or M..:LDATA
M..STEX'f or M..LTEXT

This is an Intel processor.
ThisisXENIX.
Unix System ill compatible.
Unix System V compatible.
This compiler supports bitfields.
Tbe word�within-a-longword order is
swapped witbrespecttothe DECPDP11.
D�pendingon -MO: -Ml, -Mlor -M3.

The last3 lines depend on the memory model set by-M[smJ].

2-9

C User's Guide

The -u option excludes (undefines) all of these manifest defines. To
undefine a specific one, nse the -u option:

cc -UM..XENIX dos.c

-U will only undefine manifest constants. It cannot be used to counteract
a #define within the source.

2.4.6 Optimization Options -0, -CSON, -CSOFF

The -0 option causes the compiler to reduce the size of the object file by
deleting, moving or simplifying instruction sequences. The resulting
object file is usually smaller and faster.

This option applies to source files only; existing object files (.o files) cannot
be optimilled with this option. The -0 option must appear before the
names ofthe files that you wish to optimille.

The syntax of the option is as follows:

·Ostring

The following string arguments are available with the - 0 option:

a Reduces restrictions on aliases.
c Eliminates common expressions (386 only).
d Default. Disables opthnlzation.
I Performs various loop optimizations. Note that some pro

grams do not benefit from loop optimillations, but become
larger (386 only).

s Opthnlzes code for space.
t Default. Opthnlzes codeforspeed. Equivalentto-0.
J< Performs maximum optimization. Equivalent to -Otacl.

Note

The -Oc and -OJ options can be used only with the-�3option.

Although optimization is very useful for large programs, it should be used
with caution. Once source code has been optimized, the control flow can
be very difficult to follow, making debugging difficult.

In the following examples, the - Oca option instructs the C compiler to
eliminate common expressions and relax alias checking in the generated
code. The . Os option instructs the C compiler to optimize generated code

2 - 10

(
\

,�
I

CC: A C Compiler

for space. The • Otacl option instructs the C compiler to perform max
imum optimization on the generated code. The code is optimized for
speed, alias checking, common expressions, and loops.

Examples

cc -Oca filename.c
cc -Os filename.c
cc �Otacl !ileriame.c

In addition, the options -CSON and -CSOFF perlorm two similar func
tions. -CSON can be used to eliminate "common subexpressions.11
-CSOFF turns this option off. These have an effect only in conjunction
with -0. The default is -CSOFF for the small model passes and -CSON
for the large (with -LARGE). If one is having trouble compiling a large
program because of suspected bugs or lack of heap space, turning optimi
zation off by omitting -0 may help. An intermediate step would be to use
-CSOFF to make !be optimization simpler.

2.4. 7 Data Alignment Options -pack, -Zpl, -Zp2, • Zp4

When storage is allocated for structures,. structure members larger than a
char are ordinarily stored he ginning at an in! boundary. To conserve space
you may want to store your structures more compactly. The -pack option
causes structure data to be "packed" more tightly into memory. This
option is also useful when you want to read existing packed structures from
a data file. When you use the -pack option, each structure member (after
the first) is stored beginning at the first available byte, without regard to int
boundaries. On most processors, using this option results in slower pro
gram execution because of the time required to unpack structure members
when they are accessed.

cc -pack toobig.c

Only the -pack option is available with -MO, -Ml or -M2. With the
-M3 option, the -Zpl, -Zp2 and -Zp4 options are also available. On
80386machines, -pack is equivalent to -Zpl.

Rules for Structure Packing with Zp 1, Zp2, Zp4

Zpl

Zp2

Rule: No special alignment of structure members takes
place.
Rule: All structure members are aligned so that their offset
within the structure is a multiple of2.

Exceptions: char and unsigned char types and arrays of
these types are not aligned.

2-11

C User's Guide

Zp4 Rule: AU structure members are aligned so that their offset
within the structureisamultiple of4.

Exceptions: char and unsigned char cypes and arrays of
these cypes are not aligned.

Short and unsigned short cypes and arrays of these cypes are
aligned so that their offset within the structure is a multiple
of2.

Structures whose members consist only of char, unsigned
char, short and unsigned short cypes and arrays of those
cypes are aligned so that their offset within the structure is a
multiple of2.

All other structures are aligned so that their offset is a mul1i
pleof4.

2.4.8 DOS CrossDevelopmentOptions -dos, -FP

The XEI\'IX C compiler is capable of compiling programs that will execute
in the DOS environment.

The -dos option instructs the compiler to use a different set of libraries ·.,
(fromlusrllibfdos) and a different linker(dosld(CP)). Note that programs
compiled with -dos will not run in the XENIX environment. ManyXENIX
system calls are not supported in DOS.

There are a variety of -FP options that can be used along with -dos to
control fioatiog point operations. For more information on -FP and on
DOS cross-development in general, seeAppendixA, "XENIXto DOS: A
Cross-Development System," in the XENIX C Library Guide and A ppen
dixA, "CLangnage Portability," oftheXENIX CUser's Guide.

2.4.9 ModelandSegmentOptions -M,-ND,-NT,-NM

The -M option sets the program confignration. This confignration
defines the program"lUllemory model, word order, and data threshold. It
also enables C language enhancements such as the use of the full 286
instruction set and special keywords. For a discussion of memory models
see section 2.5.

cc -Mstring special.c

The string contains the argument that defines the confignration. It may be
any combination of the following (though s, m, l, h are mutually exclusive):

2-12

CC: A C Compiler

s Create a small model program. This is the default.
m Create a middlemodelprogram.
l Create a largemodelprogram.
h Create a huge model program.
e Enable the keywords: far, near, huge, pascal and fortran.

See section 2.6. Also enables certain non-ANSI extensions
necessary to ensure compatibility Wl.l!h existing versions of the
C compiler (applies only to compiler versions that support
features of ANSI C).

0 Use only 8086 instructions for code generation. This is the
default on 8086/80186/80286 systems.

1 Use the extended 80186 instrnction set.
2 Use the extended 80286instrnction set.
3 Use the extended 80386 instruction set. This is the default on

80386systems.
b Reverse the word order for long types, putting the high order

word first. The defaultis the low orderword first. tnum Causes all static and global data items whose size is greater
than num bytes to be allocated to a new data segment. Num,
the data "threshold" defaults to 32,767. This option can only
be used in large model programs (-Ml). Its main use is to
move data out of the near data segment to allow room for the
stack.

cc -MJ -Mt12 recursive.c

d Do not assume (during compilation) that the registers SS and
DS will have the same contents at run-time. Warning: This
option has no library or runtime support on XENIX. It will not
cause the stack to be put in a separate segment. It may be of
use for DOS cross development.

Note

The m, I, h, b, t, or d arguments are compatlble only with the - MO,
-Ml, or . M2 option. Thes, and e arguments are compatible with - MO,
·Ml, ·M2,or-M3.

"Module" is another name for the object file created by the C compiler.
Every module has a name, and the cc command uses this name in error
messages if problems are encountered during linking. The module name is
usually the source :file's name (without the cr.c" or ".s" extensio:o). This
name may be altered with the -NM option.

2-13

C User's Guide

Changing a module's name is useful if the source file being compiled is
actually the output of a program preprocessor and generator, such as
Iex(CP)oryacc(CP).

A "segment" is a contiguous block of binary code produced by the C com
piler. Every module has two segments: a text segment containing the pro
gram instructions, and a data segment containing the program data. Each
segment in every module has a name. This name is used by cc to define the
order in which the segments of the program will appear in memory when
loaded for execution. Text segmentshavingthe same name are loaded as a
contiguous block of code. Data segments of the same name are also
loaded as contiguous blocks.

Text and data segment names are normally created by the C compiler.
These default names depend on the memory model chosen for the compi
lation. For example, in small model programs the text segment is named
"_TEXT,., and the datasegment is named "_DATA". These names are the
same for all small model modules, so all segments from all modules of a
small model program are loaded as a contiguous block. In middle model
programs, each text segment has a different name. Inlargeandhuge model
programs, each text and data segment has a different name. The default
text and data segment names for middle and inrge model programs are
given in HDefaultNames."

You can override the default names used by the C compiler (and override
the default loading order) by using the -ND and -NT options. These
options are useful in middle and large model programs where there is no
specific loading order. In these programs, contiguous loading for two or
more segments is guaranteed bygivingthesegments the same name.

-NDname

-NT name

-NM name

Set the data segment name for each compiled or
assembled sourcefileto name. If not given, the name
"...DATA" is used.
Set the text segment name for each compiled or
assembled source file to name. If not given, the name
"module_TEXT" is used for middle and large model
and "_TEXT" for small model.
Set the module name for each compiled or assem
bled source file to name. If not given, the filename of
each source file is used.

The -NT option is recommended only when there are so many different
text segments that the -SEG linker option is insufficient.

The -ND option is recommended only for large model programs. If your
program requires extra data space, collect all of the global data declara
tions and put them in a single '.c' file that ill compiled with -ND. The
modules compiled with -ND should only contain data. If a module com-

2-14

(\
\ j

-..._/

CC: A C Compiler

piled with -ND contains code, then the value of the DS segment register
may be reloaded with the values for the module data.

2.4. 10 Compiler Pass Options -d, -z

The cc command is actually a driver program which executes a series of
compiler passes,. p!}rhaps an assembler pass, and a linker. It collects the
various options and Jiles on its command line and distnlmtes them to the
proper pass or to the linker. The XENIX C compiler is conceptually a
four-pass compiler. The function of the various compiler passes is out
lined below.

Pass 0
Pass zero of the compiler is commonly termed the pre-processor. It han
dles file inclusion� macro expansion and text substitution, and allows you
to define constructs for conditional compilation.

Pass 1
Pass one of the compiler is called the parser. It performs two functions: (1)
building a context-free grammar tree to pass to P2; and (2) constructing a
symbol table.

Pass 2
Pass two generates code. It walks the grammar tree constructed by pass 1,
applies semantic rules to each syntactic construct, and produces the binary
code indicated by the semantic rules.

Pass 3
The third pass provides post-generatinn optimization. It analyzes the code
generated by pass 2 and applies optimization rules to alter the code for
better performance (e.g. elimination of redundant code, rearrangement,
etc.). It creates the object code and outputslistiogfiles (if requested).

Note that when the -LARGE option is used, ffi and Pl are combined into
a single pass.

The -d option displays the various passes and their arguments before they
are executed. The -zoption shows the passes but does not execute them.

2.4.11 OtherOptions -w, -w, -p, -K, -Fo, -V

The -wand -W options set the level of waming messages produced by the
compiler. These options direct the compiler to display messages about
statements that may not be compiled as the programmer intends. Warnings
indicate potential problems rather than actual errors.

The -W option will allow arguments i:n the range of 0,1,2,3. The default is
1. The higher option levels (3, 2) are especially useful in the earlier stages of

2-15

C User's Guide

program development when messages about potential problems are most
helpful. The lower levels (1,0) are best for compiling programs whose
questionable statements are intentionally designed.

0 No warning messages are issued.
1 Only warnings about program structme and overt type

mismatches are issued.
2 W a:rnings about strong typing mismatches are issued.
3 W a:rnings for all automatic conversions are issned.

The -W option does not affect the output of error messages.

cc -W3 problem.c

The -w option prevents the compiler from issuing warning messages.
Using the -woption is the same as using -WO.

cc -w ignore.c

The -p option adds code for program profiling. Profiling code counts the
number of calls to each routine in the program and copies this information
to the ttWn.out file. This file can be examined using the prof(CP) com
mand.

You can reduce the size of a program by removing all the stack probes with
the -K option. A stack probe is a short routine called by a function to
check the program stack for available space. Probes are not needed if the
program makes very few function calls or has well known stack usage.
Code generated for the 80386 processor does not require stack probes;
therefore, this option has no effect if -M3 is specified.

Although this option, when combined with the -0 option, makes the
smallest possible program, it should be used with discretion. Removing
stack probes from a program where the stack use is not well known can
cause execution errors.

cc -K we!Ltested.c

The -Fo option can be used to change the name of the object module from
its default source.o. This is useful if the source file is actually the output of
a program generator such aslex(CP) oryaee(CP).

lex tokenize.J
cc -;; -Fotokenize.o lex.yy.c

2-16

f\ . '

CC: A C Compiler

The -V option is useful for version control. It simply copies a string to the
object file. This string may have any value and should be chosen to identify
the version of your program.

cc -V 2.1.3 help.c

2.5 Memoey Models

ce can create programs for four different memory models: small, middle,
large and huge. In addition, small model programs may be either pure or
impure and memory models maybe mixed (nnd er limited circumstances).

The following sections describe the characteristics of the various memory
models and the options that allow you to manipulate them.

�(Text" refers to the code portion of the program, udata" refers to the data
portion oftheprogram.

Note

The only memory model supported for 80386 code is pure small model.
All models are supported for86/286code.

2.5.1 Impure Small Model

An "impureH program is one in which both text and data occupy the same
physical segment. Impure programs can be created for the 8086, 80186 or
80286 processors. There are no impure 80386 programs. The maximum
program sizeis 64K. ec creates impure small model programs by default on
8086/80286 system;;. They can also be created using the -Ms option.

2.5.2 Pure SmaD Model

A "pure" program is one where text and data are in separate segments. The
text is read-ouly and may be shared by several processes at once. On
8086/80186/80286 processors, the maximum program size is 128K (64K
code + 64K data). On the 80386 processor, the maximum program size is 8
gigabytes (4G code plus 4G data). Pure small model programs are created
using the -I option. In this context -i stands for "instruction" rather than
"impure". This is the default on 80386 systems.

2-17

C User's Guide

2.5.3 Middle Model

These programs occupy several physical segments, but only one segment
contains data. Text is divided among as many segments as required. All
calls default to long calls because this model spans more than one segment.
Text can be any size. The data must not exceed 64K. Middle model pro
grams are created using the -Mm option. These programs are always pure.

2.5.4 Large Model

These programs occupy several physical segments with both text and data
in as many segments as required. All calls default to long calls. Special
addresses are used to access data in other segments. Text and data may be
any size, but no data structure oritem maybe larger than 64K. Large model
programs are created using the -Ml option. These programs are always
pure.

The special calls and returns used in middle- and large-model programs
may affect execution time. fu particular, accessing data can cause
significant performance degradation in the large and middle models. The
degradation of access time is roughly 10 to 50 percent. Middle-model pro
grams require approximately 10 percent more time, and large- and huge
model programs require approximately SO percent more time.

fu middle, large and huge model programs, function pointers are 32 bits
long. fu large and huge model programs, data pointers are 32 bits ion!!:
Programs making use of such pointers must be written carefully to avo1d
incorrect declaration and use of these variables.

2.5.5 Huge Model

Huge model programs occupy several segments with both text and data in
as many segments as necessary. fu small, middle, and large models, data
constructs cannot span segments. The maximum size is that of the seg
ment, 64K. With the huge model option, -Mh, it is possible to circumvent
this limitation.

For the purposes of this discussion, an "item" is defined to be those data
constructs that can be elements of an array: integers and floating point
numbers� structures, and unions�

The huge model implementation is necessarily a compromise - the run
time cost of executing the code necessary to reference items divided across
data segments would be prohibitive. Hence, the huge model implementa
tion has thefollowinglimitations:

2-18

/�' . :
'"----'' /

CC: A C Compiler

• An item must be contained within a 64Ksegment (it must not cross
a segment boundary). This means that the address of an item may
be used to access any part of the item.

• Each groul' of segments allocated to an array is 64K bytes long. An
exception 1s the segment allocated to the highest part of the array,
which may not be fully used.

• The segments must be contiguous. On a processor running in
�·r,�'; or "unpro�cted'; mode (e.g. when running DOS) this
means that the 64K segments must be contiguous in physical
memory. On a processor running in protected mode (e.g. XENIX
286 or 386 running 286 code), this means that the segments must
have contiguous LDTentries.

There are several consequences of these limitations. No structure or union
can be greater than 64K. If an array is greater than 64K but less than 128Kit
can be offset within a segment to ensure that the elements ali� to the 64K
boundary. ll the array requires three or more segments, the s= of the ele
ments in the array must be a power of two. This is always true for scalar ele
ments; composite elements that do not comply are flagged by the compiler
and the user must pad them appropriately.

2.5.6 HugeModelAddress Calculations

There are two ways that you may force huge address calculations: discrete
arrays or pointers can be declared as huge (keywords or attributes); or all
addressing can be declared as huge (huge model).

The arithmetic of huge addresses involves some special considerations.
There are pointer increment/decrement operations to add/subtract one
element size to a pointer. There are static address calculations (static array
indexing). Finally, there are based address calculations such as a pointer to
a structure element and indexing into an array on a stack frame. Each of
these involves arithmetic that requires adjustment of the selector portion
of the address.

While huge and large pointers have the same dimension, they are used
differently in addressing memory. Only the low order (the first 16) bits of
the large pointer are used. They reference the offset within the segment and
arithmetic calculations are done only on them. The high order bits refer
ence the segment location. In huge model pointers, arithmetic is done on
all 32 bits. This is necessary because huge data constructs are now capable
of spanningsegments.

The C compiler produces object code that will link on both DOS and on
Xh"NIX. The selector portion of an address is different for these two
operating systems, but the compiler produces a canonical sequence of
instructions that are adjusted during linking to run correctly in each
environment.

2 - 19

C User's Guide

There are two more issues that the huge model must address: the value pro
duced by:

sizeof(huge_item)

and the resultant type of:

huge_ptr1 - huge_ptr2

The sizeof operator presents a problem beeause sizeof a huge item
requires a long lnt for full representation, but sizeofis normally an inL

In ordernot te maintain the integrity of the language, s izeofremalns an Int.
However�

(long) sizeof(huge_jtem)

produces thecorreet value. The same arguments apply to the difference of
two pointers.
The general case that:

sizeof(ptrl-ptr2)- sizeof(int)

is still true. However,

(long) (huge_ptrl- huge_ptr2)

produces the correetvalue.

This is a technical departure from "standard" C, but this method produces
the fewest errors when existing eodeis compiled as a huge model program.

1.5.7 MlxedandHybrldModels

A "mixed" model program is a program in which some modules are com
piled as one model and other modules are compiled in ad(fferentmodel. A
"hybrid" model is a program that is compiled as ouly one model but which
has specific elements (functions or data) that are addressed using the filr
keyword.

In most circumstances, it is neither possible nor advisable to mix memory
models. In general, if memory models are mixed, hbrary support is not
available. Each model has its own library. Normally, cc automatically
selects the correct small, middle, large and huge versions of the standard
libraries based on the configuration option specified.

Mixing models means that any call to a library routine or function will be
likely toresultin type mismatches.

2-20

CC: A C CompUer

The more common and useful practice is to create a hybrid model pro
gram. For example, a large, but infrequently used, array of error messages
can be placed in a different data segment freeing a good deal of dynamic
heap space. This array would be referenced witl1 a far or huge pointer.
This hybrid model would run much more efficiently. See section 2.6.1 for a
discussion of the far keyword.

2.5.8 TableofPointerand IntegerSizes

The following table defines the sizes (in bits) of text and data pointers and
of integers (int type) io each memory model.

Model Data Pointer Tex!Poinfl>r
Small 16 16 16
Middle 16 32 16
Larre 32 32 111

I Rune 32 12 16

(· �) 2.5.9 TableofDefaultNames

I
' '
__..)

The following table lists the default text and data segment names, and the
default module name, for each object file.

Mc>del Text Data Module

Small _TEXT _DATA fi]ena11UJ

Middle module_ TEXT _DATA filena11UJ

I Large module_TEXT _DATA filename

Huge module_TEXT _DATA filena11UJ

2.6 SpecialKeywords

The special keywords are enabled by thee argument to the -M option on
the cc command fine. The use of the keywords: near, far and huge occurs
in programs that require more than one segmentforeithertextordata. The
use of the keywords pascal and fortran is necessary when including rou
tines compiled with the Pascal or FORTRAN calliog protocol or when
compiling a routine as if it were Pascal or FORTRAN.

2-21

C User's Guide

2.6.1 Thenear,farand hugekeywords

The near, far and huge keywords are special cype declarators that make it
possible to address items in segments other than the one in which the pro- \"
gram is resident. The near keyword defines an item with a 16-bit address.
The far and huge keywords define an item with a full :32-bit segmented
address. Any data item, construct, or function can be addressed.

The keywords override the normal address length generated by the com
piler for variables and functions. In small model programs, far allows
access to data and functions in segments outside of the near seF.enl. fu
middle and large model programs, near allows access to data Wlth just an
offset. fu all programs, the huge keyword allows you to access an array that
spans data segments and that is outside the near segment.

The examples in the following table illustrate the far and near keywords as
used in declarations in a small model program. It also gives the size in bits
of the address and the value and thecype ofthevalue.

Uses of 8086/80186/80286 near and far Keywords

Declaration Size of Address Size ofValue Type ofValue

charc; 16 8 data
charfard; 32 8 data
char"'P; 16 16 near pointer
charfar*q; 16 32 far pointer
char* farr· 32 16 near pointer Ill
char far • far s; 32 32 far pointer [2]
intfooO; 16 16 integer function
intfarfooO; 32 16 intege:r_ function [3]

Notes:
[1]

[2]
[3]

This example of a near 16 bit pointer which may lie in a far data
segment is unlikely to be useful; it is shown for syntacti<; com
pleteness only.
This is similar to accessing data in a large model program.
This example leads to trouble in most environments. The far
call changes the CS register, and makes run time support una
vailable.

The following example is from a middle model compilation:

intnear fooO;

This allows a near call (to the routine foo) in a program where calls are nor
mallyfar.

2-22

CC: A C Compiler

If you are using one of the keywords it would be advisable to check the type
of items in separate source files as the compiler does not do this.
If the -M3e option is used, the near keyword can address items in the pro
gram segment itself and the far keyword can address items in segments
other than the one in which the program resides. The near keyword
defines an item with a 32-bit address (relative to DS). The far keyword
defines an item with a 48-bit address. Any data item, construct, or func
tion can be addressed.

These keywords override the normal address length generated by the com
piler for variables and functions. In pure-text small-model programs, far
lets you access data and functions in segments outside the PATH and
DATA segments.

The examples in the table that follows show near and far keywords used in
declarations of pure-text small- and mixed-model programs configured
with the- M3eoption:

t This qample is altown far syntactic completen=ss only.

tt Resembles acce!llling data in a luge-mo-del program
ttt "''hi!! example c:«mtell problems in most environments. 'l'b<: ia:r call changes the CS regiuer, and roUes nm�
timewpportuptw.ailehle.

2.6.2 Tbepascalandfortran Keywords

The pascal and fortran keywords may be considered syconymous. Both
invoke the the PLM protocol. Only the pascal keyword is discussed here.

Use tbe pascal keyword te either (1) call routines compiled with the PLM
protocol, or (2) compile subroutines with the PLM protocol.

2-23

C User's Guide

There are a number of items of special interest to assembly language pro
grammers:

• Any external Pascal identifiers are mapped to uppercase and not \,
prefaced by underscores (_). This is true for both global variables
and function or procedure names.

• In C, the compiler must readjust the slack pointer after making a
call to a routine. In Pascal, this is not necessary. All Pascal routines
readjust the stack before they return.

• Conventions for returning floating point numbers and structured
items dilfer between C and Pascal. In C, the return value is stored
in a register from which the calling routine retrieves the return
value. In Pascal, space is reserved on the stack for this return value
and a near pointer to itis passed as a hidden parameter.

• The protocolfor passing parameters differs between C and Pascal. In C the number of parameters is not fixed; the C compiler pushes
the parameters from right to left. In Pascal, since the number of
parameters is fixed, the PLM protocol dictates that the parameters
are pushed from left to right.

Use the -S option to generate an assembly listing if you need to understand
exactly what code is being generated.

2-24

C hapter 3

ld : the XENIX Link Editor

3.1 Introduction 3-1

3.2 Using the Link Editor 3-1

3.3 Link Editor Options 3-1

3.4 The Executable Object File 3-3

3.5 Communal Variable Allocation 3-4

3.6 Pointer and Integer Sizes 3-5

0
3.7 Segment and Register Sizes 3-6

0

ld: the XENIX Link Editor

3.1 Jntroduction

'\ The XENIX link editor, ld(CP), is a companion tool to both the C com-
' piler, cc, and the macro assembler, masm(CP).

ld creates executable files by combining object modules and resolving
external references. The inputs to ld are relocatable object files produced
byth., C compiler or the macro asseml:>ler,

For a synopsis of the information presented in this chapter, we refer you to
the ld page in theXENIX Reference.

3.2 UsingtheLinkEditor

The link editor is invoked with the followingform:

ld [options] filename! fUename2 .. ,

where options are of the form described in the next section, and fUename
must be eifber an object file or an archive library coptaining object files.

Input object files and archive libraries of object files are linked together to
form an executable file. If there are no unresolved references encountered,
this file will then be made executable.

Objectfiles have the form name.o throughout the examples in this chapter.
The names of actlli!l input object files need not follow this convention .

Ifyou merelywanttolink the objeet filesjileJ.o andfile2.o, fben the follow
ing command is sufficient:

ld filel.o file2.o

No directives to ld are necessary. If no errors are encountered during the
link edit, the output is left on the default file a. out.

3.3 LinkEditorOptions

Input object files are linked in the order in which they are encountered.
Options may be interspersed wifb filenames on the command line. The
ordering of options is not significant.

All options for ldmust be preceded by a dash (-) on !held command line.
Options that carry an argmnent are separated from that argument by white
space (blanks or tabs). Followingis a summary of all the available options.

3-1

C User's Guide

-A num

-B num

-c num

-c

-D num
-F num

-i

-m mapjile

-Mx

-N pagesize

-n num

3-2

Creates a stand-alone program whose expected load
address (in hexadecimal) is num. This option sets the
absolute fiagin the headerofthea. outfi!e. Such pro
gram files can only be executed as standalone pro
grams.
Set the text selector bias to the speciiic hexadecimal
number.
Alters the default target CPU in the x.out header.
num can be 0, 1, 2, or 3 indicating 8086, 80186, 80286
and 80386 processors respectively. The default on
8086/80286 systems is 0. The default on 80386 sys
tems is 3. Note that this option only alters the
default. If object modules containing code for a
higher numbered processor are linked, then that will
take precedence over the default.
Ignore case when matching symbols. Normally, the
link editor is case-sensitive.
Set the data to the speciiic hexadecimal number.
Sets the size of the program stack to numbytes where
num is hexadecimal. In programs configured with
the -MO, -Ml, or -MZ option, this option changes
the default stack size of 1000 bytes (hexadecimal) to
num bytes (hexadecimal). In programs configured
with the -M3 option, the size of the stack is automati
cally controlled by the 80386; the -F option is not
needed in this case. The -F option is incompatible
with the -A option.
Creates separate instruction and data spaces for
small model programs. When the output file is exe
cuted, the program text and data areas are allocated
separate physical segments. The text portion will be
read -only and shared by all users executing the file.
Instructs the link editor to produce a mapfile which
contains a description of all the segments in the exe
cutable file as well as listings of all public symbols and
theirvalues (sortedbybothnameand value).
Informs the link editor of the nature of the memory
model. The model, x, may be s (small), m (middle), 1
(large), h (huge), or e (mixed). The arguments s, m,
and I are mutually exclusive.
This option forces the alignment of each segment to
pagesi:t.e (should be a multiple of 512) boundaries
within the linker output file. The default is 1024 for
80386 programs. 8086/80186/80286 programs do not
normally have page-aligned x.out files and the
default fortheseisO.
Instructs the link editor to truncate all symbols to a
length equal to the llpecified num.

-o name

-P

-r
-Rx num

-srelocating

-s num

-u symname

-v num

ld: the XENIX Link Editor

Produce an output object file named name. Over
rides thedefault object file name, a.out.
Do not pack segments. Nonnally, the link editor
attempts to pack all logical segments that do not have
a group association into the same physical segment.
This switch disab Jes packing.
Produces arelocatable object module as output.
This op�i�m is used in conjunction with the .. M3s
option. -Rd is used to relocate a data segment
specfied by the num argument and is added to tile
final target value of data fixups. -Rt is used to relo
cate text segments. The default for both data and
text segments is 0. (This option applies only to tbe
80386.)
Instructs tile link editor to strip the line number
entries and tile symbol table information from tbe
output object file.
Sets the maximum number of segments allowed 'to
num, which must be <1024. The default maximum is
128.

-

Enter symname as an undefined link editor symbol in
the symbol table. This is useful for loading entirely
from a library, since initially the symbol table is
empty and an unresolved reference is needed to
force tile loading of the first routine.
Takes the specified number as a decimal version
number identifying the a.out that is produced. The
version stamp is 2� 3, or 5 for the XENIX version and
is stored in the system header.

3.4 The Executable ObjectFile

Object files are produced both by the assembler (typically as a result of
invoking tbe eompiler) and by ld. ld accepts reincatable object files as
input and produces an output object file.

Files produced from tile compiler/assembler always contain three seg
ments, called _TEXT, J)ATA, and_BSS . The_TEXT segment contains
the instruction text (e.g. executable instructions), the J)A TA segment
contains initialized data varinbles, and tbe _BSS (blank static storage) seg-

3-3

C User's Guide

ment contains nninitialized data variables. The following program frag
mentwill serve to illustrate:

int i - 100;
char abc[200];

mainQ
{

abc[i] =0;
}

/* initialized variable*/
I* nninitialized variable */

I* assignment */

Compiled code from the assignment would be storedin_TEXT . The vari
able i would be located in ..DATA , and the uninitialized string of charac
ters, abc would be located in the_BSS segment.

There is one exception to this rule: both initialized and uninitialized statics
are placed into the ..DATA segment.

3.5 CommunalVariableAilocatinn

A communal variable is an uninitialized global variable. The link editor
follows a number of rules in allocation of communal variables. They are as
follows:

H there are multiple communal variables of the same name
defined, the link editor chooses the length of the largest definition
and allocates that amount of space in theC_COMMON segment.

H there is a definition of the variable that is initialized (a public
definition), it takes precedence over all communal definitions
and the link editor allocates the length specified by the PUBDEF
in the..DATA segment.

H there is more than one public definition the link editor gen
erates an errormes.•age saying that the symbol is multiply defined.

The following example illustrates these rules. Suppose that you link the fol
lowing three modules, containing these global declarations:

A: char headr[512];
B: charheadr[128];
C: char headr[256];

The link editor recognizes all three object modules (A,B,G) as containing
declarations for headr - an uninitialized array. ld chooses the definition in
module A as the largest of the three and allocates 512 bytes for headrin the
c_coMMON segment.

3-4

(� . u

Id: the Xll!NlX Link Editor

Now suppose that the declarations were as follows:

A: char head�512);
B: char head 128] = "adc"; C: char headr 256];

Module B's array has been initialized and, according to the rules followed
byld, it takes precedence over all other declarations. 128bytes is allocated
for headrin thesegmentJ)ATA.

Note that in this case, any subsequent addressing beyond headr[127] will
have unpredictable results.

The simplest way to avoid these dangers is to put all global declarations in a
single header file that is included in all modules that reference them.

3.6 Pointer and Integer Sizes

The following tables define the bit sizes of text and data pointers in each
program memory model enabled by the · MO, . Ml, or. M2 option.

8086/802 6 Memorv-Moi ITextandDan Pointers
Model Dam Pointer Text Pointer Integer

Small 16 16 16
Medium 16 32 16

Large 32 32 16
Huge 32 32 16

The follov.ing table defines the bit sizes of text and data pointers in each
progmm memory model enabled bythe· M3 option.

80386 M•· nm'<'- Model Tex and Data Pointe'<
Model Dam Pointer Text Pointer luteger

Pure-Text Small 32 32 32

3-5

C User's Guide

The following table lists the default text- and data-segment names, and
the default module name for each object file created by the -MO, -Ml, or
-M2option.

8086/80286MemorvJIIIodeiDefal Its
Model Text Data Module

Small _TEXT ..DATA filename

Medium nwdule_TEXT ..DATA filename

Large module_ TEXT ..DATA filename

Huge module_TEXT ..DATA filename

The following table lists the default text- and data-segment names and the
default module name for eaeh obj eel file created by the- M3 option.

803 orv-Model Defaults
Model Text Data Module

Pure-Text Small _TEXT ..DATA filename

'Medium nrodule_TEXT _DATA filename

3. 7 Segment and Register Sizes

The following table summarizes thestructureoftext and data segments for
the four possible program memory modcls enabled by the · MO, - Ml, or
-:M2option.

8(86/80286Mem�rv-Models .
Model Text Data Segment Registers

Small 1' 1' CS=DS=SS

Medium lpermodule 1 DS-SS

Large l permodule 1 DS-SS

Huge 1 permodule 1 DS-SS

tIn impure-text smalt-modcl programs, text and data oecupy the same segment. In pure-text programs, they

occupy different �ents and theregillter CS l .. DS.

3-6

r
L l /

ld: the XENIX Link Editor

The following table summarizes the structure of text and data segments for
the two possible program memory models enabled by the -M3 option.

80386Memorv-Mode!Sm marv
Model Text Data Segment Registers

Pure-Text Small lpermod)l)e 1 CS!=DS,DS=ES=SS

Mixed lpermodnle 1 DS=SS=ES

3-7

Chapter 4

adb: A Program Debugger

4.1 Introduction 4-1

4.2 SwtingandStopping adb 4-1
4.2.1 StartingWith a ProgramFilo 4-1
4.2.2 StartingWi!h a Core imageFile 4-2
4.2.3 Starting adb With Data Files 4-3
4.2.4 Starting With the Write Option 4-3
4.2.5 StartingWiththePrompt Option 4-3
4.2.6 Leavingadb 4-4

4.3 DisplayinglnstructionsandData 4-4
4.3.1 FormingAddresses 4-4
4.3.2 FormingExpressions 4-5
4.3.3 ChoosingDataForma!s 4-10
4.3.4 Usingthe� Command 4-11
4.3.5 Usingthe ?and/ Commands 4-12
4.3.6 An Example: Simple Formatting 4-13

4.4 DebuggingProgramExeculion 4-14
4.4.1 ExecutingaProgram 4-15
4.4.2 SettingBreakpoints 4-16
4.4.3 DisplayingBreakpoints 4-16
4.4.4 ContinuingExecution 4-17
4.4.5 Stopping a Program with Interrupt and Quit 4-17
4.4.6 Single-Stepping aProgram 4-17
4.4.7 Kil!ing a Program 4-18
4.4.8 DeletingBreakpoints 4-18
4.4.9 Displaying the C Stack Backtrace 4-18
4.4.10 Displaying CPURegisters 4-19
4.4.11 Displaying External Variables 4-19
4.4.12 An Example: Tracing Multiple Functions 4-20

4.5 Using the a db Memory Maps 4-24
4.5.1 DisplayingtheMemoryMaps 4-25
4.5.2 Changingthe MemoryMap 4-26
4.5.3 CreatingNewMap Entries 4-27
4.5.4 ValidatingAddresses 4-27

4.6 Miscellaneous Features 4-28
4.6.1 CombiningCommands on a Single Line 4-28

4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8

Creating adb Scripts 4-28
Setting Output Width 4-29
Setting the Maximum Offset 4-29
SettingDefault lnput Format 4-30
UsingXENIX Commands 4-30
Computing Numbers and DlsplaymgText 4-31
An Example: Directory and Inode Dumps 4-32

4.7 PatchingBinaryFiles 4-33
4.7.1 LocatingValuesin aFile 4-33
4.7.2 Writing to aFile 4-34
4. 7.3 Making Changes to Memory 4-34

adb: A Program Debugger

4.1 Introduction

adb(CP) is a debugging tool for C and assembly language programs. It
carefully controls the execution of a program while letting you examine and
modify the program's data and text areas.

This chapter explains how to use a db. In particular, it explains how to:
Start the debugger
Display program instructions and data
Run, breakpoint, and single-step a program
Patch program files and memory

It also illustrates techniques for debugging C programs, and explains how
to display information in non-ASCIIdatafiles.

4.2 Stax11ng and Stopping adb

a db provides a powerful set of commands to let you examine, debug, and
repair executable binary files as well as examine non-ASCII data files. To
use these commands, you must invoke adh from a shell command line and
specify the file or files you wish to debog. The following sections explain
how to start adb and descnbe the cypes of files available for debugging.

4.2.1 Stax11ng WiUt a Program File

You can debug any executable C or assembly language program file by
entering a commmdline of the following form:

adb [filename]

where filename is the name of the program file to be debugged. a db opens
the file and prepares its text (instructions) and data for subsequent deb ng
ging. For example, the command:

adb sample

prepares the program named '�sample;� for examination and execution.

Once started, a db normally prompts with an asterisk (*) md waits for you
to enter commmds. If you have given the name of a file that does not exist
or is in the wrong format, a db will display an error message first, then wait
for commands. For example, if you invoke a db with the command:

adb sample

and the file "sample" does not exist, adb displays the message:

4 -1

C User's Guide

adb: cannot open 'sample'

You may also start adb without a filename. In this case, adb searches for
the default file, a.out, in your current working directory and prepares it for
debugging. Thus, the command:

a db

is the same as entering:

adb a.out

a db displays an error message and waits for a command if the a. out file
does not exist.

4.2.2 Starting With a Core Image FHe

a db also lets you examine the core image files of programs that caused fatal
system errors. Core image files contain the contents of the CPU registers,
stack, and memory areas of the program at the time the error occurred and
provide a way to determine the cause of an error.

To examine a core image file with its corresponding program, you must give
the name of both the core and and the program file. The command line
has the form:

adb programfile corefile

where programfile is the filename of the program that caused the error, and
corefile is the filename of the core image file generated by the system. a db
then uses information from both files to provide responses to your com
mands.

If you do not give a core image file, adb searches for the default core file,
named core, in your current working directory. If such a file is found, a db
uses it regardless of whether or not the file belongs to the given program.
You can prevent a db from opening this file by using the hyphen (-)in place
of the core filename. For example, the command:

adb sample-

preventsadbfrom searchingyourcurrentworkingdirectoryforacorefile.

4-2

(

adb: A Program Debugger

4.2.3 Starting a db With Data Files

You can use a db to examine data files by giving the name ofthe data file in
place of the program or core file. For example, to examine a data lile
named outtlata, enter:

adb outdatn

adb opens this file and lets you examine its contents.

This method of examining files is very useful if the file contains non-ASCII
data. a db provides a way to look at!he contents ofthe file in a varietyoffor- ·

mats and structures. Note that a db m ay display a warning when you give
the name of a non-ASCII data file in place of a program file. This usually
happens when the content of the data file is similar to a program file. Like
core files, data files cannot be executed.

4. 2. 4 Starting With the Write Option

You can make changes and corrections in a program or data file using a db,
if you open itforwritingusingthe -woption. For example, the command:

adb -wsample

opens the program file sample for writing. You may then use adb com
mands to examine and modify this file.

Note that the -w option causes adb to create a given file if it does not
already exist. The option also lets you write directly to memory after exe
cuting the given program. See the section "Patching Binary Files" later in
this chapter.

4.2.5 Starting WiththePromptOplion

You can define the prompt used by adb by using the -p optio1:1 , The
option has the form:

-p prompt

where prompt is any combination of characters. If you use spaces, enclose
tltepromptin quotes. Forexample, the command:

a db -p "Mar 1()- >" sample

sets the prompt to "Mar 10-> ". The new prompt takes the place of the
default prompt (*)when a db begins to prompt for commands.

4-3

C User's Guide

Make sure there is at least one space between the -p and the new prompt,
otherwise adb will display an error message. Note that adb automatically
supplies a space at the end of the new prompt, so you do not have to supply
one. '"'

4.2.6 Leaving adb

You can stop a db, and retum to the system shell, by using the $q or $Q
commands. You can also stop the debugger by entering Ctrl-D.

You cannot stop the adb command by pressing the INTERRUPT or QUIT
keys. These keys are caught by adb, and cause it to wait for a new com
mand.

4.3 Displaying Instructions and Data

a db provides several commands for displaying the instructions and data of
a given program, and the data of a given data file. The commands have the
form :

address [, count]= formtJt

address[, count] ? foTmtJt

address[, count]I foTmtJt

where address is a value or expression giving the location of the instruction
or data item, count is an expression giving the number of items to be
displayed, and formtJt is an •"Pression defining how to display the items.
The equal sign (=) and slash (f) tell adb from what source to take the item
to be displayed. The question mark (?) displays a given address in a given
format. With the question mark (?) theprogramfile is examined. The slash
(/) tells a db to examine the corefile.

The following sections explain how to form addresses, how to choose for
mats, and the meaning of each of the display commands.

4.3.1 Forming Addresses

In a db, every address has the form

[segment :] offset

where segment is an expression giving the address of a specific segment of
8086/286/386 memory, and offset is an expression giving an offset from the
beginning of the specified segment to the desired item. Segments and

4-4

adb: A Program Debugger

offsets are formed by combining numbers, symbols, variables, and opera
tors. The following are some valid addresses:

0:1
Ox0b ce:772

The segment: is optional. If not given, the most recently typed segment is
Uf!<'d .. .

4.3.2 Forming Expressions

Expressions may contain decimal, octal, and hexadecimal integers, sym
bol•, a db variables, register names, and a variety of arithmetic and logical
operators.

Decimal, Octal, andllexadecimal Integers

Decimal integers must begin with a nonzero decimal digit. Octal numbers
must begin with a zero and may have octal digits only. Hexadecimal
numbers must begin with the prefix ''Ox" and may contain decimal digits
and the letters "a" through "f" (in both upper and lowercase). The follow
ing are valid numbers:

Decimal Octal Hexadecimal

34 042 Ox22
4090 07772 Ox:ffa

Although decimal numbers are displayed with a trailing decimal point (.),
you cannot use the decimal point when entering the number.

Symbols

Symbols are the names of glob al variables and functions defined within the
program being debugged, and are equal to the address of the given variable
or function. Symbols are stored in the program's symbol table, and are
available if the symbol table bas not been stripped from the program file
(see strip (CP)).

In expressions, you may spell the symbol exactly as it is shown in the source
program or the symbol table. Symbols in the symbol table are no more
than eight characters long. and those defined in C programs are given a
Jeadingunderscore (...). The followingare examples of symbols:

main JUain hex2bin _ouLof

4-5

C User's Guide

Note that if the spelling of any two symbols is the same (except for a leading
underscore), adb will ignore one of the symbols and allow references only
to the other. For example� if both ('main" and "_main" exist in a program,
then adb accesses only the first to appear in the source and ignores the '"
other.

When you use the ? command, adb uses the symbols found in the symbol
table of the program file to create symbolic addresses. Thus, the command
sometimes gives a function name when displaying data. This does not hap
pen if the ? command is used for text (instructions) and the/ command for
data. Local variables cannot be addressed.

adb Variables

a db automatically creates a set of its own variables whenever you start the
debugger. These variables are set to the addresses and si:zes of various
parts of the program file as defined below:

b
d
m
s
t

base address of data segment
size of data
execution type
size of stack
size of text

A user can access storage locationsbyusingthe adb defined variables. The

$v

request prints these variables .

adb reads the program file to find the values for these variables. If the file
does not seem to be a program file, then adb leaves the values undefined.

You can use the current value of an adb variable in an expression by
preceding the variable name with a less than (<) sign. For example, the
current value of the base variable "b'' is:

<b

You can create your own variables or change the value of an existing vari
able by assigning a value to a variable name with the greater than (>) sign.
The assignment has thefonn:

expression > variable- name

where expression is the value to be assigned to the variable, and varinhle"
name must be a single letter. For example, the assignment:

4-6

(

adb: A Program Debugger

Ox2000>b

assigns the hexadecimal value �>Ox2(X)Qn to the variable "h".

You can display the value of all currently defined a db variables by using the
$v command. The command lists the variable names followed by their
values in the current format. The command displays any variable whose
value is not zero. lf a variable also has a nonzero--Segment value, the
variable's value is displayed as an address; otherwise it is displayed as a
number.

CurnmtAddress

a db has two special variables that keep track of the last address to be used
in a command and the last address to be typed with a command. The •

(dot) variable, also called the current address, contains the last address to
be used in a command. The " (double quotation mark) variable contains
the last address to be typed with a command. The . and "variables are usu
ally the same except when implied command s, such as the newline and
caret () characters, are used. (These automatically increment and decre
ment ., but leave "unchanged.)

Both the . and the " maybe used in any expression. The less than (<) sign
is not required. For example, the command:

.=

displays the value of the current address and:

"=

displays the last address to be entered.

Register Names

adblets you use the current value of the CPU registers in expressions. You
can give the value of the register by preceding its name with the Jess than
(<) sign. For example, the value of the "ax" register can be given as:

<ax

4-7

C User's Guide

a db recognizes the followingregisternames for the 286:

ax
bx
ex
dx
di
si
bp
fl
ip
cs
ds
ss
es
sp

register a
registerb
register c
register d
data index
stack index
base pointer
status flag
instruction pointer
code segment
data segment
stack segment
extra segment
stack pointer

In addition, adb recognizes tbefollowingregister names for tbe 386:

eax register eax
ebx register ebx
ecx register ecx
edx registeredx
edi data index
esi stack index
ebp base pointer
ell statusllag
eip instruction pointer
cs code segment
ds data segment
ss stack segment
es extra segment
fs extra segment
gs extra segment
esp stack pointer

Note that register names may not be used unless a db has been stsrted witb
awre file, or tbe program is currentlybeingrun under adbcontroL

Operators

You may combine integers, symbols, variables, and register nsmes witb
tbe following operators:

4-8

('

Unary

•

Not
Negative
Contents oflocation

Binary

+

•

%
&
1

Addition
Subtraction
Multiplication
Integer division
Bitwise AND
Bitwise inclusive OR
Modulo
Round up to then&!: multiple

adb: A Program Debugger

Unary operators have higher precedence than binary operators. All binary
operators have the same precedence. Thus, the expression:

2*3+4

is equal to 10 and:

4+2*3

is 18.

You can change the precedence of the operations in an expression by using
parentheses. For example, the expression:

4+(2*3)

is equal to 10.

Note that adb uses 32 bit arithmetic. This means that values that exceed
2, 147,483,647 (decimal) are displayed as negative values.

Note that the unary * operator treats the given address as a pointer. An
expression using this operator resolves to the value pointed to by that
pointer. ForeXI!lllple, the expression:

*Ox1234

is equal to the value at !headdress "Ox1234", whereas:

Ox1234

is just equal to "Ox1234".

4-9

C User's GQide

4.3.3 Choosing Data Fonnals

A format is a letter or character that defines how data is to be displayed.
The following are the most eommonly used formats:

Letter Format

0 1 word in octal
d 1 word in decimal
D 2 words in decimal
X 1 word in hexadecimal
X 2wordsinhexadecimal
u 1 word as an unsigned integer
f 2 words in ftoatingpoint
F 4 words in ftoatingpoint

c !byte as a character
• a null terminated character string

i machine instruction
b 1byteinocta1

a the current absolute address
A the current absolute address
n a newline
r a blank space
t ahomontal tab

A format may be used by itself or combined with other formats to present a
combination of data in different forms.

The d,o,x, andu formats maybe used to displayinttypevariables; D and X
to display long variables or 32-bit values. The fand F formats maybe used
to display single and double precision floating point numbers. The c for
mat displays char type variables, and the s format is for arrays of char that
end with anull character (null terminated atrings).

The i format displays machine instructions in 8086/286/386 mnemonics.
The b format displays individual bytes and is useful for display data associ
ated with instructions, or the high or low bytes of registers.

The a,r, and n formats are usually combined with other formats to make
the display more readable. For example, the format:

ia

causes the current address to be displayed after each instruction.

You may precede each format with a count of the number of times you wish
it to be repeated. For example the format:

4-10

adb: A Program Debugger

displays four ASCII characters.

It is possible to combine format requests to provide elaborate displays.
For example� the command:

<b,-1/4o4'8Cn

displays four octal words followed by their ASCII interpretation from the
data space of tbe core image file. In this example, the display starts at the
address "<b", the base address of the program's data. The display contin
ues until the end�of-the-file since the negative count "-1" causes an
indefinite exec1,1tion of the command until an error condition, such as the
end of the file occurs. The format, "4o" displays the next four words (16-
bit values) as octal numbers. The format '(4 " then moves the current
address back to the beginning of these four words and the "•C" format
redisplays them as eight ASCII characters. Finally, "n" sends a newline
character to the terminal. The C format causes values to be displayed as
ASCII characters if they are in the range 32 to 126. Jf the value is in the
range 0 to 31, it is displayed as an "at" sign (@) followed by a lowercase
letter. For example� the value Ois displayed as "@a". The "'at" sign itself is
displayed as a double at sign "@@".

4.3.4 Using the = Command

The = command displays a given address in a given format. The command
is nsed primarily to display instruction and data addresses in simpler fom1,
or to display the results of arithmetic expressions. For example, the com
mand:

main=a

displays the absolute address of the symbol "main" (giving the segment
and offset) and the command:

<b+Ox2000=D

displays (in decimal) tbe sum of the variable "b" and the hexadecimal value
"Ox20CXJ".

If a count is given, the same value is repeated that number of times. For
example, the command:

main,2=x

displays the value of "main" twice.

4- 11

C User's Guide

If no address is given, the current address is used instead. This is the same
as the command:

.=

If no format is given� the previous fonnat for this command is used. For
example, in the following sequence of commands, both "main" and
"start" are displayed in hexadecimal form:

main=x
start=

4.3.5 Using the ?and/Commands

Yon can display the contents of a text or data segment with the ? and/ com
mands. Thecommands have theform:

[address) [, count J ? [format)

[address) [, count J I [format]

where address is an address with the given segment, count is the number of
items you wish to display, and format is the format of the items you wish to
display.

The ? command is typically used to display instrnctions in the text seg
ment. Forexample, the command:

mai.n115?ia

displays five instructions starting at the address "main", and the address of
each instrnction displays immediately before it. The command:

main,5?i

displays the instructions, with no addresses other than the starting address.

The I command is typically used to check the values of variables in a pro
gram, especially variables for which no name exists in the program's sym
bol table. For example, the command:

<bp-4?x

displays the value (in hexadecimal) of a local variable. Local variables are
generally at some offset from the address pointed to by the bp register.

4- 12

('
\ .

""'"----

adb: A Program Debugger

4.3.6 An Example: Simple Formattlng

The following example illustrates II ow to combine formats in ? or I com
mands, to display different types of values tllat are stored together in fue
same program. Tile program to be examined lias the following souree
statements.

char str1[] - 'Thisis a cllaracterstring" ;
int one - 1 ;
in t number -456 ;
long Inurn - 1234 ·

float fpt -1.25 {
char str2[] - 'This is the second character string" ;

mainQ
{

}
one=2;

The program is compiled and stored in a file named sample.
To start the session, enter:

adb sample

You can display the value of each individual variable by giving its name. and
correspondingformatin a I command. For example, the command!

strlls

displays the contents of "strl" as a string

Jtr1: This is a character string

and the comman<l:

number/ <I
displays the contentsof"number�> as a decimal integer

....number: 456.

You may choose to view a variable in a variety of formats. For example,
you can display the long variable "laum" as a 4-byte decimal, octal, and
hexadecimal number by entering the following commands:

4- 13

C User's Guide

lnum/D
Jnum: 1234
lnum/0
Jnum: 02322
Inurn !X
Jnum: Ox4D2

You can also examine all variables as a whole. For example, if you wish to
see them all in hexadecimal, enter:

str1,5/8x

This command displays eight hexadecimal values on a line, and continues
for five lines.

Since the data contains a combination of numeric and string values, it is
worthwhile to di'play each value as both a number and a character to see
where the actual strings are located. You can do this with one command by
entering:

str1,5/4x48Cn

In thls case, the command displays four values in hexadecimal, then the
same values as eight ASCll characters. The caret () is used four times,
immediately before displaying the characters to set the current address
back to the starting address for that line.

To make the display easier to read, you can insert a tab between the values
and characters, and give an address for each line by entering:

str1,5/4x48t&Cna

4.4 DebuggingProgramExeculiou

adb provides a variety of commands to control the execution of programs
being debugged. The following sections explain how to use these com�
mands as well as how to display the contents of memory and registers.

Note that C does not generate statement labclsfor programs. This means it
is not possible to refer to individual C statements when using the debugger.
In order to use execution commands effectively, you must be familiar with
the instructions generated by the C compiler and how they relate to indivi
dual C statements. One useful technique is to create an assembly language
listing of your C program before using adb, then refer to the listing as you
use the debugger. To create an assembly language listing, use the -s

4-14

(

r�

adb: A Program D�buggcr

option of the cc command (see Chapter 2 of tl!e C User's Guide, "Cc: a C
Compiler"}.

4.4.1 Executing a Program

You can execute a program by using the :r or :R command. The command
ha.< theform:

[address] [,count] :r [arguments]

[address J (,count] :R [arguments]

where address gives the address at which to start execution, count is the
number ofbreakpoints you wish to skip before one is taken, and arguments
are the command line arguments, such as filenames and options> that you
wish to pass to the program.

If no address is given, then the start of !he program is used. Thus, to exe
cute the program from the beginning enter:

:r

_j If a count is given, a db will ignore all breakpoints until the given number
have been encountered. For example, the command:

,S:r

causes a db to skip the first Sbreakpoints.

If arguments are given, they must be separated by at least one space each.
The arguments are passed to th.e program in the same way the system shell
passes command line arguments to a program. You may use the shell
redirection symbols if you wish.

The :R comJ;Dand passes the command arguments througb the shell before
starting program execution. This means you can use shell metacharacters
in the arguments to refer to multiple files or otber input values. The shell
expands arguments containing metacharacters before pasaing them on to
the program.

The command is especially useful if the program expects multiple
filenames. For example, the command

:R [a-z]•.s

passes the argument "[a-z]•.s" to the shell where it is expanded to a list of
!he corresponding filenames before being passed to the program.

4-15

C User's Guide

The :r and :R commands remove the contents of all registers and destroy
the current stack before starting the program. This kills any previous copy
of the program you may have been running.

4.4.2 Setting Breakpoints

You can set a breakpoint in a program by using the :br command. Break
points cause execution of the program to stop when it reaches the specified
address. Control then returns to a db. Thecomrnand hastheform:

address[. count] :brcommand

where address must be a valid instruction address, count is a count of the
number of times you wish the breakpoint to be skipped beforeit causes the
program to stop, and comrrumd is the adb command you wish to execute
when the breakpoint is taken.

Breakpoints are typically set to stop program execution at a specific place
in the program, such as the beginning of a function, so that the contents of
registers and memory can be: examined. For example, the command:

main:br

sets a breakpoint at the start of the function named "main". The break
point is taken just as control enters the function and before the function's
stack frame is created.

A breakpoint with a count is typically used within a function, which is
called several times during execution of a program, or within the instruc
tions that correspond to a for or while statement. Such a breakpoint allows
the program to continue to execute until the given function or instructions
have been executed for the specified number of times. For example, the
command:

light,S:br

sets a breakpoint at the fifth repetition of the function "light". The break
point does not stop the function until it has been called a ! least five times.

Note that no more than 16 breakpoints at a time are allowed.

4.4.3 Displaying Breakpoints

You can display the location and count of each currently defined break
point by usiug the$b command. The command displays a listofthe break
points given by address. If the breakpoint has a count and/or a command,
these are given as well.

4-16

adb: A Program Debugger

The $b command is useful if you have created several breakpoints in your
program.

4.4.4 Continuing Execution

You can continue program execution after it has been stopped by a break
point by using the :co command. The command has the form: .

[address] [,count] :co [signal]

where address is the address of the instruction at which you wish to con
tinue executionJ count is the number of breakpoints you wish to ignore,
and signa lis the number of the signal to send to the program (see signal (S)
in the XENIXReference).

If no address is given, the program starts at the nelrt instruction after the
breakpoint. If a count is given, a db ignores the first count breakpoint.

4.4.5 Stopping a ProgramwithlnterruptandQuit

You can stop program execution at any time b y pressing the INTERRUIT
(Ctrl-\) or QUIT (DEL) keys. These keys stop the current program and
return control to a db, The keys are especially useful for programs that have
infinite loops or other program errors.

Note that whenever you press the INTERRUIT or QUTI' key to stop a pro
gram, adb automatically saves the signal and passes it to the program, if it
was started b yusing the :co command. This is very useful if you wish to test
a program that uses these signals as part of its processing.

If you wish to continue program execution, but you do not wish to send the
signals, enter:

:co 0

The command argument "0" prevents a pending signal from being seut to
the program.

4.4.6 Single· Stepping a Program

You can single-step a program, i.e., execute it one instruction at a time, by
using the :s command. The command executes an instruction and retums
control to adb. The command has the form:

[address] [, count] :s

4-17

C User's Guide

where address must be the address of the instruction you wish to execute,
and count is the number ofthnes you wish to repeat the command.

If no address is given, adb uses the current address. If a count is given, a db \.,_
continues to execute each successive instruction until count instructions
have been executed. For example, the command:

main,S:s

executes the first 5 instructions in the function 111Llin.

4.4. 7 Kl11ing a Program

You can kill the program you are debuggingbyusingthe :kcommand. The
command kills the process created for the program and returns control to
a db. The command is typically used to clear the current contents of the
CPU registers and stack and begin the program again.

4.4.8 Deleting Breakpoints

You can delete a breakpoint from a program by using the :dl command.
The command has the form:

address :dl

where address is the address of the breakpoint you wish to delete.

The :dl command is typically used to deleta breakpoints you no longer wish
to use. The following command deletes the breakpoint set at the start of
the function Hmain".

main:dl

4.4.9 Displaying the C Stacl<Backll'ace

You can trace the path of all active functions by using the $e command.
The command lists the names of all functions which have been called but
have not yet returned control, as well as the address from which each func
tion was called, and the arguments passed to it.

For example) the command:

$c

displays a b acktrace of the C language functions called.

4-18

(j
___/

r) _/

adb: A Program Debugger

By default, the $c command displays all calls. If you wish to display just a
few, you must supply a count of the number of calls you wish to see. For
example, the command:

,25$c

displays upto 25 calls io the current call path.

Note that function calls and arguments are put on the stack after the func
tion has been called. If you put breakpoints at the entry point to a function,
the function will not appear io the list generated by the $c command. You
can remedy this problem by placing breakpoints a few instructions into the
function.

4.4.10 Displaying CPU Registers

You can display the contents of all CPU registers byusiogthe $rcommand.
The command displays the name and contents of each register in the CPU
as well as the current value of the program counter, and the instruction at
the current address. For the 286, the display has the form:

ax OxO fi OxO
bx OxO ip OxO
ex OxO cs OxO
dx OxO ds OxO
di OxO ss OxO
si OxO es OxO
sp OxO sp OxO
0:0: ad db al,bl

For the 386, the display has the form:

eax Ox81000 ef 10x246
ebx OxO eip Ox142
ecx OxO cs Ox3f
edx Ox8 ds Ox47
edi OxO es Ox47
esi OxO fs Ox47
ebp OxO gs Ox47
esp Ox7 fef8ss Ox47
Ox3f:Ox142: push ebp

The value of each register is given in the current default format.

4.4. 11 Displayiog External Variables

You can display the values of all external variables in a program by usiog
the $e command. External variables are variables in your program that

4-19

C User's Guide

have global scope, or have been defined outside of any function. This may
include variables that have been defined in library routines used by your
program.

The $e command is useful whenever you need a list of the names for all
available variables, or to quickly summarize their values. The command
displays one name on each line with the variable's value (if any) on the
same line.

The display has the form:

fac:
_etmo:
_end:
_sobuf:
_obuf:
_lastbu:
---!'!ibuf:
___st:kmax:
Iscadr:
_lob :
_edata:

0
0
0
0
0
0406
0
0
02
01664
0

4.4.12 An:J<::•nmple: Tracing Multiple Functions

The following example illustrates how to execute a program under adb
control. In particular, it shows how to set breakpoints, start the program,
and examine registers and memory. The program to be examined has the
following source statements.

4-20

(

int fcnt,_gcnt,hcnt;
h(x,y)
{

}

g(p,q)
{

}

f{a,b)
{

inthi; registerinthr;
hi=x+1;
hr=x-y+l;
hcnt++ ;
hj:
f(hr,hi};

int gi; registerint gr;
gi= q-p;
gr= q-p+l;
gent++ ;
gj;
h(gr,gi);

intfi; registerintfr;
fi = a+2*b;
fr = a�b;

}

main()
{

fcnt++ ;
fj:
g{fr,fi);

f(l,l};
}

adb: A Program Debugger

The program is compiled and �tared in a file named sample. To start the
session, enter:

adb sample

This starts a db and opens the correspondingprogram file. There is no core
image file.

The first step is to set breakpoints at the beginning of each function. You
can do this with the :brcommand. For example, to set a breakpoint at the
start of function "r�, enter:

f:br

4-21

C User's Guide

You can use similar commands for the Hft' and '�hn functions. Once you
have created the breakpoints, you can display their locations by entering:

$b
This command lists the address, optional count, and optional command
associated with each breakpoint. In this case, the command displays:

breakpoints
count bkpt
1 J
1 _g
1 Jt

command

The next step is to display the first five instructions in the "f" function.
Enter:

f,S?ia

This command displays five instructions, each preceded by its symbolic
address. The instructions in 8086/286/386 mnemonics are

J: push bp
J+l.: mov bp,sp
J+3.: mov ax,4
J+6.: call near _chkstk
J+9. : push di
J+lO.:

You can display five instructions in the "g'' function without their
addresses by entering:

g,S?i

In this case, the dispiayis:

_g: push bp
mov bp,sp
mov ax,4
call near _cbkstk
push di

To begin program execution, enter:

:r

adb displays the message:

4-22

(

adb: A Program Debugger

sample: running

and begins to execute. As soon as a db encounters tbe first breakpoint (at
the beginning of the "f" function), it stops execution and displays the mes
sage:

breakpoint J: push bp

Since execution to this point caused no errors, you can remove tbe first
breakpoint by entering:

f:dl

and continue the program by entering:

:co

a db displays the message:

sample: running

and begins program execution attbe next instruction. Execution continues
until !be neat breakpoint, where adb displays thefollowingmessage:

breakpoint ..g: push bp

You can now trace the path of execution by entering:

The commands show that only three functions are active: "main"� "f" and
"start".

J(l., l.) from...main+22 .
...main (1., -588., -584.) fromJtart+SO.
Jtart fromstart0+5.

Although the breakpoint has been set at thestart offunction "g", it will not
be listed in the backtrace untilitsfirstfewinstructions have been executed.
To execute these instructions, enter:

,S:s

adb single-steps the first five instructions. Now you can llst tbe backtrace
again. Enter:

4-23

C User's Guide

This time, the list shows four active functions:

...g(2., 3.) fromJ+39.
J(l., 1.) from_main+22 .
.Jllain (1., -588., -584.) from__start+50.
__start from start0+5.

You can display the contents of the integer variable "fcnt" by entering:

fcntld

This command displays the value of"fcnt" found in memory. The number
should be "l".

You can continue execution of the program and skip the first 10 break
points by entering:

,lO:co

adb starts the program and then displays the l1lll!ling message again. It
does not stop the program until exactly ten breakpoints have been encoun
tered. The message displayed is shown below:

breakpoint ..h: push bp

To show that these breakpoints have been skipped, you can display the
backtrace again, byentering$e .

...g(9., 16.) from....f+39:
J(2., 7.) from..h+36:
..h (6., 5.) from...g+38:
...g(7., 12.) fromJ+39:
....f (2., 5.) from..h+36:
..h (4., 3.) from...g+38:
...g (5., 8.) from....f+39:
J (2., 3.) from..h+36:
..h (2., 1.) from...g+38:
...g(2., 3.) fromJ+39:
....f(l., 1.) from.Jllain+22 .
.Jllain(l., -588., -584.) from __start+ 50.
__startO from startO+ 5.

4.5 Using the adbMemory Maps

a db prepares a set of maps for the text and data segments in your program,
and uses these maps to access items that you request for display. The f<>l
lowing sections describe how to view these maps, and how they are used to
access the text and data segments.

4-24

c \

adb: A Program Debugger

4.5.1 DisplayingtheMemoryMaps

adb interprets these different file formats and provides access to the
different segments through a set of maps. To display the maps, enter: $m
command. The command has the form:

$m [segment]

where segment is the number of a segment used in the program.

The command displays the maps for all segments in the program using
information taken from either the program and core files or directly from
memory. In nonshared files, both text (instructions) and data are inter
mixed. This makes it impossible for a db to differentiate data from instruc
tions, as some of the printed symbolic addresses look incorrect; for exam
ple, printing data addresses as offsets from routines.

In shared text, theinstnletions are separated from data. The

1*

command accesses the data part of the a. out file. This request tells adb to
use the second part of the map in thea.outfile. Accessing data in the core
file shows the data after it was modified by the execution of the program.
Notice also that the data segment may have grown dming program execu
tion. In shared files, the corresponding core file does not contain the pro
gram text.

If you have started a db but have not begun program execution, the $m
command displays the following:

Text Segments
Seg # File Pos Vir Size PhysSize 'sai)lple' - File
63. 160. 3712. 2462.

Data Segments
Seg # File Pos Vir Size Phys Size 'sample' - File
71. 160. 3712. 2462.

Ifyouhave executed the program, the command display has the form

Text Segments
Seg # File Pos Vir Size Phys Size 'sample' - memory
63. 160. 3712. 2462.

Data Segments
Seg # J;1Je Pos Vrr Size PhysSize 'sample' - memory
71. 160. 3712. 2462.

4-25

C User's Guide

where virtual size is the number of bytes the segment occupies in memory.
This size is sometimes different than the size of the segment in the file and
will often change as you execute the program. This is due to expansion of
the stack or allocation of additional memory dnring program execution.
The filenames to the right always name program file. The file position value '-
is ignored.

Ifyougive a segment number with the conunand, adb displays information
only about that segment. For example, the command

$m63

displays a map for segment 63 only. The display has the form

Segment#-63.
Type-Text
File position - 160.
Virtual Size- 3712.
Physical Size-204ll.

4. 5.2 Changing the Memory Map

You can change the values of a memory map by using the 1m and /m com- •,
mands. These commands assign specified values to the corresponding
map entries. The commands have the form

?m segment- number file-position me

and

/m segment- number ftle-position si:t.e

where segment· number gives the number of the segment map you wish to
change, file-position gives the offset in the file to the beginning of the given
address, and size gives the segment size in bytes. The 1m assigns values to a
text segment entry; /m to a data segment entry.

For example, the following command changes the file position for segment
63 in thetextmapto0x2000:

?m63 0x2000

The command

/m 390x0

changes the file position forsegment39in the data map to 0.

4-26

adb: A Program Debugger

4.5.3 Creating New Map Entries

You can create new segment maps and add them to your memory map by
using the ?M and fM commands. Unlike ?m and /m, these commands
create a new map instead of changing an existing one. These commands
have the form

?M segmellt- tiW11her file-position size

and

IM segment-number file-position si:ze

where segment-number gives the number of the segment map you wisb to
create, file· position gives the offset in the file to the beginning of the given
address, and size gives the segment size in bytes. The ?M command creates
a text segment entry; fM creates a data segment entry. The segment
number must be unique. You cannot create a new map entry that has the
same number as an existing one.

The ?M and fM commands are especially useful if you wish to access seg
ments that are otherwise allocated to your program. For example, the
command

?M7102504

creates a teA"t segment entry for segment"71"whose size is ''2504'1bytes.

4.5.4 ValidaflngAddresses

Whenever you use an address in a command, adb checks the address to
make sure it is valid. a db uses the segment number, file position, and size
values in each map en try to validate the addresses. If an address is correct,
a db carries out the command; otherwise, it displays an error message.

The first step adb takes when validating an address is to check the segment
value to make sure it belongs to the appropriate map. Segments used with
fhe ? command must appear in the text segments map; segments used with
the I command must appear in the data segments map. If the value does
not belong to the map, a db displays a bad segment error.

The next step is to check fhe offsetto see if it is in range. The offset must be
within the range

0 <- offset <- segment-size

If it is not in this range, a db displays a bad address error.

4-27

C User's Guide

If a db is currently accessing memory, the validating segment and offset are
used to access a memory location and no other processing takes place. If
a db is accessing files, it computes an effective file address

effective-file-address = offset + file-position

then uses this effective address to read from the corresponding file.

4.6 Miscell.aneom Features

The following sections explain how to use a number of useful commands
and features of adb.

4.6.1 Combining Commands on a Single Line

You can give more than one command on a line by separating the com
mands with a semicolon (;). The commands are performed one at a time,
starting at the left. Changes to the current eddress and format are carried
to the next command. If an error occurs, the remaining commands are
ignored.

One typical combination is to place a ? command after a !command. For
example, the commands:

?1 'Th'; ?s

search for and display a string that begins with the characters "Th" .

4.6.2 CreatingadbScripts

You can <iirect adb to read commands from a teat file instead of the key
board by redirecting adb's standard input file at invocation. To redirect
the standard input, use the standard redirection symbol < and supply a
filename. For example, to read commands from the file script, enter:

edb sample <script

The file you supply must contain valid adbcommands. Such files are called
script files, and can be used with any invocation ofthedebugger.

Reading commands from a script file is very convenient when you wish to
use the same set of commands on several different object files. Scripts are
typically used to display the contents of core files after a program error.
For example, a file containing the following commands can be used to
displaymost of the relevant information about a program error:

4-28

'
''-

120$w
4()95$s
$v
-3n
$m
-3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
-3n"Registers"
Sr
O$s
=3n"DataS egrnent"
<b,- 1/8ma

4.6.3 Setting Output Width

adb: A Program Debugger

You can set the maximum width (in characters) of each line of output
created byadb by using the $wcommand. The command has the form:

n$w

where n is an integer number giving the width in characters of the display.
You may give any width that is convenient for your given terminal or
display device. The default width, when a db is first invoked, is 80 charac
ters.

The command is typically used when redirecting output to a lineprinter or
special terminal. For example, the command:

120$w

sets the display width to 120 characters, a common maximum width for
lineprinters.

4.6.4 Setting the Maximum Offset

adb normally displays memory and file addresses as the sum of a symbol
and an offset. This helps associate the instructions and data you are view
ingwith a given function or variable. When first invoked, a db sets the max
imum offset to 255. This means instructions or data that are no more th an
255 bytes from the start of the function or variable are given symbolic
addresses. Instructions or data beyond this point are given numeric
addresses.

1n many programs, the size of a function or variable is actually larger than
255 bytes. For this reason, adb lets you change the maximum offset to

4-29

C User's Guide

accommodate larger programs. You can change the maximum offset by
usingthe $s command. Thecommand has the form:

n$s

where n is an integergivingthe new offset. For example, the command:

4095$5

increases the maximum possible offset to 4095. All instructions and data
that are no more than 4095 bytes away are given symbolic addresses.

Note that you can disable all symbolic addressing by setting the maximum
offset to zero. All addresses will be given numeric values instead.

4.6.5 Setting Default Input Format

You can set the default format for numbers used in commands with the $d
(decimal), $o (octal), and $x (hexadecimal) commands. The default for
mat tells a db how to interpret numbers that do not begin with "0" or ((Ox",
and how to display numbers when no specific format is given.

The commands are useful if you wish to work with a combination of
decimal, octal, and hexadecimal numbers. For example, if you enter:

$x

you may give addresses in hexadecimal without prepending each address
with "Ox". Furthermore, adb displays all numbers in hexadecimal except
those that are specifically requested to be in some other format.

When you first start adb, the default format is decimal. You may change
this at anytime and restore it as necessary using the $dcommand.

4.6.6 Using XENIXCommands

You can execute XENIX commands without leaving adb by using the a db
escape command !. The escape command has the form:

! command

where command is the XENIX command you wish to execute. The com
mand must have any required argements. a db passes this command to the
system shell which executes it. When finished, the shell returns control to
a db.

4-30

For example, to display the dare, enter:

! date

adb: A 'Program Debugger

The system displays !he date at your terminal and restores control to a db.

4.6. 7 Computing Numbers and Displaying Text

You can perform arithmetic calculations while in adb by using !he = com
mand. The command directs adb to display !he value of an expression in a
given format.

The command is often used to convert numbers in one base to another, to
double check !he arithmetic performed by a program, and to display com
plex addresses in easierform. For example, !he command:

Ox2a=d

displays the hexadecimalnumber"Ox2a" as thedecimalnumber42, but:

Ox2a=c

displays it as the ASCII character "*". Expressions in a command may
have any combination of symbols and operators. For example, the com
mand:

<ax-12*<bxl+<b+5=X

computes a value using !he contents of the ax and bx registers and the a db
variable "b". You may also compute the value of external symbols, by
entering:

main+5=X

This is helpful if you wish to check !he hexadecimal value of an external
symbol eddress.

Note !hat the = command can also be used to display literal strings at your
terminal. This is especially useful in a db scripts where you may wish to
display comments about the script as it perfonnsits commands. For exam
ple, the command:

=3n"C StackBacktrace"

spaces three lines, then prints !he message "C Stack Backtrace" on the ter
minal.

4-31

C User's Guide

4.6.8 An Example: Directoryandlnode Dumps

This example illustrates how to create adh scripts to display the contents of
a directory ille and the inode map of a XENIX file system. The directory
file is assumed to be named dir, and conta.i:ns a variety of files. TheXENIX
file system is assumed to be associated with the device file f dev{ src, and has
the necessary permissions to be read bytheuser.

To display a directory file, you must create an appropriate script, then start
a db witb the name of the directory, redirecting its input to the script.

First, yon can create a script :tile named script. A directory file normally
contains one or more entries. Each entry consists of an unsigned
"inumber'' and a 14 character illeoame. You can display Ibis information
by adding the command:

0,-1 ?ut14cn

to the script :tile. This command displays one entry for each line, separat
ing the number and filename with a tab. The display continues to the end of
the file. If you place the command:

="inuniher''8t"Name"

at the beginning of the script, adh will display the strings as headings for
each column of numbers.

Once you have the script ille, enter:

adb dir- <script

(The hyphen (-) is used to prevent adb from attempting te open a core
file.) adh reads the commands from the script and displays the following:

inumber
652
82
5971
5323
0

name

cap.c
cap
pp

To display the inode table of a file system, you must create a new script,
then start adb with the filename of the device associated with the file sys
tem (e.g., the hard disk drive).

The inode table of a file system has a very complex stroctere. Each entry
contains: a word value for the :tile's states fiags; a byte value for the number
Jinks; two byte values for the user and group IDs; a byte and word value for

4 - 32

adb: A Program Debugger

the size; eight word values for the location on disk of the file's blocks; and
two word values for the creation and modification dates. The inode table
starts at address "02(0)". You can display the first entry h y entering:

02()(X), -1? on3bnbrdn8un2Y2na

Several new lines are inserted within thedisplayto make it easier to read.

To use the script on the inode table of ldevlsrc, enter:

adb /dev/src - <script

(Again, the hyphen (-) is used to prevent an unwanted core file.) Each
entry in the display has the form:

02()(X): 073145
0163 0164 0141
0162 10356
28770 8236 25956 27766 25455 8236 25956 25206
19?6Feb 508:34:56 19?5 Dec28 10:55:15

4.7 PatchingBinaryFiles

You can make corrections or changes to any file, including executable
binary Iiles, by using the w and W commands, and invoking a db with the
-w option. The following sections descnbe how to locate and change
values in a file.

4.7.1 Locating Values ina File

You can locate specific values within a file by using the I and L commands.
The commands have the form:

[address] ?I value

where address is the address at which to start the search, and value is the
value (given as an expression) to be located. The I command searches for 2
byte values; L for4 bytes.

f The following command:

?I

starts the search at the current address, and continues until the first match
or the end of the file. If the value is found, the current address is set to that
value's address. For example, the command:

4-33

C User's Guide

?I 'Th'

searches for the first occurrence of the string value "Th". If the value is
found at "mai.n+210" the current address is set to that address.

4. 7.2 Writing to a File

You can write to a file by uai.ngthe w and W commands. The commands
have the form:

[address] ?wvalue

where address is the address of the value you wish to change, and value is
the new value. The w command writes 2 byte values; W writes 4 bytes. For
example, the following commands change the word "This"to ('The ".

n•Jy
?WThe'

Note that W is used to change all four characters.

4. 7.3 Making Changes to Memory

You can also make changes to memory whenever a program has been exe
cuted. If you have used an :r command with a breakpoint to start program
execution, subsequent w commands cause adb to write to the program in
memory rather than the file. This is useful if you wish to make changes to a
program's data as it runs, for example, to temporarily change the value of
program flags or constants.

4-34

('

Replace this Page
with Tab Marked :

Index

(

L !

Index

CHARACTERS

& (address-of) operator 5-11
• (indirection) operator 5-11
-> (member &election) operator A-3
• (multiplication) operator 5-13
+ (addition) operator-5-14
< > (angle brackets)

in #include directives 8-6
- (arithmetic negation) operator 5-10
-> (arrow)

in member selection expressions 5-6
• (asterisk)

as pointer modifier 4-5
in declarations 4-18

& (bitwise AND) operator 5-18
- (bitwise complement) operator 5-10
" (bitwise exclusive OR) operator 5-18
I (bitwise inclusive OR) operator 5-18
{ } (braces)

in initialization 4-30
[J (brackets)

as array modifier 4-5
in array declarations 4-16
in subscript expressions 5-3

\ character
see backslash (\) character

, (comma)
in arg-type-list 4-20
(sequential evaluation) operator 5-20

? : (conditional) operator 5-21
-- (decrement) operator 5-23
I (division) operator 5-13
" (double quotation marks)

in #include directives 8-6
= (equality) operator 5-17
++ (increment) operator 5-23
!= (inequality) operator 5-17
<< (left shift) operator 5-16
&& (logical AND) operator 5-19
! (Jogical not) operator 5-11
J1 (logical OR) operator 5-20
(number sign) A-2 , _
(number signl character 8-1
() (parentheses

in expressions 5-8
in function call expressions 5-3

. (period)
·

in member selection expressions 5-6
< (relational) operator 5-17
% (remainder) operator 5-13
>> (right shift) operator 5-16
= (simple assignment) operator 5-23
- (subtraction) operator 5-14

[J (brackets)
as array modifier 4-5
in array declarations 4-16

A

Abstract declarator 4-35
Actual arguments 7-11

conversion 7-12
order of evaluation 7-9
passing 7-11
pointer 7-U, 7-9
side effects 7-9
type-checking 7-12
variable number 7-13

Addition
operator (+) 5-14
with pointers 5-15

Additive
operators 5-14

Address-of (&) operator 5-11
Aggregate types 4-1

array 4-16
initialization 4-29, 4-30

Anachronisms A-3
AND operator

bitwise (&) 5-18
logical (&&) 5-19

Angle brackets (<>)
in #include directives 8-6

argc parameter 3-5
arg-type-list 4-20
Argument type

declaring 7-7
Argument type list 7-7, A-2

void * 4-21
void keyword 4-21

Argument type-checking 4-21
Arguments 7-11

actual 7-9
command line 3-5
conversion of 7-U
formal parameters 7-4
order of evaluations 7-9
passing 7-11
pointer 7-12, 7-9
side effects 7-9
to main function 3-5
type-checking 7-12
variable number 4-20, 7-13

argument-type-list
with abstract declarator 4-35

argv parameter 3-5
Arithmetic

conversions 5-9

I-1

Index

Arithmetic (continued)
with pointers 5-15

Arithmetic conversions A-2
Arithmetic negation (-) operator $-10
Amly

declaratioll$ 4-16
modifier 4-16
types

mullidimensional 4-17
storage of 4-17

types 4-16
variables

storage of 4-17
Array elements

.referring to_ S-3
Amly identifiers 5-2
Array modifier 4-5
Array type 4-5
Atraya

initialization 4-32
multidimensional

references to S-5
muitidimensional 4-17
storage 5-.S

asm A-1
Assignment

expressions 5-7
Assignment conversions 5-29
Assignment operators 5-22

compound 5-24 listed 2-S
simple (•) S-23

Assignments 5-1
Associativity

modifiers 4-6
AssociatiVity of operators S-25
Asterisk (*)

as pointer modifier 4-5
in declarations 4-18

auto storage class specifier 4-22
with internal variables 4-26

auto variables
initialization 4�29

B

Backslash (\) character 2-3, 2-4
Binacy

expressions 5-7
operators 5-9

Bitllelds
unnamed 4-13, 4-13, A-2

Bitw:ise
AND operator (&) 5-18
exclusive OR operator 0 5-18
inclusive OR operator (t) .S-18
operators 5-18

I-2

Bitwise complement (') operator 5-10
Biock

defined 3-6
Body

function 7-6
Braces ({})

ln initialization 4-30
Brackets ([D

as array modifier 4-5
in array declarations 4-16
in subscript expressions 5-3

Branch statements
if 6-9
switch 6-14� A-2

Break keyword 6-2
Bteak statement 6-2
Byte

size of A-2

c
C character set 2-1
Calis 7-1, 7-9

fWlction calls 5-3
indirect 7-9
recursive 7-15
with variable number of arguments 7-13

Case
significance of 2-10, 2-11, 2-2

Case constant ex.pression 6-14
Case keyword 6-14
Case labels 6-14
Casts

Type-casts 5-1
char type 4-1, A-1

range of values 4-3
storage 4-3

Cha.ractet constants 2-8, A-1
Character set

C 2-1
representable 2-1

Character sets 2-1
Character types

see lntegral types
Characters

backslash (\) 2-3, 2-4
continuation (\) 2-4
escape sequence 2-3
hexadecimal escape sequence 2-3, A-1
nongraphic escape sequence 2-3
octal escape sequence 2-3
punctuation 2-2
specia1 2-2
wbitespace 2-2
whitespace escape sequence 2-3

Comma (,)
in arg-type-list 4-20

Comma operator
seq_u.ential evaJuation operator 5-20

Command line arguments 3-5
Comments 2-12
Compilation

conditional 8-11) 8-7
suppressing 8-llj 8-7

Complement operators 5-10
Complex: declarators 4-5

interpreting 4-6
Compound assignment operators 5-:tA
Compound statement 6-3

labeling 6-3
Conditional compilation S..11, 8-7
Conditional operator (? :) 5-21
Conditional statements

if 6-9
switch 6-14: A-2

const A-1
Constant expression

case 6�14
in switch statement 6-14

Constant expressions
delioed (identifier) 8-9
in directives 8-9
in preprocessor directives 8-9
restricted 8-9

Constant-expressions 5-1, 5-8
as inltializers S-9 in preprocessor directives 5�9

Constants
character 2-8, A-1
delined 2-6
enumeration

naming class :3, ... 9
floating-point 2-7

negative 2-7
intega 2-6

dceimal 2-6
hexadecimal A-1
!on� 2-7
octaJ 2-6, A-1
unsigned A-1

manifest 8-1
string 2-9

Constants 5-l, B-2
Constants, integer

negative 2-6
Continuation character (\) 2-4
Continue keyword 6-4
Continue statement 6�4
Conversion

actual arguments 7-12
fonnal panuneters 7 � 12 (� .·) Conversions 5-29

� assigmnent 5-29
from enumeration types 5-34
from ftoat�-point types 5-33
from pointer types 5-34

Index

Conversions S-29 (continued)
from signed integer types 5-29
f:rom unsigned integer types 5-3;1
function ca11 7-12
function-call 5-35
operator 5-34
type-cast 5-34
usual arithmetic A-2
usual arithmetic conversions 5-9
type conversions 5-1

D

Data definitions
syntax B-11

Data types
Types

Decimal integer con$tants 2-6
Declarations 3-1

external 4-23, 4-28
fomt of 4-1
fonnal parameters 7-4
forward 7-7
function

storage class 4-28
witb variable number of argtllllents 4-20

function 3�1, 4-20, 7-1, 7-7� A-2
intema1 4�23� 4-26
pointer 4-18
syntax B-7
type

typedef 4-32
type 4-32
typedef 4-32, 4-33
variable

enum 4-10
multidimensional -arrays 4-17
simple 4-10
structure 4-12
union 4-15� 3-l, 4-9

variables
array 4-16

Declarations, fOIWard
Function declaration$

Declarator
abstract 4-35

Declarators
complex 4-5
in parentheses 4-6

Declarators 4-5
Decrement operator (--) 5-23
Default keyword 6-14
Default labels 6-14
Default storage class

internal variable declarations 4-26
#define directive 8-2
deiined(identifier) constant expression 8-9

I-3

Index

Defining
filenames 8-12
line numbers 8-12
macros 8-2
manifest constants 8-2

Definitions
function

Function definitions 7-2, 3-1, 7-1
syntax B-11
variable 3-1, 4-23

Definitions 3-1
Differences A -0
Digits 2-1
Dimensions

see Multidimensional arrays
Directives 3-1, 8-1, A-2

#define 8-2
#elif 8-8, A-3
#else 8-8
#endif 8-8
#if 8-8, A-3
#ifdef 8-11, A-3
#ifndef 8-11, A-3
#Ulclude 8-6
#line 8-12
permissible constant-expressions 5-9
syntax B-11
#undef 8-5

Division operator (/) 5-13
Ilo ke)'Vord 6-5
Do statement

continuing execution 6-4
terminating execution 6-2

Do statement 6-5
Double quotation J:!larks (") A-1

in #include directives 8-6
double type 4-1

range of values 4-3
storage 4-3

E

Eements
referring to 5-3

#elif detined(identifier)
#elif directive

Eif directive 8-8
#elif directive A-3
#else directive 8-8
Else keyword 6-9
Endif directive 8-8
entry A-1
enum

type specifier 4-10
types 4-10

enum A-1
enum keyword 4-11

1-4

enum type
range of values 4-3
storage 4-3

enum type A-2
enum type specifier 4-32
enum types 4-32
Enumeration

declarations 4-10, 4-32
expressions 5-2
identifiers 5-2
set 4-10
tag 4-11
tags 4-32

naming class 3-10
types 4-1, 4-10, 4-32

converting 5-34
storage of 4-11

variables, storage of 4-11
Enumeration constants

naming class 3-9
enum-list 4-11
envp 3-5
Equality operator (==) 5-17
Escape sequence

hexadecimal A-1
Escape sequences 2-3, A-1
Evaluation order

see Order of evaluation
Execution

starting point 3-5
Exit from functions 6-12
Exit from switch 6-14
Expression list 5-3
Expression statements 6-6
Expressions

assignment 5-7
binary 5-7
constant

see Constant-expressions 5-l,
Constant expressions 8-9

constant 5-8
enum 5-2
floating-point 5-2
function call 5-3
in parentheses 5-8
integral 5-2
lvalue 5-22
member selection 5-6
pointer 5-2
struct 5-2
subscript 5-3
syntax B-5
ternary 5-7
type-cast 5-8
unary 5-7
union 5-2
with operators 5-7

Expressions 5-1
Extern storage class specifier

(

Extern storage class specifier
(continued)

in forward declarations 7-7
in function declarations 7-7
in function definitions 7-2

extern storage class specifier
with extema1 variables 4-23
with function decJarations 4-28
with internal variables 4-26

extern storage class specifier 4-22
External declarations 4-23, 4-28
External variable decJarations 4-23

F

far A-1
far keyword 4-19
_ _FILE__ identifier 8-12
Filename

changing 8-12
Files

include 8-6
float type

range of values 4-3
storage 4-3

float type 4-1
Floating-point

expressions 5-2
identifiers 5-2
types

converting 5-33
Floating-point constants

negative 2-7
Hoating-point constants 2-7
Floating-point types 4-2
For keyword 6-7
For statement 6-7

continuing execution 6-4
terminating execution 6-2

Formal arguments
formal parameters 7-4

Formal parameters 7-4
conversion 7-12
declaring 7-4
identifiers of 7-4
naming class 3-9
storage class 7-5
type-checking 7-12, 7-4

Fortran A-1
Forward declarations

extern 7-7
static 7-7
storage class specifier 7-7
function declarations 7-7

Function
declarations 4-20
returning type 4-20

Function body 7-6
Function call

expression 5-3

Index

Function caU type-checking 7-12
Function calls

indirect 7-9
recursive 7-15
with variable number of arguments 7-13

Function calls 5-3, 7-1, 7-9
Function calls conversions 7-12
Function declarations 3-1, 7-1, 7-7, A-2

extern 7-7
forward 7-7
implicit 7-7
static 7-7
storage class 4-28
storage class specifier 7-7
with variable number of arguments 4-20

Function definitions 3-1, 7-1
extern 7-2
return type 7-2
static 7-2
storage class specifier 7-2
syntax B-11

Function identifiers 5-2
Function modifier 4-5
Function pointers 7-9 .
Function returning type 4-5
Function-call

conversions 5-35
Functions 7-1

calling 7-9
exit from 6-12
extern 7-2, 7-7
main 3-5
naming class 3-9
parameters 3-5
return type

implicit 7-7
return type 7-2
return value 6-12, 7-6
static 7-2, 7-7
storage class 7-2, 7-7
visibility 7-2, 7-7

Fundamental types 4-1
char 4-1
double 4-1
enum 4-1, A-2
float 4-1
floating-point 4-1
initialization 4-29
initializers 4-29, 4-30
int 4-1
integral 4-1
long 4-1
short 4-1
storage 4-3
unsigned char 4-1
unsigned int 4-1

1-5

Index

Fundamental t}pes 4� 1 (continued)
unsigned long 4�1
unsigned short 4-1

Fundamental types. range of values 4-3

G

Global lifetime 3-6, 4-22
Global variables 3-6

initialization 4-29
references to 4-26

Global visibility 3-6
Goto keyword 6-8
Goto stateillent 6-&

H
Hexadecimal escape seque-nce A-1
Hexadecimal escape sequences 2-3
Hexadecimal integer constants 2-6
huge A-1

u
Identifiet'!l

array 5-2
class 3-9
enum 5-2
fioatlng-polnt 5-2
formal parameters 7-4
function 5-2
Integral 5-2
modified 4-5
pointer 5-2
predeJioed 8-12
stroct 5-2
union 5-2, 2-10� 5�2, A-1, B-1

#if defined A-3
#if defined(idemifier)

#if directive
If directive 8-8
U keyword 6-9
If statement 6-9
Udef directive 8-11
#ifdef directive A-3
#ifndef directive 8-11, A-3
Implicit declarations

function 7-7
Implicit function declamtions 7-7
Implicit return type 7-7
Include directive 8-6
Include files 8-6

I-6

Include Jiles 8-6 (continued)
searclt path 8-6 Increment operator (++) 5-23

Indirection 5-11
operator (•) 5-11 Inequality operator (!-) 5-17

Initialization 4-28
aggregate types 4-29, 4-30
array variables 4-32
auto variables 4-29
fundameotal type, 4-29
global variable> 4-29
initial values 4-29
register variables 4�29
restrictions 4-29
static variables 4�29
with string literals 4-32

Initializers 4-29
constant-expressions 5-9
fundamental types 4-29, 4-30
strlnl!' 4-32

lnserting Jiles 8-6
int type 4-1, A-1

range af values 4-3
storage 4<3

Integer constants
decimal 2-6
hexadecima1 2-6, A-1
loog 2-7
negative 2-6
octa1 2-6, A-1
unsigned A-1

Integer types
signed

converting 5-29
uosigned

converting 5-31
Integral

expressions 5-2
identifiers 5-2

Imegral types 4-2
Internal declarations 4-23, 4-26
Internal representation 4-4
Internal variable deeJar4'tions.

default •torage class 4-26, 4-23, 4-26
Iterative statements

do 6-5
for 6-7
white 6-16

K

Kemigb:an, Brian W. A-0
Keywords 2-11, A-1, A-2, B-1

break 6-2
case 6-14
const A-1

(

Keywords 2·11, A-1, A-2, B-1
(comlnued)

continue 6-4
default 6-14
do 6-5
else 6�9
enum 4-11, A-1, A�2
far 4·19, A-1
for 6�7
Fortran A�l
goto 6-8
huge A-1
if6c9
near 4-19, A-1
Pascal A-1
return 6-12
sizeof 5-12
struct 4-12
unsigned A-2
void

in argument type list 4-21
void 4-20� 4-21, 7-12, A-lJ A�2
while 6-16, 6-5

L

Labeled statements 6-8
Labels 6-8

case 6�14
default 6-14
naming class 3-10

Left shift (<<) operator 5-16
Letters 2-1
Lifetime

defined 3-6
global 3-6, 4-22
local 3-6, 4-22

Line CQntroJ 8� 12
Lillo directive 8-12

_ _LINE__ identifier 8-12
Line numbers

changing 8-12
Linked lists 4-13
Lists

linked 4-13
Local lifetime 3-6, 4-22
Local variables 3-6
Logical AND operator (&&) 5-19
Logical NOT operator (!) 5-11
Logical 9perators

order of evaluation 5-19
Logical OR operator (J[) 5-20
long type 4� 1� A� 1

range of values 4-3
storage 4-3

Loops
do statement 6-5

Loops (w!Uinued)
for statement 6-7
while statement 6-16

Lvalue expressions 5-22

M

Macros
parentheses in 8-5
removing 8-5
side effects 8-4. 8-1

Main function 3-5
parameters 3-5

Manifest constants
removing 8-5, 8-1

Maximum value 4-4
Member

structure 4-12
Member selection

expressions 5-6

Index

Member selection operators (->) A-3
member-declaration-fist 4-12, 4-32
Members

bitfields 4-13
naming class 3-10
referring to 5-6

Minimum value 4-4
Modifier

array 4-16
pointer 4� 18

Modiflers 4-5
associativity 4-6
preceden('..e 4-6

Multidimensional arrays 4-17
references to 5-5

Multiplication
operator (•) 5-13

Multiplicative operators 5-13

N

Names
type 4-34
ldentiliers

Naming classes
structures A-2
unions A-2, 3-9

near A-1
near keyword 4-19
Nested visibility 3-7
Nongraphic escape .sequences 2-3, A-1
Notational conventions 1-3
Null statement 6-11
Nwnber sign (#) c�aracter 8-�

I-7

Index

0

Octal escape sequences 2-3
Octal integer constants 2-6
Operands 5-1
Operator

address-of (&) 5-11
bitwise ex:clusive OR () 5-18
bitwise inclusive OR (l) 5-18
conversions 5�34
left shift (< <) 5·16
right shift (>>) 5-16
si:reof 5-12

Operators 5-1, S-9, B-4
addition (+) 5-14
additive 5-14
ari�hmetic negation (-) 5-10
&SSlgiUnent 5�22
associativity 5-25
binary 5-9
bitwise 5-18
bitwise AND (&) 5-18
bitwise complement (} 5-10
complement 5-10
compou:nd assignment 5-24
conditional (? :) 5-21
decrement (--) 5-23
division (I) 5-13
equalily (--) 5-17
increment (++) 5-23
indirection ('') 5-11
laeqnali<y (!-) 5-17
listed 2-4
logical

order of evaluation 5-19
logical5-19
logical AND (&&) 5-19
logical not (!) 5-11
logical OR (II) 5-20
member selection (->) A-3
multlptication (') 5-13
multiplicative s� 13
precedence 5-25
relational

(<) 5-17
remainder (%) 5-13
sequential evaluation (,) 5-20
shift 5-16
simple assignment (-) 5-23
subtraction (-) 5-14
ternary(? :) 5-9, 5-21
nnary 5-9

OR operator
bitwise exclusive 0 5-18
bitwise inclusive (f) 5-1.8
logical <Ill 5-20

Order of evalu.ation 5-l� 5-27
logical operators 5-19

I-8

Overview 1·1

p

Parameter.!
argc 3-5
argv 3-5
con version 7-12
formal

declaring 7-4
identifiers of 7-4
naming class 3-9
storage class 1-5
<ype-cberking 7-4
Fomaat parameters 7-12

formal 7-4
to main function 3-5
lype-cheoking 7-12

Parentheses
as function modifier 4-S
in complex declarators 4-6
in expressions S-8 !n function call expressions 5-3
m macros 8-5

Pascal A-1
Passing by reference 7-11 7-9
Passing by valne 7-11

'

Period (.)
in member selection expressions 5-6

Pointer
arithmetic 5-13
declarations 4-18
expressions 5-2
identifiers 5-2
modifier 4-18
subtracting 5-15
lypes

storage 4-19
types 4-18
variables

stomge 4-19
Pointer modifier 4-5
fu!nter type 4-5
Pomter types

convertmg 5�34
Pointers

adding 5·15
function 7-9

Pound sign (#) A-2
Pound sign (#) chamcter

number sign charactei 8-1
Precedence

of modifiers 4.6, 5-1
Precedence of opeiators 5-25
Predefined identifiers S..l2
Preprocessor directives

directives 8M 1

(
'

(

Progrlllll execution 3�5
Program structure 3�1
Punctuation characters 2-2

Q

Quotation marks
double quotation mark (") 8-6
single quotation mark (') 8-6

R

Range of \'alues 4-4
char 4-3
douhle 4-3
enum 4-3
ftoat 4-3
int 4-3
long 4-3
short 4-3
unsigned char 4-3
unsigned lot 4·3
unsigned long 4-3
unsigned short 4-3
void 4-3

Recursion 7-15
References to global variables 4-26
register storage class specifier

with internal variables 4-26� 4-22
register variables

· -

initialization 4-29
Relational operators 5-17

(>=) 5-17
Remainder operator(%(5-13
Removing macro deDnitions 8-5
Removing manifest constant definitions 8-5
Representable character set 2-1
Representation

internal 4-4
Reserved words

Keywords . Restricted -constant-expres:swn
defined (idendfier) 8-9

Restricted -constant -expressions
in directives 8�9

Restricted-constant-expressions 5-9
Rerum

type 4-21
Return keyword 6� 12
Return statement 6-12
Return type

declaring 7-7
implicit 7-7
in function definitions 7�2

Index

Return value 6-12, 7-6
structures A-3

Returning control 6-12
Right shift (>>) operator 5-16
Ritchie, Dennis M. A-0

s

Search path
jnclqlfe f)l�_!i �H�

Selectjon statements
if 6-9
switch 6-14

Separators B-5
Sequential evaluation operntor (,) 5-20
Shift operators S-16
short type 4-1, A-1

range of values 4-3
storage 4-3

Side effects 5-1. 5-28
in macros 8-4

Signed integer types
converting 5-29

Simple assignment operator (=) 5-23
Simple variable declarations 4-10
Sizeof operator 5-12
Source files 3-2
Source program

constituents 3-1
Special characters 2-2
Specifiers

type 4-1
Statement body 6-1

compound 6-3
Statement labels 6-8

naming class 3-10
Statements 6-1

break 6-2
compound 6-3
continue 6-4
do 6-5
expression 6-6
for 6-7
goto 6-8
if6-9
labeled 6-8
null 6-11
return 6-12
swjtch 6-14, A-2
S)'lltax B-10
while 6-16

Static storage class specifier
in forward declarations 7-7
in function declarations 7-7
in function definitions 7-2

static storage class specifier
with external variables 4-23

l-9

Index

Static storage class specifier
with function declarations 4-28

static storage class specifier
with internal variables 4-26, 4-22

static variables
initialization 4-29

Storage
arrays 4-17, 5-5
char 4-3
double 4-3
enum 4-3
enumeration variables 4-11
float 4-3
global 4-22
int 4-3
local 4-22
long 4-3
pointers 4-19
short 4-3
structure variables 4-14
union variables 4-15
unsigned char 4-3
unsigned int 4-3
unsigned long 4-3
unsigned short 4-3
void 4-3

Storage class
default

internal variable declarations 4-26
in forward declarations 7-7
in function declarations 7-7
of functions 7-2

Storage class specifiers 4-22
auto

with internal variables 4-26
auto 4-22
extern

with external variables 4-23
with function declarations 4-28
with internal variables 4-26

extern 4-22
formal parameters 7-5
in forward declarations 7-7
in function declarations 7-7
in function definitions 7-2
register

with internal variables 4-26
register 4-22
static

with external variables 4-23
with function declarations 4-28
with internal variables 4-26

static 4-22
Storage classes 4-22
String inltializers 4-32
String literals 2-9

as initializers 4-32
Strings 5-2
stroct keyword 4-12

1-10

struct type specifier 4-12, 4-32
struct types 4-12, 4-32
Structure

declarations 4-12
expressions 5-2
identifiers 5-2
members

bitfield 4-13
members 4-12
tag 4-13
types 4-12
variables

storage of 4-14
Structure niembers

naming class 3-10
referring to 5-6

Structure tags
naming class 3-10

Structure tags 4-32
Structure types

storage of 4-14
Structure types 4-32
Structures

assignment of A-2, A-3
passing A-3
returning A-3

Subscript expressions 5-3
Subtraction

operator (-) 5-14
with pointers 5-15

Switch expression 6-14
Switch statement 6-14, A-2

exit from 6-14
terminating execution 6-2

Syntax summary
declarations B-7
definitions B-11
directives B-11
expressions B-5
statements B-10
tokens B-1

T

Tags
enumeration 4-11, 4-32
naming class 3-10
strucrure 4-13, 4-32
union 4-32

Ternary
expressions 5-7
operators 5-9

Tema.zy operator (? :) 5-21
Tokens 2-12, B-1
Transfer statements

break 6-2
continue 6-4

(

Transfer statements (co1:tinued)
goto 6-8
labeled statements 6-8

Two1s complement operator 5-10
Type conversions 5-1
Type declarations 4-32

typedef 4-32
Type names 4-34

in arg-type-list 4-20
in fUJ'lction declarations 4-20
void 7-12

Type spec!Jier
enum 4-32
struct 4-12, 4-32
union 4-32
unsigned A-2
void A-2

Type specifiers 4-1
abbreviations 4-3
cha.r 4-1� A-1
double 4-1
enum 4-1, 4-10, A-2
float 4-1
int 4-l, A-1
long 4-1, A-1
short 4-1, A-1
union 4-15
unsigned char 4-1. A-2
unsigned int 4-1
unsigned long 4-1, A-2
unsigned long int A-2
Wisigned short 4-1, A-2
unsigned short int A-2
void 4-1

Type-cast
conversions 5-34

Type-casts 5-1 expressions 5-8
Type-checking 7-12

actual arguments 7-12
argwnent 4-21
fonnal parameters 7-12

typedef declarations 4-32
Typedef declarations 4-33
Typedef names

naming class 3-10
Typedef types 4-33
Types

aggregate
initialization 4-29. 4-30

aggregate 4-1
array 4-16, 4-5

initialization 4-32
multidimensional 4-17
storage of 4-17

char 4-1, A-1
stomge 4-3

character
see Types

Index

Types (continued)
character (continued)

integral
defining 4-32
double 4-1

range of values 4-3
storage 4-3

enum 4-10, 4-32, A-2
range of values 4-3
storage 4-3

enumeration 4-l, 4-10, 4-32
storage of 4-11

float 4-l
- ., ·

range of values 4-3
storage 4-3

floating-point 4-2
fWlction returning 4-20, 4-5
fWldamental 4-1

initialization 4-29
initializers 4-29, 4-30
range of values 4-3
storage 4-3

int 4-1, A-1
range of values 4-3
storage 4-3

integral 4-2
long 4-1, A-1

range of values 4-3
storage 4-3

names of 4-34
pointer 4-18. 4-5

storage 4-19
short 4-1, A-1

range of values 4-3
storage 4-3

struct 4-12, 4-32
structure 4-12, 4-32

storage of 4-14
typedef 4-33
union 4-15, 4-32

storage 4-15
unsigned A-2
unsigned char 4-1, A-2

range of vaJuef> 4-3
storage 4-3

unsigned int 4-1
range of values 4-3
storage 4-3

unsigned long
range of values 4-3
storage 4-3, 4-1, A-2

unsigned long int A-2
unsigned short 4-1, A -2

range of values 4-3
storage 4-3

unsigned short int A-2
user-defined 4-32
void A-2

range of values 4-3

I-ll

Index

Types (continued)
void A-2 (continued)

storage 4-3

u

UnOI)'
expressions 5-7
operators 5-9

#undef directive 8-5
Uodefine directive 8-5
Union

declarations 4-15
expression 5-2
identifiers 5-2
type 4-15
type specifier 4-15
types

storage 4-15
variables

storage 4-15
Union declarations 4-32
Union members

naming class 3-10
referring to 5-6

Union tags 4-32
naming class 3-10

union type specifier 4-32
Union types 4-32
unsigned char type 4-1, A-2

range of values 4-3
storage 4-3

unsigned int typ_e 4-1
range of values 4-3
storage 4-3

Unsigned integer types
converting 5-31

unsigned keyword A-2
unsigned long A-2
unsigned long int A-2
unsigned long type

range of values 4-3
storage 4-3

unsigned long type 4-1, A-2
unsigned short A-2
unsigned short int A-2
unsigned short type 4-1

range of values 4-3
storage 4-3

unsigned type A-2
User-defined types 4-32
Usual arithmetic conversions 5-9, A-2

I-12

v

Values
maximum 4-4
minimum 4-4
range 4-4

Variable
declarations

array 4-16
pointer 4-18
structure 4-12
union 4-15

Variable declarations 3-1, 4-9
enum 4-10
extemal 4-23
internal

default storage class 4-26, 4-23, 4-26
simple 4-10

Variable definitions 3-1, 4-23
Variable names

See Identifiers
Variables

array
initialization 4-32
storage of 4-17

auto
initialization 4-29

enumeration, storage of. 4-11
global

initialization 4-29
references to 4-26

global 3-6
local 3-6
naming class 3-9
pointer

storage 4-19
register

initialization 4-29
static

initialization 4-29
structure

storage of 4-14
union

storage 4-15
Vertical tab (VT) A-1
Visibility

defined 3-6
global 3-6

.nested 3-7
of functions 7-2, 7-7

void • construction 4-21, A-1
void keyword 4-21

as arg-type-list 4-20
as type name 7-12
in argument type list 4-21
in function return type 4-21

/

(
'·

void type A-2
range of values 4-3
storage 4-3

WXYZ

While keyword 6-16, 6-5
While statement

continuing execution 6-4
terminating execution -6-2

While statement 6-16
Whitespace characters 2-2
Whitespace escape sequences 2-3, A-1

Index

I-13

(
\

(

()(i...21-87
SCO-S14-210-014

/
\, '

Index

CHARACTERS

! command C-14, C-18
I C0111InAI1d C-4
- command C-8

A

a command C-10
Accessing Registers 8-10
adb

� 4-4
/ 4-6
address

current 4-7
examples 4-5
form 4-4
symbolic 4-6

addresses
validating 4-27

arithmetic 4-31
backtrace 4-18
binary files 4-33
breakpoints 4-16
command line 4-1
commands

- 4-11
/ 4-12, 4-6
combining 4-28
file display 4-4
quit (Ctri-D) 4-4
qull ($q or $0) 4-4
$v 4-6

core image file 4-2
CPU registers 4-19
create file for writing 4-3
Ctrl-D 4-4
data

formats 4-10
data tiles 4-3
default file 4-2
deleting breakpoints 4-18
display

backtrace 4-18
CPlJ registers 4-19
data4-4
external variables 4-19
instructions 4-4
program 4-4

error message 4-1� 4-2, 4�4
exiting 4�4

expression
form 4-5

expression 4�5
external variables 4-19
function 4-5
global variable 4-5
input fcmnat

setting default 4�30
integers

decimal 4,..5
decimal point 4-5
hex:adecima1 4-5
octa1 4-5

introduction 4-1
killing 4-18
leaving 4-4
local variable 4-6
maximum offset, setting 4-29
memory

malting changes 4-34
memory maps 4-24
open file for writing 4-3
operators 4-8
options

prompt (-p) 4-3
write (-w) 4-3

output width� setting 4-29
patching binaries 4-3, 4-33
Program Execution 4-14
prompt 4-1, 4-3
quitting 4-4
register

names 4-7
returning to the system 4-4
XENTX commands 4-:30
scripts 4-28
search 4-33
single· stepping 4-17
starting 4-1
stopping 4-1, 4-4
symbol

C programs 4-5
conflict 4-6
definition 4-5
examples 4-5
length 4-5
spelling 4-6
spellng 4-5
table 4-5

symbol table 4-6
text display 4-31
Sv 4-6
variable

b 4-6
d 4-6
listing 4-6
local 4-6
m 4-6

I-1

Index

adb (continued)
varlabk (continued)

s 4-6
t 4-6

variables
undefinad 4-6

waming 4-3
writing to a file 4-34

Addresses
Displaying C-6
Forming C-6

Allocating Descripton; 8-19
a. out

adb
default tile 4-2

Link editor 3-1, 3-2
Link Editor 3-3

a.out file
sdb C-3
Using sdb C-2

Arguments
to macros B-20

Arrays
Using sdb C-6

Assembly language
Debugging C-13
interfac� 5-7
return values 5-5
routines

entty 5-4
exit 5-6

Assembly language interface, describad 5-1
Assembly language programs

Debugging C-1
Ass!guing values C-18
asterisk { •)

sdb prompt C-2
Awaking l?rocessing 8-14

B

b command C-15, C-9
BASE 7-9
Binary

fiks
debugging 4-1
examining 4-1
repairleg 4-1

Binazy compatibility
C compiler 2-8

Block Devices
Device Drivers 8-53

breakpoint command C-1.5
Breakpoint command C.9
Breakpoints C-9
brelse 8-29
brelse() 8-63

l-2

Bus errors
Debegging C-3

c
C calling conventions

described 5-1
c command C-12» C-18� C� 19
C compiler

c option 2-4
C option 2-8
compat option 2-6
Compiler Pass Options 2-15
CSOFF option 2-10
CSON option 2-10
d option 2-15
D option 2-8
Data Alignment Options 2-11
DOS Cross Development Options 2-12
dos option 2-12
E option 2-8
EP option 2-8
Everyday Options 2-4
F option 2-6
Fa option 2-5
far keyword 2-22
Fe option 2-5
tUen.ame conventions 2-1
Fl option 2-5
Fm option 2-5
Fo option 2-15
fortran Keyword 2-23
FP Option 2-12
Fs option 2-5
functions of the passes 2-15
huge Keyword 2-19
huge keyword 2-22 HUge Model 2-18
Huge Model Address Calculations 2-19
Hybrid Models 2-20
i option 2.-6
I option 2-8
Impure Smsil Model 2-17
K option 2-15
keywords 2-22
L option 2-5
I option 2-6
Large Model 2-18
LARGE option 2-4
Linker Options 2-6
listing filenames 2-6
Listing Options 2-5
M option 2-12
Manifest defines 2-9
Memory Modelil 2-17
Middk Modcl 2-18
Mixad Modelil 2-2Q

C compiler (continued)
Model and Segment Options 2-12
ND option 2� 12
near keyword 2-22
nl option 2�6
NM option 2-12
NT option 2-12
0 option 2-10
o option 2-4
optimization 2�6
Optimization Oj)tions 2-10 ·
p option 2-15
P option 2-8
pack option 2-11
pascal Keyword 2-23
Preprocessor Options 2-8
profiling 2-16
Pure Small Mode! Z-17
OUIETCC 2-2
removal of .o 2-2
renaming the executable 2-5
S option 2-5
s option 2-6
SEG option 2-6
sizeof operator 2-20
Special Keywords 2-21
stack probes 2-16
structure packing: Zpl, Zp2, Zp4 2-11
Table of Default Names 2-21
table of options 2-2
Table of Pointer and Integer Sizes 2-21
U option 2-8
V option 2-15
w option 2-15
warning messages 2-15
X option 2-8
z option 2-15
Zp1 option 2-11
Zp2 option 2-11
Zp4 option 2-11

C compiler eonnnand 2-1
C language

calling sequence 5-4
interface with assembly language S-7
return valuero: 5-5

C language portabillty
address space A-6
hitfields A-5
byte length A-2
byte order within a word A-4
b;1e ordering

long types A -14
short types A-14
summary of A -14

character set A -7
compiler differences A-7
data

portabillty of A-13
dallnltion A-2

Index

C language portability (continued)
functions

with a variable number of
arguments A-10

hardware A-2
indentifier length A-8
lint A-13
operands

ord.er of evaluation A-11
pointers A-5
program environment- ·

differences in A-12
register variables A-8
shift operations A-7
side effects A-11 sign extension A-7
storage

within structures A-3
within unions A-3

storage of data
allgnment A-3

type conversion A-9
word length A-2

C language portabillty A-2
C language programs

Debugging C-1
c option

cc 2-4
C option

cc 2-8
-c option 2-10
Call sequence 5-1
Calling sequence

assembly language 5-4
C language 5-4

Canonic Frame 7-5
cc command

Example C-1
cc command 2-1
cc complier

-Zi option C-1, C-11, C-3
ccblocks

see Character Control Blocks
Character Block 8-49
Character Control Block

Data Structure 8-51
Character ControJ Blocks

Interrupt-level CoJ;J.trol &-51
Character Devices

Device Drivers 8-38
Character Lists 8-39� 8-49
Class name, LSRG 7-6
clist 8-39
clists

see Character Lists
Combination Attribute 7-21
Command line

maximum length B-25
Command line error messages B .. l, B-3

I-3

Index

COMMENT
RECORD 7-41, 7-41

compat option
cc 2-6

Compatibility Issues 8-36
Compilation error messages B-1
Compiler error (code generation) "B-2
Compiler error messages

command line B-1, B-3
compilation B-1
fatal B-1, B-9
intemai B-1
warning B-1, B-4

Compiler error messages: B-1
Compiler internal en:ot messages see Internal error messages
Compiler !Units B-19
Compiling progrnms C-1, C-11
Complete name, LSBG 7-6
Constants

maximum size B-20
Context Switching 8-5
Controlling Registers 8-10
copYin() &-22
copyio() &-22
copyout() &-22
Core file

Using sdb C-3
core image file

ndb
default 4-2

core image tiles
adb 4-2

Core images
Debugging C-2
Examhting C-1, C-2

cpass() 8-48
CS register 3-6, 3-7
CSOFF option

cc 2-10
CSON option

cc 2-10
Ctrl-D command C-7
Ctrl-D command for sdb C-8
Current function

Using sdb C-3
Current line

Using sdb C-3

D

d command C-10
D command C�19
d option

cc 2�15
D option

cc 2-8

I-4

Dsta
Iiles

eX2UlJiniug 4-1
repairing 4-1

Data Alignment
C compiler 2-11

Data segments_J-6
Data Structures

x.out Symbol 'table 7-50
Debugger

Displaying data C-1
Displaying iustruc!lous C-1
Starting sdb C4
Stopping sdb C-1

Debugging see also adb 4-1
Assembly language programs C-1
Breakpoints C-9
C language programs C-1
Deleting breakpoints C-9
Displaying source files C-7
Forttan programs C-1
Length specifiers C-5
Machine language programs C-1
Manipulating source files C-7
Pattern matching C�9
Setting breakpoints C-9
Single stepping C-11
Tracing function calls C-4

Debugging machine language C-13
Debugging programs

Matching function pattems C-4
Matching variable patterns C-4
sdb C-1
Specifjing variables C-5

Debugging tools
sdb C-1

Declarations
maximum level of oesting B-20

defined variables
b 4-6
d 4-6
m 4-6
• 4-6
t 4-<i

Defu!ing register values C-14
Defining Registers 9-8
delay () 8-18
Deleting breakpoints C-10, C-19, C-9
deverr() 8-64
Device 8-75
Device Driver

Intenupt Routin .. 8-41
Line Printer Routines 9-3

Device Driver Routines
Block Devices 8-55
Character Devices 8-39
Naming Conv�tions 8-38

(

Device Drivers
Allocating Descriptors 8� 19
Block Devices S-53
CJtaracter Devices 8-38$ 8�51, 8-53
Character Interface 8-54
Compatibjlity Issues S-36
Debugging 8-70
Definition 8-1
Disk Drives 9-21
DMA allocation routines 8-32
Files &�3
Freeing Descriptors 8-19
GDT Dnscriptors 8-19
lnitialirlng Descriptors 8-20
Interrupt Rou�es 8-9� 9-14� 9-15, 9-27
InterTUpt Routines for Character

Devices 8-49
I/0 Control 9-18
Kernel Functions 8-4
Kernel Support Routines 8-9
Line Discipline Routines 8-48
Line Printer 9�2
Lineprinters 8�53
Magnetic Tape 8�53
Major Numbers 8�3
memory allocation routines 8-27
Memory Mapping 8-21
Minor Numbers 8-3
Modem Routines 9-13
Overview 8-1
Registers 8-10
Relationship to Operating System 8-1
Sample Code 9-1
Scheduling 8-17
s:pl routines 8-:12
Terminal 9-6
Terminals 8-51
virtual memory allocation muiines 8-28
Warnings 8-82
Writing 8-2

Device Models
Block Devices 8-1
Character Devices 8-1

Dlsk Drives
Device Drivers 9-21

disksort() 8-62
Displaying addresses C-6
Displa�ing current file C-8
Displaying current function C-8
Displaying registers C-14, C-17
Displaying source fLies C� 7
Displaying stack trace C-4
Displaying variable values C-1
Displaying variables C-17
DMA allocation routines 8-32
dma_aUoc() 8-33
dm�Unable() 8-35
dma..parnm() 8-34
dma..relse() 8-33

Index

dmaJCsid() 8-35
dm._.tart() 8-33
DOS Cross Development

C compiler 2-12
dos option

cc 2-12
dosld command 2�12
Drivers, Device 8-1
DS register 3-6, 3-7
ds

.
craddr() 8-1

·
9
· dscralloc() 8-19

dscrlree() 8-19 ·

E

e command C-8
E option

cc 2-8
eax register 5-5: 5-6
ebp register 5-4� 5-6
ebx register 5-6
ecx register 5-6
ed C-7, C-8
edi register 5-4, 5··6
edx register 5-5, 5-6
EIGHT

LEAF
DESCRIPTOR 7-2'5

Environment table
maximum size B-25

EP option
co 2-8

enno variable
defined 6-2
descnbed 6-2

:Error messages
compiler

command line
compilation
fatal
internal
w.arning
waming B-4

compiler B-1
tinker B-21
linking B-25
wanting B-27

Errors
catching signals 6-3
delayed 6-4
errno variable 6-2
error constants: 6-2
eJTor numbers 6-2
printing error messages 6-2
processing 6-1
routine system JJO 6-4
sharing resource$ 6-4

I-5

Index

Errors (iXmtinued)
signals 6-3
standard error file 6-l
system 6-4

esl register 5-4, S-6
esp register 5-4
Examining Variables C-4
Etecutable Format 7-51
Executing programs

Controlling C-1
Monitoring C-1

Exiting sdb C-7
EXI'DEF 7-19
EXTERNAL

NAMES
DEFlNITION

RECORD 7-29

F
F option

cc 2-6
Fa option

cc 2-5
Far keyword 2-23
Fatal error messages B-1, B-9
Fatal program errors

Debugging C-3
Fe option

cc 2-5
Filename conventions for cc 2-1
Files

maximum number open B-25
maximum size B-25
temporary

5pace required B-19
FIXUP

RECORD 7-34
FIXUPP 7-34
F'lXUpS

definition 7-8
segment-relative 7-10, 7-14
self-relative 7-10, 7-13

Fl option
cc 2-5

Fm option
cc 2-5

Fa option
cc 2-15

Format specifiers C-5
Forming addresses C-6
Fortran programs

Debngging C-1
FP option

cc 2-12

I-6

FRAME
definllion 7-4
specifying 7-11

FRAME NUMBER 7-5
Freeing Descriptors 8-19
Fs option

cc 2-5
!tool!() 8-25
ftoseg() 8-25

G
g command C-!2
GDT Descriptors

Device Drivers 8-19
getablk 8-29
getablk() 8-62
getc() 8-44
getc 8-49
get<:b() 8-45
getcbp() 8-47
getcf 8-29
getcf() 8-46
Global

declaration
link editor 3-5

variable
communal variable allocation 3-4
uniaitialized 3-4

Global Descriptor l'able 8-18
GROUP 7-5
Group Definition Record 7-23
GRPDEF 7-23

H
Hard Disk Routines

hdintr 9-27
hdread 9-28
hdstmt 9-26
hdstrategy 9-25
hdwrite 9-28

Hardware Reference Numbers 7-56
bdintr 9-27
hdrend 9-28
hdatart 9-26
hdstrategy 9-25
bdwrite 9-28
HIBYTE 7-9
Huge model

integer size 3-5
segment structure 3-6

Huge Model 2-18
Huge model 7 default names 3-6

/ \
, I
"---/

Huge model 7 pointer size 3-5
Huge Model Address Calculations 2-19
Iiybrid Models 2-20

I

I command C-11
i.option

cc 2-6
I Qption

ec 2-8
-I option

td linker C-1, C-ll
iAPX-286,386
address translation

logical to physical 7-2
iAPX-286,386
descriptor tabJes

GDT 7-1
iAPX-286,386
descriptor tables

IDT7-1
iAPX-286,386
descriptor tables 7-1
iAPX-286,386
logical address space 7-1
iAPX-286,386
memory management 7-1
iAPX-286,386
pointers

to logical addresses 7-1
iAPX-286,386
Protected Mode 7-1
iAPX-286,386
segment selector

INDEX field 7-2
iAPX-286,386
segment selector

RPL field 7-2
iAPX-286,386
segment selector

TI field 7-2
iAPX-286,386
segment selector 7-2
iAPX-286,386
system architecture 7-1
Identifiers

maximum length B-20
Implicit bss 7-49
in 8-10
inb() 8-10
Include files

maximum level of nesting B�20
lndex fields 7-8
lndices 7�8
Initializing Descriptors

Device Drivers 8-20

J.ndex

Integer
size in memory model 3-5

Internal error messages B-1
Interrupt Routines 8-41, 8-9

Character Device Drivers 8-49
Interrupt Service Routines 8-9
Interrupt Time Processing 8-7
Jntenupt-level Control

Character Control Blockfl 8-51
Interrupts
·· Acknowledgement 8-12

No Acknowledgement 8-12
ioctJ 8�24
iodone() 8-63
ioinb 8-10
iomove 8-36
iooutb 8-10
iowait() 8-63
Iterated Segments 7-48

K

K option
<::C 2-lS

Kernel Routines
Data transfer 8�22

Keywords
far 2-23
near 2-23

ktop() 8-25

L

L option
cc 2-5

I option
cc 2-6

Large model
integer size 3-5
segment stru.etu.r_e '3-6

l..a.rg<! Model 2-18
Large model 7 default names-3-6
Large model 7 pointer size 3-5
Laige Model 7-50
LARGE option

cc 2-4
Lclose 8-48
ld

see Link editor 3-1
ld command

Example C-1
ld linker

-I option C-1, C-11
LEDATA 7-31

I-7

Index

Length specifiers C-5
lex command 2·14
h"btaries

cc 2-6
LIDATA 7-32
Limits

compiler B-19
runtime B-25

LINE
NUMBERS

RECORD 7-30
Line Discipline Routines

Device Driver 8-48, S-51
Line Printer

Device Driver 9�2
Line Printer Routines

Intenupt Routines 9-6
Ipclose 9-4
lpintr 9-6
lpopen 9-3
lpstart 9-5
lpwrite 9-5

Lineprinter• 8-53
Link editor

a.out 3-1, 3-2. 3-3
_BSS 3-3
command line 3-1
communal variable

a.llocation of 3-4
..DATA 3-3
error message 3-4
global declaration 3-5
jllobal variable 3-4
mtroduction 3-1
memory model3-2
object files 3-3
options

-A 3-2
-B 3-2
-C 3-2
-D3-2
-F 3-2
-i 3-2
-M3-2
-n 3-2
-o 3-3
-P 3-3
-R 3-3
-· 3-3
-u3-3
-v 3-3

options 3-1
packing, disable 3-3
relocatable object module 3-3
stack size 3-2
_TEST 3-3
using 3-1
variable allocation rules 3-4

Linker error messages B-21

l-8

Linking programs C-1, C-11
LINNUM 7-30
Unput l!-48
List of Names Record 7-19
Lmdmint 8-48
LNAMES 7-19
LOBYTE 7-9
LOCATION, type. 7-9
LOGICAL

ENUMERATED
DATA

RECORD 7-31
ITERATED

DATA
RECORD 7-32

L<lgica! Segment 7-4
Lopen 8-48
lpclose 9-4
lpintr 9-6
lpopcn 9-3
lpstart 9-5
lpwrite 9-5
Lread 8-48
LSEG 7-4
Lwrite 8-48
M option

cc 2-12

M
Maeblne langu"!l•

Debugging C-13
Machine language progrruns

Debugging C-1
Macro definition

maximum size B-20
Macros

maximum number of arguments B-20
Magnetic Tape 8-53
Manifest defines

C compiler 2-9
Manipulating registers C-14
Manipulating source files C-7
MAS 7-4
:Matching function patterns C-4
Matchlng variable patterns C-4
mavall() 8-30
Maximum length of a string B-20
Maximum length of an identifier B-20
Maximum length of command line B-25
Maximum length of preprocessor

azgument B-20
Maximum level of nesting

declarations B-20
preprocessor directives B�20

Mrudmmm nwnrurr ffi maao
azguments B-20

(

(

Maximum number of open files B-25
:M:aximum size of a constant B-20
:M:axil:num size of envronment table B-25
Maximum size of macro definition B-20
Maximum size size B-25
Memory Address Space 7-4
memory allocation routines 8-27
Memory Mapping

dscralloc 8-21
mmudescr 8-21

Memory Mapping 8-18
Memory model 3-2
memory models

default names 3-5� 3-6
Memory models

integer size 3-5
pointer size 3-5
segment structure 3-6, 3-7
small 2-23

Memory Models 2-17
Middle model

integer size 3-5
segment structure 3-6

Middle Model 2-18
Middle model 7 default names 3-6
Middle model 7 pointer size 3-5
Mixed Models 2-20
mlrgst() 8-30
nunudeser{) 8-20
mmufree() 8-32
mmuget() 8-31
MODE 7-10
Modem Intetrupts 9-18
Modem Routines 9-13
MODEND 7-39
Modes of Operation 8-4
MODULE

END
RECOIID 7-39

MODL'LE 7-4
Modu1e header record 7-6

N

Naming Conventions
Device Driver Routines 8-38

ND option
cc 2-12

Near keyword 2-23
Nesting

declarations B-20
include files B-20
preprocessor directives B-20

nt option
cc 2-6

NM option
cc 2-12

Index

Non-Iterated Segments 7�49
Notational conventions 1-2
NT option

cc 2-12
Numeric record t}'Pes 7-43

0

0 option
cc 2-10

o option
cc 2-4

Object File Format
Executable 7-46

Object Module Formats 7-3
OFFSET 7-9
OMF 7-3
omf Subset 7-46
Operation Modes

System Mode 8-4
User Mode 8-4

Optimization Options
cc 2-10

Options
-c 2-10

out 8-10
out() 8-11
outb 8-10
outb() 8-11
Overlay Name, LSEG 7-6

p

p command C-7
p option

cc 2-15
P option

cc 2-8
pack option

cc 2-11
disable 3-3

panic() 8-26
PARAGRAPH NUMBER 7-5
passe() 8-48
Pattem matching C-9
perror function 6-2
Physical Segment 7 �4
physio() 8-61
Po�nter and Integer Size Table 2-21
Pomtecs

Dereferencing C-17
size in memory rnodel 3�5
Using sdb C-6

. .
Preprocessor

I-9

Index

Preprocessor (continued)
maximum .level of nesting B-20
maximum nwnber of macro

arguments B-20
maximum size of macro �finition B-20

prlntf() 8-25
Printing error messages 8-48
Processes

System 8-S
u Area 8-6
User 8-5

Program execution
Controlling C-9

PSEG
definition 7-4
NUMBER 7-5

psignal() 8-27
ptok() 8-25
PUBDEF 7-27
PUBLIC

NAMES
DEFINITION

RECORD 7-27
pute() 8-45
pule 8-49
putcb() 8-46
putcbp() 8-47
putcf 8-29
putcf() 8-46
putchar() 8-25

Q

Quitting sdb C-19, C-7

R

R command C-11
r command C-15
ranhb command 2� 7
Record format, sample 1 � 16
Ret:ord f011Ilats 7-3
Record order 7-15
Record types

numeric 7-43, 7-43
Register values C.14
Registers

Acces�g 8-10
Cootrolliog 8-10
cs 3-6, 3-7
Defining 9-8
DS 3-6, 3-7
eax 5-5, 5-6
ebp .5-4, 5-6

1-10

Registers (cominued)
ebx 5-6
e·cx: 5-6
edi 5-4, 5-6
edx 5-5, 5-6
esi 5-4, 5-6
esp 5-4
segments 3-6
ss 3-6, 3-7

Registers C-14
Relocatable memory images 7-3
Relocatable object module 3-3
Return values

a.<sembly language 5-5
Return values 5-2
Routine entry sequence 5-2
Routine exit sequence 5-2
Routines

assembly language
entry 5-4
exit 5-6

Running sdb programs C-11
Rnn-time limits B-25

s
S command C-11
s comnu:md C-16
S option

cc 2-5
s option

cc 2-6
Sample x.oot File 7-48
sdb

! command C-14, C�18
a command C-10
a.out file Cw3
arrays C-6
Assembly 1-e C-13
Assigning values C-18
b COD11Il3Ild C-15! C-9
breakpoint command C-15
Breakpoint command C-9
Breakpoints C-9
c command C-12, C.18, C-19
c.tling functions C-12
Calling proced..,.s C-12
Combining com.mands C-10
Compiling programs for C-1, C-11
Continue command C-12, C-18, C-19
Core files C-3
Ctri-D connnand C-7, C-8
current function C-3
current line C-3
d command C-10
D command C-19
Debugging core images C-2

(

sdb (continued)
Debugging tools C-1
Defining registers C-14
Deleting breakpoints C-10, C-19, C-9
Dereferencing pointers C-17
Description C-1
Displaying addresses C-6
Displaying current file C-8
Displaying current function C-8
Displaying data C-1, C-16
Displaying instructions C-1-
Displaying machine language C-13
Displaying registers C-14, C-17
Displaying source files C-7
Displaying stack trace C-4
Displaying variable values C-1
Displaying variables C-17
e command C-8
Escaping from C-14
Examining core images C-1, C-2
Examining Variables C-4
Executing programs C-11
Format specifiers

c character C-5
d decimal C-5
f floating point C-5
o octal C-5
p pointer C-5
u unsigned decimal C-5
x hexadecimal C-5

Format specifiers C-5
Forming addresses C-6
g command C-12
I command C-11
Leaving C-19
Length specifiers

b specifier C-5
h specifier C-5, C-5

Linking programs C-1, C-11
Machine language C-13
Manipulating registers C-14
Manipulating source files C-7
Matching function patterns C-4
Matching variable patterns C-4
minus (-) command C-8
Overview C-1
p command C-7
Pattern matching C-9
plus (+) command C-8
pointers C-6
Quitting C-1, C-19, C-7
r command C-11, C-15
Rwming programs C-11, C-15
S command C-11
s command C-16
Setting breakpoints C-9
Setting current file C-8
Setting current function C-8
Setting current line C-8

Index

sdb (continued)
Single stepping by

function C-16, C-11, C-16
size command C-19
slash {/) command C-4
Specifying variables C-5
StaJ.1ing C-1
Stopping C-1, C-7
structures C-6
Symbolic names C-1
t command C-15,-C-4 -
Trace function C-15
Tracing function calls C-4
Tracing program statements C-1
Tutorial C-1, C-15
Using a.out files C-2, C-1
w command C-7
x command C-14, C-17
z command C-16, C-7, C-8

sdb command
Arguments C-3
Example C-2

sdb command C-15, C-2
sdb commands C-1
sdb prompt (*) C-2
SEG option

cc 2-6
SEGDEF 7-19
Segment

structure
for memory models 3-6, 3-7

Segment addressing 7-7
Segment definition 7-6
Segment definition record 7-19
Segment Name, LSEG 7-5
Segment Numbers 7-56
Segment registers 5-6
Segment-Relative fixups 7-10
Segment-Relative Ftxups 7-14
Segments

text data 3-6
Self-Relative fixups 7-10, 7-13
Setting breakpoints C-9
Setting current file

Using sdb C-8
Setting current function

Using sdb C-8
Setting current line

Using sdb C-8
Shell commands C-14
signal() 8-26
Signals

catching 6-3
on program errors 6-3

Single stepping C-11, C-16
size command C-19
sizeof operator 2-20
slash (/) command C-4
sleep() 8-14

I-11

Index

Small model
impure 2-17
integer size 3-5
pure 2-17
segment structure 3...,61 3-7

Small model 2-23
Small model 7 default names 3-5� 3-6
Small model 1 pointer size 3-5
sotofai() 8-25
Special Header Fields 7-50
Specifying variables C-5
spl routines &-12
spl5() 8-12
spl6() 8-12
spl7() 8-12
spb<() 8-12
sptalloc() 8-28
sptfree() 8-28
SS regi�1er 3-6� 3-7
Stack

u Area 8-6
Stack order 5-1
Stack size 3-2
Staodard Jiles

redirecting 6-1
stderr? the standard error file 6�1
Strings

maximom length B-20
strip command 2-7
Structure packing: Zpl, Zp2, Zp4

C compiler 2-11
Structures

Using sdb C-6
suser() 8-27
Suspending Processing 8-14
Symbol definition 7-7
Symbol Table 7-50
sys_errno array, described 6-3
System Calls

ioctl routine 8-24
System errors

described 6-4
reporting 6-4

System Mode Stack 8-6
System Processes 8-5

T
t command C-151 C-4
Table of Default Names 2-:21
Table of Pointer and Integer Sizes 2-21
TARGET 7-10
Task Time Processing 8-6
tdelose 9�12
tdintr 9-14
tdioctl 9-18
tdmint 9-18

I-12

tdmodem 9-13
t<lopen 9-10
tdparam 9-10, 9-12
tdproe 9-19
!dread 9-12
tdrint 9-15
tdwrite 9-12
tdxint 9-15
Temporary files

space required B-19
Termlmll

Device Driver Sample 9-6
Tenninal Driver

tdmint 9-18
tdxint 9-15
tdioctl 9-18

Terminal Routines
t<lolose 9-12
tdintr 9-14
tdmodem 9-13
tdopen 9-10
tdpanw 9-12
tdproo 9-19
tdread 9-12
tdrint 9-15
tdwrite 9-12

Text segments 3�6
TIIEADR 7-18
timeout() 8-17
T-MODULE 7-4
T -Module Header Record

(THEADR) 7-18
Tracing function calls C-4
Tracing program statements c-1
ttinlt() 1!-43
ttinit 9-10
ttiocom() 8-43
ttrstrt() 8-44 ttyflllllh() 8-44
Tutorial

sdb C-1, C-15
TI'PDEF 7-24
Type Definitiou Record 7-24

u
u 8-37
n Area 8-6
U option

cc 2-8
User Processes 8-5

/

v

V option
cc 2-15

Virtual Memory Allor;::ation
Routines 8-28

w

w command C-7
W option

cc 2-15
wakeup 8-14
wakeup() 8-16
Warning error messages B-lf B-4

X

x command C�141 C-17
X option

"" 2-8
x.out

File Layout 7-48
General Description 7-47
hnplidt bss 7-49
Iterated Segments 7 �48
Large Model 7-50
Non-Iterated Segments 7-49
Special Fields 7-50
Symbol Table 7-50

x.out :Examples 7-52
x.out :Executable Format 7-51
x.out Fonnat 7-46
x.out Include Files 7-52
x.out Segmented OMF

Specification 7-46
xxclose() &-40, 8-57
-alt() 8-59
xxinit() 8-39' 8-56
xxintr() 8-41, 8-58
x:xloctl() 8-42, 8-60
xxopen() 8-40, 8-57
xxpoll() 8--42, 8-59
xxproc() 8-42
xxread() 8-41, 8-59
xxstart() 8-58
1001trategy{) 8-57
xx:write() 8-41, 8-59

Index

y
yacc command 2-14

z

2: oo�mand C-16� C-7 � C-8
z option

cc 2-15
-Zi option

cc compiler C-1, C-11, C-3
Zpl option

"" 2-11
Zp2 option

cc 2-11
Zp4 option

cc 2-11

I-1:3

C hapter S

C Language Compatibility

with Ass embly Language

5.1 Introduction 5-l

5.2 C CallingSequencefor8086/80286 5-l

5.3 Enteringan8086/80286AssemblyRoutine 5-2

5.4 8086/80286 Retum Values 5-2

5.5 Exiting an 8086/80286Routine 5-2

5.6 8086/80286Program Example 5-3

5.7 80386 CLanguage Calling Sequence 5-4

5.8 Enteringan 80386 Assembly-LanguageRoutine 5-4

5.9 80386 Retum Values 5-5

5.10 Exitinga80386Routine 5-6

5.11 80386 Program Example 5-7

C Language Compallbiliey with Assembly L!l!lguage

5.1 Introduction

This appendix explains how to use 8086/286/386 assembly language rou
tines with C language programs and functions. In particular, it explains
how to call assembly language routines from C language programs and how
to call C languagefunctionsfrom an assembly language routine.

This assembly language interface is especially useful for those assembly
language programmers whose wish to use the functions of the standard C
library and other Clibraries.

Note

Two different calling conventions are available. The 8086/80286 calling
convention is est1lblished by configuring C language programs with the
-MO, -Ml, or-M2 option. The 80386calling convention is established
by configuring Clanguage programs with the -M3 option.

5. 2 C Calling Sequence for 8086/80286

To receive values from C ianguage function calls or to pass values to C
functions, assembly ianguage routines must follow the C argument passing
conventions. C language function calls pass their arguments to the given
functions by pushing the valne of each argument onto the stack. The call
pushes the value of the last argument first and the first argument !�st. It' an
argument is an expression) the call computes the expressiop.'s value before
pushing it onto the stack.

Arguments with char, int, or unsigned type occupy a single word (16 bits)
on the stack. Arguments with long type occupy a double word (32 bits)
with the value's high order word occupying the first word. Arguments with
float type are converted to double type (64 bits). Note that char type argu
ments are zero-extended to inttype before being pushed ort the stack.

If an argument is a stroctnre, the function call pushes the last word of the
structure first and each successive word in turn until the first word is
pushed.

After a function returns control to a routine, the calling routine is responsi
ble forremovingargumentsfrom the stack.

5 - 1

C User's Guide

5.3 Entering an 8086/80286 Assembly Routine

Assembly language routines that receive control from C function calls
should preserve the contents of the bp, si, and di registers and set the bp
register to the current sp register value before proceeding with their tasks.
The following example illustrates the recommended instruction sequence
for entry to an assembly language routine:

entry:
push bp
mov bp,sp
push di
push si

This is the same sequence used by the Ccompiler.

If this sequence is used, the last argument passed by the function call
(which is also the first argument given in the call's argument list) is at
address "[bp+4]". Subsequent arguments begin at address "[bp+6]" or
"(bp+8]" depending on the size of the first argument.

This sequence is strongly recommended even if the si and di registers are
not modified, since it allows backtracingwith thea db program during pro
gram debugging.

5.4 8086t80286Retum Values

Assembly language routines that wish to return values to a C language pro
gram or receive return values from C functions must follow the C return
value conventions. C functinns place return values that have lnt, dlar, or
unsigned type In the ax register. They place values with long type In the ax
and dx registers, with the high orderword in dx.

To return a structure or a floating point value, C functions place the
address of the given value in the ax register. The structure or Jloatingpoint
value must be in a static area in memory. Long addresses are returned in
the ax and dxregisters with the segment selector in dx.

5.5 Exilingan8086/80286Routine

Assembly language routines that return control to C programs should
restore the values of the bp, si, and di registers before returning control.
The following example illustrates the recommended instruction sequence
for exiting a routine:

5-2

C Language Compatibility wifh Assembly Language

pop
pop
mov
pop
ret

si
di
sp, bp
bp

This sequence does not change the ax, bx, ex, or dx registers or any of the
segment registers. The sequence does not remove arguments from the
stack. This is fheresponsibility ofthe calling routine.

5.6 8086/80286Program Example

To illustrate the assembly language interface, consider the following exam
ple of a Cfunction:

add(i,j)
inti1j;
{

rcturn(i+j);
}

If written as an assembly language routine, this function must save the
proper registers, retrieve the arguments from Ute stack, add the argu
ments, place the retnm value in Ute ax register, then restore registers and
return control. The following is a example of how the routin e can be writ
ten:

_add:
push bp
mov bp,sp
push di
push si

mov a
x,lb

p
+4l add ax,11Jp+6

pop si
pop di
mov sp,bp
pop bp
ret

Jf, on the other hand, the C function is to be called by an assembly laoguage
routine, the routine must contain instructions that push the arguments on
the stack in the proper order, call the function, and clear the stack. It may
then use the return value in the ax register. The following is an example of
the instructions that can do this:

5-3

C User's Guide

push <j value>
push <i value>
call _add
add sp,•4

Note that the C compiler does not preserve es over calls. Assembly
language routines need not preserve es and should not assume that it will be
preserved if they make calls to routines written in C.

5. 7 80386C Language Calling Sequence

To receive values from 80386 C language function calls, or to pass values to
80386 C language functions, assembly-language routines must follow the
80386 C language argument-passing conventions.

C language function calls pass arguments to the function by pushing each
argument onto the stack. The call pushes the last function argument first
and the first function argument last onto the stack. If an argument is an
expression, the call computes the expression's value before pushing it onto
the stack.

Arguments with char, int, unsigned, short, or long type occupy a double
word (32 bits or.4 bytes) on the stack. Arguments with float type are con
verted to double type (64 bits or 8 bytes). Note that char, unsigned char,
short, and Unsigned short type arguments are sign extended or zero
extended, respectively, to int type before beingpushed onto the stack.

lf an argument is a structore, the function call pushes the last word of the
structure first and each successive word in rom until the first word of the
strucroreis pushed onto the stack.

After a function return.s control to the calling routine, the calling routine is
responsible for removing all function arguments from the stack.

5.8 Entning an 80386 Assembly· Language Routine

Assembly-language routines that receive control from 80386 C function
calls should preserve the contents ofthe ebp, esi, edi, and ebx registers. Jn
addition, the routines should set the ebp register to the current esp register
value before proceeding with their tasks. The following example illustrates
a recommended instruction sequence for entry to an assembly-language
routine:

5-4

�
(

C Language Compatibilicy wlth Assembly Language

entry:
push ebp
mov ebp,esp
push edi
push esi
push ebx

Note that this is the same routine that file compiler uses after pushing the
function arguments onto the stack . .

If this sequence is used, the last function argument pushed by the function
call (which is also the first argument in the function's argument list) is at
address "[ebp+8)". Subsequent arguments are at address "[ebp+l2]" or
"[ebp+ 16]", depending on the size of the argument pushed on to the stack
at"8(ebp)".

5.9 80386 Return Values

Assembly-language routines that return values to a 80386 C language pro
gram or receive return values from 80386 C language functions must follow
the 80386 C language return-value conventions. C language functions
place return values that have int, char, unsigned, short, and long types in
theeaxregister.

Hoating-point values are returned to the top of the ndp 80287 stack. 11le
followlng example shows the recommended instruction sequence forpass
inglloating-pointvalues:

float fuocO,f;
f= func(f)

fld DWORD PfRf
sub esp,8
fstp QWORD PfR [esp]
call fuoc ; result in ST(O)
add esp,8
fstp DWORD PrRf

The followlng example shows the recommended instruction sequence for
retu:rning fioating-pointvalues:

float fvalue;
return (fvalue);

fld fvalue ; result in ST(O)
pop edx
pop esi
pop edi
leave
ret

S-5

C User's Guide

Far pointers are returned in the eax and edx registers. The offset is con
tained in eax and the segmenH s contained in edx.

C language structure returns are returned to a buffer whose address js
passed as aMdden first parameter.

The following example shows the recommended instruction sequence for
passing and returning Clanguage structure returns:

struct shape
{

in t stuff, to. fill, it, with;
} in, out, themO;
out- them(in);

sub esp,20
mov edi,esp
lea edi,in ; structure copy input
mov ecx,S ; struct onto stack
repmovsd
lea eax,out
push eax
call them
add esp,24

; pass address of
; assignment as extra 1'hidden"

;parameter

The following example shows the recommended instruction sequence for
retuming Clanguagestructurereturns:

struct shape source;
return shape;

mov edi,[ebp+8]
mov esi, source
mov ecx,S
repmovsd
pop ebx
pop esi
pop edi
leave
ret

5.10 Exiting a 80386 Routine

Before returning control from an assembly-language routine to a 80386 C
language program, restore the ebp, esi, edi, and ebx registers. The follow
ing example illustrates the recommended instruction sequence for exiting a
routine:

S-6

r\
v

C Language Compatibility with Assembly Language

pop ebx
pop esi
pop edi
leave
ret

This sequence does not save the eax, ecx, or edx register. These registers
are scratch registers for use by the compiler. If the routine modiiies seg
ment register es, ss, or ds, the routine must preserve the modified segment
regisrers. The sequence does not remove arguments from the stack. This
is the responsibility of the callingroutine.

5.11 80386Program Example

The following example iliustrares a 80386 C language function that can be
written as an assembly-language routine. The function takes two integer
arguments and adds them together, returning the resultant value.

int add(i, i)
inti,j;
{
return(i+j);
}

If written as an assembly-language routine, this function must save the
proper registers, retrieve th" arguments from the stack, add the argu
ments, place the return value in the eax register, then restore the proper
registers and return control to the calling routine. The following is an
e:<ample of how the routine can be written:

_add:
push ebp
mov ebp,esp
push edi
push esi
push ebx

mov eax,[ebp+8]
add eax,[ebp+ 12]

pop eb><
pop esi
pop edi
mov esp, ebp
pop ebp
ret

5-7

C User's Guide

Note

In the above assembly-language routine, it is not necessary to save the , -....
contents of the esi, edl, and ebJ< registers because the routine does not
modify their contents. Iftheesi, edl, orebx registerwasmodified by the
routine, its contentsmustbesaved.

If the C language function is to be called by an assembly-language routine,
the routine must contain instructions that push the arguments onto the
stack in the proper order, call thefunction, and clear the stack. It can then
use the return value in the eax register. The following is an example of the
instructions that perform this task:

5-8

push <j value>
push <i value>
call ...add
add esp,8

Chapter 6
' ' - '

Error Pro cessing

6.1 Introduction 6-1

6.2 Using the Standard Error File 6-1

6.3 Usingthe errno Variable 6-2

6.4 Printing Error Messages 6-2

6.5 Using Error Signals 6-3

6.6 Encountering System Errors 6-4

Error Processing

6.1 Introduction

The XENIX system automatically detects and reports errors that occur
when using standard C library functions. Errors range from problems with
accessing tiles to allocating memory. In most cases, the system simply
reports the error and lets the program decide how to respond. The XENIX
system terminates a program only if a serious error has occurred, such as a
violatioil of �emory space.

This chapter e:q>lains how to process errors, and describes the functions
and variables a program may use to respond to errors.

6.2 Using the Standard Error File

The standard error file is a special output tile that can be used by a program
to display error messages. The standard error file is one of three standard
files (standard input, output, and error) automatically created for the pro
gram when it is invoked.

The standard error tile, like the standard output, is normally assigned to
the user's terminal screen. Thus, error messages written to the file are
displayed on the screen. The tile can also be redirected by using the shell's
redirection symbol (>) For example, the following command redirects the
standard error file to the fileerrorlist:

de 2> errorlist

In this case, subsequent error messages are written to the given file.

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr
may be used in stream functions to copy data to the error :file. The file
descriptor 2 may be used in low-level functions to copy data to the file. For
example, in the following program fragment, stderr is used to write the
message "Unexpected end of tile" to the standard error file.

if ((c=getcharQ) -EOF)
fprintf(stdcrr, "Unexpected end of file. \n");

The standard error file is not affected by the shell's pipe symbol (I). This
means that even if the standard output of a program is piped to another
program, errorS generated by the program will still appear at the terminal
screen (orin the appropriate file if the standard error is redirected).

6-1

C User's Guide

6.3 Usingthe elTDO Variable

The eiTDO variable is a predefined external variable which contains the
error n1llllber of the most recent XENIX system function error. Errors
detected by system functions, such as access permission errors and lack of
space, cause the system to set the ermo variable to a number and return
control to the program. The error number identifies the error condition.
The variable may be used in subsequent statements to process the error.

The file errno.h contains manifest constant definitions for each error
n1llllber, and the external declaration of ermo. These constants may be
used in any program in which the line:

#include <ermo.h>

is placed at the beginning of the program. The meaning of each manifest
constant is described in AppendixB oftheXENIXCLibrary Guide.

The ermo variable is typically used immediately after a system function haa
returned an error. In the following program fragment, errno is used to
determine the course of action after an unsuccessful call to the open func
tion:

if ((fd-open("accounts", OJIDONLY))-- - 1)
switch (ermo) {

}

case(EACCES):
fd- open("/usr/tmp/accounts",OJIDONL Y);
break;

default:
exit(ermo);

In this example, if ermo is equal to EACCES (a manifest constant), per
mission to open the file accounts in the current directory is denied, so the
file is opened in the directory !usr/tmp instead. If the variable is any other
value, the program terminates.

6.4 Prlntlng ErrorMessages

The peiTOr function copies a short error message describing the most
recent system function error to the standard error file. The function call
has the form:

perror (s);

where sis a pointer to a string containing additional information about the
error.

6-2

Error Processing

The perror function places the given string before the error message and
separates the two with a colon (:). Each error message corresponds to the
current value of the ermo variable. For example, in the following program
fragment, perror displays the message:

accounts: Permission denied.

if emu> is equal to the constantEACCES:

if (errno= EACCES) {
perror("accounts");
fd- open ("/usr/tmp/accounts", O...EDONL Y);

}

All error messages displayed by perror are stored in an array named
sys_errno, an external array of character strings. The perror function uses
the variable errno as the index to the array element containing the desired
message. For more information on the perror function, see th.e perror(S)
manual page in theXENIXReferern:e.

6.5 Using Error Signals

Some program errors cause the XENIX system to generate error signals.
These signals are passed hack to the program that caused the error and nor
mally terminate the program. The most common error signals are SIGBUS,
the bus error signal, SIGFPE, the floating point exception signal, SIG
SEGV, the segment violation signal, SIGSYS, the system call error signal,
and SIGPIPE, the pipe error signal. Other signals are descnbed in
signal(S)in theXENIXReference.

A program can1 if necessary, catch an error signal and perform its own
error processing by using the signal function. This function, as described
in Chapter 7 of the XENIX JTogrammer's Guide, "Using Signals," can set
the action of a signal to a user-defined action. For example, the function
call:

signal(SIGBUS, fixbus);

sets the action of the bus error signal to the action defined by the user
supplied function fixbus. Such a function usually attempts to remedy the
problem, or at least display detailed information about the problem before
tenninating the program .

For details about how to catch, redefine, and restore these signals, see
Chapter 7 of the XENIX JTogrammer's Guide.

6-3

C User's Guide

6.6 EncounteringSystemErrors

Programs that encounter serious errors, such as hardware failures or inter
nal errors, generally do not receive detailed reports on the cause of the
errors. Instead, the XENIX system treats these errors as "system errors1"
and reports them by displaying a system error message on the system con
sole. This section briefly describes some aspects of XENIX system errors
and how they relate to user programs. For a complete list and description
of XENIX system errors, see messages (M) in the XR-.TXReference.

Most system errors occur during calls to system functions. If the system
error is recoverable_, the system will return an error value to the program
and set the elTilo variable to an appropriate value. No other information
about the error is available.

Although the system lets two or more programs share a given resource, it
does not keep close track of whkh program is using the resource at any
given time. When an error occurs� the system returns an error value to all
programs regardless of which caused the error. No information about
which program caused the erroris available.

System errors that occur during routine I/0 operations initiated by the
XENJX system itself generally do not allect user programs. Such errors
cause the system to display appropriate system error messages on the sys
tem console.

Some system errors are not detected by the system until after the
corresponding function has returned successfully. Such errors occur when
data written to a file by a program has been queued for writing to disk at a
more convenient time, or when a portion of data to be read from disk is
found to already be in memory and the remaining portion is not read until
later. In such cases, the system assumes that the subsequent read or write
operation will be carried out successfully and passes control back to the
program along with a successful return value. If operation is not carried out
successfully, it causes a delayed error.

When a delayed error occurs, the system usually attempts to return an error
on the next call to a system function that accesses the same file or resource.
If tbe program has already terminated or does not make a suitable call,
then theerroris not reported.

6-4

Chapter 7

Obj ect and Exe cutable File
Formats

7.1 Introduction 7-1

7.2 iAPX286, 386SystemArchitectln'e 7-1
7.2.1 MemoryManagement 7-1
7.2.2 Logical Address Space 7-1
7.2.3 Logical-to-Physica!AddressTranslation 7-2

7.3 Theintel ObjectModuleFormat 7-2

7.4 Definition ofTenns 7-3

7.5 Module identificationandAttributes 7-6

7.6 SegmentDefinition 7-6

7.7 SegmentAddressing 7-7

7.8 Symbo!Definition 7-7

7.9 Indices 7-8

7.10 ConceptnalFrameworkforFi:mps 7-8

7.11 Self-Relative Fi:mps 7-13

7.12 Segment-RelativeFi:mps 7-14

7.13 Record Order 7-15

7.14 Introductionto theRecordFormats 7-16
7.14.1 TitleandOfficialAbbreviation 7-16
7.14.2 TheBoxes 7-16
7.14.3 Rectyp 7-17
7.14.4 Record Length 7-17
7.14.5 Name 7-17
7.14,6 Nmnber 7-17
7.14.7 Repeatedor ConditionalFields 7-17
7.14.8 Chksum 7-17

--------- ··----- ...

7.14.9 BitFields 7-18
7.14.10 T-Module Name 7-18
7.14.11 Name 7- 19
7.14.12 SegAttr 7-20
7.14.13 Segment Length 7-Zl.
7.14.14 SegmentNameindex 7-Zl.
7.14.15 Class Name Index 7-22
7.14.16 Overlay Name index 7-'23
7.14.17 Group Name Index 7-'23
7.14.18 Crroup Component Descriptor 7-24
7.14.19 Name 7-25
7.14.20 Eight LeafDescriptor 7-25
7.14.21 Public Base 7-27
7. 14.22 PublicName 7-28
7.14.23 Public Offset 7-29
7.14.24 Type Index 7-29
7. 14.25 External Name 7-29
7.14.26 Type Index 7-30
7.14.27 Line Number Base 7-31
7.14.28 Line Number 7-31
7.14.29 LineNumberOffset 7-31
7.14.30 Segment Index 7-32
7.14.31 Enumerated Data Offset 7-32
7.14.32 Dat 7-32
7.14.33 Segment Index 7-32
7.14.34 Iterated Data Offset 7-33
7.14.35 Iterated Data Block 7-33
7.14.36 RepeatCount 7-33
7.14.37 Block Count 7-33
7.14.38 Content 7-34
7.14.39 T)lread 7-35
7.14.40 Fixup 7-36
7.14.41 Mod Type 7-39
7.14.42 CommentType 7-41
7.14.43 Comment 7-42

7.15 Numeric List ofRecQrd TYPes 7-42

7.16 Type Representations for Communal Variables 7-43

7.17 The Segmented x.out Format 7-46
7.17.1 GeneralDescription ofx.out 7-46
7.17.2 Example ofFile Layout 7-47
7.17.3 Iterated Segments 7-48
7.17.4 Non-IteratedSegments and implicitbss 7-49
7.17.5 Large Model 7-49
7.17.6 SpecialHeaderFields 7-49
7. 17.7 Symbol Table 7-50
7.17.8 XENIXExecutable Format 7-50

7.17.9 Se!e<;ted Portions of Include Files 7-51

Object and Executable File Format<

7.1 Introduction

This chapter is divided into three sections. The first provides you with a
brief introduction to the architecture of the iAPX-286 and -386 proces-

--,_..- sors.

The seoond section provides a discussion of the Intel (O)bject (M)odule
(F)ormat, which we follow. The implementation of this format makes it
possible to compile programs that run in both the XENIX a1ld MS-DOS
environments.

The third section provides a brief description of our implementation of the
x.out format in a segmented environment. For detru1ed information, see
the x.outheaderfile.

7.2 iAPX 286, 386 System Architecture

XENIX runs on both the 80286 and 80386 processors in protected mode.
This section provides a general introduction to the architecture of pro
tected mode operation. It does not discuss the various 80386 paging
mechanisms. For an in-depth discussion of the iAPX286 and iAPX386,
refer to the respective Programmer's Reference Manual published by Intel.

7 .2.1 Memory Management

Memory management provides a mapping from the logical addresses used
within a program to physical machine addresses. This serves two purposes:

• Programs are not tied to anyparticularphysical address
• Access permissions to particular areas of memory can be con

trolled.

7.2..2 Logical Address Space

The mapping of virtual addresses to physical addresses is achieved by
means of descriptor tables which are themselves resident in memory. At
any given moment there are two allemate descriptor tables available: the
Globa!DescriptorTable (GDT) and the Local Descriptor Table (LDT).

The XENIXkemel uses the GOTto map the kernel's virtual address space.
Bach user process has its own LOT as part of its per-process data which
maps the logical address space of the process.

Bach entry in a descriptor table specifies the base address, length and
access permissions of a particular segment of physical memory.

7-1

C User's Guide

7.2.3 Logical- to-Physical Address Translation

Logical addresses consist of two parts: a segment selector used to select a
particular descriptor table entry, and an offset added to the base address
found in the descriptor table to give a physical memory address.

The segment selector is a 16-bit number containing three pieces of infor
mation:

1. The Request Privilege Level (RPL) is encoded as the low order
two-bits of the selector. TheRPL is a featore of the system architec
ture protectron scheme. Segment selectors in user processes always
have both of these-bits set indicating RPL 3, the lowest privilege
leveL

2. The Table Indicator (Tl) is encoded as then ext most significant-bit
(bit 2). The TI indicates whether address translation will use the
GDT (TI- 0) or the lDT (Tl = 1). User processes can only access
the LDT; therefore the Tlfor a segment selector in a user process is
alwaysl.

3. The Index field is encoded as the high-order 13-bitsofthe selector.
1bis is used to index into the appropriate descriptor table and select
a particular entry.

Having selected a descriptor table entry, the offset is added to the base
address in physical memory to form a physical address.

Depending on the characteristics of the segment (as defined in the descrip
tor table) the offset may be a 16- or 32-bit nwnber. The offset will be 16-
bits on an 80286 processor or in a 16-bitsegment on an 80386 processor.
32-bit offsets apply only to the 80386.

7.3 Thelntel ObjectModnleFonnat

This section presents the object record formats that define therelocatable
object language for the iAPX-86 family of microprocessors. The 8086
object language is the output of all language translators that have the 8086
as their target processor and are linked by the link editor. The 8086object
language is input and output for object language processors such as linkers
andh'brarians.

7-2

Object and Executable File Formats

,� Note
(

Except where otherwise noted, references to the 8086 in this document
refer to the 8086/80286/80386 processors. In general, the 8086/80286
references are made to 16-bitoffsets and 64Ksegment offsets, which do
not apply to the 80386.

The 8086 object module formats permit you to specify reloc>ltable memory
images that may be linked together. The formats allow efficient use of the
memory-mapping facilities of the 8086 microprocessor.

The following record formats, as described in this chapter, are supported.
Those form,ats preceded by an asterisk (*) deviate from the Intel®
specification.

Object Module Record Fonnats

T-Module Header Record
ListofNames Record
*Segmc11t Definition Record
*Group Definition Record
"Type Definition Record

Symbol Definition Records
*Public Narnes Definition Record
*External Names Definition Record
*Line Numbers Record

Data Records
Logical Enumerated Data Record
Logical Iterated Data Record

Fixup Record
*Module End Record
Comment Record

7.4 DellnitionofTenns

The following terms are fundamental to the 8086 relocation and linkage.

OMF
Object Module Formats.

7-3

C User's Guide

MAS
Memory Address Space. Note that the MAS is distinguished from actual
memory, which mayoccupyonly aportion oftheMAS.

MODULE .
Ail Hinseparable" collection of object code and other infonnation pro
duced by a translator.

T- MODULE
A modnle created by a translatur, such as C, Pascal or FORTRAN.

The foJlowmgrestrictions apply to object modules:

1. Every modnle needs a name. Translators provide names for T
Modules, giving a default name (possibly the filename or a null
name)if neither souroecodenoruser specifies otherwise.

2. Every T -Module in a collection of linked modules must have a
different name so that symbolic debugging systems can distinguish
the various line numbers and local symbols. Thls restriction is not
required by ld.

FRAME
A contiguous region of MAS that can be addressed using a single segment
register. Thls concept is useful because the content of the four 8086 seg
ment registers defines four (pes.si.bly overlapping) FRAMEs; no 16-bit
address in the 8086 code can access a memory location outside of the
current four FRAMEs. On an 8086, a FRAME must begin on a paragraph
bol.)lldary (i.e. a multiple of l6bytes). On 80286 and 80386processors, thls
restriction does not apply. On an 80386, a FRAME is a region of up to
(2**32) bytes addressed by a single segment register.

LSEG
Logical Segment. A contiguous region of memory whose contents are
determined at translation time (except for address-binding). Neither size
nor location in MAS is necessarily determined at translation time; size,
although partially fixed, may not be final because the LSEG may be com
bined at LINK time with other LSEGs, forming a single LSEG. On
8086/80286 processors, an LSEG must not be larger than 64K so that it can
fit in a FRAME. This means that any byte in an LSEGmay be addressed
by a 16-bit offset from the base of a FRAME covering the LSEG. An
80386 LSEG may be as much as (2**32) bytes in size and any byte in it
addressed by a 32-bit offset from the base of the FRAME containing the
LSEG.

PSEG
Physical Segment. Thls tenn is equivalent to FRAME. Some people
prefer PSEG to FRAME because the terms PSEG and LSEG reflect the
physical and logical nature of the underlying segments.

7-4

1\ \.._)

Object and Executable File Fonnats

FRAME NUMBER
This term is only used in reference to 8086 processors, or 80286/80386 pro
cessors operating in real address mode. Every FRAME begins on a para
graph boundary. The paragraphs in MAS can be numbered from 0
through 65535. These numbers, each of which defines a FRAME, are
called FRAME NUMBERS.

PARAGJMPHNUMBER
This term is equivalent to FRAME NUMBER.

PSEGNUMB,ER
This term is equivalent to FRAME NUMBER.

GROUP
A collection of LSEGs defined at translation time, whose final locations in
MAS are constrained such that there is at least one FRAME that covers
(contains) every LSEGin the collection.

The notation Gr A(X,Y,Z) means that LSEGs X, Y and Z form a greup
whose name is A. The fact that X, Y and Z are all LSEGs in the same
group does not imply anyorderingofX, Y and Zin MAS, nordoesit imply
any contiguity between X, Y and Z.

The link editor does not currently allow an LSEG to be a member of more
than one group. The link editor iguores all attempts to place an LSEG in
more than one greup.

CANONIC
Any location in the 8086 MAS is contained in exactly 4096 distinct
FRAMEs; but one of these FRAMEs can be distinguished because it has a
higher FRAME NUMBER. This distinguished FRAME is called "the
canonic FRAME'' of the location. The canonic FRAME of a given byte is
the FRAME so chosen that the byte's offset from that FRAME lies in the
range 0 to 15 (decimal). Thus, ifFOO is a symbol defining a memory loca
tion1 one may speak of the "canonic FRAME of FOO," or of "FOO's
canonic FRAME." By extension, if S is any set of memory locations, then
there exists a unique FRAME that has the lowest FRAME NUMBER in
the set of canonic FRAMEs of the locations in S. This unique FRAME is
called the canonic FRAME of the set S. Thus, we may speak of the
canonic FRAME of an LSEGor of a group of LSEGs.

SEGMENT NAME
LSEGs are assigned segment names at translation time. These names
serve two purposes :

7 - 5

C User's Guide

1. They play a role at LINK time in determining which LSEGs are
combined with other LSEGs.

2. They are used in assembly source code to specify groups.

CLASS NAME
LSEGs may optionally be assigned class names at translation time. Oasses
define a partition on LSEGs: two LSEGs are in the same class if they have
the same class name.

The link editor applies the following semantics to class names. The class
name "CODE" or any class name whose suffix is "CODE" implies that all
segments of that class contain only code and may be considered read -only.
Such segments may be overlaid if the user specifics the module containing
the segment as part of an overlay.

OVERLAY NAME
LSEGs may optionally be assigned an overlay name. The overlay name of
an LSEG is ignored by ld (version 2.40 and later versions), but it is used by
Intel relocation and linkage products.

COMPLE'l'ENAME
The complete name of an LSEG consists of the segment name, class
name, and overlay name. LSEGs from dilferent modules are combined if
their complete names are identical.

7.5 Modnle Identification and Attrlhntes

A module header record is always the first record in a module and provides
the module name.

fn addition to a name, a module may have the attributeofbeinga main pro
gram as well as having a specified startiog address. When liriklng multiple
modules together, only one module with the main attribute should be
given.

fn summary, modules may or may not be main and may or may not have a
starticg address.

7.6 Segment Definition

A module is a �ol\ection of object code defined by a sequence of records
produced by a translator. The object code represents contiguous regions
of memory whose contents are determined at translation time. These
regions are called LOGICAL SEGMENTS (LSEGs). A module defines
the attnbutes of each LSEG. The SEGMENT DEFINITION RECORD
(SEGDEF) is the vehicle by which all LSEG information (name, lengtb,
memory alignment, etc.) is maintained. The LSEG information is

7-6

��, (!
\�

(.

Objectand Executable ;FUe Fonnats

required when multiple LSEGs are combined and when segment addressa
bility (See "Segment Addressing") is established. The SEGDEF records
are required to follow the first header record.

7. 7 Segment Addressing

The 8086/80286 addressing mechanism provides segment b a se J'{Ogisterll
from which a 64-Kbyte region of memory, called a FRAME, may b e
addressed. There are one code-segment b ase register (CS), two data
segment base registers (DS, ES), and one stack-segment base register
(SS). The 80386has two additional segment registers: FS and GS, and can
address up to (2**32) bytes of memory from each segment register.

The possible number of LSEGs that make up a memory image far exceeds
the numher of available base registers. Thus, base registers may require
frequent loading. This would occur i n a modular program with many small
data and/or codeLSEGs.

Since such frequent loading of base registers is undesirable, it is a good
strategy to collect many small LSEGs together into a single unit that fits in
one memory frame so that all the LSEGs may be addressed using the same
base register value. This addressable 11nit is a GROUP. See "Definition of
Terms."

To allow addressabilityof object; within a GROUP, each GROUP must be
explicitly defmed in the module. The GROUP DEFINITION RECORD
(GRPDEF) provides a list of constituent segments either by segment name
or by segment attribute such as "tbe segment defining symbol FOO" or
"the segments with class name ROM."

The GRPDEF records witbin a module must follow all SEGDEF records
because GRPDEF records can reference SEGDEF records when defining
a GROUP. The GRPDEF records must also precede all other records
except header records, as ld must process them first.

7.8 SymbolDefinition

Id supports three different types of records that fall into the class of symbol
definition records. The two most important types are PUBLIC NAMES
DEFINITION RECORDs (PUBDEFs) and EXTERNAL NA MES
DEFINITION RECORDS (EXTDEFs). These types are used to define
globally visible proecdures and data items and to resolve external refer
ences. In addition, TYPDEF records are used by ld for the allocation of
communal variables (see "Type Representations for Communal Vari
ables").

7-7

C User's Gni.W

7.9 Indices

"Index" fields appear throughout this document. An index is an integer
that selects some particular item from a collection of such items. (list of
examples: NAME INDEX, SEGMENT INDEX, GROUP INDEX,
EXTERNAL INDEX, TYPEINDFX.)

In general, indices must as5Ullle values quite large (that i•, much larger than
255). Nevertheless, a great number of object files will contain no indices
with valnes greater than 50 or 100. Therefore, indices will be encoded in
one or two bytes, as required.

The high-order (left-most) bit of the first (and possibly the only) byte
determines whether the index occupies one byte or two. lithe bit isO, then
the index is a number between Oand 127, occupying one byte. lithe bit is 1,
then the index is a number between 0 and 32K -1, occupying two bytes, and
is determined as follows: the low-order 8 bits are in the second byte, and
the high -order 7bits are in the first byte.

7.10 ConceptualFrameworkforF!mps

A "fixup" is some modification to object code, requested by a translator,
performed byld, achieving address binding. <

Note

This definition of "fixup" accurately represents the viewpoint main
tained by ld. Nevertheless, the link editor can be used to achieve
modifications of object code (i.e., "fixups") that do not conform to this
deiinition. For example, the binding of code to either hardware float
ing point or software floating point subroulines is a modification to an
operation code, where the operation code is treated as if it were an
address. The previous definition of "fixup" is not intended to disallow
or disparage object code modifications.

8086 translators specify a fixup with four data items:

1. The place and typeofa LOCATIONtobe fixed up.

2. Oneoftwo posslble fixupMODEs.

7-8

Object and E>;ecutable ;J1ile Ji'l!m!l!l!>

3. A TARGET, which is a memory address to which LOCATION
must refer.

4. A FRAME defining a context within which the reference takes
place.

'There are 5 types of LOCATION: a PO]}.'TER, a BASE, an OFFSET, a
HmYrE, and a LOBYTE.

The vertical alignment of the following figure illustrates four points.
(Remember that the high-order byte of a word in 8086 memory is the byte
with the higher address.) ld does not require the presence of the high- or
low-order compliment of these items (e.g. in the case of HffiYrE, a high
orderword, it doesn't matter if the low-order word is present).

1. A BASE is the high-order word of a pointer.

2. An OFFSET is the low-orderword of a pointer.

3. A HmYfE isthehigh-order halfofan OFFSET,

4. A LOBYrEisthe low-order halfof an OFFSET.

+ - - - - +- - - -+ - - - - + - - - - +
Po i n t e r : I I

B a s e :

Of f s e t :

H i by t e :

Lob y t e :

+ - - - - +- - - -+ - - - - + - �+

+- - - -+- - - - +
I I

+ - - - -+- - - -+

+ - - - -+ - - - -+
I I

+ - - - -+-- - -+

+ - - - -+
I I

+ - - - -+

+ - - - - +
I I

+ - - - - +

LOCATION Types

A LOCATION is specified by two data: (1) the LOCATION type, and (2)
where theLOCA TION is. The first is specified bytheLOC subfield of the

7-9

C User's Guide

LOCA T field of the FIXUP record; the second is specified by the DATA
RECORD OFFSET sub field oftheLOCA T field of the FIXUPrecord.

The link editor supports two fixup MODEs: "self-relative" and
Hsegment�relative."

Self-Relative fixups support the 8- and 16-bit offsets that are used in the
CALL, JUMP and SHORT -JUMP instructions. Segment-Relative fixups
support all other addressing modes of the 8086.

The TARGET i s the location in MAS being referenced. (More explicitly,
the TARGET may be considered to be the lowest byte in the ubject being
referenced.) A TARGET is specified in one of eight ways. There are four
"primary" ways, and four "secondary" ways. Each primary way of specify
ing a TARGET uses two kinds of data: an lNDEX-or-FRAME
NUMBER 'X', and a displacement 'D'.

(TO) X is a SEGMENT lNDEX. The TARGET is the Dth byte in the
LSEGidentified by the lNDEX.

(Tl) X is a GROUP lNDEX. The TARGET is the Dth byte in the
LSEGidentifiedbythelNDEX

(T2) X is an EXTERNAL lNDEX. The TARGET is the Dth byte fol
lowing the byte whose address is (eventually) given by the External
Name identified by the INDEX.

(T3) X is a FRAME NUMBER. The TARGET is the Dth byte in the
FRAME identified by the FRAME NUMBER (i.e., the address of
TARGET is (X*l6)+D).

Each secondary way of specifying a T ARGET uses only one data item:
the lNDEX -or-FRAME-Nt>MBER X. An implicit displacement equal
to zero is assumed.

7-10

(T4) X is a SEGMENT lNDEX. The TARGET is the Oth (first) byte
in the LSEGidentifiedbythelNDEX.

(T5) X is a GROUP INDEX. TheTARGET is the Oth (first) byte in
the LSEG in the specified group that is eventually LOCATEd lowest
in MAS.

(T6) X is an EXTERNAL INDEX. The TARGET is the byte whose
address is the Estemal Name identified by the INDEX.

(T7) X is a FRAME NUMBER. The TARGET is the byte whose
20-bit address is (X*16).

Object and Executable File Formats

Note

The link editor does not support methods T3 and T7.

The followingnomenclatnreisused to describe a TARGET:

TARGET: SI (<segment name>), <displacement> [TO]

TARGET: GI(<groupname>), <displacement> [Tl]

TARGET: EI (<symbol name>), <displacement> [T2]

TARGET: SI(<segmentname>) [T4]

TARGET: GI(<groupname>) [TS]

TARGET: EI (<symbol name>) [T6]

The following examples illustrate how this notation is used:

TARGET: SI(CODE), 1024

TARGET: GI(DATAAREA)

TARGET: EI(SIN)

The 1025th byte in the
segment "CODE".

The location in MAS of
a group called
"DATAAREA".

The address of the exter
nal subroutine "SIN".

TARGET: EI(PA YSCHEDULE), 24 The 24th byte following
the location of an
EXTERNAL data struc
ture called "PAYS
CHEDULE".

Every 8086 memory reference is to a location contained within some
FRAME; where the FRAME is designated by the content of some seg
ment register. For ld to form a correct, usable memory reference, it
must know what the TARGET is, and to which FRAME the reference is
being made. Thus, every fixup specifies such a FRAME, in one of six

7-11

C User's Guide

ways. Some use data, X, which .is iu INDEX-or-FRAME-NUMBER,
as above. Others require no dsta.

The six methods of specifying frames are:

7-12

(FO) X is a SEGMENT INDEX. The FRAME is the canonic
FRAME of the LSEGdefined by the INDEX.

(Fl) X is a GROUP INDEX. The FRAME is the canonic FRAME
defined by the group (i.e., the canonic FRAME defined by the
LSEGiu the group that is eventually LOCATEd lowest iu MAS).

(F2) X is an EXTE&'<AL INDEX. The FRAME is determined
when the Estemal Name's public definition is found. There are
three cases:

• (F2a) The symbol is defined relative to some LSEG, and there
is no associated GROUP. The LSEGs canonic FRAME is
specified.

• (F2b) The symbol is defined absolutely, without reference to an
LSEG, and there is no associated GROUP. The FRAME is
specified by the FRAME NUMBER sub field of the PUBDEF
record that gives the symbol's definition.

• (F2c) Regardless of how the symbol is defined, there is an asso
ciated GROUP. The canonic FRAME of the GROUP is
specified. (The group is specified by the GROUP INDEX
subfie\d ofthe PUBDEF Record.)

(F3) Xis a FRAME NUMBER (specifying the obvious FRAME).

(F4) No X. The FRAMEis the canonic FRAME of the LSEGcon
taiuiugLOCATION.

(FS} No X. The FRAME is determined by the TARGET. There
are four cases:

• (FSa} The TARGET specified a SEGMENT INDEX: iu this
case, the FRAMEis determiued as in (FO).

• (F5b) The TARGET specified a GROUP INDEX: iu this case,
the FRAME is determined as in (Fl).

• (F5c) The TARGET specified an EXTERNAL INDEX: in
this case, theFRAMEis determined as iu (F2).

• (FSd) The TARGET is specified with an explicit FRAME
NUMBER: iu this case the FRAME is determined as iu (F3) .

-� (:

Ql;>ject and Executable File Formats

Note

The linkeditordoesnotsupportframemethods F2b, F3, and F5d.

Nomenclature dl'Scribil)g FRAMEs is_ �imilar to the above nomencla
ture for TARGETs.

FRAME: SI(<segmentname>) [FO]

FRAME: GI (<groupname>) [Fl]

FRAME: EI (<symbol name>) [F2]

FRAME: LOCATION [F4]

FRAME: TARGET [F5]
FRAME: NOl'.'E [F6]

"-�· For an 8086 memory reference, the FRAME specified by a self-relative
reference is usually the canonic FRAME of the LSEG containing the
WCA TION, and the FRAME spe<;ified bY a segmel)t relative refer
ence is the canonic FRAME of the LSEG containing the TARGET.

7,11 Self-RdativeFixups

Self-relative fixups can be applied to LOCATIONS which are a 16- or
32-bit OFFSET or a WBYTE. (I'he result of applying a self-relative
fixup to any other type of LOCATION is undefined,)

Both the LOCATION and the TARGET must lie within the FRAME
specified for the fixup.

The value to be used in the fixup is defined as the displacement from the
byte in memoryfollowingthe LOCATIONto !he TARGET.

If the WCA TION to be fixed-up is a LOBYTE, the fixup value must
lie in the range -128 to 127.

If the LOCATION to be fixed up is a 16-bit OFFSET, the fixup value
must lie in the range -32768 to 32767.

The fixup value is added to the existing contents of the LOCATION
ignoring any overflow.

7-13

C User's Guide

Self-relative fu:ups are typically applied to the relative displacement
values used in instructions such as conditional jumps.

7.12 Segmene>-Relatlve Fixups

Segment-relative fixups can be applied to any type ofLOCA TION.

The way in which a LOCATION containing a BASE component (i.e. a
BASE or a POINTER) is fixed up depends on whether the code is to
run in real or virtual address mode. The contents of the BASE portion
of a LOCATION must ultimately be capable ofbelngloaded into a seg··
ment register therefore in real address mode this will be a paragraph
number and in virtual address mode this will be a selector value.

Fixup values for the BASE and OFFSET components of a LOCA
TION are calculated as follows:

• In real address mode:

The base fu:up value (FBV AL) is defined as the FRAME
NUMBERofthe FRAME specifiedin thefixup.

The offset fixup value (FOVAL) is defined as the offset of the
TARGET from the start of the FRAME specified in the fu:up.
This offset must be ;:::oand :5FFFF.

• In protected mode:

The base fixupvalue (FBVAL) is defined as the segment selec
tor of the FRAME specified in the fixup.

The offset fixup value (FOVAL) is defined as the offset of the
TARGET from the start of the FRAME specified in the fu:up.
This offset mlJSt be ;::: 0 and :5 the maximum segment size
implied by the segment selector for the FRAME. (i.e. (2**16)-
1 for 80286 segments and 16-bit 80386 segments, or (2**32)-1
for 32-bit 80386 segments.

The fixup values for BASE and OFFSET are applied to the LOCA
TION as follows:

7-14

• If the LOCATION is aBASEora POINTER, then FBVALis
stored in the BASEcomponent of the LOCATION.

• If the LOCATION is a POINTER or a 16- or 32-bit OFFSET
or a LOBYfE then the offset fu:up value (FOVAL) is added to
the existing contents of the OFFSET component of the
LOCATION ignoring any overflow.

Object and Executable File Formats

• Jf the LOCATION is a HIBYTE tlten (FOVAU256) is added
to the LOCATION ignoringoverllow,

7.13 Record Order

A object code file must contain a sequence of (one or more) modules,
or a hbniry containing zero or more modules. A rriod ule is defi11ed as a
collection of object code defined by a sequence of object records. The
following syntax sbows the valid orderings of records to form a module.
In addition, !be given semantic rules provide information about how to
interpret the record sequence.

Note

The syntactic description language used below is defined in WIRTH:
CACM, November 1971, vol.#20, no.#11, pp.#822-823. The charac
ter strings represented by capital letters sbove are not literals but are
identifiers !bat are furtber defined fu !be section describing the record
formats.

object file = tmodule

tmodule -THEADR seg-grp {component} mod tail

seg.grp -{LNAMES} {SEGDEF} {TYPDEF IEXTDEF IGRPDEF}

component ""data I debug_record

data �content_def llhread_def !TYPDEF IPUBDEF IEXTDEF

debug...record � LINNUM

content_def -data...record {FIXtlPP}

thread_def -FIXUPP (containing only thread fields)

data...record -LIDATA I LED ATA

modtall -MODEND

7- 15

C User's Guide

The following rules apply:

1. A FIXUPP record always refers to the previous DATA record.

2. All L.'lAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDEF
records must precede all records that refer to them.

3. COMENT records may appear anywhere in a file, except as the
first or last record in afileormodule, or within acoatenLdef.

7.14 Introduction tothe RecordFonnats

The following pages present diagrams of record formats in schematic
form. Here is a sample record format, to illustrate the various conven
tions.

SAMFLERECORDFORMAT
(SAMREC)

- - - - - - · - - - - - - - - - - - - - - - - 1 1 1 - - - - - - - - I I I 1 - - - - - - - - ---
� I � I IWAE I ID.ffiER

xxH I j I I I I

QIK
stM

- 1 1 1 - - - - - - - - - - I I 1 1 -- - - - - -1 I + - - - - rpt - - - --+

7 .14.1 Title and OfficialAbbrevia lion

At the top is the name of the record format described, with an official
abbreviation. To promote uniformity among various programs, includ
ingtranslators and debuggers, the abbreviation should be used in both
code and documentation . The record format abbreviation is always six
letters.

7.14.2 The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes
represent single bytes. The wide boxes represent two bytes each. The
wide boxes with three slashes in the top and bottom represent a variable
number of bytes, one or more, depending upon content. The wide
boxes with four vertical bars in the top and bottom represent 4-byte
fields.

7-16

Objectand ExecutableFile Fonnats

7.14.3 Rectyp

The first byte in each record contains a value between 0 and 255, indi
cating the record type. For records that have both 16- and 32-bit ver
sions, the low-order bit ofthe record type indicates the type: D--16-bit,
1�32bit.

7.14.4 Record Length

The second field in each record contains the number of bytes in the
record, exclusive of the first two fields.

7.14.5 Name

Any field that indicates a "NAME" has the following internal struc
ture: the first byte contains a number between 0 and 127, inclusive, that
indicates the number of remaining bytes in tbe field. The remaining
bytes are interpreted as a byte string.

Most translators constrain the character set to be a subset of the ASCII
character set.

7.14.6 Number

A 4-byte NUMBER field represents a 32-bit unsigned integer, where
the first 8 bits (!east-significant) are stored in the first byte (lowest
address), the next 8bits are stored in the second byte, and so on.

7.14. 7 Repeated or Conditional Fields

Some portions of a record foil!lat contain a field ora series of fields that
maybe repeated one or more times. Such portions are indicated by the
urepeated'' Qr ''rpt"brackets below the boxes.

Similarly, some portions of a record format are present only if some
given condition is true; these fields are indicated by similar "condi
tional" or Hcond" brackets below the boxes.

7.14.8 Chksum

The last field in each record is a check sum, which contains the 2's com
plement of the sum (modulo 256) of all other bytes in the record.
Therefore, the sum (modulo 256) of all bytes in the record equals 0.

7-17

C User's Guide

7.14.9 BitFields

Descriptions of contents of fields will sometimes be at the bit level.
Boxes with vertical lines drawn through them represent bytes or words;
the vertical lines indicate bit boundaries; thus the byte represented
below, has threebit-fields of3-, 1-, and4-bits.

REC
TYP
SOH

3

I I
1 4

T-MODULEHEADERRECORD
(THEADR)

- - I l l
T
MDULE
NAME

OlK
Sl.M

- - - - - - 1 1 1 - - - - - - - - - - - -

Every module output from a translator must have a T-MODULE
HEADERRECORD.

7.14.10 T-ModuleName

The T -MODULE NAME provides a name forthe T -MODULE.

7 - 18

Object and ExecutableFlle Fonnats

REC
T'{,P
96H

LISTOFNAMESRECORD
(LNAMES)

- - - - - / / / - - - - - - - - - - -

CHIC
StM

- - - - - - - - - - - - - - - - - / / / - - - - - - - - - - - -

1 I
+ - - - - r p t - - - - -+

This Record provides a list of names that may be used in following
SEGDEF and GRPDEF records as the names of Segments, Classes
and/or Groups.

The ordering of LNAMES records within a module, together with the
ordering of names within each LNAMES Record, induces an ordering
on the names. Thus, these names are considered to be numbered: 1, 2,
3, 4, ... These numbers are used as '(Name Indicesn in the Segment
Name Index, Class Name Index and Group Name Index fields of the
SEGDEFand GRPDEFRecords.

7.14.11 Name

This repeatable field provides a name, whlch may have zero length.

SEGMENT DEFINITION RECORD
(SEGDEF)

- - - - - - - - - - - - - - - - 1 1 1 - - - - - - - - - - - - - - l / 1 - - - - - 1 1 1 - - - 1 1 1 - - - - - -

l I I I
. I I . I I . I

REC REa:lRD ISBM'Nl' SEJ:MENT SHM!Nr ClASS OVER QJKI ITYI' I LE!'I31H Al"1R LE!'I31H NAME !NAME lAY SlMI 198H I I . . I INDEX flNIJEX NAME I 99HI I I INDEX I
- - - - - - - - - - - - - - - - l / l - - - - - - - - - - - - - - / 1 1 - - - - - / 1 1 � - - 1 / l - - - - -

SEGMENT INDEX values 1 through 32767, which are used in other
record types to refer to specific LSEGs, are defined implicitly by the
sequence in which SEGD EF Records appear in the object file.

In the RECORD TYPE field, 98H and 99H descn'be 16- and 32-bit seg
ments, respectively.

7-19

C User's Guide

7.14.12 Seg Attr

The SEG A TTR field provides information on various attnbutes of a
segment, and has the following format:

ACB
p

FRAME
NUMBER

OFF
SET

- - - - - - - - - - - - r - - - - - - - - - -
1 I

+ - - - cond i t i ona l - -+

The ACBP byte contains four numbers wbich are the A, C, B, and P
attrib ute specifications. Thls byte has the following format:

I
A c

I

"A " {Alignment) is a 3-bitsnbJield that specifies the alignment attnbute
oftheLSEG. The semantics are defined as follows:

A -Q SEGDEF describes an absolute LSEG.

A-1 SEGDEF describes arelocatable, byte-aligned LSEG.

A=2 SEGDEF descnbes arelocatable, word-aligned LSEG.

A-3 SEGDEF describes arelocatable, paragraph-aliguedLSEG.

A --4 SEGDEF describes a relccatahle, page-aligned LSEG.

A =5 SEGDEF descn'bes a relocatable, double-word-aligned LSEG
(386 OMF only)

If A=O, the FRAME l'.'UMBER and OFFSET fields will be present.
Using ld, absolute segments maybe used for addressing purposes only;
for example, defining the starting address of a ROM and defining sym
bolic names for addresses within the ROM. ld will ignore any data

7-20

\

Object and Executable File Fonnals

specified as belonging to an absolute LSEG.

"C" (Combination) is a 3-bit subfield that specifies the combination
attribute of the LSEG. Absolute segments (A-Q) must have combina
tion zero (C..O). For relocatable segments, the C field !lncodes a
number (0,1,2,4,5, 6 or 7) that indicates how the segment can b e com
bined. The interpretation of this attribute is best given by considering
how two LSEGs are combined:

Let X,YbeLSEGs, and let Zbe the LSEG resultingfrom thecombina
tionofX,Y.

Let LX and L Ybe the lengths of X andY, and let MXY denote the max
imumofLX, LY.

Let G be the length of any gap required between the X- and Y
components of Z to accommodate the alignment attribute ofY.

Let LZ denote the length of the (combined) LSEG Z; let dx
(0<-dx<LX) be the offset in X the (combined) LSEG Z; let dx
(0<-dx<LX) be the offset in X of a byte, and let dy similarly be the
offset in Y of a byte.

The following table gives the length LZ of the combined LSEG Z, and
the offsets dx' and dy' in Zforthe bytes corresponding to dxin X and dy
in Y. Intel defines additionally alignment types 5 and 6 and also
processes code and data placed in segment with align-type.

c
2
5
6

Combination A \tribute Example

LZ dx'
LX+LY+G dx
LX+LY.;.G dx
MXY dx

dy'
dy+LX+G
dy+LX+G
dy

Public
Stack
Common

The table has no Jines for c-o, c� 1, G-3, C=4 and C=7. C=O indicates
that the relocatable LSEG may not be combined; G-1 and C=3 are
undefined. 0=4 and G-7 are treated like C=2. C1, C4, and C7 all have
different meanings according to the Intel standard.

"B" (Big) is a 1-bit subfield which, if 1, indicates that the Segment
Length is exactly 2 .. 16 (2**32 in the case of 32-bit segments). In this
case the SEGMENT LENGTH field must contain zero.

The "P'' field must always be zero. The "'P" field is the ('Page resident"
field according to the Intel standard.

7-21

C User's Guide

The FRAME NUMBER and OFFSET fields (present only for absolute
segments, A�) specify the placement ll1 MAS of the absolute seg
ment. The range of OFFSET is constramed to be between 0 and 15
mclusive. If a value larger than 15 is desired for OFFSET, then an
adjustment ofthe FRAME NUMBER should be done.

7.14.13 SegmentLengtb

The SEGMENT LENGTH field gives the length of the segment in
bytes. The length may be zero; if so, ld will not delete the segment from
the module. The SEGMENT LENGTH field is two bytes for a 16--bit
segment (Rectyp 98) and four bytes for a 32-bit segment (Rectyp 99).
This is large enoughfornumbers upro (2**16)-1 and (2**32)-1, respec
tively. The B attnbute bit ll1 the A CBPfield (see SEG A TTR section)
must be used to indicate a length of (2 .. 16)or (2**32).

7.14.14 SegmentNamelndex

The Segment Name is a name the programmer or tranSlator assigns to
the segment. Examples: CODE, DATA, TAXDATA,
MODULENAME...CODE, STACK. This field provides the Segment
Name, by mdemg mto the list of names provided by the LNAMES
Record(s).

7.14.15 Class Namelndex

The Class N alne is a name the programmer or tranSlator can assign to a
segment. 1f none is assigned, the name is null, and has length 0. The
purpose of Class Names is to allow the programmer to define a "han
dle" used ll1 the orderng of the LSEGs in MAS. Examples: RED,
WHITE, BLUE; ROM FA STRAM, DISPLA YRAM. This field pro
vides the Class Name, by mdemginto the list of names provided by the
LNAMES Record(s).

7-22

Obj ect and Executable File Formals

7.14.16 Overlay Name Index

Note

This is ignored in ld versions 2.40 and later, but supported in all earlier
versions. However; semantics differ from Intel-semantics�-- ·

The Overlay Name is a name the translator and/or ld, at the
programmer's request, applies to a segment. The Overlay Name, like
the Class Name, may be null. This field provides tbe Overlay Name, by
index:ingiato the list of names provided by the LNAMES Record(s).

Note

The "Complete Name" of a segment is a 3-component entity compris
iag a Segment Name, a Class Name and an Overlay Name. (The latter
two components may be null.)

GROUPDEFINITJONRECORD
(GRPDEF)

- 1 1 1 - - - - - - - - - 1 1 1 - - - - - - - - - - - -

I
:Rl'C
'IYP
9AH

1 I I

5: l oo= �
I - - - - - - - - - - - - - - - 1 1 1 - - - - - - - - - - 1 1 1 - - - - - - - - - - - - -

7.14.17 Group Name Index

1 I
+ - - repeated--+

'The Group Name is a name by which a collection of LSEGs may be
referenced. The important property of such a gronp is that, when the
LSEGs are eventually fixed in MAS, there must exist some FRAME
wlrich "covers" every LSEGof the grnup.

7-23

C User's Guide

The GROUP NAME INDEX field provides the Group Name, by
indexing into the list of names provided by the LNAMES Reeord(s}.

7.14.18 Group ComponentDescriptor

Each GROUP COMPONENT DESCRlPfOR has the following for-·
mat:

- - - 1 1 / - - - -

S I SB:M:!Nl'
INJEX

(FFH)

The first byte of the DESCRIPI'OR contains OFFH; the DESCRIP
TOR contains one field, which is a SEGMffi.l"T INDEX that selects the
LSEGdescribed by a precedingSEGDEFrecord.

Intel defines 4 other group descriptor types, each with its own meaning.
They are OFBH, OFDH, OfBH, and OfAH. The link editor will treat all
of these values the same as OFFH (i.e., it alwaysexpectsOFFH followed
by a segment index, and it does not check to see if the value is actually
OFJ:<).

TYPE DEFINITION RECORD
(TYPDEF)

- -�- � - -=· · - - · · :�J - - -��- - - - � ·g;· i

SEH I NULL) I IlESCRIPTClR I I I I - - - · - - - - - - - - - - - - - - - 111 - - - - - - - - - 1 1 1 - - - - - - - - - - - - -
1 I

+ - - r ep e a t e d - - +

The link editor uses TYPDEF records only for communal variable allo
cation. This is not Intel's intended purpose. See "Type Representa
tions for Communal Variables."

As many"EIGHT LEAF DESCRlPfOR" fields as necessary are used
to describe a branch. (Every such field except the last in the record

7-24

Object and Executable File Fonna1s

describes eight leaves; the last such field describes from one to eight
leaves.)

TYPE INDEX values l through 32767, which are contained in other
record types to associate object types with object names, are defined
irnplicitly by the sequence in which TYPDEF records appear in the
object file.

7.14.19 Name

Use of this field is reserved. Translators should place a single byte con
tainingOin it (the representation of a name oflengthzero).

7.14.20 EightLeafDescrlptor

This field can describe up to eight Leaves.

- - - - - - - - - - - 1 1 1 - - - - -

E
N

LEAF
DESCRIPTOR

- - - - - - - - - - - / / / - - - - - -

1 I
+ - - - - rpt - - - - - +

The EN field is a byte: the8 bits, left to right, indicate if the followingS
Leaves (left to right) are Easy(bit=O) or Nice (bit=l).

The LEAF DESCRIPTOR field, which occurs between 1 and 8 limes,
has one of tbe formats given on the next page.

7-25

C User's Guide

0
t o
1 2 8

0
1 2 9 t o

64K- 1

1 3 2
0

t o
1 6M- 1

- 2G- 1
1 3 6 t o

2G- 1

The first fonuat (single byte), containing a value between 0 and 127,
represents a Numeric Leaf whose value is the number given.

The second format, with a leading byte containing 129, represents a
Numeric Leaf. The number is contained in the following two bytes.

The third format, with a leading byte containing 132, represents a
Numeric Leaf. The nwnberis contained in the following three bytes.

The fourth format, with a leading byte containing 136, represents a
Sigoed Numeric Leaf. The number is contained in the following four
bytes, sigo extended if necessary.

7-26

Object and Executable :File :Formal$

PUBLIC NAMES DEFINITION RECORD
(PUBDEF)

- - - - - - - - - - - - - - l / 1 - - - - - - 1 1 1 - - - - - - - - - - - - - - 1 / l - - - - - - - -

1 REC RECDRD PUBLIC PUBLIC !PUBLIC TYPE I CllK I I TYP LENJ:ll:J BASE NAMB IOPFSEJ' INJEX I SlM

I 90H . . I I 91H
- - - - - - - - - - - - - - - - - - 1 1 1 - - - - - 1 1 1 - - - - - - - - - - - - / / / - - - - - - - - - -

1 I
+ - � � - - - - - - r epea t ed � - - - - - - -+

This record provides a list of one or more PUBLIC NAMEs; for each
one, three data arc provided: (1) a base value for the name, (2) the
offset value of the name, and (3) the type of entity represented by the
name.

In the RECORD TYPE field, 90H and 91H descnbe 16- and 32-bit
public definition records, respectively.

7.14.21 Public Base

The PUBLIC BASE has the followi.ngformat:

- - - - 1 1 / - - - - - - - - 1 1 1 - - - - - -

GROUP
INDEX

SECMENT
INDEX

FRAME
NlM3ER

- - -� - 1 1 1 - - - - - - - 1 1 1 - - - - - - - - - - - - - - - -

1 I
+condi t i ona l +

The GROUP INDEX field has a format given earlier, and provides a
number between 0 and 32767 inclusive. A non-zero GROUP INDEX
associates a group with the pnblic symbol, and is used as described in
Section 7.10, "Conceptual Framework for Fixups," case (F2c). A zero
GROUP INDEX indicates that there is no associated group.

The SEGMENT IJ:.J!)EXfield b.asaformatgiven earlier, and provides a
number between 0 and 32767, inclusive.

A non-zero SEGMENT INDEX selects an LSEG, In this case, the
location of each public symbol defined in the record is taken as a non
negative displacement (given by a PUBLIC OFFSET field) from the

7-27

C User's Guide

first byte of the selectee! LSEG, and the FRAME NUMBER field must'
b e absent.

A SEGMENT INDEX of 0 {legal only if GROUP INDEX is also 0)
means that the location of each public symbol defined in the record is
taken as a displacement from the base of the FRAME defined by the
valueinthe FRAMENUMBERfield.

The FRAME NUMBER is present if both the SEGMENT INDEX and
GROUPJNDEXarezero.

A non-zero GROUP INDEX selects some group; this group is taken as
the "frame of reference" for references to all public symbols defined in
this record ; that is, ld will perform the following:

1. Anyfixup oftheform:

TARGET: EI(P)
FRAME: TARGET

(where "P" is a public symbul in this PUBDEF record) will be con
verted byld to afixupoftheform:

TARGET: SI(L),d
FRAME: GI(G)

where "SI(L)'' and "d" are provided by the SEGMENT INDEX
and PUBLIC OFFSEt fields. (The "normal" action would have
the fnune specifier in the new fixup be the same as in the old fixup:
FRAME:TARGET.)

2. When the value of a public symbol, as defined by the SEGMENT
INDEX, PUBLIC OFFSET, and (optional) FRAME NUMBER
fields, is converted to a {base,offset} pair, the base part will be
taken as the base of the indicated group. If a non-negative 16-bit
offset cannot then complete the definition of the public symbol's
value, an error occurs.

A GROUP INDEX of zero selects no group. ld will not alter the
FRAME specification of fixups referencing the symbol, and will take,
as the base part of the absolute value of the public symbol, the canonic
frame of the segment {either LSEGor PSEG) determined by the SEG
MENT INDEX field.

7.14.22 Public Name

The PUBLIC NAME field gives the name of the object whose location
in MAS is made available to other modules. The name must contain

7-28

Object and Executable File Formats

one or more characters.

7.14.23 Public Offset

The PUBLIC OFFSET field is a 16-bitvalue (Rectyp-90H), or a 32-bit
value (Rectyp=91H), which is either tile offset of the Public Symbol
with respect to an LSEG (if SEGMENT INDEX > 0), or the offset of
tile PublicSymbolwithrespect to tile specified FRAME (if SEGMENT
lNDEX=O).

7.14.24 Type Index

The TYPE INDEX field identifies a single preceding TYPDEF (Type
Definition) Record containing a descriptor for tile type of entity
represented by tile Public S}mbol. This field is ignored byld.

EXTERNALNAMESDEFINniTONRECORD
(EXTDEF)

- 1 1 1 - - - - - - - 1 1 / - - - - -

I I I I
REC RECORD EXTERNAL TYPE CFJK I TIP I LEN31H I NAME I INDEX SlM
sar I I

- - - - - - - - - - - - - - - -1 1 1 - - - - - - 1 1 1 - - - - - - - - - -I I
+ - - - - - r epeated - - - - - - - - +

This record provides a list of external names, and for each name, the
type of object it represents. ld will assign to each External Name tile
value provided by an identical Public Name (if sucha nameisfound).

7.14.25 Extema!JI!ame

This field provides tile name, which must have-non-zero length, of an
external object.

Inclusion of a Name in an External Names Record is an implicit request
that the object file be linked to a module containing the same name
declared as a Public Symbol. This request obtsins whether or not the
F.:x:temal Name is referenced within some FIXUPP Record in tile
module.

The ordering of EXTDEF Records within a module, together with tile
ordering of Extemal Names within each EXTDEF Record, induces an
ordering on the set of all External Names requested by the module.

7-29

C User's Guide

Thus, External Names are considered to be numbered 1, 2, 3, 4,
These numbers are used as "External Indices" in the TARGET
DATUM and/or FRAME DATUMfieldsofFIXUPP Records to refer
to a particular External Name.

Note

8086 External Names are numbered positively: 1,2,3, .. . This is a
change from 8080 External Names, which were numbered starting from
zero: 0,1,2, . . . This conforms with other 8086 Indices (Segment Index,
Type Index, etc.) which use 0 as a default value with special meaning.

External indices may not reference forward. For example., an external
definition record defining the kth ob jectmust precede anyrecord refer
ringto that object with indexk.

7. 14.26 Type Index

This field identifies a single preceding TYPDEF (Type Definition)
record containing a descriptor for the type of object named by the
External Symbol.

The TYPE INDEX is used only in communal variable allocation by the
link editor.

LINENUMBERSKECORD
(LINNUM)

- - - - - - - - - - - - - - - - - 1 1 1 - - - -- - - - - - - - - - - - - -
1 I I I I
I REC I RBXlRD LINE LINE I LINE I OlK

I TYP LE!UIH I NlMlER NlMBER

I

NlMBER I Sl.M

�: I I BASE OFFSEf
- - - - - - - - - - - - - - - - - - 111 - - - - - - - · -

1 I
+--- - - - r epeat ed - - - - - -+

This record provides the means by which a translator may pass the
correspondence between a line number in source code and the
corresponding translated code.

In the RECORD TYPE field, 94H and 95H describe 16- and 32-bitline
number records, respectively.

7-30

r"·. I I

�·

Object and Executable File Formats

7.14.27 Line Number Base

The LJ::'.!E NU:MBER BASE has the following format:

- I l l - - - - - - - -
1 / / - - - -

GROUP
INDEX

(i gno r e d)

SECMENT
INDEX

-- - - -1 / 1 - - - - - - - - 1 1 1 - - - -

The SEGMENT INDEX determines the location of the first byte of
code corresponding to some source line number.

7.14.28 Line Number

A line number between 0 and 32767, inclusive, is provided in binary by
this field. The high-order bit is reserved for future use and must be
zero .

7.14.29 Line NumberOlfset

The LINE NUMBER O.FFSEI' field is either a 16-bit value
(Rectyp=94H) or a 32-bit value (Rectyp=95H), which is the offset of
the line number withrespect to an LSEG (ifSEGMEN'f INDEX> 0).

LOGICAL ENUMERATED DATA RECORD
(LEDATA)

- - - - - - - - - - - - - - 1 1 1 - - -

REC RF.toliD SEGMENI' I IN.MERATFD
I I

CHK I
TYP I LEN'illi INDEX MTA I = I SlM I AOII I OFFSET I

I Am I I I
- / / / -

1 I + � rp t - +

This record provides contiguous data from which a portion of an 8086
memory image may be constructed.

Jn the RECORD TYPE field, AOH and AlH descnbe 16- and 32-bit
LEDATA records, respectively.

7-31

C .User's Guide

7.14.30 Segment Index

This field must be non-zero and specifies an index relative to the SEG
MENT DBFINrfiON RECORDS found previous to the LEDATA
RECORD.

7. 14.31 EnumeratedData Olfset

This field specifies either a 16-bit offset (Rectype-AOH) or a 32-bit
offset (Rectyp-A1H), that is relative to the base of the LSEG specified
by the SEGMENT INDEX and defines the relative location of the first
byte of the DAT field. Successive data bytes in the DAT field occupy
successively higher locations of memory.

7.14.32 Dat

This field provides up to 10'24 consecutive bytes of relocatable or abso
lute data.

LOGICAL ITERATEDDATA RECORD
(LIDATA)

· - · · · · - - - - - - - - - - - -
1 1 1 - - - - - - - - - - - - - - - - - - /1 1 - - - - - - -

REC I RECORD I SECMENr I ITERAl'E:) I ITERAl'E:> OlK TYP I LENGTII I IN!EX I DAJ'A I DATA SlM A2H I OFFSET BI..(XX
I A3H I I - - - - - - - - - - 1 1 1 - - - - - - - - - - - - - - - - - / / / - - - - - - - - -

1 I
+ - r epea ted�+

This record provides contiguous data from which a portion of an 8086
memory image may be constructed.

In the RECORD TYPE field, A2H and A3H describe 16- and 32 -bit
LIDA TArecords, regpectively.

7.14.33 Segmentindex

This field must be non-zero and specifies an index relative to the SEG
DEF records found previous to the LIDA TA RECORD.

7-32

�
'
'

()

Ci

Object and Executable File Formats

7.14.34 Iterated Data Offset

This field specifies either a 16-bit offset (Rectype�A2H) or a 32-bit
offset (Rectyp�A3H), that is relative to the base of the LSEGspecified
by the SEGMENT INDEX and defines the relative location of the first
byte in the ITERATED DATA BLOCK. Successive data bytes in the
ITERATED DATA BLOCK occupy successively higher locations of
memory.

7.14.35 Iterated Data Block

This repeated field is a structure specifying the repeated data bytes.
The structure has the following format:

Note

- 1 1 1 - - - - -

REPEAT
CDUNT

BLOCK
CDJNT CDNTENT

- 1 1 1 - - - - -

The link editor cannot handle LIDA TA records whose ITERATED
DATA BLOCK is largerthan512 bytes.

· 7.14.36 Repeat Count

This field specifies the number of times that the CONTENT portion of
this ITERA·TED DATA BLOCK is to be repeated. REPEAT
COUNT must be non-zero.

7.14.37 Block Count

This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA
BLOCK. If this field has value zero, then the CONTENT portion of
this ITERATED DATA BLOCK is interpreted as data bytes. If non
zero, then the CONTENT portion is interpreted as that number of
ITERATED DATA BLOCKs.

7-33

C User's Guide

7.14.38 Cuntent

This field may be interpreted in one of two ways, depending on the
value ofthe previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a 1-byte count followed by
the indicated number of data bytes.

If BLOCK COUNT is non-zero, then thi.s fieldis interpreted as thefirst
byteofanother iTERATED DATA BLOCK.

Note

From the outermost level, the number of nested ITERATED DATA
BLOCKS is limited to 17, i.e., the number of levels of recursion is lim
ited to 17.

RF..C
TYP
9CH
900

FIXUPRECORD (FIXUPP)

- - - - - - - - - - - 1 1 1 - - -

RECORD
LENGIH

THREAD
o r

FIXUP

CHK
StM

- - - / / / - - - - - - - - - -

1
+ - - - - r p t - - - -+

This record specifies 0 or more fixups. Each fixup requests a
modification (fixup) to a LOCATION within the previous DATA
record. A data record may be followed by more than one fixup record
that refers. Each fixup is specified by a FIXUP field that specifies four
data: a location, a mode, a target and a fra.me. The frame and the target
may be specified totally within the FIXUP field, or may be specified by
reference to a preceding THREAD field.

A THREAD field speclfies a default target or frame that may subse
quently be referred to in identifying a target or a frarue. Eight threads
are provided; four for frsme specification and four for target
specification. Once a target or frsme has been specified by a
THREAD, it may be referred to by followingFIXT.JPfields (in the ssme
or following FIXUPP records), until another THREAD field with the

7-34

-1

Objectand Executable File Formats

same type (TARGET or FRAME) and Thread Number (0 - 3) appears
(in the same or another FIXUPPrecord).

Jn the RECORD TYPE field , 9CH and 9DH describe 16- and 32�bit
FIXUPPrecords, respectively.

7.14.39Thread

THREAD is a field with the following format.

- - - - - - - - - - - ! ! 1 -

TRD rNDEX

- - - - - - - - - - - f l f - - - - -
1 I

-r e ond i t i on a l +

The TRD DAT (ThReaD DATa) subfield is a byte with this internal
structure:

The "Z" is a 1-bit sub field, currently without any defined function, that is
required to contain 0.

The "D" subfield is one bit that identifies what type of thread is being
specified. If D=O, then a target thread is being defined; if D-1, then a
frame thread is being defined.

METHOD is a 3-l>it subfield containing a number. between 0 and 3 (D=O)
or a number between 0 and6 (D-1).

If D=O, then METHOD = (0, 1, 2, 3, 4, 5, 6, 7) mod 4, where the 0, . .. , 7
indicate methods TO, .. ., T7 of specifying a target. Thus, METHOD indi
cates what klnd of Index or Frame N umberis required to specify the target,
without indicating if the target will be specified in a primary or secondary
way. Note thatmethods2b, 3, and 7 are not supported byld.

lf D=1, then METHOD = O, 1, 2, 4, 5, correspondingtomethodsFO, . . . , of
specifying a frame. Here, METHOD indicates what kind (if any) of Index
is required to specify the frame. Note that methods 3 and 5d are not sup
ported by Id.

7-35

C User's Guide

THRED is a number between 0 and 3, and associates a Thread Number to
the frame or target defined by the THREAD field.

INDEX contains a Segment Index, Group Index, or External Index
depending on the specification in the METHOD snbfield. This subfield
will not be presentll'F4 or F5 are specified by METHOD.

7.14.40 Fixup

FIXUPis afield with thefollowingfonnat:

- - - - - - - - - - - - - - - - - - - 1 1 1 - - - - - - - - 1 1 1 - - - - - - - - - 1 1 1 - - - - -

1 LOCAT I FIX I FRAME I TAROEI' TARGET I
I

I

DA:r I DATIM DATIM DIs- I I I I I
PIACEMENr

- l l l - - - - - - - - - l l l - - - - - - - - - l / 1 - - - - -
l I I I

+cond i t ional+condi t i onal+cond i t ional+

LOCA Tis a byte pair with the following fonnat:

I I I
L 0 C
I I I

I I I I I I I I I I I
D A T A R E C O R D O F F S E T I

I I I I I I I I I I I
I I . I

+ - - - - - - - - l o byte- - - - - - - - -+-- - - - - - - - - h � byte - - - - - - - - - -+

M is a 1-bit subfield that specifies the mode of the fixups: self-relative
(M-0) or segment-relative (M-1).

Note

Self-Relative fixups may not be applied to LID AT A records.

7-36

Object and Executable File Fonnats

WCis a four-bit sub-field indicating the type of location that is to be fixed
up:

0
1
2
3
4
5
9
11
13

8bit Jobyte
16bit offset
16bit base
32 bit pointer

8 bit bibyte
l6bit offset (linker resolved)
32 bit offset
48bit pointer
32 bit offset (linker resolved)

LOC values 9, 11 and 13 are only valid in 32-bit FIXUPP records (record
type 9D). All other values ofLOC are invalid.

The DATA RECORD OFFSET is a number between 0 !!lld 1023,
inclusive, that gives the relative position of the lowest order byte of LOCA
TION (the actual bytes being fixed up) within the preceding DATA
record. The DATA RECORD OFFSET is relative to the first byte in the
data fields in the DATA RECORDs.

Note

It is possible for the value of DATA RECORD OFFSET to designate a
"location" within a REPEAT COUNT sub field or a BLOCK COUNT
sub field of the ITERATED DATA field. Such a reference is an error.
The action ofld on such amallormed record is undefined.

FIXD AT is a byte with the following format:

Note:

I I FRAME
I I

Frame method 2b, F3, !!.1ld F5d are not supported.
Target method T3 and T7 are not supported.

7-37
- ····· --------� ·-------

C User's Guide

F is a 1-bit subfield that specifies wbether the frame for this FIXUP is
specified by a thread (F�l)orexplicitly (F9J).

FRAME is a nurober interpreted in one of two ways as indicated by the F
bit. 1f F is zero, FRAME is a number between 0 and 5 and corresponds to
methods FO, . . . , F5 of specifying a FRAME. If F=l, then FRAME is a
thread nurober (0-3). It specifies the frame most recently defined by a
THREAD field that defined a frame thread with the same thread number.
(Note that the THREAD field may appear in the same, orin an earlier FIX
UPP record.)

"T" is a !-bit suhfield that specifies whether the target specified for this
furnp is defined by reference to a thread (T=l), oris given explicitly in the
FIXUPfield (T=O).

"P" is a 1-bit sub field that indicates wbether the target is specified in a pri
maryway (requires a TARGET DISPLACEMENT, P=O) or specified in a
secondaryway (requlres no TARGET DISPLACEMENT, �1). Since a
target thread does not have a primary/secondary attnbute, the P bit is the
ouly field that specifies the primary/secondary attribute of the target
specification.

TARGT is interpreted as a 2-bit sub field. When T=O, it provides a number
between 0 and 3, corresponding to methods TO, ... , T3 or T4, .. . , 1'7,
depending on the value of P (Pcan be interpreted as the bigh-order bit of
TO, . .. , T7). V.'hen the target is specified hya thread (T�l), then TARGT
specifies a thread number (0-3).

FRAME DATUM is the "referent" portion of a frame specification, and
is a Segment Index, a Group Index, an External Index. The FRAME
DATUM sub field is present only when the frame is specilied neither by a
thread (F9J) nor explicitly by methods F4or FS or F6.

TARGET DATUM is the "referent" portion of a target specification, and
is a Segment Index, a Group Index, an External Index ora Frame :.lumber.
The TARGET DATUM subfield is present only when the target is not
specified by a thread (T9J).

TARGET DISPLACEME.'IT is the displacement required by "primary''
methods of specifying TARGETs. This field is 2 bytes long in 16-bit FIX�
UPP records (Rectyp=9CH) and 4 bytes long in 32-bit FIXUPP records
(RectYP=9DH). Thissubfieldispresent ifP�O.

7-38

I
··'

Object and Executable FileFonnats

Note

All these methods are described in "Conceptual Framework for Fix
ups. "

REC
TYP
BAH
SBH

MODULE END RECORD
(MOD END)

- - - - - - - - - 1 1 1 - - - - - - - - - -

REa:RD
LENGIH

MD
TYP

START
ADDRS

aiK
SLM

- 1 1 1 - - - - - - - - - - -

1 I
+cond i t i on a l +

This record serves two purposes . It denotes the end of a module and indi-.
cates whether the module just terminated has a specified entry point forini
tiatinn of execution. If the latter is true, the execution address is specified.

In the RECORD TYPE field, BAH and 8BH describe 16- and 32-bit
MOD END records, respectively.

7.14,41 Mod Type

This field specifies the attributes of the module. The bit allocation and
associated meanings areas follows!

I :MATTR
I

z z z L

�1ATTRis a 2-bit sub field that specifies the following module attributes :

7-39

C User's Guide

MAlTR MODULE ATI'RIBUTE

0
1
2
3

Non-mai:nmodulewithno START ADDRS
Non-main module with START AD DRS
Mai:nmodule with noSTART ADDRS
Mai:n modulewith START ADDRS

"L" indicates whether the START ADD RS field is interpreted as a logical
address that requires fixing up by ld. {L-1). Note that with Id, L must
always equal l.

"Z" indicates that this bit has not currently been assigned a function.
These bits are required to be zero.

Physical start addresses (L-0) are not supported.

The START AD DRS field (present only if MATTR is 1 or 3) has thefol
lowingformat:

STARTADDRS

- - - - - - - - - - 1 1 1 - - - - - - - - 1 1 1 - - - - - - - - - - - - - - - - -

END
DAT

FRAME
DATIM

TARGET
DATIM

TARGET
DIS

PlACEMENT
- - - - - - - 1 1 1 - - - - - - - - - 1 1 1 - - - - - - - - - - -

1 I I I
+cond i t i on a l +cond i t i on a l +cond i t i ona l +

The starting address of a module h as all the attnbutes of any other logical
reference found in a module. Themappingof a logical starting address to a
physical starting address is done in exactly the same manner as mapping
any other logical address to a physical address as specified in the discussion
of fixups and the FIXUPP record. The above subfields of the START
ADDRS field have the same semantics as the FIX DAT, FRAME
DATUM, TARGET DATUM, and TARGET DISPLACEMENT fields
in the FIXUPPrecord. Only "primary" fixups are allowed. Frame method
F4 is not allowed.

The TARGET DISPLACEMEN""T field is 2 bytes in a 16-bit MODEND
record (Reclyj:F8AH) and 4 bytes in a 32-bit MODEND record

7-40

Object and Executable File Fonnats

(Rectyp�8BH).
COMMENT RECORD

(COMENT)

- 1 1 1 - - - - -

REC
TYP
88H

RECDRD
LENJTH

- - - - - - 1 1 1 - - -

This record allows translators to include comments in object text.

7.14.42 ConunentType

CEK
SlM

This field indicates the type of comment carried by this record. This allows
comments to b e structured for those processes that wish to selectively act
on comments.
The format of this field is as follows:

CCM\1E.NT
ClASS

The NP (NOPURGE) bit, if 1, indicates that it is tlDt able to be purged by
object file utility programs which implement the capability of deleting
COMEN'T record.

The NL (NO LIST) bit, if 1, indicates that the text in the COMMENT field
is not to be listed in the listing file of object file utility programs which
implement the capability oflisting object CO MMEN'T records.

7-41

C User's Guide

The COMMENT CLASS field is defined as follows:

0

1

2-155

156-255

NOTES:

Language translator comment.

Intel copyright comment. The NP bit must
be set.

Reserved for Intel use. (See note 1 below.)

Reserved for users. Intel products will
apply no semantics to these values. (See
Note2below.)

1. Oass value 159 is used to specify a library to add to the link editor's
library search list. The comment field will contain the name of the
library. Note that unlike all other name specifications, thehbrary name
is not prefixed v.ith its length. Its length is determined by the record
length.

2. Oass value 156 is used to specify a DOS level number. When the class
value is 156, the comment field will contain a two-byte integer specify
ing a DOS level number.

3. Class value 161 is used to indicate that the module contains Microsoft
extensions to OMF � such as the various 32-bit record types.

7.14.43 Comment

This field provides the commentary information.

7-42

,---"'

(

(')
\.___/

Obj eel and Executable File Fonnats

7. 15 Numeric List of Record Types

*6E RHEA DR *92 LOCSYM
*70 REGINT *93 MLOC386
*72 REDATA 94 LINNUM
*74 RIDATA 95 MLIN386
*76 OVLDEF 96· · · LNAMES
*78 ENDREC 98 SEGDEF
*7A BLKDEF 99 MSEG386
*7C BLKEND 9A GRPDEF
*7E DEBSYM 9C FIXUPP
80 THEA DR 9D MFIX386
*82 LHEADR *9E (none)
*84 PEDATA AO LEDATA
*86 PIDATA A1 MLED386
88 COMENT A2 LIDATA
8A MOD END A3 MLID386
8B H386END *A4 LIBHED
8C EXTDEF *A6 LIBNAM
8E TYPDEF *A8 LIBLOC
90 PUBDEF *AA LIBDIC
91 MPUB386

Note

The record types marked with an asterisk are not supported by the link
editor. They will be ignorediftheyarefound in an object module.

7.16 Type Representations for Communal Variables

This section defines the Microsoft standard tor communal variable alloca:.;.
tion on the 8086 and 80286.

A communal variable is an uninitialized public variable whose final size
and location are not fixed at compile time. Communal variables are similar
to FORTRAN common blocks in that if a communal variable is declared
m more than one object module being linked together, then its actual size
will be the largest size specified in the several declarations. Jn the C

7-43

C User's Guide

language, all uninitiallzed public variables are communal. The following
example shows three different declarations of the same C communal vari
able:

char foo[4J;
char foo[l];
char foo[1024];

/* InJllea.ce*/
/* Infileb.ce*/
/* In file c.ce*/

If the objects produced from a.ce, b.c, and c.c are linked together, then
the linker will allocate 1024bytes for the char array "foo."

A communal variable is defined in the object text by an external definition
record (EXTDEF) and the type definition record (TYPDEF) to which it
refers.

The TYPDEFfor a communal variable has the followingformat:

- 1 1 1 - - - - - - - - - -

l � l � l o i DESWrProR I � I - 1 1 1 - - - - - - - -

The EIGHT LEAF DESCRIPrORfieldhas the followingformat:

- - - - - - - - - 1 1 1 - - - - -

1 � I DESgrPTOR I - - - - - - - - - 1 1 1 - - - - -

The EN field specifies whether the next 8 1eaves in the LEAF DESCRIP-
TOR field are EASY (bit -0) or NICE (bit -1). This byte is always zero for
TYPDEFS for communal variables.

7-44

\

Object and Executable File Fonnats

The LEAF DESCRIPTOR field has one of the following two formats. The
format for communal variables in the default data segment (near variables)
is as follows:

- - - - - - - - - - - - - - - - - - 1 1 1 - - - - 1 1 1 - - - - -

1 � 1 � 1 T I s� �
- - - - - - - - - - - - - - - - - - 1 / 1 - - - - - - / / 1 - - -

1 I +- � - - � - - - +
(op t i on a l)

The VARiable TYPe field may be either SCALAR (7BH), STRUCT
(79H), or ARRAY (77H). The V AR SUBTYP field (if any) IS ignored by
!d. The format for communal variables not in the default data segment (far
variables) is as follows;

I FAR -, -vAi--, - ��---, �- -, 6 1H TYP OF TYPE
7 7H ELEMENTS INDEX

- - - - - - - - - - - - - - - 1 1 1 - - - - - 1 1 1 - - - -

The VARiable TYPe field must b e ARRAY (77H). The length field
specifies the NUMBER OF ELEMENTS, and the ELEMENT TYPE
INDEX is an index to a previously defined TYPDEF whose format is that
of a near communal variable.

The format for the LENGTH IN BITS or NUMBER OF ELEMENTS
fields is the same as the format for the LEAF DESCRIPTOR field,
descnbed in the TYPDEFrecord format section of this guide.

IJnkThne Semantics

All EXTDEFs referencing a TYPDEF of the previously descnbedfonnats
are treated as communal variables. All others are treated as externally
defined symb ols for which amatchingpublic symbol defurition (PUBDEF)
is expected. A PUBDEF matching a communal variable definition will
override the communal variable defurition. Two communal variable
definitions are said to match if the names given in the definitions match. If
two matching definitions disagree as to whether a communal variable is
nearorfar, the linker will assume the variable is near.

7-45

C User's Guide

If the variable is near, then its size is the la:rgest specified for it. If the vari
able is far, then the link editor issues a warning if there are conflicting array
element size specifications; if there are no such conflicts, then the
variable's size is the element size times the largest number of elements
specified. The sum of the sizes of all near variables must not exceed 64K
bytes. The sum of the siz.es of all far variables must not exceed the size of
the machine's addressable memory space.

"Huge" Communal Variables

A far communal variable whose size is larger than 64K bytes will reside in
segments that are contiguous (8086) or have consecutive selectors (80286).
No other data items will reside in the segments occupied by a huge commu
nal variable.

If the linker finds matching huge and near comm una! variable definitions,
it issues a wamfug message, since it is impossible for a near variable to be
iargerthan 64K bytes.

7.17 TheSegmented x.outFormat

This section describes the exeentable object file format used in XENIX.
The format used is an extension to the existing"x.out'' format, specifically
enhanced for the segmented architecture of the 286 CPU.

The XENIX linker (!bin lTd, see Chapter 4, "Id: the Link Editor") will link
the Intel 86 Relocatable Object Format into the executable format
described in this section.

The XENIX product supports a subset of segmented omf. Other parts are
specified here for use by other vendors, and to reserve their meaning for
possible future use. Those parts supported in this releaseofXENIXare:

• The x.outheader
• Thex.outextended header
• The file segmenttable
• Multiple non-iterated text segments
• Multiple non-iterated data segments
• Symbol table segments in theformat describedherein.

Note specifically that the machine-dependent table is not supported. The
iterated text/data featore is supported by the kernel, but theXID!IX!inker
will expand iterated records.

7-46

Object and Executable File Fonnats

7.17.1 GeneraiDescription ofx.out

The following is a general description of the x.out object file format,
extended to handle segmentation. It implements iterated text and data seg
ments, huge, large, middle and small model, as well as block alignment to
improve the efficiency of loadingexecutab le illes.

The extensions to the existing format consist of .adding a ille segment table
that descnbes and points to various (possibly block aligned) file segments.
A file segment may contain a memory image, may indicate how to con
struct a memory image (iterated text or data), or may contain symbols or
other non-executable information. In addition to the ille segment table,
there is an optional machine-dependent table.

The header must be first in the object file, and the extended header must
immediately follow the header. The extended header indicates the seg
ment and (optional) machine-dependent tables' sizes and positions.
Although the segment table is not block aligned, individual entries will line
np on a multiple of 32 bytes (the size of a segment table entry). The seg
ment table indicates the sizes and positions of the remaining file segments.
The file segments may be aligned on a boundary that is a multiple of 512
hytes, with that multiple stored in the extended header, or al location zero
if the file segments are not block aligned.

The segment table is an array of records describing the file segments, each
containing:

• A segment type: text, data, symbols, etc.
• Segment attributes, specific to the type of segment.
• A file pointer to the (possibly iterated) text/ data for this segment.
• A physicalsi7.e, the size ofthesegmentin the file.
• A virtual size, the size the segment will occupy in memory.
• A location counter� this segment's current base address, usuallyO.

A sample of a segment tableentryis shown below. Thexsfieldsin this data
structure are referred to throughout the remaining discussion in this sec
tion.

7-47

- - - --·······-·�-----------------·

C User's Guide

Segment table entry
slruct xseg {

};

unsigned shortxs_type;
unsigned short xs_attr;
unsigned short Xl'L.Seg;
unsigned short xs...sres;
long xsJllpos;
long xs_psize;
long xs_vsize;
long XSJbase;
long xsJres;
long xsJres2;

t• x.out segment table entry•/
I* segment type */
I* segment attributes *I

I* segment number*/
/* unused */
I* file position */
I* physical size(infile) */
I* virtual size (in core) */
/* relocation base address */
/*unused */
/*unused*/

The segment table is a contiguous array of the above structures. Each file
segment has a corresponding segment table entry that desenbes the
segment's position xs_filpos and physical sizexs_psize in the file. lf there is
no associated file segment, both fields must be setto zero.

The kernel's local deseriptor table (LDT)can be built from the virtual size,
the segment type, and segment attribute fields.

7.17 .2 Example of File Layout

This section provides an example of the layout of anx.outfilewhere:

• The segmenttable hastwo entries (segments).
• The file page size is 512 bytes (xext.xe_pagesiu-1).
• Both file segments are smaller than 512 bytes.
• The second file segment contsins iterated data.

The file layout is illustrated below:
Accessing the machine-dependent table and the file segment table must
always be done through the absolute file pointers in the extended header.
The ordering of the two tables and file segments shown above is not
required to be consistent with the x.outXENIX specification.

7.17.3 Iterated Segments

The data structure for an iterated segment is shown below:

7-48

Object and Executable File Fonnats

struct xiter {
long
long
long

};

:x:Uize;
xi..rep;
xi_offset;

!• byte count */
I* replication count*/
I* destination offset in segment */

If tbe segment contains iterated text/data (indicated by a bit in tbe xs_attr
field), the xs_jilpos field is the file position of some number of iteration
records mixed witb the text/data to be iterated. II any part of a segment is
iterated, tben all of tbat segment is represented as iterated ; non-iterated
portions may he represented by an iteration record with a replication count
of one.

The format of tbe text! data to be iterated is:

<iteration record> <text/data> <iteration record> <text/data> ...

where each <iteration record> is of tbe above "struct xiter" data struc
ture. Each iteration record is followed by xLsize bytes of text/data that are
to be placed in the current segment at the specified offset xi_offset xiyep
times. Vilhen xs...psi:ze bytes of iteration records and text/data have been
expanded_. the iteration is complete.

Under XENIX, areas of memory that are initialized by more than one iter a c
tionrecord will have the contents of those memory areas undefined. Areas
of memory that are not initialized by any iteration records will be zeroed
out. An iteration byte count xiJize of zero will not result in any iteration.
Portions of a segment that are to be bss should use an iteration record witb
a non-zero byte count and replicate one or morezeroed data bytes.

This representation of iterated text/data will handle iterations that contain
very large replication counts and! or very large non -iterated sizes.

7.17 .4 Non· Iterated Segments and Implicit bss

H the iteration bit in XSJJttris not set, no iterations are required to initialize
the segment. If tbe implicit bss bit in tbe xs_attr field is set and the virtual
size is greater than the physical size, then the rest of the segment (up to
xs_vsi:ze bytes) is filled witb zeros by tbe kernel loader. This implicit bss
definition means that small and middle model executables' single data seg
ments may still contain unexpanded bss without the use of explicit iteration
records.

Segments made up entirely of implicit "C" bss need only set the physical
size to zero, and set theimplicit bss bit. This eliminates the need foranyfile
segment conteiningdata or iteration records. II there are no iterations and

7-49

---····-----·-- ------�� �------

C User's Guide

no implicit bss, the virtual size of the segmentxs_vsize must be the same as
the physical size xs_p.size, and a single copy of the ten/data located at
xs_filpos is all that is required to initialize the segment.

7. 17.5 Large Model

With x.out format, large model is supported by allowing multiple logical
text and/or data segments. :Middle and small models are simpler cases,
with perhaps single logical segments for data (or both text and dats).
Iterated segments are independent of memory model.

7.17.6 Special Header Fields

The model bits in the x...renv field of the main header, XP..J,DATA and
XE.L TEXT, usually indicate the default size of data and text pointers used
in the executable code. The kernel depends on these two bits to indicate
the size of data and text pointers passed in system calls. However, since
multiple segments are allowed in small and middle model, there can be lit
tle other meaning attached to these bits. Passing near data andlor text
pointers implies use of the first data and text segments, respectively.

Also in the XJenV field, the absointe bit, XE..ABS, identifies a standalone
executsble file. When this bit is set, the extended header stsck size field is
used as the default physical load address. The XENIX kernel loa.der will
not load a binary if the XE..ABS bit is set, The XEN!Xboot loader will not
in ad a binary unless the XE..ABS bit is set. See the ld(CP) command in the
XENIXReference for infornlation about how to set theXE_ABS bit and the
physicalload address.

·

7.17. 7 S)'ntbo!Table

The datastructurcforthex.outsymbol table is shown below:

struct sym{

};

unsigned short
unsigned short
long

/*x.outsymbol table entry*/
s_type;
s_seg;
s_value;

The symbol table differs from the previous x.out only in that the L<eg field
now holds the selector of the segment that defines the symbol. If the sym
bol is absolute, the value field holds the symbol's valnc; otherwise, it holds
the offset in the indicated segment to which the symbol refers.

7-50

Object and Exeentable File Fonnats

TI1e symbol name trails the above "struct symH data structure in the form
of a null terminated string. The type field values are defined in
/u.sr/include/ sys!relsym. h.

The use of the xs...seg field in the segment table is undefined for symbol
table segments. Its use may be defined by the particular symbol table for
mat used.

7.17.8 XENIXExecutableFormat

XEN!Xdoes not execute binaries that make use of selectors below 0x3f or
selectors that do not have the low 3 bits set (LDT, ring 3). XENIX also
requires that the first data selector be after the last text selector. Binaries
are allowed to have zero length segments or "holes" (unused selectors) in
text or data, but holes in text may not contain data selectors, and holes in
data may not contain text selectors.

The fields, xext.xe_peg:xexec.XJntry, must contain the initial cs:ip of the
user process.

Small model impure binaries (text and data combined into a single seg
ment) must have a single file segment, of type data, with a selector of at
least Ox47. Il must contain all text, followed by all data, followed by bss.
The sizes of each must be stored in thexJext, x..data and x...bss fields of the
main header. XENIX will use the value stored in the xext.xe...eseg field as
the text selector, which must be at least Ox3f and less than the data selector.
All text/datalbss binaries are executable through the text selector, and all
text/data/bss binaries are readable and writable through the data selector,
XENIX maps the text selector to the same memory as the data selector.

In addition to the above, theXENIX linker generates binaries that conform
to the following:

• Text selectors start at Ox:3f.
• Data selectors start at the first free selector past text.
• All text selectors are contiguous.
• All data selectors are contiguous.
• Small model impure binaries conform to the above specification, with

Ox47 as the data selector. In the symbol table, the sel.ector0x47 is asso
ciated with data symbols, and the selector Ox::lf is associated with text
symbols, to allow a db and nm to present consistent data to the user.

7-51

----···---

C User's Guide

7.17.9 Selected Portions oflodudeFiles

The following are selected portions of the u.srlinehuJelsysla.out. h and
usr lincludelsysl relsym.. h include files.

7-52

f�\
I I '----"

ObjectandExecutable File Formats

struct xexec {

};

t• x,outheader •t
unsigned short x_magic;

I* magic number*/
unsigned short x...ext;

long

long

long

I* size of header extension *I
:<....text;

I* sizeoftextse.gment */
Uata; .

I* size of initialized data •1
x..bss;

1• size ofnninitialized datll "/
Jong x....syms;

I* size of symbol table *I
long XJ'Cloc;

I* relocation table length •1
long x_entry;

I* en tty offset. see xe_eseg* I
char LCpu;

I* c:pn type& byte/word order */
char x......relsym;

I* relocation & symbol format */
unsignedshort XJenv;

/* run-time environment */

struct xext {
/*x.outheaderextension */

};

long xe_trsize;
I* sizeoftextreJocation •;

long xe_drsize;
I* size of data relocation */
xe_drsize;

I* size of data relocation */
long xe_dbase;

I* data relocation base*/
long xe_stksize;

1• stack size (ifXE_FS set) 'I
long xe_segpos;

1• segment table position • I
long xe_segsi.ze;

I* segment table size • I
kmg :xe_mdtpos;

I* machinedependenttableposition *I
long xe_mdtsize;

/*' machinedependenttable size •1
char xe_mdttvpe;

;• machinedepefldenttable type •/
char xe_pagesize;

I" file pagesize, in multiples of512 •1
char xe_ostype;

I* operating system type •/
ehar xe_osvers;

I* operating system version *I
unsigned short xe_eseg;

/* entrysegment (hardware dependent) *'/
unsigned short xe_sres;

I* reserved It'/

7-53

C User's Guide

7-54

, .
•
•

Definitions forxexec.x_renv (short) .

• w vernon compiled for
• XX extra (zero)
• s set if segmented x.out
• a set if absolute (setup fur physical address)
• i set if segment table contains iterated text/ data
• h set if huge model data
• f set if floating point hardware required
• t set if large model text
• d set if Large model data
• 0 set if text overlay
• f set if fixed stack
• p set if text pure
• s set if separatei &D
• • set if executable
. ,

#defi:neXE_. V2 Ox4000
1• up toandincluding2.3 •!

#definexa. V3 Ox8000
/* afterversion2..3 */

#defineXE_ VE.RS OJocOOO
I* version mask •t

#deBnex:a.sEG 0.0800
I* segmenttable present •1

#defi:neX1LA.BS Ox0400
I* absolute memory image (standalone) */

#delineXEJTER 0.0200
I* iterated text/data present */

#deBneXE..BDATA 0<0100
I* huge model data*/

#defi:neXE..FPH OxOOSO
I* floating point hardware required"'/

#defmeXE_LTEXT 0.0040
t•Iargemodel text•/

#de6neXE_LDATA 0.0020
/* large model data */

#deBneXE_.OVER 0.0010
t•textoverlay*/

#define XE..FS 0x0008
1• fixed stack *I

#defi:neXIU'URE Ox0004
/* pure text*/

#defineXE_.SEP 0x0002
I* separatei&D *I

#defineXE..EXEC 0.0001
t• executable •J

struct xseg {
I* x.out segmenttableentry •!
unsigned short xs_type;

!• segmentt,;-pe•/
unsigned short :x.s.._attr;

!'"' segmentattnOutes*/
unsigned short l;SJeg;

Object and Executable File Fonnats

};

/* segment number*/
unsigned short xs_sres;

/*unused */
long xsJilpos;

I* file position */
long xs_psize;

I* physical size (in file) */
long xs_vsize;

I* virtual size (in core) */
long xs_rbase;

/* relocation base address */
long xs_lres;

/"'unused */
long xs_lres2;

/*unused */

struct xiter {

};

I* x.out iteration record "' I
long xi_size;

1• byte count*/
long xi_rep;

I*# of repetitions •t
long xi_offset;

1• destination offset in segment • I

struct sym {

};

/*
•
*I

!• x.out symbol table entry "'/
unsigned short s_type;
unsigned short s_seg;
long s_value;

Definitionsforxe_mdttype

#defineXE_MDTNONE 0
t• no machine dependent table •/

#defineXE_MDT286 1
/* iAPX286 LDT *I

/*
• Defiriitionsforxe_ostype
•!
#defineXE_OSNONE 0
#defineXE._DSXENIX 1

/*XENIX*/
#define)CE_OSRMX 2

!*iRMX*I

/*
• Definitionsforxe_osvcrs
*I
#defineXE_OSXV3 1

/*XENIX*/

7-55

C User's Guide

,.
Detlnitionsfor:xs_type: •

• Valuesfrom64 to 127 are reserved .
. ,

#delineXS_TNUIL 0
#delineXS_TTEXT 1
#defineXS_IDATA 2
#defineXS_TSYMS 3

/* unused segment"'/
I* text segment*/
I* data segment*/
I* symbol table segment • I

#defineXS_TREL 4

Definitionsforx:s.....attr:

I* relocation segment • I

,.
•
•
•
•

The top bit isset if the 1ile segment represents
amemoryimage. The otherlS bits' definitions
depend on the type of filesegroent .

. ,
#defineXs..AMEM Ox8000

I* segment represents a memocyimage */
#delinexs...AMASK Ox:7lff

,.
•
•
•
. ,

I* type specific field mask */

Definlfinns for ""-"ttr, built by or'ing the following
bit patterns: these values are valid for XS_TI'EXI' and
XS_IDATAlllesegmentsonly .

#defineXS...AITER 0:<0001
1• contalnsiterationrecords*/

#delineXS...AHUGE O:tOOll2
I* contains huge element•/

#define Xs..ABSS Ox:0004
I* containsimplicitbss •J

#delineXlLAPURE Ox0008
t•isread-onl:y, maybe shared*/

#definexs.AEDOWNOxOOlO
/*segment expands downward *I

I*
•
•
*I

Definilionsforu....aur .
These values are valid for X8_TSYMS file segments only .

#defineXS_SXSEG O:tOOOl
/*x.outsegmentedfotmat*/

When using the xs..seg field, note that if the XS...AMEM bit is set in the
xs_pttr field, the file segment represents a memory image, and the value
placed in this field should be the segment number as used by the hardware
to reference the segment. This is the actual value placed in the segment
register. For the 286, it is simply an LDT selector (underXB�'IX, if the
privilege level is not 3, the file wfilnotbe executed). Otherwise the segment
is not a memory image, and thecontentsofthefieldisnotdefined. File seg
ments other than memory images may define and use this field as needed.

7-56

Object and Executable FUe Fonnats

There are two bits in the xexeC.XJPU field that are used to indicate the
CURRENT byte and word ordering of the non-character data fields of the
header, extended header, segment table and symbol table. These bits,
XC..llSWAP and XC_WSWAP, do not indicate the byte and word ordering
of tbe target cpu, XC_CPU.

The segment table is not block aligned. Ko individual segment table entry
may straddle a.blQck b()t!Jldary.

7-57

��� ���-����··--- -

Chapter S

Writing Device Drivers

8.1 Introduction 8-1
8 .1.1 What is a XENIX Device Driver? 8-1
8.1.2 Relationship to XENIX Operating System 8-1
8.1.3 Device Models Supported by XENIX 8-1
8.1.4 Using Sample Device Drivers 8-2
8.1.5 Special Device Files 8-3

8.2 Kernel Environment 8-4
8.2.1 Modes of Operation 8-4
8.2.2 Context Switching 8-5
8.2.3 System Mode Stack 8-6
8.2.4 Task Time Processing 8-6
8.2.5 Interrnpt Time Processing 8-7
8.2.6 Interrnpt Routine Rnles 8-9

8.3 Kernel Support Routines 8-9
8.3.1 in(), out(), inb(), and outb() 8-10
8.3.2 sp!S(), spl6(), spl7() and splx() 8-12
8.3.3 sleep() and wakeup() 8-14
8.3.4 timeout() and delay() 8-17
8.3.5 dscralloc{), dscrfree(), dscraddr(), & mmudescr()
8.3.6 copyin(), copyout(), and copyio() 8-22
8.3. 7 putchar() and printf() 8-25
8.3.8 panic(), signal(), psignal(), and suser() 8-26
8.3.9 Memory Allocation Routines 8-27
8.3.10 DMA Allocation Routines 8-32
8.3.11 Version 7/System V Compatibility Issues 8-36

8.4 Parameter Passing to Device Drivers 8-37

8.5 Naming Conventions 8-38

8.6 Device Drivers for Character Devices 8-38
8.6.1 Character Device Driver Routines 8-39

8-18

8.6.2 Interrnpt Routines for Character Device Drivers 8-49
8.6.3 Character List and Character Block Architecture 8-49
8.6.4 Terminal Device Drivers 8-51
8.6.5 Other Character Devices 8-53

8.7 Device Drivers for Block Devices 8-53

8.7.1 Character Interface to Block Devices 8-54
8.7.2 Block Device Driver Routines 8-55

8.8 Compilation, System Configuration, and Kernel Linkage 8-65
8.8.1 Compiling Device Drivers 8-65
8.8.2 System Configuration 8-66
8.8.3 Linking The Kernel 8-69

8.9 Driver Debugging 8-70
8.9.1 Booting the New Kernel 8-70
8.9.2 General Debugging Hints 8-70
8.9.3 Vector Collision Considerations 8-73
8.9.4 Note on ps 8-75

8.10 Notes On Preparing a Driver for Binary Distnbution 8-75
8.10.1 Naming Guidelines 8-75
8.10.2 Style Issues for User Prompting 8-75
8.10.3 fusulating Drivers Against Configuratinn Changes 8-75
8.10.4 Preparing a Driver for Installation Using custom 8-77

8.11 Warnings 8-82

r,
�)

Writing Device Drivers

8.1 Introduction

This chapter, along with Chapter 9, "Sample Device Drivers," explains
how to write and iostall device drivers in a XE!'.'lX environment. It
describes the role of device drivers :in aXENIX-based system and discusses
other special considerations iovolved in writing a device driver. It
describes the XENlX model of devices :in terms of files, tasks to be per
formed, and :interrupts to be processed.

8.1.1 Wbatis a XENIXDeviceDriver?

For each peripheral device io a XENIX system, there must be a "device
driver" to provide the software ioterface between the device and the sys
tem. A XENIX device driver is a set of routines that communicates with a
hardware device, and provides a uniform interface to the kernel. This
ioterface allows the kernel to translate user JJO requests ioto driver tasks to
be performed.

8.1.2 Relationship toXENIX Operating System

The XEI'-'lX device driver managesthefiowof data and control between the
user program and the peripheral devices. The path of an JJO request is
shown below, starting with a system call from a user program, and end:ing
at the device driver:

+ - - - - - - - - - - - +
I Us e r P r o g r am I

+ - - - - - - - - - - w - � -+

I Us e r Spac e
- - - - - - - - - - " - - - 1 - - - - - - - - - - - -

Ke r n e l S p a c e

+� - - - - - - - - - - - - - - - + - - - - - - - +
I I

+ - - - ->- - - - - - - ->- - - - - - - ->
Ke r n e l IDe � i c e I Dr 1 ve r s

+ - +

+ - - - - - - - - - - - +

I P e r � p he r a l I Dev 1 c e s
+ - - - - - - - - - - - - +

User Program Requesting JJO

8.1.3 Device Models Supported by XEI'-1X

The XENIX operating system supports two device models: character
devices and block devices. This chapter describes how to write device
drivers for both device models.

8 - 1

C User's Guide

In general, any device that appears to be a randomly addressable set of
:fixed-size records is a block device; any other type of device is a char
acter device. For example, hard disk drives and floppy disks are block
devices, while terminals and line printers are character devices. The ''-
XENIX operating system presents a uniform interface to user programs
by providing blocking and unblocking in the kernel. Thus, character
and block devices look alike to most user programs.

Character device drivers communicate directly with the user program�
The process begins when a user program requests a data transfer of
some number of bytes between a section of its memory and a specific
device. The operating system transfers control to the appropriate dev
ice driver. The user program supplies the parameters for the request
to the device driver� which, in tum, perfonns the work. Thus, the
operatin� system has minimal involvement in the request; the data
transfer 1s a private transaction between the user process and the dev
ice driver�

Block device drivers require more involvement from the operating sys
tem to perform their tasks. Block devices transfer data m fixed-size
blocks and are usually capable of random access. (The device does not
need to be capable of random access; magnetic tapes are often read or
written using block I/0.) The two factors that distinguish block I/0
from character I/0 are:

• The size of data transfer requests from the kernel to the device
is always a multiple of the system block size (called BSIZE)
regardless of the size of the user process' original request. A
single user process request can generate many system requests
to the driver. BSIZE is 1024 bytes in XENIX System V. The
device's physical block size may be smaller than BSIZE, in
which case the device driver initiates multiple physical transfers
to move a single logical block.

• Transfers are never done directly into a user process' memory
area. They are always staged through a pool of BSIZE buffers.
Program I/0 requests are satisfied directly from the buffers.
XENIX commands the device driver to read and write from the
buffers as necessary. It manages these buffers to perform ser
vices such as blocking and unblocking of data and disk cach
ing.

8.1.4 Using Sample Device Drivers

Chapter 9, "Sample Device Drivers," discusses sample device driver
source code for a line printer, terminal, hard disk drive and memory
mapped video driver. These source code samples are intended as pro
totypes from which an experienced programmer can begin writing a
device driver for a particular device.

8-2

Writing Delice Drivers

8.1.5 Special Device Files

To a XENIX user, a device usually appears to act like a "tile,.'' which is
an ordered sequence of bytes. Files that contain data are called "regn
lar files,.'' and files that represent devices are called "special device
files." Each file has at least one name. The names of special device
files are, by convention, placed in the directory named !dev.

Each special device file has a "device number" that uoiqnely identifies
the device. The device number consists of two parts� the "major
nwnber" and the ('minor number. " The major number tells the kernel
which device driver handles requests for that special file. The minor
number can be used by the driver to provide more information about a
particular unit of the devices that it controls (such as the unit number).

Before a user process can request I/0, it must J irst have opened a
"special device file." A special device file looks like an ordinary disk
file except that it was created by the mknnd(S) system call, normally
invoked using the mknod(C) program, both of which are described in
the XENIX Reference. The special file appears in a directory and has
owner aed permission fields, as does any disk file, but it contains no
data. Instead, it has a pair of eight-bit numbers, called the "major"
and "minor" numbers, associated with it. The command Is -I displays
these numbers:

crw- �w- -w� 1 dave 4 , 3 Sep 2 1 09 : 49 /dev / t ty03
brw- - - - � - - 1 s y s i nfo 1 , 2 Sep 21 0 9 : 49 /dev/mtO

Here the file !devltty03 has a major device nwnber of four and a minor
device number of three. The ldev/mtf) file (magnetic tape) has a major
device number of seven and a minor device number of two.

When a user process opens the special device file, XENIX recognizes
that it is a special device file and uses the major number to index a
table of device driver entry points. If the special device file designates
a character device, the table used is cdevsw[]; if it designates a block
device, the table used is bdevsw[]. These two tables are defined in the
!usrlsys!conflc.c file generated by the config(C) program when the ker
nel is built. XENIX calls the device driver's open entry-point through
this table, supplying as an argnment the minor device number. Tbe
minor device number usually encodes the unit number, although often
a device driver uses some of the bits in the minor !lUmber to indicate
special options, such as "use double density" in the case of a floppy
disk.

The convention is for these special device files to have meaningful
names and reside in the ldev directory. For example:

/dev/tty03

&-3

C User's Guide

would normally be associated witb tbe major device number of the
serial device driver and its minor number would indicate the fourth
port. Or:

/dev/mtO

indicates tbe block magnetic tape device and:

/dev/rmtO

indicates the raw magnetic tape device.

It is important to note tbat this is just a convention. The system
administrator could just as well assign tbe same major/minor numbers
to either of tbe two files:

/usr/ ellen!tty03

or:

/usr/ellen/magtape

witb identical results. The name is primarily for user canvenience as
XENIX kernel uses solely the major and minor device numbers.

8.2 Kernel Environment

This section briefly discusses a few functional aspects of tbe XENIX
operating system:

• modes of operation

• context switching

• system mode stack use

• task time processing

• interrupt time processing

It also describes tbe services the XENIX kernel provides to device
drivers and tbe rules tbat device drivers must follow.

8.2.1 Modes of Operation

When a process executes instructions in tbe user program, it is said to
be in nuser mode�" When it executes instructions in the XENIX kernel.
it is said to be in "system mode."

8-4

Writing Device Drivers

When the kernel receives an interrupt from an external device, it
switches to system mode if it was in user mode, and control is passed
to the interrupt routine of the appropriate device driver. When the
driver is done, it returns, and !he processing that was interrupted is
resumed.

The processing that was interrupted is referred to as "task time pro
cessing," and the processing that took place as a result of the interrupt
is called uinterrupt time processing/�

Although all processes originate as user programs, a given process may
nm in either user or system mode. In system mode, it executes XENIX
kernel code and has privileged access to I/0 devices and other ser
vices. In user mode, it executes the user1S progn,un code and has no
special privileges. Where possible, XENIX provides a high level of pro
tection around processes in user mode to prevent a user program from
inadvertently damaging the system or other user programs.

A process voluntarily enters system mode when it makes a system call.
When an interrupt or trap is received while a process is executing in
user mode, the process switches into system mode to handle the inter
rupt. At this time, it may lose tl1e CPU, and the kernel may decide to
switch control or "context" to a different process.

8.2.2 Context Switching

Conte:d: switching occurs when the kernel decides to transfer control
of the CPU from the currently executing process to a different process.

In user mode, the kemel switches context whenever:

• The process' time slice ha.., expired.

• The process makes a system call that cannot be completed
immediately, for example)_ in the case of a read from a slow
input device.

• An interrupt is received that allows a blocked process to
proceed. This case occurs when the process has been sleeping
at high priority, waiting for the interrupt handler to call
wakeup() to indicate a completed I/0 request. If the priority at
which the process is sleeping is higher than that of the
currently running process, a context switch occurs.

In system mode, switching contexts is always voluntary. Interrupts can
still arrive although they can be locked out for short periods of time,
if necessary. When the interrupt service routine returns, control always
passes back to the interrupted process. A process voluntarily gives up
the processor when it calls the sleep() routine.

8-5

C User's Guide

8.2.3 System Mode Stack

Each process has a special area of memory associated with it called the
u area. The u area is not directly accessible to the uur (that is, it :is
not in the process' normal address space). It contains the information
the kernel needs to manage the process and contains space for a sys
tem mode stack.

When any process makes a system call, its registers are preserved in its
u area, and the stack pointer is moved to the beginning of its gystem
mode stack area. When the system call bas completed, the registers are
restored from the u area, the stack pointer :is restored to the process'
stack, and control :is returned to the process. Since each process in the
sYStem bas its own u area, a system running N user processes has N
user stacks and N gystem stacks.

The XEN1X operating oystem and, therefore, the task time portions of
the device drivers use a fixed-size system mode stack in the u area. fu
XENIX, the size of this per-process stack :is 1024 bytes. It :is critical,
then, that device driver procedures not create local (frame) buffers of
any sign.ificant size. The following declaration will cause trouble, since
as soon as the routine is called, it requires at least 1024 bytes of stack
space:

open()
{

}

char buf [512];
char buf2[512];

Furthermore, interrupt service routines make use of whatever system
stack was set up at the time of the interrupt. If the interrupt occurs
while the currently running process is in user mode, the interrupt ser
vice routine will have the entire u stack area for its use. However, if
the interrupt takes place while the process :is in system mode, the inter
rupt routine will be sharing the u stack area. For thls rel!Son, interropt
service routines must minimize their frame variable declarations, keep
ing their frame requirements below 100 or so bytes.

8.2.4 Task Time Processing

The operating system manages a number of processes, each
corresponding to a user program. Any particular process may be run
ning in gystem mode or user mode at any given time. When a process

8 - 6

f\
v

Writing Device Drive!'!!

makes a system call to request kernel service, the process switches to
system mode, and starts running kernel code. When the kernel is exe
cuting code at the request of a user program, it is doing "task time
processing."

If there are 50 processes running, there may be as many as SO simul
taneous processes in system mode, each with its own local variables.
This means that all kernel code must be re-entrant, but it is otherwise
fairly simple. Each system process instance has to service only the
specific system call that the user prog!'!lm req nested. The active pro
cess1 u area is always mapped into the kernel's address space. So,
when kernel code is executing, it has information about the request
and process it is serving.

Often the kernel cannot service a request immediately. The request
may require doing some I/0, or it could even be a request to wait
awhile. When a process in system mode blocks while it is waiting for
some event, the system scheduler allows some other process to run�
either in user or in system mode.

I/0 requests originating from the user process are passed via system
calls to the device driver. Some parameters of the request, such as
byte count and transfer address, are kept in the u area. The task time
portions of the driver can reference and, perhaps, modify the u area
cells, since we know that the currently running process's u area is
always mapped into the kernel address space.

8.2.5 Interrupt Time Processing

When a device interrupt is received, the tasks performed as a result of
the interrupt are referred to as "interrupt time processing." When an
interrupt arrives, any of the active processes on the system may be exe,
cuting. Even if this interrupt signals the completion of a user process'
request, the interrupt service routine can take no direct action because
the process that was interrupted is aimost certainly not the process that
initiated the r<>quest.

Instead, all interrupt thne portions of the device driver routines must
store information in global data structmes for the task time portion of
the device driver routines to figure out the result of the interrupt ser
vice. Any data or status that the interrupt service routine wants to
return to the task time portion of the driver and, perhaps to the
requesting user program, must also be passed via global data struc
tures.

The local (frame) variables of the task portion of the device driver are
kept in the driver's system mode stack, which is in the u area. This u

8-7

C User's Gnkle

area is not mapped into the kernel address space at interrupt time
since the u area there belongs to some other process. The correct u
area might even be out on the swap disk.

Thus, the interrupt service routine should never attempt to store data
in the u area or in user memory, and the TJO device itself, via D:tv1A
or other means, should attempt to transfer data directly into the user's
memory area only when the user memory has been eJ<plicitly locked
into main memory. In most cases, direct transfers are forbidden.

Usually, this is not a problem. Character devices typically make use of
small system-supplied buffers called character lists or clists. Block
devices use buffers in the system buffer pool. The task time portion of
the driver transfers the data from the buffers into the user's memory.

Typically, the task-time portion of the device driver issues a sleep()
call after it makes the initial TJO request. The interrupt service routine
decides what action to take and, if it needs to notify the task time por
tion, (as opposed to issoing another TJO command), it puts any status
ioformation and data into global data structures and issues a wakeup()
call to the task portion. The interrupt service routine then exits to the
operating system, and the operating system exits the interrupt. The sys
tem scheduler soon reschedules the running process so that the one
that has just been awakened is executed. The task time portion of the
device driver finds that it has returned from tbe sleep() call, and that
tbere are status and data bytes waiting in global data structures.

Access to data structures that can be modified at interrupt-time is
interlocked with the spl5(), spl6() and spl7() routines. These raise the
interrupt priority of the CPU so that interrupts that might cause a value
change are locked out until tbe splx() routine is called. This period
must be kept as short as poSSible. Refer to Section 8.3.2 for a more
detailed description of tbe routines mentioned here.

Device drivers that use tbe standard interfaces to the kernel are pro
vided with a method for passing information between the interrupt
time portion of a driver and tbe task-time portion. Standard buffered
TJO device drivers note the outcome of the data transfer in tbe buffer
headers associated with the transfer. The header for the list of
transfers the driver is working on is defined in lusrlsys!h/ioiJufh . and
the header for the buffer associated with the current transfer is defined
in lu.srlsyslh!IJufh . Standard character TJO device drivers use the per
device "tty" structure (defined in lusrlsyslhltty.h) to pass ioformation
about the TJO request.

8-8

Writing Device Drivers

8.2.6 Intetrupt Routine Rnles

An interrupt routine operates in a more restricted environment than a
task-time routine, since it cannot make any assumptions about the
state of the system or about the presence of particular user processes
or user data in system memory. This figure illustrates the relationship
between the scope of task-time and interrupt time routines:

TASK
T IME

+ - - - - - - - - - - - - - -+
I Us e r Pr o g r am I

+ - - - - - - - - - - - -+

+- +
u a r e a

Ke r n e l 'Dr i ve r s - - - - - - - - ->

+- - - - - - - - - - - · - - - - - - - -+

Task and Interrupt Time

INTERRUPT
TIME

+- - - - - - - - - - +

Dr i v e r
I n t e r r u p t

Rou t i n e s
+ - - - - - - - - - - +

The key things to remember are that the user process is mapped into
memory, and its u area is mapped into the kernel's address space only
at task-time. Task time processing occurs whenever the user program
code itself is executing (user mode) or the operating system is execut
ing and performing services for the program (system mode).

It cannot be assumed that the u area is mapped into memory during
the execution of an interrupt routine. No interrupt routine, nor any
routine that may be called at interrupt time, may make any reference
to user memory, the u area, or a routine's local variabl�$- This means
that the task-time portion of the driver must not try to pass addresses
of its local (frame) variables to devices and interrupt-service routines.
Those locations are valid only when that individual user process is exe
cuting.

8.3 Kernel Support Routines

This section describes the functions (routines) that the kernel provides
for device driver use.

------ ----····--�-

8-9

C User's Guide

Throughout this chapter, functions are described in nrini-sectinns
using the following conventions:

• When the function is introduced, the name is in boldface. (In
normal text, functions are always italic followed by
parentheses.)

• Parameters, if any, are boldfaced and enclosed in parentheses.

• The return value, if any, follows a colon and is in italics.

8.3.1 in(), out(), inb(), and outb()

This section descn'bes the routines used to interface to the registers
that access and control a particular device. These registers may reside
either in main memory (memory mapped} or in I/0 space. There are
four routines that provide a portable interface to device registers.

in (port) : word

8-10

Purpose: This routine returns the value of the word
specified by the given port or register address.

Parameters: port is an integer value that specifies the JJO
address of the desired word.

word is an integer specifying the value of the returned
word.

Result: The (type int) value of word is returned.

Example: To read the status of a word register at I/0
address 20 (hex}, you may use the following lines of code:

int val;
val � io(Ox20);

Writing Device Drivers

inb (port) : byte

Purpose: This routine returns the value of the byte
speeified by the given J/0 port or regisrer arldress.

Parameters: port is an integer value that specifies the I/0
address of the desired byre.

byte is a byte specifying the value of the returned byte.

Result: The value of byte is returned.

out (port, wlue)

Purpose: This routine sets the word at the specified I/0
address to the specified value.

Parameoors: port is an integer value that specifies the I/0
address of the word.

value is the (type int) value to which the word will be set.

Result: The word at the specified I/0 address is set to the
specified value.

outb (port, value)

Purpose: This routine sets tbe byte at the specified J/0
address to the specified value.

Parameters: port is an integer value that specifies the J/0
address of the byte.

value is the byte value that the byte will be set to.

Result: The byte at the specified address is set to the
specified value.

---··--·

8-11

C User's Guide

8.3.2 spiS(), spl6(), spl7() and splx{)

This section descnbes the routines used to enable and disable inter
rupts during task-time processing.

spiS () : level

spl6 () : level

spl7 () : level

8-12

Purpose: These routioes may be called when interrupts
should not be allowed during task-time processing.
sp/5() disables all disk, floppy, printer, and keyboard
interrupts. sp/6() disables everything sp/5() does, as well
as the system clock. spl7() dl<ables all interrupts, includ
ing serial interrupts.

spl6() and sp/7() are very rarely required, and should be
avoided if at all possible. Overuse of sp16() causes the
system clock to run slow. Overuse of sp17() causes serial
input lines to lose characters.

These routines return a code corresponding to the pre
empted intemspt level. This value is used when restoring
interrupts with the splx() routine.

Parameters: level is an integer (type int) code
corresponding to the intemspt level pre-empted by this
routine.

Result: The value of the pre-empted interrupt level is
returned.

Writing Device Drivers

splx (oldspl)

Purpose: This routine takes the return value of the sp/5()
spl6() or sp/7() routines and enables the interrupt levels
that were accepted before the spl call. spl calls (5-7) and
their corresponding splx() calls must form matching pairs.
To restore the priority level, splx() must be]lSed, not a
call to a lower spl !evel.

· · ·

Parameters: oldspl is an integer value specifying the level
of interrupts that were disabled by the indicated spl call.

Examples: To restrict interrupts during critical device
driver processing, you may use the following lines of
code:

int x-
x = ;piS();
I* do critical work *I
splx(x);

To nest two different spi levels, 1lSe code along the follow
ing lines:

int x�y;
x = sp!S();

I* do work uninterruptable by the disk •
• driver */

y = spl7();
I* do work so critical that it can't be *
* interrupted by anything *I

splx(y);
1• back to splS() for more code •

• uninterruptable by the disk driver */
splx(x);

Do not do it this way:

x = sp!S();
I* do work uninterruptable by the disk •

* driver */
y = sp17();

I* do work so critical that it can't be •
• interrupted by anything */

x = spl5();
I* do work uninterruptable by the disk •
* driver */

8-13

C User's Guide

At this poiut, neither a call to splx(x) or splx(y) will
recover the execution priority at which the driver was rnn
uiug before the iuitial sp/5(); call.

8.3.3 sleep() and wakeup()

This section describes the routines used to suspend and reawaken
requests that cannot be serviced immediately. For example, a device
driver may receive a write request when the output buffer is full. In
this case, the requestiug process can suspend itself by calliug sleep().
When the condition is resolved, the suspended process is awakened in
either of two ways: some other process may awaken the suspended
process by calliug wakeup(), or it cau be awakened by a signal.

8 - 14

Writing Device Drivers

sleep (chan, prl)

Pu:lJ)ose: This routine suspends a requesting process
when one of the conditions required to execute the pro
cess cannot be met. This routine should never be called
at interrupt time.

Parameters: chan is a unique number tbat identifies tbe
sleeping 'process. The . convention "for generating this
unique number is to use the address of some near data
structure within the device driver. Since no two such
data structures have the same address� uniqueness is
guaranteed.

pri is an integer value that determines tbe priorily of tbe
process when it awakens. If a process goes to sleep at a
priorily lower tban the constant PZERO, tbe sleep cannot
be broken by a signal. This means that such a process
can never be killed. Drivers sleeping at a priority below
PZERO should have some guarantee of being awakened
by other means.

If tbe condition on which tbe driver is sleeping is likely a
priority above PZERO.

If a signal is received while sleeping, the process normally
exits the system call directly, witbout ever returning from
the sleep routine. If the driver has data structures that
need to be "cleaned up" before exiting the system call,
the pri parameter to sleep should have tbe PCATCH flag
or'ed in. This causes sleep to return with a value of 1 if a
signal caused the process to be scheduled, and a 0 if a
wakeup() was issued.

Since this routine can return prematurely when used witb
a priority above PZERO, callers should ensure that the
reason for sleeping is no longer valid.

For example:

8-15

C User's Guide

#include " . .lh!param.h"
#include " . .lh/tty.h"

#define MYTTYPRI (PZER0+8)

strnct tty mytty;

while (inb(STATUSREG) & NOTREADY)
if (sleep(&mytty,MYTTYPRI I PCATCH)) {

J• clean up data structures */

return;
}

#include " . .lh/param.h"
#include " .. lh/tty.h"

#define MYTTYPRI (PZER0+8)

strnct tty mytty;

while (inb(STA TUSREG) & NOTREADY)
if (sleep(&mytty,MYITYPRI I PCATCH)) {

I* clean up data structures *I

return;
}

wakeup (chan)

8�16

Purpose: This routine wakes up any process that has
been suspended by the sleep() routine. All the processes
that have called sleep() with the unique number specified
are awakened. When a process is awakened, the call to
sleep() returns, and the process should check that the
reason for going to sleep has disappeared.

Parameters : chan is a unique number that identifies the
sleeping process to be awakened. The convention for
generating this unique number is to use the address of
some near data structure the device driver uses� Since no
two such data strnctures have the same address, unique�
ness is guaranteed.

Writing Device Drivers

8.3.4 timeout() and delay()

This section describes the functions used to suspend driver execution
for a period of time, or schedule a function call sometime later.

timeout (function, arg, tim)

Pnrpose: This routine allows a function to be called at a
scheduled time in the future.

Parameters: function is the address of the function to be
called .

arg is the argument to the function being called.

tim is an integer value specifying tbe number of clock
ticks that sbould elapse before the call. This should be
specified using the variable Hz, which contains the
number of ticks in a second.

Example: This routine can be used, along with Slee.[J()
and wakeup(). to provide "busy waiting." The following
code sample illustrates this:

#define BUSYPRI (P'ZERO +1) /* arbitrary *I
int stopwait();
int status;

int busywait() /* wait until status is non-zero */
{

while (status -- 0) {
timeout(stopwait, 0, Hz/10); I* 1110 of a second */
sleep(&status, BUSYPRI);

}
}

int stopwait()
{

wakeup(&status);
}

8-17

C User's Guide

WARNINGS

A driver should never loop without a timeout while waiting for a
status change unless the delay involved is shorter than 100
microseconds.

The XENIX timeout table is a finite size. Excessive use of timeouts
can cause the table to overfiow, which is a panic(). Drivers requir
ing la:rge numbers of timeouts should consider using the xxpoll()
routine, discussed in section 8.6.1.

delay (ticl<s)

Purpose: This routine causes the calling process to sleep
for a specified number of clock ticks, and wakes it up
when that many clock ticks have passed.

Parameters: ricks is an integer that specifies the number
of clock ticks to delay.

Result: After the specified time, the delayed function
resumes running.

Warning: This routine should not be called at device ini
tialization (mit) time. The delay() routine uses timeout(),
sleep(), and wak£up() functions, which depend on the
system being fully initialized.

Example: This delays for two seconds:

delay (Hz*2);

8.3.5 dscralloc(), dscrlree(), dscraddr(), & mmudescr()

This section describes the routines used by drivers running in protected
mode to access memory that is not within kernel data. A descriptor
from the Global Descriptor Tahle (GOT) is initialized to map the
memory area� and then used to access the memory. These routines do
not exist within XENIX kernels running in 'real' or 'unprotected' mode.

8-18

Writing Device Drivers

Among the uses for these routines are accessing video RAM, talking
to device outboard buffers, and generally communicating with any
memory outside of the normal kernel address space.

dscralloc () : sel

Purpose: This routine allocates a descriptor from the
pool of GDT descriptors available for drivers. It returns
the selector number of the allocated descriptor.

Return: sel is an unsigned short value that specifies the
selector number of the allocated descriptor.

Result: This routine returns 0 if no more descriptors are
available, and prints the message below on the system
console:

Out of device descriptors, increase gdt size (NGDT) and relink XENIX

Otherwise, it returns the selector number of the allocated
descriptor.

Note: It is important that the driver verify that the return
value is valid (not 0). Any attempt to use descriptor 0
may cause the kernel to crash.

dscrlree (sel)

Purpose: This routine returns a descriptor that is no
longer needed to the pool of available device descriptors.
It takes as its only argument the selector number returned
from a call to dscralloc().

A device that uses a descriptor for most or all of its
transfers should not release it, but should reuse the same
descriptor for each transfer. Only devices that need a
descriptor for a short period of time (dnring initialization,
for example) should ever free a descriptor.

Parameters: sel is an unsigned short value that specifies
the selector number of the descriptor being freed.

8-19

C User's Guide

dscraddr (se)) : addr

Purpose: This routine returns the physical address of the
memory addressed by the selector which is provided as
the argument.

Parameters: sel is an unsigned short value that specifies
the selector number provided as the argument.

Resnlt: Returns addr, which is the 32-bit physical address
of the memory addressed by the selector.

mmudescr (sel, addr, limit, access)

8-20

Purpose: This routine initializes a descriptor to map an
area of memory.

Parameters: sel is an unsigned short value that specifies
the selector number of the descriptor allocated by dscral
loc().

addr is the 32-bit physical address of the memory
addressed by the selector.

limit is an unsigned short value that specifies the limit of
the memory area (its size in bytes - 1).

access is a byte value that specifies an access designation.

Example: The mmudescr() routine maps a section of
memory 1024 bytes long at address OxBOIXXl for reeding
and writing as follows:

mmudescr(sel, OxBOIXXl, Ox:!FF, DSA...DATA);

access may be RW, RO, or DSA...DATA. RW specifies
read/write access to the memory area. RO specifies
read/execute access to the memory area. Both RW and
RO allow user access to the selectors.

Driver private data selectors should use the DSA...DATA
code. DSA...DATA is defined in lusrlsysfhlrelsym.h,
which is included by fusrfsyslhfmmu.h. Both RW and
RO are defined in fusrfsys!hlmmu.h.

Writing Device Drivers

To Map Memory Using These Routines

The normal sequence of events for a device driver that needs to use a
selector to map memory is:

1. Use dscraikJc() in the driver initialization routine, or on first
open for this device, to resexve a descriptor for this driver's use.

2. For each data transfer, use ln11Wdescr() to set !he de.scriplor to
map the area of memory that the driver needs to access.

Example: This code allocates a descriptor, then maps a 512-byte area
beginning at OxBOOOO into the kernel's address spaee. Remember that
the third argument is the limit of the transfer, not its size. After the
area is mapped, the faddr variable can be used like any other kernel
logical address.

int seg;
faddrJ faddr;

seg dscrallocO;
mmudescr(seg,OxBOOOO,Sll,RW);
faddr = sotofar(seg,O);

8-21

C User's Guide

8.3.6 copyin(), copyoul(), and copyio()

copyin (user...addr, sys...addr, nbytes) : error

Porpose: copyin() copies user data into system data.
Although copyio() can accomplish the same task using
the U_WUD mapping argument, copyin() is often used
instead for simplicity.

Parameters: user..11ddr is the address in user space from
which to copy. It is of type faddr J, as defined (typedef)
in lusrlsyslh/typ<Js.h. This is currently a char * on
unmapped machines, and a char far • on mapped
machines.

sys..11ddr is the address in system space to which to copy.
It is a character pointer.

nbytes is an integer value that specifies the number of
bytes of date to transfer.

Result: Returns -1 on error, such as on an attempt to
copy outside of user space.

copyout (sys...addr, user...addr, nbytes) : error

8-2'2

Purpose: This routine copies system data into user data.
Although copyio() can accomplish the same task using
the UJWD mapping argument, copyout() is often used
instead for simplicity.

Parameters: sys_addr is the address in system space from
which to copy. It is a character pointer. user..JJddr is the
address in user space to which to copy. h is of type
faddrJ, as defined (typedef) in lusr/syslhltyp<Js.h. This is
currently a char * on unmapped machines, and a char far
* on mapped machines. nbytes is an integer value that
specifies the number of bytes of data to transfer.

Result: Retorns -1 on error, such as on an attempt to
eopy outside of user space.

Writing Device Drivers

copyio (addr, faddr, cnt, mapping) : error

Purpose: This routine can be used to copy bytes between
a physical address and a logical address. Although
copyio() can be used to copy almost anytbing to almost
anything, the form in which the arguments must be given
make it appropriate for copying between kernel data and
user space, and inappropriate for cop)'illg b.etween !"1\'0
physical addresses outside of kernel space. For transfer
ring between two physical addresses, direct physical copy
ing is both more efficient and more simple to set up. See
the memory-mapped video driver in section 9 for an
example of direct physical copying.

On mapped machines, the copyio() routine should not be
used at interrupt time.

Parameters: addr is the physical address to which or
from which the data is to be transferred. It is of type
paddr_t, which is a 32-bit quantity, and contains the
literal physical address.

faddr is the logical address to which or from whlch the
data is to be transferred. It is of type faddr J, which is a
char far * on mapped machines, and a char * on
unmapped machines.

On unmapped machlnes, the logical address is simply an
offset from the beginning of the appropriate segment. The
mapping argument is used to determine which segment is
appropriate.

On mapped machines, the logical address has a global
descriptor as its 'segment'. Character pointer arguments
to system calls are already in this form. Kernel data
addresses can be used as 'logical addresses' by casting
them to a (faddr_t). Otherwise a logical address can be
created using the macro sotofar(seg,off), Where off is a
16-bit offset, and seg is the selector used in an earlier
mmudescr() call.

cnt is an integer value that specifies the number of bytes
of data to transfer.

mapping is an integer that designates the direction of the
transfer. The possible mapping values are defined in
/usrlsyslh/user.h and are listed below:

8-23

C User's Guide

U_WUD
U_RUD
U_WUI
U_RUI
U_WKD
U_RKD

transfer from user data
transfer to user data
transfer from user text
transfer to user text
transfer from kernel data
transfer to kernel data

Result: If successful, this routine performs the specified data transfer;
otherwise, it returns -1.

Example: ioctl() could use copyio() to transfer data between kernel
and user space. As a practical fact, it uses copyin() and copyout() for
its transfers, so this example is hypothetical.

The ioctl interface to a driver has a third argument of indeterminate
type. It is assumed here to be an integer pointer, but could be an
integer as well.

ioctl (fd, cmd, arg)
int fd, cmd;
int *arg;

In the kernel, the ioctl interface is translated into the device-specific
call shown below:

:x:xioctl (dev, cmd, arg)
int dev, cmd;
faddrJ arg;

Here "arg" is a pointer to a data structure. The example copies from
this data structure into the dst structure.

strnct foo dst;

. other ioctl code

1• copy from arg to dst • I

if (copyio (ktop(&dst), arg, sizeof(foo), U_WUD) -- -1) {
u�error = EFAULT;
return;

}

8-24

'(

Writing Dedce Drivers

Note: The file named lusr!sys!hlparom.h defines several macros that
are useful for converting addresses from one type to another. These
macros include:

ftoseg(x)

ftooff(x)
sotofar(seg,off)

ptok(x)

ktop(x)

U_WUD
UJWD
u_wur
UJWI
U_WKD
U__RKD

converts x from an faddr_t to a seg
ment (selector number)
converts x from an faddr_t to an offset
converts a segment, offset pair into an
faddr_t
converts a physical address within ker
nel space to a kernel data (char *) logi
cal address
converts a kernel data logical address
to a physical address

transfer from user data
transfer to user data
transfer from user text
transfer to user text
transfer from kernel data
transfer to kernel data

8.3. 7 putch�r{) and printfO

This section descnbes the routines that display or print messages on
the system console.

putebar (c)

Purpose: _ This routine puts one character on the console,
doing a "bnsy wait" rather than depending on interrupts.

Parameters: c is the character to he printed on the con
sole.

8-25

C User's Guide

prlntf (format, pl, p2, ••.)

Purpose: The kernel printf() routine is a simplified ver
sion of the standard C library print[() routine. It is used
to print error messages and debugging information ou the
system console. The special format characters under
stood by the kernel printf are: %s, %d, %ld, %1x, 'You,
%D) �oX, o/ox, and o/oo, plus the NEWLINE and
RETURN characters. See printf(S) for more information
on printf() and its parameters.

Note that this routine is not interrupt driven and will
suspend all other system activities while it is executing.

Parameters: format is tbc prlntf() format string.

pl,p2,... are tbe additional parameters to be printed by
the routine.

8.3.8 panic(), signal(), psignal(), and suser()

This section describes routines that perform miscellaneous system
functions.

panic (s)

8-26

Purpose: This routine is called whenever an unrecover
able kernel error is encountered. It prints the string that
is passed as a parameter on tbe system console and halts
tbe system. This routine should he called only under
extreme and unrecoverable circumstances.

Parameters: s is a char * addressing a message that
explains the reason for the system panic.

Writing Device Drivers

signal (pgrp, signum)

Purpose: This routine sends the specified signal, signum,
to all processes in the process group identified by pgrp.

Parameters: pgrp is an integer that specifies the process
group number. A process can determine its own process
group . number by e�<!filining u.u.,.ttyp- >t..pgrp. See
!usrlsyslhluser.h and /usrlsys/h!tty.h for the sttuctu±es iri
which these fields are defined.

signum is the signal to be sent.

psignal (proc, signum)

Purpose: This routine sends the specified signal, signum,
to the process proc.

Parameters: proc is a pointer to a struct proc. A process
can determine its own proc structure pointer by examining
u.u..procp. See !usr!syslh!user.h for the definition of this
field.

signitJn is the signal to be sent.

suser 0 : int

Purpose: This routine determines whether the user asso
ciated with the corrently executing process is the super
user. This can be useful, for example, in determining
whether special device operations (such as being able to
override exclusive use restrictions) are allowed.

Result: The routine retums an integer (int): 0 if the
current user is not the super ... user and 1 if the user is the
super-user. As a side effect, u. u....error is set to EPERM
if the user is not the super-user.

8.3.9o Memory Allocation Routines

The XENIX kernel is limited to 64K of near data, like any other middle
or hybrid model program. Most of the memory is already allocated
among the various kernel data structures.

8-27

C User's Guide

II more near memory is required, the quantity of various structures can
he reduced until near kernel data fits in 64K. System addressable
buffers, itwdes, and clists are the structures most commonly decreased.
This can he done by using the conllgure(C) program to modify the
constants NINODE, NSABUF, and NCLIST. For information about
conllgure, see the XENIX User's Reference.

Far data can he allocated by simply declaring it in the driver, using
declarations such as:

char far outhuf[1024J;

This data must then he addressed with far pointers,

Vlrtual Memory Allocation Routines

These routines are used to allocate kernel-addressable virtual memory
on paged machines such as the 80386.

sptalloc (nbytes)

8-28

Purpose: This routine allocates nbytes of kernel
addressable virtual memory.

Parameters: nbytes is the number of bytes of memory to
allocate.

Result: The address of the base of the allocated memory
is returned. May panic if no virtual memory remains; it is
unlikely that any legitimate caller of this routine would
desire that much memory.

VVrldngDerlce DEWe�

splfree (virtaddr, nbytes, freefig)

Purpose: This routine frees the memory allocated by
sptalloc ().

Paramete�: virtaddr is the b ase of the allocated memory
that was returned by sptalloc(). nbytes is the number of
bytes to free, freeflg is true if the memory sh.ould actually
be freed. Some u-structure managing routines call
sptfree() with freeflg set to false as a type of memory
semaphore.

Result: The rlrtual memory is freed into its memory map.

Physical Memory ADocation Roudnes

These routines are used on machines that lack virtual memory, such as
tl1e 8086 and the 80286. The means of physical memory allocation
dlil'ers depending on whether the desired memory is within kernel data
space or outside of the kernel.

Kernel Data Allocation. Since the kernel's data segments are already
allocated among the various kernel data structures, the only way to
allocate kernel d(lta at run-time is to procure a kernel data structure of
an appropriate size.

For small memory allocation requirements, the data section of a
cbloek will provide you with CLSIZE usable bytes, as defined in
lusrlsyslhltty.h. These data structures can be allocated using the
getcf() call, and deallocated using the putcf() call, which are discussed
in section 8.6.1, "Character Device Driver Routines."

For larger requirements, the data section of a disk buffer can provide
you with BSIZE usable bytes, currently 1024. These data structures
can be allocated with the getablk() call, and released using the brelse()
call, which are discussed in section &�7.2,. '(Block Device Driver Rou
tines.'1

User Memory Allocation. User memory is all memory outside the
realm of the kernel. The mavail() and mlrgest() routines can be used
to determine the amount of free memory, and the largest contiguous
area of free memory� respectively. User memory is allocated using the
mmuget() routine, and released using the mmufree() routine.

mmuget() allocates memory directly from the system memory map. Ji
memory is allocated during normal driver run time, as opposed to
driver initialization, mmuget() can have an undesirable side affect.

8-29

C User's Guide

The memory map can become fragmented, which can prevent large
process from swapping in. Deadlock could even occur from the
misuse of mmuget(). For example, a driver could fragment system
memory so that nProcess A" had no room to swap in, and yet be wait- \�
ing for "Process A" to notify it before freeing the allocated memory.
Therefore, memory allocated during normal driver nm time should be
released as soon as possible.

Memory may be permanently allocated via mmuget() at driver initiali
zation time. This memory will not cause fragmentation, as it is allo
cated contiguously witb other kernel data.

These routines should absolutely not be used at interrupt time.

mavail (&coremap) : pages

Purpose: This routine reports the total number of
memory pages currently free. The pages may lie in
several different areas, and are not necessarily contiguous.

Parameters: coremap[] is tbe global kernel data strncture
for recording free memory pages.

Result; The total number of free memory pages is
returned.

mlrgst (&coremap) : pages

8-30

Purpose: This routine reports tbe number of pages in tbe
larges contiguous area of currently free memory.

Parameters: coremap(] is the global kernel data structure
for recording free memory pages.

Result: The size in pages of the larges contiguous area of
free memory is returned.

Writing Device Driven

mmuget (&base, pages) : error

mmuget (pages) : base

Purpose: This routine allocates memory from the system
memory map. Memory is allocated in units of pages,
which is a machine-dependent unit. A macro is provided !<> convert bytes to pages. The base address may then b e
used with mmudescr() on memory mapped machines, ana
may be used directly on unmapped machines (see exam
ple).

Parameters: For historical reasons, this routine has two
completely different forms: the first on memory mapped
machines, the second on unmapped machines. Drivers
that intend to run on both architectures require condi
tionally compiled code.

However, conditional compilation would he necessary
even if mmuget() did not have two forms, as mapped
macbines require selector mapping to be perfonned as
well. The selector mapping routines are covered in detall
in section 8.3.5. The example should demonstrate the
combined use of mmuget(), the selector mapping rou
tines, and the various kernel address-modifying macros.

In both cases, base is an unsigned integer, and pages is
the number of pages to allocate. The btoms() macro,
defined in /usrlsyslhlparam.h, will perform the indicated
bytes-to-pages conversion.

Result: If MMUERR is returned, no memory was allo
cated. Otherwise, base is assigned to the base of the allo
cated memory�

Example: This code allocates nbytes bytes of user
memory, placing the segment of the allocated area in the
variable "seg". Note that all three variables are used
again when the memory is freed, below:

int seg, nbytes;
unsigned short base;

#ifdef MJ286
base mmuget(btoms(nbytes));
seg = dscraJioc();
nunndescr(seg,mltoa(base),ubytes,RW);

#else .
mmuget(&base, btoms(nbytes));

8-31

C User's Guide

seg = ptoseg(mltoa(base));
#endif

mmufree (s eg, pages)

Purpose: This routine deallocates memory, returning it to
the system memory map so it can be reallocated.
Memory must be freed in pages, the same unit as in
whinh it was allocated.

Parameters: This routine takes the base value, which is
the unsigned integer returned from a mmuget call, and a
number of pages, which is the number of pages to free.

On mapped machines, if the mapping selector obtained
from dscralloc() is not to be reused, it should be released
with dscrfree().

Example: This code deallocates nbytes bytes of
memory, freeing the memory selector at the same
(seg, nbyiiNi and base are as the mJTUtget() example.

int seg, nbytes;
unsigned short base;

mmufree(base,btoms(nbytes));
#ifdef MJ286

dscrfree(seg) ;
#endif

user
time

8.3.10 DMA Allocation Routines

These routines allow DMA usage to be interlocked against DMA
requests by other drivers. Not all devices use DMA, but those that do
must have exclusive access to their DMA channel for the duration of
the transfer.

The number of DMA channels is hardware dependent. Some chan
nels are reserved for such invisible housekeeping functions as screen
refresh and cannot be reallocated.

Some machines have DMA chips that malfunction when more than
one allocated channel is used simultaneously. To allow instailation on

8-32

0

Writing Device Drivers

these machines, the dma_single flag is set by default. On machines
that do not suffer from this deficiency, clear the dma_single flag to
allow simultaneous DMA on multiple channels.

The names of the various channels are defined in the file dma.h.

dma...11lloc (channel, mode)

Purpose: This routine allocates a DMA channel.

Parameters: channel is the channel to be allocated. If
mode is D MA..NBLOCK, the routine will not sleep until
the specified channel is available, instead retuming a
non-zero value immediately. If mode is DMA..BLOCK,
the routine will sleep until the channel is available. This
routine may only be called at interrupt time if
DMA..NBLOCK is specified.

Result: Returns 0 if the channel is allocated, otherwise 1.

dma...relse (channel)

Purpose: This routine releases a DMA channel that was
either allocated with dma_alloc, or implicitly allocated by
dma_start. It should be called as soon as the DMA
transfer completes.

Parameters: channel is the channel name that was
presented earlier to dma_alloc() or dma_start.

Result: No return value.

8-33

C User's Guide

dma_start (dmareqptr)

8-34

Purpose: This routine starts up a DMA request. It is
designed to be used at interrupt time. When the channel
is available, the d..proc routine will be called at spl6(),
with a pointer to d..param as an argument. The d..proc
and d..param values are found in the structure pointed to
by dmareqptr. The routine specified by d..proc must fol
low all the normal rules of interrupt routines. It should
be minimal became it may be called during some other
device's inte:mtpt routine.

Parameten: The dmareqptr structure is defined as fol
lows:

strnct dmareq {
strnct dmareq *d...nxt;
unsigned short d..chan;
unsigned short dJnode;
paddrJ <L.addr;
long <Lent;
int (*d_proc)0;
char *d_params;

} *dmareqptr;

The dJfXt field is used to link the structure onto a list of
dmareq structures in case it can't be serviced immedi
ately. The d.Ptode field supplies the direction of the
transfer: it is either DMA_Wrmode (from memory to the
device) or DMA...Rdmode (from the device to memory).
The d_pddr field contains the physical address from
which or to which to transfer. The d_t:nt field contains
the number of bytes or words to transfer. The d..proc
routine will be called at priority spl6() when the channel
is available.

Result: Returns 1 if the request was completed immedi
ately, 0 if it was quened for later execution.

Writing Device Drivers

dma_param (channel, mode, addr, cnt)

Purpose: This routine masks tbe DMA request line on
the controller, sets the address and count parameters,
and sets the mode (read or write).

Parameters: channel is the channel number that was ear
lier presented to dmaJJlloc(). mode is either
DMA_Wnnode for a write transfer (from memory to the
device), or DMA_Rdmode for a read transfer (from the
device to memory). addr is the physical address from
which or to which to transfer. cnt is the number of bytes
to transfer.

Result: The controller is iultialized,

dma_enable (channel)

Purpose: This routine clears the mask register on the
controller to allow the DMA transfer to begin.

Parameters: channel is the channel name that was earlier
presented to dmnJJlloc().

Result: The transfer will take place.

dma...resid (channel) :resid

Purpose: This routine retmns the number of bytes that
were not transferred by the previous dmn...enable()
request, as a long.

Parameters: channel is the channel name that was earlier
presented to dmnJJlloc().

Result: A long integer expressing the number of bytes not
transferred will be returned.

8-35

C User's Guide

8.3.11 Version 7/System V Conipatiblllly ISsues

This section describes some of the changes between Version 7 UNIX
and System V UNIX that affect the device driver interface.

Device Numbers

In Version 7 UNIX, tbe dev parameter passed to the open(), close(},
read(), write(), md ioctl(} driver routines included the major and
minor device numbers. In System ill and System V, only the minor
device nmnber is passed in the dev parameter. This means it is no
longer necessary for all device drivers to mask out the major device
number before checking the minor device number.

iomove ()

Some Version 7 device drivers used a routine called iomove() to copy
to or from user space. The iomove() routine does not exist in System
ill and System V. However, adding the code shown below provides
most of the same capability:

8-36

f\ I
�/

Writing Device Drivers

#include " . ./h/param.h"
#include " . ./h/dir.h"
#include " . ./h/user.h"
I*
* iomove - equivalent to the V7 version except we do not provide
* any of the staudard segfig machlnations for writing
• to instruction space or kernel data space
• NOTE: u.u.J>ase is an faddrJ
*f

iomove(cp, cnt, llag)
caddr_t cp;
register int tnt;
int flag;
{

register int reLval;

lf (cnt � 0)
return; /* Nothing to do! */

lf(flag � B_ WRITE)
reLval � copyio((caddrJ)ktop(cp), u.u....base, cnt, U_WUD);

else
reLval = copyio((caddr_t)ktop(cp), u.u..base, cnt, U_RUD);

lf(reLval == -1) {

}

u.uerror = EFAULT;
return;

}
u.u_base += cnt;
u. u_c.ount -= cnt;
u.u_offset +- cnt;

8.4 Parameter Passing to Device Drivers

The task-time portion of the device driver has access to the user's u
area since this is mapped into kernel address space. The kernel rou
tines that process the user process' IJO request, place information
descnbing the request into the process' u area. The parameters passed
in the u area are:

u. u.J>ase address in user data to read/write data for transfer
u.u....count the number of bytes to transfer
u.u_offset the start address within the file for transfer
u. u_segfig indicates tl\!0 direction of the transfer
u.u_error used to return errors to the user.

8-37

C User's Guide

Refer to the !usrlsys!hluser.h file for the values to use for u.u...segflg.
Refer to lntro(S) for a list of values for u.u...error. In addition to the
parameters passed in the u area, the kernel IIO routines pass the
minor device number as a parameter to the driver when it is called.
Therefore, the driver has all the information it needs to perform the
request: the target device, the size of the data transfer, the starting
address on the device, and the address in the process' data.

Only device drivers that do not use standard character and block I/0
interfaces in the kernel need examine the parameters in the u area.
Kernel routloes that provide these standard interfaces have done the
work of convertlog the values pasaed in the u area into values that the
driver expects. In the case of the standard block I/0 interface, these
parameters are set in the buffer header descnbing the data transfer.
Refer to Section 8.7, "Device Drivers for Block Devices," for more
information on using the buffer header information to set up a block
data transfer.

Device drivers using the standard character IIO interface use the clist
buffering scheme and the routines that manipulate the clist to effect the
data transfers. Refer to Section 8.6, "Device Drivers for Character
Devices," for more information on using clists and the character I/0
interface routines.

8.5 Naming Conventinns

There is a naming convention for all driver routines names and all
non-static driver global variables. Each driver uses a unique two- to
four-character prefix to identify its routines and variables. This helps
prevent naming collisions.

For example, the xxstrategy() function for a hard disk driver might use
the prefix "hd". The resulting name would be hdstrategy(); for a
floppy driver ("fd"), fdstrategy(). In the following sections, the prefix
used is "xi''.

&.6 Device Drivers for Character Devices

This section describes XENIX character device drivers. Character dev
ices conform to the XENIX file model; their data consists of a stream
of bytes delimited only by the end of file. The XENIX system provides
programs with direct access to devices through the special device files
described in Section 8.1.5, "Special Device Files."

Many special facilities are provided for the special requirements of
serial devices, such as programming functions on input and output
(character erase, line kill, tab f"!'ctions, etc.), and for settinl! line
options such as speed. The dnvers for other character-onented

8-38

Writing Device Drivers

devices such as line printers are basically simplified serial device
drivers that do not use special facilities that are available to serial
drivers.

Most character device drivers use a data buffering mechanism known
as a character list or clist. cli�ts are used to transfer relatively small
amounts of data between the driver and the user program. cllsts are
descnbed in more detail in Section 8.6.3, "Character List and Characc
ter Block Architeclure."

8.6.1 Characler Device Driver Routines

The task-time portion of the character device driver is called when a
user process requests a data transfer to or from a device under the
control of the driver. The system determines the kind of request from
the major device number of the device used to do I/0. The driver's
job is to take the user process' requests, check the parameters sup
plied, and set up the necessary information for the device interrupt
routine to perform the I/0.

In the case of a write to a slow device, that is, one using clists, the
driver copies the data from user space into the output clist for the dev
ice. In the case of direct I/0 between the device and user memory,
for example, magnetic tapes, the driver simply sets up the I/0 request.
The routines that provide the interface between the kernel and charac
ter device drivers follow.

The next sections discuss the different kinds of character device driver
routines:

• Driver Defined Routines

• Serial Driver Support Routines

• Character Passing Routines

• Character List Routines

• Line Discipline Routines

Driver Defined Routines

These routines are driver entry points: the only places where the kernel
calls the devjce driver. Hxx'' is a mnemonic that refers to the device
type. (See 8.5, "Naming Conventions".)

8-39

C User's Guide

xxinit 0

Purpose: This routine is called to initialize the device
when XENIX is first booted. If present, it is called
indirectly through its entry in the dinitsw[] table.
lusrlsys!conflc.c.

Xl<Open (dev, flag, ld)

Purpose: This routine is called each time the device is
opened. It prepares the device for the I/0 transfers and
performs any error or protection checking.

Parameters: dev is an integer that specifies the minor
number of the device.

flag is the mode in which the file should be opened. It is
the bitwise "or" of the modes defined in lusrlsys!hlfik.h.
Note that this flag is similar to, though not exactly the
same as the oflag argument that is passed to the open()
system call.

id is an integer that specifies whether the device is a char
acter device (0) or a block device (1).

If this routine sets u.u_error to a non-zero value, the
open has failed and the value in u.u..£rror will be returned
to the user as errno.

xxdose (dev, flag, !d)

8-40

Purpose: This routine is called on the last close on a dev
ice. It is responsible for any cleanup that may be
required such as disabling interrupts, clearing device regis
ters, and so on.

Parameters: dev is an integer that specifies the minor
number of the device.

flag is the mode in which the file should be opened. It is
the bitwise "or" of the modes defined in lusrlsyslhlfile.h.
Note that this flag is similar to, though not exactly the
same as the oflag argument that is passed to the open()
system call.

id, is an integer that specifies whether the device is a char
acter device (0) or a block device (1).

(\ \._)

Writing Device Drivers

xxintr (vecJ]um)

Purpose: This routine is called by the kemel when the
device issues an interrupt. Since the interrupt typically
signals completion of a data transfer, the interrupt routine
must determine the appropriate action. This may be tak
ing the received character and placing it in the input
buffer, or removing the next character from the output
buffer and starting the transmission.

Parameters: vecJtum is an integer that specifies the inter
rupt vector number.

Note that xxintr will be called at the spl level specified in master (see section 8.9.2). No interrupts from the same
device will be acknowledged unless the interrupt routine
explicitly lowers its spl level, Interrupt routines do not
normally lower their spl level.

xxread (dev)

Purpose: This routine is called when a program makes a
read system call. Its responsibility is to transfer data to
the user's address space. A subroutine is available to
transfer one character at a time to the user: passe().
This subroutine returns a -1 when there are no more
characters to be transferred.

Parameters: dev is an integer that specifies the minor
number of the device.

l<XWrite (dev)

Purpose: This routine is called when a program makes a
write system call. Its responsibility is to transfer data
from the user's address space. A subroutine is available
to transfer one character at a time from the user: cpass().
This subroutine returns a -1 when there are no more
characters to be transferred.

Parameters: dev is an integer that specifies the minor
number of the device.

8-41

C User's Guide

xxproc (tp, cmd}

Purpose: This routine is called to perform output charac
ter expansion, output characters, halt or restart character
output and, in general, bring about the desired change in
the output.

Parameters: tp specifies the tty value of the device.

cmd specifies the process to be performed. The sample
tty driver in Chapter 9, "Sample Device Drivers," docu
ments the list of cmd argument values for xxproc().

xxioctl (dev, cmd, arg, mode}

8-42

Purpose: This routine is called by the kernel when a user
process makes an ioctl() system call for the specified dev
ice. It performs hardware dependent functions such as
setting the data rate on a character device.

Parameters: dev is an integer that specifies the minor dev
ice number of the device.

cmd is an integer that specifies the command passed to
the system call.

arg specifies the argument passed to the gystem call.

mode is the bitwise "or" of the file modes defined in
lusr/syslh/file.h. It is similar, but not exactly the same as,
the flags passed to the open() system call for the device.

If this routine sets u.UJrror to a non-zero valne, the ioctl
has failed and the value in U.UJrror will be retnrued to
the user as erma.

Writing Device Drivers

XX]JOII (ps)

Purpose: This routine, if present, is called by the system
clock at spl6() during every clock tick. It is useful for
repriming devices that constantly lose interrupts.

Parameters : ps is an integer that indicates the previous
process's priority when it was interrupted by the system
clock. The macro USERMODE(ps), defined in
lusrlsyslhlparam.h, can be used to determine if the inter
rupted process was executing in user mode�

Serial Driver Support Routines

This section describes the routines that initialize the tty structures, start
the tty output, and empty the tty queue. These routines are used
almost eXclusively by serial drivers.

ttluit (tp)

Purpose: This routine initializes the tty structure tn
specific default values. To set up the default settings for
a tty device, call this routine inuuediately after opening
the tty device. ttinit initializes the Uine, Ufolg, t..t>fl.ag ,
t.Jflag, tJjlag, and t...cc fields of the tty structure.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

ttiocom ((p, cmd, addr, flag)

Purpose: This routine is called for all common tty ioctl
calls. It is called by the xxioctl() routine after a device
specific ioctl has been performed.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

cmd is an integer specifying an ioctl command.

addr specifies the address of the user space where the
parameters reside.

folg specifies whether the command is a read or write
operation.

8-43

C User's Guide

!irs trt (tp)

Purpose: This routine restarts tty output after a timeout()
call. It is passed as an argument by the device driver to
timeout() calls.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

ttyflush (tp, cmd)

Purpose: This routine Hushes the tty queue.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

cmd specifies whether to flush the input (FREAD) queue
or the output (FWRITE) queue. (FREAD) and {FWRD"E)
are defined in /usrlsys!h/ft/e.h

Character List Routines

The kernel contains a group of small buffers called character lists, or
clists. A clist structore is the head of a linked list queue of characters.
The elements in the linked list are called cblocks and each cb//Jck can
hold a small number of characters. These are used for buffering low
speed character devices. Refer to Section 8.6.3, "Character List and
Character Block Architecture," for further information on clists.

Drivers that do not use the tty structore must declare a queue header
, of type clist, or two queue headers if both input and output are to be

buffered. The tty structore already contains declarations for the
needed queue headers. There are eight routines that the driver can use
to manipulate clist buffers, as described below. All these routines can
be used during interrupt-time processing.

8-44

Writing De�iee Drl�ers

getc (cp)

Purpose: This routine moves one character from the clist
buffer for each call.

Parameters: cp specifies the clist buffer from which char
acters are moved.

Result: This routine returns the next character in the
buffer or -1 if the buffer is empty.

putc (c, cp)

Purpose: This routine moves one character to the clist
buffer for each call.

Parameters: c is an integer that specifies the character to
be moved.

cp specifies the clist buffer to which the character is
moved.

Result: This routine places the specified character in the
buffer or returns -1 if there is no free space. A driver
may suspend processing until there is free space by sleep
ing on the address of cfreelist.

Example: This code places the specified character in the
buffer, suspending processing if necessary until there is
room in the buffer.

while (putc(c,cp) - -1)
sleep(&cfreelist,ARBlTRARY...PRJ);

8-45

C User's Guide

getcb (cp) : cbp

Purpose: This routine moves one cblock from the cli.st
buffer for each call.

Parameters: cp specifies the cli.st buffer from wlrich the
cbwcks are moved.

cbp is a pointer to a cblock.

Result: This routine returns the next cbwck (cbp) in the
buffer or NUlL if the buffer is empty.

putcb (cbp, cp)

Purpose: This routine moves one cblack to the cli.st
buffer for each call.

Parameters: cbp is a pointer that specifies the cblock to
be moved.

cp is a pointer that specifies the clist to which the cb/ock
is linked.

Result: This routine places the specified cbwck on the
linked list associated with cp.

getcf () : cbp

8 -46

Purpose: This routine takes a cblock from the freelist,
and returns a pointer to it.

Result: Returns cbp, a pointer to a cblock, or NUlL if
there are no free cblocks available. A driver may
suspend processing until the free cblock situation changes
by sleeping on the address of cfree/i.st (see example under
pule).

Writing Device Drivers

putcf (cbp)

Purpose: This routine puts the specified cblock onto the
freelist.

Par:ameters: cbp is a pointer to a cblock.

getcbp (p, cp, n)

Purpose: This routine copies characters from the
specified c/ist, p, to the buffer addressed by the cp argu
ment.

Par:ameters: p is a struct clist * .

cp is a char * addressing the buffer to which the charac
ters are to be copied.

n is the nnmber of characters to be copied.

Result: This routine returns the number of characters
actually copied, which is less than or equal to n.

This routine must be called at spl6().

putcbp (p, cp, n)

Purpose: This routine copies characters from a buffer to
the clist given as argnment.

Parameters: p is a struct dist * .

cp is a char * whieh addresses the buffer.

n is the number of characters to be copied to the c/ist.

This routine must be called at sp/6().

Characmr Passing Routines

These routines are the lowest level of character I/0. They are used to
pass characters between kernel and user space.

8-47

C User's Guide

They differ from copyio(), copyin() and copyout() in that the
appropriate fields in the user structure (u.u...base, u.u....count, etc.) are
updated when these routines are used. Most drivers do not can char-
acter passing routines directly, instead relying on the Character List '"'
Routines that, in tnm, can cpass() and passe().

cpass () : c

Purpose: This routine returns the next character from the
nser output request,

Result: The routine returns a character c or the value -1,
which indicates that there are no characters left in the
output request.

passe (c)

Purpose: This routine passes characters to a user read
request.

Parameters: c is the character to be passed to the read
request.

Result: The routine retnms 0 normally and -1 when the
user read request has been satisfied.

Line Discipline Routines

If a serial device is to be used as an interactive terminal, it must sup
port various functions such as character and line erase� echoing, and
buffered input. The code needed to perform each of these functions
has b een abstracted into a set of routines that roughly corresponds to
the character device function. Each of these sets is called a "line dis
cipline". One standard line discipline is provided by default. Each of
the routines is called through the linesw[] table initialized in
lusrlsyslconflc.c. Each entry in this table represents one line discip
line, and has entries for eight functions.

The Lopen() routine should be called on the first open of a device.
The l_clnse() routine should be called on the last clnse of the device.
The Lread() and Lwrite() routines are called by the drivers read and
write routines, to pass characters to and from the caning process. The
Unput() routine is called to buffer an incoming character, usually
upon the receipt of the character from the hardware. I.Joctl calls
specific routines related to line discipline manipulation. The l_putput
routine gets the next block of characters for output at interrupt time.
The l.Jndmint() routine is not currently used.

8-48

(

Writing Device Drivers

8.6.2 Interrupt Routines for Character Device Drivers

The device interrupt routine is entered whenever one of the driver�s
devices raises an interrupt. Note that, in general, one driver may con
trol several devices. AU interrupts, however, are vectored through a.
siogle function entry point. The entry point is usually called xxirttr(),
where xx is a mnemonic that refers to the device type (see Section 8.5,
"Namiog Conventions"). It is the driver's resp\losit?ility .to deci(\e
which device caused the ioterrupt.

When a device raises an ioterrupt, it generally makes available some
status information to iodicate the reason for the ioterrupt. The driver
ioterrupt rontioe decodes this information. If it iodicates that a
transfer has just completed, the wakeup() routine alerts any process
waiting for the transfer to complete. It then checks to see if the device
is idle andt if so, looks for more work to start up. Therefore. in the
case of output to a terminal, the interrupt routine looks for more work
io the clists each time a transfer completes.

8.6.3 Character List and Character Block Architecture

The character lists, or clists, provide a general character buffering sys
tem for use by character device drivers. The mechanism is designed
for bufferiog small amounts of data from relatively slow devices, partic
ularly terminals.

The XENIX kernel has a collection of character blocks called cblocks.
Each cblcck contaios a link to the next cblock and an array of charac
ters. A clist is a linked list queue of cblccks.

The kernel provides the getc() and putc() routines, described previ
ously, for putting characters ioto a c/ist and for removiog characters
from a c/ist. These routioes can be used by all drivers usiog clists.
Note that the routines are not the same as the Standard I/0 Library
routines of the same names.

8-49

C User's Guido

The static buffer header for each c/ist contams three fields: a count of
the number of characters in tho list, a pointer to the first character in
the list, and a pointer to the last character. The clist buffers form a
singly linked list as shown below:

s t ruct {
i n t c_c c ;
char • c ; - � - - - - -+
char *c_c l ; - -+ I
} c l i s t ; I I

I I
I I + - - - - - -+ + - - - - - -+ +----- +

I I I next 1 - - -> 1 nex t 1 - · · ·> 1 0

I f +- - - - - -+ + - - - - - - + +- - - - -+
I + - -> I I I
I I I I I
I l char s I ebars I ebar s !
I I I I I
I I I +-> 1 I
I I I I I I
I + - - - - - -+ + - - - - - -+ I + - - - - -+
I I

+ - � - -+

Character List Bulfers

All currently unused cblocks are kept on a list of free memory blocks.
Since there are a limited number of cblocks drivers should follow a
protocol to prevent a particular process from consuming all available
resources.

For output buffering, the driver usually follows a "high- and low-water
mark" convention. The driver accepts and queUes requests from the
user process until the corresponding clist has reached its high-water
mark. At that point, the requesting process is suspended via sleep().
When the buffer has dramed below the low-water mark, the suspend
process is awakened. Two constants for the high- and low-water
marks, TTHIW AT and TTLOWA T, are defined in the file
!usrlsyslhltty.h.

For input buffering, the driver usually buffers the data up to some
limit. When this limit is reached, data is discarded to make room for
the more recent data.

8-50

(

Writing Device Drivers

8.6.4 Ternoinal Device Drivers

Terminal device drivers normally use cli.sts ex:tensively. The terminal
device driver should declare one tty structure for each terminal line
(minor device number). Each tty structure contains the static clist
headers for three clists. These clists are the ((raw queue,�) the "canoni
cal queue,, and the "output queue."

When a process Writes data to a terin"ina1 deVice', the task-tim:e part of
the driver puts the data into the output queue, and the interrupt rou
tine transfers it from the queue to the device.

When a process requests a read of data from the terminal� the situa
tion is slightly more complicated. This is because XENIX provides for
processing of characters on input at the option of the requesting pro
cess. For example, in normal input the backspace key is interpreted as
"delete the last character input," and the line kill character means
"delete the whole current line." Certain special characters, such as
BACKSPACE must be treated in contex:t, since they depend upon sur
rounding characters. To handle this, XENIX drivers use two queues
for incoming data.

The two queues are the raw queue and the canonical queue. Data
received by the interrupt routine is placed in the raw queue with no
data processing. At task-time, the driver decides how much processing
to do. The user process has the option of requesting raw input, where
it receives data directly from the raw queue. Cooked, tbe opposite of
raw, input refers to the input after processing for ERASE, LINE KILL,
DELETE, and other special treatment. In this case, a task time rou
tine, canon(), is used to transfer data from the raw queue to the
canonical queue. This performs BACKSPACE and LINE KILL func
tions, ru:cording to tile options set by the process using the ioctl(S) sys
tem call.

While the structure of input cli.sts may be important as background
information, the driver does not need to manipulate the input clists
directly. In XENIX System V, the direct clist processing for tty device
drivers is normally handled by the specific line discipline. The only
processing that the device driver needs to perform is interrupt-level
control. The device driver provides interrupt-level control by empty
ing and filling stroctures called character control blocks (ccblock).
Each tty structure has a ccblock for transmitter (tJbuf) control and a
ccb/ock for receiver (tJbU.f) control. The ccb/ock structure has the
following format:

struct ccblock {
caddr_t c_ptr;
ushort_t c_count;
ushort_t c_size;

};

/*buffer address*/
/*free character count */
/*buffer size* I

8-51

C User's Guide

At receiver interrupt time, the driver fills a receiver ccblock with char
acters, decrements the character count, and calls the line discipline
routine Unput(). At transmitter interrupt time, the driver calls
xxproc() and the line discipline routine, IJJutput(), to get a transmitter
ccblock and then outputs as many characters as possible. Refer to .,
Chapter 9, "Sample Device Drivers," for code examples.

The basic flow of data througb the system during terminal I/0 is
shown in the diagram below:

XENIX
KERNEL

<-
r ead ()
sys t ew.
ca l l

DRIVER TASK Tl.Mil # INTERlllll'T
Tl.Mil
-<- - <- - - - - - - - - -< !_read () #

I xxread() I +- -- ->- - - -1- - - -<-
-
-
-+ ;

I I t
_
_ !
_
_
+ + -

! _ _
+

I

:

I
I 1:::�: <- canon () <- q�::e <-!rece ive

I I #rout ine

1 L---+ L . . .l :unpu t ()

I I #
wr i t e ()

'

sys tem +-- - - - -+ #
c a l l I # - - -> , ->xx_w_ r ,· t e->(-)

- - -> !_wr i t e () - -> ou tput - - ->#t ransmi t
queue #rout ine

xxproc () and

I +- - - - -+ : !_ou tput ()

Data Flow For Terminal Device Driven

There are two sligbt complications to the scheme presented in the
diagram above. These are output character expansion and input char
acter echo. Output expansion occurs for a few special characters. ln
the cooked mode, tabs may be expanded into spaces, and the newline
character mapped into carriage retmn plus line feed. There is a facility
for producing escape sequences for uppercase terminals and delay
periods for certain characters on slow terminals. Note that all these are
simple expansions, or mapping single characters, and so do not require
a second Jist as in the case for input. lnstead, ali the expansion is per
formed by the xxproc() routine before placing the characters in the
output clisr.

Character echo ls a user process option required by most processes.
With tbls, all input characters are immediately echoed to the output

8-52

Writing Device Drivers

stream without waiting for the user process to be scheduled. Character
expansion is performed for echoed characters, as for regular output.

�-- Character echo takes place at interrupt time so that a user entering text
at a terminal gets fast echo, regardless of whether his program is in
memory and running or swapped out on disk.

8.6.5 Other Character Devices

There are three character devices commonly used with XENIX systems:
terminals, lineprinters, and magnetic tape drivers. Terminals receive
special attention in the XENIX system. Lineprinters and magnetic tape
tend to use existing kernel facilities, with little special handling.

Lineprinters

Usually, these are relatively slow, character-oriented devices. The
drivers use the clist mechanism for buffering data. However, a line
print�r driver is generally simpler than a terminal driver because less
processing of output characters is necessary and no processing of input
is necessary.

Magnetic Tape Drivers

Magnetic tape is a special case. The data is arranged on the physical
medium in blocks, as on a disk. However, it is almost always accessed
serially. Furthermore, there is generally only one program accessing a
tape drive at a time. Thus, the elaborate kernel buffer management
scheme in XENIX {which is designed to optimize disk access when
several processes are making simultaneous requests to different parts of
the same disk) is not applicable to tapes. The clist mechanism is not
appropriate either, because of the large amount of data involved.

Usually tape drivers provide two interfaces, block and character. The
character interface is used for physical I/0 directly between the device
and the user process' address space. The block interface makes use of
the XENIX kernel buffers and buffer manipulation routines to store
data in transit between device and process. Refer to Section 8.7.1,
"Character Interface to Block Devices," for information on providing
the facility for physical I/0.

8. 7 Device Drivers for Block Devices

Block devices are those that may be addressed as randomly accessible
fixed size records, rather than individual bytes. Disks fall into this
category, as do some magnetic tape systems. XENIX file systems always

8 - 53

C User's Guide

reside on block devices. However, block devices do not have to be
used in tbis way.

Unlike character device transfers, a block I/0 transfer request is not a
private transaction between a driver and a user process. The XENIX
kernel provides a comprehensive buffer management scheme which is
used by block device drivers.

The XENIX kernel maintains a collection of buffers, and keeps track
of what data is in them and whether a block is "dirty'', that is, has
been modified and so needs to be written out to disk. When a user
process issues a transfer request to a block device, the kernel buffer
routines check the buffers to see if the data is already in memory. lf
the data is not in memory, a request is passed to the driver to get the
data.

Large requests are normally broken down into BSIZE blocks =d han
dled individually, regardless of the size of the process's I/0 request,
shlce some may be in memory and some may not.

When a process issues a read request, this generally translates into one
or more disk blocks. The kernel checks whlch of these is already in
memory and requests that the driver get the rest. The data from each
buffer filled by the driver is copied into the process' memory by the
kernel.

In the case of a write request, the kernel copies the data from the user
process' memory into the kernel's buffers. If there are insufficient free
buffers, the kernel has the driver write some out to disk, using a selec
tion algorithm designed to reduce disk traffic. When all the data is
copied out of user space, the kernel can reschedule tbe process. Note
that all the data may not yet be out on disk; some may be in memory
buffers and marked as needing to be written out at some later time.

Swap requests are passed directly to the driver without being broken
down into BSIZE blocks. Tlris means that if a device is capable of
being swapped upon, its driver must be capable of handling transfers
of arbitrary multiples of BSIZE.

8. 7.1 Character Interface to Block Devices

Sometimes block device driven; provide a character I/0 interface as
well as one for block I/0. In this case, a separate special device file
can be created to access the device through the character interface.

To construct a character I/0 interface to a block device, use the utility
mlmod(C), described in the XENIX Reference, to create a character
special device file that has the major and minor number as the block

8-54

:'

Writing Device Drivers

special file for this device. Use the -c argument of configure to enter
the routine names within the driver into the configuration files, the
same as for a normal character device.

The block device driver must provide the routines xxread() and
xxwrite() described below to implement character J/0.
When a block device is accessed through a character interface, da-ta
transfer takes place directly between the device and the process'
memory space. There is no intermediate buffering in the kernel buffers
or the cltsts. This processes is also referred to as raw J/0 and in this
context, is different from raw tty J/0.
The driver receives the request exactly as the process sent it, for what
ever size was specified. There is no kernel support to break the job
into BSIZE blocks. It has some advantagea for certain types of pro
grams.

Programs that need to read or write an entire device can usually do this
more efficieutly through tbe character interface, since the device can
be accessed sequentially and large transfers can be made. There is also
less copying of data between buffers than is used in the block inter
face. Thus filesystem backup programs, or utilities that copy entire
volumes, typically operate through this interface.

The cost of Ibis extra efficiency is that the process has to be locked in
memory during the transfer, since the driver has to know where to
read and write tbe data. Tbe routine physio(), called by the xxread()
and xxwrite() driver routines, handles locking the process in core for
the duration of the data transfer.

8. 7.2 Block Deviee Driver Routines

A block device appears to the kernel as a randomly addressable set of
records of size BSIZE, where BSIZE is a manifest constant defined in
tbe /usr!syslh/param.h file. The XENIX kernel inserts a layer of
buffering software between user requests for block devices and the
device driver. This buffering improves system perfonnance by acting
as a cache, allowing read ahead and write behind on block devices.

Each buffer in the cache contams an area for BSIZE bytes of data and
has associated witb it a header of type struct buf which con tams infor
mation about the data in tbe buffer. When an J/0 request is passed to
tbe task time portion of tbe block device driver, all of the information
needed to handle the data transfer request has been stored in tl1e
buffer header. Tbis information includes the disk address and whether

8-55

C User's Guide

a read or a write is to be done. The file lusrlsyslhlbuf.h describes the
fields in the bu.lfer header. The fields most relevant to the device driver
are:

b_dev
b_bcount
b_paddr
bJ>lkno
b_error

the major and minor numbers of the device
the number of bytes to transfer
the physical address of the buffer
the block number on the device
set if an error occurred during the transfer

The driver validates the transfer parameters in the buffer header and
then queues the buffer on a double linked list of pending requests. In
each block device driver, this chain of requests is pointed to by a
header of type struct iobuf named xxtab. The file !usrlsyslhliobuf.h
describes the fields in the request queue header. The requests in the
list are kept sorted using the disksort() routine. The device interrupt
routine takes its work from this list.

When a transfer request is placed in the list, the process making the
request sleeps until the transfer is completed. When the process is
awakened, the driver checks the status fuformation from the device
interrupt routine, and if the transfer is completed successfully, returns
a success code to the kernel. The kernel buffer routines are responsi
ble for correlating the completion of an individual buffer transfer with
particular user process requests.

The interface between the kernel and the block device driver consists
of these kinds of routines:

• Block Interface Routilies Defined Within the Driver

• Character Interface Routines Defined Within the Driver

• Character Interface Support Routines

• Block Interface Support Routines

Block Interface Routhaes Defined Within the Driver

nlnlt 0

8-56

Purpose: This routine is called to initialize the device
when XENIX is first booted. Jf present, it is called
indirectly through tbe dinitsw(] table during early initiali
zation�

Writing Device Drivers

xxopen (dev, flag, id)

Purpose: This routine is called each time the device is
opened. It is the responsibility of this routine to initialize
the device and perform any error or protection checking.

Parameters:. dev -.is an .integer .that specifies- the. device
number.

flag is the mode in which the file should be opened. It is
the bitwise "or" of the modes defined in /usrlsys/hljile.h.
Note that this flag is similar to, though not exactly the
same as the oflag argument that is passed to the open()
system call.

id is an integer that specifies whether the device is a char
acter device (0) or a block device (1).

If this routine sets u.u__error to a non-zero value, the
open has failed and the value in u. u_error will be returned
to the user as errno.

xxclose (dev, flag, id)

Purpose: This routine is called on the last close on a dev
ice. It is responsible for any cleanup that may be
required, such as disabling interrupts, clearing device
registers, ejecting media, and so on.

Parameters: dev specifies the device number of the device
being closed.

flag is the mode in which the file should be opened. It is
the bitwise "or'' of the modes defined in lusr/sys/hljile.h.
Again, flag is similar to, though not exactly the same as
the oflag argument that is passed to the open() system
call.

id is an integer that specifies whether the device is a char
acter device (0) or a block device (1).

8-57

C User's Guide

x:xstrategy (bp)

Purpose: This routine is called by the kernel to queue an
I/0 request. It must make sure the request is for a valid
block, and then must insert the request into the queue.
Usually the driver calls disksort() W insert the request
into the queue. The disksort() routine takes two argu
ments: a pointer to the head of the queue, and a pointer
to the buffer header to be inserted.

Parameters: bp is a pointer to a buffer header.

xxslart 0
Purpose: If the task time portion of the driver detects
that the device is idle, this routine may start it. It is often
called by both task time and interrupt time parts of the
driver. It checks whether the device is ready to accept
another transfer request and, if so, starts it up, usually by
sending it a control word. The rest of the kernel does
not know if a start routine is present; there are no
indirect start routine entry points.

xxintr (vec..:num)

8-58

Purpose: This routine is called whenever the device issues
an interrupt. Depending on the meaning of the interrupt,
it may mark the current request as complete, start the
next request, continue the current requext, or retry a
failed operation. The routine examines the device status
information and determines whether the request was suc
cessful. The block buffer header is updated to reflect this.
The interrupt routine checks to see if the device is idle
and, if so, starts it up before exiting.

Note that xxlntr will be called at the spl level specified in
master (see section 8.9.2). No interrupts from the same
device will be acknowledged unless the interrupt routine
explicitly lowers its spl level, Interrupt routines do not
normally lower their spl level.

Parameters: vec.Jlum is an integer that specifies the inter
rupt vector number.

(\
\ .· '-- "

()

Writing Device Drivers

xxpoll (ps)

Purpose: This routine, if present, is called by the system
clock at spl6() during every clock tick. It is useful for
reprllning devices that constantly lose interrupts.

Parameters: ps is an integer that indicates the previous
proces_s's priority when �t .was intyrrupted by the system
clock. The macro USERMODE(ps), defined in
!usrlsys!h!param.h, can be used to determine if the inter
rupted process was executing in user mode.

xxhalt ()

Purpose: This routine, if present, is called when the sys
tem is shut down.

Character Interface Routines Defined Within the Driver

xxread (dev)

Purpose: The only action taken by this routine is to call
physio() with the appropriate arguments.

Parameters: dev specifies the minor device number of the
device.

Note: Often a block device driver provides a character
device driver interface so that the device can be accessed
without going through the structuring and buffering
imposed by the kernel's block device interface. For
example, a program might wish to read magnetic tape
records of arbitrary size or read large portions of a disk
direct-ly. When a- block device is referenced through the
character device interface, it is called raw JJO to
emphasize the unstructured nature of the action. Adding
the character device interface to a block device requires
the xxread() and xxwrite() routines.

8 - 59

C User's Guide

xxwrite (dev)

PUIJiose: The only action taken by this routine is to call
physw() with appropriate arguments.

Paramel<lrs: dev specifies the device number of the dev
ice.

Nol<l: See Note for xxread() routine.

xxiocll (dev, emd, arg, mode)

8-60

Puxpose: This routine is called by the kernel when a user
process makes ao wet/() system call for the specified dev
•ce. It performs hardware dependent funct!Dns such as
parking the heads of a hard disk, setting a variable to
indicate that the driver is to format the disk, or telling the
driver to eject the media when the close routine is called.

If this routine sets u.u_uror to a non-zero value, the ioctl
has failed and the value in u.u_error will be returned to
the user as errno.

Parameters: dev specifies the minor number of the dev
ice.

cmd specifies the command that was passed to the loct/()
system call.

arg specifies the argument that was passed to the iJJetl()
system call.

flag is the mode in which the file should be opened. It is
the bitwise "or" of the modes defined in lusr!syslhlfile. h.
Again, flag is similar to, thongh not exactly the same as
the oflag argument that is passed to the open() system
call. mode specifies the flags that were set on the open()
system call for the specified device.

Writing Device Drivers

Character Interface Support Routines

physlo (IJs,bp,dev,llag)

Purpose: This routine provides the raw I/0 interface for
block device drivers. It validates the request, builds a
buffer _heade:r:, lpcks_ jJJ� pro9ess in c_�re, and calls the
strategy routine to queue the request.

By default, physio() assumes that the driver can only
transfer multiples of BS!ZE bytes, and checks to ensure
that the transfer is a BSIZE multiple. physio() also
assumes that the driver is capable of handling a transfer
that crosses a 64k physical memory boundary. The fourth
argument to physio() may contain extra flags to override
these default assumptions.

Parameters: bs is a pointer to the strategy routine for the
block device.

bp is a pointer to the buffer header to be used for this
request.

dev is the device number of the device.

flog must contain either l3..:READ, to specify a read
operation, or B_WRITE, to specify a write operation.
Two additional bits may be or'ed in with B..:READ or
B_WRITE: B_TAPE, to disable the error checking for a
BSIZE-multiple transfer size, and B_NOCROSS, to force
physio() to divide transfers that cross a 64k physical
memory boundary. These constants are defined in
lusr!sys!hlbuf.h and lusrlsyslh!iobuf. h.

8-61

C User's Guide

Block Interface Support Routloes

disksort (disktab,bp)

Purpose: This routine adds a block device 110 request to
the queue of such requests for a particular device. It is
normally called by the device strategy routine. The queue
of requests is sorted in ascending order based on bp's
b...cylin field (type ushort), in an attempt to reduce disk
head movement.

Parameters: The disktab parameter is the head of the
request queue. and is the address of a struct iobuf
declared within the driver.

bp is a struct buf • pointing to the 110 request to be
added to the queue.

getablk (flag)

8-62

Purpose: This routine acquires a free buffer from the
block buffer pool. The pointer returned by this routine
addresses a buffer which can be used as required. The
buffer can subsequently be returned to the buffer pool by
calling brelse() or iodone().

Parameters: flag specifies whether the routine should
acquire any buffer or a directly addressable buffer (no far
pointers are needed). If fl.ag--1, the routine will acquire
a directly addressable buffer; if flag--2, the routine will
acquire a far buffer, and if fl.ag--0, it will acquire any
buffer.

·

Result: The routine returns a (struct buf *) which
addresses the allocated buffer. The struct bufs b..:paddr
field contains the physical address of a BSIZE buffer.
Depending on the value of flag, this may or may not be
within the kernel near data segment.

Warnings: There are very few directly addressable buffers
in tbe XENIX kernel. Most are already allocated for
other functions. If a directly addressable buffer is
required, tbe value of NSABUF may have to be increased
using configure(C).

This routine should not be used at interrupt time as it
may call the sleep() routine.

i

I
!

Writing Device Drivers

iowait (bp)

Purpose: This routine is called by the higher levels of the
kernel I/0 system in order to wait for the completion of
an I/0 operation specified by the buffer addressed by the
parameter bp. This routine is usually used in conjunction.
with an interrupt routine tbat calls the iodnne() routine.
iowait should not be called at interrupt time sioce it may
call tbe sleep() routine.

Parameters: bp specifies a struct buf • which addresses
the buffer involved in the I/0 operation.

Result: There is no result returned. The calling process
will be allowed to proceed once the I/0 operation has
been completed.

iodone (bp)

Purpose: This routine signals completion of an I/0
operation involving tbe buffer addressed by bp. This rou
tine is called when the driver wishes to signal either suc
cessful or erroneous completion of an I/0 operation. It
differs from the bre/se() routine in that tbe higher levels
of the kernel I/0 system will complete tbe processing of
the buffer before releasing it back to the buffer pool using
brelse(). This routine is usually used by an interrupt rou
tine to wake up a process tbat bas slept using the iowa it()
routine.

Parameters: bp specifies a strucr buf • which addresses
the buffer.

8-63

C User's Guide

brelse (bp)

Purpose: This routine releases a block buffer to the free
pool of buffers. It is called by a block device driver to
release a buffer. The contents of the buffer are lost and
the driver is not allowed to make any fUrther reference to
the buffer.

Parameters: bp is a struct buf • that addresses the buffer
header relating to the buffer to be released.

Result: The buffer addressed by bp is retnrned to the free
buffer pool. No errors are possible.

deveiT (dp, ol, o2, dn)

8-64

Purpose: This routine prints an error message on the sys
tem console together with some device specific informa
tion passed as parameters to the routine. The exact for
mat of the output is shown in the following print[state
ment:

register struct bnf *bp;

bp-dp->b__actf;
printf("error on dev %s (%u/%u)",

dn,
major(bp->b_dev),
minor(bp->b_dev));

printf(", block-%D cmd-%x status-%x\n",
bp->b..blkno,
ol, o2);

Parameters: dp is a struct wbuf * which is the head of
the I/0 request queue for the device.

ol contains driver specific information. It is normally
used to provide the controller command which relates to
the I/0 operation which failed.

o2 contains driver specific information. It is normally
used to provide the controller status information at the
tbne of failure.

dn is a char * that points to a short name for the device.

Writing Devlec Drivers

8.8 Compilation, Sys rem Configuration, and Kernel Linkage

To make your driver source code part of the XENIX kernel, you first
compile your driver in the same way that the rest of the kernel is com
piled.

Next, make the �ario�s routine names and driv� 8.ttributes of y�ur
driver accessible to the XENJX kernel using the configure utility. This
program creates several multi-dimensional tables of routine names and
driver attributes.

Then, link the kernel by adding the new module to the ld(C) com
maud line in the makefile provided, and running make(CP).

8.8.1 Compiling Device Drivers

Use the XBNIX C compiler to compile C source code, or the assem
bler to create an object module from assembler source. Use the
ce(CP) or masm(CP) commands.

The ce command line must contain the following switches:

-K
-DM..KERNEL

Disable stack probes.
Required for conditional code in standard
header files

I1 should also contain ONE of the following:

-M2em

-MOem

For 80286 processors. Enables 80286 instruc
tions, near, and far keywords� Compiles
middle model, to conform with the kernel
program model.
For 8086 processors. Uses only 8086 instruc
tions. Enables near and far keywords. Com-
piles middle model, to conform with the ker
nel program model.

For device driver subroutines written in assembly language, the masm
command line should contain the following switch :

-Mx Preserves lower case in output. Required for
the linker to b e able to resolve external
declarations to C functions.

An appropriate cc or masm command line m11 produce a cOrrespond
ing H .o" module. For example, scsi.c becomes the object module
scsi.o.

8-65

C User's Guide

8.8.2 System Configuration

System configuration is the process of placing references to your
driver's main functions i n various tables. Since the existing parts of
the kernel do not know what the functions in your new driver are
called, driver functions are referenced by indirect calls into the
configuration tables.

The configure utility generates and assembles the c.asm and space.inc
source modules that contain these indirect f'Wlction references. The
generated space. inc file is one of the header files that is inserted into
space.asm before that module is assembled into space.o. The c.asm
file is assembled into the object module c.o. Both object modules are
then linked into the kernel.

Some older ''preconfigered" drivers did not require configure to be
run, as all function references were already in place. For the rest1
composing the driver's configuration command is discussed in
confignre(C), Using the Link Kit, and briefty, below. Though it may
seem easier to edit the C and assembly language configuration files
directly, configure insulates you from potential changes to the
configuration files, and allows you to use the same procedure to
configure your driver as the end-user who receives your driver in
binary form.

Preconfigured Drivers

Earlier releases made provisions for several common types of drivers
by providing null routines that were linked in if the corresponding
drivers were not present. Drivers for which preconfiguration was pro
vided will still link in as before. Simply add the name of the driver's
u .o " module to the Jd command line, as before. The earlier scheme
of patching the int6ITUpt vector within vecintsw at driver initialization
time should still be used.

Determlnlng the Vector Number

You must determine your interrupt vector number so you can inform
the kernel that your driver should be called when an interrupt is pend
ing on that vector. This information is highly machine and
configuration dependent.

In the unmapped kernel, there is ouly one programmable interrupt
controller. Your XENIX vector number is the same as the bus request
number on which your peripheral interrupts.

Writing Device Drivers

For the mapped kernel, your peripheral device can interrupt on one of
the request lines of either a master interrupt controller or single slave
interrupt controller, which is connected to master request line 2. Your
XENIX vector number does not correspond directly to the bus request
numbers. Instead, it is mapped to logical vector numbers which allow
for the presence of slave interrupt controllers connected to the main
one.

The index of the appropriate vector is determined as follows:

1. If the vector used is on the master controller, just use the vector
number directly.

2. If it is on a slave controller (only one is currently supported for the
80286, on master request line 2), take the request line which that
controller uses in the master controller, multiply that number by 8
(there are 8 vectors per controller), add 8 (for the master which
uses logical vector numbers 0-7), and add the number of the
request line used on the slave controller.

For example, take the case of the IBM AT and compatibles: the bus
contains request lines JRQ0-7 which interrupt on the master controller
(except IRQ2, which is connected to the slave controller), and lines
JRQS-15, which are connected to request lines 0-7 of the slave con
troller. Actually, only lines IRQ3-7, 9-12, 14, and 15 are on the bus.

Vector Manipulation for Preconllgnred Device Drivers

In preconfigured drivers, entry points have been provided for all neces
sary routines (open, close, etc.) except for the interrupt handler. This
must be patched in at system start-up time as follows: an extra entry
point has been provided for each of the drivers expected to require an
interro.pt vector. This entry point's suffix is "-init". This function must
replace the appropriate vector in the vecintsw[] table with a pointer to
the interrupt handler function for the particular device driver. This
strocture is declared in the file lusrlsyslhlconfh, and an example of its
usage is in c. c.

In addition to patching the vecintsw[] table, the driver init routine
should patch the vecintlev[] table. This table specifies the priority or
spl level of the driver. Most drivers are priority level spl5.

8-67

C User's Guide

An example driver fl:agment for a hypothetical spl5 driver "xx" using
bus vector 12ls shown below:

#include " .. lh/param.h"
#include " .. lh/conf.h"

xxmtrO
{

}

#defme NUM (8 + (2*8) + (12-8))

int ("'xxoldintrO)();

xxinlt()
{

}

x:xoldintr - vecintsw[NUMJ;
vecintsw[NUM] - xxmtr;
vecintlev[NUM] - 5;

I* perhaps some other one-time driver-local initialization */

It should be noted that this may not be applicable for all device drivers
under all circumstances.

See section 8.10.3 "Vector Collision Considerations" for more infor
mation on the selection of intem1pt vectors.

Using configure

Before configure can be run, you need to know an unused major dev
ice nuiD.ber for your devic:;e, the vector or vectors on _which' your device
interrupts, and the list of routines in your driver that must be added to
the configuration tables.

The configure utility enforces the rules that all routines in the driver
begin with a common prefix and that the prefix be between 2 and 4
letters long. If your driver prefix is incorrect or inconsistent� change
it.

8-68

W citing Device Drivers

Please read conligure(C) and Using th£ Link Kit, a chapter in the
XENIX User's Guide. Using the Link Kit contains a detailed descrip
tion of how to create a configure command line from a driver binary.
Authors of drivers have an advantage in that they do not have to dis
cover the names of the routines; the names that must be presented to
configure are those chosen for the routines that have so far been
descnbed� such as the name of a character driver's write routine.
Maintain a backup copy of the master and xenixconf files while learning
to use configure: if yon niake a miStake you can restore the old files:

.

Also note that configure requires that block drivers have a mb struc
ture, and indeed, the vast majority of block drivers do. If you are
writing a non-interrupting block driver, simply declare a struct iobuf
xxtab within your driver.

8.8.3 Linking The Kernel

Your link Kit contains a makefile for linking the kernel. The reference
to the new driver should be placed in this file on the Id command line
prior to any of the object library references (the pairs of options of the
form ·l lib..JCXX), and folinwing all other object file references. That is,
your object file must follow KMseg.o, oemsup.o, c.o, and any other
files already on the command line.

For binary distribution, also edit the tile conflliJtk...;cenix to link the
new driver in with the kernel. Here too, place the reference to the new
driver on the ld command line prior to any of the object hbrary refer
ences and following all other object file references.

For preconfigured drivers, the ld command will find the actual driver
first and thus stop looking for it in the libraries, which contain the null
routines that are normally linked in.

To link your driver, enter:

make

link...xenix is what the end user uses to link your driver into. the kernel.
The end user may not have purchased the XENIX development system
and therefore may not have make(CP). However, ld(C) comes with
every system, and no special utility is required to run shell scripts.

Once you have a new XENIX kernel, back up the old one, by typing
these or similar commands:

cp .hrenix /xenix.new

8-69

C User's Guide

The new XENIX kernel must be in the I directory. Note that in some
versions, a kernel must be one of the first 64 entries in the I directory
for boot to find it.

8.9 Driver Debugging

The following sections contain information on getting a driver to rnn ,
and what to look for if it doesn't.

8.9.1 Booting the New Kernel

Halt your system by entering:

I etc/haltsys

You see the u** Normal System Shutdown "'*" message. Press return
to see the boot prompt:

Boot

If you press RETURN, or simply do nothing, the defanlt operating sys
tem image is loaded and started. In order for the bootstrap program
to locate and load any newly installed device drivers, it must be told to
read the lxenix.new file, which contains the kernel that includes the
device driver. To boot the new kernel, enter, at the boot prompt:

xenix.new

The system will boot up with the "new" kernel.

8.9.2 General Debugging Hints

Debugging a device driver is more an art than a science. This section
touches on some of the more useful techniques to try if your driver
isn't working.

1. Make sure that you are actually talking to your driver.

If you get errors such as "no such device" (ENODEV) when you
try to access your driver, you might have a problem with either the
device node itself, or with your driver conliguration, as spelled out
in the Link Kit conliguration file c. c.

Check your major device number correspondence. Make sure that
the major device number and type of the device node you are trying
to access corresponds with the appropriate line in the ...bdevsw or

8-70

Writing Device Drivers

_t:devsw array in c.asm. For example, you might have written a new
printer driver, whose major device number is 6, whose name is
upa"� and whose type is Hcharacter"�

First, check the device node, to make sure that /dev/pa is a charac
ter special device, whose Is -I listing is along the following lines:

crw-rw-rw- 1 root 6, 0 Apr 29 19:56 /dev/pa

Then, check c.asm, to make sure that there is a set of functions in
the _t:devsw table that have the "pa" prefix. The line will contain
something like:

DW $CFG_C6
DD ..paopen
DD _paclose
D D .Jlulldev
DD ...pawrite
DD _paioctl
DW OOH
DW OOH

The parallel driver has only the routines paopen, paclose, pawrite
and paioctl as part of the _t:devsw table. Other drivers might have
read, Jlf, or in the future, stream entries.

Also check the constants _t:devcnt and_cdevmax, (..bdevcnt
and..bdevmax for a block driver) to make sure they are at least 1
greater than the major number of your driver.

If this correspondence does not hold, revert b ack to the older mas
ter and xenixconf files and rerun configure.

2. Make sure your device registers are where you think they ere.

The effect of accessing a nonexistent port address varies from
machine to machine, but, for example, on the IBM XT or AT you
can read values using inb() from nonexistent hardware and receive
no error code, just a random value.

Since at least some of the I/0 ports on most peripheral controllers
are both read and write, you shonld make sure you can write lo one
of your device's registers using outb(), then read back the value
you've written using inb(). Even when none of the registers are
read/write, as is true on some mouse controllers, you can at least
read from one of the status registers using inb(), and make sure
that the result is reasonable"

8-71

C User's Guide

3. Work towards getting simple J/0 from the driver first, complex J/0
later.

Character devices are usually easier to write to than to read from.
For a serial or a printer driver, your first test will probably be to
echo "bello, world" to the device, or something equally simple and
traditional.

Block devices are generally easier to read from than to write to,
sioce you have to read back the block you've written to know if
you've written it succesafully. Many block devk;es have a "get drive
parameters, command, or something similar� which is even more
basic than either reading or writing.

4. Use kernel print[() statements for debugging.

Although you shouldn't overuse print/() (in a finished driver,
print[() should only be nsed for unrecoverable errors), it can be an
invaluable debugging tooL Coupled with #ifdef DEBUGs and a glo
bal "debug level" flag, you can tailor the verbosity of your debug
output to the situation at hand.

For example, you may have two debug levels:

#ifdef DEBUG
if (mydebugflg > 0)
printf("got to myope.nQ\n");

if (mydebugflg> 2)
printf(.. open parameters: dev-%x, flag-%x bc=%x"',dev,fla�bc);

#endif

There are occasional situations where a print/() can change peri
pheral timing enough to make a difference, but these cases are
fairly rare.

S. Use getchar() to stop kernel output and to set debug levels.

Kernel getchar() is similar, though not quite the same, as the stan
dard J/0 library routine of the same name. Kernel getchar()
returns a single character from the keyboard. The character is
automatically echoed. The ouly other processing done on this char
acter is to map RETURN to RETURN/LINE FEED on output.
When you have many lines of kernel print/() output, inserting
getchar() statements into your driver is one of the better ways to
regulate the print/() output flow.

A second use of getchar is to set the level of debugging. For exam
ple, in the example above, you could place two lines of code such
as:

8-72

mydebugflg - getchar();
mydebugflg -= '0';

Writing Device Drivers

shortly after the beginning of the open routine, to set the current
value of mydebugflg to anywhere between 0 and 9.

Note that getchar() may not work at interrupt time for interrupt
routines of certain-priorities.

6. Poll before you use interrupts.

Often the hardest driver routine to get right is the interrupt routine.
You can ease this proce'IS along a bit by first writing a polled driver:
one that busy-waits until the request you made has completed, and
then returns status. However, do not leave any busy-wait loops in
the finished driver!

Polled drivers are best first approximations for block devices such
as disks. For serial drivers, a polled interface may help you decide
how to write to the device. However, be forewarned that perform
ing polled reads will make the system unusably slow.

7. Use sp/{5,7}() as a debugging aid.
Sometimes, a driver can be difficult to debug because higher prior
ity interrupts get in the way. A call to spl7() will shield you from
any interruptions by the other devices on the system.

8. Be patient.

Drivers are complex. So much so, that writing a 300-tine device
driver takes even an experienced driver-writer several times longer
than a utility program of the same length. Don't worry if your
driver takes a while to perfect.

8.9.3 Vector Collision Considerations

When designing a device driver to work with XENIX, care should be
taken in the selection of the hardware interrupt vector. This is because
of the possibility of conflict between device drivers over intermpt vec
tor usage.

8086-based XENIX systems use only one 8259 programmable intermpt
controller. Of the 8 vectors available, only vector 2 (bns lead IRQ2) is
not cll!Tently used. It is appropriate for devices whose drivers are writ
ten using spl5().

80286-based XENIX systems use 2 8259 programmable interrupt con
trollers. The mapped kernel CU!Tently leaves only vectors 9-12 and 15

8-73

C User's Guide

(bus leads 1RQ9-12 and IRQ15) unused. These vectors are also safe
to use for devices whose drivers are written using spl5().

lf it is necessary to use one of the other vectors� there are two
configuration alternatives:

1. Replace the device driver already using the vector.

2. Provide a special-purpose interrupt handler that "knows" that the
vector is shared and takes appropriate precautions.

The first alternative is recommended, but is not always possible.
There are problems with the second alternative, because there is no
way to prevent the loss of interrupts which can occur when competing
with an arbitrary device.

The problem is that tbe 8259 interrupt controller detects an interrupt
request only when the request line changes state from off to on (called
edge-triggered mode). If all sourees for the interrupt request line are
not off at the same time after entry to the interrupt service routine, no
further rising edge on the request signal is detected, and so no more
interrupts are seen on that vector until all the sources for the interrupt
request line are turned off. The state of the interrupt request line can
not be determined directly from the interrupt controller chip, so the
determination must be made by device-specific means for all devices
sharing the vector.

However, cohabitation is possible for those devices that interrupt only
following a request from the CPU. Disk drivers, tape drivers, and
other such devices can "time out", using the timeout() function, when
waiting for a response to a request, and, upon time out, examine the
device to determine if the operation is complete. This approach saves
your driver from lost interrupts, but the device with which you share a
vector is only immune if it is written using timeout() Ill! well.

This approach is far from practical for use with devices such as serial
communication lines, which can cause interrupt-, at any time, out of
the control of the system using tbe device. The granularity of control
avrulable with timeout() is far too slow for all but the slowest of com
munication lines (approximately 110 to 200 b aud).

This does not mean, however, that each serial line requires its own
interrupt vector. Some serial boards provide enough pollable state
information to allow the serial interrupt routine to loop until none of
its controlled devices is posling an interrupt. In this example, the key
is that a single interrupt routine controls all of the multiple devices on
a single vector.

8-74

Writing Device Drivers

8.9.4 Note on ps

If you change to an alternate name for your kernel, such as xenix.new,
ps(C) does not work correctly unless you specify the • n !lag and the
pathname of the XENIX kernel you are using.

See ps(C) in the XENIX Reference for more information.

8.10 Notes On Preparing a Driver for Binary Distribution

8.10.1 Naming Guidelines

The 2-4 letter name that prefixes all of your driver's routines should
describe what kind of a driver it is, as best as is possible in such lim·
ited space. For example, the current serial I/0 driver uses routines
beginning with ''sio". and the parallel driver uses routines beginning
with apaH.

Preconfigured drivers have bad their names reserved in advance. If
you are writing a driver for a device that a user might have more than
one of, such as an add-on hard disk driver, you might want to be a bit
more obscure to prevent later naming conflict� For example, the
driver for a TechnoBabble hard disk might begin its routines with the
prefix "tb hd".

8.10.2 Style Issues for User Prompting

Most currently configured XENIX devices print out a short message in
their initialization routines to notify the user that they are installed.
This message must be terse. All the extra driverS that a user could
possibly want, combined, should not generate enough messages to
scroll the boot-up copyright message off the screen.

For example, this is an appropriate message:

2 phasetS, 4 photon torpedoes

i 8.10.3 Insulating DriverS Against Configurallon Changes

Do not write a driver that reties on particular configuration parameters,
for example a certain major device number or interrupt vector. Avoid
ing such "hardcoded" assumptions helps prevent collisions with other
drivers, and insulates the driver from system configuration changes.

8-75

C User's Guide

Drivers should not, and do not need to be aware of their own major
device number. In System V, a driver's major device number is no
longer passed to it as a parameter.

Very few drivers have ever needed to know this information, but those
that did fell into two categories: drivers performing some form of phy
sical I/0 that used the major device number to determine the type of
I/0, and block device drivers that needed to know if the device they
controlled was the root or the swap device.

Drivers doing physical I/0 now differentiate it either by using the
block/character parameter of the combined open routine, or by mark
ing the transfer in the b_dev field of the transfer's buffer. Drivers
needing to know if they are the root device can find out using the fol
lowing or something similar:

#include " • . lh/conf.h"

extern struct bdevsw bdevsw[];

if (bdevsw[major(rootdev)].<Lopen - xxopen) {
printf("the xx driver is the root device\n");

}

Drivers also should not and do not need to know the vector on which
they interrupt. The underlying hardware determines the vectors on
which a device is capable of interrupting. When the hardware is only
capable of interrupting on one vector, there is little a driver writer can
do beyond the timeout schemes discussed in section 8.9.3. If the vec
tor is coufigurable on the card, some cards allow you to query the vec
tor number directly. An unused vector has a vecintsw[] entry of novec.

Preconfigured drivers can simply check to see if someone else has
already claimed that Ve;>tor. Other drivers shonld encourage users to
reconfigure when interrupts appear to get lost.

Using configurable port addresses poses similar issues. Like an
advisory locking scheme, two drivers should usually be able to mitigate
the port addresses and interrupt vectors between them, but a poorly
written driver can cause problems for the whole system, sometimes
making it look like some other driver is at fanlt.

8-76

Writing Device Drivers

8.10.4 Preparing a Driver for Installation Using custom

The best thing you can do for the end user is to supply a driver instal
lation shell script for use with custom(C). With such a script, a user
has only to type custom and select options from the menus.

The custom utility extracts the contents of your driver installation
floppy, using them to control .the. custom installation procedure. cus ..
tom requires the presence of the following:

• On each floppy volume, a magic product identification file whose
name is derived from the driver package name, the volume, and a
machine identification string

• The object module containing your device driver
• A permlist, or a file containing the file permissions for the other

files and what volumes aud packages they belong to.
• The driver installation shell script that forms the table entries

binding driver and kernel.

All files on the driver installation floppy should be given by relative
pathname, starting at the root. For example, if /bin/Is were on the
floppy, its name on the floppy should be . /bin/Is .

The magic file has a name of the following form:

./tmpUbl/prd-sidd/typ-286A T /rel-1.0. 0/vol-01

where sidd is the driver's prefix (in this case, it stands for Sample
Installable Device Driver), and 286AT is a machine-type specifier. To
find the type specifier for your machine check the file /etc/perms/inst
on your system. If you are developing for a different system, check the
/etclperms/inst file on that system for the type identifier for that
machine.

In the above example, 1.0.0 is the software release number of the
driver, and 01 is the volume number of the floppy containing the
driver. Note that there is no volume 0: volume numbers must start at
01 and be consecutive.

This file must exist on each volume of your driver installation set
(incrementing the volume number). It can be an empty file; its con
tents are ignored.

The permlist is a file containing a list of the files on the floppy, their
permissions, and their packages. It will be used by custom both as an
argument to [1Xperm(C) and to determine which driver files belong to
which package. This makes it easy for the user to install one driver in

8-77

C User's Guide

a driver suite containing many. The permlist must live in .ltmplperms.
Below is a sample permlist:

Copyright (C) The Santa Cruz Operation, 1985.
This Module contains Proprietary Information of
The Santa Cruz Operation, lVficrosoft Corporation
and AT&T, and should be treated as Confidential.

#prd=sidd
#typ-286AT
#rel=l.O.O
#set�"Sample Installable Device Driver"

User id's:

uidroot 0

Group id's:

gid root 0

#!SIDD 11 Sample Installable Device Driver

Fields are: package [d,f,x}mode, user/group, links, path, volume

SIDD
SIDD
SIDD

F644
F7SS
[644

root/root
root/root
root/root

1
1
1

./Imp/perms/ sidd

./tmp/init.sidd

./usr/syslconf/sidd.o

01
01
01

Some of the fields are self-explanatory and can be copied verbatim.
The prd, typ, rei, and set fields are comments to fixperm but are mean
ingful to custom. They must agree with the prd, typ, and rei entries in
the magic filename, above. The set field is used by custom when it
prompts for the users choice of packages to install.

Fields starting with '#!' are package specifiers. At least one must be
present so that custom has something to prompt for. The '11' in the
#!SIDD field above is the size, in 512 byte blocks, (as reported by
dn(C)) of all the files in the package. The comment following the size
is also used in driver prompting.

The final section contains the package specifier, file type and permis
sion, ownership, link count, file name and volume for each file on the
distnbution. The file type is d for directory, x for executable file, and

8-78

Writing Device Drivers

f for normal file. If the file type is capitalized, the file is optional, and
custom will not complain if it is missing. The files section is explained
in more detail in fixpcrm(C).

The driver installation shell script has the following duties:

• Check to see if the link kit is present, and install it if it isn't.
• Add the·new driver entry·points to the kernel using configure
• Edit the name of the new driver into the shell script link..J<entx
• Run link..J<enix to link the kernel
• Make the device nodes in ldev.
• Run the shell script hdinstall, which backs up the old xentx, and

puts your new xeni.x in its place.

Here is a sample installation shell script for the aforementioned Sam
ple Tnstallable Device Driver. It must be extracted into ltmp, and bave
a name that starts with ''init."

Copyright (C) The Santa Cruz Operation, 1985, 1986.
This Module contains Proprietary Information of
The Santa Cruz Operation, Microsoft Corporation

Driver initialization script

PATH-/bin:/usr/bin:/etc

cd I

I # Get the permlist for the set containing the link kit package. r------.... oLLink.-Kit-Re!ease.2.0JS-found in the "base" set; link kit release
2.1 and 2.2 is found in the "inst" set. !
if [-f /etc/base. perms]; then

PERM=/etc/base.perms
elif [-f /etc/inst.perms]; then

PERM=/etc/inst.perms
else

echo "Cannot locate /etc/base. perms or /etc/inst.perms" >&2
exit 1

fi

test tc see if link kit is installed
until fixperm -i -d LlNK $PERM
do case $? in

4) echo 'The Link Kit is not installed." >&2 ;;
5) echo 'The Link Kit is only partially installed." >&2;;
*) echo "Error testing for Link Kit. Exiting."; exit 1;;
esac

8-79

C User's Guide

Not fully installed. Do so here
while echo "Do you wish to install it now? (y/n) \c"
do read ANSWER

case $ANSWER in
Yl y) custom -o -i LINK

break

Nl �) echo "Drivers cannot be installed without the Link Kit."
exit 1

*) ��ho 'Tlease answer 'y' or 'n'. \c"
"

esac
done

done

echo uadding device entry points"

cd /usr/sys/conf

if the 'sidd' driver is present in the "master" file, "configure -j sidd"
prints its major device number and returns 0. if the driver
is not present in "master'', "configure -j sidd" prints an error and
returns 1

configure -j NEXTMAJOR returns the smallest available major
device number.

configure -m $major ... adds the given device entry points to
xenix.

if major='eonfigure -j sidd'
then

echo "Device entry points already configured"
else

fi

major='configure -j NEXTMAJOR'
configure -m $major -b -a siddopen siddclose siddstrategy siddtab Jl {

echo "Cannot add device entry points to XENIX"
exit 1

}

echo "adding sample driver to link line"

grep -s sidd.o link...xenix > /dev/null II {
add sidd.o to link line

8-80

cp link...xenix link...xenix.OO II {
echo "Cannot copy link...xenix" >&2
exit 1

}

Writing Device Drivers

}

trap 11mv link_xenix.OO linkJenix; exit 1" 1 2 3 15
sed "s!c.o!& sidd.o!" link....xenix.OO > Jink....xenix II {

echo 11Cannot edit linkJenix" >&2
mv link....xenix.OO link....xenix
exit 1

}
trap 1 2 3 15
chmod 700 link....xenix

echo '\nRc-linking the kernel . . . \c"
if link_x:enix; then

hdinstall
echo '\ninstallable Device Driver im1allation complete.\n"

else
echo '\nLink failed, you will have to re-link the kemel\n"

fi

make sample device nodes
/etc/mknod /dev/siddOO b $major 0
/etc/mknod /dev/siddOl b $major 1

exit O

To summarize, the custom-installab!e driver installation floppy must
contain a .permlist, a magic product identification file, the object
module (extract into /usr/sys/conf), and the driver initialization script.
Like all custom-installable floppies, a driver installation floppy is oth
erwise a normal tar volume.

-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rwxrwxr-x 1 root

0 Dec 9 08:46 ./tmp/Jbl/prd-sidd/typ-286AT/rel-1.0.0/vol..01
669 Dec lO 20:15 ./tmp/perrns/sidd

6157 Dec W 18:$�·./usr/sys/confsidd.o
2097 Dec 10 20:14 ./tmp/init.sidd

8-81

C User's Guide

8.11 Warnings

The following warnings can help you avoid problems when writing a
device driver:

• Do not defer interrupts with spl5() or other spl calls any longer
than necessary.

• Do not change the per process data in the u structure at interrupt
time.

• Do not call seterror() or sleep() at interrupt time.

• Do not set your priority level at interrupt time to a lower priority
than the one at which your interrupt routine was called.

• Make interrupt time processing as short as possible.

• Protect buffer and clist processing with the appropriate spl calls.

• Avoid "busy waiting" whenever possible.

• Never use floating point arithmetic operations in device driver
code.

• If any assembly language device driver sets the direction fiag (using
std), it must clear it (using cld) before returning.

• Keep the local (stack) data requirements for your driver very
small.

8-82

Chapter 9

Sample Device Drivers

9.1 Introduction 9-1

9.2 San1ple Device DrlverforLine Printer 9-2

9.3 SampleDeviceDrlverforTerminal 9-6

9.4 Sample Device Driver for Disk Drive 9-21

9.5 Memory··MappedVideo Drlver 9-29

Sample Device Drivers

9.1 Introduction

This chapter provides sample device driver code for a lineprinter, termi
nal, hard disk drive, and a memory-mapped video driver. Each segment
of code (usually about 50 lines) is followed by some general comments,
which describe the routines used and explain key lines in the program.
These key lines are identified by line numbers.

9-1

C User's Guide

9.2 SampleDeviceDrlverforLlnePrinter

1 1•
2 •• tp-prototype line printer driver
3 *I
4 #include " ,,/h/types.h"
5 #hi elude" . .lhlparam.h"
6 #include " . . lh/sysmacros.h"
7 #include" .. !h/file.h"
8 #hlclude" . ./bltty.b"
9 #include" .. /h/conf.h"
10
11 #de!ineL!'I?RI PZER0+5
12 #define LQWAT 50
13 #defineffiWAT 150
14
15 I* register definitions*/
16
17 #defineRBASE OxOO /*baseaddressofregisters */
18 #de!ine RDATA {RBASE+O) /*plaeecharacter here '/
19 #de!ineRSTATUS (RBASE +1) /•nonzeromea.nsbusy'/
20 #de!ineRCNfRL (RBASE+ 2) l' wrltecontrolhere'/
21
22 J• control definitions*/
23 #de!ine CINIT fu.1J1
24 #de!ine C!ENABL Ox02
25 #de!ine CRESET Ox04
26
27 /* flags definitions*/
28 #define FIRST 0x01
29 #de!ine ASLEEP Ox02
30 #define ACTIVE Ox04
31
32 structclistlp_queue;
33 int lp.J]ags-0;
34

I* initialize the interface "'I
1* Interrupt enable"' I
1 • interface reset • I

35 in!lpopen(), lpclose(), lpwrlte(), lpintr();
35
'3/ lpnpen(dev)
38 intdev;
39 {
40
41
42

if ((lp_llags & FIRST) -0) {
lp_llags 1-FIRST;
outb(RCNfRL, CRESET);

43 }
44
45 }

outb(RCNfRL, CIENABL);

46
47 lpclose(dev)

9-2

48 intdev;

59 {
50 }

Sample Device Drivers

Description of Device Driver for Line Printer

The device driver presented here is for a single parallel interface to a
printer. It transfers characters one at a time, buffering the output from the
user process through the use of character blocks { cblocks).

12:

13:

14:

18-21:

29-31:

33:

34:

LPPRI is the priority at which a process sleeps when
it needs to stop. Since the priority is greater than
PZERO, a signal sent to the suspended process will
awaken it.

LOW AT is the minimum number of characters in
the buffer. If there are fewer than LOWA T charac
ters in the buffer, a process that was suspended
{because the buffer was full) can be restarted.

HIW AT is the maximum number of characters in the
queue. If a process fills the buffer up to this point, it
will be suspended via sleep() until the buffer has
drained below LOW AT.

The device registers in this interface occupy a con
tiguous block of address, starting at RBASE, and
running through RBASE+2. The data to be printed
is placed in RDATA, one character at a time.
Printer status can be read from RSTATUS, and the
interface can be configured by writing into
RCNTRL.

The flags defined in these lines are kept in thelp_flags
variable. FIRST is set if tbe interface has been ini
tialized. ASLEEP is set if a process is asleep waiting
for the buffer to drain below LOW AT. ACTIVE is
set if the printer is active.

/p...Jlueue is the head of the linked Jist of cblocks that
forms the output buffer.

lp..flags is the variable in which the aforementioned
!lags are kept.

!pop en() - lines 38 to 47

The lpopen() routine is called when some process makes an open(S) sys ..

tem call on the special file that represents this driver. Its single argument,

9-3

C User's Guide

dev, represents the minor number of the device. Since this driver supports
only one device� the minor number is ignored.

41-43:

45:

lf this is the first time (since XENIXwasbooted) that
the device has been touched, the interface is initial
ized by setting the CRESET bit in the control regis
ter.

Interrupts from this device are enabled by setting the
ClENABL bit in the control register.

lpclose() . lines 48 to 51

The lpc/ose() routine is called on the last close of the device; that is, when
the current close(S) system call results in zero processes referencing the
device. No action is taken.

52 lpwrite(dev)
53 int dev;
54 {
55 registerintc;
56 int:x:;
51
58
59
60
61
62
63
64
65
66
67
68
(;f)
70
71 }
72

whlle((c-cpass()) >-0) {
x-sp15();
whlle(lp_queue.c_cc > HIWAT){

lpstart();
lp_i!ags 1- ASLEEP;
sleep(&lp_queue, LPPRI);

}
splx(x);
putc(c� &lp_queue);

}
x�spl5();
lpstart();
splx(x);

7:l lpstart()
74 {
15
76
77
78
79 }
80

if (lp...llags&ACTIVE)
retum; t• interrupt chain is keeping printer going */

lp...llags 1-ACTIVE;
lpiutr(O);

81
82 1pintr(vec)
83 iotvec;
84 {

9-4

Sample Device Drivers

S5 initmp;
86

1>1 if ((lpJlags & ACTIVE) -0)
88 return; t• ignore spurious intemtpt •t
f§)
90 /*passcharsuntilbusy*/
91 whlle (inb(RSTATUS)-O&&(tmp-getc(&lp_queue)) >-0)
92 . outb(RDATA, tmp);
93
94 /*wakeup the writerifnecessary•/
95 if(lp_queue.c_ec <LOW AT &&lp_flags&ASLEEP) {
96 lp_fiags&--ASLEEP;
97 wakeup(&lp_queue);
98 }
99
100 /*wakeupwriter ifwaitingfordr.aln */
101 if(Ip_queue.c_cc <-0)
102 lp_llags&='ACTIVE;
103 }
104

lpwrite () • lines 52 to 72

The lpwrite() routine is called to move the data from the user process to the
output buffer. Code is defined as follows:

58:

59-66:

68-70:

While there are still characters to be transferred, do
whatfollows.

Raise the processor priority so the interrupt routine
can't change the buffer. If the buffer is full, make
sure the printer is running, note that the process is
waiting, and put it to sleep. When the process wakes
up, check to make sure the buffer has enough space,
then go back to the old priority and put the character
in the buffer.

Make sure the printer is running, by locking out
interrupts and callinglpstart().

Ips tart() . lines 73 to 81

The lpstart() routine ensures that the printer is running. It is called twice
from lpwrite(), and serves simply to avoid duplicate code. Code is defined
as follows:

9-5

C User's Guide

78-79: If the printeris running, just return; otherwise, mark
it ACfiVE, and call lpintr() to start the transfer of
characters.

lpintr() - lines 82 to 104

The lpintr() routine is called from two places: lpstmt(), and from the ker
nel interrupt handling sequence when a device interrupt occurs. Code is
defined as follows:

87-88: If lpintr() is called llllexpectedly, or the driver
doesn't have anything to do, it just returns.

91-92: While the printer indicates it can take more charac
ters aod the driver has characters to give it, the char
acters come from the buffer throughgetc(), and pass
to the interface by writing to the data register.

95-97: If the buffer has fewer than LOW AT characters in it,
and some process is asleep waiting for room, wake it
up.

101-102: If the quene is empty, turn off the ACfiVE flag.
Note that the interrupt that completes the traosfer
and empties the buffer is in some sense "spurious,"
since it will occurwith the ACTIVEflagreset.

9.3 Sample Device DriverforTenninal

1 1*
2 ** td- terminal device driver
3 .,
4 #include " . • !h/types.h"
5 #include" ,,/h/pa:ram.h"
6 #include " • • lb/sysmacros.h"
7 #include " . . lb/dir.h"
8 #include" ,./h/use:r.h"
9 #include" . ./hlfile.h"
10 #include " . .lh/tty.h"
11 #include" . ./h/conf.h"
12
13 /* registers */
14 #de:fine RRDATA ()x01 /•received data*}
15 #define R1DATA ()x()2 /*transmitted data 'I
16 #define RSTA TUS Ox03 1• status • I
17 #defineRCNTRL Ox04 /• control*/
18 #define RIENABL Ox05 I* interrupt enable */
19 #define RSPEED Ox06 /*da.tarate*/
20 #define RIIR OxOi I* interrupt identification •J

9-6

(

Sample Device Drivers

21 #define RENABL OxOS /* interrupt eontroJ *I
22 #defineRLSR Ox09 I•Hne statu.sregister */
23 #dcfineRTH:R OxOa l*transmitholdiogregister */
24
25 1* statusregisterbits*/
26 #defineSRRDY Ox01 /*receiveddataready•/
27 #defineSTRDY Ox02 /*transmitterready*/
28 #define SO ERR Ox04 1• received data-overrun*/·
29 #define SPERR Ox08 /*received data parity error *I
30 #defineSPERR OxlO /*received dataframingerror*/
31 #defineSDSR Ox20 /* statusofdsr(cd)*/
32 #define scrs Ox40 /* status of clear to send * I
33
34 /*control register */
35 #define CBITSS OxOO 1• five bit chars */
36 #defineCBITS6 0x01 /* sixbitchars */
37 #define CBITS7 � I* seven bit chars •!
38 #defineCBITSS Ox03 /*eightbitcllars*/
39 #define CDTR 0104 !• data terminal ready •I
4(} #define CR TS OxOB t• request to send */
41 #deftneCSTOP2 Ox10 /*two stop bits*/
42 #defineCPARITY Ox20 /* parityon*/
43 #defineCEVEN Ox40 /* evenparltyotherwiseodd*/
44 #defineCBREAK Dx80 /* setxmittertospace*/
45
46 t• interrupt enable*/
47 #dcfineEXMIT 0x01 /* transmitterready */
48 #defineERECV Ox02 /*receiver ready*/
49 #define EMS Ox04 /•modemstatuschange*/
50
51 /* interrn:pt identification •1
52 #define IRECV OxOl
53 #define IXMIT Ox02
54 #define IMS Ox04
55
56 #define NTDEVS 2
57 #define VECI'O 34
58 #define VECf1 35
59
60 #define TURNOFF 0
61 #defineTURNON 1
62

Descrlptinn ofDevlce DrlverfnrTenninal

This driver supports one serial terminal on a hypothetical UART type
interface.

9-7

C User's Guide

12-18:

33-42:

45-47:

50-52:

63 !• datarates*J

The interface for each line consists of ten registers.
The values that would b e defined here represent
offsets from the base address, which is defined in line
84. The base address differs for each line. The data
to be transmitted is placed one character at a time
into the RTDATA register. Likewise, the received
data is read one character at a time from the
RRDATA register.

You can determine the status of the UART by exa
mining the contents of the RSTATUS register.
Then you can adjust the UART configuration by
changing the contents of the RCNTRL register.
Interrupts are enabled or disabled by setting the bits
in the RIENABL register. The data rate is set by
changing the contents of the RSPEED register.
Interrupts are identified by setting the bits in the
RllR register.

The two low order bits of the "control register"
determine the length of the character sent. The next
two bits control the data-terminal-ready and
request-to-send lines of the interface. The next bit
controls the number of stop bits, the next controls
whether parity is generated, and the next controls
whether generated parity is even or odd. Finally, the
most significant bit, if it is set, forces the transmitter
to continuous spacing.

The three low order bits of the "interrupt enable"
register control whether the device generates inter
rupts under certain conditions. If bit 0 is set, an
interrupt is generated every time the transmitter
becomes ready for another character. If bit 1 is set,
an interrupt is generated every time a character is
received. If bit 2 is set, an interrupt is generated
every time the data-set-ready line changes state.

After an interrupt, the value in the interrupt
identification register will contain one of three
values, indicating the reason for the interrupt.

64 intt<Lspeeds[] � {
65 I'BO 'I o,
66 !• B50 '/ 2304,
67 ,. B75 ., 1536,
68 /"� BllO •1 1047,
Iii I'B134 'I 857,
70 /*BlSO *I 768,
71 /*B200 *I 0,

72 /* B300 */ 3841

9-8

(-�

Sample Device Drlver:s

73 ,. Bfffi ., 192,
74 /*B1200•/ 96,
75 /*B1800 */ 64,
76 1• B2400 *I 48,
77 /*B4800*/ 24,
18 I* B9(:JJQ */ 12,
79 /• EXTA */ 6, /*19,2kbps*/
BO /*EXTB *1- 58 /*2000bps*/
81 } ;
82
83 structtrytd_tryfNTDEVS];
84 inttd_addr[NTDEVS] ={ OxOO, OxlO};
85
86
87 tdopen(dev,!lag)
88 int dev, flag;
89 {

91
92

90 register struc:t tty •tp;
int addr;
inttdproc();

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
1)2
113

intx;

if (UNMODE�(dev) >-NTDEVS) {
seterror(E!>."'XIO);
return;

}
tp = &td_try(UNMODEM(dev)];
addr-td_addr[UNMODEM(dev)];
if((tp->Uflag&XCLUDE) && !suser()) {

seterror(EBCSY);
return;

}
if((tp->Lst>te&(ISOPENJWOPEN)) -=0){

ttinit(tp);
tp->Lproc=tdproc;
tp·>t_oflag=OPOSTjoNLCR;
tp·>Uflag•ISTRIPjiXON;
tp·>Ullag•ECHOjrCANONj!SrGJECHOEjECHOK;
tdparam(dev);

}
x- sp15();

114
115

if(ISMODEM(dev) Jltp->t_ellag&CLOCAL II tdmodem(dev, TlJJlliON))
tp->t_state I=CARR...ON;

116 else
117

64-80:

tp->Lstate&= "CARR_ ON;

These lines define the values to be loaded into the
RSPEED registerin order to get various data rates.

9-9

C User's Guide

83:
84:

Each line must have a tty structure allocated for it.

Here, the base addresses of the registers are defined
for each line.

tdopen() - lines 87 to 126

The tdopen() routine is called whenever a process makes an open(S) sys
tem call on the special file corresponding to this driver. Code is defined as
follows:

95-98: If the minor number indicates a device that doesn't
exist� indicate the error, and return.

101-104: If the line is already open for exclusive use, and the
current u.ser is not the super-user, indicate the error
and return.

105-112: If the line is not already open, initialize the tty strnc
ture via a call to ttinit(), set the value of the proc field
in the tty structure, initialize the input and output
mode ftags, and configure the line by calling
tdparam(). Note that the ftags are initialized so that
the terminal will behave in a reasonable manner if
used as the console in single-user mode.

113: Defer interrupts so the interrupt routines cannot
change the state while it is being examined.

114-117: If the line is not using modem control, or if it is not
turning on the data-terminal-ready and request-to
send signals (which results in carrier-detect being
asserted by the remote device), indicate that the car
rier signal is present on this line. Otherwise, indicate
that there is no carrier signal.

118
119
120
121

if (l(flag&FNDELA Y))
while ((tp· >Lstate&CARR._ON)-<1) {

tp->Lstale 1� WOPEN;
sleep((caddr_t)&tp->Lcanq, 'ITIPRl);

122 }
:123 ("linesw[tp->Uioe].Lopen)(tp);
124 splx(x);
125 }
126
127 tdclose(dev)
128 {
129 register struct tty -rp;
!30
131
132
133

9-10

tp- &td_tty[UNMODEM(dev)];
(01inesw[tp->Uine].Lclose)(tp);
if (tp->t..cflag& HUPCL)

�
I .

·�

Sample Device Drivers

134
135
136
137
138 }
139

tdmodem(dev, TURNOFF);
tp->t.Jflag &= -xcLUDE; !•tum off exclusive use bit*/
/* tum offintermpts */
outb(td_addr[UNMODEM(dev)J + RIENABL, 0);

140 tdread(dev)
141 {
142 registerstructtty*tp;
143
144 tp -&td_tty[UNMODEM(dev)];
145 ('linesw[tp->Uine].Lread)(tp);
146 }
147
148 tdwrite{dev)
149 {
150 registerstructtty*tp;
151
152
153
154 }
155

tp-&td_tty[UNMODEM(dev)J;
('linesw[tp->Uine].L write)(tp);

156 tdparam(dev)
157 {
158
159
160
161

register int cflag;
registerintaddr;
registerinttemp, speed, x;

162 addr-td__addr[UNMODEM(dev)J;
163 cflag-td_tty[UNMODEM(dev)].Lcflag;
164
165 t• if speed is BO, tum line off *I
166 if((cflag&CBAUD) --BO){
167 outb(addr+ RCNIRL, inb(addr+RCNIRL) &TDTR& TRTS);
168 return;
169 }
170

118-122: H open(S) is supposed to wait for the carrier, wait
until the carrier is present.

123:

124:

Call the l_open() routine indirectly through the
linesw table. This completes the work required for
the current line discipline to open aline.

Allowfurtl1erinterrupts.

9-11

C User's Guide

tdclose() . Jines 127 to 138

The tdclose() routine is called on the last close on aline.

132:

133-134:

135:
137:

Call the dose(S) routine through the linesw table to
do the work required by the current line discipline.

If the "hang up on last close" bit is set, drop the
data-terminal-ready and request -to-send signals.

Reset the exclusive use bit.

To prevent spurious interrupts, disable all interrupts
for this line.

!dread() and tdwrite () • Jines 140 to lSS

Both of these routines simply call the relevant routine via the linesw table;
the called routine performs the appropriate action for the current line dis
cipline.

tdparam () • Jines 1S6 to 170

The tdparam() routine configures the line to the mode specified in the
appropriate tty structure.

162-163:

166-168:

Get the base address and llags for the referenced
line.

The speed BO means "hang up the line."

171 /*setupspeed */
172 outb(addr+ RSPEED, td..speeds[cflag&CBAUDD;
173
174 ;• setupline cootrol "'/
175 temprn(cflag&CSIZll)>>4;/'length •1
176 if (cflag & CSTOPB)
177 temp !rnCSTOP2;
178 if(cflag&PARENB) {
179 temp 1-CPAIUTY;
180 if((c:!lag&PARODD) -0)
181 temp f=CEVEN;
1l!2 }
183 temp f=CDTR !CRTS;
184 out(addr+ RCNTRL, temp);
185
186 I* setup interrupts'"/
187 temp -EXMIT;
lBS if (cflag & CREAD}
189 temp 1-ERECV;

9 - 12

Sample Device Drivers

190 outb(addr +RENABL, inb(RENABL) [temp);
191 }
192
193 tdmodem(dev, cmd)
194 intdev, cmd;
195 {
196 register int addr;
197
198 addr�td_addr[UNMODEM(dev)];
199 switch(cmd) {
200 case TIJRNON: t• enable modem interrupts, setDTR&RTS true •t
201 outb(addr+ RENABL, inb(RENABL) [EMS);
202 outb(addr+ RCNTRL, inb(RENABL) [CDTR fCRTS);
203 break;
204 case TURNOFF: /* disable modem interrupts, reset DTR, R TS *I
205 outb(addr+ RENABL, inb(RENABL) & ""EMS);
206 outb(addr+ RCNTRL, inb(RENABL) & "(CDTR [CRTS));
207 break:;
208 }
209 return (inb(addr+ RSTATUS) &SDSR);
210 }
211
212 tdintr(vec)
213 intvec;
214 {
215 registerintiir, dev, inter;
216
217 switch(vee) {
218 case VECTO:
219 dev=O;
220 break:;
221 case VECT1:
222 dev=1;
223 break:;
224 default:
225 printf("tdint: wrong channel interrupt (%x)\n", vee);
226 return;
'127 }

173: The remainder of the tdparam() routine simply
loads the device registers with the correct values.

tdmodem() . lines 1913 to 211

The tdmodem() routine controls the data-terminal-ready and request
to-send line signals. Its return value indicates whether data-set-ready sig
nal (carrier detect) is present for the line.

9-13

C User's Guide

200-200:

204-207:

209:

If I:11'Ui was TURNON, tum on modem interrupts,
and assert data-terminal-ready and request-to
send.

If I:11'Ui was TURNOFF, disable modem interrupts,
and drop data-terminal-ready andrequest-to-send.

Return a zero value if there is no data-set-ready on
this line .. otherwise return a non-zero value.

tdintr(} • lines 212 to 236

The tdintr(} routine determines which line caused the interrupt and the
reason for the interrupt, and calls the appropriate routine to handle the
interrupt.

217-227: Different lines will result in different interrupt vec
tors being passed as the tdintr() routine's argument.
Here, the minor number is determined from the
interrupt vee tor that was passed to tdintr().

228
229
230
231
232
233
234

while((Ur�inb(t<Ud<lr[dev]+RJIR)) 1�0) {
if((ilr&IXMIT) 1�o}

tdxint(dev);
if((ilr&IREC'V)!-0)

tdrint(dev};
if((ilr &IMS} !�O)

!dmlnt(dev);
235 }
236 }
237
238 tdxint(dev)
239 {
240
241
24Z

register st:ruct tty •tp;
registerint addr;

243 tp•&tiL!t}(UNMODEM(dev}];
244 addr= td_addr[UNMODEM(dev)];
245 Jf(inb(addr +RSTA'IUS)&STRDY}
Z46 {
247 tp->t..state&� 'BUSY;
248 if(tp->Lstate&TTXON){
249 outb(addr+ RTDATA, CST ART);
Z50 tp->Utate&=-TI'XON;
251 } else lf(tp->Lstate&TTXOFF) {
Z52 outb(addr+RTDATA,CSTOP};
Z53 tp->t_state&� -TTXOFF;
Z54 }else
Z55 tdproc(tp, T_OUTPUT);
256 }

9-14

\

257 }
258
259 tdrlnt(dev)
260 {
261
262
263
264
265

register int c. status;
register int addr;
register struct tty ll>tp;
inttlg;

266 tp=&td_tty[UNMODEM(dev)];
267 addr�td.J«ldr[IJNMODEM(dev)];
268
269 /*getcharand status */
270 c=inb(addr+RRDATA);
271 status=inb(addr+RLSR);
m

Sample Device Drivers

228-236: While the interrupt identification register indicates
that there are more interrupts, call the appropriate
routine. When the condition that caused the inter
rupt is resolved, the DART will reset the bit in the
register by itself.

tdxint() • lines 238 to 258

The tdxint() routine is called when a transmitter ready intermpt is
received. It may issue a CSTOP character to indicate that the device on the
other end must stop sending characters; it may issue a CST ART character
to indicate that the device on the other end may resume sending charac
ters, or it may call tdproc() to send the next character in the queue.

245-247:

248-250:

251-253:

254-255:

Ifthetransmitter is ready, reset the busy indicator.

If the line is to be restarted, send a CSTART, and
reset the indicator.

If the line is to be stopped, send a CSTOP, and reset
the character.

Otherwise, call tdproc() and ask it to send the next
character in the queue.

tdrint() - Jines 259 to 327

The tdrint() routine is called when a receiver interrupt is received. All it
has to do is pass the character, along with any errors, to the appropriate
routine via the lineswtable.

9-15

C User's Guide

270-271:

273 ,.

Get the character and status.

274 * We.retbereany errorson input?
275 •t
276 if(status & SO ERR) t• ovemm error*/
m c i= OVERRUN;
278 if(statu. &SPERR) /'parityerror'l
279 c F PERROR;
2llO if(statu. & SFERR) l'framingerror '/
281 c I= FRERROR;
282
283 if(tp->Ubuf.c_prr -NULL)
284 return;
285 flg=tp->Liflag;
286 if (flg&IXON) {
11!7 registerintetmp;
288 ctmp -c&0177;
289 if(tp->t..state &TTSTOP){
290 if(ctmp� CSTART II flg&IXANY)
291 ("tp->Lproc)(tp, T_RESL1ME);
292 }else{
293 if (ctmp - CSTOP)
294 ('tp- >t_.proc)(tp, T_SUSPEND);
295 }
296 if (-p- CST ART II ctmp =-CSTOP)
m return;
298 }
299 if(c&PERROR&& l(flg&INPCK))
300 c &-�OR;
301 if(c&(FRER.RORIPERRORIOVERRUN)){
302 lf((c&0377) ==0){
303 if (flg&IGNBRK)
304 return;
305 if (llg&BRKINf) {
306 ('linesw[tp->Lline].Unput)
307 (tp,L.JlREAK);
308 return;
309 }
310 } else{
311 if (flg&IGNP AR.)
312 return;
313 }
314 } else{
315 if (fig &IS TRIP)
316 c &=0177;
317 else{
318 c&-0377;
319 }
320 }

9-16

Sample Device Drivers

321
322
323
3211 }
325

•tp->t_rbuf.a_ptr"" c;
tp->l.J'buf.c_count--;
(•llnesw[tp-> Uine].Unput)(tp, L..BUF);

326 tdmlnt(dev)
327 {
328 · registerstructtty*tp;
329 registerintaddrlc;
330
331 tp- &td_tty(UNMODEM(dev)J;
332 lf(tp->t_cflag &CLOCAL) {
333 return;
334 }
335 addr-td_ad<lr[UNMODEM(dev)];
336
337 lf('mb(addr +RSTATUS) & SDSR) {
338 lf((tp->t_state&CARR._DN)-0) {
339 tp->Utatei-CARR....ON;
340 wakeup(&tp->uanq);
341 }
342 } else{
343 lf(tp->t_state& CARR....ON) {
344 lf(tp->t_state &ISOPEN) {
345 signa!(tp->t_pgrp, SIGHUP);
346 tdmodem(dev, TURNOFF);
347 ttyflusb(tp, (FREADjFWRITE));
348 }
349 tp->t_state&--CARILON;
350 }
351 }
352 }
353
354 tdioctl(dev, cmd, a:rg. mode)
355 intdev;
356 intcmd;
357 faddr_t arg;
35B int modej
359 {
360 if(ttiocom(&td_tty[UNMODEM(dev)], cmd, ""'' mode))
361 tdparam(dev);
362 }
363

277-2fl:2: JI any errors were detected, set the appropriate bit in
c.

286-322: This code detennines whether the character is XON
and if output is stopped, it restarts it. JI the character
is XOFF, output is suspended.

9-17

C User's Guide

323:

Further error checking is then carried out and char
acters in error are discarded. The character is then
placed in the queue.

And tinally, pass the character and errors to the
/..JIIput() routineforthe current tine discipline.

tdrnlnt() - lines 326-353

The tdmint() routine is called whenever a modem interrupt is caught.

332-333:

337-347:

342-349:

If there is no modem support for this line, just
return.

lf a data-set-ready is present for this line, and it
wasn't before, mark the line as having carrier, and
wake up any processes that are waiting for the carrier
before theirtdopen() call can be completed.

If no data-set-ready is present for this line, and one
existed before, send a hangup sigrull to all of the
proeesses associated with this line, call tdmodem()
to hang up the line, flush the output queue for this
line by calling ttyftush(), and mark the line as having
no carrier.

tdloctl() - lines 354-363

The td:ioctl() routine is called when some process makes an ioeti(S) system
call on a device associated with the driver. It just calls ttiocom() which
returns anon-zero valueifthe hardwaremustbe reconfigured.

364 tdproc(tp, cmd)
365 registerstructtty•tp;
366 {
367 registerintc;
368 register int addr;
369
370 extern ttrstrt();
371
372 addr-t<Laddr[tp -t<Ltty];
373 switch (em d) {
374
375
376
377

caseT_TIME:
tp->Lstate&--TIMEOUT;
outb(addr+ RCNIRL, inb(addr+ RCNIRL) & -CBREAJ.();

378 goto start;
379
380 caseLWFLUSH:
381 tp->Ltbuf.c_size -"" tp->Ubuf.c_count;

9-18

(- \

I

S�mple Device Drivers

382 tp-> t_tbul.c_count =0;
383 case T_RESU:ME:
384 tp->t_s!ate &� TrSTOP;
385 goto start;
386
387 caseLOUTPIJr:
388 start:
389 if(tp�>Utate&(TJMEOUT]ITSTOP]BUSY))
390 break;
391 {
392 register struct ccbloek •tbuf;
393
394 tbuf=&tp->t_tbuf;
395 if(tbuf->c_ptt�-m.;LL II
396 tbuf->c_count �- 0) {
397 if(!buf->c_ptt)
398 tbui->c_ptr --tbuf->c_si71!
399 -tbuf->c_count;
400 if(! (CPRES &
401 (*linesw[tp-> tJine].Loutput) (tp)))
402 break;
403 }
4()4 tp ->!_state F-BUSY;
405 outb(addr+ RTHR, •tbuf->c_ptr++);
4Q6 tbuf->c_count--;
4(f7 }
40B break;
409

tdproc() - lines 364fo 441

The tdproc() routine is called to effect some change on the output, such as
emitting the next character in the queue, or halting or restarting the output.

373:

375-378:

383-385:

The cmd a.rgmnent determines the action taken.

The time delay for outputting a break has finished.
Reset the flag that indicates there is a delay in pro
gress, and stop sending a continuous space. Then
restart output by jumping to start. A WFLUSH
command resets the character buffer pointers and
the count.

Either a line on which output was stopped is restart
ing, or someone is waiting for the output queue to
drain. Reset the flag indicating that output on this
tine is slopped, and start the output again by jumping
tostart(line388).

9-19

C User's Guide

391-407:

405-420:

Try to put out another character. If some delay is in
progress (TIMEOUT) or the line output has stopped
(TTSTOP) or a character is in the process of being
output (BUSY), just return.

This code manipulates the character queue in order
to output either a block of characters (by calling the
l...output() routine) or perform a single character
output operation (in this example via theoutb() rou
tine).

Note that if the device is capable of outputting more
than one character in a single operation then this
should be done, and the buffer pointer (c_ptr) and
the count (c..coum) should be adjusted appropri
ately.

410 caseT_SDSPEND:
411 1p->utate 1-TrSTOP;
412 break;
413
414 caseT...llLOCK:
415 1p->Lstare&•'TTXON;
416 1p->U;tate 1-TBLOCK;
417 if (tp->LStare&.BUSY)
418 tp->Utate I·TrXOFF;
419 else
420 outb{addr+ RTDATA, CSIDP);
421 break;
422
423
424
425
426
427
428
429
430

caseT_RFLUSli:
if(!{tp->Utate&TBLOCK))

break;
caseT_UNBLOCK:

1p->Utare &--(TTXOFFfi'BLOCK);
if (1p->LStare&BUSY)

1p->Utate FTl'XON;
else

431 outb{addr+RTDATA,CSTART);
432 break;
433
434 case T..BREAK:
435 outb(addr+RCNTRL, inb(addr+RCNTRL) ICBREAR);
436 tp->t_state f'TIMEOUT;
437 timeout(ttrstrt, tp, HZ/4);
438 break;
439 }
440 }
441

9-'20

Sample Device Drivers

410-412: To stop the output on this line, since there is no way
to stop the character we have already passed to the
controller, just flag the line stopped , and drop
through.

414-421: To tell the device on the other end to stop sending
characters, reset the flag asking to stop the line, and
mark the line stopped. If the line is already busy, set
thidlag; otherwise, output a CSTOPcharacter.

423-425: A process is waiting to flush the input queue. If the
device hasn't been blocked, just return. Otherwise,
drop through and unblock the device.

426-432: To tell the device on the other end to resume sending
characters, adjust the flags. If the controller is sen(l
ing a character, set the flag to send a CST ART later;
otherwise, send theCSTART now.

434-438: To send a break, set the transmitter to continuous
space, mark the line as waiting for a delay, and
schedule outputto be restarted later.

9.4 Sample Device Driver for Disk Drive

1 ,.
� •• hd- prototype hard disk driver
3 .,
4
5 #include " . . /hltypes.h"
6 #include " . ./h/param.h"
7 #include " . . /h/sysmacros.h"
S #include " . ./h/buf.h"
9 #include " . ./hliobuf.h"
10 #include " • . /h/dir.h"
11 #iuclude " . .!h/coJlf.h"
12
13
14 /*diskparameters*/
15 #define NHD 4 !•number ofdrives*/
16 #defineNPARTS 8 /•#partitions/disk*/
17 #defineNCPD 600 /* #cylinders/disk*/
18 #def'meNTPC 4 I* fftracks/cyllnder•t
19 #defineNSPl' 10 /*#sectors/track */
20 #define NllPS 512 /*#bytes/sector*/
21 #defmeNSPC (NSPl'•NTPC) /*sectors/cylinder*/
22 #deflneNSPB (BSIZE!NllPS) /* sectors/block*/
23 #define NllPC (NTPC*NSPTINSPB) /*blocks/cylinder*/
24

9-21

C User's Guide

25 I* addresses of contronerregiste:rs */
26 #defineRBASE Ox.OO /*baseofall registers*/
27 #defmeRCMD (RBASE+O) l' commandreglster•l
28 #define RSTAT (RBASE+2) f* status - nonzero means error */
29 #defineRCYL (RBASE+4) I* target cylinder 'I
30 #define RTRK (RBASE+6) 1• target tmck •1
31 #defineRSEC (RBASE+8) l• target sector'l
32 #defineRADDRL (RBASE+10) /"'targetmernory addresslol6bi.ts*/
33 #defineRADDRH (RBASE+ 12) /* target memory address hi 8 bits• I
34 #defineRCNT (RBASE+14) /*numberofseetorstoxfer*/
35 #defineRDRV (RBASE�16) /'drive selectregister'l
36
37 /*bitsin RCMD register•/
38 #defineCJUiAD OxOl /• startaread */
39 #defineCWRITE Ox02 /* start awrlte */
40 #define CRESET Ox03 /* reset the controller*/
41
42 ,.
43 """ minornumberlayoutisOtXIDdppp in binat}'
44 "'* whered is the driven umber and ppp is the partition
45 .,
46 #define drive(d) (minor(d) > > 3)
47 #define part(d) (minor(d) & Ox07)
48
49 /* partition table*/
50 structpartab {
51 daddr_tlen; /*#ofblocksin partition*/
52 int cyloff; /* startingcylinderofpartition */

53 };
54

Description ofDevice Driver for Disk Drive

The device driver presented here is for an intelligent controller that is
attached to one or more disk drives. The controller can handle multiple
sector transfers that cross track and cylinder boundaries.

15:

16:

17-23:

9-22

NHD defines the number of drives the controller can
be attached to.

NP ARTS defines the number of partitions which
can be configured on a single drive .

Each disk drive attached to the controller has NCPD
cylinders; each cylinder has NTPC tracks (or NSPC
sectors), and each track has NSPT sectors. The sec
tors are NBPS bytes long and each cylinder has
NBPC blocks. Each block has NSPB sectors.

' I
�

Sample Device Drivers

26-35: The controller registers occupy a region of contigu
ous address space starting at RBASE and running
through REASE+ 16.

38-40: To make the controller perform some action, the
registers that describe the transfer (RCYL, R TRK,
RSEC, RADDRL, RADDRH, RCNT) are set to
the appropriate values, and then the bit representing
the desired actio�1 is written i,nto the .RCMP n��gist�r.

46-47: The drive() and part() macros split out the two parts
of the minor number. Bits 0 through 2 represent the
partition on the disk, and the remaining bits specify
the drive number. Thus, the minornumberfor drive
1, partition 2 would be 10 decimal.

50-53: Large disks are typically broken into several parti
tions of a more manageable size. The structure that
specifies the size of the partitions specifies the length
of the partition in blocks, and the starting cylinder of
the partition.

53 int hdread(), hdwrite(), hdintr(), hdstrategy();
54
55 #define :rviNTlSZ 300 /* size of /mntl file system, in cylinders */
56 #define MNT2SZ 50 /* size of/mnt2file system, in cylinders*/
57 #define T1.1P1SZ 100 /* size of/tmpfilesystem, in cylinders */
58 #define TMPOFS (MNr1SZ+MNT2SZ) /* offset of user file system • I
59
60 struct partab hd..sizes[B] � {
61 NCPD*NBPC, 0, /* wholedisk•/
62 MNT1SZ*NBPC, 0, 1• mnt1area •r
63 MNT2SZ*NBPC, MNT1SZ, /* mnt2area */
64 TMP1SZ*NBPC, TMPOFS, /* tmp1area*/
65 0, 0, /* spare */
66 0, 0, I* spare • I
67 0, 0, /* spare*/
68 0, 0, /* spare */

69 };
70
71 #defineERRLIM 10 /*maximum retries *I
72
73 struct iobuf hdtab;
74 struct buf rhdbuf;
75 ,.
76 •• Strategy Routine:
77 •• Arguments:

/* start ofrequestqueue */
/*header for raw if o *I

78 •• Pointer to buffer structure
79 •• Function:
80 •• Check validity ofrequest
81 •• Queue the request
82 •• Startupthe deviceifidle

9-23

C User's Guide

in .,
84 int hdstmtegy(bp)
8:5 register-structbuf*bp;
86 {
87 registerint drlpa; !•drlve andpartitionnwnbers*/
88 daddr_t&z, bn;
89 intx;
90
91 dr�drive(bp->b_dev);
92 pa�part(bp->b_dev);
93 bn=bp->b_blkno*NSPB;
94 sz= (bp ·> b_bcouat+ BMASK) >> BSHIFr;
95 if(dr<NHD&&pa<NPARTS &&bn>=O&&bn<h<Ui>es[pa].len&&
96 ((1m+ sz <h<Ui>es[pa].len) ll(bp->b...flags &B..READ)))

97 {
98 if (bn + sz > h<Ui>es[pa].len){
99 sz- (hd...sizes[pa].len -l>n) • NBPS;
100 bp->b_resid = bp->h_bcount � (unsigned) sz;
101 bp->b_bcount �(nnsigned) sz;
102 }
103 } else {
104 bp->bJ!ags I= B..ERR.OR;
105 iodone(hp);
106 return.;
107 }
108 bp->l>...eylln � (bp->b_blkno /NBPC) + hd...sizes[pa].cyloff;
109 x =spl5();
110 disksort(&hdtab, bp);
ill if(hdtab.b_active-NULL)
112 l!dstart();
ill splx(x);
114 }
ill
60-69:

73:

74:

9 -24

This driver splits a disk into up to eight pieces, but at
present, only four are uaed. The first partitinn covers
the whole disk. The remaining three split the disk
three ways, one partition for eachofthemntl, mnt2,
and tmp filesystems.

The buffer headers representing requests for this
driver are linked into a queue, with hdtab forming
the head of the queue. In addition, information
regarding the state of the driver is kept in hdtab.

Each block driver that wants to allow raw I/0 allo
cates one buffer header for this purpose.

/

(I
�./

Sample Device Drivers

hdstrategy() - lines 84 to 114

The hdstrategy() routine is called by the kernel to queue a request for I/0.
The single argument is a pointer to the buffer header which contains all of
the data relevant to the request. The strategy routine is responsible forvali
datingthe request, and linking it into the queue of outstandingrequests.

91-94:

95-107:

108:

109:

110:

111-112:

113:

11.6 1*

First, compute various useful numbers that will be
used repeatedly during the validation process:

If the request is for a non-existent drive or a non
existent partition, if it lies completely outside the
specified partition, oris a write, and ends outside the
partition, the B...ERROR bit in the b_ftags field of
the header is set to indicate that the request has
failed. The r"'luest is then marked as complete by
calling iodone() with the pointer to the header as an
argument. If the request is a read, and ends outside
the partition, it is truncated to He completely within
the partition.

Compute the target cylinder of the request for the
benefit of the disksort() routine.

Block interrupts, to prevent the interrupt routine
from changing the queue of outstanding requests.

Sort the request into the queue by passing it and the
head of the queue to disksort().

Ifthecontrollerisnot already active, start it up.

Re-enable interrupts and return to the user process.

117 • Startup Routine:
118 • Arguments:
119 • None
120 • Function:
121 •
122 .
123 •
124 .,

Compute device-dependent parameters
Startup device
Indicaterequesttoi/Omonitorroutines

125 hdstart()
126 {
127 registerstructbuf"'bp; /*bufferpointer •/
128 registerunsigned sec;
129
DO lf((bp- hdtab.b..J�Ctf)-= NULL) {
131 hdtab.b_active•O;
132
133
134

return;
}
hdtab.bJctive = 1;

9-25

C User's Guide

sec- ((unsigned)bp� >b_blkno • NSPB);
135
136
137
13S
139
140
141
142
143
144
145
1�
147
148
149 }
150
151 ,.

out(RCYL,sec/NSPC); /*cylinder */
sec %=NSPC;
out(RTRK, sec/NSPT); /* track •/
out(RSEC, sec % NSPT); /*sector*/
out(RCNT, bp->b�bcount/NDPS); /*count */
out(RDRV, drive(bp->b_dev)); /*drive•/
out(RADDRL� bp->h_paddr & Oxi1If); I* memory address lo */
out(RADDRH, bp->b . ..paddr > > 16); I* memory address hi* I
if(bp->bJlags&B_READ)

out{RCMD, CREAD);
else

out(RC.\1D, CWRITE);

152 • Interrupt routine:
153 • Cbeckcompletionstatus
154 • Indicateoompletiontoi/omonitorroutines
155 • Log errors
156 • Restart (on error) orstartnextrequest
157 .,
158 hdintr()
159 {
160 register stro.ct buf *bp;
161
162 if(hdtab.b_active-0)
163 return;
164

hds tart() • lines to 125 to 149

The hdstart() routine calculates the physical address on the disk, and
starts the transfer.

130-133:

134:

136-138:

139-144:

9-26

If there are no active requests, mark the state of the
driver as idle� and return.

Mark the state of the driver as active.

Calculate the starting cylinder, track, and sector of
the request, and load the controller registers with
thesevalnes.

Load the controller with the drive number, and the
memory address of the data to be transferred.

Sample Device Drivers

145-149: If the request is a read request,. issue a read com
mand; otherwise, issue a write command.

hdintr() • lines 158 to 184

The hdintr() routine is called by the kernel through the vecintsw table
whenever the co� troller issues _an interrupt.

162-163: If an unexpected call occurs, just return.

165 bp� hdtab.b...actf;
166
167 if (in(RSTAT) !� 0){
168 out(RC.\ID, CRESET);
169 if (++hdtab.b_em:nt <� F.RRLIM) {
170 hdstart();
171 return;
172 }
173 bp->b_!lags J-B...ERROR;
174 deverr(&bdtab,bp,in(RSTAT),O);
175 }
176 ,.
177 * Ftagcurreutrequestcomplete, start next one
!78 .,
179 hdtab.b_errcnt=O;
180 hdtab.b_actf-bp->avJotw;
181 bp->b_reskJ aaaO;
182 iodone(bp);
183 bdstart();

184 }
185
186 /*
187 "' raw read routine:
188 • This routine calls "physio" which computes and validates
189 * aphysicaladdressfrom thecurrentlogicaladdress.
190 •
191 • Arguments
192 • Full device number
193 * Functions:
194 • Call pbysiowhich does the actual raw (physical) I/0
195 * The arguments to physio are:
196 * pointer to the strategy routine
197 • buffer for raw I/0
198 .

199 •

200 */

device
read/write flag

201 hdread(dev)
202 {
203

9-27

C User's Guide

204 pby&io(hdsttategy, &rhdbuf, dev, II...RE.ADIB..NOCROSS);
205 }
206
207 /*
208 •
209 •
210 •
211 ..
212 •
213 .,

Rawwriteroorine:
Arguments(to hdwrite):
Full device number

Functions:
Call physiowhicb does actual raw (physical) 110

165:

167-175:

179-183:

Get a pointer to the first buffer header in the chain;
this is the request that is currently being serviced.

If the controller indicates an error, and the operation
hasn't been retried ERRLIM times, try it again. lf it
has been retried ERRLIM times, assume it is a hard
error, mark the request asfailed, and csll deverror(}
to print a console message about the failure.

Mark this request complete, takeitoutoftherequest
queue, and csllhdsmrt() to start on the next request.

hdread() - lines 201to 213

The hdread() routine is called by the kernel when a process requests raw
read on the device. All it has to do is esllphysio(), passing the name of the
strategy routine, a pointer to the raw buffer header, the device number,
and a flag indicating a read request for a device that cannot directly address
across 64k boundaries. The physio() routine does ail the preliminary
work, and queues the request bycsllingthe device strategy routine.

Last Five Lines ofSample Driver

214 hdwrlte(dev)
215 {
216
217 phy&io(hdstrategy, &rhdbuf, dev, B_ WRITE I£!_NOCROSS);
218 }

hdwriteO - lines 214 to 218

The hdwrite() routine is called by the kernel when a ptocessrequests a raw
write on the device. Its responsibilities and actions are the same as
hdread(), except that it passes a flag indicating a write request for a device
that cannot directly address across 64k boundaries.

9-28

Sample Device Drivers

9.5 Memmy-Mapped Video Driver

1 #include " . ./h/types.h"
2 #include " . ./h/param.h"
3 #include 11 • ./h/sysmacros.b"
4 #include " . ./hldu<h"
5 #:include " .. /b/signal.h"
6 #include " . ./h/user.h"
7 #include " .. lh/mmu.h"
8 #include " .. /hlfile.h"
9 #include lh/ermo.h'1
10 #define INDEX Ox3d4 /*indexanddataregisterlocation •/
11 #de:f'me DATA Ox3d5 /* forthe CRT Controller6845 •1
12 #deftne MODE Ox:3d8 /*addresdormoder�er */
13 #define COLOR Ox3d9 /* addressfor colonegister ""/
14 #define MBASE Ox:l3:8000L /* starting address even lines */
15 #defme SCN_GRF OxOa !• graphicsmodetoputinMODEreg •!
16 #defme SCN_TXT OxOd /•textmodetoputinMODEreg •/
17 #defme SIZE 0x4(X)() J+ sizeofthe?ideoRAM */
18 #def'me HUN Ox:lO /* hi-intensity • I
19
20 #define ACOL Ox20 /*maincolororaltematecolor •!
21
22 chaqp-char_mode[J- { Ox71, llxSO, Ox5a, Ox()a, Oxlf, Ox06, Oxl9,
23 Oxlc, Ox02, 0x07,Qx()6, 0x07,0xOO�OxOO};
24
2!5 char grgraLmode(J- { Ox58, Ox:2B, Ox2d, OxOa, Ox7f, OxOO, Ox64,
26 000, Ox02, Ox:Ol, Ox:06,0x07 • OxOO.OxOO };
27
28 structgr_mode{
29 char scr_mode;
30 char scr_color;
31 int scr_off;
32 }gr_mode;
33
34 faddr_t gr_basaddr;
35
36 grinit()
37 {
38 intselj
39
40
41
42
43 }
44

sci-dscralloc();
mmudescr(sel, MBASE, SIZE-1, DSAJ)ATA) ;
gr_basaddr""' sotofar(sel, 0) j

45 gropen()

9-29

C User's Guide

46 {
47
48
49
50 }
51

gr_mode.scr_color=Oxoo;
gr_mode.scr_mode = OxOO;
gr_mode.scr_off """OxOO;

52 grclose()

53 {
54
55
56
57
58 }
59

gr....mode.scr_mode=O;
gr_mode.scr_color ... OxOO;
gr_setcolor();
gr_setscm(O);

This device driver is for a 286processorrunningin protected mode. It allo
cates a global descriptor for the video RAM, then usesmmudescr() to map
that RAM into the kernel's address space. Once mapped, far pointers are
used to address the video memory.

A driver for an unmapped machine would be similar, except that no selec
tor mappingwould be performed.

8-11:

12:

14-15:

16:

18-20:

28-32:

9-30

These are the registers used to manipulate the 6845
CRT controller. INDEX and DATA are used for
mode initialization, MODE to determine the type of
graphics mode to be uaed, and COLOR to set the
background color.

MBASEis the starting address of the video RAM.

S CN_GRF and S CN_TXT are tbe codes written into
the MODE register to determine whether text or
graphics mode should be used.

SI7.Eis the size ofthevideo RAM.

HI.JN is or'ed into the color register to produce
high-intensitybackground colors. GRAF is a binary
flag that contains the current state of the screen,
either text or graphics. A COL contains the code for
the currently selected color palette.

grcharJIWde and grgraf..mode are arrays containing
the initialization sequences for the respective
modes.

gr JIWde is a structure containing the current screen
attnbutes: scr_;mode� scr_colt and scr_off contain
the screen mode,. the current color attributes, and
the offset from the beginningoftheRAMfrom which
to perform IJO, respectively.

34:

grinit() - lines 36-43

Sample Device Drivers

gr_basaddr points to the beginning of the video
RAM.

This routine is called once, at system boot time. Its responsibility is to pro
cure the global selector that places the video RAM within the kernel's
address space.

40:
41:

42:

sel is assigned the value of an available descriptor.

The descriptor is mapped to an area of memory start
ing at MBASE, progressing on for an additional
SIZE-1 bytes, in such a way that the mapped
memory can be both read from and written to
(DSA.J)ATA).

gr_basaddr is a far pointer created by using the
sotofar() macro to combine the previously mapped
segment and a O offset. Note thatgr_basaddr is not a
real far pointer, but because it has been mapped, it is
a virtualfarpointerpointingto MEASE.

gropen() - lines 45- SO

Called on every open of the video RAM deviee.

47:

48:
49:

gr Jnode. scr _color is set to its initial color, black.

gr Jnode.scr _mode is set to its initial mode, text.

gr..JIWde.scr_offis set to point to the beginning of the
video RAM.

grclose () - lines 52- 58

On the final close of the video device, set the text versus graphics register
back to text, and !be color register back to its default black.

54-55:

56-57:

60 grread()
61 {

Set variables appropriate for the new state.

Call appropriate routines so that the current state is
reflected in the hardware.

62 gr_rw(FREAD);
63 }
64

9-31

C User's Guide

65 grwrite()
66 {
67 gr_rw(FWRITE);
6S }
69
70 gr_rw(mode)
71 {
72
73
74
75
76

register int extent;
intcount;

extent= SIZE - gr_mode.scr_off;
if(extent < u.u_count)

77 count= extent;
78 else
79 count= u.u_count;
80
81 if(mode--FREAD)
82 grcopy(gr_basaddr+ gr_mode.scr_off, u.u_base, count);
83 else
84 grcopy(u.u_base, gr_basaddr+gr_mode.scr_off, count);
85
86 u.u_count -=count;
87 gr_mode.scr_off+=count;
88 }
89
90 grioctl(dev, cmd, arg, mode)
91 intdev, cmd, mode;
92 faddr_t arg;
93 {
94
95
96

switch (cmd) {
case ('a'):

if((int)arg) {
97 gr_mode.scr_mode i=ACOL;
98 gr_mode.scr_color I= ACOL;
99 } else{
100 gr_mode.scr....mode &=-ACOL;
101 gr_mode.scr_color&=-ACOL;
102 }
103 gr_setcolor();
104 break;
105 case ('b'):
106 gr_mode.scr_color &= OrlO;
107 gr...Dlode.scr_color [-((char)(arg) & OxOI);
108 gr_setcolor();
109 break;
110 case ('c'):
111 grclear(gr_basaddr, SIZE);
112 break;
113 case ('g'):
114 gr_setscm(l);

9-32

115
116
117
118
119
120
121
122· .
123
124
125
126
127
128
129
130
131
132
133
134
135
136 }
137 }
138

break;
case ('i'):

if((int)arg) {
gr_mode.scr_mode [=HIJN;
gr_mode.scr_color I= HLIN;

} else{
gr_mode.scr_mode &='"Hl...IN";

· gr....:mode .. scr...:color&=�;

}
gr_setcolor();
break;

case ('s'):
if((unsignedint)arg >� SIZE) {

u.u._error=EINV AL;
retwn;

}
gr_mode.scr_off = (unsigned int)arg;
break:;

case ('t'):
gr_setscm(O);
break;

Sample Device Drivers

grread(), giWrite() - lines 60- 68

These simply call the combined read/write routine, gr JJV(), with au
appropriate argument.

gr..nv() - lines 70- 88

The combined read aud write routine.

75-79:

81-84:

86-87:

Determine how mauy more bytes there are between
the current video position aud the end of the video.
If the request would extend beyond the end of the
video RAM, truncate it.

call the grcopy() routine to perform the actual
transfer between the video RAM and the user's
memory.

Update u.u_count so it contains the number of bytes
not read or written. Update scr ..Pjf so it contains the
current offset into the video RAM.

9-33

C User's Guide

grioctl() . lines 90 to 141:

This routine performs other manipulation on the screen device besides
reading and writing. The clear (c) command also writes to screen memory,
but saves the user from having to zero a 16k buffer by hand in order to clear
the screen.

96-104:

105-109:

110-112:

113-115:

116-125:

126-132:

133-135:

139 gcsetcolor()
140 {

The a command selects either the primary or the
alternate color palette, depending on whether its
third argument is a lor aO.

The b command sets the background color to the
low-order4 bits of the integer given as argument.

The c command clears the screen, calling grclear()
to perform the actual pointer manipulation.

The g command sets the screen into graphics mode.

The icommand selects the background intensity

The s command "seeks" the current read/write posi
tion to the desired byte of the RAM. Since charac
ters are written to the RAM as whole bytes, not bits,
the finest granularity available for seeks is also the
byte level.

The t command sets the screen back into text mode.

141 outb(COLOR, gr_mode.scr_color);
142 }
143
144 /*
145 " setup cbaracterorgraphicsmode.
146 */
147 gr_setscm(mode)
148 intmode;
149 {
150 register inti, s;
151
152
153
154
155
156
157
158
159 }
160

s - sp15();
for (i=O;i <-=OxOD;i++){

outb(INDEX, i);
outb(DATA, !mode ? greharJl1ode[i] : grgraf_roode[i]);

}
outb(MODE,(mode) ? SCN_GRF : SCN_TXT);
splx(s);

161 grcopy(from,to,count)

9-34

162 registerfaddr_t from;
163 registerfaddr_tto;
164 int count;
165 {
166 do{
167 *to++ = *from++;
168
169 }
170�

} while (--count);

171 grclear(to,count)
172 registerfaddr_tto;
173 int count;
174 {
175 do{

176 *to++='\0';
177 }while(--count);
178 }

grJetcolor() - lines 139 to 141

Sample Device Drivers

Sets the hardware COLOR register to the currently selected color set.

grJetscrn() - lines 147 to 159

Sets the screen into graphics or text mode. Must be performed at a high
priority to prevent a kernel print[() coming from an interrupt process from
becoming mangled.

153-156:

157:

Send the mode initialization strings to the appropri
ate registers.

fuform the controller if this is graphics or text mode

grcopy() - lines 161 to 169

Copies count bytes from virtual far pointer from to virtual fa rpointer to.

grclear() - lines 171-178

Clears count bytes starting atvirtualfarpointer to.

9-35

Appendix A

C Language P ortability

A.l Introduction A-1

A.2 Program Portability A -2

A.3 Machine Hardware A-2
A.3.1 Byte Length A-2
A.3.2 Word Length A-2
A.3.3 Storage Alignment A-3
A.3.4 Byte Order ina Word A-4
A.3.5 Bitfields A-5
A.3.6 Pointers A-5
A.3.7 AddressSpace A-6
A.3.8 Cha.racterSet A -7

A.4 Compiler Differences A -7
A.4.1 Signed/ Unsigned char, Sign Extension A -7
A .4.2 Shift Operations A-7
A.4.3 Identifier Length A-8
A.4.4 RegisterVariables A-8
A.4.5 Type Conversion A -9
A.4.6 Functions With a Variable Number of Arguments A-10
A.4.7 Side Effects, Evaluation Order A-11

A.5 Program Environment Differences A -12

A.6 Portability of Data A-13

A.7 Lint A-13

A.8 ByteOrderingSummary A-14

C Language Portability

A.l Introduction

The standard definition of the C prograroming language leaves many
details to be decided by individual implementations of the language. These
unspecified features of the language detract from its portability and must
be studied when attempting to write portable C code.

Most of the issues affecting C portability arise from differences in either
target machine hardware or compilers. C was designed to compile to
efficient code for the target machine (initially a PDP-11), so many of the
language features that are not precisely defined are those that reflect a par
ticular machine's hardware characteristics.

This appendix highlights the various aspects of C that may not be portable
across different machines and compilers. It also briefly discusses the porta
bility of a C program in terms of its environment, which is determined by
the system calls and library routines it uses during execution, file path
names it requires, and other items not guaranteed to be constant across
different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small 8-bit microproces
sors to large mainframes. This appendix is concerned with the portability
of C code in the XENIX programming environment. This is a more res
tricted problem to consider since all XENIX systems to date run on
hardware with the following basic characteristics:

ASCII character set
8-bit bytes
2-byte or 4-byte integers
Two's complement arithmetic

These features are not formally defined for the language and may not be
found in all implementations of C. However, the remainder of this appen
dixis devoted to those systems where these basic assumptions hold.

The C language definition contains no specification of how inpnt and out
put is performed. This is left to system calls and library routines on indivi
dual systems. Within XENIX systems there are system calls and library rou
tlues that can be considered portable. These are described briefly in a later
section.

This appendix is not intended as a C language primer. It is assumed that the
reader is familiar with C, and with the hasic architecture of common
microprocessors.

A-1

C User's Guide

A.2 Program Portability

A program is portable if it can be compiled and run successfully on
different machines without alteration. There are many ways to write port
able programs. The first is to avoid usinginherently non-portable innguage
features. The second is to isolate any non-portable interactions with the
environment, such as I/0 to nonstandard devices. For example, programs
should avoid hard-coding pathnames unless a pathname is common to all
systems (e.g., fetc!passwd).

Files required at compile-time (i.e., inclode files) may also introduce
non-portability if the pathnames are not the same on all machines. In
some cases include files containing machine parameters can be used to
make the source code itself portable.

A.3 Maehine Hardware

Differences in the hardware of the various target machines and differences
in the corresponding C compilers cause the greatest number of portability
problems. This section lists problems commonly encountered on XENIX
systems.

A.3.1 Byte Length

By definition, the char data type inC must be large enough to hold as posi
tive integers all members of a machine's character set. For the machines
descn'bed in this appendix, the charsizeis exactly an 8-bitbyte.

A.3.2 Word Length

In C, the size oftlle basic data types for a given implementation are no ! for
mally defined. 1bus, they often follow the most natural sizefor the under
lying machine. It is safe to assume that short is no longer than long.
Beyond that, no assumptions should be made. For example, on some
machines short is the same length asint, whereas on others long is the same
length as int.

Programs that need to know the size of a particular data type should avoid
hard-coded constunts where possible. Such infonnation can usually be
written in a fairly portable way. For example, the maximum positive integer
(on a two's complementmachine) can be obtained with :

#define MAXPOS ((int)(((unslgned)-1)>> 1))

A-2

('
I
·�·

'This is preferable to something like:

#ifdef PDPll
#define MAXPOS 32767
#else

#end.if

C Language Portability

To find the number of bytes in an intuse "sizeof (int)" rather than 2, 4, or
some other non -portable constant.

A.3.3 Storage Allgnment

The C language defines no particular layout for storage of data items rela
tive to each other, or for storage of elements of structures or unions within
the structure or union.

Some CPU's, such as the 80286, 80386, PDP-11, and M68000 require that
data types longer than one byte be aligned on even byte address boun
daries. Others, such as the 8086 and V AX-11 have no such hardware res
triction. However, even with these machines� most compilers generate
code that aligns words, structures, arrays, and long words on even
addresses, or even long word addresses. Thus, on the V AX-11, the follow
ing code sequence gives 8, even though the VAX hardware can access an
int (a 4-byteword) on any physical starting address:

struct s_tag {
charc;
int i;

};
prlntf("%d\n", sizeof(s_tag));

The principal implications of this variatlnn in data storage are that data
accessed as non -primitive data types is not portable, and code that takes
advantage of the archit�cture of a particular machine is not portable.

Thus, unions containing structures are non-portable if the Union is used to
access the same data ln different ways. Unions are only likely to be portable
if they are used to place different data ln the same space at different times.
For example, if the following Union were used to obtain 4 bytes from along
word, the code would not be portable:

urrion{
charc[4];
longlw;

} u;

A-3

C User's Guide

The slzeof operator should always be used when reading and writing struc
tures:

struct s_tagst;

write(fd, &st, sizeof(st));

This ensures portability of the source code. It does not produce a portable
data file. Portability of data is discussed in alater section.

Note that the slzeof operator returns the number of bytes an object would
occupy in an array. Thus on machines where structures are always aligned
to begin on a word boundary in memory, the sizeof operator will include
any necessary padding for this in the return value, even if the padding
occurs after all useful data in the structure. This occurs whether or not the
argument is actually an array element.

A.3.4 Byte Order in a Word

The variation in byte order in a word affects the portability of data more
than the portability of source code. Any program that makes use of
knowledge of the internal byte order in a word is not portable. For exam
ple, on some systems there is an include file misc.h that contains the fol
lowing structure declaration:

,.
*structure to access an
• integer in bytes
.,
struct{

};

char lobyte;
char hibyte;

With certain less restrictive compilers tbis could be used to access the higb
and low order bytes of an integer separately, and in a manner which would
inhibit portability. The correct way to do this is to use mask and abift
operations to extract the required byte:

A-4

#define LOBYfE(i) (i&Oxff)
#define HIBYfE(i) ((i>> 8)&0xff)

�· (' '
\�_./

C Language Portability

:-l"ote that even this operation is only applicable to machines with two bytes
inanint.

One result of the byte-ordering problem is that the following code
sequence will not always perform as intended:

intc=O;

read(fd, &c, 1);

On machines where the low order byte is stored first, the value of c will be
the byte value read. On other machines, the byte is read into some byte
other than thelow order one, and thevalueofc is different.

A.3.S Bltfields

Bitfields are not implemented in all C compilers. When they are, no field
may be larger than an int, and no field can overlap an int boundary. If
necessary the compiler will leave gaps and move to the next int boundary.

The Clauguage makes no guarantees about whether fields are assigned left
to right, or right to left in an Int. Thus, while bitfields may be useful for
storing fiags and other small data items, their use in unions to dissect bits
from other data is definitely non-portable.

To ensure portability no individual field should exceed 16bits.

A.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to
the extent that most compilers wm not object to non-portable pointer
operations. The lint program is particularly useful for detecting question
able pointer assignments and comparisons.

The common non-portable use of pointers is the use of casts to assign one
pointer to another pointer of a different data type. This almost always
makes some assumption about the internal byte ordering and layout of the
data type, and is therefore non-portable. In the following code, the byte
order in the given arrayis notportable:

char c[4];
long*lp;

Jp = (long *)&c[O);
*lp=Ox12345678L;

A-5

C User's Guide

The llnt program will issue warning messages about such uses of pointers.
Code like this is very rarely necessary or valid. It is acceptable, however,
when using the malloc function to allocate space for variables that do not
have char type. The routine is declared as type char * and the return value
is cast to the type to be stored in the allocated memory. If this type is not
char * then llnt will issue a warning concerning illegal type conversion. In
addition, the malloc function is written to always return a starting address
suitable for storing all types of data. Lint does not know this, so it gives a
warning about possible data alignment problems too. In the following
example, malloc is used to obtain memory for an array of 50 integers.

extern char *mallocQ;
int*ip;

ip � (int *)malloc(50 • sizeof(int));

This example will attract a warning message from lint.

TheXENIX CLanguage Reference states that a pointer maybe assigned (or
cast) to an integer large enough to hold it. Note that the size oftheint type
depends on the given machine and implementation. This type is a long on
some machines and short on others. In general, do not assume that:

sizeof(char *) - sizeof(int)

In most implementations, the null pointer value, NULL is defined to be the
integer value 0. This can lead to problems! or functions that expect pointer
argumentslargerthan integers. Forportablecode, always use:

func((char *)NULL);

to pass a NULL value of the correct size.

A.3. 7 Address Space

The address space available to a program running under XENlX varies con
siderablyfrom system to system. On a small PDP-11 there may be only 64K
bytes available for program and data combined. Larger PDP-ll's and
some 16 bit microprocessors allow 64Kb:,1es of data and 64K bytes of pro
gram text. Other machines may allow considerably more text, and possibly
more data as well.

Large programs, or programs that require large data areas may have porta
bility problems on small machines.

A-6

C Language Portability

A.3.8 CharacterSet

The C language does not require the use of the ASCII character set. In
fact, the only character set requirements are that all characters must fit in
the char data type, and all characters must have positive values.

In the ASCII character set, all characters have values between zero and
1'.17, Tlms,. they ca0 aJil:>e ""J'res.entecj in 7 bits, and on an 8�\)its.::per-byte
machine they are all positive, whether charis treated as signed or unsigned.

There is a set of macros defined under XENIX in the header file
/usr!include/ctype.h that should be used for most tests on character quanti
ties. They provide insulatinn from the internal structure of the character
set and in most cases their names are more meaningful than the equivalent
line of code. Compare:

if(isupper(c))

to:

With some of the other macros, such as isdigit to test for a hex digit, the
advantage is even greater. Also,. the internal implementation of the macros
makes them more efficient than an explicit test with an if statement.

A.4 Compiler Dilrerences

There are a number of C compilers running under XENIX. On PDP� 11 sys
tems there is the '(Ritchie" compiler. A1so on the 11, and on most other
systems, there is the Portable C Compiler.

A.4.1 Sigued/ Unsignedchar, Sign Extension

The current state of the signed versus unsigned char problem is best
descnbed as unsatisfactory.

The sign extension problem is a serious barrier to writing portable c� and
the best solution at present is to write defensive code that does not rely 011
particular implementation features.

A,4.2 Shift Operations

The left shift operator, "<<", shifts its operand a number of bits left,
filling vacated bits with zero. This i s a so-called logical shift. The right shift

A - 7

C User's Guide

operator, ">>", performs a logical shift operation when applied to m
unsigned quantity. When applied to a signed quantity, the vacated bits may
be filled with zero (logical shift) or with sign bits (arithmetic sbift). The
decision is implementation-dependent, and eode that uses knowledge of a
particular implementation is non-portable.

The PDP-11 compilers use an arithmetic right shift. To avoid sign exten
sion it is necessary to shift and mask out the appropriate number of high
order bits:

charc;

c = (c >> 3) & 0xlf;

You can also avoid sign extension by usiugusing the divide operator:

charc;

c - c /8;

A.4.3 Identifier Length

The use of long symbols and identifier names will cause portability prob- , '-
lems with some compilers. To avoid these problems, a program shonld
keep the following symbols as short as possible:

C Preprocessor Symbols
C Local Symbols
C External Symbols

The link editor used may also plaee a restriction on the number of unique
characters in C external symbols.

Symbols unique in the first six characters are unique to most C langnage
processors.

On some non-XENIX C implementations, uppercase and lowercase letters
are not distinct in identifiers.

A.4.4 Register Variables

The number and type of register variables in a function depends on the
machine hardware and the compiler. Excess and invalid register declara
tions are treated as nonregister declarations and should not cause a porta
bility problem.

A-8

C Language Portab�

On a PDP-11, up to three register declarations are significant, and they
must be of type int, char, or pointer. While other machines and compilers
may support declarations such as:

register unsigned short

this should not be relied upon.

SfuCe._the ·compilef"ignores- eXCess v3riab1Cs of ·re�ster tYPe; t:lie mOst
important register type variables should be declared first. Thus, if any are
ignored, they will be the least important ones.

A.4.S Type Conversion

The C language has some rules for implicit type conversion; it also aliows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected si.gn extension. This is a
potential problem whenever something of type char is compared with an
int.

For example:

charc;

if(c ==Ox80)

will never evaluate true on a machine which sign extends since c is sign
extended before the comparison with Ox80, an ini.

Theoulysafecomparison between char type and an intis the following:

charc;

if(c== 'x')

This is reliable because C guarantees ali characters to be positive. The use
of hard-coded octal constants is subject to sign extension. For example,
the following program prints "ff80'' on a PDP-11:

mainQ
{

printf("%x\n11, '\200');
}

Type conversion also takes place when arguments are passed to functions.
Types char and shortbecomeint. Machines that sign extend char can give

A-9

C User's Guide

surprises. For example, the following program gives -128 on some
machines:

char c � 128;
printf("%d\n",c);

This is because c is converted to int before passing to the function. The
function itself has no knowledge of the original type of the argument, and is
expecting an int. The correct way to handle this is to code defensively and
allow for the possibility of sign extension:

char c = l28;
printf("%d\n", c & Oxff);

A.4.6 Functions With a Variable NumberofArgnments

Functions with a variable number of arguments present a particular porta
bility problem if the typeoftheargumentsis variable too. In such ca;;es the
code is dependent upon the size ofvariousdata types.

In XENIX there is an include file, lusrlincludelvarargs.h, that contains
macros for use in variable argument functions to access the arguments in a
portable way:

typedef char *va.Jist;
#define va_dcl intva_a!ist;
#define va...start(list) list�(char*)&va_a!ist
#define va_end(list)
#define va_arg(list,mode)

((mode *)(list+= sizeof(mode}))[-1]

The vaJnd() macro is not currently required. Use of the other macros will
be demonstrated by an example of the fprin!f library routine. This has a
first argument of type FILE*, and a second argument of t)ipe cltar*. Sub
sequent arguments are of unknown type and number at compilation time.
They are determined at run time by the contents of the control string, argu
ment2.

The first few lines of fprinlf to declare the arguments and find the ontput
file and control string address could be:

#inclnde <varargs.h>
#include <stdio.h>

int
fprintf(va_alist)
va_dcl

A - 10

{

}

vaJist ap ;I* pointer to arg list • I
char *format;
FILE *fp;

va_start(ap); I* initialize arg pointer • I
fp � va_arg(ap, FILE*);
format � va_arg(ap,.char *);

C Language Portabili1;y

Note that there is just one argument declared to fprintf. This argument is
declared by the va_dcl macro to be type int, although its actual type is unk
nown at compile time. The argument pointer ap is initialized by va_startto
the address of the first argument. Successive arguments can be picked
from the stack so long as their type is known using the vaJlrg macro. This
has a type as its second argument, and this controls what data is removed
from the stack, and how far the argument pointer ap is incremented. Jn
fprinlf, once the control string is found, the type of subsequent arguments
is known and they can be accessed sequentially by repeated calls to
V/2_Jlrg(). For example, arguments of type double, int *, and short could
be retrieved as follows:

double dint;
int *ip;
short s;

dint �va...arg(ap, double);
ip �va_arg(ap, int *);
s �va...arg(ap, short);

The use of these macros makes the code more portable, although it does
assume a certain standard method of passing arguments on the stack. Jn
particular, no holes must be left by the compiler, and types smaller than int
(e.g. , eharand shorton long word machines) must be declared as int.

A.4. 7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression> or arguments to a function call* Thus:

func(i++, i++);

A - 11

C User's Guide

must be considered non-portable, and even:

func(i++);

is unwise if func is ever likely to be replaced by a macro, since the macro
may use i more than once. There are certain XENIX macros commonly
used in user programs; these are all guaranteed to use their argument once,
and so can safely be called with a side-effect argument. The most common
examples are getc() , putcO , getchar() , and putchar.

Operands to the following operators are guaranteed to be evaluated left to
right:

&& II ? :

Note that the comma operatorherels a separatorfortwo C statements. A
list of items separated by commas in a declaration list is not guaranteed to
be processed left to right. Thus the declaration:

registerint a, b, c, d;

on a PDP-11 where only three register variables may be declared could
make any three of the four variables register type, depending on the com
piler. The correct declaration is to decide the order of importance of the
variables being register type, and then use separate declaration statements,
since the order of processing of individual declaration statements is
guaranteed to be sequential:

register int a;
register int b;
register int c;
registerintd;

A.S Program Environment Differences

Most programs make system calls and use library routines for various ser
vices. This section indicates some of those routines that are not always
portable, and those that particularly aid portability.

We are concerned here primarilywith portability under the XENIX operat
ing system. Many of the XENIX system calls are specific to that particular
operating system environment and are not present on all other operating
system implementations of C. Examples of this are getpwentO for accessing
entries in the XEN1X password file, and getenv 0 which is specific to the
XENIXconcept of a process environment.

A - 12

(
�·

C Language Portability

Any program containing hard-coded pathnames to files or directories, or
containing user IDs, login names, terminal lines or other system dependent
parameters is non-portable. These types of constants should be in header
files, passed as command line arguments, obtained from the environment,
or obtained by using the XENIX default parameter library routines dfopen,
and dfread.

Within XENIX, most system calls and library routines are portable across
different implementations and XENIX releases. However, a few routines
have changed in their user interface. The XENIX library routines are usu
ally portable amongXEN!Xsystems.

Note that the members of the printffamily, printf, fprintf, sprintf, sscanf,
and scanf have changed in several ways during the evolution of XENIX,
and some features are not completely portable. The return values of these
routines cannot be relied upon to have the same meaning on all systems.
Some of the format conversion characters have changed their meanings, in
particular those relating to uppercase and lowercase in the output of hexa
decimal numbers, and the specification of long integers on 16-bit word
machines. The reference manual page for printf contains the correct
specification for these routines.

A.6 PortabilityofData

Data files are almost always non-portable across different machine CPU
architectures. As mentioned above, structures, unions, and arrays have
varying internal layout and padding requirements on different machines. In
addition, byte ordering within words and actual word length may differ.

The only way achieve data file portability is to write and read data files as
one dimensional character arrays. This avoids alignment and padding
problems if the data is written and read as characters, and interpreted that
way. Thus, ASCII text files can usually be moved between different
machine types without too many problems.

A.7 Lint

lint is a C program checker which attempts to detect features of a collec
tion of C source files that are non-portable or incorrect C. One particular
advantage of lint over any compiler checking is that lint checks function
declaration and usage across source files. Neither compiler nor link editor
do this.

lin twill generate warning messages about non-portable pointer arithmetic,
assignments, and type conversions. Passage unscathed through lint is not a
guarantee that a program is completely portable.

A - 13

C User's Guide

A.8 Byte Ordering Summary

The following conventions are used in the tables below:
aO The lowest physically addressed byte of tbe data item. aO +

� � 00 � �
bO The least significant byte of the data item, bl being tbe next

least significant, and so on.

Note that any program that actnallymakes use of the followinginformation
is guaranteed to be non-portable!

CPU

PDP �,;11

8086**
286
386
M68000
Z8000

Byte OrderingforShortTypes

CPU Byte Order

Byte Ordering for Long Types

.o
b2
bO
hO
b2
bO
bO
b3
b3

Byte Order

o 1 o?
h'l hO
bl b2
h1 b2
b3 bO
b l b2
b l b2
b2 hl
b2 b l

a3
bl
b3
h�
bl
b3
b3
bO
hO

Note that byte ordering for long types is compiler dependent (not CPU
dependent) on PDP-11 and 8086 based machines. This table is based on a
PDP-11 using the Ritchie compiler. 8086 • shows byte ordering for com-

A - 14

C Language Portability

pilers using XENIX System V (Jittle-endian) word order. 8086 •• shows
byte ordering for XENIX 3.0 (big-endian) compilers. 8086 users can use
dtype(C)to determine whether a filesystem is word-swapped.

A - 15

I .

c� I

Nhen \
lte r;>'

i
Comr

Appendix B

C Compiler and

Link Editor Error Mes sages

B.l

B.2

B.3

B.4

B.S

B.6

Introduction B-1

CompilerErrorMessages B-1
B.2.1 Compiler Internal Error Messages
B.2.2 CommandUneMessages B-3
B.2.3 Warning ErrorMessages B-4
B.2.4 Fatal Error Messages B-9
B.2.5 Compilation Error Messages B-11
B.2.6 Compiler Limits B-20

Link Editor Error Messages B-21

linker Fatal-Error Messages B-21
B.4.1 Run-Time iibraryError Messages
B.4.2 Run-Time Limits B-25

Unking-Error Messages B-25

Linker W aming Error Messages B-27

B-2

B-25

C User's Guide

Error messages in the warning, fatal, and compilation error message
categories have the same basic form:

filename (linenumber) : msg-type error-number: message

where fileTUJme is the name of the source file being compiled, linenumber
identifies the line of the file containing the error, msg� type is "warning/'
"fatal/' '�error," or Hcommand line," error-number is the number associ
ated with the error, and message i' a self-explanatory description of the
error or warning. Command line error messages simply give a message
about the command line) so they do not contain references to line numbers
and filenames.

The messages for each category are listed below in numerical order, along
with a brief explanation of each error. To look up an error message, first
determine the message category, then find the error number.

Section B.2.6, "Compiler Limits," summarizes limits imposed by the
XEN1X C Compiler (for example, the maximum size of a macro
definition).

Note

Occasionally) the text of an error message will make reference to either
an MS-DOS switch or filename. These error messages are provided for
cross-development purposes and should only occur in the DOS
environment.

B.2.1 CompllerintemalErrorMessages

The following messages are generated in the event of an internal compiler
error!

errorO: UNKNOWN ERROR
An unforeseen error condition has been detected by the com
piler.

error 124: code generation error
The compiler could not generate code for an expression. Usu
ally this occurs with a complex expression; try rearranging the
expression.

fatal error 1: assertion count exceeds5; stopping compilation

B-2

The compiler performs internal consistency checks during the
course of compilation. This message indicates that the con
sistency check failed, and the compiler cannot continue
operation.

C Compiler and Link Editor Error Messages

B.2.2 Command Line Messages

The following messages indicate errors on the command line used to
invoke the compiler. If possible, the compiler continues operation,
displaying a warning message. ln some cases, command line errors are
fatal and the compiler terminates processing.

Command lineerrorO: unknown command line error
An unforeseen error condition has been detected by the com
piler. Please report this condition to the support center listed
on the support information card received with your software.

Command line error2: listing has precedence over assembly output
Two different listiugoptions were chosen; the assembly listing
is not created.

Command line error 3: a previously defined model specification has
been overridden
Two different memory models are specified; the model
specified later is used.

Commandline error4: unkno'W!l -A sub switch '%c;
A letter given with the -A option is not recognized.

Command line error 5: only one memory model allowed
You must choose one memory model; you cannot specify
more than one.

Commandlineerror6: missingsourcefile name
You must give the name of the source file to be compiled.

Command line error 7: too many colll!D.a&
Too many commas appear on the command line.

Command line error 8: comma needed before filename
The fields in the command line must be setoff by commas.

Command line error 9: a filename (not a path name) is required
The name of a directory is given where the name of a file is
required.

Command line warning 10: ignoring unknown tl.agstring
One of the options given on the command line is not recog
nized and is ignored.

Command line error 12: too many option flags, string
Too many letters are given with a specific option (for example,
with the -0 option).

Comm.andline error 13: unknown option (c) in option
One ofthe letters in the given option is not recognized.

Command line error 14: argument list for name too big
The combined length of all arguments on the command line
(including the program name) may not exceed 128 hytes.

Command line error 15: 80185/286/386selected over 8086
Both the -MO option and either the -Ml or -M2 option are
given; -Ml or-M2 takes precedence.

Command line error 16: optimizing for space over time
This message confirms that the -Os option is used for optimiz
ing.

B-3

C User's Guide

Command line error 16: optimizing for space over time
This message confirms that the/Os option is used for optimiz
ing.

Command line error 17: unknown floalingpoint option
The specified floating-point option (an /FP option) is not one
ofthefive valid options.

Command line error 18: only one floating point model allowed
You can only give one of the five floating-point (/FP) options
on the command line.

Command line error 19: could not execute filename
The specified compiler file could not be found.

Command line error 20: could not execute name. Please insert diskette
and press any key.
One of the compiler passes cannot be found on the current
disk. Insert the disk containing the named file and press any
key.

B.2.3 Warning Error Messages

The messages listed in this section indicate potential problems but do not
hinder compilation and linking. The number in square brackets ((D at the
end of each message gives the minimum warning level that must be set for
the message to appear.

warning 0: unknown error
Internal error. Contacttecimical support.

wamingl: macro identifier requires parameters [1]
The given identifier was defined as a macro takingoneor more
arguments, but the identifie:r is used in the program without
arguments.

waming2: too many actualparametersformacro identifier (1]
The number of actual arguments specified with an identifier is
greater than the numoer of formal parameters given in the
macro definition of the identifier.

warning3: not enough actual parametersformacro identifier (1]
Tbe number of actual arguments specified with an identifier is
less than the number offormal parameters given in the macro
definition of the identifier.

warning4: missing close parenthesis after 'defined' [1]
The closing parenthesis is missing from an #If defined phrase.

warningS: identifier : redefinition [1]
The given identifier is redefined.

warningl'i: #undef expected an identifier
The name of the identifier whose definition is to be removed
must be given with the #undef directive.

warning?: unmatched close comment '*/' [1]
A comment is started (with '/*') butis not closed (with '•/').

warning 8: newline in string constant [1]

B-4

A newline character is not preceded by an escape character
(\) in a string constant.

(, "--!

C Compiler and Link Editor Error Messages

warning9: stringtoo big, leading chars truncated [1]
A string exceeds the compiler limit on string size. To correct
this problem, you must break the string down into two or more
strings.

warning 10: illegalnullchar [1]
The single quotes delimiting a character constant must con
tain one character. For example, the declaration "char a = "
is illegal. .To represent a null character constant, use an
escape sequence (for example, \0).

warning 11: identifier truncated to "identifier" [1]
Only the first 31 characters of an identifier are significant.

wa:roing 13: constant too big [1]
Information is lost because a constant value is too large to be
represented in the type to which itis assigned.

warning 14: identifier : bitfield type must be unsigned [1]
Bitfields must be declared as unsigned integral types. A
conversion has been supplied.

warning15: Identifier : b itfield typemust beintegral [l]
Bitfields must be declared as unsigned integral types. A
conversion has been supplied.

warning 16: identifier : no function return type [2]
The return type is missing from a function declaration; the
default return type will be int.

warning17: cast of int expression to far pointer [1]
A far pointer represents a full segmented address. On an
8086/80286 processor, casting an intvalue to a farpointerpro
duces an address with a meaningless segment value.

warning 18: identifier : uses undefined strnct/union identifier [2]
The name of a structure or union type is used before the type is
defined.

warning 19: 'identifier' : unknown size [1]
The size of the named variable is not specified.

warning20: too many actual parameters[!]
The number of arguments specified in a function call is greater
than the number of parameters specified in the argument type
list or in the function definition.

warning21: too few actual parameters[!]
The number of arguments specified in a function call is less
than the number of parameters specified in the argument type
list orin the function definition.

warning22: pointer mismatch: parameter n [1]
The given parameter has a different pointer type than is
specified in the argument type list or the function definition.

wa:roing23: string ignored (must also specify string)
The declaration of the given parameter specifies a unhm type,
but the parameter's type does not correspond to the type of
any of the union members.

warning24: different types : parameter n
The type of the given parameter in a function call does not
agree with the argument type listorthefunction definition.

B - 5

C User's Guide

warning25: function declaration specified variable args [1]
The argument type list in a function declaration ends with a
comma, indicating that the function can take a variable
number of arguments, but no formal parameters for the func
tion are declared.

warning 26: function was declared with formal arguments [1)
The function was declared to take arguments, but the function
definition does not declare formal parameters.

warning27: function was declared withoutformal argument list [1]
The function was declared to take no argument (the argument
type list consists of the word void) but formal parameters are
declared in the function definition or arguments are given in a
call to the function.

warning28: parameter n declaration different
The type of the given parameter does not agree with the
corresponding type in the argument type list or with the
corresponding formal parameter.

warning29: declared parameter list diffen; from definition [1)
The argument type list given in a function declaration does not
agree with the types of the formal parameters given in the
function definition.

warning30: first parameter list is longer than the second [1]
A function is declared more than once and the argument type
lists in the declarations differ.

warning31: second parameter listislongerthan the first [1]
A function is declared more than once, and the argument type
lists in the declarations differ.

warning32: unnamed structlunion as parameter [1]
The structure or union type being passed as an argument is not
named, so the declaration of the formal parameter cannot use
the name and must declare the type.

warning 33: function must return a value [2]
A function is expected to return a value uniess it is declared as
void.

warning34: sizeofreturns 0 [2]
The siteof operator is applied to an operand that yields a size
of zero .

warning 35: no return value [2]
A function declared to return a value does not do so.

warning36: unexpected formal parameter list [1]
A formal parameter list is given in a function declaration and
is ignored.

warning37: 'identifier' : formal parameters ignored [1]
Formal parameters appeared in a function declaration (for
example, "extern int •f(a,b ,c);"). The formal parameters are
ignored.

warning38: identifier : formal parameter hasbad storagcclass[l]
Formal parameten;must have auto or register storage class.

B-6

C Compiler and Lhtk Editor Enor Messages

warning39: 'identifier' : function used as an argument [1)
A formal parameter to a function is declared to b e a function,
which is illegal. The formal parameter is converted to a func
tion pointer.

waming40: near/far/huge on identifiedguored (1)
The near, far, and huge keywords have no effect in the
declaration of the given identifier and are ignored.

warning 41: formal parameter identifier is redefined [1)
The given formal parameter is redefined in the function body,
making the corresponding actual argument unavailable in the
function.

warning42: 'identifier' : has bad sturage class [1)
· The specified storage class cannot be used in this context (for

example, function parameters cannot be given class). The
default sturagnclass for that context is used in place of the ille
gal class.

warning 43: 'itkntifier' : void type changed to int [1]
Oulyfunctions may be declared to have void type.

waming44: hugnon 'identifier' ignored, must bean array[1]
The huge keyword canoulybe used in array declarations.

waming45: 'identifier' : array bounds overflow [1}
Too many initializers are present for the given array. The
excess initializers are ignored.

warning 46: '&' on function/ array, ignored (1 J
You cannot apply the address-of operator to a function or
array identifier.

warning47:'operator': different levels of indirection [1]
An expression involving the specified operator has incon
sistent level:> of indirection. For example,

char**p;
char*q;

p�q;
J• different levels of indirection */

warning48: array's declared subscripts different (1]
An array is declared twice with differing sizes. The larger size
is used.

warning49: operator : indirection to different types [1)
The indirection operator (•) is used in an expression to access
values of differenttypea.

warning 50: strong type mis-match [2)
Two different but compatible types are used: for example, a
typedef type with a non-typedef type, or two different but
equivalent struetorunion typea.

B-7

C User's Guide

warning 51: data conversion [3]
Two data items in an expression had different types, causing
the type of one item to be converted.

warning 52: different enum types [1]
Two different enum types are used in an expression.

warning 53: at least one void operand [1]
An expression with type void is used as an operand.

warning 54: 'operator' : illegal with enums [1]
You may not use the given operator with an enum value. The
enum value is converted to int type.

warning 55: type following 'keyword' is illegal, ignored [1]
An illegal combination occurs (for eXllmple, unsignedfloat).

warning 56: overflow in constant arithmetic [1]
The result of an operationexceeds0x7FFFFFFF.

warning 57: overflow in constantmultiplication [1]
The result of sn operation exceeds Ox7FFFFFFF.

warning59: conversion lost segment [1)
The conversion of a far pointer (a fnll segmented address) to a
near pointer (a segment offset) results in the loss of the seg
ment address.

warning60: conversion of along address to a short address [1]
The conversion of a long address (a 32-bit pointer) to a short
address (a 16-bit pointer) results in the loss of the segment
address.

warning 61: long/ short mismatch in argnments : conversion supplied [1]
An integral type is assigned to an integer of a different size,
causing a conversion to take place. For example, a long is
given where a short was declared, etc.

warning62: near/far mismatch in arguments: conversion supplied [1]
A pointer is assigned to a pointer with a different size, result
ing in the loss of a segment address from a far pointer or the
addition of a segment address to a uearpoiater.

warning63: function identifier too large for post-optimizer [OJ
The named function was not optimized because insufficient
space was avaOxble. To correct this problem, reduce the size
of the function by breaking it down into two or more smaller
functions.

warning 64: procedure too large, skipping �oop inversion or branch
sequence or cross jump] optimization and continuing[O]
Some optimizations for a function are skipped because
insufficient space is available for optimization. To correct this
problem, redoce the size of the function by breaking it down
into two or more smaller functions.

warning 65: recoverable heap overflowin post optimizer - some optimi
zations maybe missed [OJ

B - 8

Some optimizations are skipped because insufficient space is
available for optimization. To correct this problem, redoce
the size of the function by breaking it down into two or more
smaller functions.

r\

C Compiler and Link Editor Error Messages

warning 66: local symbol table overflow [0]
The compiler has run out of memory. Remove some dec!ara
tioru; and try recompiling.

warning 07: unexpected characterafollowing '% s' directive [1]
The ANSI standard requires that only white space follow a
line with a #endiC or #else directive. Use comments.

warning 68: unknown pragma [1]
A pragma has been given that the compiler does not know
how tO interpret.

warning 69: conversion of near pointer to long integer [1].
A near pointer is being converted to a long integer, which
involves first extending the high-order word with the current
data -segment value.

waming72: missing semi-colon [1]
The compiler sees that a semicolon is missing and inserts one.

warning73: scoplng too deep, deepest scopingmerged when debugging
[1]
The • Zi option has been used and static nesting level is greater
than 13. Variables declared at thatlevel or higher all appear to
have been declared at the same level when debugging.

waming74: non standard extension used- 'description' [3]
A language feature has been used that is not contained In the
ANSI standard for C.

warnlng75: size of awitch expression orCA SE constant too large - con
verted to int
Long value of expression truncated to Int.

B.2.4 Fatal Error Messages

The following messages identify fatal errors. The compiler cannot recover
from a fatal error; it terminates afterdisplayingthe error message.

fatal errorO: unknown fatal error
fatal error 1: assertion count exceeds5; stopping compilation

More than five assertion errors have acC]Jlllulated, and the
compiler cannot continue processing.

fatal error2: out of heap space
TI1e compiler has run out of dynamic memory space. This
usually means that your program has many symbols and com
plexexpressions. To correct the problem, break down the file
into several smaller source files.

fatalerror3: errorcounte:reeeds n; stopping compilation
Errors in the program are too numerous or too severe to allow
:recovery, and thecompilermustterminate.

fatal error4: unexpected EOF
This message appears when you have insufficient space on the
default disk drive for the compiler to create the temporary
files it needs. The space required is approximately two thnes
the sizeofthe source file.

B-9

C User's Guide

fatal error6: write error on compiler intermediate file
The compiler is unable to create the intermediate files used in
the compilation process. The exact reason is unknown.

fatal error 7: unrecognized llagstring in pass
One of the options given on the command line is not recog
nized and the file cannot be processed.

fatal error 8: no input file specified
You must give at least one source file as input to the compiler.

fatal error9: compiler limit : possibly a recursivelydefinedmacro
The expansion of a macro exceeds the available space. Check
to see whether the macro is recursively defined, or if the
expanded text is too large.

fatal error 10: compiler limit : macro expansion too big
The expansion of a macro exceeds the available space.

fatal error 11: recursively defined macro identifier
The given identifier is defined recursively.

fatal error 12: bad parenthesis nesting
The parentheses in a preprocessor directive are not matched.

fatal error 13: cannotopenji/enanw
The given file cannot be opened.

fatal error 14: too many include files
Nesting o f #in elude directives exceeds the limit of ten levels.

fatal error 15: cannotfindji!enanw
The given file does not exist or cannot be found. Check to
make sure your environment settings are vaild and that you
have given the correct pathname for the file.

fatal error 16: #if[n]def expected an identifier
You must specify an identifier with the #ifdef and #ifndef
directives.

fatal error 17: invalid integer constant expression
The expression in an #if directive must evaluate to a constant.

fatal error 18: unexpected '#elif'
The #elif directive is legal only when it appears within an #if,
#ifdef, or #ifudef directive.

fatal error 19: unexpected '#else'
The #else directive is legal only when it appears within an #if,
#lfdef, or #ifndef directive.

fatal error20: unexpected '#eodif'
An #endif directive appears without a matching #if, #ifdef,
or #ifndef directive.

fatal error21: bad preprocessor command 'string'.
The characters following the number sign (#) do not form a
preprocessor directive.

fatal error 22: expected '#endif'

B - 10

An #if, #ifdef, or #ifndef directive was not terminated with
an #endlf directive.

C Compiler and Link Editor Error Messages

fatal error26: parser stack overflow, please simplify your program
Your program cannot be processed because the space
required to parse the program caW!es a stack overflow in the
compiler. To solve this problem, try to simplify your pro
gram.

fatal error 27: DGROUPdata allocation exceeds 64K
Large or huge model allocation of variables to the default seg
ment exceeds 64K on an 86/286 processor; use the /GT option
to moveitemsinto separate segffients.

fatal error32: cannot open listingfilejilename
The filename orpathname given for the listing file is not valid.

fatal error33: cannot open assembly language output file filename
The filename or pathname given for the assembly language
output file is not valid.

fatal error 34: cannot open source file filename
Thefilenarnc orpathname given for the source file is not valid.

fatal error41: cannot open compiler intermediate file
The compiler is unable to create intermediate files used in the
compilation process because no more file handles are avail
able. Titis can usually be corrected by changing the "files ="
line in CONFIG.SYS to allow a larger number of open files
(60is the recommended setting).

fatal error 42: cannot open compiler intermediate file - no such file or
directory
The compiler is unable to create intermediate files used in the
compilation process because the TMP environment variable
is set to an invalid directory or path.

fatal error43: cannot open compiler intermediate file
The compiler is unable to create intermediate files used in the
compilation process. The exact reason is unknown.

fatal error 44: out of disk space for compiler intermediate file
"Ibe compileris unable to create intermediate files used in the
compilation process because no more space is available. To
correct the l'roblem, make more space available on the disk
and recompile.

fatal error SO: code segmenttoolarge
Segment larger than 4 gigabytes on 80386, 64K on 8086 and
80286.

B.2.5 CompilationErrnrMessages

The messages listed below indicate that your program has errors. When
the compiler encounters anyofthe errors listed in this section, it continues
parsing the program (if possible) and displays additional error messages.
However, no object file is produced.

errorO: UNKNOWNERRGR
An unforeseen error condition bas been detected by the com
piler. Please report tllis condition to the support center listed
on the support information card received with yoursofiware.

B-11

C User's Guide

errorl: newlinein constant
A newline character in a character or string constant must be
preceded bythe backslash escape character (\).

error2: out of macro actual parameter space
Arguments to preprocessor macros may not exeeed 256 bytes.

error3: missing open paren after keyword 'defined'
Parentheses must surround the identifier to be checked in an
#if directive.

error4: expected 'defined(id)'
An #if directive has a syntaxerror.

error 5: #line expected aline number
A #line directive lacks the mandatory line number
specification.

error6: #include expected a file name
An #Include directive lacks the mandatory filename
specification.

error 7: #define syntax
A #define directive has a syntax error.

error8: 'c' :unexpected in macro definition
The character cis misused in a macro definition.

error 9: reuse of macro formal identifier
The parameter list in a macro definition contains two
occurrences of the same identifier.

error 10: 'c' : unexpected in formal list
The character c is misused in a macro definition's list of formal
parameters.

error 11: 'identifier' : definition too big
Macro definitions may not exceed256 bytes.

error 12: missingnamefollowing'<'
An #Include directive lacks the mandatory filename
specification.

error 13: missing '>'
The closing angle bracket ('>') is missing from an #Include
directive.

error14:preprocessorcommandmust start asfirst non-whitespace
Non-whitespace characters appear before the number sign
(#) of a preprocessor directive on the same line.

error 15: too many chars in constant
A character constant is limited to a single character or escape
sequence. (Mul:ticharacter character constants are not sup
ported.)

error 16: no closing single quote
A newline character in a characterconstantmustbepreceded
by the backslash escape character (\).

error 17: illegal escape sequence
The character(s) after the escape character (\) do not form a
valid escape sequence.

error 18: unknown character 'Ox:n'

B - 12

The given hexadecimal number does not correspond to a
character.

C Complier and Link Editor Error Messages

error 19: expected preprocessor command, found 'c'
The characterfollowinganumber sigo (#) is not the firstletter
of a preprocessor directive.

error20: bad octal number'n'
The character n ls not a valid octal digit.

error21: expected exponent value: not 'n'
The exponent of a floating point constant is not a valid
number.

error22: 'n' : too big for char
The number n is too large to be represented as a character.

error23: dividebyO
The second operand in a division operation (/) evaluates to
zero, giving undefined results.

error24: modby0
The second operand in a remainder operation (%) evaluates
to zero, giving undefined results.

error25: 'identifier' : enurn/slruc!/union type redefinition
The given identifier has already been used for an enumeration,
structure, ornn.ion ta�

error 26: 'identifier' :member of enum redefinition
The given identifier has already been used for an enumeration
constant� either within the same enumeration type or within
another enumeration type with the same visibility.

error27: compiler lhnit : struct/union nesting
Nesting of structure and union definitions may not exceed-five
levels.

error28: strnct/union member needs to be inside & struct/union
Structure and union members must be declared within the
structure or union�

error 29: 'identifier' : fields only instructs
Only structore types may contain bitfields.

error30: struct/unionmemberredefinition
The same identifier was used for more than one structore or
union member.

error 31: 'identtfoJr' :function cannot be struct/union member
A function cannot be a member of a structure; use a pointer to
a function instead.

error32: 'identifier' : base type with near/far/huge not allowed
Declarations of structure and union members may not use the
near, far, and huge keywords.

error 33: 'identifier' : field has indirection
The bitfield is declared as a pointer (*), which is not allowed.

error34: 'identifier' : field type too small fornumberofbits
The number of bits specified in the bitfield declaralinn
exceedsthenumberofbitsin the given unsigned type.

error35: 'identifier' : unknown size
A member of a structure or union has an undefined size.

error 36: left of'-> identifier' or' .identifier' must have struct/union type
The expression before the member selection operator '->' is
not a pointer to a structure or union type, or the expression

B - 13

C User's Guide

before the member selection operator '.' does not evaluate to
a structure or union.

error37: left of'->' or '.' specifies undefined struct/union 'identifier'
The expression before the member selection operator '->' or
'.' identifies a structure or union type that is not defined.

error 38: 'identifier' : notstruct/union member
The given identifier is used in a context that requires a struc
tureorunionmember.

error 39: '->' requires structlunion pointer
The expression before the member selection operator '->' is
not a pointer to a structure or union.

error 40: t.' requires struct/union name
The expression before the member selection operator'.' is not
the name of a structure or union.

error41: keyword 'enum' illegal
The enum keyword appears in a structure or union declara
tion, or an enum type definition is not formed correctly.

error 42: keyword 'enum' required
The enum keyword is required in declarations of enumeration
types.

error 43: illegal break
A break statement is legal only when it appears within a do,
for, while, or switch statement.

error 44: illegal continue
A continue statement is legal only when it appears within a do,
for, orwhlle statement.

error45: identifier : label redefined
The given identifier appears before more than one statement
in the samefnnction.

error46:illegalcase
The ease keyword may only appear within aswitchstatement.

error 47: illegal default
The default keyword may only appear within a switch state
ment.

error48: more than one default
A switch statement contains too many default labels (only one
is atiowed).

error 49: cast has illegal formal parameter list
A formal parameter list is given in a type cast expression.

error 50: non -integral switch expression
Switch expressions must be integral.

error 51: case expression not constant
Case expressions must be integral constants.

error 52: case expression not integral
Case expressions mast be integral constants.

error 53: case value 'n' already used

B-14

The case value n has already been used in this switch state
ment.

C Compiler and Lbtk Editor Error Messages

error 54: expected (to follow 'identifier'
The contel<l requires parentheses after the function identifier.

error 55: expected formal parameter list, not a type list
An argument type list appears in a function definition instead
of aforroal parameter list.

error 56: illegal expression
An expression is illegal because of a previous error. (The pre
vious errormaynot have pr'?duced an error message.)

error 57: expected constant expression
The context requires a constant expression.

error 58: constant expression is not integral
The contel<lrequires an integral constant expression.

error 59: syntax error : 'token'
The given token caused a syntax error.

error60: syntax: error : EOF
The end of the file was encountered unexpectedly, causbtg a
syntax: error.

error 61: syntax: error : identifier identi,Mr
The given identi,Mr caUBed a syntax error.

error62: type 'identi,Mr' unexpected
The given type is misused.

error 63: 'identifier' : not a function
The given identifier was not declared as a function, but an
attemptwasmadeto UBeit as a function.

error 64: term does not evaluate to a function
An attempt is made to call a function through an expression
that does not evaluate to a function pointer.

error65: 'identifier' : undefined
The given identi,Mris not defined.

error66: cast to function returning. .. is illegal
An object cannotbecastto a function type.

error67: cast to arraytypeis illegal
An ohjectcannot be cast to an arraytype.

error 68: illegal cast
A type used in a cast operation is not a legal type.

error 69: cast of(void'term to non-void
The voidtypemaynotbecastto any other type.

error 70: illegal sizeof operand
The operand of a slzeof expression mUBt be an identifier or a
type name.

error71: 'class' : had storage class
The given storage class cannot be used in this context.

error72: 'identifier': initialization of a function
Functions may not be initialized.

error73: identifier : cannot initialize arrayinfnnction
Arrays can only be initializ.ed at the el<lemal leveL

error 74: cannot initialize struct/union in function
Structures and unions can only be initialized at the external
level.

B - 15

C User's Guide

error75: 'identifier' : array initialization needs curly brnces
The braces ({ }) around an at111yinitializer are missing.

error 76: structlnnion initialization needs curly braces
The braces ({ }) around a structure or union initializer are
ntissing.

error 77: non-integral field initializer identifier
An attempt is made to initialize a bitfield member of a struc
ture with a non-integral value.

error 78: too manyinitializers.
The number of initializersexceeds the number of objects to be
initialized.

error 79: identifier is au undefined struct/union
The given identifier is declared as a structure or union type that
has not been defined.

error 80: 'expression' was the use of the struct/union
An undefined structure or union type variable is used in the
given expression.

error81: compiler limit : initializers too deeply nested
The compiler limit on nesting of initializers has been
exceeded. The limit ranges from 10 to 15 levels, depending on
the combination of types being initialized. To correct this
problem, simplify the data type being initialized to reduce the
levels of nesting, or assign initial values in separate statements
after the declaration.

error 82: redefinition of formal parameter identifier
A formal parameter to a function is redeelared within the
function body.

error83: array 'identifier' already has a size
The dimensions of the given array have already been declared.

error84: function 'identifier' already has a body
The given function has already been defined.

error85: 'string' : ignored
The given text appeared out of context and was ignored.

error 86: 'identifier' :redefinition
The given identifier was defined more than once.

error 87: 'identifier' : ntissing subscript
To reference an element of an array you must use a subscript.

error 88: use of undefined xtract/union identifier
The given identifier was used to refer to a structure or union
type that is not defined.

error 89: typedef specifies a near/far function
Thenearorfarkeyword isusedin a typedefdeclaration.

error 90: function returns array
A function may not return an array. (It may return a pointer to
an array.)

error 91: function returns function

B-16

A function may not return a function. (It may return a pointer
to a function.)

�\
\ i
�

C Compiler and Link Editor Error Messages

error 92: array element type cannot be function
Arrays of functions are not allowed.

error94: label 'identiji£r'wasundefined.
The function does not contain a statement labeled with the
given identifier.

error 95: parameter has type void
Formal parameters and arguments to functions may not have
void type.

error96: struct/union comparison illegal
You cannot compare two structures or unions� (You can,
however, compare individual members of structure and
uninns.)

error 97: illegal initialization
An initialization is illegal because of a previous error. (The
previous error may not have produced an error message.)

error98: non-address expression
An attempt was made to initialize an item that is not an lvalue.

error 99: non-constant offset
An initializer uses a non-constant offset.

error 100: illegal indirection.
The indirection operator (•) was applied to a non-pointer
value.

error 101: '&' on constant
Only variables and functions can have their address taken.

error 102: '&' requires !value
The address-of operator can only be applied to !value expres
sions.

error 103: '&'on register variable
Register variables cannot have their address taken.

error104: '&'on bit field ignored
Bitfields cannot have their address taken.

error 105: 'operator'needslvalue.
The given operator must have an !value operand.

error 106: operator : left operand must be !value
The left operand of the given operatormust be an !value.

error 107: illegal index, indirection not allowed
A subscript was applied to an expression that does not evalu
ate to a pointer.

error 108: non-integral index
Only integral expressions are allowed in array subscripts.

error 109: subscript on non-array.
A subscript was used on a variable thatisnot an array.

error 110: '+' : 2 pointers
Twopointers maynotb e added.

error 111: pointer+ non-integral value
Only integral values may be added to pointers.

error 1 12: illegal pointer sub traction
Only pointers that point to the same type maybe subtracted.

B - 17

C User's Guide

error 113: '-' : right operand pointer
The right-hand operand in a subtraction operation (-) is a
pointer, but the left -hand operand is not.

error 114: 'operator' : pointer on left; needs integral right
The left operand of the given operator is a pointer; the right
operand must be an integral value.

error 115: identifier : incompatible types
An expression contains types that are not compatible.

error116: operator : bad left orright operand
The specified operaed ofthe given operatoris an illegal value.

error 117: 'operator' : illegal for structlunion
Structure and union type values are not allowed with the given
operator.

error 118: negative subscript
A value defining an array size was negative.

error 119: 'typedefs' both define indirection
Two cypedef types are used to declare an item aed both
cypedeftypes have indirection. For example, the declaration
of p in thefollowingexample is illegal.

typedef in t •p JNT;
typedef short *P...SHORT;
/*thls declarationis illegal */
P...SHORT PJNT p;

error 120: 'void' illegal with all types
The void type cannot be used in operations with other types.

error 121: typedef speciftes different emnn
Two different enumeration types defined with typedef are
used to declare an item, but the enumeration types are
different.

error 122: typedef specifies different struct
Two structure types defined with cypedef are used to declare
an item, but the structure types are different.

error 12:3: typedef specifies different union
Two union types defined with cypedef are used to declare an
item, butthe union types are different.

error 124: code generation error
The compiler could not generate code for an expression. Usu
ally this occurs with a complex expression. Trying rearranging
the expression.

error 125: allocation exceeds 64K for identifier
The given item exceeds the limit of 64K. The only items that
are allowed to exceed 64K on an 861286 processor are huge
arrays.

error 126: auto allocation exceeds 32K

B - 18

The space allocated for the local variables of a function
exceeds the limit of 32 kilobytes.

(�
\"-...__

c

C CompHer and Link Ediwr Error Messages

error 127: parameter allocation exceeds 32K
The storage space required for the parameters to a function
exceeds the limit of32 kilobytes.

error 128: huge'identifier' cannot be aligned to segment boundary
The given array violates one of the restrictions imposed on
huge arrays; review the discussion of these restrictions for
details.

error 129: static procedure 'Identifier' not found.
A forward reference was made to a missing static procedure.

error 130: #lioeexpccted a string containing the filename
Invalid syntaxfor#line directive (missing file name).

error 131: attributes specify more than one near/far
More than one near or far attribute applied to an item.

error 132: syntax error: unexpected identifier
identifier seen in a syntactically illegal context.

error 133: array'o/os': unknown size
Attempt to declare unsized array as Jocalvariahle.

error 134: symbol too large
Size of array exceeds compiler limit (2'16 in 80286 mode or
2'32bytesin80386mode).

error 135: missing')' in macro expansion
A macro reference with arguments is missing a closipg
parenthesis.

error 137: empty character constant
An illegal character constant was used.

error 138: unmatched close comment
Compiler detacted *I without matching !•. This usually indi
cates an attempt to use illegal nested comments.

error 139: type following'% s' is illegal
lliegal type combination.

error 140: argument type cannot be function returning
A function is declared as a formal parameter of another func
tion.

error 141: value outofrangefor enum constant
An enum con.<tant has a value outside the range of values
allowed for integer types.

error 142: ellipsis requires three periods
The compiler has detected the token .. and assumes .. . was
intended.

error 143: syntax error: missing '%s' before '%s'
Invalid token. Replace and recompile.

error 144; syntaxerror: missing'%s} before type 'o/os'
Invalid token. Replace and recompile.

error 145: syntax error: missing'% s' before identifier
Invalid token. Replace and recompile.

error 146: syntax error: missing 'o/os'beforeidentifier '% s�
Invalid token. Replace and recompile.

error 147: array size unknown
Array sizeisnotknown.

B-19

C User's Guide

B.2.6 Compiler Limits

To operate the C Compiler, you must have sufficient disk space available
for the compiler to create temporary files used in processing. The space
required is approximately two times the sm. ofthe source file.

The following table summarizes the limits imposed by the C compiler. If
your program exceeds one of these limits, an error message will inform you
of the proo !em.

Program Item

String LiteraJs

Constants

Ideolilitm

Declarations

Preprocessor Directives

Limits Imposed by the C CompUer

Description

Maximum length of a
string, including the
terminating null char
acter(\0).

Maximum size of a
constant is deter
mined by its type; see
the XENIX C
Language Reference
for a discussion of
constants.

Maximum length of
an identifier.

Maximum level of
nesting for
stnl(:tute/union
definitions.

Maximum size of a
macro definition.

Maximum number of
actual arguments to a
macro definition.

Maximum length <rf
an actual preproces
sor argument.

Maximum level of
nesting for #if�
#ifdef, and #ifndef
directives.

Maximum level of
nesting for include
files.

Limit

512bytes

31 b;1es (additional
characters are dis
carded)

5 levels

512bytes

&arguments

256bytes

321evels

lQlevels

The compiler does not set explicit limits on the number and complexity of
declarations, definitions, and statements in an individual function or in a
program. If the compiler encounters a function or program that is too large
or too complex to be processed, it displays an error message to that effect.

B-20

C Compiler and Link Editor Error Messages

B.3 Link Editor Error Messages

The error messages produced by the Clinker fall into three categories:
• Fatal-errormessages
• Linkererrormessages
• W aming messages

Fatal-error messages .indicate a severe problem, one t)lat prevents the
linker from processing the object code. After printing a message about the
fatal error, the linker terminates linking without producing an executable
object file or checking for further errors. Fatal-error messages have the
following form:

<location> :fatal error Llxxx: <messagetext>

Li.nk<lr error messages indicate a problem in the executable object file.
After printing a message, the linker produces the executable file and sets
the error bit in the header. LinkererrormessageshavethefoUowingforrn:

<IJJcation> : error L2xxx: <message text>

Warning messages are informational only; they do not prevent the linker
from processing the relocatable object code into executable object code.
Rather, warning messages just indicate possible probleiils in the ex.ecut
ableobjectfile. Warning messages have thefoUowingform:

<location> : warning L4xxx: <message/ext>

In the messages, <location> represents the input file, or path name of the
linker if an input file is not present. The XXX represents the message
number, and <messagetext> defines the message.

B.4 Linker Fatal- Error Messages

The fo11owing messages identify fatal errors. The linker can not recover
from a fatal error, instead the linker terminates linking after printing the
fatal-errormessage.

fatal error L1002: unrecognized option name
An unrecognized character was given following- on the com
mand line.

fatal error L1004: badly formed number
A n invalid numeric value was given for an option.

fatal error L1008: segmentlimit set too high
The number following the . S option is larger than 1024, which
is the largest number allowed.

fatal error Ll011: badly formed he'IOnumber
An invalid hexadecimal nwneric value was given with an
option.

B-21

------- ····-----·

C User's Guide

fatal error L1012: number too large
A D111Ilberwas appended to an option greater !ban 2'32-1.

fatal error Ll013: version n111Ilbermissing
The .. v option was given without a version number.

fatal error L1014: unrecognized Xenixversion number
The number following the -v option must be either2, 3, or 5.

fatal error L1015: address missing
The· A optinnreqnines an appended number.

fatal error L1016: -A and-Fare mutually exclusive
The-A and· F options are mutually exclusive.

fatal error Ll018: Pagesize value missing
The · N option was given without afol!owingpagesize number.

fatal error L1019: pagesizelargertban OxfeOO
The · !S option is given with a page size value largerthan OxfeOO,
wbich is tbe largest aile wed.

fatal error L1020: no object modules specified
No object modules are specified on tbe command line. At
least one must be specified for the linker to produce an output
file.

fatal error L1023: terminated by user
An interrupt was issued while the linker was operating.

fatal error L1045: too manyTYPDEFrecords
An object module contains more tban 255 TYPDEF records.

fatal error L1046: too many external symbols in one module
An object module specifies more than the maximum limit of
1023 external symbols. Break the module into smaller parts or
reduce the number of external references.

fatal error L1047: too many group, segment, and class names in one
module
An object module contains too many gronp, segment, and
class names. Reduce the number of groups, segments, or
classes in !be module.

fatal error L1048: too many segments in one module
An object module has more than the maximum litnit of 255
segments. Split the module or combine segments.

fatal error L1049: too many segments
The program contains more !ban the default maximum limit
of 128 segments. Relink tbe program using the • S option,
assigulng an appropriate number of segment.<.

fatal error L1050; too many groups in one module
The module contains more !ban the maximum limit of 21
group definitions (GRPDEF records). Split tbe module or
redefine group definitions.

fatal errorL1051: toomany groups
The program contains more than tbe maximum limit of 20
groups, not conntingDGROUP. Reduce the number of group
definitions.

B-22

C Compiler and Link Editor Error Messages

fatal error L1053: symbol table overflow
The program contains more than the maximum limit of 512K
symbols, such as public, external, segment, group, class, and
filenames. Reduce then umber of symbols.

fatal error Ll054: requested segment limit too high
The linker does not have have sufficient memory to describe
the number of segments requested by the • S option. Reduce
the segment argmnentto a number below 1024.

fatal error L1057: data record too large
An LED ATA record contains more than the maximum limit
of 1024 bytes of data. Note which translator, compiler or
assembler produced the incorrect object module.

fatal error Ll070: segment size exceeds 64K
A single 16-bit segment contains more than 64K of code or
data. Reduce the size of the segment to Jess than 64K.

fatal error Ll072: common area longer than 65536bytes
The program has more than !be maximum limit of 64K of com
munal variables allowed for 8086 and 80286 executable files.
Note that this error is not generated by the macro assembler,
but only by compilers supporting communal variables.

fatal error L1075: segment size exceeds <number>
A 32-bit segment e10ceeds the maximum limit of code or data
imposed by the linker, which is indicated by number. Reduce
the size of the segment.

fatal errorL1076: common area longer than 4G-l bytes
The program has more than the maximum limit of 4
gigabytes-1 of communal variables allowed for 80386 execut
able files. Note that this error is not generated by the macro
assembler, but only by compilers supporting communal vari
ables.

fatal error L1080: cannot open list file
The linker cannot create the list (map) file.

fatal error L1081: out of spaceforrun file
The disk on which the executable output file is being written to
is full. Free more space on the disk and restart the linker.

fatal error LI083: cannot open run file
The disk on which the executable outputfileis being written to :
is full or tbe file already exists with read -only permissions.
Free more space on the disk or change permissions.

fatal error L1085: cannot open temporary file
The disk on which the temporary file is being written to is full.
Free more space on the disk and restart the linker.

fatal error L1086: scratch file missing
The linker is unable to open a temporary file recently created.
Restart the linker.

fatal error Ll087: unexpected end -of -file on scratch file
A temporary file recently created b y the linker was unexpect
edlyreducedin size. Restart the linker.

B-23

C User's Guide

fatal error L1088: out of space for list file
The disk on whlch the list file is being written to is full. Free
more space on the disk and restart the lfuker.

fatal error L1091: unexpected end-of -file on library
All required data in the library file was not read before
encountering the end-of -file. Replace the library file and res
tart the linker.

fatal error L1093: object not found
The object module specified on the command line does not
exist. Restart the linker, verifying the correct object-module
path name.

fatal error L1101: invalid object module
One of the object modules specified on the command line is
invalid. Restart the linker. H the fatal error persists, contact
your XENIXsystem administrator.

fatal error L1103: attempt to access data outside segment bounds
A data record in an object module specifies data extending
beyond the end of the segment. Note which translator, assem
bier or compiler produced the incorrect object module and
notifyyour XENIX system administrator.

fatal error L1113: unresolved COMDEF, internal error
An internal error has occurred; notify your XENIX system
administrator.

fatal error Lll20: use -i option
The program uses more than one segment and it is being
linked as impure. hnpure executable files can have only one
segment.

fatal errorL1121: <namJJ>: grouplargerthan4G-1bytes
The name 32-bit group contains segments larger than 4
gigabytes-1.

fatal error Lll22: <namJJ> : group largerthan 64K bytes
The name 16-bit group contains segments larger than 64K.

fatal error L1123: <namJJ> : both 16-bit and 32-bit segments in group
The name group containsboth 16-bit and 32-bit segments.

fatal error L1124: relocation value missing
The . Rtor- Rd option was given without an argument.

fatal error L1125: stack size missing
The • F option was given without an argmuent.

B-24

(
�.

C Compiler and Link Editor Error Messages

B.4.1 Run-Time Library Error Messages

The following message may be generated at I"Ull time when your program
has a serious error.

error2000: Stack overflow
Your program has run out of stack space. This can occur
when a program uses a large amount of local data or is heavily
recursive. The program is terminated with an e:rit status of
255. To correct tlie problem, allocate a larger stack size by
using tbe -F option on the cc compile line.

Note

Attempting to divide an integer by 0 is an error. However, unless you
make provisions to trap the signal, this error will be ignored. The error
signahs04, SIGILL, illegal instruction.

B.4.2 Run-Time Liml1s

Table B.2 summarizes the limits that apply to programs at run time. If your
program exceeds one of these limits, an error message will inform you of
tlie problem.

Program Item

Files

Command Line

Environment
Table

Program Limits at Run Time
Description

Maximum file size

Maximum number
of open files (streams)

�untnur:nberof
characters (including
progrun name)

Maximum size

tnree streams are opened automatically(stdin, stdout, and stderr) le:avlng
57avai!ahiefortheprogram to open,

B.5 Linking· Error Messages

Limit

232-1 b}1e$
(4gigabytes)

60'

The following messages identify errors m the executable object file. The
linker continues processing upon encountering these errors.

B-25

C User's Guide

error L2001: fixup(s) without data
A FIXUPP record occurs without a data record immediately
preceding it. Note which translator, compiler or assembler,
produced the incorrect object file and notiiyyour XENIX sys
tem administrator.

error L2002: fixup overflow near numin frame segment name target seg
mentsegment name target offset number
Some possible causes are: (1) A group is larger than 64K; (2)
the user's program contains an intersegment short jump or
intersegment short call; (3) the user has a data item whose
name conflicts with that of a subroutine inalibrary included in
the link; and (4)theuserhasan EXTRN declaration inside the
body of a segment. For example: CODE segment public
'code' extern main:far start proc far

call main
ret start endp CODE ends The following construction is

preferred: extern main:far CODE segment public 'code'
start proc far

call main
ret start endp CODE ends Revise the source and recreate

theobject file.
errorL2011: name : NEAR/HUGE conflict

Both the near and huge attributes are given for the name com
munal variable. This error only occurs in programs produced
by compilers supporting communal variables.

error L2012: name : array-element size mismatch
The far name communal array is declared with two or more
different array-element sizes. This error only occurs in pro
grams produced by compilers supporting communal vari
ables.

errorL2025: name : symbol defined more than once
The public name symbol is defined more than once. Use only
one declaration.

error L2029: unresolved externals

B-26

One or more symbols are declared external, but they are not
declared in any other module or library. A list of unresolved
external references appears after the error messages in the fol
lowing form :

unresolved...externaLsymbol infile(s)

file . . .

The unresolved...external...symbol is the symbol that is not
resolved and file is thefile(s) that references the symbol.

(-, . I
"--/

l
�;

C Compiler and Link Editor Error Messages

B .6 Linker Warning Error Messages

The following messages identify errors in the relocatablc object file to be
processed, or the path name of the linker, if the object file is not given.

warning iA020: <name> : code segment size exceeds 65500
The 16-bit code segment name, of length 65,501 to 65,536
bytes, is unreliable on the 80286.

warningiA031: <name> : segment declared in more than one group
The name segment is declared in more than one group.

warning IA032: <name> : segment defined both 16-, 32-bit, assuming
32
The name segment is defined both as a 16-bit and 32-bit seg
ment and is marked as a 32-bit segment in the segment table.

warningiAOSO: too many public symbols
The maximum limit of 3072 public symbols has b een defined,
causing the • m option to not sort the symbols in the map file.

warning 1A060: code group longer tban 65530
A group containing 16-bit code segments, with a total length
of 65,501 to 65,536bytes, is unreliable on the 80286.

warningiA061: multiple code segments--should be medium model
The program defines more than one code segment and the
• Mm, • MI, -Mh, or· Me option was not given. Verify that all
modules have the same memory model, or link with the • Me
option.

\llarningiA062: multiple data segments--should be large model
The program defines more than one data segment and the
.MJ, - Mh, or - Me option was not given. Verify that all
modules have the same memory model, or link with the • Me
option.

warningiA063: stack option ignored for 80386 executable
An • F option was given while linking an 80386 1ibrary;
the linker ignored the · F option.

warninglA064: page-alignment option ignored for 80286 executable
An • N option was given while linking an 80286 library; the
linkerignored the -N option.

B-27

·---··--··- - - .

"'--'

\ � � /

Appendix C

s db : The Symbo lic Debugger

C.1 Introduction C-1

C.2 Usingsdb C-1

C.3

C.4

c.s

C.6

C.7

C.2.1 Starting sdb With a Program File C-2
C.2.2 Starlings db With a Core Image C-2
C.2.3 Printing a Stack Trace C-4
C.2.4 Examining Variables C-4
C.2.5 Matching Patterns for Variables and Functions C-4
C.2.6 SpecifyingVariableFormats C-5
C.2.7 DisplayingandFormingAddresses C-6
C.2.8 Leaving sdb C-7

Displaying and Manipulating Source Files C-7
C.3.1 Displaying the Source File C-7
C.3.2 Setting the Current File or Function C-8
C.3.3 Setting the Current Line C-8
C.3.4 Searchingfor Regular Expressions C-9

Controlling Program Execution C-9
C.4.1 Setting and Deleting Breakpoints C-9
C.4.2 Single Stepping Through a Program C-11
C.4.3 Running the Program C-11
C.4.4 Calling Functions and Procedures C-12

Debugging Machine Language Programs C-13
C.5.1 Displaying Machine Language Statements
C.5.2 Manipulating Registers C-14

UsingXENIX Shell Commands C-14

A Sample sdb Session C-15

C-13

\

sdb: The Symbolic Debugger

C.l lotroduction

This chapter describes a symbolic debugger, sdb, as implemented for C
and assembly language programs on the XEN!Xoperating system.

You can use the sdb program both for examining core images of aborted
programs and for providing an environment in which execution of a pro
gram can be monitored and controlled •. The sdb program allows you to
interact with a debugged program at the source language level. It carefully
controls the execution of a program while letting you examine and modify
the program's data and te�1 areas.

This chapter explains how to use sdb. lo particular, it explains how to:

• Startandstopthe deb ugger
• Display and manipulate instructions and data in source files
• Control and monitor program execution
• Debugmachine language programs

A tutorial is provided at the end of this chapter that shows you how to work
your way through your program using sdb.

C.2 Using sdb

The sdb program provides a comprehensive set of commands to let you
examine, debug, and repair source files. To use all of the sdb features, it is
necessary to compile the source program that will be debugged with the
-Zioption using a command of the form:

cc -Zi filename.c -o filename

You must also link the executable object file with the ·I option using the
command:

ld -I objectfiles • o filename

This causes the c<;>mpiler to generate additionalinformation about the vari
ables and statements of the compiled program. When the -Zi option has
been specified, sdb can be used to obtain a trace of the called functions at
the time of the abort and interactively display the values of variables.

There are two basic ways to use sdb: by running your program file under
control of sdb, or by using sdb to examine the core image file left by a pro
gram thatfailed. The first way Jets you run the program with sdb to see what
is happening up to the point at which the program fails (or you can skip past
the failure point and proceed with the run). The second method lets you
check the status of the core file at the moment the program fails, which
may or may not disclose the reason it failed. Both of these methods are dis
cussed in detail in the following sections.

C-1

C User's Guide

C.2.1 Starting sdb With a Program File

You can debug any executable C or assembly language program file bytyp-
ingacommand lineofthe fonn: -,,

sdb [filename]

where filename is the name of the program file to be debugged. sdb opens
the file and prepares its text (instructions) and data for subsequent debug
ging. For example, the command:

sdb sample

prepares the program named "sample" for examination and execution.

Once started, sdb prompts with an asterisk (*) and waits for you to type
commands. If you have given the name of a file that does not exist or is in
the wrong format, sdb will display an error message first, then wait for
commands.

You may also start sdb without a filename. In this case, sdb searches for
the default file, a. out, in your current working directory and prepares it for
debugging. Thus, !he command:

sdb

is the same as typing:

sdba.out

sdb displays an error message and waits for a command if the a. out file
does not exist.

C.2.2 Starting sdb With a Core lmage

The sdb program lets you examine the core image files of programs that
caused fatal system errors.· When debugging a core image from an aborted
program, sdb reports which line in the source program caused the error
and allows all varinbles to be accessed symbolically and to be displayed in
!he correct format. '

To illustrate !he process of debugging a core image file, we will use a
hypothetical file called prgm.c and show a typical set of commands and
responses for this process. First you must compile and execute !he pro
gram by typing !he command:

cc -Zi prgm.c -o prgm

C-2

sdb: The Symbolic Debugger

Execute the program by typing the command line:

prgm

In this example, we will assume that an error occurred while executing the
program, causing a core dump. The output resulting from this error is:

Bus error - core dumped

Now invoke the sdb program and examine the core dump to determine the
causes of the error using the command:

sdb prgm

A possible response from the sdb program is:

ma.in:25: x[i:FO;
*

This output means that the bus error occurred in function main at line 25
(line numbers are always relative to the beginning of the file) and outputs
the source text of the offending line. The sdb program then prompts the
user with an •, which shows that it is waiting for a command.

It is useful to know that sdb uses a notion of current function and current
line. In this example, they are initially set to main and 25, respectively.

In the example shown in this section, sdb was called with one argument,
prgm. In general, ittakesthree arguments on the command line:

1. The first is the name of the executable file that is to be debugged; it
defaults to a.out when not specified.

2. The second is the name of the core file, defaulting to core. You can
prevent sdb from opening this file byusingthe hyphen (-) in place of
the core filename.

3. The third argument is the list of the directories (separated by
colons) containing the source of the program being debugged. The
default is the current working directory.

In the example; tlie second and third arguments defaulted to the" correct
values, so onlythefirstwas specified.

If the error occurred in a function that was not compiled with the -ZI
option, sdb prints the function name and the address at wbich the error
occurred. The current line and function are set to the first executable line
in main. If main was not compiled with the -ZI option, sdbw:ill print an
error message, but debugging can continue for those routines that were
compiled with the -Zioption.

A sample sdb session with more examples is shown at the end of this
chapter.

C-3

C User's Guide

C.2.3 Printing a Stack Trace

When debugging a program, it is often useful to obtain a listing of the func
tion calls that led to the error. You may obtain this listing by typing the t
command in response to the sdb prompt:

*t

Posstble output from the t command might be:

sub(x�2,y-3) [prgm.c:25]
inter(i�16012) [prgm.c:96]
main (argc� 1, argv=Ox7fffff54,envp-o.:'llffff5c) [prgm .c:15J

This indicates that the program was stopped within the function sub at line
25 in file prgm.c. The sub function was called with the arguments x=2 and
y=3 from inter at line 96. The Inter function was called from main at line
15. The main function is always called by a startup routine with three argu
ments often referred to as argc, argv, and envp. Note that argv and envp are
pointers, so their values are printed in hexadecimal.

C.Z.4 Examining Variables

The sdb program can be used to display variables in the stopped program.
Variables are displayed by typing their name followed by a slash. To
display the value ofvariableenjiag, type the following command:

*errllag{

Unless otherwise specified, variables are assumed to be either local to or
accessible from the current function. To specify a different function, give
the name of the function and the name of the variable you would like to list
separated with a colon character(:). For example, to display variable iin
function sub, typethe followingcommand:

*sub:i/

FORTRAN users can specify a common block variable m the same
manner, provided it is on the call stack.

C.2.5 Matcbhtg Patterns for Variables and Functions

The sdb program supports a limited method of pattern matching for v.ari
able and function names. The symbol • is used to match any sequence of
characters of a variable name and ? to match any single character.

C-4

sdb: The Symbolic Debugger

To print the values of all variables beginning with the letter x, type the fol
lowingcommand:

x/

To print the values of all two letter variables in function sub beginning with
the lettery, type the following command:

*sub :y'l/

To print all variables in the currentfunction, type the following command:

.. ,

In the first and last examples, only variables accessible from the current
function are printed. To display the variables for each function on the call
stack, type the followingcommand :

C.2.6 Specuying VarlableFonnafs

The sdb program normally displays the variable in a format determined by
its type as declared in the source program. To request a different formal, a
specifier is placed after the slash. The specifier consists of an optional
length specification followed bythe format. The length specifiers are:

b Onebyte
h Two bytes (half word)
I Four bytes (long word)

The length specifiers are effective only with the formats d, o, x, and n. If no
length is specified, the word length of the host machine is used. A number
can be used with the s or a formats to control !he number of characters
printed. The s and a formats normally print characters until either a null is
reached or 128 characters have been printed. The number specifies exactly
how many characters should be printed. The available format specifiers
are describ edbelow:

c
d
u
0
X
f
g

character
decimal
decimal unsigned
octal
hexadecimal
32-bit single-precision floating point
64-bit double-precision floatingpoint

C-5

C User's Guide

s Assume variable is a string pointer and print characters starting at
the address pointed to by the variable until a null is reached.

a Print characters starting at the variable's address until a null is
reached.

p Pointer to function.
i Interpret as a machine-langnage instruction.

For example, to display the hexadecimal value of the variable flag, type the
following command:

*J!ag/x

The sdb program also knows about structures, arrays, and pointers so that
all of the following commands work:

*array[2l[3]/
*sym.idl
*psym->usage/
*xsym[20]. p->usage/

The only restriction in the above cases is that array subscripts must be
numbers. There are also other special cases. For example, to display the
structure pointed to bypsym, type the following command:

*psym[O]

The result of this command will be in decimal format.

C.2. 7 Displaying and FonulngAddresses

Core locations can also be displayed by specifying their absolute
addresses. To display location 1024 in decimal, type the command:

*10241

As in C langnage, numbers may also be specified in oetal or hexadecimal so
the above command is equivalent to both the following commands:

*02000/

and

*Ox400/
It is possible to mix numbers and variables. To refer to an element of a
structure starting at address 1000, type the following command:

*lOOO.x/

C-6

(
""-

sdb: The Symbolic Debugger

To refer to an element of a structure whose address is at HXX), type the fol
lowing command:

*1()()()->x/

For commands involving data structures, the sdb program uses the struc
ture template of the last structure referenced.

To display the address of the variablei, type the following command:

*i=

To redisplaythelast variable typed, use the following command:

•.t

C.2.8 Leaving sdb

To exit sdb and return to the system shell, use the q or quit command.

C.3 Displaying and Manipulating Source Files

The sdb program has been designed to make it easy to debug a program
without constant reference to a current source listing. Features are pro
vided that perform context searches within the source files of the program
being debugged and that display selected portions of the source files. The
commands are similar to those of the UNIX system text editor ed(C). Like
the editor, sdb uses a notion of current file and line within the current file.
sdb also knows how the lines of a file are partitioned into functions, so it
also uses a notion of current function. As noted in other parts ofthis docu
ment, the current function is used by a number of sdb commands.

C.3.1 Displaying the Source File

Four commands exist for displaying lines in the source file. They are useful
for perusing the source program and for determining the context of the
current line. The commands are:

p
w
z

Ctrl-D

Displays the current line.
Displays a window often lines around the current line.
Displays ten lines starting at the current line. Advances
the current line by ten.
Scrolls ten lines down. Displays the next ten lines and
advances the current line by ten. This command is used
to cleanly display long segments of the program.

C-7

C User's Guide

When a line from afile is displayed, it is preceded by its line number. This
not only gives an indication of its relative position in the file, but it is also
used as input bysomesdb commands.

C.3.2 Setting the Current File or Function

You can use the e command to change the current source file. For exam
ple, you can change the current file t6 file.c by typing the following com
mand:

*e:file.c

In the above example, the current line is also set to the first line in the
specified file.

You can also specify that you want a file containing a certain function to
become the current file. For example, to change the current file to the file
containingjUnction, type thefollowingcommand:

*efunct:ion

The above command also causes the first line of the function specified to
become thecurrentline.

To display the current function and file, use the e command with no argu
ments.

C.3.3 Setting the CurrentLine

There are several ways to change the eurrent line in the souree file. For
many of the commands, sdb behaves the same as the line editor ed(C). It
may be helpfnl for you to refer to the documentation on ed if you are
unfamiliar with the concept of current line.

The + and - commands may be used to move the current line forward or
backward by a specifiednumberoflines. Typing advances the current line
by one, and typing a number causes that line to become the current line in
the file. For example, you can advance the currentline bylS and then print
ten lines using the following command line:

*+15z

When you use the z or Ctrl-D commands to display data, they also set the
current line to the last line displayed.

C-8

sdb: The Symbolic Debugger

C.3.4 SearchingforRegularExpressions

There are two commands for searchingforinstances of regular expressions
in source files. To search forward through a file for a line containing a
string that matches a regular expression, use a command ofthe form:

*/regular expression

To search backward through a file for a line containing a string that
matches a regular expression, use a command of the form:

*?regular expression

The method used to match regular expressions in sdb is identical to that
used by ed(C).

C.4 Controlling Program Execution

One very useful feature of sdb is breakpoint debugging. After entering
sdb, breakpoints can be set at certain lines in the source program. The
program is then started with an sdb command. Execution of the program
proceeds as normal until it is about to execute one of the lines at which a
breakpoint has been set. The program stops and sdb reports the break
point where the program stopped. At this point, sdb commands may be
used to display the trace of function calls and the values of variables. If the
user is satisfied the program is working correctly to !)lis point, some break
points can be deleted and others set; and program emcution may be con
tinued from the point where it stopped.

C.4.1 Setting and Deleting Breakpoints

You can set breakpoints at any line in any function if your program has
been compiled correctly. You will use the b command to set breakpoints.
To set a breakpoint at line 12 in the current file, type the following com
mand:

*12b

The line numbers are relative to the beginning of the file as printed by the
source filedisplaycommands: p, w, z, and Ctrl-D.

To set a breakpoint at line 12 of function proc, type the following com-
'-·- � ma:nd :

*proc:12b

To set a breakpoint at the first line of function proc, type the following
command:

C-9

C User's Guide

*proc:b

To set a breakpoint at the current line, type the following command:

*b

You can delete breakpoints in the same way that you set them using the d
command. To delete a breakpoint at line 12 in the current file, type the fol
lowing command:

*12d

To delete a breakpoint at line 12 of function proc, type the following com
mand:

•proc:12b

To delete a breakpoint at the first line of function proc, type the following
command:

*proc:b

To delete breakpoints interactively, type the d command with no argu
ments. sdb prints the location of each breakpoint and waits for a response
from the user. If you respond with ay or d, the breakpoint is deleted.

To print a list of all the current breakpoints, use the B command. To delete
all the current breakpoints, use theD command.

You can also use the breakpoint command to automatically perform a
sequence of commands at a breakpoint and then have execution continue.
For example, if you want both a trace back and the value of 0 to be
displayed each time execution gets to line 12, type the following coil111land:

*12b t;x/

The a command also allows sdb to perform debugging functions aud then
automatically let the program contmue execution. lf you want a function
name aud its arguments to be printed each time it is called, type the follow
ingcommand:

*proc:a

lf you want a certain line in the source code to be printed each time it is
about to be executed, type the following command :

*proc:12a

C-10

/

sdb: The Symbolic Debugger

When using the a command, execution continues after the function name
or source line is printed.

C.4.2 Single Stepping Through a Program

A useful alternative to setting breakpoints is single stepping through a pro
gram. Sdb can b.e requested to exec11te the next line J>.f the program an.d
then stop usingthes command. The command lias the form:

[count]s

where count is the number of lines to execute in each step. This command
is useful for slowly executing the program to examine its bebaviorin detail.

The S command is similar to the s command but it steps through the pro
gram function by function, rather than line by line. It is often used wllen
one is confident that the called function works correctly but is interested in
testing the calling routine.

Single stepping is especially useful for testing new pro grams, so they can be
verified on a statement-by-statement basis. If an attempt is made to single
step through a function that has uot been compiled with the -Zi option,
and linked with · I option, execution proceeds until a function is reached
that has been compiled and linked in this way.

You can use the i command to run the program one machine level instruc
tion at a time while ignoring the signal that stopped the program. Its uses
are similar to the s command .

The L command loads the program to be debugged but does not run it. If
you wish to examine the initial values of memory locations before the pro
gram has started to run, or to disassemble portions of the program without
actually running it, you must enter the L command before you begin.

There is also an I eommand that causes the program to execute one
machine level instruetion at a time, but also passes the signal that stopped
the program baek to the program. These machine level commands are par
ticularly useful when you have not compiled and linked your program with
the necessary options.

Refer to the XENIX Reference for more information on the single stepping
commands.

C.4.3 Running the Program

Tbe rcommand is used to begin program execution. Thiseommand allows
you to restart the program as if it were invoked from 01e shell. For exam-

C-11

C User's Guide

pie, to run the current program with given arguments, use a command of
the form:

"rargs

If no arguments are specified, then the arguments from the !sst execution
of the program within sdb are used. To run a program with no arguments,
usetheR command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as INTERRUPT or QUIT occurs, or the program
terminates. INTERRUY! and QUIT are represented as DEL and Ctrl-Din .
In all cases sfter an appropriate message is printed, control returns to the
user.

To continue execurion of a stopped program, use the � command. You
can also use the e command to insert a temporary breakpoint during execu
tion. For example, to place a temporary breakpoint at line 12 and resume
execution of a stopped program, type the following command:

*proc:12c

The temporary breakpoint is deleted when the c command finishes.

If you want the signal that stopped program execution to be passed back to
the pro gram, use the C command. This command is useful for testing
user-written signal handlers.

Execution may be continued at a specified line with the g command. For
example, you may continue program execution at line 17 of the current
function with the following command:

*17g

This command is useful when you want to avoid a section of code that you
already know is bad. You should not attempt to continue execution in a
function different than that of the breakpoint.

C.4.4 Calling Functions andProcedures

It is possible to call any of the functions or procedures in the program from
sdb. This feature is useful both for testing individual functions with
different arguments and for calling a user-supplied function to display
structured data. To simply execute a function or procedure, use a com
mand of the form:

*proc(argl, arg2, . • .)

C-12

sdb: The Symbolic Debugger

To call a function and display the value that it returns, use a command of
the form:

*proc(arg1, arg2, . . .)lm

The value is displayed in decimal unless some other format is specified by
m. Arguments to functions may be integer, character or string constants,
or variables that are accessible from the currentfunction.

If a function is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the function is started. This makes it impossible to use a function
that formats data from a dump.

C.S Debuggbtg Machbte Langnage Programs

The sdb program has facilities for examining programs at the machine
language level. It is possible to printthe machine language statements asso
ciated with a line in the source and to place breakpoints at arbitrary
addresses. The sdb program can also be used to display or modify the con
tents of the machine registers.

C.S.l Displaying Machine Language Statements

To display the machine language statements associated with line 25 in func
tionmaJn, use the command

*main:25?

The ? command is identical to the I command except that it displays from
text space. The default format for printing text space is the !format, which
interprets the machine language instruction. The Ctrl-D command maybe
used to printthe next ten instructions.

Absolute addresses may be specified instead of line numbers by appending
a colon (:) to them. For example, to display the contents of address Ox1024
in text space, use the following command:

*Ox1024:?

To display the instruction corresponding to line 0xl024 in the current func
tion, use the following command:

*0x1024?

It is also possible to set or delete a breakpoint by specifying its absolute
address. To set a breakpoint at address Ox1024, use the following com
mand:

C-13

C User's Guide

. *Ox1024:b

C.5.2 Manipulating Registers

The x command displays the values of all the registers. Also, individual
registers may be named instead of variables by prefixing the register name
with the character «@". For example, the command:

* @bx

displays the value of the register bx.

C.6 Using XENIX Shell Commands

The ! command (when used inunediately after the • prompt) performs the
same function that it does in ed(C). It allows you to temporarily escape
from sdb to execute a shell command. When the command has finished
executing, control is returned to the sdb program.

The ! can also be used to change the values of variables or registers when
the program is stopped at a breakpoint. To set a specified varisble to a
specified value, use the following command: ·

*variable!value

To set a named register ax to a specified value, use the following command:

*@ax!value

The value may be a number, character constant, register, or the name of
another variable. lf the variable is of type lloat or double, the value can
aiso be a floating-point constant (specified according to the standard C
language format).

C-14

sdb: The Symbolic Debugger

C.7 ASamplesdbSession

This section provides a sample sdb session to show you how to to debug a
program using sdh. The filenames and file contents used in this session are
hypothetical and are no ! intended to representthe real world.

During this session, we are going to debug an executable object file called
myoptim. · The myoptim tile has been compiled using the • Zi option and
linked u.'ingthe -I option so that we can use the full capabilities of the sdb
commands dur.ing this session. We will examine the source file itself,
rather than its core image resulting from program failure. To begin the sdb
session, enterthe followingcommand:

sdb myoptim - . : . ./common

Please note that we do not want sdb to examine the core file associated with
the myoptim file so a hyphen (-) has been specified here to prevent this.
The sdb program will display thefollowingmessages:

Source path: .: . ./common
core file ignored

It is useful to set breakpoints anywhere in your program that you suspect
might be the trouble spot. For example, set a i>reakpoint at tbe start of
function window by typing the command line:

*window:b

The sdb program displays the following message:

Ox3F042C (window:1459+ 2) b

Start executing the program bytypingthe command line:

*r < m.s > out.m.s

This redirects standard input to m. s and sends standard output to out. m.s.
Tbe sdb program displays thefoUowing message:

Breakpoint at
Ox3F042Cin window:1459: window(size, func) registerint size;
boolean(*func)Q; {

When debugging a program, iti s often useful to obtain a listing of the func
tion calls that led to the error. To do this, typethe foUowingcommand:

*t

The sdb program displays the following messages:

C-15

C User's Guide

window(size=2,func'"W2opt) [optim.c:1459)
peepQ [peep.c:34)
yylex())local.c:229]
main(argc..(),argv=Ox47BF86,-1073610300) [optim.c:227]

It is useful to peruse the source program to determine the context of the
current line. To do this, display the next ten lines of the source flle uaing
the following command:

•z

The sdb program displays the following:

1459: window(size, fnnc) register int size; boolean (*fnnc)Q; {
1460:
1461: extemNODE*initwQ;
1462: regil;terNODE*pl;
1463: regil;terinti;
1464:
1465: TRACE(window);
1466:
1467: /*findlirstwindow*/
1468:

It is often useful to step through a program line by line while it is executing
to examine its behavior in detail. To do this, type the following command:

•s

The sdb program displays the following: window:1459: window(si:r.e, fnnc)
register int size; boolean (*fnnc)0; {Type the single step command again:

••

The sdbprogramdisplays the following:

window:1465: TRACE(window);

Contioueusing this command nntil you have examined the lines of the pro
gram that are of interest to you:

•s

The sdb program displays the following:

window: 1469: wsize =size;

An important alternative to the s command is the S eoiiliillllld. This com
mand allows you to step through your program function by function, rather
than line byline. To do this, typethefollowingcommandline:

C-16

sdb: The Symbolic Debugger

•s
.' · ·· Thesdb programdisplaysthe following:

window:1475: for (opf=pf->back; ; opf= pf->back){

The sdb program can be used to display the current value of variables used
in the program. For.exarople, display the value of the variable pl by typing
the following command:

*pi

The sdb program displays the following:

Ox476B38

You can use the x command to display the contents of all the registers in
yourprogram. Todothis, type:

•x

The sdb program displays the following:

ax=2220 bx=0047 cx=OCOJ dx=0047 sp=1FDE bp=OCOJ si=OCOJ di=OCOJ
ds-oo47 es-oo47 ss=0047 cs=()()3F ip=OOFD NVUPEIPLZRNA PENC
003F:OOFD8BEC mov bp,sp

You can use thesdb program to dereference pointers in your program. To
dereferencethepl pointer, typethe followingcommand:

*pl[OJ

The sdb program displays the following:

pl[O].forw/ Ox476B6C
pl[O]. back/ Ox476A C8
pl[O].ops[O]/ pushw
pi[O� . uniqld/ 0
pl[O .op/123
pl[O .nlive/ 3588
pl(O].ndead/ 4096

To dereference the pl. >forwpointer, type the following command:

*pl->forw[O]

The sdb program displays the following:

C - 17

C User's Guide

pl->forw[O].forw/ Ox476CA6
pl->forw[O].back/ Ox476B38
pl->forw[O].ops[O)/ call
pl->forw[OJ.uniqid/0
pl->forw[O .op/ 9
pl->forw[OJ.nlive/3584
pi-> forw[O .ndead/4099

You can use sdb to change the values of variables when your program is
stopped at a breakpoint. To replace the value of pl with the value of pl
> forw, type the following command line:

*pl!pl->forw

Displaythe new value of pl. To do this, type:

*pi

The s db program displays the following:

Ox476CA6

Continue executing the program until the next breakpoint is reached. To
do this, type:

*c

The sdb program displays the following:

Breakpoint at .
Ox3F042C in window:1459: window(size, func) registerint size;
boolean (*func)(); {

Single step through the program until you are confident you have examined
the problem area. To do this, type:

*s

The sdb program displays the following:

window:1459: window(size, func) register intsize; boolean (*func)(); {

Continue single stepping through the program using the s command:

*s

The sdb program displays the following:

window:1465: TRACE(window);

C-18

(

sdb: The Symbolic Debogger

When you see a function that is of interest, you can display the size of the
current function's argument. To do this, type:

*size

The sdb program displays the following:

3

When you have finished debugging your program, you will want to delete all
the breakpointsin it. To do this, type:

*D

The sdb program displays the following:

All breakpoints deleted

Continue executing your program until it has finished running. To do this,
type:

•c

When program execution is complete, the sdb program will display the fol
lowing:

Process terminated normally (0)

The number that appears in parentheses is the exit status of the program
being debugged . When you are ready to leave sdb, type the following com
mand:

*q

The quit command ends yoursdb session.

C-19

XENIX® System V

Development System

C Library Guide

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Santa Cruz OperationJ Ine. nor Microsoft Corporation.
The software descdbed in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance v.rith
the tenns of the agreement. It is against the law to copy this software on magnetic tape1
disk, orafi}rotherolediumfor any pUrpose otberth�an tbe puicliaser�s personal use.

Portions @ 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987 Microsoft Corporation.
All rights reserved.
Portions C 1983, 1984, 1985, 1986, 1987Tbe SantaCruz Operation, Inc.

All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDJV:IS):ON (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDMSION(b) (2) FOR LIMITEDRIDHTS IN TECHNICAL
DATA, BOTHAS SETFORTHINFAR52.227-7013.

Thisdocumentwas typesetwithan IMAGEN® 8/:nJ Laser Printer.

Microsoft, MS-DOS� and XENlX are registered trademarks of :Microsoft Corporation.
IMAGEN isaragiste:red trademarlt ofiMAGEl'l Corporation.

SCO Document Number: XG-6-21�87-4.0

Co ntents

1 Introduction

1.1 Introduction 1-1
1.2 A bout This Guide 1-1
1.3 Notationa!Conventions 1-2

2 Run Time Routines By Category

2.1 Introduction 2-1
2.2 Buffer Manipulation 2-1
2.3 Character Classification and Conversion 2-2
2.4 Cursor Routines 2-3
2.5 Database Manipulation Routines 2-5
2.6 Directory-Operation Routines 2-5
2. 7 File Handling 2-5
2.8 Group and Password File Control 2-7
2.9 Math Routines 2-7
2.10 Memory Allocation 2-8
2.11 Message Control Routines 2-9
2.12 Numeric Conversion 2-9
2.13 Process Control 2-10
2.14 Random-�umber Generation Routines 2-12
2.15 Readingand WritingaFile 2-12
2.16 Search Routines 2-12
2.17 Semaphore Control 2-13
2.18 Shared Memory Routines 2-13
2.19 StreamControl Routines 2-14
2.20 String Operations 2-16
2.21 System AccountingControl 2-17
2.22 Terminal ControlRoutines 2-17
2.23 Time Cuntro! Routines 2-18
2.24 Miscellaneous Routines · 2-18

3 Include Files

3.1
3.2
3.3
3.4
3.5

Overview 3-1
/usr/include Files 3-1
/usr/include/sys Files 3-8
/usr/includefdosFiles 3-17
/usr/includefdos/sys Files 3-20

- i -

4 Using the Standard ItO Functions

4.1 Introduction 4-1
4.2 UsingCommand LineArguments 4-2
4.3 Usingthe StandardFiles 4-3
4.4 UsingtheStreamFunctions 4-11
4.5 Using .More Stream Functions 4-22
4.6 Usingthe Low-Lcve!Functions 4-25
4.7 UsingFileDescriptors 4-26
5 Screen Processing

5.1 Introduction 5-l
5.2 UsingtheLibrary 5-3
5.3 Preparing the Screen 5-8
5.4 UsingtheStandardScreen 5-11
5.5 Creating and Using Windows 5-19
5.6 Using0therWindowFunc1ions 5-31
5.7 CombiningMovementWlthAction 5-35
5.8 ControllingtheTerminal 5-35

6 Character and String Processing

6.1 Introduction 6-1
6.2 UsingtheCbaracterFunctions 6-1
6.3 Testiogfor Punctuation 6-5
6.4 UsingtheStringFunctions 6-7

7 Using Process Control

7.1 Introduction 7-1
7.2 UsingProcesses 7-1
7.3 CallingaProgram 7-1
7.4 StoppingaProgram 7-2
7.5 StartingaNewProgram 7-3
7.6 ExecutingaProgramThrough aShell 7-5
7.7 Duplicatinga Process 7-6
7.8 WaitingforaProcess 7-7
7.9 InhcritingOpenFiles 7-7
7.10 Program Example 7-8

8 Writing and Using Pipes

8.1 Introduction 8-1
8.2 OpeningaPipetoa NewProcess 8-1
8.3 Reading and Writing to a Process 8-2
8.4 Closing a Pipe 8-3

-ii-

\
8.5
8.6
8.7

Opening a Low-Level Pipe 8-3
Program Examples 8-5
Named Pipes 8-8

9 Using System Resources

9.1 Introduction 9-1
9.2 AllocatingMemory 9-1
9.3 LockingFiles 9-7
9.4 Using Semaphores 9-10
9.5 Using Shared Memory 9-19
9.6 Message Queues 9-31

A XENIX to DOS: A Cross DevelopmentSystem

A.1 Introduction A-1
A.2 CreatingSource Files A-1
A.3 Compilinga DOS SourceFile A-2
A.4 UsingA ssemhlyLanguagc Source Files A-4
A.5 Creatingaod Linking ObjectFiles A-4
A.6 RunningandDebugging aDOS Program A -5
A.7 TransferringPrograms Between Systems A-5
A.8 CreatingDOS Llbra.ries A-6
A.9 Common Run-TimeRoutines A-7
A.10 Common System-Wide Variables A-9
A.ll Common Include Files A -10
A.12 Differences Between Cummon Routines A-11
A.13 Differencesin Definitions A-19

B SystemErrorValues

B.1 Introduction B-1
B.2 erruo Values B-1
B.3 Math errors B-6

- iii-

Chapter l

Intro duction

1.1 Introduction l-1

1.2 About This Guide 1-1

1.3 Notational Conventions 1-2

Introduction

1.1 Introduction

The XENIX C Library Guide is designed to complement its companion
volumes: theXENIX C Language Reference and the XEI-<"IX C User's Guide.
While the C Language Reference seiVes as a reference for our implementa
tion of the C language and the C User's Guide provides you with the
knowledge to compile and run C programs, the C Library Guide provides
you" with information about the standard include files, tells you, how !<>
build user interfaces for C programs, provides a variety of tools to create
programs that can be executed undercontrolof the DOS operatingS}'lrtem,
and a full description of error messages.

This guide assumes that you have a basic familiarity with the C program
minglanguage and theXENIXenvironment.

1.2 About This Guide

This guide is organi7£d as follows:

Chapter 1, "lntroduction," summarizes the organization of this guide and
the conventions used.

Chapter 2, "Run-Time Routines,'' contains summary descriptions of the
routines available in the run-time library. See Section S of the XENIX
Reference, forfnll descriptions of use and syntax.

Chapter 3, "lnclude Flies, " briefly describes each include file available and
lists the routines that use it.

Chapter 4, "Using the Standard II 0 Functions," describes the input and
output functions already provided by the system. Further, this chapter
explains how to use these II 0 functions.

Chapter 5, "Screen Processing, " describes the library (curses) and func
tions which control screen updating and cursor movement.

Chapter 6, "Character and Screen Processing,." describes the system
provided functionsforcharacter and stringprocessing.

Chapter 7, "Using Process Control," describes the process control func
tions available with the standard Clibrary.

Chapter 8, ''Creating and Using Pipes,'' describes how to create and use
pipes. Further, the functions provided in the standard hbrary for control
ling pipes are descnbed.

Chapter 9, "System Resources" describes system resource functions�

1-1

XENIX C Library Guide

These functions let a program dynamically allocate memory, share
memory with other programs, lock files against access by other programs,
and use semaphores,

Appendix A, "XENIXto DOS: A Cross Development System," provides a
variety of tools to create programs that can be executed under control of
the DOS operating system. The DOS cross development system lets you
create, compile, and link DOS programs on the XENIX system and
transfer these programs to a DOS system for execution and debugging.

Appendix B, "System Error Values," describes the standard error mes
sages provided by XENIX.

1.3 Notational Conventions

Tbis guide uses a number of notational conventions to descnbc the syntax
ofXENIXcommands:

boldface

italics

1-2

Boldface indicates a command, option, fiag, or
program name to be entered as shown.

Boldface indicates the name of a hbrary routine,
global variable, standard type, constant, key
word, or identifier used by the C library. (fo
find more information on a given library routine
consult the "Alphabetized List" in yonr XENIX
Reference for the page that describes it.)

Italics indicate a filename. This pertains to
library include filenames (i.e. stdio.h), as well
as, otherfilenames (i.e. letc!ttys).

Italics indicate a placeholder for a command
argument. When entering a command, a place
holder must be replaced with an appropriate
filename, number, or option.

Italics indicate a specific identifier, supplied for
variables and functions, when mentioned in
text.

Italics indicate user named routines. User
named routines are followed by open and close
parentheses, ().

Italics indicate emphasized words or phrases in
text.

CAPITALS

SMALL CAPITALS

[l

/

Introduction

Capitals indicate names of environment vari
ables (i.e. TZand PATH).

Small capitals indicate keys and key seqnences
(i.e. RETURN).

Brackets indicate that the enclosed item is
optional. If you do not use the optional item,
the program selects a default action to carry out.

Ellipses indicate that you can repeat the preced
ingitem anynumberoftimes.

Vertical ellipses indicate that a portion of a pro
gram enmple is omitted.

Quotation marks indicate the first use of a
technical term.

Quotation marks indicate a reference to a word
rather than a command.

1-3

Chapter 2

Run -Time Routines B y
C ategory

2.1 Introduction 2-1

2.2 Buffer Manipulation 2-1

2.3 Characteraassifu:atlon and Conversion 2-2

2.4 Corsor Routines 2-3

2.5 Database Manipulation Routines 2-5

2.6 Directory-Operation Routines 2-5

2.7 File Handling 2-5

2.8 Group and Password File Control 2-7

2.9 Math Routines 2-7

2.),0 Memory Allocation 2-8

2.11 MessageControiRoutines 2-9

2.12 Numeric Conversion 2-9

2.13 Process Control 2-10

2.14 Random-Number GenerationRoutines 2-12

2.15 Rea.lli.gand Writinga File 2-12

2.16 Search Routines 2-12

r·· 2.17 SemaphoreControl 2-13
{
\..... · 2.18 Shared Memory Routines 2-13

2.19 Stream Control Routines 2-14

2.20 String Operations 2-16

2.21 System AcconntingCon!rol 2-17

2.22 Terminal Control Routines 2-17

2.23 Timc C..on!rol Routines 2-18

2.24 Misccllancous Routines 2-18

Ruu-Thne Routines By Category

2.1 Introduction

This chapter contains a complete listing of all the routines available in the
current C libraries. Routines are separated into categories to make them
easier to use. Because of the number of routines, the descriptions of their
functions are brief.

This chapter is provided in order to give yo\! a summary Qf what is already
availab le. Hence, argoments to the routines are not commonly given. On
occasion, a number of routines are listed on one page. For help in finding a
specific routine it may be necessary for you to look in the permuted index.
For a complete discussion of a given routine, see the XENIXReference.

2.2 Buffer Manipulation

The buller manipulation routines are useful for working with areas of
memory on a character-by-character b asis. Bulfers are arrays of charac
ters (bytes). However, unlike strings, they are not usually terminated with
a null character ('\0'). Thus, the buffer manipulation routines always take a
length or count argoment.

Function declarations for the buffer manipulation routines are given in the
include file memory.h.

Routine

memccpy

memchr

memcmp

memcpy

memset

Use

Copies characters from one buffer to another, until a
given character is copied or a given number of char
acters has been copied.
Returns a pointer to the first occurrence, within a
specified number of characters, of a given character
in the buffer.
Compares a specified number of characters from
two buffers.
Copies a specified number of charact!'rS from one
buffer to another.
Uses a given character to initialize a specified
number ofbytes in the buffer.

2-1

C Library Guide

2.3 Character Classification and Conversion

The character classification and conversion routines let you test individual
characters in a variety of ways, and convert between uppercase and lower
case characters. The classification routines identify a character by looking
it up in a table of classification codes. Using these routines is gt!llerally .fas
ter th""; writing an equivalenttest expression (such as if ((c ;::o) l ie sOx7.f))
to classify a character.

Routine

isaloum
is alpha
is ascii
iscnt:rl
is digit
is graph
islower
isprlnt
ispunct
iss pace
!supper
isxdigit
to ascii
to lower

toupper

_to lower
_toupper

Use

Tests for alphanumeric character.
Tests for alphabetic character.
Tests for ASCII character.
Tests for control character.
Testsfordecimaldigit.
Tests forprintable character except space.
Tests for lowercase character.
Tests for printable character.
Tests for punctuation character.
Tests for whitespace character.
Tests for uppercase character.
Tests for hexadecimal digit.
Converts character to ASCII code.
Tests character aud converts to lowercase if upper
case.
Tests character and converts to uppercase if lower
case.
Converts character to lowercase (unconditional).
Converts character to uppercase (unconditional).

The tolower and toupper routines are implemented both as functions and
as macros; the remainder of the routines in this category are implemented
only as macros. All of the macros are defined lo ctype.h, and this file must
be included or the macro• will be undefined.

The toupper and to lower macros evaluate their argument twice and thus
cause arguments with side effects to give incorrect results. For this reason,
youm aywant to Use the function versions ofthese routines instead.

The macro versions of tolower and toupper are used by defanlt when you
include ctype.h. To use the function versions instead, you must give
#undefpreprocessor directives for to lower aud toupperafter the #in dude
directive for ctype,h, but before you call the routines. This procedure
removes the macro definitions and causes occurrences of tolower and
toupper to be treated as function calls to the lolowu and toupper library
functions.

lf you want to use the function versions of toupper and tolower and you do
not use any of the other character classification macros in your program,
you cau simply oruit the ctype.h include file. In this case no macro

2-2

� .

(

Run-Tnne Routines By Category

definitions are present for tolower and toupper, so the fnuction versions
will b e used.

2.4 CursorRoulines

The cursor control routines are available to the user when the cursor con
trollibracy (curses) is speciJkd on tAe.compile ®e. F.or detailed infoun�
tion on these routines, their use, and their syntax, see Chapters 5 and 6 of
this guide and the appropriate page in the S section of the XENIX Refer
ence.

Routine Use

ad<kh
addstr
box
cnnode
clear
clearok
clrtobot
clrtoeol
delch
del win
echo
erase
getch
getstr
gettmode
getyx
inch
*initscr
insch
insertbt
leaveok
longname
move
mvaddch
mvaddstr
mvcur
mvdelch
mvgetch
mvgetstr
nwinch

nwinsch
mvwaddch
mvwaddstr
mvwdelch

Adds a character to stdscr.
Adds a string to stdscr.
Draws abox around a window�
Sets cbreakmode.
aears stdscr.
Set clearflagforwin.
Clears to bottom on <tdscr.
Clears to end -of -liee on stdscr.
Deletes a character from stds cr.
Delete win.
Sets echo mode.
Erase stdscr.
Gets a character through stdscr.
Gets a string through stdscr.
Gets tty modes.
Gets current (y ,x) position of win.
Gets character at current (y,x) coordinates.
lnitializes screens.
lnserts a characterinstdscr.
lnserts a blank liee in stdscr.
Sets leave flagforwin.
Gets long name from termbuf.
Moves to g,x) on stdscr.
Moves to ,x) and adds character ell.
Movesto ,x) and adds stringstr.
Moves cursor from (lasty,last:c) to (ne!>p ,neW X).
Moves to (y,x) and deletes characterfromstdscr.
Moves to (l',x} and gets a character through stdscr.
Moves to (l',x) and gets a string through stdscr.
Moves to (l',x) and gets a character at the current
coordinates.
Moves to (y,x) and inserts a character in stdscr.
Moves to (y >x) in win and adds a character ch.
Moves to (l',x)in win and aiids stringstr.
Moves to (l',x) in win and deletes the character,

2-;3

C Library Guide

mvwgetch
mvwgetstr
mvwin
mvwineh

mvwlnsch
*newwin
nl
nocrmode
noecho
nonl
no raw
overlay
overwrite
printw
raw
refresh
:restt;v
savett;v
scanw
s�ll
scrollok
settenn
standend
standout

•subw:ln
touch win
uuctrl
waddch
waddstr
wclear
wclrtobot
wclrtoeol
wdelch
wdeleteln
we rase
wgetch
wgetstr
winch
w:lnsch
w:lnsertln
wmove
wprintw
wrefresh
wscanw
wstandend
wstandont

2-4

Moves to (v,x) in win and gets a character.
Moves to (v,x)in win and gets a string.
Movesuppercomerofwinto (v,x).
Moves to (v,x) in win and gets a character at current
coordinates.
Moves to (v ,x) in win and inserts a character.
Creates a newwindow.
Sets newline mappping.
Unsets cbreak mode.
Unsets eeho mode.
Unsets newline mapping.
Unsetsrawmode.
Overlays winl on win2.
Overwrites winl on win2.
Prints arguments onstdscr.
Sets raw mode.
Makes current screen look like stdser.
Resets ttyfiags to stored value.
Stores current ttyfiags.
Scans for arguments through stdscr.
Scrolls win one llne.
Setsscrollfiag.
Sets terminal variables for name.
Qears standout !llOdeof stdscr.
Sets standout mode for characters in subsequent
outputtostdscr.
Creates a subwindowin win.
Prepares win for complete update on next refresh.
Provides a printable version of ch.
Adds ch to win.
Addsstrtowin.
Qears win.
a ears to bottom of win.
Qears to end-of-llne on win.
Deletes current characterfrom win.
Deletes line from win.
Erases win.
Gets a character through win.
Gets a stringtbrough win.
Gets acharacterat cnrrent (v,x) in win.
Inserts character cin win.
Inserts a blank line in win.
Sets current (v,x) coordinateson win.
Prints arguments on win.
Makes screen look like win.
Scans for arguments through win.
aears standout modeforwin.
Sets standout mode for characters on Rubsequent
output to win.

Run-Time Routines By Category

2.5 Database Manipulation Routines

These routines are available when you specify the library dbm on the com·
pile line. They are provided to give you the tools to perform simple manipu
lations of a very large database. For more information, see the appropriate
page in theXENIX Reference.

Rl:lutin�

dbminit
delete
fetch
firstkey
nextkey

Use

Opens a database file for accessing.
Deletes a key and its associated contents.
Accesses data stored under a key.
Retnms thefirstkeyin the database.
Retnms the next key following any specified key in
the database.
Stores data under a key.

2.6 Directory- Operation Routiaes

These routines provide control over the special files called directories. For
a full description of their use, see directory(S) in the XENIX Reference.
Programs referencingthese routines must be linked with the -h: option.

The following lists the directory-operation routines supported by C:

Routine

closedir

opendir

readdlr
rewinddlr

seekdir

telldir

2. 7 File Handling

Use

Causes the named directory stream to be closed and
the structure associated with the directory pointer to
be freed
Opens the directory named by a filename and associ
ates a directory stream with it
Retnms a pointer to the next directory entry
Resets the position of the named directory stream to
the beginning of the directory
Sets the position of the next readdiroperation on the
directory stream
Returns the current location associated with the
named directory stream.

These routines, coupled with the reading and writing and stream control
routines, provide you with a great deal of control of files and devices at a
low level. These routines are automatically available to all programs. See
Chapters 3, 4 and 8 of this gnide for more information. For details on the
syntax and use of a sPecific routine, see the appropriate page in theXENIX
Reference.

2-5

C Library Guide

Routine Use

access
chdir

cbmod

chown

chroot

chsize

close
crest
dup,dup2
fcntl
fstat

getcwd

ioctl
link

lockf
locking

mknod
mount

open
pipe
stat
umask
umount

unlink
us tat
utlme

2-6

Determines the accessibility of a specified file.
Changes the current working directory to the one
specified bypath.
Changes the access permission to mode on the file
specified by path.
Changes the owner and group of a file specified by
path.
Changes the root directory to the one specified by
path.
Sets the size of the file specified by fildes to exactly
siu bytes.
Ooses a file descriptor.
Creates a new file or re-writes an existing one.
Duplicates an open file descriptor.
Controls open files.
Returns the status of an open file (described by the
file descriptor jlldes).
Returns a pointer, pnbuf, to the patlmame of the
current working directory.
Provides control of character devices.
Makes a new link by creating a directory entry for the
existingfile using the new name.
Provides semaphores and record locking on files.
Locks or unlocks a region of a file for reading or writ
ing.
Creates a directory, special file, or ordinary file with
a specified path and mode.
Requests that a removable file system contained on
the block special file, spec, be mounted on the direc
torydiF.
Opens a file for reading or writing.
Creates an inter-process pipe.
Returns the status of the named file.
Sets and gets the file creation mask.
Unmounts a file system mounted by mount. See
mount above.
Removes a directory entry specified by the pathname
pointed to bypath.
Returns information about a mounted file system.
Sets file access and modification times of the file
specified bypath.

(

Run-Time Routines By Category

2.8 Group and Password File Control

These routines provide you with low-level control of the group and pass
word files. Access to these files is restricted to the system administrator.
However, you may still conduct searches of the files. See Chapter 3 of this
guide for information on the format of both the group and the password
files and see the appropriate page in the S section of the XENIX Reference
forinformatio!l on a specific ro1ltine:

Routine

endgrent
endpwent
getgrent
getgrgid

getgrnam

getpass

getpw

getpwent
getpwnam

getpwuid

putpwent

setgrent
setpwent

2.9 Math Routines

Use

Ooses the group file.
Ooses the password file.
Reads the next line of the group file.
Searches the group file from the beginrdng for a
match to gill.
Searches the group file from the beginning for a
match to name.
Reads a password from /devltty, or the standard
input if /devltty cannot be opened.
Searches the password file for the specified uill, and
returns thematchingline to the buf.
Reads the next line in the password file.
Searches from the beginning of the password file for
a matching name.
Searches from the beginning of tbe password file for
a matchioguid.
Writes a line on the stream[. Format matches that of
letclpasswd.

Rewind the group file.
Rewind the password file.

To use the following routines, incorporate the file IWlth.h into your pro
gram. For a detailed explanation of the nature and syntax: of these rou
tines, see the appropriate page in the S section of theXENIX Reference.

Routine

abs
a cos
a sin
a tan
atan2
cabs
ceil

Use

Returns the absolute value of an integer i.
Returns the arc cosine ofx.
Returns the arc sine ofx.
Returns the arc tangent of x.
Returns the arc tangent ofy/ x in the range of -rrto ?r.
Determines Euclidean distance.
Returns the smallest integer not Jess than x.

2-7

C Library Guide

eos
cosh
elf

elfc

fabs
ftoor

fmod

Returnsthecosineofx.
Returns the hyperbolic cosine of x.
Returns the function of x, defined as:
{2oversqrtpt}lnlfrom0toxesup{- t suo 2} dt
Returns the value 1.0 -erf(x) because of the inherent
loss of accuracy of erf.
Returns the absolute value of x.
Returns the largest integer (as a double) not greater
thanx.
Returns the number f such that x = o/ + f, for some
integer i, and Og' -<Y·
Returns the mantissa of a double value as a double
quantity, x, of magnitude less than 1, and stores an
integern such that value =x*2**n, indirectl;ythrough
an. integerpoillter,1eptr.

gamma Returnslnlf(ixl) .
bypot ReturnsEuclideandistance.
jO,jl,jn,yO,yl,yn Calculates Bessel functions of the first and second

ldexp
log
madterr
modf

pow
rand,srand

sin
sinh
sqrt
tanh

kinds for real arguments and integer orders. See
besselin the index.
Returns thequantityvalue*(2**exp).
Returns the natural logarithm ofx.
Handles errors returned by the math routines.
Returns the positive fractional part of value and
stores the integer part indirectly through the double
pointer, iptr.
Returns xY.
Generates a pseudo-random number. srand is used
to provide the seed.
Returns the sine of x.
Returns the hyperbolic sine ofx.
Returnsthesquarerootofx.
Returns the hyperbolic tangentofx.

2.10 Memoey Allocation

The following routines provide a means by which memory can be dynami
cally allocated or freed. These routines may be incorporated by referenc
ing the include file mal/oc. h. These routioes are explsined in more detail in ,

the S section of theXENIX Reference.

Routine

canoe

ft:ee

mal!info

2-8

Use

Allocates space for an array. Space is initiallzed to
zeros.
Stores a pointer to a block previously allncated by
malloc.
Provides instrumentation describing space usage.

(
\

malloc

mallopt
realloc

Run-Time Routines By Category

Allocates the first contiguous reach of free space
found in a circular search from the last block allo
cated or freed.
Provides for control over the allocation algorithm.
Changes the size of the block pointed to, and returns
a pointer to the (possibly moved) block.

The following functions -provide another means-by-which· memory can-be
dynamically allocated or freed. These routines are explained in more
detail in the S section of the XENIXReference.

Routine

calloc

free

malloc

realloc

Use

Allocates space for an array. Space is initialized to
zeros.
Stores a pointer to a block previously allocated by
malloc.
Allocates the first contiguous reach of free space
found in a circular search from the last block allo
cated orfreed.
Changes the size of the block pointed to, aod returns
a pointer to the (possibly moved) block.

2.11 Message ControlRontines

The following routines provide message control functions. These mes
sages are the medium for inter-process communication. For more infor
mation, seemsgop(S)in theXEN!XReference.

Routine

msgctl
msgget
msgsnd
msgrcv

Use

Provides for message control operations.
Returns a message queue identifier.
Sends a message to a queue.
Reads a message from a queue.

2.12 Numeric Conversion

The following routines are useful because they provide you with the ability
to convert numeric strings from one format to another.

Routine

a641

atoi

Use

Takes a pointer to a null-terminated base 64
representation and returns a corresponding long
value.
Converts a string pointed to by a pointer, nptr, to an
integer number.

2-9

C Librar.y Guide

atof

atol

ecvt

fcvt

gcvt

lto13

l3tol

· 164a

sgetl

sputl

strtod

strtol

Converts a string pointed to by a pointer, nptr, to a
ftoatingpointnumber.
Converts a string pointed to by a pointer, nptr, to a
long integer number.
Converts value to a null-temtinated ASCII string of
ndigit length and returns a pointer to the string.
Identical to ecvt except that the output has been
rounded for FORTRAN F format output of the
number of digits specified by ndigit.
Converts a specified value to a null-tcmtinated
ASCII string in buf and returns a pointer to buf.
Attempts to produce ndigit siguilieant digits in FOR
TRANF format.
Converts a list oflongintegers (packed into a charac
ter string) into a list of 3-byte integers.
Converts a list of3-byte integers (packed into a char
acter string) into alistoflong integers.
Takes a long argument and returns a pointer to the
corresponding base 64 representation.
Returns a long-integer datum stored in memory with
isputl.
Stores a long-integer datum in memory in a
machine-independent fashion.
Returns as a double-precision lloating-point
number the value represented by the character string
pointed to by a string.
Returns as a long integer the value represented by the
character string pointed to by a string.

2.13 Process Control

The following routines provide you with low-level control of XENIX
processes�

Routine

alarm
brk

brkctl
ex eel

execle

cxeclp

2 - 10

Use

Sets the calling process' alarm clock to sec seconds.
Dynamically changes the amount of space allocated
to the calling process' data segment. The current
break value is set to adtir. Seesbrk, below.
Allocates data in a far segment.
Transforms the calling process into a new process.
Used when a known file with known arguments is
being called.
Transforms the calling process into a dillerent pro
cess. Used when a new environment is to be passed
tothenewprocess.
Transforms the calling process into a new process.
Allows the specification of the new process file.

'-�

execve

exeevp

exit
fork
getpgrp
getpid
getppid
gsignal

ldll
lock
monitor

nap

nice

pause

pro ell

profil

ptrace

rdcbk

sbrk

setpgrp

signal

sleep

ssignal

Run-Time Routbtes By Category

Transforms the calling process into a new process.
Used when the number of arguments is unknown in
advance.
Transforms the calling process into a new process.
Allows the specification of a new environment and
an unknown number of arguments.
Transforms the calling process into a new process.
Allows the specification of the new process file and
an unknown number of arguments.
Terminates a process and closes all file descriptors.
Createsanewprocess.
Returns the process group ID of the calling process.
Returns the process ID of the calling process.
Returns the parent process ID of the calling process.
Raises the signal sig. Used with the software signal
facility, ssignal. See ssignal below.
Sends a signal to a process or group of processes.
Locks a process into main memory.
Serves as an interface to profit Arranges to record a
histogram of periodically-sampled values of the pro
gram counter and a count of calls to certain func
tions.
Suspends execution of the current process for period
milliseconds. or until a signal is received.
Decreases the CPU priority of the process by the
specified mer.
Suspends a process until a specified signal is
received.
Perfonns a variety of functions on active processes
orprocessgroups.
Creates an execution time profile of a section of core
memory.
Allows a parent process to trace the execution of a
child process.
Checks to see if a process will block if it attempts to
read the file designated by fdes.
Dynamically alters the amount of space allocated to
the calling process' data segment. Adds incr bytes to
break value (the address of the first location beyond
the end ofthe data segment).
Sets the process group ID of the calling process to
the process ID of the calling process and returns the
new process group ID.
Provides !he calling process with a facility for han
dling signal trapping.
Suspends execution of the calling process for
seconds seconds.
Provides the user with a software signal facility to
gpecify and trap her own signals.

2 - 11

C Library Guide

times

ulimit
wait

Fills the structure times (declared in <times.h>)
with the CPO times used by the calling process and
the system.
Provides control over process limits.
Suspends the calling process until it traps a specified
signal� or a child process stops or terminates.

2.14 Random-NumberGenerationRautines

The following routines generate pseudo-random numbers using the linear
congruential algorithm and 48-bit integer arithmetic:

Routine Use

drand48, erand48 Returns a non-negative double-precision lloating
point value uniformly distributed over the inter
va![O.O, 1.0]

lrand48, nrand48 Returns a non-negative lon:fi integer uniformly distri
buted overthe interval[O, 2]

mrand48,jraud48 Returns a signed lonp integer uniformly distributed
overtheinterval[-23 , 231]

The other three routines, srand48, seed48, aud Icong48, are complex in
nature. For a full description of the use of these pseudo-random-number
generators, see drand48(S) in the XENIXReference.

2.15 Reading and Writing a File

Routine

read
write
!seek

Use

Readsfrom afi.le.
Writes to a file.
Moves tlte read/ write pointerwithin a file.

2.16 SearchRoutines

Routine

bseareb
ftw
hcreate
bdestroy
hsearch

2-12

Use

Performs a binary search and update.
Walks a biera.rcbical file tree
Allocates sulf:icient space for the hash table
Destroysthehashtable
Returns a pointer to a hash table indicating the loca
tion atwbich an entry can befound

]Search
!delete
tfind
tsearch
twalk
qsort

Run-Time Routines By Category

Performs a linear search and update.
Deletes anode from a binary search tree.
Searchs a binary tree for a datum.
Builds and accesses a binary search tree.
Traverses a binary search tree.
Performs a quick sort.

2.17 Semaphore Control

'l'he following routines control the semaphores that signal when a resource
is available or locked. For detailed information, see semctl(S) and other
appropriate pages in Section(S) in theXENJXReference.

These are the XENlX semapbor routines:

Routine

creatsem
nbwaitsem

opens em

Use

Creates a binary semaphore.
Provides the calling process with access to the sema
phore. Returns the error ENA VAIL if the resource
is in use.
Opens a semaphore for use by a process.

These are the UNIX System V semaphorroutines:

Routine

semctl
semget

semop

sigsem

waitsem

Use

Provides a variety of _semaphore control operations.
Returns the semaphore identifier associated with a
key.
Allows the execution of an array of semaphore
operations on a set of semaphores.
Signals a process waiting for a semaphore that it may
proceed and use the resource governed by the sema
phore.
Provides the calling process with access to the sema
phore. waitsem puts the calling process to sleep if the
resource is in use.

2.18 Shared Memory Routines

The following routines provide control functinns for the use of shared data
segments. Seeslunop(S) in theXENlXReferencefordetails.

2-13

C Library Guide

These are the XENIX shared memory routines:

Routine Use

sdenrer

sdfree

sdget

sdgetv

sdleave

sdwaitv

Indicates that the current process is about to access
the contents of a shared data segment.
Detachs the current process from the shared data
segment that is attached at the specified addr.
Attaches a shared data segment to the data space of
the current process.
Retnms the version number of the data segment at
the specified addr.
Indicates that the current process is done modifying
the contents of the shared data segment. Alters the
version number on exiting.
Forces the current process to sleep until the version
number of the indicated segment is no longer equal
tovnum.

These are the UNIX System V shared memoryroutines:

Routine

ftok

shmat

sbmctl

sbmdt

sbmcet

Use

Fonns a key to provide to the msgget, semcet, and
sbmget system calls (for inter-process communica
tion).
Attaches the shared memory segement associated
with the shared memory identifier specified byshmfd
to the data segment ofthecallingprocess.
Provides control of various shared memory opera
tions.
Detaches the calling process' data segment from the
shared memory segment located at a specific
address.
Gets a shared memory segment associated with a
key.

2.19 Stream Control Routines

The original implementation of the C language did not provide any rou
tines for 1/0. The following routines are provided to define a user inter
face.

Routine

clearerr
fclose

2-14

Use

Resets the error indication on the named stream.
Causes any buffers for the named stream to be emp
tied, and the file to be closed. Buffers allocated by
standard 1/0 are freed.

fdopen

feof

fetTOr

fllush

fgetc

fgels

file no

fopen
pdose

popen

l)nintf
fputc

fputs

fread

freopen

fscanf
fseek

ftcll

fwrite

getc,getchar

gets

getw

Run-Time Routines By Category

Associates a stream with a file descriptor obtained
from open, dnp, creat, pipe. Returns the new
stream.
Returns non-zero when EOF is read on the named
input stream, otherwise zero.
Returns non-zero when an error has occurred read
ing and writing the named stream, otherwise zero.
Unlessdeared.by cleare.rr, :the error indication lasts
until the stream is closed.
Causes any buffered data for the named output
stream to be writton to that file. The stream remains
open.
Perfonns like getc, but is a function, not a macro. It
may be used as an argument.
Reads characters from the stream until a newline
character is encountered, or until n-1 characters
have been read. Returns a pointer los.
Returns the integer fi1e descriptor associatod with
the stream.
Opens the filename and associates a stream with it.
Closes a stream opened by popen. Returns the exit
s\atusofthecommand.
Opens the standard input, stdin, for writing or the
standard output, stdont, for reading.
Places output on the named output, stream.
Performs like putc, but is a function rather than a
macro. It maybe used as an argument.
Copies the null-terminated strings to the named out
putstream.
Reads a number of items from the named input
stream. Returns the number of items actually read.
Substitutes tbe named file in place of the open
stream. Returns the original value of the stream, and
closes it.
Reads from the named input stream.
Sets the position of the next input or output opera
tion on the stream.
Returns the current value of the offset relative to the
beginning of the file associated with the named
stream.
Writes a number of items to the named output
stream. Returns the number of items actually writ
ten.
Returns the next character from the named input
stream, getcharis identical tu getc (stdin).
Reads a string into s from the standard input, stdin.
Returns a pointer to s.
Returns the next word from the named inputstream.

2-15

C Library Guide

printf
pute,putehar

puts

putw
rewind
scaof
setbof

sprintf

sscaof
ungetc

vfprintf

vprintf

vsprintf

Places output on the standard output, stdont.
Appends the character c to the named output
stream. Returns the character written. putehar is
the sameasputc (c, stdout).
Copies the null-terminated string s to the standard
output, stdout, and appends a newline character.
Appends the word wto the output stream.
Is equivalent to fseek (stream,OL,O).
Reads from the standard input, stdln.
Assigns a specific buf to stream, rather than the
automatically allocated buffer.
Places output, followed by the null character (\0), in
consecutive bytes startingats.
Reads from thecharacterstrings.
Pushes the character c back on an input srream.
Returns c.
Same as fprintf except that it is called with a
variable-argument list.
Same as printfexcept that it is called with a variable
argument Jist.
Same as sprintf except that it is called with a
variable-argument Jist.

2.20 String Operations

These routines allow the user to compare and mauipulate strings of ASCn
characters.

Routine
streat
stn:hr

stremp

stn:py
stn:spn

strdup

strien
strncat
strnemp

strnepy

2-16

Use

Appendsacopyof stringsZto the end ofsl.
Returns a pointer to the first occurrence of character
cinstrings. NULLifcisnotfound.
Performs a lexicographic comparison between y and
s2 and returns an integer less than, equal to, or
greater than zero, depending on whether sl is lexico
graphically less, equal, or greater than s2.
Copies s2tosl.
Returns the initial segment of y which consists
entirely of characters not from s2.
Returns a pointer to a duplicate copy of the string
pointed tobys.
Returns the number of non -null characters ins.
Appends a copy of s2 (to length n)to the end ofsl.
Makes the same le::dcographic comparison as
stn:mp, butonlytoncharacters.
Copies exactly n characters of strings2 toy, truncat
ingornull-paddings2.

strpbrk

strrchr

strspn

strtnk

Run-Time Routines By Category

Returns a pointer to the first occurrence in stringsl
of any character from string s2. NULL if no charac
terfroms2exists ins1.
Returns a pointer to the last occurrence of character
cin strings. NULL if c doesnotoccurin the string.
Returns the length of the initial segment of string sl
which consists entirely of characters from strings2.
Considers �the string�sl to consist of a sequence of
zero or more text tokens separated by spans of one or
more characters from the separator string s2. The
string sl is recursively searched and on each succes
sive search, a pointer to the first character of the next
token encountered is returned.

2.21 System Accounting Control

These routines are typically used by the system admlnJst:rator to
check/manipulate theeontents of the system acconntingfiles.

Routine

acct
cuserid

endutent
getutent
getlogin

getnid

getnline

pntnline

setntent
utmpname

ttyslot

I:se

Enables or disables system accounting.
Returns a pointer to a string which represents the
login name of the owner of the current process.
Qoses the currently-opened file.
Reads the next entry from a system accounting file.
Returns a pointer to the login name as found in the
fileletclutmp.
Searches from the current file position forward, until
it encounters an entry ofthe specified id.
Searches forward from the current file position until
an entry of the specified line is encountered.
Writes an entry (in the utmp format) in the system
accounting file.
Resets the input stream to the beginning of the file.
Allows the user to alter the name of the file exam
ined. Default is letclutmp.
Returns the index of the current user's entry in the
letclutmp file.

2.22 Terminal Control Routines

Routine

tgetent

Use

Extracts the entry for terminal name, a buffer
pointed to by bp.

2-17

C Library Guide

tgetllag

tgetnum

tgetstr

tgoto
tputs

Returns 1 if the specified capability, id, is present in
the terminal's entry in the letcltermctJp file, 0 if it is
not�
Returns the numeric value of the specified capabil
ity, id, retnrning (-1) if it is not given for the
terminal's entry in the letc!termcapfile.
Gets the string value of the specified capability, id,
placing it in a buffer.
Retnrns a cursor-addressing string.
Decodes the leading padding infonnation of the
stringcp.

2.23 Time Control Routines

These routines provide the system administrator with control over the sys
tem time.

Routine

asctime

etime

fthne

gmtime

loealtlme

stime
time

tuet

Use

Converts the times returned by localthne () and
gmtime () to a 26-character ASCIT string, and
returns a pointerto the string,
Converts a thne pointed to by clock into ASCIT, and
retnrns a pointer to the 26-character string,
Retnrns the time in a structure (thneb found in
<sysltimeb.h>).
Converts time, pointed to by clock, to Greenwich
Mean Time(theXENIX system time).
Converts time, pointed to by clock, to the correct
local time and adjust for posS>b!e daylight savings.
Sets the system'stime.
Retnrns the current system time in seconds since
00:00:00 GMT, January 1, 1970.
Sets the external variables tim;;zone and dayligh.t
from the environmentvariableTZ.

2.24 MiseeUaneous Routines

Routine

abort

assert
ctermid

2 - 18

Use

Generates an I/0 trap signal which causes the calling
process to abort.
Cbecks the validity of a given expression.
Retnrns a pointer to a string that contains the
filename of the controlling terminal of the calling
process.

dial,undial

defopen

!list

geten>'

getopt

logname

longjmp

mktemp

nlist

peiTOr

reg ex

putenv

regemp

setgid

setjmp

setuid

shntdn

swab

Run-Time Routines lly Category

dial allocates a terminal device for reading and writ
ing, and returns a file descriptor to the device. undial
is called when communication is ended to de
allocate the semaphore set during the allocation of
the device.
Opens the default file specified by filename. Calling
defopen () with NULL closes the default file.

"Reads the previously-opened file from the beginning
until it encounters a line beginning with pattern. It
then returns a pointer to the first character in the line
foilowingpattern.
Performs the same function as xlist, below, except
thatlllstaccepts a pointer to a previously-opened file
instead of filename.
Searches the environment list for a string name and
returns the associated value .
Returns the next option letter in argv that matches a
letter in optstring, where optstringis a string of recog
nized option letters.
Returns a pointer to the null-terminated login name
(determined from the environment variable).
Restores the environment saved by the last call of
setjmp. See setjrnp below.
Makes a unique filename from the specified tem
plate.
Examines the executable ouq,ut file, filename, and
extracts a list of values which is matched to a
specified name list. Matches to name cause type and
value to be inserted in to the next two fields in the out
putfile.
Produces a short message on the standard error,
stderr, describing the last error encountered during a
system call from a C program.
Executes a compiled regular expression against a
subject string.

Changes or adds the value of an environment varai
ble.
Compiles a regular expression and returns a pointer
to the compiled form.
Sets the real and effective group IDS of the calling
process to gid.
Performs a non-local go to. Saves its stack environ
ment in env. Returns value zero.
Sets the real and effective user IDS of the callingpro
cesstouid.
Hushes all information in core memory and halts the
CPU.
Swaps bytes.

2-19

C Library Guide

sync

system
tmpflle

tmpname
ttyname,isatty

una me

xlis t

2-20

Updates tbe super-block. Causes all mformation in
memory that should be on disk to be written out.
Passes the string to anewmvocationof a shell.
Creates a temporary file and returns a correspondmg
F1LE pointer.
Generates a unique filename for a temporary file.
Returns a pointer to the null-terminated pathname
of the terminal device associated with the file
descriptorjildes. isalty () returns oneiijildes is asso
ciated with a terminal device, zero otherwise.
Returns a null-terminated character string naming
the current XENIXsystem.
Functions identically to nlist, with the additional
featnre of illserting a segment value (ifit exists) in the
executshle outputfile. Seenlist.

C hapter 3

Include File s

3.1 Overview 3-1

3.2 /usr/includeFiles 3-1
3.2.1 a.out.h 3-1
3.2.2 ar.h 3-1
3.2.3 assert.h 3-1
3.2.4 core.h 3-2
3.2.5 ctype.h 3-2
3.2.6 curses.h 3-2
3.2. 7 dbm.h 3-2
3.2.8 dial.h 3-2
3.2.9 dumprestor.h 3-3
3.2.10 ermo.h 3-3
3.2.11 execargs.h 3-3
3.2.12 fcntl.h 3-3
3.2.13 ftw.h 3-3
3.2.14 grp.h 3-3
3.2.15 lockcmn.h 3-4
3.2.16 macros.h 3-4
3.2.17 malloc.h 3-4
3.2.18 math.h 3-4
3.2.19 memory.h 3-5
3.2.20 mntlab.h 3-S
3.2.21 mon.h 3-5
3.2.22 pwd.h 3-5
3.2.23 regexp.h 3-S
3.2.24 sd.h 3-6
3.2.25 search.h 3-6
3.2.26 setjmp.h 3-6
3.2.27 sgtty.h 3-6
3.2.28 signaLh 3-6
3.2.29 stand.h 3-7
3.2.30 stdio.h 3-7
3.2.31 string.h 3-7
3.2.32 termio.h 3-7
3.2.33 tlme.h 3-7
3.2.34 unlstd.h 3-8
3.2.35 ustat.h 3-8
3.2.36 utmp.h 3-8
3.2.37 values.h 3-8

3.2.38 varargs.h 3-8

3.3 /usr/include/sys Files 3-8
3.3.1 a.out.h 3-8
3.3.2 acct.h 3-9
3.3.3 ascii.h 3-9
3.3.4 assert.h 3-9
3.3.5 brk.h 3-9
3.3.6 buf.h 3-9
3.3.7 callo.h 3-9
3.3.8 comcrt.h 3-9
3.3.9 conf.h 3-10
3.3.10 console.h 3-10
3.3.11 crtctl.h 3-10
3.3.12 dio.h 3-10
3.3.13 dir.h 3-10
3.3.14 errno.h 3-10
3.3.15 fblk.h 3-10
3.3.16 fcntl.h 3-10
3.3.17 file.h 3-11
3.3.18 filsys.h 3-11
3.3.19 ino.h 3-11
3.3.20 inode.h 3-11
3.3.21 iobuf.h 3-11
3.3.22 ioctl.h 3-11
3.3.23 ipc.h 3-11
3.3.24 kmon.h 3-11
3.3.25 Iock.h 3-11
3.3.26 Iockemn.h 3-12
3.3.27 locking.h 3-12
3.3.28 machdep.h 3-12
3.3.29 map.h 3-12
3.3.30 mmu.h 3-12
3.3.31 mount.h 3-12
3.3.32 msg.h 3-12
3.3.33 ndir.h 3-12
3.3.34 ndp.h 3-13
3.3.35 ufs.h 3-13
3.3.36 param.h 3-13
3.3.37 preadi.h 3-13
3.3.38 proc.h 3-13
3.3.39 proctl.h 3-13
3.3.40 reg.h 3-13
3.3.41 relsym.h 3-13
3.3.42 re1sym86.h 3-14
3.3.43 sd.h 3-14
3.3.44 sem.h 3-14
3.3.45 shm.h 3-14
3.3.46 signal.h 3-15

(

3.3.47 sites.h 3-15
3.3.48 space.h 3-15
3.3.49 stat.h 3-15
3.3.50 sysinfo.h 3-15
3.3.51 sysmacros.h 3-15
3.3.52 systm.h 3-15
3.3.53 termio.h 3-15
3.3.54 text.h 3-16
3.3.55 timeb.h 3-16
3.3.56 times.h 3-16
3.3.57 ttold.h 3-16
3;3.58 tty.h 3-16 .
3.3.59 types.h 3-16
3.3.60 ulimit.h 3-16
3.3.61 user.h 3-17
3.3.62 utsname.h 3-17
3.3.63 var.h 3-17

3.4 /usr/m.clude/dos Files 3-17
3.4.1 assert.h 3-17
3.4.2 conio.h 3-17
3.4.3 ctype.h 3-17
3.4.4 direct.h 3-17
3.4.5 dos.h 3-18
3.4.6 errno.h 3-18
3.4.7 fcntl.h 3-18
3.4.8 malloc.h 3� 18
3.4.9 mAth.h 3-18
3.4.10 m611lory.h 3-18
3.4.11 process.h 3-18
3.4.12 register.h 3-19
3.4.13 search.h 3-19
3.4.14 setjmp.h 3-19
3.4.15 share.h 3-19
3.4.16 signal.h 3-19
3.4.17 spawn.h 3-19
3.4.18 s!dio.h 3-19
3.4.19 s!dhb.h 3-19
3.4.20 strmg.h 3-20
3.4.21 time.h 3-20
3.4.22 v2tov3.h 3-20

3.5 /usr/mclude/doslsysFiles 3-20
3.5.1 locldng.h 3-20
3.5.2 stat.h 3-20
3.5.3 timeb.h 3-20
3.5.4 types.h 3-20
3.5.5 utirne.h 3-21

Include Files

3.1 Overview

The include files in the XENIX system are divided into three groups - those
which reference system information (kept in lusr/includelsys), those
which may be useful to individual users (kept in lusr/include) and those
useful in development for a DOS environment, (kept in /usr!includeldos).
Note that this separation is not absolute and you may find yourself using a
number of the include files in any of the rurectories.

This chapter contains summary descriptions of all theXENIX include files.
Following the system implementation, these descriptions are divided into
three sections.

3.2 /usrrmclude Files

The following sections contain descriptions of the function of each include
file and a list of the routines that may be found in each. The include files
may also contain macro and constant definitions, type definitions, func
tion declarations, and structure definitions.

Where these declarations or definitions are of special interest, they will be
noted. For detailed information on a particular routine, see the appropri
ate page in the (S), {F) or (DOS)section of theXENIX Reference.

3.2.1 a.out.h

The file a.out.h determines the structure of the object file.

3.2.2 ar.h

Each file placed in an archive file is preceded by a header {which is deter
mined by the structure urJtdr). ar.h also sets the value of the archive
magic number.

3.2.3 assert.h

Defines a macro which is useful in verifying the validity of a specified C
b'tatement. See assert in theXENIX Referenceformore information.

3-1

c Library Guide

3.2.4 con.h

Defines the location and size of a core-image file. See con in the XENIX
Reference for detailed information on the structure of core files.

3.2.5 cl;ype.h

Defines a number of macros which classify Ascn-coded integer values by
doing a table lookup. For a complete list of the available macros, aee cl;ype
in the XBNIXReference.

3.2.6 eurses.h

Provides a number of routines which control screen and cursor functions.
See curses in the XBNIXReference for a (:Omplete list of ail the functions
available.

3.2.7 dbm.h

Defines the functio!lS:

dbminlt fetch
delete firslkey

store
nextlrey

for database manipulation. These routines are used for handling very large
(billion block) databases. Seethe dbm()manual pagein theXBNIX Rlifer·
ena: for more deta.iled information.

3.2.8 diaLh

Defines the routines dial and undial() which are used in communication
over phone lines between XENIX and UNIX systems. It also defines the
structure CALL, which stores information about the communication
attempt.

3-2

Include Files

3.2.9 dumpnstor.h

When incremental dumps are done onto magnetic tape, the files that are
being dumped are preceded by information defined by the structure spcL
This structure defines the format of the header reeord and the first record
of each description.

The structure ida tes descrihes an entry to th;> fill' where the <!!lmP.hist<>ryis
kept.

3.2.10 ermo.h

This file conteins definiti<>ns of error codes that are passed to the external
variable errno� When an error condition occurs during a �-ystem call, the
kernel sets the ermo variable to the appropriate value. For a complete list
of these error codes and descriptions of how they occur, see Appendix B
of theXENIX C Library Guide.

See the pen-or system call in the XENIXReferencefor information on error
handling.

3.2.11 eJ<ecargs.h

Provides information for the shell. Not for use by the user.

3.2.12 fcntl.h

Provides the values for the file control function, fcntl. For a description of
the values, see fcnllin theXENIXReforence.

3.2.13 ftw.h

Contains predefined values for an integer used by the system call ftw.
These values represent the status of the object that fiw is examining.

3.2..14 grp.h

Defines a structure group, which returns pointers to information about
entries in the file !etc/group. See the getgrent system call in the XENIX
Reference for more information.

3-3

C Libnu:y Guide

3.2.15 Iockcmn.h

Common lock type definitions. Included by locking.h and by fcntl.h.

3.2.16 macros.b

Defines a number of useful macros (some for string handling, others for
library routines).

3.2.17 maDoc.h

Defines the maUinfo structure (which contains information on memory
allocation). Defines the routines:

malloc free reaUoc
mallopt maUinfo

See malloe in the XENIXReference for more information.

3.2.18 math.b

Defines the math routines listed below:

a cos
as in
a tan
atan2
a tor
cell
eos
cosh
erf

erfc
exp
fabs
lloor
fmod
frexp
gamma
hypot
jO

jl
jn
ldexp
log
loglO
matherr
modf
pow

sin
sinh
sqrt
tan
tanh
yO
yl
yn

It also defines a number of useful mathematical constants.

See bessel, exp, lloor, bypot, gamma, sinh, and trig in theXBNIX Refer
encefor detailed information on the math functions.

For information on rna therrreturn values, see Appendix B of the XENIX C
Library Guide.

3-4

3.2.19 memory .h

(Defines the routines:

memccpy
memepy

memchr memcmp
memset movedata

that are used for bu!Ier manipulation.

3.2.20 mnttab.h

Include Files

The structure mnttab defines the format of the /etclmnttab file. This file
keeps a record of special files mounted using the mount command. See
mount in the XENIXReference for more information.

3.2.21 mon.h

Defines two structures: monhdr and mon. These structures determine the
format of the buffer in which monitor stores information on the execution
profile of a specified program. For more information, see monitor and
profil in theXENIXReference.

3.2.22 pwd.h

Defines two structures: passwd and comment, which determine the for
mat of the entries in the letc/passwd file, and the format of the comments
associated with these entries. See getpwent in the XENIX R£ference for
details on the structnre oftheentries.

3.2.23 regexp .h

Defines the functions:

complle
getmge

step advance
ecmp

that compile regular C language expressions and return pointers to the
compiled forms. For a detailed description, see regexp in the XENIX
R£ference.

3-5

C Library Guide

3.2.24 sd.h

Defines the shared data table and the foHowingshared datatlags:

sdenter
sdget
sdtaave
sdfree
sdgetv
sdwaitv

Formoreinfonnation, see section (S)in theXENIXReference.

3.2.25 seaNh.h

Defines a structure ENTRY and an enumeration type ACTION for the
hseaNh system call. Defines an enumeration type VISIT for the lseaNh
system call.

3.2.26 setjmp.h

Provides data to ensure that the setjmp and longjmp system calls are
machine-independent.

3.2.27 sgtty.h

Defines the structure sgttyh for the stty and gtty() system calls. It also
defines the stty and gtty() system calls. terminal modes, delay algorithms,
speeds, and ioetl arguments. Additionally, it defines the structure tehars,
for dealing with special characters. For more information, see loetl, tty,
and stty in the XENIX Reference. This is included for compatibility with
Version?.

3.2.28 slgnal.h

Defines the values that may be assigoed to sigoal by the kerneL These
valnes are returned to the calling process upon receipt of an error. For
more details, see signal in the XENIXReforence.

3-6

Include Files

3.2.29 stand.h

Provides the necessary information and structures for the operation of the
system in standalone mode.

3. 2.30 stdio.h

Defines the standard buffered input and output routines. The files stdin,
stdout, and stderrare defined. The routines:

getehar putehar fteH
rewind sethuf

are defined. Macros are defined for clearerr, feof, terror, and fileno.

For details on how to use the standard I/0 routines, see the following
manual pages in the XENIX Reference: open, close, read, write, ctennid,
cuserid, fclose, feiTOr, popen, printf, pute, puts, s canf, system,
lmpnam.

3.2.31 s tring.h

Defines the followingstringi!IIlllipu!ationroutines:

strcmp
strspn

strncmp s1rlen
s1rcspn

For details, see s1riogin theXENIXReference.

3.2.32 termio.h

Defines characters and modes for the terminal interface. In addition, a
structure is defined for the loctl system calls. For more information, see
iocll and ttrin theXENIXReference.

3.2.33 tbne.h

Defines the structure for the conversion of time to ASCII. Defines the rou
tine tzset and the variables timezone, daylight, and tzname. See ctime(S)
in theXENIX Reference for details.

3-7

C Library Guide

3.2.34 unJstd.h

Defines the flag values for the lock system call. See lock in the XENIX Reference for detalls.

3.2.35 ustat.h

Defines the structure ustat which returns information about a given
mounted file system. For detalls, see nstatintheXENIXReference.

3.2.36 utmp.h

Defines the format for the lerc!utmp system accounting file. See ntmp in
the XENIXReference for detalls.

3.2.37 values.h

Defines various values for machine-dependent variables.

3.2.38 vamrgs.h

Contalns macros for use in variable argumentfunctions. Provided in order
to allowportabililyofC langnage code.

3.3 /usr/inclnde/sys Files

The following include files are system files. Many of them define system
parameters, or contaln information used by the kernel.

3.3.1 a.out.h

Declares the structures:

xexec xext xseg xiter
Jdist aexec nlist bexec

which define (respectively): the x.out header, the x..outheader extension, ,
the x.out segment table entry, the x.out iteration record, the structure for
theldist system call, thea.outheader, and the b.outheader.

3-8

Include Fdes

See Chapter 7 of the XENIX C User's Guide, and the a.out manual page in
the XENIXReference for more detailed information.

3.3.2 aect.h

Defines the structure aectforuse in system accounting.

See acct and ae<:ton in the XENIX Reference for more information.

3.3.3 ascii.h

Definitions of ascii standard values and names.

3.3.4 assert.h

Defines the ASSERT macro. See assert in the XENIXReference for more
details.

3.3.5 brk.h

"- -� · Defines the commands for break control.

3.3.6 buf.h

Deiines the structures bufandhbufthat (respectively) provide access to an
liO buffer for device drivern, and fast access to the buffers through hash
ing.

3.3. 7 t:ano.h

Defines the structure <:aBo, which is provided to allow a clock interrupt for
a speciilc period.

3.3.11 c:omcrt.h

Definitions used by crt driver and by stty.

3-9

C Library Guide

3.3.!1 eonf.h

Defines the structures linesw, bdevsw, and cdevsw, which are the declara
tions (respectively) for the line discipline switch, the block device switch,
and the character device switch.

3.3.10 eonsole.h

User level include file for PC Console keyboard related defines and vari
ables.

3.3.ll ertcll.h

Defines the cursor control codes.

3.3.12 dio.h

Header file for standard badtrack scheme.

3.3.13 dir.h

Defines the structure direct, which contains the value for the maximum
directory si:r.e.

3.3.14 errno.h

Contains the values for the ermo variable. The kernel sets the enno vari
able upon an error. Math routines also setit.

See perrorin the XENIXReference for more information.

3.3.1S fblk.h

Defines the structure Iblk, which contains the address of the next free
block.

3.3.16 fcntl.h

Controls open files and file locking.

3-10

Include Files

3.3.17 ftle.b

Defines a structure file, which holds the read/write pointer associated with
each open ftle.

3.3.1S ftlsys.b

Defines the structUr;; �ffues�per-block and a number of fundamental sys
tem variables.

3.3.19 ino.h

Defines the structure of the in ode as it appears on a disk block.

3.3.20 inode.b

Contains definitions of the structures llsem, llsd, and inode, which
(respectively) provide information about the semaphores related to a given
inode, provide information about the shared data segments allocated to
the in ode, and provide information about the in ode itself.

3.3.21 iobuf.h

Defines the structure of the I/0 bufferfor each block device.

3.3.22 ioetl.h

Defines macros for I/0 control.

3.3.23 ipc.h

Provides constant definitions for the inter-process communications (JPC)
report. See ipc(S) in the XENIXReference for more information.

3.3.24 kmon.h

The monitor buffer starts with the structure in this file,

3.3.25 lock.h

Defines fiagvalues for the locking of resources.

3-ll

C Library Guide

3.3.26 Ioekemn.h

Common lock type definitions. lnclnded bylocking.h and byfcntl.h.

3.3.27 Iocking.h

Defines fiag values for the loeking system call. Defines the structure lock
list, which provides the structure for the linked list of lock regions.

3.3.28 maehdep.h

Defines maehine-dependent variables (e.g., number of descriptor table
entries, clock thning).

3.3.29 map.h

Defines the structure map, to hold thelecation of the swapmap.

3.3.30 mmu.h

Defines constants for the descriptor tables for memory management pur
poses.

3.3.31 mount.h

Defines the structure mount. One is allocated for every device mounted.
See mount in the XENrXReference form ore information.

3.3.32 msg.h

Defines the structures msqld_ds, msg, msgbuf, and msqinfo, which pro
vide (respectively) the data structure for inter-process messages, a struc
ture for eaeh message in the queue, the user message buffer template for
the msgsnd and msgreev system calls, and a structure containinginforma
tion about the state of the message queue.

See]pes, msgctl, msgget, and msgop, in the XENIX Reference, for more
information on inter-process communication.

3.3.33 ndir.h

This file allows programs that use a BSD directory structure to run on
XENIX.

3-12

Include Files

3.3.34 ndp.h

Defines structures for the Numeric Data Processor.

3.3.35 nfs.h

This file provides necessary information to instalinetworking software;

3.3.36 param.h

Contains a number of parameters vital to the system: the system's adju
stable parameters, priorities, signals, MMU constants, macros for unit
conversion, and definitions of the fundamental constants of the imple
mentation.

3.3.37 preadi.h

This file is for storingpbysieal transfer requests.

\·�· 3.3.38 proc.h

Defines the structures proc and xproc to hold all the vital information on
processes while they may be swapped out.

3.3.39 procd.h

A hbraryfileused byproc!L

3.3.40 reg.h

Defines constants that provide an index of the available registers relative tu
AX.

3.3.41 relsym.h

Provides definitions for thefollowingstructnres:

sym
asym

reloc
bsym

xreloc

3-13

C Libmey Guide

sym defines the structure of the symbol table for x.oul, reloc defines a relo
cation table entry for the long form of:l:.oul, xreloe defines the relocation
table entry for the short fonn of x.out. and the structures asym and bsym
are provided for compatibilitywith other systems. Definitions for:

sym.s_type
asym.sa_type

reloc.r_desc
nllst.n_type

are also provided.

3.3.42 relsym86.h

Contains the declarations for the 8086/80286/80386 symbol table and reh·
cation record structures. The structures dosexee, des cmb, and srel86 are
defined. dosexec is provided for DOS support, desctab provides the struc
tu.re of the descriptor tsble, and srel86 provides the strueture for segment
relocation (which is necessary for middle and larger model memory sup
port).

3.3.43 sd.h

Defines the shared data table.

3.3.44 sem.h

Defines the structures used by the semaphore operations system call,
semop. The structuresare:

semid_ds sem 5e01JllldO
seminfo sembuf

See the semop(S) manual page in the XENIX Reference for detalled infor
mation.

3.3.45 shm.h

Defines values, and the shmid..tls strueture for shared memory operations.
See the slmwp manual page in the XENIX Reference for detalled informa
tion.

3-14

3.3.46 slgnal.b

(-� �

Defines the valuesforthe SIGNAL constants.

See signal(S) in the XENfXReforence for more information.

3.3.47 sltes.b

Include Flles

Provides values for system constants (that are used in the structure defined
in utsname. h).

3.3.48 space.b

Defines data structures for the XENIXkernel.

3.3.49 stat.b

Defines the structure stat, which retums a structure to both the stat and
fstat system calls. It also defines an umber of constants.

3.3.50 sysinfo.h

Defines the structures sysinfo and syswalt, which hold information about
the state of the system and its processes.

3.3.51 sysmacros.h

Defines a number of machine-dependent macros.

3.3.52 systm.h

Defines the structures sysent and ldt, which define the format for the
system-entry table and the interrupt descriptor table. It also defines a
number of random variablea and functions used by more than one routine.

3.3.53 termlo.h

This file defines structures to control if o for serial terminals.

3-15

C Library Guide

3.3.54 text.h

Defines the structure text, which provides the format for text segments. It
also defines a number of constants.

3.3.55 tlmeb.h

Defines the structure tlmeb, returned bytheftinte system call.

See tlme(S)m the XENIXReferenceformoreffiformation.

3.3.56 tlmes.h

Defines the structure tms, returned by the routine times.

See thnes m the XENIXReference for more ffiformation.

3.3.57 ttold.h

Defines the structures sgtey and te, which contain ffiformation for the stty
and gtty system calls. It also defines the termffialmodes.

3.3.58 tty.h

Defines the structures:

tty clist cblock
chead mter

The tty structure formats the YO ffiformation for each character device. It
defines a number of mternal state variables, and device commands.

3.3.59 t;n>es.h

Defines the structure saddr and numerous machme-dependent variables.

3.3.60 ullmit.h

Defines values passed to the ulimitsystemcall.

3-16

Include Files

3.3.61 user.h

Defines the structure user� whlch contains all the data on a user process
that doesn't need to be referenced (and so is swapped with the process).
The standard error codes are also redefined here.

3;3.61 utsname.h

Defines the structure utsname, which provides general information about
system characteristics.

3.3.63 var.h

Defines the structure var.

3.4 /usr/include/dos Files

These files are for use in XENIX to DOS cross development. Some of these
files are compatible with XE� and some are for use only in the DOS
environment.

3.4.1 assert.b

Defines the assert macro.

3.4.1 eonio.h

This include file contains the function declarations for the Microsoft C
V2.03 compatahle console and portIO routines

3.4.3 efWe.h

Defines the ctype macros as well as the character conversion macros (
toupper, etc).

3.4.4 dlred.h

This include file contains the function declarations for the library func
tions related to dir.eetory handling and creation.

3-17

C Llbl'III'Y GuidA!

3.4.5 dos.h

Defines the structs and unions nsed to handle the input and output registers
for the DOS interface routines defined in the V2.0 to V3.0 compatability ''"'
package. It also includes macros to access the segment and offset values of
Microsoft C "far" pointers, so that they may be used by these routines.

3.4.6 elTJlo.h

Defines the system-wide error numbers (set by system calls). Conforms to
XENIX standard. extended for compatibility with W1iforum standard. See
perrorfor corresponding error messages. This list must always agree with
the one in perror .c.

3.4. 7 rcntl.h

Defines :file control options used by the open system call. This include :file
contains the function declarations for the low level file handling and 10
functions.

3.4.8 malloc.h

This include :file contains the function declarations for the memory alloca
tion functions.

3.4.9 math.h

Constant definitions and external subroutine declaratinns for the math
subroutine library.

3.4.10 memoey.h

This include :file contains the function declarations for the System V com
patable buffer (memory) manipulatinn routines.

3.4.11 process.b

Define modeflag values for 5ptlWTlXX () calls. Only P_WAIT and
P_OVERLAY are currentlyimplementedonDOS. Also containsthefunc
tion argmnent d6<:larations for all process control related routines.

3-18

Inelude Flles

3.4.12 reglster.h

De!initions forregistervariable specifiers. Deftned for 8086 and 68000.

3.4.13 search.h

This include file· contains the function declarations for the sorting and
searching routines.

3.4.14 seljmp.h

Deftnes the machine dependant buffer used by sel;jmp and longjmp rou
tines to save the program stste.

3.4.15 share.h

File sharing modes for sopen.

3. 4.16 slgnal.h

Deline signal values. Only SIGINTis recognized on DOS.

3.4.17 spawn.h

Deline modeftag values for spawnxx () calls. Only P_WAIT and
P_OVERLA Y are currently implemented on DOS. Also contains the
function argument declarations for aJl process control related routines.

3.4.18 stdlo.h

Deftnes the structure used by the level2 JJO ("stsndard JJO") routines and
some of the associated values and macros.

3.4.19 stdlib.h

This include file contains the function declarations for commonly used
library functions wbich either don't fit somewhere else, or, like toupper
and to lower, can't be declared in the normal place (ctype.h in the case of
toupper and to lower) for other reasons.

3 - 19

C Library Guide

3.4.20 string.h

This include file contains the function declarations for the string manipula
tion functions.

3.4.21 time.h

Defines the strnctnre returned by the localtime() and gmtime{) routines
and used byasctime.

3.4.22 v2tov3.h

Defines a group of macros which can be used to eaae the problems of port
ingMicrosoft Cversion 2.Qprograms to Microsoft C Vetllion 3.0.

3.5 tu.sr/lnclude/dos /sys 1!1Ies

These files are DOS system files. Many of them define system parameters,
or contain information used by the kernel.

3.S.l locklug.h

F1ags for locking system call.

3.5.2 slat.h.

Defines the structure returned by the slat and fslat routines.

3.5.3 timeb.h

Structure returned by l'tlme system call.

3.5.4 types.h

Defines types used in defining values returned by system level calls for file
status and time information.

3-20

Include Flies

3.5.5 ntime.h

Defines the structure used by the utime routine to set new file access and
modification times. Note thatMS-DOS 2.0 does not recognize access time,
so this field will always be ignored and the modification time field will be
used to set the new time.

3-21

C hapter 4

Using the

Standard 1/0 Functions

4.1 Introduction 4-1
4.1.1 Preparingfor theiiO Functions 4-1
4.1.2 Special Names 4-1
4.1.3 Specia!Macros 4-2

4.2 UsingCommandLineArguments 4-2

4.3 UsingtheStandardFiles 4-3
4.3.1 Reading From the Standard Input 4-4
4.3.2 Writingtothe Standard Output 4-7
4.3.3 RedireetingtheS!andard Input 4-9
4.3.4 RedireetingtheStandard Output 4-9
4.3.5 Piping the Standard Input and Output 4-9
4.3.6 Program Example 4-10

4.4 Using theStream Functions 4-11
4.4.1 UsingFile Pointers 4-11
4.4.2 OpeningaFile 4-12
4.4.3 Readinga Single Character 4-13
4.4.4 ReadingaStringfrom a File 4-14
4.4.5 ReadingRecordsfrom a File 4-14
4.4.6 Reading Formatted Data From a File 4-15
4.4. 7 Writing a Single Character 4-16
4.4.8 Writinga Stringto a File 4-17
4.4.9 WritingFormatted Output 4-17
4.4.10 Writing Records to a File 4-18
4.4.11 Testing for the End of a File 4-19
4.4.12 TestingForFileErrors 4-19
4.4.13 Closing a Fue 4-20
4.4.14 Program Example 4-20

'----"· 4.5 UsingMoreStreamFunctions 4-22
4.5.1 UsingBuffered lnput andOutput 4-22
4.5.2 Reopeninga File 4-23
4.5.3 SettingtheBuffer 4-23
4.5.4 Putting a Character Back into a Buffer 4-24
4.5.5 Flushinga FileBuffer 4-25

4.6 UsingtheLow-Level Functions 4-25

4.7 UsingFileDescriptors 4-26
4.7. 1 Opening a File 4-26
4.7.2 ReadingBytesFrom a File 4-27
4.7.3 WritingBytesto aFile 4-28
4.7.4 Oosinga File 4-28
4.7.5 Program fuamples 4-29
4.7.6 Using Random Access I/ 0 4-31
4. 7. 7 Moving the Character Pointer 4-32
4.7.8 Movingthe CharacterPointerina Stream 4-33
4.7.9 RewindingaFile 4-33
4.7.10 Getting the Current Character Position 4-34

Using the Standard I/0 Functions

4.1 Introduction

Nearly all programs use some form of input and output. Some programs
read from or write to files stored on disk. Others write to devices such as
line printers. Many programs read from and write to the user's terminal.
For this reason, the standard C library provides several predefined input
and output functions that a programmer can use in programs.

Tills chapter explains how to use the I/0 functions in the standard C
hbrary. Inpar!lcular, it describes:

• Command line arguments
• Standard input and outputfiles
• Stream functions for ordinaryfiles
• Low-iovel functions for ordinary files
• Random access functions

4.1.1 Preparing for the UO Functions

To use the standard I/0 functions, a program must include the file stdio.h,
which defines the needed macros and variables. To include this file, place
the followiogline at the beginning of the program:

#include <stdio.h>

The actual functions are contained in the library file libc.a. This file is
automatically read whenever you compile a program, so no special argu
ment is needed when you invoke the compiler.

4.1.2 Special Names

The standard I/0 library uses many names for special purposes. In gen
eral, these names can he used in any program that has included the stdio. h
file. The following is a list of the special names:

stdin
stdout
stderr
EOF

NUlL

FILE

BSIZE

The name of the standard in put file.
The name of the standard output file.
The name of the standard error file.
The value returned by the read routines on an end-of-file or
an error.
The null pointer, returned by pointer-valued functions, to
indicate an error.
The name of the file !Jii!e used to declare pointers to
streams.
The size in bytes (default is 1024) suitable for an II 0 buffer
supplied by the user.

4-1

c Library Guide

4.1.3 Special Macros

The functions gete, getehar, pute, putcbar, feof, ferror, and fileno are
actually macros, not functions. Tltis means that you cannot redeclare
them or use them as targets for a breakpoint when debugging.

4.2 Using Command Line Argumenls

The XENIX system lets :You pass information to a program at the same time
you invoke it for execution. You can do this with command line argu
ments.

A XENIX command line is the line you type to invoke a program. A com
mand line argument is anything you type in a XENIX command line. A
command line argument can be a filename� a.n option, or a number. The
first argument in any command line must be the filename of the program
you wish to execute.

When you enter a command line, the system reads the first argument and
loads the corresponding program. It also counts the other arguments,
stores them in memory in the same order in which they appear on the line,
and passes the count and the locations to the main function of the pro
gram. The function can then access the arguments by accessing the
memory in which they are stored.

To aceess the arguments, the main function must have two parameters:
argc, an integer variable contabrlng the argument count, and argv, an array
of pointers to the argument values. You can define the parameters by using
the lines:

main (argc, argv)
int argc;
char *argv[];

at the beginning of the inain program function. When a program begins
execution, argc contains the count, and each elemeot in argv contains a
pointer to one argument.

An argument is stored as a null-terminated strlng(i.e., a strlngeodingwith
a null character, \0). The first string (at "argv[O]") is the program name.
The argument count is never less than 1, since the program name is always
considered the first argument.

4-2

Using lhe Standard 110 Functions

In the following example, the command line arguments are read and then
echoed on the terminal screen. This program is similar to the XENIX echo
command.

main(argc, argv) t• echo arguments*/
intargc;
char •argvD;
{

}

inti;

for (i - l; i < ar�c;i++)
printf("%s%c', argv[i],
(i<argc-1) ? " : '\n');

In the example above, an extra space character is added at the end of each
argument to separate it from the next argument. This is required, since the
system automatically removes leading and trailing whitespace characters
(i.e., spaces and tabs)when it reads the arguments from the command line.
Adding a newline character to the last argument is for convenience only; it
causes the shell prompt to appear on the next line after the program ter
minates.

When entering arguments on a command line� make sure each argument is
separated from the others by one or more whitespace characten. If an
argument must contain Whitespace characters, enclose that argument in
double quotation marks. For example, in the command line

display3 4 "echo hello"

the string "echo hello" is treated as a single argument Also, enclose in dou
ble quotation marks any araument that contains characters recognized by
tbeshell(e.g., <, >, l , and).

You should not change the values of the argc and argv variables. If neces
sary, assign the argument value to another variable and change that vari
able instead. You can give other functions in the program access to the
arguments by assigning their values to external variables.

4.3 Using the Standard Flies

Whenever you invoke a program for execution, the XENIX system
automatically creates a standard input, a standard output, and a standard
error file to handle a program's input and output needs. Since the bulk of
input and output of most programs is through the user's own terminal, the
system normally assigns the user's terminal keyboard and screen as the
standard input and output, respectively. The standard error file, which

4-3

C Library Guide

receives any error messages generated by the program, is also assigned to
the terminal screen.

A program can read and write to the standard input and output files witb
tbe getehar, gelS, scanf, putcltar, puiS, and printffnnctions. The stan
dard error file can be accessed using the stream functions described in tbe
section "UsingStreami/O"laterin tbis chapter.

The XENIX system lets you redirect the standard input and output using
tbe shell's redirection symbols. This aJ!ows a program to use otber devices
and files as its chief source of input and output in place of the terminal's
keyboard and screen.

The following sections explain how to read from and write to the standard
input and output. They also explain how to redirect the standard input and
output .

4.3.1 Reading From the Standard Input

You can read from the standard input witb the getehar, gets, and seanf
functions.

The getehar function reads one cltaracter at a time from the standard
input. The function caJlhas the form:

c-getcharQ

where c is the variable to receive the character. It must have int type. The
function normally returns the character read, but will return the end-of
file value, EOF, iftbe end of a file or an erroris encounterad.

The getehar function is typicaJ!y used in a conditional loop to read a string
of characters from the standard input. For example, the following func
tion reads cntnnmberof characters froM tbekeyboard:

4-4

readn (J:>, cnt)
char p[j;
int cnt;
{

}

:inti,c;

i=O;
while (i<cnt)

if((p[i-t+J-getcharQ) !-EOF){
p[i]-0;
return(EOF);

}
retum(O);

Using th� Standard 110 Functions

Note that if getdwr is reading from the keyboard, it waits for characters to
be entered before returning.

The gets function reads a string of characters from the standard input and
copies the string to a given memory location. The function call has the
form:

gets(s)

where sis a pointer to the location to receive the string. The function reads
characters until it finds a newline character, then replaces the newline
character with a null character (\0) and copies the resulting string to
memory. The function returns the null pointer value NULL if the end of
the file or an error is encountered. Otherwise, it returns the value of s.

The function gets is typically used to read a full line from the standard
input. For example, the following program fragment reads a line from the
standard input, stores it in the character array cmdln and calls a function
(called parse), if no error occurs:

char cmdln[SIZE];

if (gets(cmdin) I� NULL)
parseO;

inthis case, thelength oflhe stringlsassumedtobelesstbanSIZE.

Note that gets cannot check the length of the string it reads, so overflow
can occur_

The scanf function reads one or more values from the standard input
where a value may be a character string or a decimal, octal, or hexadecimal
number. The function call has the form:

scanf (format, argptr . . .)

where format is a pointer to a string that defines the format of the values to
be read and argptr is one or more pointers to the variables that will receive
the values. There must be one argptr for each format� given in the format
string. The format may be %s for a string, %c for a character, and %d,
%o, or %x for a decimal, octal, or hexadecimal number, respectively.
(Other formats are described in seani'(S), in the XENIX Reference.) The
function normally returns the number of values it read from the standard
input, but it will return the value EOF if the end of the file or an error is
encountered.

Unlike the getl:har and gets functions, seanf skips all whitespace charac
ters, reading only those characters which make up a value. It then converts
the characters, if necessary, into the appropriate string or number.

4-5

C Library Guide

The scant function is typically used whenever formatted input is required
(i.e., input that must be entered in a special way or that has a special mean
ing). For example, in the following program fragment, scant reads both a
name and a number from the same line:

charname[20];
intnumber;

scanf("%s %d", name, &number);

li1 this example, the string %s %d defines what values are to be read (a
string and a decimal number). The string is copied to the character array
name and the number to theintegervariablenumber. Note that pointers to
these variables are used in the call and not the aetna! variables themselves.

When reading from the ke:yboard, seant.waits for values to be entered
before returoing. Each value must be separated from the next by one or
more whitespace characters (such as spaces, tabs, or even newline charac
ters). For example, for the function

scanf('1o/os o/od %:c", name, age, sex);

an acceptable inputis:

John27
M

H the value is a number, it must have the apPropriate digits; that is, a
decimal number must have decimal digits, octal numbers octal digits, and
hexadecimal numbers hexadecimal digits.

If seant encounters an error, it immediately stops reading the standard
input. Before scant can be used again, the illegal character that caused the
error must be removed from the input using the geleharfunction.

You may use the getcltar, gets, and scant functions in a single program.
Just remember that each function reads the next available character, mak
ingthat characterunavallable to the other functions.

Note that when the standard input is the terminal ke:yboard, the getchar,
gets, and scant functions usually do not return a value until at least one
newline character has been entered. This is true even if only one character
is desired. H you wish to have immediate input on a single keystroke, see
the the raw function call descn'bed in "Setting a Terminal Mode" in
Chapter 5 of this Guide.

4-6

I

Using the Standard I/0 Functions

4.3.2 Writing to the Standard Output

You can write to the standard output with the putchar, puts, and printf
functions.

The putchar function writes a single character to the output bu!Ier. The
function call has the form:

putchar (c)

where c is the character to be written. The function normally returns the
same character it wrote, but will return the value EOF if an error is encoun
tered.

The function is typically used in a conditional loop to write a string of char
acterstothe standard output. For example, the function:

writen (p, cnt)
char p[];
int cnt;
{

inti;

for (i={); i<=cnt; i++)
putchar((i != cnt) ? p[i] : '\n');

}
writes cnt number of characters plus a newline character to the standard
output.

The puts function copies the string found at a given memory location to the
standard output. The function call has the form:

puts(s)

where sis a pointer to the location containing the string. The string may be
any number of characters, but must end with a null character (\0). The
function writes each character "in the string to the standard output and
replaces the null character at the end of the stringwith a newline character.

4-7

C Library Guide

Since the function automatically appends a newline character, it is typi
cally used when writing full lines to the standard output. For example, the
following program fragment writes one nfthree strings to the standard out-
- �

char c;

switch(c){

}

case('l'):
puts("Continning. .. '');
break;

case('2:'):
puts(" All done.'');
break;

default:
puts("Sor:ry, therewasan error.'');

The string to be written depends on the value of c.

The printrfunction writes one or more values to the standard output where
the value is a character string or a decimal, octal, or hexadecimal number.
The function automatically converts numbers into the proper display for
mat. The function call has the form:

printf(format{, arg) • • .)
where format is a pointer to a string which describes the format of each
value to be written and arg is one or mot-e variablescontainingthevalues to
be writtan. There must be one arg for each format in the format string.
The formats may be %s for a string, %c for a character, and %d, %o, or
%x for a decimal, octsl, or hexadecimal number, respectively. (Other for
mats are described in prinlf(S), in the XENlX Reference.) Jf a string is
requested, the corresponding arg must be a pointer. The function nor
mally retorns zero, but will retorn a nonzero value if an error is encoun
tered.

The printf function is typically used when formatted output is required
(i.e., when the output must be displayed in a certain W'!J). For example,
you may use the function to display a name and number on the same line as
in thefollowingexample.

charname [J;
intnumber;

printf('toks o/od'", name, number};

In this example, the string %s %d defines the type nf output to be
displayed (a string and a number separated by a space). The output values
are copied from the character array name and the intsger variable number.

4-8

/
' '
__ j

Using the Standard I/0 Functions

You may use the pulehar, puts, and print! functions in a single program.
Just remember that the output appears in the same order as it is written to
the standard output.

4.3.3 Redirecting the Standard Input

You can change the standard input from the terminal keyboard to an ordi
nary file by using the normal shell redirection symbol, <. This symbol
directs the shell to open, for reading, the file whose name immediately fol
lows the symbol. For example, the following command line opens the file
phonelist as thestandardinputto the program dial:

dial <phonelist

The dial program may then use the gelehar, gels, and scanf functions to
read characters and values from this file. If the file does not exist, the shell
displays an error message and stops the program.

Whenever gelehar, gels, or seanf are used to read from an ordinary file,
they retum the value EOF if the end of the file or an error is encountered. It
is useful to check for this value to make sure you do not continue to read
characters after an error has occurred.

4.3.4 Redirecting the Standard Output

You can change the standard output of a program from the terminal screen
to an ordinary file by using the shell redirection symbol, >. The symbol
directs the shell to open, for writing, the file whose name immediately fol
lows the symbol. For example, the command line:

dial> savephone

opens the file :savephone as the standard output of the program dial, and
not the terminal screen. You may use the putehar, puts, and prlntf func
tions to write to the file.

If the file does not exist, the shell automatically creates it. If the file already
exists and the user has write permission, the file will be truncated. If the file
exists, but the program does not have permission to change or alter the file,
the shell displays an error message and does not execute the program.

4.3.5 Piping the Standard Input and Output

Another way to redefine the standard input and output is to create a pipe.
A pipe simply connects the standard output of one program to the

4-9

C Libl'llfY Guide

standard input of another. The programs may then use the standard input
and output to pass information from one to the other. You can create a
pipeby usingthe standard shellpipesymbol, 1 .

For example, the command line:

dial I we

connects the standard output of the program dial to .tbe standard input of
the program we. (The standard input of dial and standard output of we are
not affected.) II dial writes to its standard output with the putchar, puts, or
prlntf functions, we can read this output with the getchar and scanffunc
tions.

Note that when the program on the output side of a pipe terminates, the
system automatically places the constant value EOF in the standard input
of the program on the input si<,J..,. Pip,es are described in more detail in
ChapterS, "C;reating and Using Pipes. '

4;3.6 Pmgram J>xample

This section shows how you can use the standard input and output files to
perform useful taSks. The ccstrlp (for "control character strip") program
defined below strips out ail ASCII control characters from its input except
for newline and tab. You can use this program to display text or data files
that contain characters that may disrupt yourtenninal screen.

#include <stdio.h>

mainO /*ccstrip: strip nth characters •1
{

}

intc;
while ((c = getchar()) !=EOI')

if((c >=" &&c < 0177) II
c = '\t' llc = '\n')
putchar(c);

exit(O);

You can strip and dispiay the contents of a single file by changing the stan
dard input of the ccstrlp program to the desired file. The command line:

ccstrip <doc.!

reads the contents of the file doc. t, strips out control characters, then
writes the stripped file to the standard output.

II you wish to strip several files at the sam.e thne, you can create a pipe
between the cat command andccstrlp.

4-10

Using the Standard UO Functions

To read and strip the contents of the files filel, fi/e2, and fi/e3, and then
display them on the standard output, enter the command:

cat filet file2 file3 I ccstrip

If you wish to save the stripped Iiles, you can redirect the standard output
ofccstrip; For example; this command line writes the stripped files to the
file clean:

cat filet file2 ftle3 I ccstrip >clean

Note that the exit function is used at the end of the program to ensure that
any program which executes the ccstrip program will receive a normal ter
mination statns (typically 0) from the program when it completes. An
explanation of the exit function and how to execute one program under
control of another is given in Chapter 8.

4.4 Using the Stream Functions

The functions described so far have all read from the standard input and
written to the standard output. The next step is to show functions that
access files not already connected to the program. One set of standard I/0
functions allows a program to open and access ordinary files as if they were
a "stream" of characters. For this reason, the functions are called the·
stream functions.

Unlike the standard input and output files, a file to be accessed by a stream
function must be explicitly opened with the fopen function. The function
can open a file for reading, writing, or appending. A program can read
from a previously opened file with the getc, fgetc, fgets, fgetw, fread, and
fscanf functions. It can write to a previously opened file with the putc,
fputc, fpnts, fputw, IW:rite, and fprintf functions. A program can test for
the end of the file or for an error with the feof and ferror functions. A pro
gram can close a file with the fdose function.

4.4.1 UsingFilePointers

Every file opened for access by the stream functions has a unique pointer
called a file pointer associated with it. This pointer, defined with the
predefined type FILE, found in the stdio.h file, points to a structnre that
contain s information about the file, such as the location of the buffer (the
intermediate storage area between the actual file and the program), the
current character position in the buffer, and whether the file is being read
or written. The pointer can be given a valid pointer value with the fopen
function as descnbed in the next section. (The NULL value, like FILE, is

4-11

C Library Guide

defined in the stdio.h tile.) Thereafter, the file pointermay be used to refer
to that file until the file is explicitly closed with the felose function.

Typically, a file pointer is defined with the statement:

FILE *tafile;

The standard input, output, and error files, like other opened files, have
corresponding file pointers. These file pointers are named stdin for stan
dard input, stdout for standard output, and stderr for standard error.
Unlike other file pointers, the standard file pointers are predefined in the
stdio.h file. This means that a l'!'ogram may use these pointers to read and
write from the standard files Without first using the fopen function to open
them.

The predefined file pointers are typically used when a program needs to
alternate between the standard input or output file and an ordinary file.
Although the predefined file pointers have FILE type, they are constants,
not variables. Theymustnotbeassigned values.

4.4.2 Opening a File

The Copen function opens a given file and returns a pointer (called a file
pointer) to a structure containing the data necessary to access the file. The
pointer may then be used in subsequent stream functions to read from or
write to the file. See fopen(S} in the XBNIX ReferenceGuide.

The function call has the form:

fp=fopen(filename, type)

where fp is the pointer to receive the file pointer, filename is a pointer to the
name of the file to be opened and type is a pointer to a string that defines
how the file is to be opened. The type string may be r for reading, w for
writing, and a for appending, (openforwritiog at the end ofthe file).

A file may be opened for different operations at the same time if separate
file pointers are used. For exampll>, the following program fragment opens
the file named !usrf accounts for both reading and writing:

4-12

FILE *rp, *wp, *fopenQ;

rp-fopen("/usr/accounts", "ru);
(''/ I '') wp=fopen usr. accounts , a ;

Using the Standard I/O Functions

Opening an existing file for writing destroys the old eon tents. Opening an
existing file for appending leaves the old contents unchanged and causes
any data written to tbe file to be appended to the end.

Trying to open a nonexistent file for reading causes an error. Trying to
open a nonexistent file for writing or appending causes a new file to be
created. Trying to open any file for which tbe program does not have
appropriate permission causes an<�rror; ·

The function normally returns a valid file pointer, but will return the value
NULL if an error on opening the file is encountered. It is wise to check for
the NULL value after each function call to prevent reading or writing after
an error.

4.4.3 Reading a Single Character

The getc and fgetc functions return a single character read from a given
file, and return the valne EOF if the end of the file or an error is encoun
tered. The function calls have the form:

c -getc (stream)

and

c-fgetc (stream)

where stream is the file pointer to the file to be read and c is the variable to
receive the character. The return value is always an integer.

The functions are typically used in conditional loops to read a string of
characters from a file. For example, the following program fragment con
tinues to read characters from the file given to it by lnfile until the end of the
file or an en-oris encountered:

inti·
cha; buf[MAX];
FlLE *infile;

whl1e ((c=getc(infl1e)) 1-EOF)
buf[i++]=c;

The only difference between the functions is that getc is defined as a
macro, and !getc as a true function. This means that, unlike getc, fgetc
may be passed as an argmnent in another function, used as a target for a
breakpoint when debugging, or used to avoid any side effects of macro pro
cessing.

4-13

c Libmcy Guide

4.4:4 Reading a String from a File

The (gets function reads a string of characters from a file and copies !he
string to a given memory location. The function call has the form:

fgets (s,n,stream)

where s is be a pointer to the location to receive the string, n is a count of
the maximum number of characters to be in !he string. and stream is the file
pointer of !he file to be read. The function reads n-1 characters or up to
!he first newline character, whichever occurs first. The function appends a
null character (\0) to the last character read and then stores !he string at !he
specified location. The function retorns the null pointer value NULL if !he
end of the file or an error is encountered. Otherwise, it returns !he pointer
s.

The function is typically used to read a full line from a file. For example,
!he following program fragment reads a string of characters from !he file
f!i.ven by my file.

charcmdln[MAXJ;
FILE *myfile;

if (fgets(cmdln, MAX, myfile) l� NULL)
parse(cmdln);

In 1his example, fgets copies !he string to the character array cmdln.

4.4.5 Reading Reeonls fh>m a File

The fread function reads one or more records from a file and copies !hem
to a given memory location. The function call has !he form:

fread(ptr, slz:e, niJems, stream)

where ptr is a pointer to !he location to receive the records, size is the size
('m bytes) of each record to be read, nitemsis !he number of records to be
read, and stream is !he file pointer of !he file to be read.· The ptr may be a
pointer to a variable of any type (from a single character to a strnctrure).
The size, an integer, shouldgivelhenumbers ofbytesin each itemyouwish
to read. One way to ensure this is to use the slzeoffunction on !he pointer
ptr (see !he example below). The function always retorns !he number of
records it read, regardless of whether or not !he end of !he file or an error is
encountered.

The function is typically used to read binary data from a file. For example,
the following program fragment reads two records from the file given by
database and copies the records into the structnreperson.

4-14

Using the Standard UO Functions

#include <stdio.h>

#define dbnamc "dbfile"

typedef strucl
{

charname[20];
intag�;

}record;

mainO
{

}

FJLE•database, •ropeuO;
record person[2];

if ((database = fopen(dbname, "w")) -NULL) {
printf("Cannotopen %sO,dbnarne);
exit(l);

}
fwrite(pcrson, sizeof(record), 2, database);
printf("Oecord is %dO, sizeof(record));
prinlff'person is %dO,sizeof(person));

Note that since fread does not explicitly indicate errors, the feof and ferror
functions should be used to detect end of the file and errors. These func
tions are described later in Ibis cllapter.

4.4.6 Reading Fonnatted Data From a File

The fscanf function reads formatted input from a given file and copies it to
the memory location given by the respective argument pointers, just as the
scanf function reads from the standard input. The function call has tlie
form:

fscanf (stream,format, a'IJPtr . . •)

where stream is the file pointer of the file to be read, forl711lt is a pointer to
the string that defines the format of the input to be read, and argptr is one
or more pointers to the variables that are to receive the formatted input.
There must be one argptr for each format given in the format string. The
format maybe %s for a string, %c for a character, and %d, %o, or %xfor
a decimal, octal, or hexadecimal number, respectively. (Other formats are
described in scanf (S) in the XENIX Reference.) The function normally
returns the number of arguments it read, but will return the value EOFifthe
end of the file or an erroris encountered.

4-15

C Library Guide

The f1Jllction is typically used to read files that contain both numbers and
text. For example, this program fragment reads a name aud a decim.al
numherfrom the file given by file :

FJLE*file;
intpay;
char name[20];

fscanf(file, "%s %d\n", name, &pay);

This program fragment copies the name to the character array name and
the numherto the integer variable pay.

4.4. 7 Writing a Single Character

The pule aud fpute functions write single characters to a given file. The
function calls have the form:

pule (c,stream)

and

fputc (c,stream)

wherec is the character to be written and stream is the file pointer to the file
to receive the character. The function normallyretorns the character writ
ten, butwillrotum the valueEOF if an erroris encountered.

The function is defined as a macro and may have undesirable side effects
resulting from argument processing. In such cases, the equivalent function
fputc should be used.

These functions are typically used in conditional loops to write a string of
characters to a file. For example, the following program fragment writes
characters from the array name to the file given by out.

FILE*out;
charname[MAX];
inti;

for (i-cl; i <MAX; i++)
fputc(name[i], out);

The only difference between the pute and fputc functions is that pule is
defined as a macro and fputc as an actoal function. This means that fputc,
uuiike pute, may be used as an argument to another function, as the target

4-16

Using the Standard 1/0 Functions

of a breakpoint when debugging, and to avoid the side effects of macro
processing.

4.4.8 Wrltinga String to a File

The fput& function writes a string to a given file. The function call has the
form:

fputs(s,stream)

where s is a pointer to the string to be written, and stream is the file pointer
to the file.

The function is typically used to copy strings from one file to another. For
example, in the following program fragment, gets and fl'ut& are combined
to copy strings from the standard input to the file given by out.

Fn..E•out;
char cmdin[MAX];

if (gets(cmdln) !� BOF)
fputs(em din, out);

The function normally returns zero, but will return EOF if an error is
encountered.

4.4.9 WrllingFonnattedOutput

The ft>rlutf function writes formatted output to a given file, just as the
prlutf function writes to the standard output. The function call has the
form:

fprintf (stream,ji>rmat[, arg] . . .)

where stream is the file pointer of the file to be written to, format is a
pointertu a stringwhichdefines the formatofthe output, and argis one or
more arguments to be written. There must be one arg for each format in
the format string. The formats may be %s for a string, %c for a character,
and
%d, %o, or %xfor a decimal, octal, or hexadecimal number, respectively.
(Other formats are described in prlntf(S) in the XENIX Reference.) If a
string is requested, the correspondingargmust be a pointer, otherwise, the
actual variable must be used. The function normally returns zero, but will
return a nonzero number if an error is encountered.

4-17

C Library Guide

The function is typically used to write output that contains both numbers
and text. For example, to write a name and a decimal number to the file
given byoutfile, use thefollowingprogramfragment:

FILE •outfile;
intpay;
charname(20];

fprintf(outfile, "%s %d\n", name, pay);
The name is copied from the character array name, and the number from
the integer variable pay.

4.4.10 Writing Reeords to a File

The fwrite function writes one or more records to a given file. The function
callhastheform:

fwrite (ptr, si:t.e, nitems, stream)

where ptr is a pointer to the first record to be written, size is the size (in
bytes) of each record, nitems is the number of records to be written, and
stream is the file pointer of the file. The ptr may point to a variable of any
type (from a single character to a structure). The si:t.e should give the
numberofbytesin eaehitem to be written. One way to ensure thisisto use
the sizeoffunction (see the example below). The function always returns
the number of items actually written to the file whether or not the end of the
file or an error is encountered.

The function is typically used to write binary data to a file. For example,
the following program fragment writes two records to the file given by data
base.

FILE *database;
struct record {

charname[20];
intage;

} person[2];

fwrite(&person, sizeof(structrecord), 2, database);

The records are copied from the structure person.

Since the function does not report the end of the file or errors, the feof and
terror functions should be used to detect these conditions.

4-18

Using the S!andard UO Functions

4.4. 11 Testing for !he End of a FUe

The feof function returns the value -1 if a given file has reached its end.
Thefunction callhas the fonn:

feof(stream)

where stream is the file pointer of the,file. The Junction, returns -1 only if
the file has reached its end, otherwise it returns 0. The return value is
always an integer.

The feoffunction is typically used after those functions whose return value
is not a clear indicator of an end-of-filecondition. For example, in the fol
lowing program fragment the function checks for !he end of the file after
each character is read. The reeding stops as soon as feofreturns -1.

char name[lO];
FILE *stream;

do
fread(name, size(name), 1, stream);

whlle(lfeof(stream));

4.4.12 TestingForFile Errors

The ferrorfnnction tests a given stream file for an error. The function call
has the form:

ferror(stream)

where stream is the file pointer of the file to be tested. The function returns
a nonzero (trne) value if an error is detected, otherwise it returns zero
(false). The function returns an integer value.

The function is typically used to test for errors before performing a subse
quent read or write to the file. For example, in the following program frag
mentferrortests the file given by stream.

char*buf;
charx[5];

while (!ferror(stream))
fread(buf, sizeof(x), 10, stream);

4-19

C Libraey Guide

If it returns 1.ero, the next item in the file given by stream is copied to buf.
Otherwise, execution passes to the next statement.

Further use of a file afrer a error is detected may cause undesirable results.

4.4.13 Closing a File

The fclose function closes a file by breaking the connection between the
file pointer and the structure created by fopen. aosing a file empties the
contents of the corresponding bnffer and frees the file pointer for use by
another file. The function call has the form:

fclose (stream)

where stream is the file pointer of the file to close. The function normally
retnrns 0, but will retnrn -1 if an error is encountered.

The fclose function is typically used to free file pointers when they are no
longer needed. This is important because usually no more than 6) files can
be open at the same time. For example, the following program fragment
closes the file given by in file when the file has reached its end:

FILE *infile;

if (feof(infile))
fclose(infile);

Note that whenever a program terminates normally, the felose function is
automatically called for each opeo file, so no e>plicit call is required unless
the program must close a file before its end. Also, the functionJautomati
cally calls lllush to ensure that everything written to the file's bnffer actually
gets to the file.

4.4.14 Program Example

This section shows bow you can use the stream functions you have seen so
far to perform useful tasks. The following program, which counts the char
acters, words, and lines found in one or more files, uses the to pen, fprintf,
gete, and felose functions to open, close, read, and write to the given files.
The program incorporates a basic design that is common to other XENIX
programs, namely it uses the filenames found in the command line as the
files to open and read, or if no names are present, it uses the s-dard
input. This allows the program to be invoked on its own, or be the receiv
ing end of a pipe.

4-20

Using the Standard IJO Functions

#include <stdio.h>

', main(argc, argv) !• we: count lines, words, chars */
intargc;
char *argvQ;
{

}

int c� i, inword;
FILE *fp, *fopen();
lOng linect, WOidet� Chaftf; "
longtllnect-0, twordct=O, tcharct=O;

i= 1;
fp = stdin;
do
{

if (argc > 1 &&
(fp=fopen(argv[i], "r"))-= NULL){
fprintf(stderr, ''We: can'topen o/os\n",

argv[iD;
continue;

}
linect=wordct = charct = in word = 0;
while((c= getc(fp)) != EOF) {

charct++;
if(c='\n')

linect++;
if(c==" llc= '\t' llc== '\n')

inword= O·
else if (inworl == 0) {

inword =l;
wordct++;

}

�rintf("% 7ld % 7ld % 7Id", linect, wordct,
charct{.;

printf(argc > 1 ? '%s\n" : ''In", argv@;
fclose(fp);
tlinect+-linect;
twordct += wordct;
tcharct+=charct;

}while (++i < argc);
if (argc > 2\

printf('1% 7ld % 7ld % 7ld total\n", tlinect,
twordct, tcharct);

exit(O);

The program uses fp as the pointer to receive the current file pointer. fu.i
tially, this is set to stdin in case no filenames are present in the command
line. If a filename is present, the program calls fopen and assigns the file

4-21

C Library Guide

pointer to fp. If the file cannot be opened (in whicb case fopen returns
NULL}, the program writes an error message to the standard error file
stde" with the fprintf function. The function prints the format string "we:
can't open %s", replacing the %swith the name pointed to by argv [i].

Once a file is opened, the program uses the getc function to read each char
acter from the file. As it reads characters, the program keeps a count of the
number of characters, words, and lines. The program continues to read
until the end of the file is encountered, that is, when getc returns the value
EOF.

Once a file has reached its end, the program uses the printf function to
display the character, word, and line counts on the standard output. The
format string in this function causes the counts to be displayed as long
decimal numbers with no more than 7 digits. The program then closes the
current file with the felose function and examines the command line argu
ments to see if there is another filename.

When all files have been counted, the program uses the printffunction to
display a grand total at the standard output, then stops execution with the
exit function.

4.5 UsingMore StreamFunelions

The stream functions allow more control over a file than just opening,
reading, writing, and dosing. The functions also let a program take an
existiogfile pointer and reassigu it to another file (similar to redirectiog the
standard input and output files} as well as manipulate the buffer that is used
for intermediate storage between the file and the program.

4.5.1 Using Buffered Input and Output

Buffered JJO is an input and output technique used by the XENIXsystem to
cut down the time needed to read from and write to files. Buffered JJ 0 lets
the system collect the characters to be read or written, and then transfer
them all at once rather than one character at a time. This reduces the
number of times the system must access the JJO devices and consequently
provides more time for running user programs. Not all files have buffers.
For example, files associated with terminals, such as the standard input
and output, are not buffered. This prevents unwanted delays when
transferring the input and output. When a file does have a buffer, the
buffer size in bytes is given by the mainfest constant BSIZE, which is
defined In the stdio.h file.

When a file has a buffer, the stream functions read from and write to the
buller instead of the file. The system keeps track of the buffer and when
necessary, fills it with new characters (when reading} or fiushes (copies) it
to the file (when writing). Normally, a buffer is not directly accessible to a

4-22

Using the Standard 110 Functions

program, however a program can define its own buffer for a file with the
sethoffunction. The function also lets a program change a buffered file to
be an unbuffered one. The ungeiA: function lets a program put a character
it has read back into the buffer, and the mush function lets a program flush
the buffer before it is full.

4.5.Z Reopening a File

The freopen function closes the file associated with a given file pointer,
then opens a new file and gives it the same file pointer as the old file. The
function call has the form:

freopen (newfile, type, stream)

where newjile is a pointer to the name of the new file, type is a pointer to the
stringthat defines how the file is to be opened (r for read, w for writing, and
a for appending), and stream is the file pointer of the old file. The function
returns the file pointer stream if the new file is opened. Otherwise, it
returns the null pointer value NULL.

The fteopen function is used chiefly to attach the predefined file pointers
stdin, stdout, and stderr to other files. For example, the following program
fragment opens the file named by newjile as the new standard output file:

char *newfile;
FILE *nfile;

nfile- freopen(newfile, "r" ,stdout);

This has the same effect as using the redirection symb ols in the command
lineofthe program.

4.5.3 Setting the Buffer

The setbuf function changes the buffer associated with a given file to !be
program's own buffer. It can also change the access to the file to no
buffering. The function call has the form:

setbnf (stream, buf)

where stream is a file descriptor and bufis a pointer to the new buffer, or is
the null pointer value NULL if no buffering is desired. If a buffer is given, it
must be BSIZE bytes in length, where BSlZEis a manifest constant found in
stdic.h.

The function is typically used to to create a buffer for the standard output
when it is assigned to the user's terminal, thus .. improving execution time

4-23

C Library Guide

by eliminating the need to write one character to the screen at a thne. For
example, the following program fragment changes the buffer of the stan
dard output to the location pointed to byp:

char*p;

p-malloc(BSIZE);
setbuf (stdout, p);

The newbufferisBSIZEbyteslong.

The function may also be llSed to change a file from buffered to unbuffered
input or output. Unbuffered input and output generally increase the total
thne needed to transfer large numbers of characters to or from a file, but
give the fastest transfer speed for individual characters.

The seibuf function should be called immediately after opening a file and
before reading or writing to it. Furthermore, the fclose or tllush function
mllSt be used to fiush the buffer before terminating the program. If not
used, some data written to thebuffermaynotbewritten to the file.

4.5.4 Putting a CharacterBacklnto a Buffer

The ungetc function puts a charaetcr back into the buffer of a given file.
The function call has the form:

ungetc (c, stream)

where cis the character to put back and stream is the file pointer of the file.
The function normally returns the same character it put back, but will
return the value EOFif an error is encountered.

The function is typically used when scanning a file for the first character of
a string of characters. For example, the following program fragment puts
the first character that is not a whitespace character back into the buffer of
the file given by in file, allowing the subsequent call to gets to read that char
acter as the first character in the string:

FILE *infile;
charname[20];

while(isspace(c�getc(infile)))

un�tc(c, stdin);
gets(name, stdin);

Putting a character back into the buffer does not change the corresponding
file; it only changes the next character to be read.

4-24

Using the Standard I/0 Functions

The function can only put a character back if one has been previously read.
The function cannot put more than one character back at a time. This
means that if three characters are read, then only the last character can be
put back, neverthe firsttwo.

The valueEOFmust never beputbackin the buffer.

4.5.5 Flushing a File Buffer

The mush function empties the buffer of a given file by immediately writing
the buffer contents to the file. The function call has thefonn:

mush (stream)

where stream is the file pointer of the file. The function nonnally returns
zero, butwill retum thevalueEOFif an erroris encountered .

The function is typically used to guarantee that the contents of a partially
filled buffer are written to the file. For example, the followingprogram frag- .
ment empties the buffer for the file given by outtty if the error condition
given by err/fag is 0.

FILE •outtty;
int errflag;

if (errflag�� 0)
fflush(outtty);

Note that mush is automatically called by the fdose function to empty the
buffer before closing the file. This means that no explicit call to mush is
required if the file is also being closed.

The function ignores any attempt to empty the buffer of a file opened for
reading.

4.6 Using the Low• Level Functions

The low-level functions provide direct access to files and peripheral dev
ices. Theyare aetuallydirecl callsto the routines used in theXENIXoperat
ing system to read from and write to files and peripheral devices. The low
level functions give a program the same control over a file or device as the
system, Jetting it access the file or device in ways that the stream functions
do not. However, low-level functions, unlike stream functiQns, do not
provide buffering or any other useful services of the stream functions. This
means that any program that uses the low-levelfunctions has the complete
burden ofhandlinginput and output.

4-25

C Library Guide

The low-level functions, like the stream functions, cannot be used to read
from or write to a file until the file has been opened. A program may usc
the open function to open an existing or new file. A file can be opened for
reading, writing, or appending.

Once a file is opened for reading, a program can read bytes from it with the
read function. A program can write to a file opened for writing or append
ing with the write function. A program can close a file with the close func
tion.

4.7 UsingFUe Descriptors

Each file that has been opened for access by the low-level functions has a
unique integer called a "file descriptor" associated with it. A file descrip
tor is similar to a file pointer in that it identifies the file. A file descriptor is
unlike a file pointer in that it does not point to any specific structure.
Instead, the descriptor is used internally by the system to access the neces
sary information. Since the system maintains all information about a file,
the only way to access a file in a program is through the file descriptor.

There are three predefined file descriptors (just as there are three
predefined file pointers) for the standard input, output, and error files.
The descriptors are Ofor the standard input, lfor the standard output, and
2 for the standard error file. As with predefined file pointers, a program
may use the predefined file descriptors without explicitly opening the asso
ciated files.

Note that if the standard input and output files are redirected, the system
changes the default assignments for the file descriptors 0 and 1 to the
named files. This is also true if the input or output is associated with a pipe.
File descriptor 2 normally remains attached to the terminal.

4.7.1 Opeuing a :File

The open function opens an existing or new file and returns a file descriptor
for that file. The function call has the form:

fd-open (name, access [,mode]);

where fd is the integer variable to receive the file descriptor, name is a
pointer to a string containing the filename, access is an integer expression
giving the type of file access, and mode is an integer number givinfli a new
file's permissions. The function normally returns a file descriptor {a posi
tive integer), but will return -l if an erroris encountened.

The access expression is formed by using one or more of the following man
ifest constants: O_RDONLY for reading, O_WRONLY for writing,

4-26

(

Using the Standard 1/0 Functions

O__RDWR for both reading and writing, O_APPEND for appending to the
end of an existing file, and O_CREAT for creating a new file. (Other con
stants are described in open(S) in the XENIX Reference.) The logical OR
operator (I) may be used to combine the constants. The mode is required
only if O_CREAT is given. For example, in the following program frag
ment, the function is used to open the existing file named /usr/accounts for
reading, and open the new file named /usr/tmp/scratch for reading and
writing:

intin, out;

in= open("/usr/accounts", O_RDONL Y);
out�open("/usr/tmp/scratch", O_WRONL Y IO_CREAT, 0755);

In the XENIX system, each file has 9 bits of protection information which
control read, write, and execute permission for the owner of the file, for
the owner's group, and for all others. A three-digit octal number is the
most convenient way to specify the permissions. In the ·example above,
the octal number 0755 specifies read, write, and execute permission for the
owner, read and execute pennission for the group, and read permission for
everyone else.

Note that if O_CREAT is given and the file already exists, the function des
troys the file's old contents.

4. 7.2 Reading BytesFroma Flle

The read function reads one or more bytes of data from a given file and
copies them to a given memory location. The function call has the form:

nJead�read(fd, buf, n);

where nJead is the variable to receive the count of bytes actuallyread,fd is
the file descriptor of the file, buf is a pointer to the memory location to
receive the bytes read, and n is a count of the desired number of bytes to be
read. The function normally returns the same number of bytes as
requested, but will return fewer if the file does not have that many bytes left
to be read. The function returns Oif the file has reached its end, or -1 if an
erroris encountered.

When the file is a terminal, read normally reads only up to the next new-

(line.

�

4-27

C IJbrary Guide

The number of bytes to be read is arbitrary. The two most common values
are 1, which means one character at a time, and 512, which corresponds to
the physical block size on many peripheral devices.

4. 7.3 Writing Bytes to a File

The write function writes one or more bytes from a given memory location
to a given file. Thefunctioncallhas the form:

n.JVritten -write(fd, buf, n);

where n.JVritten is the variable to receive a count of bytes actually written,
fd is the file descriptor of the file, bufis the name of the buffer containing
the bytes to be written, andn is thenumberofbytes to be written.

The function always retums the number of bytes actually written. It is con
sidered an error if the retllrn value is not equal to the number of bytes
requested to be written.

The number of bytes to be written is arbitrary. The two most common
values are 1, which means one character at a time and 512, which
corresponds to the physical block size on many peripheral devices.

4.7.4 Closing a File

The close function breaks the connection between a file descriptor and an
open file, and frees the file descriptor for use witb some other file. The
function call has the form:

close (fd)

where fd is the file descriptor of the file to close. The function normally
retumsO, butwillretllrn -1ifanerroris encountered.

The function is typically used to close files that are no longer needed. For
el<attlple, the following program fragment closes the standard input if the
argument count is greater than 1.

intfd;

if(argc > 1)
close(O);

Note that all open files in a program are closed when a program terminates
normally or when the exit function is called, so no explicit call to close is
required.

4-28

Using the Standard I/0 Functions

4. 7.5 Progrnm Examples

This section shows how to use the low-level functions to perform useful
tasks. It presents three examples that incorporate the functions as the sole
method of input and output.

The first program copies its standard input to its standard output:

#define BUFSIZE BSIZE

main()
{

I* copy input to output */

}

char buf!BUFSIZE];
int n;
while ((n �read(O, buf, BUFSIZE)) > 0)

write(!, buf, n);
e:rit(O);

The program uses the read function to read BUFSIZE bytes from the stan
dard input (file descriptorO). It then uses write to write the same number of
bytes it read to the standard output (file descriptor 1). lf the standard input
file size is not amultiple ofBUFSIZE, the last read returns a smaller number
ofbytes to be written by write, and the next call to read returns zero.

This program can be used like a copy command to copy the content of one
file to another. You can do this by redirecting the standard input and out
putfiles.

The second example shows how the read and write functions can be used
to construct higher level functions likegetchar and pntehar. For example,
the following is a version of getchar that performs unbuffered input:

#define CMASK 0377
/* formakingehars > 0 *I

getchar()
I* unbuffered single character input *I

{

}

charc;
return((read(O, &c,
1) > 0) ? c & CMASK : EOF);

4-29

C Library Guide

The variable c must be declared char, because read accepts a character
pointer. In this case, the character being returned must be masked with
octal 0377to ensure that itis positive; otherwise sign extension may make it
negative.

The second version of getehar reads input in large blocks, but hands out
the characters one at a time:

#define CMASK CJ377
t• for making char's >0*/

#define BUFSIZE BSIZE

getchar0 /* buffered version •t
{

}

static char bnf[BUFSIZE];
static char *bufp= buf;
static int n- 0;

if(n-0) { /* bnfferis empty •t
n= read(O, buf, BUFSIZE);
bufp =buf;

}
return((--n >=0) ?

*bnfp++ & CMASK: EO F);

Again, each character must be masked with the octal constant 0377.

The final example is a simplified version of the XENIX utility, cp, a pro
gram that copies one file to another. The main simplification is that this
version copies only one file, and does not permit the second argnment to
be a directory.

#define NULLO
#define BUFSIZEBSIZE
#definePMODE0644/ * RWforowner,

Rfor group, others 0/

4-30

Using the Standard I/0 Functions

main(argc, argv) /*cp: copyfl to f2 •!
intargc;
char •argv[];
{

}

int fl, f2, n;
char buf[BUFSIZE];

if (argc l-3)
. .. error('Usage: cp fioin to", NULL);
if ((fl- OJ?.<'n(argv[1], O_RDONL Y))--1)

error(''cp: can'topen %s", argvJ1]) ;
if ((f2- open(argv[2], O_CREAT (O_WRONLY,

PMODE))---1)
error("cp: can'tcreate%s", argv[2));

while ((n-read(f1, buf, BUFSIZE)) > 0)
if (wrlte(f2, buf, n) !- n)

error('Cp: write error") NULL);
exit(O);

error(sl, s2)
,.
• print etTormessage and die
.,
char *sl, *s2;
{

}

printf(sl, s2);
printf(''\n'');
exit(l);

There is a limit (usually 60) to the number of Illes that a program may have
open simultaneously. Therefore, any program that intends to process
many files must be designed to reuse file descriptors by closing unneeded
Illes.

4.7.6 Using Random Acces s II 0

Input and output operations on any file are normally sequential. This
means each read or write takes place at the character position immediately
after the last character read or written. The standard library, however,
provides a number of stream and low-level functions that allow a program
to access a file randomly; that is, to exactly specify the position it wishes to
read from or write to next.

4-31

C Library Guide

The functio!lll that provide random access operate on a file's "character
pointer.'' Every open file has a character pointer that points to the next
character to be read from that file, or the next place in the file to receive a
character. Normally, the character pointer is maintained and controlled
by the system, but the random access functions let a program move the
pointerto any position in the file.

4. 7. 7 Moving the Character Pointer

The !seek function, a low-level function, moves the character pointer in a
file opened for low-level access to a given position. The function call has
thefonn:

Iscck(fd, offset, origin);

where fd is the file descriptor of the file, offset is the number of bytes to
move the character pointer, and origin is the number that gives the starting
point for the move. It may be 0 for the beginning of the file, 1 for the
current position, and2fortheend.

For example, the following cali forces the current position in the file,
whose descriptor is 3, to move to the 512th byte from the beginning of the
file:

lseek(3, (long)512, 0)

Subsequent reading or writing will begin at that position. Note that offset
must be a long integer andfd and origin must be integers.

The function may be used to move the character pointer to the end of a file
to allow appending, or to the beginning as in a rewind function. For exam
ple, the call:

lseek(fd, (long)O, 2);

prepares thefile for appending, and:

lseek(fd, (long)O, O);

rewinds the file (moves the character pointer to the beginning). Notice the
"(long)O'' argument; it could also be written as:

OL

4-32

Using the Standard I/0 Functions

Using !seek, it is possible to treat files more or less like large arrays, at the
price of slower access. For example� the following simple function reads
anynumberofbytes from any arbitrary place in a file:

get(fd, pos, buf, n)
t• read n bytes from position pos •t

intfd7 n;
Im>gp.;>s;
char*buf;
{

}

lsecl::(fd, pos, 0); t• getto pos */
return(read(fd, buf, n));

4. 7.8 Moving the Character Pointer in a Stream

The fseek function, a stream function, moves the character pointer in a file
to a given location. The function cal! has the form:

fseck (stream, offset,ptrname)

where stream is the file pointer of the file, offset is the number of characters
to move to the new position (it must be a long integer), and ptrname is the
starting position in the file of the move (it must be 0 for begianiog, 1, for
current position, or 2 for end of the file). The function normally returns
zero, but will return the valueEOFif an erroris encountered.

For example, the following program fragment moves the character pointer
to theend of the file given by stream.

FILE •stream;

fseek(stream, (!ong)O, 2);

The function may be used on either buffered or unbuffered files.

4.7.9 Rewinding a File

The rewind function, a stream function: moves the characterpointerto the
beginning of a given file. The function call has the form:

rewind (stream)

4-33

C Library Guide

where stream is the file pointer ofthefile. The function is equivalent to the
following function call:

fseek (stream,OL,O);

It is chiefly used as a more readable version of the call.

4. 7.10 Getting the Cnrnmt Character Position

The ftell function, a stream function, returns the current position of the
character pointer in the given file. The retnrned position is always relative
to the beginning of the file. The function call has the form:

p= ftell (stream)

where stream is the file pointer of the file and pis the variable to receive the
position. The retnrn value is always a long integer. The function returns
thevalue -lifan erroris encountered.

The function is typically used to save the current location in the file so that
the program can later retnrn to that position. For example, the following
program fragment first saves the current character position in oldp, then
restores the file to this position if the current character position is greater
tban800.

FILE •outfile;
longoldp;

oldp = ftell(outfile);

if ((ftell(outfile)) > 800)
fseek(outfile, oldp, 0);

The ftenfunctionis identical to the function call

lseek(fd, (long)O, 1)

where fd is the file descriptor of the given stream file.

4-34

Chapter S

Screen Processing

5.1 Introduction 5-1
5 .1.1 Terminal Capability Descriptions 5-l
5.1.2 Screen ProcessingOverview 5-l

5.2 Usingthe Library 5-3
5.2.1 System Default 5-3
5.2.2 termcap curses Using /etc/termcap 5-4
5.2.3 termcap curses Usingterminfo 5-4
5.2.4 terminfo curses Using terminfo 5-5
5.2.5 System Independent curses 5-5
5.2.6 SomeAdditiona! Notes 5-6
5.2.7 PredefinedName• 5-7

(""""': 5.3 Preparlngthe Screen 5-9
\.J 5.3.1 InitializingtheScreen 5-9

5.3;2 Using Terminal Capability and Type 5-9
5,3.3 Using Default Terminal Modes 5-10
5.3.4 UsingDefault WindowF1ags 5-11
5.3.5 Usingthe DefaultTerminal Size 5-11
5.3.6 TerminatingScreen Processing 5-11

5.4 Using the Standard Screen 5-12
5.4.1 Addinga Character 5-12
5.4.2 AddingaString 5-12
5.4.3 Printing Strings, C.llaracters, and Numbers 5-13
5.4.4 Readinga CharacterFrom the Keyb oard 5-14
5.4.5 Reading a StringFrom the Keyboard 5-14
5.4.6 Reading Strings, Characters, and Numbers 5-15
5.4.7 MovingtheCurrentPosition Sc-16
5.4.8 Inserting a Character 5-16
5.4.9 lnsertingaLine 5-17
5.4.10 Deletinga Character 5-17
5.4.11 DeletingaLine 5-18
5.4.12 Clearingthe Screen 5-18
5.4.13 C!earinga Partofthe Screen 5-18
5.4.14 Refreshing From the Standard Screen 5-19

5.5 Creatingand UsingWindows 5-20
5.5.1 Creating a Window 5-20
5.5.2 Creatinga Subwindow 5-21

5.5.3 Adding and Printing to a Window 5-21
5.5.4 ReadingandScanningfor input 5-23
5.5.5 Moving the Current Position in a Window 5-25
5.5.6 Inserting Characters and Lines 5-25
5.5.7 DeletingCharacters and Lines 5-26
5.5.8 Clearingthe Screen 5-'1:7
5.5.9 RefresltingFrom a Window 5-28
5.5.10 OverlayingWindows 5-28
5.5.11 Overwritinga Screen 5-29
5.5.12 Moving a Window 5-30
5.5.13 Readinga CharacterFrom aWindow 5-30
5.5.14 Toucltinga Window 5-31
5.5.15 Deleting a Window 5-31

5.6 UsingOtherWindowFunctions 5-32
5.6.1 Drawinga Box 5-32
5.6.2 Displaying Bold Characters 5-32
5.6.3 RestoringNorrna!Characters 5-33
5.6.4 Gettingthe Current Position 5-34
5.6.5 SettingWindow'Flags 5-34
5.6.6 Scrolling a Window 5-36

5.7 CombiningMovementWithAction 5-36

5.8 Controlling the Terminal 5-36
5.8.1 SettingaTerminal Mode 5-36
5.8.2 ClearingaTerminalMode 5-37
5.8.3 MovingtheTerminal's Cursor 5-38
5.8.4 Gettingthe Terminal Mode 5-39
5.8.5 Saving and RestoringtheTerminal 'Flags 5-39
5.8.6 Setting aTerminalType 5-39
5.8.7 ReadingtheTermina!Name 5-40

�
I

Screen Processing

5.1 Introduction

This chapter explains how to use the screen updating and cursor move
ment library named curses. The library provides functions to create and
update screen windows� get :input from the terminal in a screen-oriented
way, and optimize the motion of the cursor on the screen.

5.1.1 Terminal Capability Descriptions

There are two different versions of the curses library distnbuted with the
XENIX system. The principal difference between the two versions is that
each draws its tennioal descriptions from a different tenninal capability
database.

The termcap curses is the original XENIX version of curses. It is desigaed
to use the /etcltermcap database of terminal descriptions. tenncap is
descrihed in the termcap(M) manual page. You may, however, use the ter·
minfo terminal capability database instead of tenncap.

The tenninfo curses library is a recently developed compatible version of
curses with extended functionality. It is desigaed to use the tenninfo data
base of terminal descriptions. This database is described in the
tenninfo(M) manual page. It is not possible to use /etcltermcap with fer.
minfo curses.

This chapter primarily discusses tenncap curses. Since terminfo cnrses is
an extended, yet compatible, version of curses, this chapter also describes
the basic tenninfo curses routines.

The tenncap curses routines are s11Ill1Il1lrized in the <:urses(S) manual
page. The tenninfo curses routines are completely summarized in the
tenninfo(S) manual page. The extensions provided by tenninfo curses
over termcap curses are not described in this chapter.

The tenninfo curses package available with XENIX includes a number of
extensions over other versions of curses. These extensions provide for
superior handling of typeahead and function keys. These oxtensions
require that programs using tenninfo curses b e compiled with the XENIX
extensions library(-!x).

5. 1.2 Screen Processing Overview

Screen processing gives a program a simple and efficient way to use the
capabilities of the ternrinal attached to the program's standard input and
output files. Screen processing does not rely on the tenninal's type.
Instead, the screen processing functions use a XENIX terminal capability
description database, either /etclrermcap or /usrllib/terminfo, to tailor
their actions for any given terminal. This makes a screen processing

5-1

C Library Guide

independent. The program can be run with any terminal as long as thatter
minal is described by the appropriate terminal description database.

The screen processing functions access a terminal screen by working ',,
through intermediate uscreens" and "windows" in memory. A screen is a
representation of what the entire terminal screen should look like. A win-
dow is a representation of what some portion of the terminal screen should
look like. A screen can be made up of one or more windows. A window
can be as small as a single character or as large as an entire screen.

Before a screen or window can be used, it must be created by using the
newwinO or subwin() functions. These functions define the size of the
screen or window in terms of lines and columns. Each position in a screen
or window represents a place for a single character and corresponds to a
similar place on the terminal screen. Positions are numbered according to
line and column. For example, the position in the upper left comer of a
screen or window is numbered (0,0) and the position immediately to its
right is (0,1). A typical screen has 24 lines and 80 columns. Its upper left
corner corresponds to the upper left corner ofthe terminal screen. A win
dow, on the other hand, may be any si7.e (within the linrits of the actual
screen). Its upper left corner can correspond to any position on the termi
nal screen. For convenience, the initscr function, which initializes a pro
gram for screen processing, also creates a default screen, sttlscr (for"stan
dard screen"). Thestdscr may be used without first creating it. The func
tion also creates curser (for "current screen") which contains a copy of
what is currently on the terminal screen.

To display characters at the terminal screen, a program must write these
characters to a screen or window using screen processing functions such as
addch and waddch. If necessary, a program can move to the desired posi
tion in the screen or window by using the move and wmove functions.
Once characters are added to a screen or window, the program can copy
the characters to the terminal screen by using the refreshorwrefreshfunc
tion. These functions update the terminal screen according to what has
changed in the given screen or window. Since the terminal screen is not
changed until a program calls refresh or wrefresh, a program can maintain
several different windows, each containing different characters for the
same portion of the terminal screen. The program can choose which win
dow should actually be displayed before updating.

A program can continue to add new characters to a screen or window as
needed, and edit these characters by using functions such as insertln,
deleteln, and clear. A program can also combine windows to make a com
posite screen using the overlay and overwrite functions. In each case, the
refresh or wrefresh function is used to copy the changes to the terminal
screen.

5-2

Screen Processing

5.2 Usingtbe Library

To use curses with your program, you must first decide which version of
curses to use. The five basic options are described below.

5.2.1 SystemDefault

The first option is to use the default curses library andte�aldescription
database. The default library is chosen at installation time and can be one
ofthree values:

• tenncap cunes using either /etcltermcap or terminfo (depending
onhowyoulinkyourprogram).

• tenninfo curses usingtenninfo.

• Nodefault cunes.

Since your system's default may not be the same as any other system's
default, using the default system curses isnotrecommeuded.

To use the default curses library, add the line:

#include <curses.h>

to the beginningofyourprogram. When you link your program, you should
use the command line:

cefiles-Icurses [other libraries]

The other libraries you include on your command line depend on which
version of curses is the default. If the default is tenncap curses, include
either the library:

-Itenncap

to use letc/termcap, or

.Jtinfo

to use terminfo.

5-3

C Library Guide

If the default is tenni:nfo curses, include thehbrs:ry:

-lx

The command line:

cc files -!curses · ltenncap -lx

should work regardless of the default curses and uses either tenncap
curses with !etcltermcaportenninfo curses with tenninfo.

5.2.2 tenncap curses Usiug/etc/tenncap

Iil this method tenncap curses is used with the letcltermcap terminal
description database. You must place the line:

#Include <tup.h>

in the program's source instead of:

#Include <curses.h>

and link the program with the command:

cc files -ltcap -ltenncap

instead of:

ccfiles·lcurses -ltenncap

This ftmctionality is specific to and not portable outside ofXENIX.

5.2.3 tenncapcurses Uslngtenninfo

Iil this method you use tenncap curses with the tenninfo database. You
must place the line:

#Include <tcap.h>

5-4

at the beginningofyourprogram's source instead of:

#include <q�r>es.b>

and link the program with the command:

cc files · I leap ·ltinfo

Screen Processing

This functionality is specific to and is not portable outside ofXENIX. It is
useful primarily as a transitional step in convertin g from tcrmcap to ter
rulnfo.

5.2..4 terminfo cnr>es Uslng terminfo

fu this method you use terminfo curses with the terminfo database. You
must place the line:

#include <tinfo.b>

(at the beginningofyourprogram source instead of:

#include <curses .b>

andlinkyourprogram with the command:

cc files -ltinfo [·lx]

The XEI'.'IX extensions library (·lx) may or may not be required depending
on which features of curses you have used. This technique is specific to
and is not portable outside ofXENIX.

5.2.5 System lndependentcur>es

You use your choice of the cur>es libraries and the terminal description
utilities in a fashion that is portable outside of XENIX. With this tech
nique, you still use the line:

#include <curses.b>

at the b eginning of the source of your program. Your program's source
does not need to change with this method.

5-5

C Library Guide

To choose which curses to use, you must define either M__TERMCAP or
M_TERMINFO . If you define M..TERMCAP, tenncap curses is used. If
you define M_TERMINFO, termlnfo curses is used. To define one or the
other, you should use the command line:

cc • DM_curses file

when compiliug your program. In the above example, M...J:urses is one of
the two names M__TERMCAP or M__TERMINFO. Or you may add the
lines:

#ifdefM...:XENIX
#define M...J:urses
#endlf

to the beginning of your program before youinclude curses .b.

When you compile your program, you should use one of the following com
mand lines:

ccfiks - ltcap - ltenncap tenncap curses usingletcltermcap.

ccfiles - ltcap -Itinfo tenncap curses usingtermlnfo.

ccfiles-ltinfo [·lx] termlnfo eurses usingtermlnfo.

This technique is not specific to and is portable outside of XENIX. This is
the recommended method of including the curses library. Note that the
only change required is to your cc command line. Your program source
should not require any changes with this method. The examples in this
chapter assume thatyouareusingthls method.

5.2.6 Some Additional Notes

Since curses.h, tcap.h, and tinfo.h all include suiio.h and tennio.h, you
abould not include either of those files in your program.

Note that:

#include <tcap.h>

5-6

is equivalent to:

#definel\LTERMCAP
#include <cnrses.h>

and that:

#include <tinfo.h>

is equivalent to:

#definel\LTE�O
#include <curses .h>

5.2.7 Predefined Names

Screen Processing

The screen processing library has a variety of predefined names. These
names refer to variables, manifest constants, and types that can be used
with the library functions. The followiugis a list of these names:

5-7

C Library Guide

' Tvne
WINDOW•

WINDOW*

char

boo!

char

in!

int

int

int

boo!

5-8

Variables

Name
curser

stdscr

Del..term

MyJerm

tt;ytype

LINES

COLS

ERR

OK

Deseriotlon
A pointer to the eurrent
version of the terminal
sc:reen.
A pointer to the default
screen used for npdating
when no explicit screen is
defined.
A pointertothedefaultter-
minal type if the type can-
not be determined.
The terminal type flag. If
set, it causes the terminal
s�ification in
' Lterm" to be used,
regardless of the real termi-
naltype.
A pointer to the full name
of the current terminal.
The number of lines on the
terminal.
The number of cohnnns on
the terminal.
The error flag. Returned
by functions on an error.
The okay flag. Returned by
functions on successful
ooeration.

Types and Constants

A storage class. It is the
same as register storage
class.
A type. It is the same a char
type.
The Boolean truevalue (1).

anfalse e 0 .

\,"'

Sereen Processing

5.3 Preparing the Screen

The initscr and endwin functions perform the operations required to :ini
tiafue and terminate programs that use the screen processing functions.

\ The following sections describe these functions and howtheyall'ect the ter
minal.

5.3.1 InitiallzingtheScreen

The inilscr function initializes screen processing for a program by allocat
ing the required memory space for the screen processing functions and
variables, and by setting the terminal to the proper modes. The function
call hastheform:

initscrO

No arguments are required.

The initser function must be used to prepare the program for subsequent
calls to other screen processing functions and for the use of the screen pro
cessing variables. For example, in thefollowingprogram fragment, initScr
initializes the screening processing functions.

#include <curses.h>

main O
{

initscrQ;
if (strcmp(ttytyge,"dumb "))
fprintf(stderr, Terminal type can't dL•playscreen.");

In this example, the predefined variable ttytype is checked for the current
terminal type .

The function returns (WINDOW•) ERR if memory allocation causes an
overfiow#

5.3.2 UsingTermina) CapahillcyandType

The initser function uses the terminal capability descriptions given in the
XENJX system's terminal description database (either letcltermcap or ter
rninfo) to prepare the screen processing functions for creating and updat
ing terminal screens. The descriptions define the character sequences
required to perform a given operation on a given terminal. These
sequences are .used by the screen processing functions to add, insert,
delete, and move characters on the screen� The descriptions are automati
cally read from the library when screen processing is initialized, so direct
access by a program is not required.

5-9

C Library Guide

The initscrfunction uses the "TERM" environment variable to determine
which tenn.inalcapability description to use. The "TERM" variable is usu
ally assigned an identifier when a user logs in. This identifier defines the
terminal type and is associated with a terminal capability description in one
of the description utilities. ''

H the "TERM" variable has no value, the functions use the default termi-
nal type in the library's predefined variable "DeLterm." This variable ini-
tially has the value "dumb" (for "dumb terminal"), but the user may
change it to any desired value. This must be done before calling the initscr
function.

fu some caBes, it is desirable to force the screen processingfunctions to use
the default terminal type. This can be done by setting the library's
predefined variable, "My_term," to the value 1. The full name of the
current terminal is stored in the predefined variable, "ttytype."

Terminal capabilities, types, and identifiers are descnbed in detail in
tenncap(M) and tcnninfo(M) in the XENIXReference.

5.3.3 Using DetaultTenninalModes

The initscr function automatically sets a terminal to default operation
modes. These modes define how the terminal displays characters sent to
the screen and how it responds to characters typed at the keyboard. The
inltscrfunction sets the terminal to ECHO mode, which causes characters
typed at the keyboard to be displayed on the screen, and RAW mode,
which causes characters to be used as direct input (no editing or signal pro
cessing is done).

The default terminal modes can be changed by using the appropriate func
tions de8cnbed in the section "Setting a Terminal Mode" in this chapter.
H the modes are changed, they must be changed immediately after calling
initscr. Terminal modes are described in detail in tennio(M)in the XENIX
Reference.

Note

The terminal mode functions should only be used in conjunction with
other screen processing functions. They should not be used alone.

5-10

Screen Processing

5.3.4 Using DefaultWindowFJags

The inltscr function automatically clears the cursor, scroll, and clear flags
of the standard screen to their default values. These flags, called the win
dow flags, define how the refres b function affects the terminal screen when
refreshing from the standard screen. When clear� the cursor flag prevents
the terminal's cursor from moving back to its original location after the
screen is updated, the scroll flag prevents scrolling on the screen, and the
clear flag prevents the characters on the screen from being cleared before
being updated. The flags may be changed by using the functions described
in the section HSetting\Vmdow Flags,"-in this chapter�

5.3.5 Using the DefaultTe:nnlnal Size

The initscr function sets the terminal screen •'ize to a default number of
linesand columns. The default values are given in the predefined variables
"LINES" and "COLS." You can change the default size of a terminal by
setting the variables to new values. This should be done before the first call
to inltscr. If it is done after the first call, a second call to inltscr must be
made to delete the existing standard screen and create anew one.

5.3.6 Terminating Screen Processing

The endwin function terminates screen processing in a program by freeing
all memory resources allocated by the screen processing functions and res
toring the terminal to its previous state, prior to screen processing. The
function call has the form:

end winO

No arguments are required.

The endwin function must be used before leaving a program that has called
the inltscr function to restore the terminal to its previous state. The func
tion is generally the last function call in the program. For example, in the
following program fragment, initscr and endwin form the beginning and
end ofthe program.

#include <enrses.h>

main O
{
initscr();
,.
I* Program body . . . *I
!•
endwinQ;
}

5-11

C Library Guide

Note that endwin must not be called if inilscr has not been called. Also,
endwln should be called before any call is made to the exit function. The
endwin function must also be called if the gethnode and settenn functions
have been called, even if inllscr has not.

5.4 Using the Standard Screen

The following sections explain how to use the standard screen to display
and edit characters on the tenninal screen.

5.4.1 Adding a Charactel'

The addch function adda a given character to the standard screen and
moves the character pointer one position to the righL The function call
has the form:

addch(ch)

where ch gives the character to be added and must have char type. For
example, if the current position is (0, 0), the function call:

addch('A')

places theletter"A" attbispositionandmovesthepointerto (0, 1).

Jf a newline ('\n') character is given, the function deletes all characters
from the current position to the end of the line and moves the pointer one
line down. Jf the newline flag is set, the function deletes the characters and
moves the pointer to the beginning of the next line: Jf a retum ('\r') is
given, the function moves the pointer to the beginning of the current line.
Jf a tab ('\t') is given, the function moves the pointer to the next tab stop,
adding enough spaces to fill the gap between the current position and the
stop. Tab stops are placed at every eight character positions.

The function returns ERR if it encounters an error, such as illegal scrolling.

5.4.2 Adding a String

The addstr function adds a string of characters to the standard screen,
placing the first character of the string at the current position and moving
the pointer one position to the right for each character in the string. The
function call has the form:

addstr(str)

5 - 12

(

Screen Processing

where siT is a ch!ll"acter pointer to the given string. For example, if the
current position is (0,0), the function call:

addstr(''line");

places the beginning of the string line at this position and moves the pointer
to (0,4).

If the stcing contains newiine, return, or tab characters, the function per
forms the same actions as described for the addeh function. If the string
does not fit on the current iine, the string is truncated.

The function returns ERR if it encounters an error such as illegal scrolling.

5.4.3 Printing Strings, Characters, and Numbers

The p:rintw function prints one or more values on the standard screen>
where a value maybe a string� a character, or a decimal, octal, or hexade
cimal number. The function call has the form:

pcintw(ftnt(, arg] . . .)

where ftnt is a pointer to a stcing that defines the format of the values, and
arg is a value to be pcin!ed. Jf more than one arg is given, each must be
separated from the preceding argument with a comma (,) . For each arg
given, there must be a corresponding format given in fmt. A format maybe
%sf or string, %c for character, and %d, %01 or %x for a decimal, octal,
or hexadecimal number, respectively. (Other formats are described in
printt(S) in the XENIX Reference.) Jf %s is given, the corresponding arg
must be a character pointer. For other formats, the actual value or a vari
able containingthe value maybe given.

Thefnnction is typically used to copy both numbers and strings to the stan
dard screen at the same time. For example, if the current position is (0,0),
the function call:

printwr1%s %d11, name� 15);

prints the name given by the variable name, starting at position (0,0). It
then prints the number 15 immediately after the name.

The function returns ERR if it encounters an error such as illegal scroliing.

5-13

C Library Guide

5.4.4 Reading a Character From the Keyboard

The geteh function reads a single character from the terminal keyboard
a:nd returns the character as a value. The function call has the form:

c -getchO

where cis the variable to receive the character.

The function is typically used to read a series of individual characters. For
example, io the following program fragment, characters are read and
stored until a newline or the end of the file is encountered, or until the
buffer size has been reached:

char c, p[MAX];
inti;

i-0;
while ((c-getchO) !-'\n' &&c!-EOF&&i <MAX)

p[i++]- c;

li the terminal is set to ECHO mode, geteb copies the character to the stan
dl)l"d screen; otherwise, the screen remains unchanged. li the terminal is
not set to RAW or NOECHO mode, geteb automatically sets the terminal
to CBREAKmode, then restores the previous mode after rerulingthe char
acter. Terminal modes are described later io the chapter.

The function returns ERR if it encounters an error such as illegal scrolling.

5.4.5 Readinga StringFromtheKeyboard

The getstr function reads a string of characters from the terminal keyboard
and copies the string to a given location. The function call has the form:

getstr(str)

where str is a character pointer to the variable or location to receive the
string. When entered at the keyboard, the string must end with a newline
character or with the end-of-file character. The extra character is
replaced by a nuil character when the string is stored. It is the
programmer's responsibility to ensure that str has adequate space to store
the entered striog.

5-14

Screen Processing

The function is typically used to read names and other text from the key
board. For example, in the following program fragment, getstr reads a
filename from the keyboard and stores it in the array name.

char name[20];

getstr(name);

lftbe terminal is set to ECHO mode, getstrcopies the string to the standard
screen. If the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previ
ous mode after reading the character. Terminal modes are described later
in the chapter.

The function returns ERR if it encounters an error such as illegal scrolling.

5.4.6 Reading Strings, Charncters, and Numben!

The scanw function reads one or more values from the terminal keyboard
and copies the values to given locations. A value may be a string, charac
ter, or decimal, octal, or hexadecimal number. The function call has the
form:

scanw(fmt, qrgptr . . .)

where fmt is a pointer to a string defining the format of the values to be
read, and argptr is a pointer to the variable to receive a value. lf more than
one argptr is given, each must be separated from the preceding item with a
comma (,). For each argptr given, there must be a corresponding format
given infmt. A format may be %s for string, %c for character, and %d,
%o, or %x for a decimal, octal, or hexadecimal number,. reSJ?ectively.
(Other formats are described in scanf(S) in the XENIXReference .)

The function is typically used to read a combination of strings and numbers
from the keyboard. For e:mtllple, in the following program fragment,
scanwreads a name and a number from the keyboard:

cliarnll.me[20J;
in tid;

In this example, the input values are stored in the character array name and
the integer variable id.

5-15

C Library Guide

If the terminal is set to ECHO mode, the function copies the string to the
standard S<:reen. If the terminal is not set to AA W or NOECHO mode, the
function automatically sets the terminal to CBREAK mode, then restores
the previous mode after reading the character.

The function returns ERR if it encounters an error such as illegal scrolling.

5.4. 7 Moving the Current Position

The move function moves the pointer to the given position. The function
callha.s the form:

move (y,x)

where y is an integer value giving the new row position, and x is an integer
value !living the new column position. For example, if the current position
is (0, 0), the function call:

move(5,4)

moves the pointerto line5, co!umn 4.

The function returns ERR if it encounters an error such as illegal scrolling.

5.4.8 Inserting a Character

The insch function inserts a character at the current position and shifts the
existing character (and all characters to its right) one position to the right.
The function call bas the form:

insch (c)

where cis the character to be inserted.

The function is typically used to insert a series of characters into an existing
line. For example, in the following program fragment, insch is used to
insert the numbe< of characters given by cntinto the standard screen at the
current position.

intent;
char *string;

whife (cnt !=O) {
insch(string[cntD;
cnt--;
}

5-16

/ ��\ \
'�-

(�) _./

Screen Processing

The function returns ERR if it encounters an error such as illegal scrolling.

5.4.9 Inserting a Line

The insertln function inserts a blank line at the current position and moves
the existing line (and all lines below it) down one line, causing the last line
to move off the bottom of the screen . . The function call has the form:

insertlnQ

No arguments are required.

The function is used to insert additional lines of text in the standard screen.
For example, in the following program fragment, ins ertln is used to insert a
blank line when the count incntis equal to 79.

intent;

if (cnt�79)
insertlnQ;

The function returns ERR if it encounters an error such as illegal scrolling.

5.4.10 Deleting a Character

The delch function deletes the character at the current position and shifts
the character to the right of the deleted character (and all characters to its
right) one position to the left. The last character on the line is replaced by a
space. The function call has the form:

delchQ

No argnments are required.

The function is typically used to delete a series of characters from the stan
dard screen. For example, in the following program fragment, delch
deletes the character at the current position as long as the count in cntis not
0:

int cnt;

while (cnt !�O) {
delchQ;
cnt-- ;
}

5-17

C Library Guide

5.4.11 Deleting a Line

The deleteln function deletes the current line and shifts the line below the \"

deleted line (and all lines below it) one line up, leaving the last line on the
screen blank. The function call has the form:

deletelnO

No arguments are required.

The deleteln function is used to delete existing lines from the standard
screen. For example, in the following program fragment, deleteln is used
to delete aline from the ;iandard screen if the count in cntis 79:

intent;

if (cnt-79)
deletelnO;

5.4.12 Clearing the Screen

The clear and erase functions clear all characters from the standard screen
by replacing them with spaces. The functions are typically used to prepare
the screen for new text.

The clear function clears all characters from the standard screen, moves
the pointer to (0,0), and sets the standard screen's clear flag. The flag
causes the ne>:t call to the rel'nlsh functien to clear all characters from the
terminal screen.

The erase functien clears the standard screen, but does not set the elear
flag. For example, in the following program fragment, clear clears the
screen if the input value is 12:

charc;

if ((c-getchQ) -= 12)
clearQ;

5.4.13 Clearing aPartofthe Sereen

The clrtobot and clrtoeol functions clear one or more characters from the
standard screen by replacing the characters with spaces. The functions are
typically used to prepare a part of the standard screen for new characters.

5 - 18

Screen Processing

The clrtobot function clears the screen from the current position to the
bottom of the screen. For example, if the current position is (10,0), the
function call:

c!rtobot();

clears all characters from line 10 and all lines below line 10.

The clrtoeol function clears the standard screen from the current position
to the end of the current line. For example, if the current position is
(10,10), thefunctioncall:

clrtoeol();

clears all characters from (10, 10) to (10,79). The characters at the begin
ningoftheline rem sin unchanged.

Note that both the clrtobot and clrtoeol functions do not change the
current position.

5.4.14 Refreshing From the Standard Screen

The refresh function updates the tenninal screen by copying one or more
characters from the standard screen to the terminal. The function
effectively changes the terminal screen to reflect the new contents of the
standard screen. The function call has theform:

refresh()

No arguments are required.

The function is used solely to display changes to the standard screen. The
function copies only those characters that have changed since the last call
to refresh and leaves any existing text on the terminal screen. For example,
in thefollowingprogram fragment, refresh is called twice:

addstrfThe first time, \n");
refresh();
addstr('The second time. \n'');
refreshQ;

In this example, the first call to refresh copies the string "The first time." to
the terminal screen. The second call copies only the string "The second
time." to the terminal, since the original string has not been changed.

The function returns ERR if it encounters an error such as illegal scrolling.
If an error is encountered, the function attempts to update as much of the
screen as possible without causing the scrolL

5-19

C Llbnu:y Guide

5.5 Creadng and Using Windows

The following sections explain how to create and use windows to display
and edit text on the terminal screen.

5.5.1 Creadng a Window

The newwin function creates a window and returns a pointer that may be
used in subsequent screen proeeasing functions. The function call haa the
form:

win= newwin(llnes, cols, begln..y, begin_x)

where win is the pointer variable to receive the return value, ilnes and cols
are integer values that give the total number of lines and columns, respec
tively, in the window, and begin_;,> and begin_x are integer values that give
the line and column positions, respectively, of the upper left comer of the
window when displayed on the terminal screen. The win variable must
have type WINDOW*.

The function is typically used in programs that maintain a set of windows,
displaying different windows at different times or alternating between win
dows, as needed. For example, in the following program fragment,
newwin creates aneW window and assigns the pointer to this window to the
variablemidscreen:

midscreen = newwin(S, 10, 9, 35);

The window has 5 lines and lOco!umns. The upper left comer of the win
dow is placed at position (9,35) on the terminal screen.

If either lines or cols is zero, the function automatically creates a window
that has "LINES - begin..y" lines or "COLS - begin..;r'' columns, where
"LINES" "COLS" are the predefined constants giving the total number of
lines and columns on the terminal screen. For example, the function call:

newwin(O, 0, 0, O)

creates a new window whose upper left comer is at position (0,0) and that
has "LINES" lines and "COLS,' columns.

5-20

Screen Processing

Note

You must not create windows that exceed the dimensions of the actual
screen.

The newwin fnnction returns the value (WINDOW*)ERR on an error, such
as insufficient :memory, forthenew window.

5.5.2 Creating a Subwindow

The subwin fnnction creates a sub window and returns a pointer to the new
window. A subwindow is a window which shares all or part of the charac
ter space of another window, and provides an altumate way to access the
characters in that space. The function call bas the form:

swin =sub win(win, lines, cols, begin_J', begin...x)

where swin is the pointer variable to receive the return value, win is the
pointer to the window to contain the new subwindow, lines and cols are
integervalues that give the totalnUIIlberof lines and columns, respectively,
in the subwindow, and begin..y and begin...x are integer values that give the
line and colwnn position, respectively, of the upper left comer of the
sub window when displayed on the terminal screen. The swlnvariable must
have type WINDOW*.

The function is typically used to divide a large window into separate
regions. For example, in the following program fragment, subwin creates
the sub window named cmdmenu in the lower part of the standard screen:

WINDOW •cmdmenu;

cmdmenu = subwin(stdscr, 5, 80, 19, 0);

1:n thh example, changes to cmdmenu affect the standard screen as well.

The sub win function returns tb e value (WINDOW•) ERR on an error, such
as insu:fficientmemoryfor the newwindow.

5.5.3 Addlng andPrintingtoa Window

The waddch, waddstr, and wprlntw functions add and print characters,
strings, and numbers to a given window.

5-21

C Library Guide

The wad deb function adds a given character to the given window, and
moves the character pointer one position to the right. The function call
has the form:

waddch(win, ch)

where win is a pointer to the window to receive the character, and ch gives
the character to be added. ch must have char type. For example, if the
current position in the window midscreen is (0,0), the function call:

waddch(midscreen, 'A')

places the letter A at this position and moves the pointer to (0,1).

The waddstrfunction add sa string of characters to the �ven window, plac
ing the :fits! character of the string at the current position and moving the
pointer one position to the right for each character in the string. The func
tion call has the form:

waddstr(win, str)

where win is a pointer to the window to receive the string, and str is a char
acter pointer to the given string. For example, if the current position is
(0,0), the function call:

waddstr(midscreen, '1ine'�;

places the beginning of the string "line" at this position, and moves the
pointer to (0,4).

The wprintw function prints one or more values on the given window,
where a value may be a string, a char�cter, or a decimal, octal, or hexade
cimal number. The function call has the form:

wprintw(win,ftnt[, arg J ...)

where win is a pointer to the window to receive the values, ftntis a pointer
to a string that defines the format of the values, and arg is a value to be
printed. If m:ore than one arg is giveli, each must be separated from the
preceding with a comma (,). For each arg given, there must be a
corresponding format given inftnt. A format may be %s for string, %c for
character, and %d, %o, or %x for a decimal, octal, or hexadecimal
number, respectively. (Other formats are described in printf(S) in the
XENIX Reference.) If %s is given, the corresponding arg must be a charac
ter pointer. For other formats, the aetna! value or a variable containing the
value may be given.

The function is typically used to copy both num:bers and strings to the stan
dard screen at the same time. For example, in the following program frag-

5-22

Screen Processing

men!, wprintw prints a name and then the number 15 at the current posi
tion in the window midscreen.

char*name;

wprintw{midscreen, "o/os %d", name� 15);

Note that when a newline� return, or tab charaCter is giVen to a-waddch,
waddstr, or wprintw function, the functions perforn1 the same actions as
described for the addch function. The functions return ERR if thev
encounter errors such as illegal scrolling.

"

5.5.4 Reading and Scanning for Input

The wgetcb, wgetstr, and wscanw functions read characters, strings, and
numbers from the standard input file and usually echo the values by copy
ing them to the given window.

The wgetch function reads a single character from the standard input file
and retnrns the character as a value. The function call has the form:

c � wgetch(win)
where win is a pointer to a window, and cis the character variable to receive
the character.

The function is typically used to read a series of characters from the key
board. For example, in the following program fragment, wgetch reads
charactersuntila colon (:)is found.

char c, dir[MAX];
inti ;

i-0;
while ((c-getch(cmdmenu)) 1� ':' &&i <MAX)

dir[i++ l � c;

The wgetstr function reads a string of characters from the terminal key
board and copies the string to a given location. The function call has the
form:

wgetstr(win, str)

where win is a pointer to a window, and str is a character pointer to the vari
able or location to receive the string. When entered at the keyboard, the
string must end with a newline character or with the end -of -file character.
The extra character is replaced by a nullcharacterwhen the string is stored.

5-23

C Libnuy Guide

It is the programmer's responsibility to ensure that str has adequate space
for storing the typed string.

The function is typically used to read names and other text from the key
board. For example, in the following program fragment wgetstr reads a
string from the keyboard and stores it in the array filename.

charfilename[20];

wgetstr(cmdmenu, filename);

The wscanw function reads one or more values from the standard input file
and copies the values to given locations. A value may be a string, a charac
ter, or a decimal, octal, or hexadecimal number. The function call has the
form:

wscanw(win, ftnt [, argptr] . , •)

where win is a pointer to a window, ftntis a pointer to a stringdefiningthe
format of the values to be read, and argptr is a pointer to the variable to
receive a value. If more than one argptr is given, each must be separated
from the preceding by a comma (,). For each argptr given, there must be a
corresponding format giveninftnt. A format maybe %s for string, %cfor
character11 and %d, %o, or %x for a decimal, octal, or hexadecimal
number, respectively. (Other formats are described in scanf(S) in the
XEN£XReference.)

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment,
wscanw reads a name and a number ftom the keyboard:

char name[20];
in tid;

wscanw(midscreen, 11%& ()/od", name, &id);

In this example, the name is stored in the character array name and the
number in the integer variable id.

If the terminal is set to ECHO mode, the function copies the string to the
given window. If the terminal is not set to RAW or NOECHO mode, the
function automatically sets the terminal to CBREAK mode, then restores
the previous mode after reading the character.

ThefunctionsretomERRiftheyencountererrors suchasillegalscrolling.

5-24

Screen Processing

5.5.5 Moving the Current Position Ina Window

The wmove function moves the current position in a given window. The
function call has the form:

wmove(win,y,x)

where win is a pointer to a window, y is an integer value giving the new line
position, and x is an integer value giving the new column position. For example, the function call:

wmove(midscreen, 4, 4)

moves the current position in the window midscreen to (4,4). The function
retorns ERR if iteneounters an errorsuch as illegal scrolling.

5.5.6 Inserting Characters and Lines

The winsch and winsertlnfunctions insert characters and lines into a given
window.

The wlnsch function inserts a character at the current position and shifts
the esisting character (and all characters to its right) one position to the
right. The function call has the form:

winsch (win, c)

where win is apointerto a windoW1 and cis the character to be inserted.

The function is typically used to edit the contents of the given window. For
example, the function call:

winsch(midscreen, 'X');

inserts the character X atthe current position in the window midscreen.

The winsertln fnnc!lon inserts a blank line at the current position and
moves the existing line (and all lines below it) down one line, causing the
last line to move off the bottom of the screen. The function call has 1he
form:

winsertln(win)
where win is a pointer to the window to receive the blank line.

The func!lon is used to insert lines into a window. For example, in the fol
lowing program fragment, ll>insertln inserts a blank line at the top of the
window cmdmenu, preparing it fora new line.

5-25

C Library Guide

char line[SO];

wmove(cmdmenu, 3, 0);
winsertln(cmdmenu);
waddstr(cmdmenu, line);

Both functionsretum ERRiftheyencountererrors suchasillegalscrolling.

5.5. 7 Deleting Characters and Lines

The wdek:h and wdeleteln functions delete characters and lines from the
given window.

The wdelch function deletes the character at the current position and shifts
the character to the right of the deleted character (and all characters to its
right) one position to the left. The last character on the line is replaced
with a space. The function call hastheform:

wdelch(win)

where win is apointerto a window.

The function is typically used to edit the contents of the standard screen.
Fore:xmnple, the function call:

wdelch(midscreen);

deletes the character at the current position in the window 11lidscreen.

The wdeletelnfunction deletes the current line and shifts the line below the
deleted line (and all lines below it) one line up, leaving the last line in the
screen blank. The function call has the form:

wdeleteln(win)

where win is a pointer to a window.

The function is typically used to delete eXisting lines from a given window.
For example, in the following program fragment, wdeleteln deletes the
llnesin midscreen until cntisequalto zero.

intent;

while (cnt !-0) {
wdeleteln(midscreen);
cnt--;
}

5-26

Screen Processing

' 5.5.8 Clearing the Screen

(
'"" _ /

The wclear, werase, wclrtobot, and wclrtoeol functions clear all or part of
the characters from the given window by replacing them with spaces. The
functions are typically used to prepare the window for new text.

The wclear function clears all characters from the window, moves the
pointer to (0,0), and sets the staodard screen's clear l!ag. The Hag causes
the next refresh function call to clear all characters from the terminal
screen. The function call has thefonn:

wclear(win)
where win is the window to be cleared.

The wcrase function clears the given window, moves the pointer to (0,0),
but does not set the dear l!ag. It is used whenever the contents of the ter
mioal screen must be preserved. The function call has the form:

werase(win)

where win is a pointer to the window to be cleared.

The wclrtobot function clears the window from the current position to the
bottom of the sereen. The function call has the form:

wclrtohot(win)

where win is a pointer to the window to be cleared. :For example, if the
current position in the window midscreen is (10,0), the function call:

wclrtobot(midscreen);

clears all characters from line 10 and all lines below line 10.

The wclrtoeol function clears the standard screen from the current posi
tion to the end ofthe current line. The function call has the form:

wclrtoeol(win)

where win is a pointer to the window to be cleared. For example, if the
current position in "midscreen" is (10,10), the function call:

wclrtoeol(midscreen);

clears all characters from (10,10) to the end of the line. The characters at
the beginning of the line remain unchanged.

C I.a"bra,ry Guide

Note that the wclrtobot and wclrtoeolfunctions do not change the cUITent
position.

5.5.9 Refreshing From a Window

The wrelresh function updates the terminal screeo by copying one or more
characters from the given window to the terminal. The function effectively
changes the terminal screen to refiect the new contents of !he window. The
function call has the form:

wrefresh(win)

where win is a pointer to a window.

The function is used solely to display Changes to the window. The function
copies only those characters that have Changed since the last call to
wretresh and leaves any existing text on the terminal screen. For example,
in the following program fragment, wrelres his called twice:

waddstr(cmdmenu, 'Type a command name\n");
wrefresh(crndmenu);
waddstr(cmdmenu, "Command: ");
wrefresh(cmdmenu);

In this example, the first call to wrelresh copies the string "Type a com
mand name" to the tenninal screen. The second call copies only the string
"Command:" to the terminal, since the original string has not been
changed.

Note

If curser is given with wretresh, the function restores the actual screen
to its most recent contents. This is usefnl for implementing a "redraw"
featnreforscreens that become cluttered with unwanted output.

The function retnrnsERR if it encounters an error such as illegal scrolling.
If an error is encountered, the function attempts to update as much of the
screen as possible without causing the scroll.

5.5.10 Overlaying Windows

The ov�rlay function copies all characters, except spaces, from one win
dow to another, moving characters from their, original positions in the first
window to Identical positions in the second. The function effectively lays

5-28

Screen Processing

the first window over the second, letting characters in the second window
that would otherwise be covered by spaces remain unchanged. The func
tion call has the form:

overlay(winl, win2)

where winl is a pointer to the window to be copied, and win2 is a pointer to
the window. to receive the copied text. The starting positions of winl and
win2must match, otherwise an error occurs. If winl is larger than win2, the
function copies only those lines and columns in winl that fit in win2.

The function is typically used to build a composite screen from overlapping
windows. For example, in the following program fragment, overlay is used
te build the standard screen from two different windows:

WINDOW •info, •cmdmenu;

over!ay(info, stdscr);
overlay(cmdmenu, stdscr);
refreshO;

5.5.11 Overwriting a Screen

The overwrite function copies all characters, including sp_aces, from one
window to another, moving characters from their positions in the first Win
dow to identical positions in the second. The function effectively writes
the contents of the first window over the second, destroying the previous
contentsofthe second window. Thefunction callhastheform:

overwrite(winl, win2)

where winl is a pointer to the window to be copied, and win2is a pointer to
the window to receive the copied text. If winl is larger than win2, the func
tion copies only those lines and columns in winl that fit in win2.

The function is typically used to display the contents of a temporary win
dow in the middle of a larger window. For elQilllpJe, in the following pro
gram fragment, overwrite is used to copy the contents of a work window to
the stendard screen.

WINDOW •work;

overwrite(work, stdscr);
refreshQ;

5-29

C Library Golde

S.S.ll Movillg a Window

The mvwill function moves a given window to a new position on the termi
nal screen, causing the upper left comer of the window to occupy a given
line and column position. The function call has the form:

mvwin(win,y,x)

where win is a pointer to the window to be moved, y is an integer value giv
ing the tine to which the comeris to be moved, andxis an integervalue giv
ingthe column to which thecorneristobemoved.

The function is typically used to move a temporary window when an exist
ing window under it contains information to be viewed. For example.,. in
the following program fragment, mvwin moves the window named work to
the upper left comer of the terminal screen.

WINDOW•work;

mvwin(work, 0,0);

The function returns ERR if it encounters a error such as an attempt to
move part of a window off the edge of the screen.

5.5.13 Reading a Character From a Win�ow

The inch and winch functions read a sillgle character from the current
pointer position in a window or screen.

The inch function reads a character from the standard screen. The func
tion call has the form:

c=inchQ

where cis the character variable to receive the character read.

The winch function reads a character from a given window or screen. The
functinncallhasthe form:

c=winch(win)

where win is the poillterto the window containing the character to be read.

5-30

Screen Proeessblg

The functions are typically used to compare the actual contents of a win
dowwith what is assumed to be there. For example, in the following pro
gram fragment, ln<:h and winch are used to compare the characters at posi
tion (0, 0) in the standard screen and in the window named altscreen:

char cl) c2;

cl�incb();
c2 � winch(altscreen);
if(c1!-c2)

error();

Note that reading a character from a window does not alter the contents of
the window.

5.5.14 Toud!lnga Window

The rou<:hwin function makes the entire contents of a given window
appear ro be modified, causing a subsequent refresh call to copy all charac
ters in the window to the terminal screen. The function call has the form:

touchwin(win)

where win is a pointer to the window to he touched.

The function is typically used when two or more overlapping windows
makeup theterrninalscreen. For example, the function call:

touchwin(leftscrecn);

is used to touch the window named leftscreen. A subsequent refresh
copies all characters in leftsaeen to the terminal screen.

5.5.15 Deleting a Window.

The delwin function deletes a given window from memory, freeing the
space previously occupied by the window for other windows or for dynami
cally allocated variables. The function call has the form:

delwin(win)

where winisthe pointer to the window to be deleted.

5-31

C Ubnu:y Guide

The function is typically used to remove temporary windows from a pro
gram or to free memory space for other uses. For example, the function
call:

delwin(midscreen);

removes the window named miiiscreen.

5.6 Using Other Window Functions

The following sections explain how to perform a variety of operations on
existing windows, such as setting window flags and drawing boxes around
the window.

5.6.1 Drawing a Box

The box function draws a box around a window using the given characters
to form the horizontal and vertical sides. The function call has the form:

box(win, vert, hor)

where win is the pointer to the desired window, vert is the vertical charac
ter, and hor is the horizontal character. Both ver and hor must have char
type.

The function is typically used to distinguish one window from another
when combining wmdows on a single screen� For example, in the follow
ing program fragment, box creates a box around the window in the lower
half of the screen:

WlNDOW *cmdmenu;

cmdmenu - snbwin(stdscr, 5, 80, 19, 0);
box(cmdmenu, ' I ', '-');

If necessary, the function will leave the corners of the box blank to prevent
illegal scrolling.

5.6.2 Displaying Bold Characters

The standout and wstandout functions set the standout character attri
bute, causing characters subsequently added to the given window or screen
to be displayed as bold characters.

5-32

Screen Processing

The standout function sets the standout attribute for-characters added to
the standard screen. The function call has the form:

\ standout()

_...--- ...__

(I
\ I '-___j

No arguments are required.

The wstandout function sets the standout Clttrib11te: of characters added to
the given windOw or-SCreen. ThefwictiOn callh.as ihefon::il: · · -

wstandout(win)

where win is a pointer to a window.

The functions are typically used to make error messages or instructions
clearly visible when displayed at the terminal screen. For example� in the
following program fragment� standout sets the standout character attri
bute before adding an error message to the standard screen:

if(code-5) {
standout();
addstr("lliegal character. \n");
}

Note that the actual appearance of characters with the standout attribute
depends on the given terminal. See tenncap(M) and tenninfo(M) in the
XENIXReference.

5.6.3 RestoringNonna!Characters

The standend and wstandendfunctions restore the normal character attri
bute, causing characters subsequently added to a given window or screen
to be displayed as normal characters.

The standend function restores the normal attribute for the standard
screen. The function call has the form:

standend()

No arguments are required.

The wstandend function restores the normal attribute for a given window
or screen. The function call has the form:

wstandend(win)

where win is a pointer to a window.

5-33

C Library Guide

The functions are typically used after an error message or instructions have
been added to a screen using the standout attribute. For example, in the
following program fragment, standend restores the normal attribute after
an error message has been added to the standard screen.

if (code - 5) {
standoutQ;
addstr("l!legal character. \n");
standendQ;
}

5.6.4 Getting the CnrrentPosltion

The getyx function copies the current line and column position of a given
window pointer to a corresponding pair of variables. The function call has
the form:

getyx(win, y, x)

where win is a pointer to the window containing the pointer to be exam
ined,y is the integer variable to receivetheline position, andx is the integer
variable to receive the column position.

The function is typically used to save the current position so that the pro
gram can return to the position at a later time. For example, in the follow
ing program fragment, getyx saves the current line and column position in
the variables line and column:

int line, column;

getyx(stdscr, line, column);

5.6.5 Setting Window Flags

The leaveok, scrollok, and elearok functions set or clear the cursor,
scroll, and elear·screen flags. The flags control the action of the re.fresh
function when called for the given window.

The Ieaveok function sets or clears the cursor flag which defines how the
refresh function places the terminal cursor and the window pointer after
updating the screen. If the llagis set, refresh leaves the cursor after the last
character to be copied and moves the pointer to the corresponding posi
tion in the window. If the fiag is cleared, re.fresh moves the cursor to the

S-34

Screen Processing

same position on the screen as the current pointer position in the window�
The function call has the form:

Jeaveok(win, state)

where win is a pointer to the window containing the flag to be set, and state
is a Booleau:valu�definingl!!e state of th" aag. If state is TRUB, the flag is
set; if FALSE, the flag is cleared. For example, the function call

leaveok(stdscr, TRUE);

sets the cursor flag.

The scrollok function sets or clears the scroll flag for the given window. If
the flag is set, scrolling through the window is allowed. If the flag is clear,
then no scrolling is allowed. The function call has the form:

scrollok(win, state)

where win is a pointer to a window, and state is a Boolean value defining
how the flag is to be set. If state is TRUE, the :flag is set; ifF ALSE, the flag is
cleared. The :flag is initially clear, making scrolling illegal.

The clearok function sets and clears the clear flag for a given screen. The
function call has the form:

clearok(win, state)

where win is a pointer to the desired screen, and state is a Boolean value.
The functiou sets the:flagif stateisTRUE, and clears the:flagifFALSE. For
example, the function call:

clearok(stdscr, TRUE)

sets the clearllagforthe standard screen.

When the clear flag is set, each refresh call to the given terminal screen
automatically clears the screen by passing a clear-screen sequence to the
terminal. This sequence affects the terminal only; it does not change the
contents of the screen.

If clearok is used to set the clear flag for the current screen "curser'', each
call to refresh automatically clears the screen, regardless of which window
i;s given in the call.

5-35

C Library Guide

5.6.6 Scrolling a Wlndow

The seron function scrolls the contents of a given window upward by one
line. Thefunctioncallhastheform:

scroll(win)

where win is a pointer to the window to be scrolled. The function should be
used in special cases only.

5. 7 Combinlrlg Movement With Action

Many screen operations move the current position of a given window
before performing an action on the window. For convenience, you can
combine a number of functions with the movement prefix. This cambina
tionhasthefonn:

mvfunc ([win,]y, x [, arg] . . •)

where June is the name of a function, win is a pointer to the window to be
operated on (stdscris used if none is given), y is an integer value giving the
line to move to, x is an integer value giving the column to move to, and arg
is arequrred argument for the given function. If more than one argnment is
requrred, they must be separated with commas (,). For example, thefunc
tioncall:

mvaddch(lO, 5, 'X');

moves the position to {10,5) and adds the character X. The operation is the
same as moving the position with the move function and then adding a
character with addch.

A complete list of the functions which may be used with the movement
prefix is given in cnrses(S) and terminfo(S)in theXENlXReference .

.!!. 8 Controlling the Terminal

Thefollowingsections explain how to set the terminal modes, how to move
the cursor, aod how to access other aspects of the terminal. These func
tions shonld only be used when using other screen processing functions.

5.8.1 Setling a TerminalMode

The ermode, echo, nl, and raw functions set the terminal mode, causing
subsequent input from the terminal's keyboard to be processed accord
ingly.

S-36

r' I
__ /

Screen Processing

The cnnode function sets the CBREAK mode for the terminal. The mode
preserves the function of the signal keys, allowing signals to be sent to a
program from the keyboard, but disables the function of the editing keys.
The function call has the form:

crmode()
No arguments are required.

The echo function sets the ECHO mode for the terminal, causing each
character entered at the keyboard to be displayed at the terminal screen.
The function call has the form:

echo()
No arguments are required.

The nl function sets a terminal to NEWLINE mode, causing all newline
characters to be mapped to a corresponding newline and return character
combination. The function call has the form:

nl{)

No arguments are required.

The raw function sets the RAW mode for the terminal, causing each char
acter entered at the keyboard to be sent as direct input. The RA W mode
disables the function of the editing and signal keys and disables the map
ping of newline characters into newline and return combinations. The
function call has the form:

raw()
No arguments are required.

5.8.2 Clearing a TenninalMode

The nocnnode, noecho, nonl, and noraw functions clear the current ter
minalmode, allowing input to be processed according to a previous mode.

The nocnnode function clears a terminal from the CBREAK mode. The
function call has the form:

nocrmode()
No argnments are required.

5-37

C Library Guide

The noeeho function clears a terminal from the ECHO mode. This mode
prevents characters entered at the keyboard from being displayed on the
terminal screen. Thefunctioncallhasthefonn :

noecho0

No arguments are required.

The nonl function clears a terminal from NEWLINE mode, causing new
line characters to be mapped into themselves. This allows the screen pro
cessing functions to perform better optimization. Thefnnctioncallhas the
form:

noniO

No arguments are required.

The noraw function clears a terminal from RAW mode, restoring normal
editiog and signal generating function to the keyboard. The function call
has the form:

noraw()

No arguments are required.

5.8.3 :Moving the Terminal's Cursor

The mvenr function moves the terminal's cursor from one position to
another in an optimal fashion. The function call has the form:

mvcur(last_:,, lastJ, new_:,, new_x)

where last_:, and /astJ are integer values giving the last line and column
position of the cursor, and new_:, and new..x are integer values giving the
new line and column position of the cursor. Forexaniplc, the function call:

mvcur(10, 5, 3 , 0)

moves the cursor from (10,5) to (3,0) on the terminal screen.

5-38

Scre�n Processing

Note

The mveur function should only be used m programs that do not use
other screen processing functions. This means the function can he
used to perform optimal cursor motion without the aid of the other
functicms. For programs that do use .oth.er functions, the move,
wmove� refresh� and wrefresh functions.mrist be used to moVe the cUr
sor.

5.8.4 G<>ttlngthe TermlnalMode

The geltmode function retllnlS the current tty mode. The function call has
the form:

s=gettmode0

where sis the variable to receive the status.

The function is normally called by the lnitscrfunction.

5.8.5 Saving and Restoring the Terminal Flags

The savetty function saves the current terminal flags, and the resetly func
tion restores the flags previously saved bythesavetty function. These func
tions are performed automatically by lnitscr and endwin functions. They
are not required when performing ordinary screen processing.

5.8.6 Setfu!g a Terminal Type

The sttenn function sets the terminal type to the given type. The function
call hastheform:

setterm(name)
where name is a pointer to a string containing the termmal type identifier.
The function is normally called by the lnitscrfunction, but may be used in
special cases.

5-39

C Library Guide

5.8. 7 Reading theTennlna!Name

The lo1lgllllme function converts a given tenncap or tennlnfo Identifier
Into the full name of the corresponding terminal. The function call has the
fonn:

longname(termbuf, name)

where termbuf is a pointer to the string containing the tenninal type
identifier, and name is a character pointer to the location to receive the
long name. The terminal type Identifier must exist In the !etc!termcap file
orterminfo library.

The function is typically used to get the full name of the terminal currently
being used. Note that the cnrrent terminal's identifier is stored in the vari
able ttytype, which may be used to receive a new name.

5-40

('

Chapter 6

Character and

String Processing

6.l Introduction 6-1

6.2 Using the Character Functions 6-1
6.2.1 Testing for an ASCII Character 6-1
6.2.2 Convertingto ASCII Characters 6-2
6.2.3 Testingfor Alphanumerics 6-2
6.2.4 TestingforaLetter 6-3
6.2.5 Testing for Control Characters 6-3
6.2.6 Testing for a Decimal Digit 6-4
6.2.7 Testingfora Hexadecimal Digit 6-4
6.2.8 Testing for Printable Characters 6-4

6.3 Testingfor Punctuation 6-5
6.3.1 Testing for Whitespace 6-5
6.3.2 TestingforCase in Letters 6-5
6.3.3 Convertingthe Case of a Letter 6-6

6.4 UsingtheStringFunctions 6-7
6.4.1 Concatenating Strings 6-7
6.4.2 ComparingStrings 6-7
6.4.3 CopyingaString 6-8
6.4.4 OettingaString'sLength 6-9
6.4.5 Concatenating Characters to a String 6-9
6.4.6 Comparing Characters in Strings 6-10
6.4. 7 Copying Characters to a String 6-10
6.4.8 ReadingValues from a String 6-11
6.4.9 WritingValues toa String 6-12

Character and String Processing

6.1 Introduction

/- Character and string processing is an important part of many programs.
Programs regularly assign, manipulate, and compare characters and strings
in order to complete their tasks. For this reason, the standard library pro
vides a variety of character and string processing functions. These func
tions give a convenient way to test, translate, assign, and compare charac
ters and strings.

To use the character functions in a progriun, the file ctype.h, which pro
vides the definitions for special character macros, must be included in the
program. Theline:

#include <ctype.h>

must appear at the beginning of the program.

To use the string functions, no special action is reqnired. These functions
are defined in the standard C library and are read whenever you compile a
Cprogram.

6.2 Using the Character Functions

Thecharacterfunctions test and convert characters. Many characterfunc
tions are defined as macros, and as such cannot be redefined or used as a
target for a breakpoint when debugging.

6.2.1 Testlng for an ASCII Character

The isascii function tests for characters in the ASCII character set; i.e.,
characters whose values range from 0 to 127. The function call has the
form:

isascii(c)

where c is the character to be tested. The function retarns a nonzero (true)
value if the characteris ASCII, otherwise itreturn.-zero {false). For exam
ple, in the following program fragment, isascfi determines whether or not
the value in c, read from the file given by data, is in the acceptable ASCII
range:

FILE *data;
intc;

c = fgetc(data);
if (!isascii(c))

notextQ;

6-1

C Library Guide

In this example, a fllllction named notext is called if the characteris not in
range.

6.2.2 Converting to ASCII Characters

The roascil function converts non-ASCll characters to ASCll. The func
tion call has the form :

c =to ascii (i)

where c is the variable to receive the character, and i is the value to be
changed. The function creates an ASCII character bytruncatingall but the
low order 7 bits of the non-ASCII value. If the ivalue is already an ASCll
character, no change takes place. For example, the function call:

ascii = toascii(160)

converts value 160to 32, the ASCII value of the space character.

The function is typically used to prepare non-ASCII characters for display
on the standard output. For example, in the following program fragment,
roasdi converts each character read from the file given by oddstrm:

FILE *oddstrm;
intc;

c = toascii(getc(oddstrm));
if (isprint(c) II iss pace(c))

putchar(c);

If the resulting character is printable or is whitespace, it is written to the
standard output.

6.2.3 Testing for Alphanumerics

The isainum function tests for letters and decimal digits; i.e., the
alphanumeric characters. The function call has the form:

isalnum (c)

where cis the character to test. The function returns a nonzero (true) value
if the character is an alphanumeric, otherwise it returns zero (false). For
example, the function call:

isalnum('l')

6-2

Character and String Processing

retums anonzerovalue, butthecall:

isalnum('> ')

returns zero�

6.2.4 Testing fora Letter -

The Is alpha function tests for uppercase or lowercase letters; i.e., alpha
betic characters. The function call has the form:

isalpha (c)

where cis the character to be tested. The function retnrns a nonzero (true)
value if the cbaracteris a letter, otherwise it returns zero (false).
Forexample, the function call: ··

isalpha('a')

returns a nonzero value, but the call:

isalpha('l')

retll!'Wi zero.

6.2.5 Testing forContru!Characters

The lscntrl function tests for control characters; i.e., characters whose
ASCII values are in the range 0 to 31 or is 127. The function call has the
form:

iscntrl(c)

where cis the character to be tested. The function retnrns a nonzero (true)
value if the character is a control character, otherwise it retnrns zero
(false). For example, in the program following fragment, lscntrl deter
mines whether or not the characterin .:; read from the file given by injik is a
control character:

FILE •infi!e, •outfile;
intc;

c •fgetc(infile);
if (!iscntrl(c))

fputc(c, outfile);

The fpntc function is ignored if the character is a control character.

6-3

C Library Guide

6.2.6 Testlng foraDeclmalDigit

The isdigit function tests for decimal digits. The function call has the
�= '
isdigit(c)

where c is the character to be tested. The function returns a nonzero value
if the character is a digit, otherwise it returns zero. For example, in the fol
lowing program fragment, each new character in c is added to the running
total if the character is a digit:

FILE *infile;
intc, num;

while (isdigit(c�getc(infile)))
num - num*10 + c-48;

6.2. 7 Testing for a Hexadecimal Digit

The isxdigll function tests for a hexadecimal digit; that is, a character that
is either a decimal digit or an uppercase or lowercase letter in the range A
to F. The function call has the form:

isxdigit (c)

where cis the character to be tested. The function returns a nonzero value
if the characteris a digit, otherwise it returns zero. For example, in the fol
lowingprogram fragment, lsxdiglt tests whether a hexadecimal digit is read
from the standard input:

intc;

c - getcharQ;
if (isxdigit(c))

· hexmode();

ln thls example, a function named hexmode is called if a hexadecimal digit
is read.

6.2.8 Testing for Printable Characters

The !sprint function tests for printable characters; i.e., characters whose
ASCIIvalues rangefrom 32to 126. The functioncallhastheform:

isprint (c)

6-4

Character and String Processing

where cis the character to be tested. The function returns a nonzero (true)
value if the character is printable, otherwise it returns zero (false).

li.3 Testing for Punctuation

The ispunctfunction tests for punctuation characters; i.e., characters that
are neither control characters nor alphanumeric characters. The function
callhas thefonn:

ispunct (c)

where cis the character to be tested. The function returns a nonzero (true)
function if the character is a punctuation character, otherwise it returns
zero (false).

1).3.1 TestingforWhltespace

The isspace function tests forwhitespace characters; i.e, the space, hor
izontal tab, vertical tab, carriage return, fonnfeed, and newline charac
ters. The function call has the form:

isspace (c)

where cis the character to be tested. The function returns a nonzero (true)
value if the character is a whitespace character, otherwise it returns zero
(false).

6.3.2 Testing for Case in Letters

The isupper and islower functions test for uppercase and lowercase
letters, respectively. The function calls have the form:

isupper (c)

and

islower (c)

where cis the character to be tested. The function returns a nonzero (true)
value if the characteris the proper case, otherwise it returns zero (false).

6-5

C Library Guide

For example, the function call:

isupper('b ')

returns zero (false), but the call:

islower('b ')

returns a nonzero (true) value.

6.3.3 Converting the Case of a Letter

The tolower and toupperfunctions convert the case ofa given letter. The
function calls have the form:

c-tolower (i)

and

c = toupper (t)

where c is the variable to receive the converted letter, and i.is the letter to
be converted. For example, the function call:

lower =tolower('B')

convertsB to b and assigns it to the variable lower, and the call:

upper= toupper('b')

con verta b to Band assigns itto the variable upper.
The tolowerfunction returns the character unchanged if it is not an upper
case letter. Similarly, the toupper function returns the character
unchanged if it is not alowercase letter.

These functions are typically used to make the case of the characters read
from a file or the standard input consistent. For example, in the following
statement, tolowerchanges the character read from the standard input to
lowercase before it is compared:

if (to!ower(getcharQ) != 'y')
ex:it(O);

This conversion allows the user to enter either Y or y to prevent the state
ment from executing the exitfunction.

6-6

(

Character and String Processing

6.4 Using the String Functions

The string functions concatenate, compare, copy, and keep track of the
number of characters in a string. Two special string functions, sscanf and
sprintf, let a program read from and write to a string in the same way the
standard input and output can be read and written. These functions are
convenient when reading or writing whole lines containing values of
several different-formats.

Many string functions have two forms: a form that manipulates all charac
ters in the string and one that manipulates a given number of characters.
This gives programs very fine control over all or part of a string.

6.4.1 Concatenating Strings

The strcat function concatenates two strings by appending the characters
of one string to the end of another. The function call has the form:

strcat (dst, src)

where dstis a pointer to the string to receive the new characters, and src is a
pointer to the string containing the new characters. The function appends
the new characters in the same order as they appear in src, then appends a
null character (\0) to the last character in the new string. The function
always retnrns the pointer dst.

The function is typically used to build a string such as a full pathname from
two smaller strings. For example, in the following program fragment,
strcat concatenates the string temp to the contents of the character array
dir:

char dir[MAX] � "/nsr/";

strcat(dir, ·�emp'');

6.4.2 Comparing Strings

The strcmp function compares the characters in one string to those in
another and returns an integer value showing the result of the comparison.
The strcmp function call has the form:

strcmp (sl, s2)

where sl and s2 are the pointers to the strings to be compared. The func
tion returns zero if the strings are equal (i.e., if they have the same charac
ters in the same order). If the strings are not equal, thc function returns the

6-7

C Library Guide

difference between the ASCII values of the first unequal pair of characters.
The value of the second string character is always subtracted from the first.
For example, the function call:

strcmp("Character A", "Character A");

returns zero, since the strings are identical in every way, but the function
call :

strcmpf'Character A") 11Character B'');

returns -1, since the ASCII value of B is one greater thanA.

Note that the st:remp function continues to compare characters until a
mismatch is found. lf one string is sborter than the other, the function usu
ally stops at the end of the sbortcr string. For example, the function call:

strcmprcharacter Au, "Character")

returns 65, that is, the difference between the null character at the end of
the second string and theA in the first string.

6.4.3 Copying a String

The st:repy function copies a given string to a given location. The function
call has the form:

strcpy(dst, src)

where src is a pointer to the string to be copied, and dst is a pointer to the
location to receive the string. The function copies all characters in the
source string src to the dst and appends a null character (\0) to the end of
the new string. If dst contained a string before the copy, that string is des
troyed. The function always returns the pointer to the new string.

For example, in the following program flagmen!, st:repy copies the string
"not availab Ie" to the location given by name:

charna[] = "not available";
charname[20];

strcpy(name, na);

Note that the location to receive a string must be large enough to contain
the string. The function cannot detect overflow.

6-8

(

Characte� and String Processing

6.4.4 Getting a String's Length

The strlen function returns the number of character contained in a given
string. The function call has the form:

strlen (s)

where s is a}lointer to a string. Thecountincludesall charactersup to, but
not including, the first null character. The return value is always an integer.

In the fOllowing program fragment, slrlen is used to determine whether or
not the contents of inname are short enough to be stored in name:

char*inname;
charnmne[MAX];

if (strlen(inname) < MAX)
strcpy(nmne, inname);

6.4.5 Concatenating Characten to a String

The strncatfunction appends one or more characters to the end of a given
string. The function call has the form:

stmcat(dst,src, n)

where dst is a pointer to the string to receive the new characters, src i_s a
pointer to the stringcontainingthenew characters, and n is an integer value
giving the number of characters to be concatenated. Tbefunction appends
the given number of characters to the end of the dstslring, then returns the
pointer dst.

In the following program fragment, s tmcat copies the first three characters
in letter to the end of cover.

char cover[] ":"'nCover";
char letter(] - "letter";

stmcat(cover, letter, 3);

This example creates the newstringcoverletin cover.

6-9

C Library Guide

6.4.6 Comparing Characters in Strings

The stmemp function compares one or more pairs of characters in two
given strings and retutrul an mteger value which gives the result of the com- '
parison. The function call has the form:

stmemp(sl, s2, n)

where sl and s2 are pointers to the strings to be eompsred, and n is an
integer value giving the number of characters to compare. The function
retnrns zero if the first n characters are identicaL Otherwise, the function
retnrns the difference between the ASCII values of the first unequal pair of
characters. The function generates the difference by subtracting the
second string character from the first.

For example, the function call:

strncmp("Character A", "Character B", 5)

returns zero because the first five characters are identical, but the function
call;

stmcmp\'Character A", "Character B", 11)

returns-lbecausethevalue ofBisone greaterthanA.

Note that the function continues to compare characters until a mismatch
or the end of a string is found.

6.4. 7 Cop� Characters to a String

The strnepy function copies a given number of characters to a given string.
The function call has the form:

strncpy(dtt, .src, n)

where dstis a pointer to the string to receive the characters, src is a pointer
to the string containing the characters, and n is an integer value giving the
number of characters to be copied. The function copies either the first n
characters in.src to dst, or if src has fewer than n. characters, copies all char
acters up to the first null character. The function always returns the pointer
dst.

6-10

Character and String Processing

In the following program fragment, stmcpy copies the first three charac
tersindaretoday.

cbarbuf[MAX];
char date [29]-{"Fri Dec 2909:35:44 EDT1985'"};
char •day-buf;

strncpy(day, date, 3);

In this example, day receives the stringFri.

6.4.8 Reading Values from a String

The sscanf function reads one or more values from a given character string
and stores the values at a given memory location. The function is similar to
the s canf function that reads values from the standard input. The function
call has the form:

sseanf (s,forrrwt, argptr . . .)

where s is a pointer to the string to be read,format is a pointer to the string
defining the format of the values to be read, and argptr is a pointer to the
variable that is to receive the values read. If more than one argptr is given,
they must be separated with commas. The forrrwt string may contain the
same formats as given for scanf (see scanf(S) in the XENIX Reference).
The function always retums the numb er of values read.

The function L• typically used to read values from a string containing
several values of different formats, or to read values from a program's own
input buffer. For eJ<ample, in the following program fragment, sscanf
readstwovaluesfrom thestringpointed to bydatestr:

chardatestr[]
{'THUMAR2911:04:40EST 1985'};

cb armonth[4];
charyear(S];

sscanf(datestr, ''% *3s% 3s% *2s% *8s�o *3so/o4s"�
montb,ycar);

printf\'%s, %s\n",month,year);

The first value (a three-character string) is stored at the location pointed to
by nwnth, the second value (a four-character string) is stored at the loca
tion pointed to by year.

6-11

C Library Guide

6.4.9 WrltlngValues to a String

The sprintffunction writes one or more values to a given string. The func
tion call has the form:

sprintf (s,jort!U1t[, argJ . . .)

where sis a pointer to the string to receive the value,jormat is a pointer to a
string which defines the format of the values to be written, and arg is the
variable or value to be written. If more than one arg is given, they must be
separated by commas (,). Theformatstringmaycontain the same formats
as given for printf (see printf(S) in the XENIXRefrrence). After all values
are written to the string, the function adds a null character (\0) to the end of
the string. The function normally returns zero, but will return a nonzero
value if an error is encountered.

The function is typically used to build a large string from several values of
different format. For example, in the following program fragment, sprintf
writes three values to the string pointed to bycmd:

charcmd[lOOI:
char*doc =n/usr/src/cmd/cp.c";
intwidth=50;
int length= 60;

sprintf(cmd, "pr-w%d -lo/od %s\n",
width,!ength,doc);

system(cmd);

In this example, the string created by sprintfis used in a call to the system
function. The first two values are the decimal numbers given by width and
length. The last value is a string (a filename) and is pointed to by doc. The
final string has the form:

pr-wS0-160/usr/src/cmd/cp.c

Note that the stringto receive the valuesmusthavesufficient length to store
those values. The function cannot check for overfiow.

6-12

Chapter 7

Using Process C ontrol

7.1 Introduction 7-1

7.2 Using Processes 7-1

7.3 Calling a Program 7-1

7.4 StoppingaProgram 7-2

7.5 Starting a New Program 7-3

7.6 Executing a Program Through a Shell 7-5

7.7 Duplicating a Process 7-6

7.8 Waiting for a Process 7-7

7.9 Inheriting Open Files 7-7

7.10 Program Example 7-8

Using Process Control

7.1 Introduction

This chapter descnbes the process control functions of the standard C
library. The functions let a program call other programs, using a method
similar to calling functions.

There are a variety of process control functions. The system and exit func
tipns provide !he highest. level o(elrecutiou controLand .. are used by most
programs that need a straightforward way to call another program or ter
minate the current one. The exec!, exeev, fork, and wait functions provide
low-level control of execution and are for those programs which must have
very fine control over their own execution and the execution of other pro
grams. Other process control functions such as abort and exec are
described in detail in section (S) oftheXENIXReference.

The process control functions are a part of the standard C library. Since
this library is automatically read when compiling a C program, no special
library argnmentis required wheninvokingthe compiler.

7.2 Using Processes

"Process" is the tenn used to describe a program executed by the XENIX
system. A process consists of instructions and data, and a table of infor
mation about the program, such as its allocated memory, open files, and
current execution status.

You create a process whenever you invoke a program through a shell. The
system assigns a unique process ID to a program when it is invoked, and
uses this ID to control and manage the program. The unique IDs are
needed in a system running several processes at the same lime.

You can also create a process by directing a program to call another pro
gram. This causes the system to perform the same functions as when it
invokes a program through a shell. In fact, these two methods are actaally
the same method; invoking a program through a shell Is nothing more than
directing a program (the shell) to call another program.

The XENIXsystem handles all processes in essentially the same way, so the
sections that follow should give you valuable information for writing your
own programs and an insight into the XENIX system itself.

7.3 Calling a Program

The system function calls the given program, executes it, and then returns
control to the original program. The function call has the form:

system (command-Une)

�.

7- 1

C Library Guide

where command- line is a pointer to a string containing a shell command
line. The command line must be exactly as it would be entered at the termi
nal; that is, it must begin with the program name followed by any requlred
or optional arguments. For example, the call:

system("date");

causes the system to execute the date command, which displays the
current time and date on the standard output. The call:

system("cat >response");

causes the system to execute the cat command. In this case, the standard
output is redirected to the lile response, so the command reads from the
standard input and copies this input to the file response.

The system function is typically used in the same way as a function call; to
execute a program and return to the original program. For example, in the
following program fragment, system calls a program whose name is given
in the stringcmd:

char *name, *cmd;

printf(''Enterfilename: '');
scanf{"0.ks", name);
sprintf(cmd, "cat %s ", name);
system(emd);

Note that the string in cmd is built using the sprintffunction and contains
the program name cat and an argument (the filename read by scanf). The
effect is to execute the cat command with the given filename.

When using the system function, it is important to remember that bu.f!ered
input and output functions, such as getc and pule, do not change the con
tents of the bu.f!er nntil it is ready to be read or flushed. If a program uses
one of these functions, then executes a command with the system func
tion, that command may read or write data not intended for its use. To
avoid this problem, the program should clear all bu.f!ered input and output
before making a call to the-system function. You can do this for output
with the lllush function, and for input with the setbuffunction described in
the section "Using More Stream Functions" in Chapter4.

7.4 Stopping a Program

The exit function stops program execution by returning control to the sys
tem. The function call has the form:

exit (status)

7- 2

Using Process Control

where status is the integer value to be sent to the system as the termination
status.

The function is typically used to terminate a program before its normal
end, such as after a serious error. For example, in the following program
fragment, exit stops the program and sends the integer value u2'' to the sys
tem if the fopen function returns the null pointer value NULL.

FILE *tty out;

if (fopen(ttyout, "r") ��NULL)
exit(2);

Note that the exit function automatically closes each open file in the pro
gram before retnrning to the system. This means no explicit calls to the
fclose or close functions are required before an exit.

7.5 Starting a New Program

The execl and execv functions cause the system to overlay the calling pro
gram with the given one, allowing the calling program to terminate while
the new program continues execution.

The ex eel function call has the form:

execl (pathname, command-name, argptr . . .)

pathname is a pointer to a string containing the full pathname of the com
mand you want to_execute, command-name is a pointer to a stringcontain
ingthe name of the program you want to execute, and argptr is one or more
pointers to strings which contain the program arguments. Each argptr
must be separated from any other argument by a comma. The last argptr in
the list must be the null pointer value NULL. For example, in the call:

execl("/bin/date", "date", NULL);

the date command, whose full pathname is "/bin/date", takes no argu
ments, and in the call:

execl("/bin/cat", 11caf', filel, file2, NULL);

the cat command, whose full pathname is "!bin/cat", takes the pointers
"filel" and "file2" as arguments.

7-3

C Libr.uy Guide

The execvfunction call has the form:

execv (pathname, ptr);

where pathname is the full pathname of the program you want to execute,
and ptris a pointer to an array of pointen;. Each element in the array must
point to a string. The array may have any number of elements, but the first
element must point to a string containing the program name, and the last
must be the null pointer, NULL.

The execl and execv functions are typically used in programs that e;recute
in two or more phases and communicate through temporary files (for
example a two-pass compiler). The first part of such a program can call the
second part by giving the name of the second part and the appropriate argu
ments. For example, the following program fragment checks the status of
"errfiag", then either overlays the current program with the program pass2,
or displays an error message and quits:

char •tropfile;
int errflag;
if (errflag-- 0)

execl("/usrlbin/pass2", "pass211, tmpftle,
NULL);

else {
fprintf(stderr, ''Error %d: Quitting",

errflag);

}
exit(2);

The execv function is typically used to pass arguments to a program when
the precise number of arguments is not known beforehand. For example,
the following program fragment reads arguments from the command line
(beginning with the third one), copies the pointer of each to an element in
cnul, sets the last element in cnul to NULL, and executes the cat command.

char *cmd[];

cmd[O]- "cat";
for (i-3; i<argc; i++)

cmd[i]=argv[i];
cmd[argc]=NULL;

execv("/bin/cat", cmd);

The execland execv functions return control to the original program only if
there is an error in finding the given program (e.g., a misspelled pathname
or no execute permission). This allows the original program to check for

7-4

f
\

Using Process Control

errors and display an error message if necessary. For example, the follow
iog program fragment searches for the program display io the /usrlbio
directory:

execl("/usr/bin/display", "display", NULL);
fprintf(stderr, "('.Jm'l execute 'display' \n'');

If the program displily is not found or lacks the necessary permissions ;the
original program resumes control and displays an error message.

Note that the exec! and execv functions will not expand metacharacters
(e.g., <, >, •, ?, and []) given in the argument list. If a program needs
these features, it can use execl or execv to call a shell as described .in the
next section.

7.6 Executinga ProgramTbrougha Shell

A drawback ofthe exec! and execvfunctions is that they do not provide the
metacharacter featnres of a shell. One way to overcome this problem is to
use exec! to execute a shell and let the shell execute the command you
wa:nt.

The function call has the form:

exec! ("lbin/sh", "sh", "-c", command� line, NULL);

where command-line is a pointer to the stringcontainingthe command line
needed to execute the program. The string must be exactly as it would
appear if it were entered at the terminal.

For example� a program can execute the command :

cat•.c

(that contains the metacharacter •) with the call:

In this example, the full pathname /billlsh and command namesh start the
shell. The argument -c causes the shell to treat the argument cat *.c as a
whole command line. The shell expands the metacharacter and displays all

(� files which end with something that the cat command cannot do by itself.

"- c

7-5

C Library Guide

7. 7 Dupllcating a Process

The folk function splits an executing program into two independent and
fully-functioning processes. The function call has the form:

fork O

No arguments are required.

The function is typically used to make multiple copies of any program that
must take divergent actions as a part of its normal operation; e.g., a pro
gram that must use the execl function, yet still continue to execute. The
original program, called the "parent" process, continues to execute nor
mally, just as it would after any other function call. The new process,
called the Hchild" process, starts its execution at the same point1 that is,
just after the folk call. (The child never goes back to the beginning of the
program to start execution.) The two processes are in effect synchronized,
and continue to execute as independent programs.

The folk function retorns a different value to each process. To the parent
process, the function retorns the process ID of the child. The process iDis
always a positive integer and is always different than the parent's ID. To the
child, the function returns 0. All other variables and values remain exactly
as theywere in the parent.

The retorn value is typically used to determine which steps the child and
parent should take next. For example, in the following program segment:

char*cmd;

if (forkQ--0)
execl("/binlsh*', 11sh", "-c", cmd, NUlL);

the child's return value, 0, causes the expression "forkO - 0" to be true,
and therefore the execlfunctionis called. Theparent'sretorn value, on the
other hand, causes the expression to be false, and the function call is
skipped. Executing the execl function causes the child to be overlayed by
the program given by command. This does not affect the parent.

If fork encounters an error and cannot create a child, it will return the value
-1. It is a good idea to check for this value after each call.

7-6

!
� /

Using Process Control

7.8 Waiting fora Process

The wait function causes a parent process to wait until its child processes
have completed their execution before continuing its own execution. The
function callhasthefonn:

wait (ptr)

where ptr is a pointer to an integer variable. It receives the termination
status of the child from both the system and the child itself. The function
normally returns the process ID of the terminated child, so the parent may
check it againstthevalueretumed by fork.

The function is typically used to synchronize the execution of a parent and
its child, and is especially useful if the parent and child processes access the
same files. For example, the followingprogram fragment causes the parent
to wait while the program named by pathname (which has overlaid the
child process) finishes its execution:

int status;
chat *pathname;
char •cmd[];

if (fork()--0)
execv{pathname, cmd);

wait(&tstatus);

The wait function always copies a status value to its argument. The status
value is actually two 8-bit values combined into one. The low-order 8 bits
contains the termination status of the child as defined by the system. This
status is zero for normal termination and nonzero for other kinds of termi
nation, such as termination by an interrupt, quit, or hangup signal (see
signa!(S) in the XENIX Reference for a description of the various kinds of
termination). The next 8 bits contains the termination status of the child as
defined by its own call to exit. If the child did not explicitly call the func
tion, the status is zero.

7.9 Jnheriting OpenFiles

Any program called by another program or created as a child process to a
program automatically inherits the original program's open files and stan
dard input, output, and error files. This means that if the file was open in

'---- the original prograin, it will be open in the new program or process.

A new program also inherits the contents of the input and output buffers
used by the open files of the original program. To prevent a new program
or process from reading or writing data that is not intended for its use,
these buffers should be flushed before calling the program or creating the

7-7

C Library Guide

new process. A program can flush an output buffer with the ftlush func
tion, and an input buffer withsetbuf.

7.10 Program Example

This section shows how to use the process control functions to control a
simple process. The following program starts a shell on the terminal given
in the command line. The terminal is assumed to be connected to the sys
tem through a line that has not been enabled for multi -user operation.

#include <stdio.h>

main(argc, argv)
intargc;
char*argv[);
{
int status;

if (argc < 2) {
fprintf(stderr, "No tty given. \n ");
exit(l);

}
if(forkQ-0){

if (freopen(argv[l], "r",stdin) = NULL)
exit(2);

if (freopen(argv[l),"w",stdout) - NULL)
exit(2);

if (freopen(argv[l], "w",stderr) = NULL)
exit(2);

exec!(" !bin/ sh", "sh",NULL);
}
v.ait(�tatus);
if (statns --512)

fprintf("Bad tty name: %s\n", argv[1D;
}

In this example, the fork function creates a duplicate copy of fhe program.
The child changes the standard input, output, and error files to the new ter
minal by closing and reopeningthem with thefreopenfunction. The termi
nal name pointed to by argv must be th-e name of the device special file
associated with the terminal, e.g., "/devltty(J3". The exec! function then
calls the shell which uses the new terminal as its standard input, output,
and errodlles.

The parent process waits for fhe child to terminate. The exit function ter
minates fhe process if an error occurs when reopening the standard files.
Otherwise, fhe process continues until the Ctrl-D key is pressed on the ter
minal keyboard.

7-8

C hapter S

Writing and Using Pip e s

8.1 Introduction 8-1

8.2 Opening a Pipe to a New Process 8-1

8.3 Readingand WritingtoaProcess 8-2

8.4 Closing a Pipe 8-3

8.5 Openinga Low-LevelPipe 8-3
8.5.1 Reading and Writing to aLow-LevelPipe 8-4
8.5.2 Closing aLow-LevelPipe 8-5

8.6 Program Examples 8-5

8.7 NamedPipes 8-8

(

Writing and Using Pipes

8.1 Introduction

A pipe is an artificial file that a program may create and use to pass infor
mation to other programs. A pipe is similar to a file in that it has a file
pointer and/ or a file descriptor and can be read from or written to using the
input and output functions of the standard library. Unlike a file, a pipe
does not represent a specific file or device. Instead, a pipe represents tem
porary storage in memoiflhat is independent of the program's own .
memory and is controlled entirely by the system.

Pipes are chiefly used to pass information between programs, just as the
shell pipe symbol (I), is used to pass the output of one program to the input
of another. This eliminates the need to create temporary files to pass infor
mation to other programs. A pipe can also be used as a temporary storage
place for a single program. A program can write to the pipe, then read that
information back at a Jaterthne.

The standard library provides several pipe functions. The popcn and
pdosc functions control both a pipe and a process. The popcn function
opens a pipe and creates a new process at the same time, making the new
pipe the standard input or output of the new process. The pclose function
closes the pipe and waits for termination of tbe corresponding process.
Tite pipe function, on the other hand, gives low-level access to a pipe. The
function is similar to the open function, but opens the pipe for both read
ing and writiog, returning two file descriptors instead of one. The program
can either use both sides of the pipe or close !he one it does not need. The
low-level input and output functions read and write, can be used to read
from and write to a pipe. Pipe file descriptors are used in the same way as
other file descriptors.

8.2 Openinga Pipetoa NewProcess

The popen function creates a new process and then opens a pipe to the
standard input or output file of that new process. The function can has the
form:

popen (command, type)

where command is a pointer to a string that contains a shell command line,
and type is a pointer to the string which defines whether !be pipe is to be
opened for reading or writing by the original process. It may be r for read
ing or w for writing. The function normally returns the file pointer to the
open pipe, but will return the null pointer value NULL, if an error is
encountered.

8-1

C Library Guide

The function is typically nsed in programs that need to call another pro
gram and pass substantial amounts of data to that program. For example,
in the followingprogram fragment, popen creates a new process for the cat
command and opens a pipe for writing:

FILE *pstrm;

pstrm = popen\ca1 >response", uw'};

The new pipe given by pstrm lin.ks the standard input of the command with
the program. Data written to the pipe will be used as input by the cat com
mand.

8.3 Reading and Writing to a Process

The fscanf, !'print[, and other stream functions may be used to read from
or write to a pipe opened by the popen function. These functions have the
same form as described in Chapter4.

The fscanffunction can be used to read from a pipe opened for reading.
For example, in the following program fragment, fseanf reads from the
pipe given by pstrm.

FILE *pstrm;
char narue[20];
intnumber;

pstrm-popenf'catu, "r");
fscanf(pstrm, 11o/os %d", name, &number);

This pipe is connected to the standard output of the cat command, so
fseanfreads the first name and number written by cat to its standard out
put.

The fprintf function can be used to read from a pipe opened for writing.
For example, in the following program fragment, fprintfwrites the string
pointed to by bufto the pipe given l>yp.strm:

FILE *pstrm;
charbuf[MAX);

pstrm = popenf'wc", "w');
fprintf(pstrm, "%s" ,buf)

This pipe is connected to the standard input of the we command, so the
command reads and counts the contents of buf.

8-2

\

(.
�)

Wrlling and Using Pipes

8.4 Closing a Pipe

The pclose function closes the pipe opened by the pop en function. The
function call has the form:

pclose (stream)

where stream is the file pointer of the pipe to be closed. The function nor
mally returns the exit stat11S of the command that was issued as the first
a:rgument of its corresponding pop en, but will return the value -1, if the
pipe was not opened by popen.

For example, in the following program fragntent, pclose closes the pipe
given by pstrm if the end-of-file value, EOF, has been found in the pipe:

FILE *pstrm;

if (feof(pstrrn))
pclose (pstrrn);

8.5 Opening a Low- LeveiPipe

The pipe function opens a pipe for botb reading and writing. The function
call has theform:

pipe (ftf)

where fd is a pointer to a two-element array. It must have int type. Each
element receives one file descriptor. The first element receives the file
descriptor for the reading side of the pipe, and the other element receives
the file descriptor forthewritingside. The function normally returns 0, but
will return the value -1, if an error is encountered. For example, in the fol
lowing program fragment, pipe creates two file descriptors if no error is
encountered:

int chan[2];

if (pipe(chan) ---1)
exit(2);

The array element chan[O} receives the file descriptor for the reading side
ofthe pipe, and chan[l] receives itforthe writing side.

8-3

C Libnuy Guide

The function is typically used to open a pipe in preparation for linking it to
a child process. For example, in the following program fragment, pipe
causes the program to create a child process if it successfully creates a pipe:

int fd[2];

if (pipe(fd) 1� -1)
if (fork()-0)

close(fd[l]);

Note that the child process closes the writing side of the pipe. The parent
can now pass data to the child by writing to the pipe and the child can
retrieve the data by reading the pipe.

8.5. 1 Reading and Writing to a Low-Level Pipe

The read and write input and output functioWl can be used to read and
write characters to a low-level pipe. These functions have the same form
and operation described in Chapter 4.

The read function can be used to read from the read side of an open pipe.
For example, in the following program fragment, read reads MAX charac
ters from the read side of the pipe given by chan:

intchan[2];
charbuf[MAX.J;
intnumber;

number- read(chan[O], buf, MAX);

In this example, read stores the characters in the array buf.

Note that unless the end-of-file character is encountered, a read call waits
for the given number of characters to be read before returning.

The write function can be nsed to write to the write side of a pipe. For
example, in the following program fragment, write writes MAX characters
from the character array bufto the writing side of the pipe given by chan:

8-4

intchan(2];
char buf[MAX.J;
int number;

pipe(chan);
number�write(chan[l], input, 512);

C� .·

Writing and Using Pipes

If the write function finds that a pipe is too full, it waits until some charac
ters have been read before completing its operation.

8.5.2 Closing a Low- Level Pipe

The close function can be used to close the reading or the writing side of a
pipe. " The function has the ·same form--and· ·operation ·as· ··desCribed iii
Chapter4. For example, thefunction call:

close(chan[O])

closes the reading side of the pipe given by chan, and the call:

close(chan[!])

closes the writing side.

The system copies the end-of-file value, EOF, to a pipe when the process
that made the original pipe and every process created or called by that pro
cess has closed the writing side of the pipe. This means, for example, that
if a parent process is sending data to a child process through a pipe and
closes the pipe to signal the end ofthefile, the child processwillnot receive
the end-of-file value unless it has already closed its own write side of the
pipe.

8.6 Program Examples

This section shows how to use the process control functions with the low
level pipe function to create functions similar to the popen and pclose
functions.

8-5

C Library Guide

The first example is a modified version of the popen function. The
modified function identifies the new pipe with a file descriptor rather than a
file pointer. It also requires a "mode" argument rather than a "type" argu
ment, where the mode is Oforreadingor 1 for writing:

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tst(a, b) (mode�READ ? (b) : (a))
static in t popen_pid;

popen(cmd, mode)
char •cmd;
int mode;
{

}

intp[2];

if (pipe(p) < 0)
return(NULL);

if ((popen_pid -fork())--0) {
close(tst(p[WRITE], p[READ]));
close(tst(O, 1));
dup(tst(p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));
execl("lbin/sh", "sh", "-c11, cmd, 0);
exit(1); /* sh cannotbefound */

}
if (popen_pid �-1)

return(NULL);

close(tst(p[READ], p[WRITE])) ;
return(tst(p[WRITEJ, p[READ]));

The function creates a pipe with the pipe function first. It then uses the
fork function to create two copies of the original process. Each process
has its own copy of the pipe. The child process decides whether it is sup
posed to read or write through the pipe, then closes the other side of the
pipe and uses exed to create the new _process and execute the desired pro
gram. The parent, on the other hand, closes the side of the pipe it does not
use.

The sequence of dose functions in the child process is a trick used to link
the standard input or output of the child process to the pipe. The first dose
determines which side of the pipe should be closed and closes it. If
"mode" is WRITE, the writing side is closed; if READ, the reading side is
closed. The second dose closes the standard input or output depending
on the mode. If the mode is WRITE, the input is closed; if READ, the

8-6

(

(\

Writing and Using Pipes

output is closed. The dup function creates a duplicate of the side of the
pipe that is still open. Since the stanclard input or output was closed
immediately before this call, this duplicate receives the same file descriptor
as the standard file. The system always chooses the lowest available file
descriptor for a newly opened file. Since the duplicate pipe has the same
file descriptor as the standard file, it becomes the standard input or output
fn�.f<?_r��.Pr<>�-�ss._ ���y, �e �a�t _c��-�� �l"c;>��� tP-� qp_gi"J;J-�l_p!p�_, J�.;�yip,g
only the duplicate.

The following example is a modified version of the pclose function. The
modified version requires a file descriptor as an argument rather than a file
pointer.

#include < signal.h>

pclose(fd) /* closepipefd •t
intfd;
{

}

intr, status;
int (*hstat)Q, (*istat)(), (•qstat)();
extemintpopen...pid;

close(fd);

istat = signal(SIGINT, SIG_lGN);
qstat= signal(SIGQUIT, SIGJGN);
hstat = signal(SIGHUP, SIG_lGN);

while ((r=wait(&status)) != pope':'_pid &&r != -1)

if (r'==-1)
status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, qstat);
signal(SIGHUP, hstat);

return(status);

The function closes the pipe first. It then uses a while statement to wait for
the child process given by popen_pid. If other child processes terminate
while it waits, it ignores them and continues to wait for the given process. It
stops waiting as soon as the given process terminates or if no child process
exists. The function returns the termination status of the child, or the
value-1, iftherewasan error.

The signal function calls used in this example ensure that no interrupts
interfere with the waiting process. The first set of functions causes the pro
cess to ignore the interrupt, quit, and hang up signals. The last set restores

8-7

C Library Guide

the signals to their original status. The signal function ls dcscnbed in detail
in Chapter6ofthe XENIX.Programmer's Guide.

Note that both example functions use the external variable popen_pid to
store the process ID of !be child process. If more than one pipe is to be
opened, the popen_pid valuemnst be saved in another variable before each
call to popen, ancl this value must be restored beforecallingpclose to close
the pipe. The functions can be modified to support more than one pipe by
changing the popen_pid variable to an array indexed hy a file descriptor.

8. 7 Named Pipes

Named pipes are supported under XENIX System V. A named pipe is
identical to a normal p1pe, except thatit has a name in the filesystem and it,
therefore, stays arcund even when not being used. Named pipes are
created bymknod(S), not pipe(S).

Typically. named pipes are-used as �'dump locations." A deamon or server
program creates and reads from a named pipe, while programs associated
with the deamon or server program open(S) the pipe by name and write to
it.

A named pipe is used like a normal file (open(S), read(S), and write(S)).
Data is read and removed from the pipe in a FIFO ("First in First out")
manner. Data is written to the pipe in an atomic manner; that is, all data is
written in a single write It is not intarmixed with other process's written
data. The writes appear consecutively in the pipe when they are read.
Thus, one process can open the pipe for writing, and another process can
open the pipe for reading.

8-8

Writing and Using Pipes

The followingroutine creates a named pipe:

#include <sys/stat.h>
extem intermo;

t• make a named pipe, mode 666 •!
if (mknod('/u/ eric/pipe", S.JFIFO J 0666, 0)- -1){

· perror("/uferic/pipe"); /* An error occurred. */
exit (errno);

}

Useunlink(S) to remove a named pipe.

if (nnlink("/u/eric/pipe'') == -1) {
perror("/u/eric/pipe'');
exit(errno);

}

8-9

,

\,.

'
I

Chapter 9

Using System Re sources

9.1 Introduction 9-1

9.2 AllocatiogMemory 9-1
9.2.1 ADocating Space for a Variable 9-2
9.2.2 AllocatiogSpaceforan Array 9-2
9.2.3 ReallocatiogSpace 9-3
9.2.4 Freeing Unused Space 9-4
9.2.5 Tunable Memory Allocation 9-4
9.2.6 Optimizing Memory Allocation 9-6
9.2. 7 Gathering Memory Allocation Information 9-6
9.2.8 Accessing Additional Memory Segments 9-6

9.3 LockingFiles 9-7
9.3.1 Preparing a File for Locking 9-8
9.3.2 Lockinga File 9-9
9.3.3 ProgramExample 9-9

9.4 Using Semaphores 9-10
9.4.1 Creating a Semaphore 9-11
9.4.2 Openinga Semaphore 9-12
9.4. 3 Requestiog Control of a Semaphore 9-13
9.4.4 Checking the Status of a Sema.phore 9-14
9.4.5 Relinquishing ControlofaSemaphore 9-14
9.4.6 Program Example 9-15
9.4. 7 UNIX System V Semaphores Program Example 9-17

9.5 UsingSharedMemory 9-19
9.5.1 Creatioga Shared Data Segment 9-21
9.5.2 Attaching a Shared Data Segment 9-22
9.5.3 Entering a Shared Data Segment 9-22
9.5.4 Leavinga Shared Data Segment 9-23
9.5.5 Gettingthe CnrrentVersion Number 9-24
9.5.6 Waitiogfora VersionNnmber 9-25
9.5.7 Freeinga Shared DataSegment 9-25
9.5.8 ProgramExample 9-26
9.5.9 UNIXSystem V SharedMemory 9-27
9.5.10 Program Exampl;; 9-28

9.6 Message Queues 9-31
9.6.1 Program Example 9-31

(
\...__.··

Using Sysrem Resources

9.1 Introduction

This chapter describes the XENIX C library functions that let programs
share the resources ofthe XENIX system. The functions give a program the
means to queue for the use and control of a given resource and to syn
chronizeits use with use by other programs.

In particular, this chapter explains how to:
• Allocate memory fordynarnically required storage.
• Lock a file to ensure exclusive use by a program.
• Use semaphores to control access to a resource.
• Share data space to allow interaction between programs.
• Use message queues to communicate between processes.

XENIX System V suppons two sets of each of these operations (except
message queues) .. These are referred to as either XENIX operations or
UNIX System V operations. The UNIX System V operations are compati
ble with AT&T UNIX System V and should be used when software is
Intended for use on other System V operatiugsystems that comply with the
System V Interface Definition. It is generally recommended that these
operations be used instead of the XENIX operations. The XENIX opera
tions are compatible with previous versions of XENIX and should be used
only if one is working with software which uses XE.NIX style operations.

The UNIX operations Include file locking, shared data, and semaphores.
Programs using the XENIX operations must be linked with the XENIX
library, using the ·lx option. The two memory allocation packages
described are available in both UN1X System and XENIX.

It is not possible to use both XENIX and UNIX operations in a compatible
fashinn. The operations mentioned are valid for one type of operation and
cannot be mixed with the other type.

9.2 Allocating Memory

Some programs require significant changes to the size of their allocated
memory space during different phases of their execution . The memory
allocation functions of the standard C library let programs allocate space
dynamically. This means a program can request a given number of bytes of
storage for its exclusive use at the moment it needs the space, then free this
space after it has finished usingit.

There are four basic memory allocation functions: malloc, caDoc, realloc,
and free. The mallnc and callnc functions are used to allocate space for
the first time. The functions allocate a given number of bytes and retnrn a
pointer to the new space. The reaBoc function reallocates an existing
space, allowing it to be used In a different way. The free function returns
allocated space to the system.

9- 1

XENIX C Library Guide

9.2.1 AlloeatingSpaedora Variable

The malloc function allocates space for a variable containing a given
number of bytes. The function call has the form:

malloc (size);

where size is an unsigned number which gives the number of bytes to be
allocated. For example, the function call

table=malloc (4) ;

allocates four bytes of storage. The function normally returns a pointer to
the starting address of the allocatad space, but will return a null pointer if
there is not enough memory.

The function is typically used to allocate storage for a group of strings that
vary in length. For example, in the following program fragment malloe is
used to allocate space for ten different strings, each of different length.

inti·
ch.; temp[100];
char *string[lO];
char *mallocQ;
unsigned lsize;

for (i-0; i < 10; ++i){

}

gets(temp);
string[i]=malloc(strien(temp) + 1);
if (string[i]- NUll) {

perror("mallocfailed'');
exit(l);

} . strcpy (strlng[i], temp);

In this example, the strings are read from the standard input. Note that 1
must be added to strlen(temp) because space is needed at the end of the
strlngforthe NULL character.

9.2.2 AllocatingSpaceforanAtray

The canoe function allocates storage for a given arrll}' and initializes each
element in the new array to zero. The function call has the form:

calloc (n, size);

9-2

r

Using System Resources

where n is the number of elements in the array, and size is the number of
bytes in each element. The function normally returns a pointer to the sterl
ing address of the allocated space, but will return a null pointer value if
there is not enough memory. For example, the function call

table� calloc (10,4);

allocates sufficient space for a lOel�ment array. Each element has 4 bytes.

The function is typically used in programs which must process large arrays
without knowing the size of an array in advance. For example, in the fol
lowing program fragment, calloc is used to allocate storage for an array of
Ionge read from the standard input.

int i;
long •table;
unsigned inum;

scanf(11% d"� &inum);
table= (long •)calloc (inurn, sizeof(Jong));
for (i�; i<inum; i++)

scanf\''Yold", &table[i]);

Note that the number of elements is rend from the standard input before
the elements are read.

9.2.3 Reallocating Space

The realloc function reallocates the space at a given address without
changing the contents of the memory space. The function call has the
form:

realloc (ptr, size);

where ptr is a pointer to the starting address of the space to be reallocnted,
and size is an unsigned number giving the new size in bytes of the reallo
<lated space. The function normally returns a pointer to the starting
address of the allocated space, but will return a null pointer if there is not
enough memory.

This function is typically used to keep storage as compact as possible. For
example, in the following program fragment, realloc is used to remove
table entries.

9-3

XENIX C Librnry Guide

inti;
long•table;
unsigned inurn;

for(i�inum-1; i > -1; --i){
printf("% ld\n", table[iD;
table-(long *)realloc(table, i*4);

}

In tbls example, an entry is removed after it has been printed at the stan
dard output, by reducing the si2:e of the allocated space from its current
length to the length given by "i*4".

9.2.4 Freeing Unused Space

The free function frees unused memory space that had been previously
allocated by a malloc, calloc, or realloc function call. The function call
has the form:

free {ptr);

where ptris the poiuterto the startingaddressofthe space to be freed. This
poiutermustbe the return value of a maUoc, canoe, orreaDocfunction.

The function is used exclusively to free space which is no longer used or to
free space to be used for other purposes. For example, in the followiug
program fragment free frees the allocated space poiuted to by the elements
of '�string."

inti;
char*string[lO];

for (i=O; i < 10; ++i)
free (striug[i]);

9.2.5 Tunable Memory Allocation

The memory allocation package which is available in the standard C
library, Ubc. a, uses a linear search through all blocks to allocate space,
starting at a roving start poiuter. This algorithm is space-efficient and gives
good performance as long as the total number of blocks allocated is small.
However, with a large number of blocks, this algorithm has serious perfor
mance problems.

A new memory allocation package, which uses a different time/space
tradeoff, is included in System V. The new library routines allocate space
quickly, but use space inefficiently when the number of blocks allocated is

9-4

Using System Resources

small. Programs that were close to running out of memory using the stan
dard package will most likely not be easily changed to use the new package.

The new library package contains the same basic routines with the same
functionality; malloc, free, reaDoc7 and calloc. It also contains the new
routines mallopt and mallinfo.

Tbe major benefit of the new package is performance improvement fol'
programs that make heavy use of dyuamie memory allocation. This
memory allocation module is intended to be used by a sophisticated pro
grammer concerne-d about performance. No allocation algorithm is per
fectfor all applications. Special knowledge of the distribution of the size of
requests for memory can be used to optimize an algorith m. This algorithm
provides several tunable parameters to allow customization of the algo
rithm. Instrumentation is provided to help in the choice of values for these
parameters. This package usually performs better than the standard mal
Joe package; for optimum performance, however.? these parameters
should be toned.

The new package is provided in lihmolfoc.a, and is accessed via the
-lmalloc !lag at the end of the ec command line. It is standard System V,
available in UNIX as well as XENIX. The standard package is kept in the
standard C library, libc. a. Thus developers who want the new package
must take a positive step to use it. Programs left alone will work exactly the
waytheyused to work.

The interface to both packages is described in the malloe(S) manual page.
The new intedace is similar to the standard interface with routines having
the same names. This allows the use of the new package without the
changes to code that would be required if the routines had different names,
while protecting naive users from the interface change that would occur if
the new package replaced the standard package. In addition, it assures
that the same allocation routines will be used by libraries that are used by
an application, avoidingfragmentation problems.

The most serious difference between the standard and new packages is
that, with the standard malloc, after a block is freed but before another is
allocated, the data in the freed block is valid. By default, the new package
does not have this property. Arr option allows this property to be used, at
the cost of two extra words of overhead per block.

The new malloc has two additional functions: ma!lopt and mallinfo. The
mallopt function provides for control over the allocation algorithm. The
mallinfo function provides instrumentation describing space usage. This
information can be used to determine optimalmalloc operation using mal·
lopt.

9-5

XENIX C Libtacy Guide

9.2.6 Optimizing Memory AUocation

The mallopt function provides control over the allocation algorithm. The
function call has the form:

maDopt (cmd, value);

where cmd sets variables that allow tuning the algorithm to allocate
memory in the most efficient mannerforthe application. The values avail
able for cmd are: M....MXFAST which sets the maximum size of blocks that
a:re very quickly allocated in "large groups", M..NLBLKS which sets the
size of the "large groups" allocated when blocks less than the size of max
fast are encountered, M...GRAIN which sets the grain used when rounding
values, and M....KEEP which preserves the data in a freed block until the
next allocation (for compatibility with the other maDoc). mallopt may be
called repeatedly, until the first]>lock is allocated.

9.2.1 Gathering Memory AUocatlonfuformatlon

The mallinfo function provides instrmnentatio.n deacnbing space usage. It
returns a structure which is defined in <malloc.h>. The function caD has
the form:

#include <malloc.h>

structmallinfomi;

mi �maDinfoQ;

Refer to the maDoc(S) manual page and the <malloc.h> header file for
more information.

9.2.8 AccessingAddltlonaiMemorySegments

brkctl(S) is a XEl'.'IX routine that allows 8086/80286 programs to access
additional data segments. It is not available under UNIX System V, and so
is not portable. Use it on!ywhenmalloc(S)is not sufficient.

Small and medium model programs can use brkcll to access additional
memery in a far data segment. Be sure to use the -Me option to cc(CP)
when compiling programs using brkcll to enable the use of lhe far key
word. For most applications, the -lbrkctl option tocc(CP) shquld be used
to cause a special brkctllibraryto be linked with the program. This library
simulates the use of an additional segment, via shared memory, if the
brkcllfails.

brkcii(S) also has several functions that manipulate the size of a data seg
ment. The most useful function on systems with segmented architecture is

9-6

I
'

(�, I

Using System Resoun:es

the BR...NEWSEG command, which acts similar to a malloc as shown in
the following program example.

#include <syslbrk.h>

#define FNULL (int far *) 0
#define FAILURE (int far *)-1

main()
{

}

int i, j ;
intfar *fp, far *brkctl(); /*bothfars are necessary*/

fp � brkctl(BR..NEWSEG, 40000L, FNULL);
if (fp �� FAILURE) {

}
perror(''brkctl failed'');
exit(1);

for (i � O; i < 20000; ++i)
fp[i] � i+1;

for (i � O; i < 20000; ++i)
printf (" "!od\n", fp[i]);

This example allocates 40,000 bytes in a far data segment and fills this
memory with the integers from 1 to 20,000.

Be aware that since fp is a far pointer, it cannot be passed to the standard
small or medium model library functions (e.g. strcpy) that expect near
pointers.

9.3 Lncking Files

Locking a file is -a way to synchronize file use when several processes may
require access to a single file. The standard Clibrary and the XENIXlibrary
provide three file lockingfunctions: locking, lockf, and fcntl. These func
tions lock any given section of a file, preventing all other processes which
wish to use the section from gaining access. A process may lock the entire
file or only a small portion. In any case, only the locked section is pro
tected; all other sections may be accessed by other processes as usual. See
the locking(S), Jockf(S), and fcnti(S) manual pages in the XENIX Refer
ence.

File locking protects a file from the damage that may be caused if several
processes try to read or write to the file at the same time. It also provides
unhindered access to any portion of a file for a controlling process. Before
a file can be locked, however, it must be prepared using the open and lseek

9-7

XENIX C Library Guide

functions described in Chapter 2, "Using the Standard T/0 Functions."
This section describes in detail how to use the locking function. The other
file locking functions are used in a similar manner.

This is a brief summary of differences between me locking techniques.
lockf(S) and fcnd(S) arc UNIX System V style file locking routines and
their use is recommended over the XENIX style routine, Jocking(S).

locking and fcntl can do a write lock, ailowing reads of locked areas. lockf
only does read and write locks.

The syotax and arguments for lockf and locking are essentially the same.
The only difference is tbe #defines for the commands (for example,
F _LOCK vs. LK_LOCK). The manner of calling fcntl is similar to
iocll(S). There is no need to do a seek before the lock with fend, since the
data structure passed to fnctl includes the file offset at which locking is to
start.

All three locking styles are enforced. When another process tries to access
an area that is locked, that process suspends execution or gets an error
return. Be aware that it is possible to lock a region beyond the end of a file
in all three styles.

To use the locking function, you must add the lines

#include <sys/types.h>
#include <sys/locking.h>

to fhe beginning of the program. The illesysllocking. h contains definitions
forthemodesused with fhefunction.

9.3.1 Preparlng aFDeforLocking

Before a file can be locked, it must first be opened using the open function,
then properly positioned by usingfhe !seek fnnction to move the IDe's char
acter pointer to the first byte to be locked.

The open fnnction is used once at the beginning of fhe program to open the
file for writing. The file need not be opened for reading. The file
lusr!il!clu.de/fcntl.h must be included when using open. The !seek func
tion may be used any number of times to move the character pointer to
each new section to be locked. For example, the following statements
prepare the reservations file at file position 1024.

9-8

#include <fcntl.h>

fd = open("reservations", 0_ WRONL Y);
lseek(fd, 1024L, 0);

Using System Resonr<!es

9.3.2 Locking a File

The locking function locks one or more bytes of a given file. The function
callhastheform:

iocking (tile des, mode, size);

where file des is the file descriptor of the file to be locked, mode is an integer
value which defines the type of lock to he applied to the file, size is a long
integer value giving the size in bytes of the porlion of the file section to be
locked or unlocked. The mode maybe "LK_LOCK" for locking the given
bytes, or "LK_UNLK" for unlocking them. For example, in the following
program fragment, locking locks 100 bytes at the beginning of the file given
by "fd".

#include <fcntl.h>

intfd;

fd = openC'data", OJU)WR);
locking(fd, LK_LOCK, 100L);

The function normally returns the number of bytes locked, but will return
-lifitencounters an error.

9.3.3 Program Example

This section shows how to lock and unlock a small section in an erlstiog file
using the locking function. In the following program, the function locks 50
bytes in the file data which is opened for reading and writing. The locked
portion of the file is accessed, then locking is used agsin to unlock the file.

9-9

XENIX C Library Guide

#include <sys/types.h>
#include < sys/locking.h>
#include <fcntl.h>

maiuO
{

}

intfd, err;
char*data;

fd -open("data",OJIDWR);
if(fd - -1)

perror("open failed");
else {

}

I*
* seek to positinn 100 and lock 50 bytes
*I
lseek(fd, 100L, 0);
err -locking(fd, LK...LOCK, SOL);
if(err--1){

I* process error return •1
}

!• read orwritebytes 100 - 150in the tile *I

I*
• unlock the region
.,

lseek(fd, lOOL, 0);
Iocking(fd, LK....UNLCK, SOL);

9.4 Using Semaphores

The standard C hbrary and theXENIXIibraryprovide a group offunctions,
called the semaphore functions, whicb may be used to control the access to
a given system resource. These functions create, open, and request con
trol of ��semaphores. n

XENIX System V supports two sets of system calls for dealing with sema
phore operations. These are referred to in subsequent descriptinns as
either XENIX semaphores or UNIX System V semaphores.

XENIX Semaphores are regular files that have names and entries in the file
system, but contain no data. Unlike other files, semaphores cannot be
accessed by more than one process at a time. A process that wishes to take
control of a semaphore away from another process must wait until that

9-10

Using System Resoun:es

process relinquishes control. Semaphores can be used to control a system
resource, such as a data file, by requiring that a process gain control of the
semaphore before attempting to aceess the resource.

The XENIX semaphore operations are compatible with previous releases
of XENIX. The system calls for manipulating XENIX semaphores are:
opensem(S), creatsem(S), sigsem(S), Wllitsem(S). and nbwaitsem(S).
Programs using these operations .must be linked with the XEN!X library,
usingtbe .Jx option.

· ·

The creatsem function creates a semaphore. The semaphore may then be
opened and used by other processes. A process can open a semaphore
with the opensem function and request control of a semaphore with .the
waitsem or nbwaitsem function. Once a process has control of a sema
phore it can carry out tasks using the given resource. All other processes
must wait. \Vhen a process has finished accessingtheresource, it can relin
quish control of the semaphore with the sigsem function. This lets other
processes get control of the semaphore and use the corresponding
resource.

The UNIX System V semaphore operations are compatible with AT&T
UNIX System V. The system calls for manipulating UNIX semaphores
are: semop(S), semcii(S), and semget(S).

It is not possible to use both XENIX and UNIX semaphores in a compati
ble fashion. The operations mentioned are vaJJd for one type of sema
phore, and cannot be applied to the other type. This section describes the
XENIX semaphore operations in detail since these system calls are unique
to the XENIX operating system, and UNIX System V semaphore opera
tinns briefly.

9.4.1 Creating a Semaphore

The creatsem function creates a semaphore, returning a semaphore
number which may be used in subsequent semaphore functions. The func
tion callhastheform:

ereatsem (sern.Jlame, mode);

where semJlllme is a character pointer to the name of the semaphore,. and
mode is an integer value which defines the access mode of the semaphore.
Semaphore names have the same syntax as regular file names. The names
must be unique. The function normally returns an integer semaphore
number which may be used in subsequent semaphore functions to refer to
the semaphore. The function returns -1 if it encounters an error, such as
creating a semaphore that already exists, or using the name of an existing
regular file.

9-11

XENJX C Library Guide

The function is typically used at the beginning of one process to clearly
define the semaphores it intends tQ share with other processes. For exam
ple, in the following program fragment creatsem creates a semaphore
named "tty!" beforeprecedingwith its tasks.

main O
{

}

intttyl;
FILE *fttyl;

ttyl - creatsem(''ttyl", Q771j;
fttyl -fopen("/dev/tty()l", 'w');

/*Program body. */

Note that fopen is used immediately after cnatsem to open the file
ldevltty01 for writiog. This is one way to make the association between a
semaphore and a device clear.

The mode H<J177" defines the semaphore's access permissions. The per
missions are similar to the permissions of a regular file. A semaphore may
have read permission for the owner ... for users in the same group as the
owner, and for all other users. The write and execution permissions have
no meaning. Thus, "07/J" means read permission for all users�

No more than one process ever need create a given semaphore; 'all other
processes simply open the semaphore with the opens em function. Once
created or opened, a semaphore may be accessed only by using the
waltsem nbwaltsem or sigsem functions. The creatsem function may be
used more than once during execution of a process. In particular, it can be
used to reset a semaphore if a process fails to relinquish control before ter
minating. Before resetting a semaphore, you must remove the associated
semaphore file using the nnlink(S) function.

9.4.2 Opening a Semaphore

The opensem function opens an existing semaphore for use by the given
process. The function call has the form:

opensem (sem..J1ame);

where sem..name is a pointer to the name of the semaphore. This must be
the same name used when �reating.the semaphore. The function returns a
semaphore number that may be used in subsequent semaphore functions
to refer to the semaphore. The function returns -1 if it encounters an
error, such as trying tQ open a semaphore that does not exist or using the
name of an existiog regular file.

9-12

Using Sysrem Resources

The function is typically used by a process just before it requests control of
a given semaphore. A process need not use the function if it also created
the semaphore. For example, in the following program fragment, open
semis used to open thesemaphorenamed semaphorel.

intseml;

if ((sem1 opensem("semapbore1")) !� -1)
waitsem(sem1);

In this example, the semaphore number is assigned to the variable "seml".
If the number is not -1, then "seml" is used m the semaphore function
waits em which requests control of the semaphore.

A semaphore must not be opened more than once during execution of a
process. Although the opens em function does not return an error value,
opening a semaphore more than once can lead to a system deadlock.

9.4.3 Requesting Controlofa Semaphore

The waits em function requests controlof a given semaphore for the calling
process. lf the semaphore is available, control is given immediately. Oth
erwise, the process waits. The function call has the form:

waitsem (sem...num);

where semJtUm is the semaphore number of the semaphore to be con
trolled. lf the semaphore is not available (if it is under control of another
process), the function forces the requesting process to wait. lf other
processes are already waiting for control, the request is placed next in a
queue of requests. When the semaphore becomes available, the first pro
cess to request control receives it. When this process relinquishes control,
the next process receives control, and so on. The function returns -1 if it
encounters an error such as requesting a semaphore that does riot exist or
requesting a semaphore that is locked to a dead process.

The function is used whenever a given process wishes to access the device
or system resource associated with the semaphore. For example, in the fol
lowing program fragment, waitsem signals the intention to write to the file
given by"ttyl".

inttty1;
FILE *fttyl;

waitsem(tty1 �;
fprintf(fttyl, 'Cbangingtty driver\n");

9-13

XE!«1X C Library Guide

The function waits until current controllingprocess relinquishes control of
the semaphore before retumingto the next statement.

9.4.4 Checkiog the Status ofa Semaphore

The nbwaiwem function checks the current.statns of a semaphore. If the
semaphore is not available, the function returns the error value ENA VAIL.
Otherwise, it gives immediate control of the semaphore to the calling pro
cess. The function call has the fonn:

nbwaitsem (sem...num);

where semJUlm is the semaphore number of the semaphore to be
checked. The function returns -1 if it encounters an error such as request
ing a semaphore that does not exist. The function also retums-lifthe pro
cess controlling the requested semaphore terminates without relinquishing
control of the semaphore.

The function is typically used in place of waits em to take control of a sema
phore.

9.4.5 Relinquishing Control of a Semaphore

The sigsem function causes a process to relinquish control of a given sema
phore and to signal this fact to ali processes waiting for the semaphore.
The function calihas the fonn:

sigsem (semJJum)

where semJUlm is the semaphore number of the semaphore to relinquish.
The semaphore must have previously created or opened by the process.
Furthermore, the process must hav.e been previously taken control of the
semaphore with the wails em or nbwaiwem function. The function retnrns
-1 if 1! encounters an error such as trying to take control of a semaphore
thatdoesnotexist.

The function is typicaliy used after a process has finished accessing the
corresponding device or system resource. This aliows waiting processes to
take control. For example, in the following program fragment, slgsem sig
nals the end of control of the semaphore "ttyl".

9-14

(
int tty1;
FILE •temp, •rtty1;

waitsem(t1y1);
while ((c-fgetc(temp)) 1-EO F)

fputc(c, fttyl);
sigsem(ttyl);

Using System Resources

This example also signals the end of the copy operation to the semaphore's
corresponding device, given by "fttyl ".

Note that a semaphore can become locked to a dead process if the process
fails to signal the end of the control before terminating. In such a case, the
semaphore must be reset by using the cnats em function.

9.4.6 Program Example

This section shows ho\V to use the semaphore functions to control the
access of a system resource. The following program creates five different
processes which vie for control of a semaphore. Each process requests
control of the semaphore five times, holding control for one second, then
releasing it. Although the program performs no meaningful work, it
clearly illustrates the use of semaphores.

9"15

XENIX C Library Guide

9-16

#define NPROC 5

char semi[]= "__k:esemfXXXXXX";
int sem_num;
int holdsem= 5 ;

mainQ
{

}

registeri, child;

mktemp(semf);
if ((sem..num = creatsem(semf, 0777)) < 0)

err("creatsem 'J; - ·

for (i = 1; i < NPROC; ++i) {
if((child =forkO) < 0)

err("No fork");
elseif(child==O) {

}
}
doit(O);

if((sem..num = opensem(semf)) < 0)
enf'opensem");

doit(i);
exit(O);

for (i = 1; i < NPROC; ++i)
while(wait((int *)0) < 0)

unlink(semf);
'

doit(id)
in tid;
{

}

while(holdsem-) {
if{waitsem(sem_num) < 0)

err{"waitsem");
printf("%d\n", id);
sleep(l);
if(sigsem(sem..num) < 0)

}
err{''sigsem');

err(s)
char*s;
{

}

perror(s);
exit(l);

Using System Resources

The program contains a number of global variables. The array "semf" con
tains the semaphore name. The name is used hy the creatsem and open�
sem functions. The variable Hsem_num" is the semaphore number. This
is the value returned by ereatsem and opensem and eventually used in
waitsem and sigsem. Finally, the variable 'choldsem" contains the number
of times each process requests control of the semaphore.

Tbe main program function uses the mktemp(S) function to create a
unique name for the semaphore and then uses the name with creatsem to
create the semaphore. Once the semaphore is created, it begins to create
child processes. These processes will eventually vie for control of the
semaphore. As each child process is created, it opens the semaphore and
calls the doit() function. When control returns from doit() the child pro
cess terminates. The parent process also calls doit(), waits for termination
of each child process and finally deletes the semaphore with the unlink(S)
function.

do it() calls the waits em functkm to request control of the semaphore. The
function waits until the semaphore is available, it then prints an integer
between 0 and 4to the standard output, waits one second, and relinquishes
control uslngthesigsemfunction.

Each step of the program is checked for possible errors. lf an error is
encountered, the ptogram calls the err() function. This function prints an
error message and terminates the program.

9.4. 7 UNIX System V Semaphores Program Example

Tbe following program example is essentially the same as the previous
semaphore example except that this program uses the UNIX System V
semaphores.

9-17

XENIX C Library Guide

9-18

#include <sysltypesch>
#include <sys/ipc.h>
#include <sys/sem.h>

#define NPROC 5
#defineEJSY(key_t)7

int sem.Jd;
intholdsem= S;
union {

} arg ;

intval;
structsemi<Lds *buf;
ushort •array;

mainQ
{

registeri, child;

,.
• create the semaphore
•I
if ((sem.Jd = semget(KEY, 1, IPC_CRBA T 10'777)) < 0)

err ("semget');
I*
*set the number of resources it is controlling
.,
arg.val=l;
if(semctl(semJd, O, SETVAL, arg) < 0) {

err (11Semctl setval");
}
for(i=l;i < NPROC;++ i) {

if ((child =forkO) < 0)
err('Nofork");

else if (child-0) {

}
}

doit(O);

if ((sem_id = semget (EJSY, 1, ffl77)) < 0)
err("childsemget");

doit(i);
exit(O);

for (i = 1; i < NPROC; ++i)
while (walt ((int •) 0) < 0)

I*
*remove the semaphore
•I

if (semctl (sem_jd, 0, IPC....RMID) < 0)
err (nsemctlremova111);

Using System Resources

}

doit(id)
int id;
{

}

struct sembuf sops[1];

· sops[OJ.sem..num = 0; !• there is onlyonesemaphore */
sops[O].sem.Jig=O; /* waituntilsemaphore availab le */
wbile (holdsem--) {

}

/*
* the value oft he member sem_op
• determines the action of semopQ
*I
sops[O].sem_op = -1; /* request the semaphore */
if (semop (semJd, sops, 1). != 0)

err ("semop request •);
prlntf{"%d\n", id);
sleep(l);
sops[O].sem_op = 1 ; /* release the semaphore *I
if (semop (semjd, sops, 1 J < 0)

err ("semop release')�

err(s)
char*s·
{

'

}

perror(s);
exit(l);

9.5 Using Shared Memory

Shared memory is a method by which one process shares its alloeated data
space with another. Shared memory allows processes to pool information
in a central location and directly access that information without the bur
den of creating pipes or temporary files.

The standard C library and the XENIX library provide several functions to
access and control shared memory. These functions create, add� access,
signal, and free shared memory segments. XENIX System V supports two
sets of system calls for dealing with shared memory operations. These are
referred to in subsequent descriptions as either XENIX shared memory or
UNIX System V shared memory.

The XENJX shared memory operations are compatible with previous
releases of XENIX:. The system calls for manipulating XENIX shared

9-19

XENIX C L!"brary Guide

memory are: sdget(S), sdfree(S), sdenter(S), sdgetv(S), and sdwait(S).
Programs using these operations must be linked with the XENIX library,
using the - lx option.

The UNIX System V shared memory operations are compatible with
AT&T UNIX System V. The system calls for manipulating UNIX shared
memory are sbmop(S), sbmcti(S), and sbmget(S).

It i s not possible for you to use both XENIX and UNIX shared memory in a
compatible fashion. The operations mentioned are valid only for one type
of shared memory, and cannot be mixed with the other type. This section
mainly describes the use of the XENIX shared memory operations in detail
since these system calls are unique to the XEl\'IX operating system. A dis
cussion of UNIX System V shared memory and a program example is
included.

XENIX shared memory uses a semaphore type mechanism to control
access to the segment. The shared memoryispart oftheneardata segment.
Each process attached to a XENIX shared memory segment msintains a
separate copy of the data. It is slower than the UNIX System V shared
memory, because after everysdleave the kernel copies the updated data to
each process that is attached to the shared memory.

Since XENIXshared memory is kept in the near data segment for small and
medium model programs, the heap space is reduced. There is Jess space
avallable for the process to dynamically allocate.

Access to UNIX System V shared memory must be controlled by the pro
gram. It is faster than XENIX shared memory because only a single copy of
the data is kept; all processes attached to the shared memory access the
same physical memory. It does not impact the amount of heap space avail
able to small and medium model 8086/80286 programs because the shared
memory is in a separate far segment. Use of UNIX System V shared
memory can allow small and medium model 8086/80286 programs to have
more than 64Kof data.

If there is not enough free memory available on the system, UNIX System
V shared memory operations do not cause swapping of other processes in
order to get the needed memory. Because of this, the performance of pro
grams using UNIX System V shared memory varies depending on the sys
tem load.

There are five XENIX shared memory functions: sdget, sdrree, sdenter,
sdgetv, and sdwait.

The sdget function creates and/or adds a shared memory segment to a
given process-'s data space. To access a segment� a process must signal!ts
intention with the sdenter function. Once a segment has completed tis
access, it can signal that it is finished using the segment with the sdleave
function. The sdfree function is used to remove a segment from a

9-20

Using System Resources

process's data space. The sdgetv and sdwaitv functions are used to syn
chronize processes when several are accessing the segment at the same
time.

To use the shared data functions, you must add the lines

#include <sys/types.h>
#include <sd.h>

at the beginning of the program. The sd.h file contains definitions for the
manifest constants and other macros used by the functions.

9. 5.1 Creating a Shared Da Ia Segment

The sdget function creates a sharsd data segment for the current process
lllld attaches the segment to the process's data space. The function call has
the form:

sdget (par:h,flag, size, mode);

where path is a character pointer to a valid pathname, flag is an integer
value which defines how the segment should be created, size is a long
integer value which defines the size in bytes of the segment to be created,
and mode is an integer value which defines the access permissions to be
given to the segment. The flag may be a combination of SD_CREAT for
creating the segment, SD..RDONL Y for attaching the segment for, reading _
only, or SD_ WRITE for attaching the segment for reading and writing.· ¥ou
may also use SD_UNLOCIC for allowing simultaneous access by multiple
processes. The values can be combined by logically ORing them. The
function returns the address of the segment if it has been successful. Other
wise, thefunctionreturns -1.

The function is typically used byjustone process to create a segment that it
will share with several other processes. For example, in the followingfrag
ment, sdget is used to create a segment and attach it for reading and writ
ing. The address of the new segment is assigned to shared.

char *shared;

shared-sdget("/tmp/share",
SO_CREAT lSD_ WRITE, 512L, 0777);

When the segment is created, the size "512" and the mode "0777" are used
·.._,___/' to define the segment's size in bytes and access permissions. Access per�

missions are similar to permissions given to regular files. A segment may
have read or write permission for the ovmer of the process� for users
belonging to the same group as the owner, lllld for all other users. Execute
permission for a segment has no meaning. For example, the mode "CJ777''
means read and write permission for everyone, but "0660" means read and

9-21

XEN1X C Lllmlry Guide

write permissions for the owner and group processes only. When fii>"t
created, a segment is fille<:I with zeroes.

Note that the SD_UNLOCKfiagused on systems without hardware support
for shared data may severely degrade the execution performance of the
program.

9.5.2 Attaching a Shared Data Segment

The sdget function can also be used to attach an existing shared data seg
ment to a process's data space. In this case, the function call has the form

sdget(path,flag);

where path is a character pointer to the pathname of a shared data segment
created by some other process, and flag is an integer value which defines
how the segment should be attached. The flag may be SD__RDONL Y for
attachingthesegment for readingouly, orSD_WRITEfor attaching the seg
ment for reading and writing. If the function is successful, it returns the
address of the new segment. Otherwise, it returns -1.

The function can be used to attach any shared data segment a process may
wish to access. For example, in the following fragment, the program uses
sdget to attach the segments associated with the files /tmplsharel and
/tmplshare2 for reading and writing. The addresses of the new segments
are assigned to thepointervarishlessharel and share2.

char *sha.rel, *share2;

sharel=sdget("/tmp/sharel", SD_WRITE);
share2� sdget("/tmp/share2", SD_ WRITE);

Sdgetreturns an error value to any process that attempts to access a shared
data segment without the necessary permissions. The segment permis
sions are defined when the segment is created.

9.5.3 Entering a Shared Data Segment

The sdentersignals a process's intention to access the contents of a shared
data segment. A prQcess cannot access the contents of the segment uuless
it enters the segment. The function call has the form:

sdenter (addr,flag);

where addr is a character pointer to the segment to be accessed, and flag is
an integer value which defines how the segment is to be accessed. The flag
may be SP__RDONL Y for indicating read only access to the segment,
SD_WRITE for indicating write access to the segment, or SD__NOWAITfor

9-22

Using System Resources

returning an error if the segment is locked and another process is currently
accessing it. These values may also be combined by logically ORing them.
The function normally waits for the segment to become available before
allowing access to it. A segment is not available if the segment has been
created without the SD_UNLOCK flag and another process is currently
accessing it.

Once a process has enrered a segment, it can examine an<f modifythe con
tents of the segment. For example, in the following fragment, the program
uses sdenter to enter the segment for reading and writing, then sets the first
value in thesegmentto Oifitis equal to 255.

char *share;

share= sdget("/tmp/share", SD_WRITE);

sdenter{share, SD_WRITE);
if (share[OJ == 255)

share[OJ = 0;

In general, it is unwise to stay in a shared data segment any longer than it
takes to examine or modify the desired location. The sdleave function
should be used after .each access. When in a shared data segment, a pro
graro should avoid using system functions. System functions can disrupt
the normal operations required to support shared data and may cause
some data to be lost. In particular, if a program creates a shared data seg
ment that cannot be shared shnultaneously, the program must not call the
fork(S) function when it is also accessing that segment.

9.5.4 Leaving a Shared Data Segment

The sdleave function signals a process's intention to leave a shared data
segment after reading or modifying its contents. The function call has the
form:

sdleave (addr);

where addr is a character pointer to the desired segment. The function
returns -1 if it encounters an error, otherwise it returns 0. The return value
is always an integer.

The function should be used after each access of the shared data to ter
minate the access. If the segment's Jock fiag is set, the function must be
used after each access to allow other processes to access the segment. For
example, in the following prograro fragment, sdleave terrulnates each
access to the segment given by ushared').

9-23

XENIX C Library Guide

inti=O;
char c, *share;

share = sdget("/tmp/share", SD..RDONL Y);
sdeuter(share, SD..RDONL Y);
c= *share;
sdleave(share) ;

while (c !...0) {
putchar(c);
i++;

}

sdenter(share, SD..RDONL Y);
c = share[i};
sdleave(share);

9.5.5 GettingtheCuxrentVenionNumber

The sdgetv function returns the current version number of the !Pen data
segment. The function call has the form:

sdgetv (addr);

where addr is a character pointer to the desired segment. A segment's ver
sion number is initially zero, but it is incremented by one whenever a pro
cess leaves the segment using the sdleave function. Thus, the version
number is a record of the number of times the segment has been accessed.
The function's return value is always an integer. It returns -1 if it
encounters an error.

The function is typically used to choose an action based on th,e current ver
sion number of the segment. For example, in the following program frag
ment sdgetv determines whether or not sdenter should be used to enter the
segment given by"shared".

char*shared;

if (sdgetv(shared) > 10) ·
sdenter(shared);

In this example, the segment is entered if the currentversionnumberofthe
segmentis greater than "10".

9-24

Using Syslem Resources

9.5.6 Waltl.ngfora Version Number

The sdwaitv function causes a process to wait until the version number for
the given segment is no longer equal to a given version number. The func
tion callhastheform:

sdwaitv (addr, vnum);

where addr is a character pointer to the desired segment, and vnum is an
integer value which defines the version number to wait on. The function
normally returns the new version number. It returns -1 if it encounters an
error. The return value is always an integer.

The function is typically used to synchroni7.e the actions of two separate
processes. For example, in the following program fragment the program
waits while the program corresponding to the version number Hvnum '' per
forms its operations in the segment.

char *share;
intvnum;

vnum � sdgetv(share);
if(sdwaitv{share, vnum) � - 1)

fprintf(stderr, "Cannot find segment\n");
else

sdenter(share);

If an error occurs while waiting, an error message is printed.

9.5.7 Freeing a Shared Data Segment

The sdfree function detaches the current process from the given shared
data segment. The function call has the form:

sdfree(addr);

where addr is a character pointer te the segment to be set free. Tf the seg
ment is freed, the function retorns the integer value 0. Otherwise, it
returns-!.

lithe process is currently accessing the segment, sdfree automatically calls
sdleave to leave the segment before freeing it.

The contents of segments that have been freed by all attached processes
are destroyed. To reaccess the segment, a process must recreate it using
the sdget fllJlction and theSD_CREA T fiag.

9-25
· ---···· ----

XENIX C Library Guide

9.5.8 Program Example

This section shows how to use the shared d�>ta functions to share a single
data segment between two processes. The following program attaches a
data segment named ltmplshare and then uses it to transfer information to
between the child and parent processes.

9-26

#include <sys/types.h>
#include <sd.h>

#defineSJZE30

mainO
{

char•share, messagc[SIZE];
inti, vnum;

share= sdgctC'/tmp/share",
SD_CREA T ISD_WRITE ISD_UNLOCK,
(long)SlZE, CJ771);

if (forkQ =0){
for (i =0; i < 4; i++){

sdenter(share, SD_WRriE);
strcpy(messa�, share);

}

}

strcpy(share, 'Child leavingmessage');
vnum =sdgctv(shareJ;
sdleave(share);
sdwaitv(share, vnum+l);
printf("Child: %d- %s\n",i, message);

sdenter(share, SD_WRITE);
strcpy(messa�, share);
strcpy(share, Childleavinglastmessage');
sdleave(share);
printf('Child: %d - %s\n", i, message);
exit(O);

Using System Resources

}

for (i-0; i < 5; i++){
sdenter(share, SD_WRITE);
strcpy(messaf.e, share);

}

strepy(share, 'Parent leaving message");
vnum -sdgetv(share);
sdleave(share);
sdwaitv(share, vnum+ 1);
printf("Parent: 0/od � o/os\n", i, message);

sdfree(share);

.fu this program, the child process inherits the data segment created by the
parent process. Each process accesses the segment 5 times. During the
access, a process copies the current contents of the segment to the variable
message and replaces the message with one of its own. It then displays mes
sage and continues the loop.

To synchronize access to the segment, both the parent and child use the
sdgetv and sdwaitv functions. While a process still has control of the seg
ment, it uses sdgetv to assign the current version number to the variable
vnum. It then uses this number in a call to sdwaltv to force itself to wait
until the other process has accessed the segment. Note that the argument
to sdwaitv is uvnum+ 1". Since vnum was assigned before the sdleave call,
it is exactly one less than the version number after the sdleave call. It is
assigned before the sdleave call to ensure that the other process does
modify the current version number before the current process has a chance
to assign it to vnum.

The last time the child process accesses the segment, it displays the mes
sage and exits without calling the sdwaitv function. This is to prevent the
process from waiting forever, since the parent has already exited and can
no longer modify the current version number.

9-5.9 UNIX System VSharedMemory

The UNIX System V shared . memory operations are compatible with
AT&T UNIX System V. The system caiJs for manipulating shared
memory are shmcii(S), shmget(S), and shmop(S).

To usetheshared memoryfunctions, you must add the lines:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

at the beginning of the program. The syslipc. h and syslshm.h files contain
definitions for the manifest constants and other macros used by the

9-27

XENIX C Library Guide

fimctions. Be sure to use the -Me option to ct(CP) when compiling 8086
or 80286 programs containing these #include files to enable the use of the
far keyword.

The full extent of UNIX System V shared memory operations are not
described here in detaiL This section brieflydescnbes some oftheissues to
be aware of when uaing shared memory.

Each process gets a shared memory id by calling shmget with the proper
key. The key field is the means for determining which memory segment is
being shared. Each process that needs to attach to the same memory seg
ment must use the same key. The process that creates the shared memory
must also use the IPC_CREAT command when callingshmget. All other
processes that use the memory also call shmget but without using
IPC_CREAT.

Each process attaches to the shared memory segment using shmat. The
shared memory address, slurulddr, must be 0 on systems with segmented
architecture. shmatreturns a far pointer on 8086/80286processors. This is
important to remember when comparing quantities. For example:

#defineFNULL
#define FAILURE
charfar"fp;

(charfar•)o
(charfar*)-1

if ((fp = shmat(id, FNULL, 0)) =FAILURE)

Note that the comparisons use far pointers, and that they check for equal·
itywith -1. Checksforless thanzero (< O) willnotwork as expected.

Shared memory operatinns do not clean up after themselves. The pro
grammer must be careful to removed shared memory segments when they
are no longer required. The last process to detach from the shared memory
segment should use a shmctl call with the IPC...RMID command. This
(implicitly) detaches the process and removes tbe shared memory seg
ment. If the last process detaches from the shared memory segment and
does not remove ft., the shared memory remains inaccessible until a pro
cess calls shmget uaing tbe same key and attaches to the shared memory.

9.5.10 Program Example

#include <stdin.h>
#include <sysltypes.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <signal.h>

#define KEY (key_t) 60

9-28

Using System Resources

#defmeFNULL (charfar*) 0
#define FAILURE (char far*) -1
#define FALSEO
#define TRUE 1

intshmid;
charfar*base, far *shmat(); /*both fars are necessary

intclean() ;

main()
{

int created;
charbuf[SO];

on 8086or 80286systems */

signal(SIGINT, clean);
created - TRUE;
if((shrnid= shmget(KEY, SO, IPC_CREAT 10666)) < 0){

created =FALSE;

}

if ((shmid = shmget(KEY, 50, 0)) < 0) {
perror("shmget failed'');
exit(l);

}
}
if ((base = shmat(shrnid, FNUIL, 0)) == FAILURE) {

perror("shmatfailed'');
exit(l);

}
I*
• if we created the shared memory segment load it with data.
*in a real situation the data wonld come from a file .
. ,
if (created)

fn....strcpy(base, "acfhijknpz'');
while (gets(buf) !=NULL)

if (f...strchr(base, buf{OD)
prlntf("found\n'�;

else
printf("not (ound\n'');

clean();

9-29

XENIX C Library Guide

,.
• same as strchr(S), but takes afar pointer
.,
int
f...strchr(s, c)
charfar*s;
charc;
{

}

,.

chard;

while (d � *s++)
if(c--d)

return(TRVE);
else if (c < d)

return(F ALSE);
return(FALSE);

• copy a near string to afar string
.,
fn....strcpy(s, t)
charfar*s;
char•t;
{

while (*s++ - *t++)

}

,.
• detach and remove the shared memory segment
.,

cleanO
{

}

strnct shmid....ds shmds;

shmdt(base);
shmctl(shmid, IPC_RMID, &shmds);
exit(O);

This program illustrates getting a shared memory segment in which a data
base of information is being stored. Different processes share the data
base. The process that creates the datshase loads it with data. Each pro
cess reads characters from the standard input and checks the shared
memory to see if the character read is in the database. This program can be
executed several times simultaneously. Only one shared memory segment
is created and the same segment is referenced by each process. Since the
shared memory segment is not in the same segment as the current process,
they must be accessed using far pointers.

9-30

"--· ·

Using System Resources

It isnecessaryto use special handling to copy data to far pointers. The stan
dard library routines work only with large model programs because then all
data is far. In small and middle model programs, programmers must write
their own functions to copy data between near and far segments. Casting a
near pointer to afarpointerdoes not achieve the same results.

9.6 Messag�: Q11eues

Message queues are another way in which one process can communicate
with another. They are especially useful when different types of messages
are being passed between processes, and the action required is dependent
on the type ofmessagebeingpassed.

The standard C library provides the following functions to access and con
trol message queues: msgcti(S), msgget(S), and msgop(S). These opera
tions are all UNIX System Voperations which are compatible with AT&T
UNIX System V.

To use these message queue functions, you must add the lines:

#include <sys/jypes. h>
#include< sys/ipc.h>
#include <sys/msg.h>

atthe beginning of the program. The sys!ipc. h and sys!msg. h files contain
definitions for the manffest constants and other macros used by the func
tions. Be sure to use the -Me option on cc(CP) when compiling programs
containing these #include files to enable the use of the near keyword.

9.6.1 Program Example

Program example for process 1.

#inClude <stdio.h>
#include <sys/jypes.h>
#include <sys/ipc .b>
#include <sys/msg.h>
#include <sys/signal.h>
#include <cjype.h>

#define KEY (key_t)60

intmsgid;

mainO
{

inti,n;
struct {

9-31

XENlX C Library Guide

9-32

longmtype;
eharmtext[40]; /*maxof40eharspermsg*/

}buf;
char s[lOO];
int cleanO;

signai(SIGINT, clean);
,.
• Create the msg qneue.
* Usekey#UO. Everyoneelsewillusethis too.
• The key can be any value that everyone agrees to.
*I

msgid � msgget(KEY, IPC_CREA T 10666);
if (msgid < 0) 1;

perror(' 1 msgget failed');
exit(I);

} ,.
* This is the main program.
• We will send messages to two processes.
• The messages will consist of integers.
* One of the processes will multiply the integer by3.
*Theotherwill add6.
"'This program receives the answers back
• and prints the results .
. ,

while (gets(s) !- NULL) {
strcpy(buf.mtext, s+ 1);
/*
• Send it to one of the two processes.
• The process that multiplies
• integersby3willhavea 'type' of3.
* Theotherwillbetype 6.
* Wehave atypeofl.
•
• A letter and string of digits are read
• from standard input. If the letter is
• uppercase send the digits to 3 else send
*themto6.
*I
buf.mtype -isupper(s[OD?3: 6;
if (msgsnd(msgid, &buf, strlen(buf.mtex:t),

"IPC_NOWAIT) < 0){
perror("l msgsnd failed");
exit(l);

}
,.
• Now get the answer back and print it out.
*I
if (msgrev(msgid, &buf, strlen(buf.mtext), (long) 1,

(
"-._/

Using System Resources

}

,.

}

-IPC_NOW A IT) < 0) {
perror("l msgrcv failed");
exit(l);

printf("%s\n", buf.mtext);
}
clean();

*All communication is done, remove the message queue.
*I
clean()
{

}

if (msgctl(msgid, IPC...RMID,

}

(struet msquid *) NGLL) < 0){
perror("l msgctl falled '');
exit(1);

printf("msgqueueremoved\n'');
exit(O);

Program example for process 6.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <erruo.h>

#define KEY (key_t) 00

,.
• We are process #6.
*Read messagesoftype6frommsgqueue#OO,
• take theintegerin the message,
• add 6toit and send it back to process #1.
.,
main()
{

inti, msgid, val;
struct{

longmtype;
charmtext(40];

}buf;

,.
• Get msg queue #60.
*theOargumentmeansnocreate, r/wperms

9-33

XENIX C Library Guide

}

*I
msgid � msgget(KEY, 0);
if (msgid < 0) ;{

perror(6msggetfailed'');
exit(1);

}
I*
• Read numbers from the msgqueue, add 6 to them,
• and send them backto process#l.
*I

while (msgrcv(msgid, &buf, 40, (long) 6,

}

"IPC....NOWAIT) > - 0) {
val= atoi(buf.mte::rt); I* extract integer *I
sprintf(buf.mte::rt, "%d +6= %d", val, val+6);
buf.mtype= 1;
if (msgsnd(msgid, &buf, 40, "IPC....NOWAIT) < O) {

perror("6 msgsnd failed");
exit(1);

}

if (errno != EIDRM)
perror("6msgrcvfailed'');

This example consists of three programs, two of which are given. The third
is very similar to the second. All tbreeprocesses execute atthe same time;
process 1 needs to start fust because it creates the message queue.

The first program creates a message queue, and sends messages of types 3
or 6, which contain integers, to the other two processes. Process 6-receives
messages of type 6, extracts the integer from the message, edds 6 to the
integer, and sends the sum back to process 1. Process 3 acts in similar
fashion, except that it receives type 3 messages and multiplies the integer
by3 before sending the product back to process 1.

Process 1 uses processes 3 and 6to perform tasks. It can continue with the
main body of its function while subprocessing is handled by the other
processes.

Note that the m.sg.h file contains thefollowingdeclaration of structmsgbuf:

9-34

stroct msgbuf {
longmtype;
char mte::rt[l];

};
#include <sysltypes.h>
#include <syslipc.h>
#include <syslmsg.h>

I* message type *I
J• message text • I

Using System Resources

This is only a template or model. Declaring a message buffer with a type of
struct msgbufwill only allow messages of length 1 to be sent. The preferred
method is as illustrated in the eXlliilple where a buffer is specifically
declared with a maximum size specified. Note that the

charmtex:t[40];

cannot be replaced with

char *mtext;

9-35

I
\

Appendix A

XENIX to DOS : A C ross

Development Sys tem

A, 1 Introduction A - 1

A.2 Creating Source Files A-1

A.3 Compilinga DOS Source File A-2
A.3.1 DOS FJoatingPointFlags A-3

A.4 UsingAssemblyLanguage SourceFiles A-4

A.5 Creating and Linking Object Files A -4

A.6 Running and Debugging a DOS Program A -5

A.7 TransferringPrograms Between Systems A-5

A.& Creating DOS Libraries A-6

A.9 CommonRun-TimeRoutines A-7
A.9. 1 Common Routines A-7
A.9.2 Common Routines for DOS and UNIX System V A-8
A.9.3 Routines Specific to DOS A-8

A.lO CommonSystem-WideVariables A-9
A.lO.l Common Variables A-9
A. 10.2 Common Variables A-9
A. 10.3 Variables SpecifictoDOS A-10

A.ll CommonlncludeFiles A-10
A.11.1 Common lnclude Filesfor DOS andXENIX A-10
A.11.2 Common lnelude l:lles A-10
A . 11.3 Include Files Specific toDOS A-11

A.12 Differences Between Common Routines A-11
A . 12.1 abort A-11
A.12.2 access A-11
A. 12.3 chdir A-12
A. 12.4 chmod A-12

A.12.5 creat A-13
A.12.6 exec A-13
A.12.7 fopen, freopen A-13
A . 12.8 fread A-14
A.12.9 fseek A-14
A.12.10 fstat A-15
A.12.11 ftell A -15
A . 12.12 ftime A-15
A.12.13 fwrite A-16
A.12.14 getpid A-16
A.12.15 locking A-16
A.12.16 !seek A-17
A.12.17 open A-17
A.12.18 read A-17
A .l2.19 signal A-17
A.12.20 stat A-18
A.l2.21 system A-18
A.l2.22 umask A -18
A .12.23 unlink A-19
A.12.24 utime A-19
A.12.25 write A-19

A.13 Difl'erencesin Definitions A-19

/� I
'

XENIX to DOS: A Cross Development System

A.l lotroduction

The XENIX system provides a variety of tools to create programs that can
be executed under the DOS operating system. The DOS cross develop
ment system lets you create, compile, and link DOS programs on the
XENIX system and transfer these programs to a DOS system for execution
and debugging.

The complete development system consists of:

!'- • The C program compiler cc
• The assemblermasm
• The DOS linker dosld
• The DOS libraries (in /usrllibldos)
• The DOS include files (in /usrlincludeldos)
• The dos(C)commands

The heart of the cress development system is the cc command. The com
mand provides a special - dos option that directs the compiler to create
code for execution under DOS. When - dos is given, ce uses the special
DOS include files and libraries to create a program. The resulting program
file has the correctformatfor execution on any DOS system.

The cc command uses the dosld program to carry out the last part of the
compilation process, the creation of the executable program file. t:c
invokes the masm command only when XENIX assembly langnage source
files are given in the command line. In most cases, cc invokes masm and
dosld automatically. You can also invoke them directly when you need to
perform special tasks.

The last step in the cross development process is to transfer the executable
program files to a DOS system. Since DOS programs cannot be executed
or debugged on the XENIX system, you must copy the resulting programs
to DOS before attempting execution. You can do this using the XENIX
dos(C) commands. For example, the doscp command lets you copy files
hack and forth between XENIX and DOS disks. This means you can
transfer program files from the XENIX system to a DOS system, or copy
source files from a DOS system to XENIX.

A.2 Creating Source Flles

You can create program source files using either XENIX or DOS text edi
tors. The most convenient way is to use a XENIX editor� such as vi, since
this means you do not have to transfer the source files from the DOS sys
tem to XENIX each time yon make changes to the files.

A-1

C Library Guide

When creating source files, you should follow these simple rules:

• Use the standard C language format for your source files. DOS C
and assembler source files have the same fonnat asXENIX source
files. !n fact, many DOS programs, if compiled without the -dos
option, can be executed on theXENIXsystem.

• Use the DOS naming conventions when giving file and directory
names within a program; e.g., use "\'' instead of "/" for the path
name separator. Since the compiler does not check names, failure
to follow the conventions will cause errors when the program is
executed.

• Use only the DOS include files and library functions. Most DOS
include files and functions are identical to their XENIX counter
parts. Others have ouiy slight differences. For a list of the avail
able DOS include files and functions, and a description of the
differences between them and the corresponding XENIX files and
functions, see section A. U of this appendix.

If you use a function that does not exist, dosld displays an error message
aodleaves the linked output file incomplete.

A.3 Compiling a DOS Source File

You can compile a DOS C source file under XENIX by using the -dos
option of the XENIX cc command. The command line has the form:

cc -dos options filename . . .

where options are other cc command options (as described in Chapter 2of
the C User's Guide), aodfilename isthe nameofthe source file you wish to
compile. You can give more th an one source file if desired. Each source
filename must end with the '' .c" extension.

The cc command compiles each source file separately, creating an object
fileforeach file. It then links all the object filestogetherwith the appropri
ate C h"braries. The object files created by the cc command have the same
base name as the corresponding source file, but end with the u .o" exten
sion instead of the ".c" extension. The linked program file has the name
a. out if no name is explicitly given.

For example, the command:

cc -dos test.c

A-2

XENIX to DOS: A Cross Development System

compiles the source file test. c, and creates the object file test.o. It then calls
dosld which links the object file with fUnctions from the DOS libraries.
The resulting program file is named a.out.

You can use any number of ec options in the command line. The options
work as described in Chapter 2 of the C User's Guide. For e�tample, you
may use the -o option to explicitly name the resulting program file, or the
• !".option !o cre!lte object files without creating a program file. In some
cases, the default values for an option are'diffei:enl than when compiling
for XENIX. In particular, the default directory for library files given with
the • J option is /usr/libldos. Note that the - p (for "profiling'') option can
not be used.

A.3.1 DOS Float.fugPointFlags

The -FPn options to the C compiler are used when generating programs
targeted for DOS. These five flags control how the resulting program per
forms floating point operations:

-FPa

-FPc

-FPc87

-FPi

-FPi87

Generates subroutine calls to the ualtemate"
floating point library.
(lusrllibldcsi[SML lfl.libcfa.a) This library is fas
ter than the standard math coprocessor emula
tion library, but not as accurate.

Generates subroutine calls (as opposed to inline
code) to the coprocessor emulation library.
(/u.sr/libldcs/em.a) Programs compiled with
this flag will do all floating point operations in
software.

Generates subroutine calls to the floating point
library, which then uses the math coprocessor.
(/usrllibldos/87.a) A coprocessor must be
in;ialled to run programs compiled with this
flag.

Generates intioe code that will check to see if a
math coprocessor is present, use it if one is
there, or call the emulation library if one is not.
This is the default for DOS, and is the only
method used for performing floating point
operations under XENIX.

Generates true inline code for the math copro
cessor. A coprocessor must be installed to run a
program compiled with this flag.

A-3

C Library Guide

Again, note that programs compiled with • FP a or. FPc will ignore a math
coprocessor (8087, 80287) if one is installed, and programs compiled with
• FPc87 and • FPi87 will not run if a math coprocessoris not iru;talled.

A.4 Using Assembly Language Source Files

You can direct cc to assemble XENIX assembly language source files by
including the files in the cc command line. Like C source tiles, assembly
language source tiles may contain only calls to functions in the DOS
libraries. Furthermore, the source files must follow the C calling conven
tions described in the Macro Assembler User's Guide and fhe Macro
Assembler /reference. The filename of an assembly language source file
must end with the H .s" extension.

When an assembly language source tile is given, ee automatically invokes
masm, the 8086/80286 assembler. The assembler creates an object file fhat
can bellnked with anyofherobjectfile created byee.

You can invoke the assembler directly by using fhe 1llllsm command. The
command creates an object file just as fhe e<: command does, but does not
create an executable file. For a description of fhe command and its
options, see masm(CP) in the XENIXReference.

A.5 CreatingandLinking ObjeetFiles

You can llnk DOS object files previously created by ee or masm by giving
the names of the files in fhe ce command line. The object files must have
been created wifh masm, or wifh ce using the ·dos option. Object files
created without using the -dos option cannot be !inked to DOS programs.
The object filenames must end with the n .o" extension.

When an object file is given, cc automatically invokes dosld (the DOS
linker) which links the given object tiles with the appropriate C libraries. If
there are no errors, dosld creates an executable program file named a. out.

You can use dosld independentlY of cc. The command creates a DOS pro
gram file just as fhe ce command does, but does not accept source files. If it
ls necessary to invoke dosld, invoke the ec command with the -z ftag to see
a correct dosld command line. For a description of the command and its
options, see doiild(CP) in the XENIXReference.

A-4

i

XENIX to DOS: A Cross Development System

Note

DOS programs created bycc and dosld are completely compatible witb
the DOS system and can be executed on any such system. DOS pro
grams cannot b e executed on the XENIX system.

A.6 Running and Debugging a DOS Program

You can debug a DOS program by transferring !be program file to a DOS
system and using the DOS debugger, DEBUG, to load and execute tbe pro
gram. The following section explains how to transfer program files
between systems. For a description of the DEBUG program, see tbe
appropriate DOS guide.

A. 7 Transferring Programs Between Systems

You can transfer programs between XEN1X and DOS systems by using
DOS floppy disks and the XENIX doscp command (see dos (C)). The
doscp command lets you copy files to a DOS floppy disk.

The command hastheform:

dosep -r file. I dev:file.2

where . r is the required "raw" option, file. l is the XEN!Xnarne of the DOS
program file you wish to transfer, dev is the full pathname of a XENIX sys
tem floppy disk drive, andfile.2 is the full DOS pathname of tbe new pro
gram file on the DOS disk. The new filename must have the ".exe" exten
sion. The • roption ensures that the program file is copied.

To transferaXENIXprogramfileto a DOS system, follow these steps:

1. Insert a formatted DOS diskette into a XENIX system floppy disk
drive.

2. Use the doscp command to copy the program file to the disk. For
example, te copy the program filea.out, to a file renamed test.exe on
aDOS disk in floppydrive /dev/fdO, enter:

doscp -r a.out /dev/fdO:/test.exe

3. Remove thefloppydiskfrom the drive.

A-5

C Library Guide

You can now insert the floppy disk into the floppy disk drive of the DOS
system and invoke the program just as you would any other DOS program.

Note

DOS program files that do not end with the .EXE or .COM extension
cannot be loaded for execution under DOS. When transferring pro
gram files from XENIX to DOS, you must make sure you rename a.out
files to an appropriate .EXE or. COM file.

On some XENIX systems, you may be able to create aDOS partition on the
system hard disk and copy DOS program files to this partition instead of to
floppy disks. To execute the program, you must reboot the system, loading
the DOS operating system from the DOS partition.

The file !etcldefaultlmsdcs is an easily configurable file that aliases default
device names used by the dos(C) commands. For eXl!lllple, it now con
tains the llnes:

C�/dev/hdOd
D-1 dev /hdld

Users using the dos(C) utilities can spooify"C:" or"D:" on the command .
Une, referring to the DOS partition on the first or· second hard disk. For a
complete description on using fetcldefaultlmsdos, see the manual page
dos(C) in theXENIXR.lferenceand Chapter 3 "UsingXENIXand DOS On
the Same Disk" in theXENIXlnstallation Guide.

A.S Creating DOS Libraries

You can create a library of your own DOS object files by using the XENIX
ar command. The command copies object lites created by the compiler to
agivenarchivefile. Thecommandhastheform:

ar archive filename ...

where archive is the name of an archive file, and filename is the name of the
DOS object file you wish to add to the library.

A-6

, . ..- --...,
(' "--,,-''

XENIX to DOS: A Cross Development System

Note

DOS libraries created on a XR'\"'X system are not compatible with
libraries created on a DOS system.

A.9 Common Run-Time Routines

The sections below list routines from the DOS C library that are compati-
ble with XENIX and UNIX System V routines. Routines specific to the
DOS environment are also listed.

A.9.l Common Routines

The following is a list of the common routines for DOS and XENIX.

abort* ctime fprintf lsascU modf sscanf _to lower
abs dup fputc lscntrl open* stat* _toupper
access* dop2 fputs Is digit perror strcat umask*
acost ecvt ll:ead* Is graph powt strchr ungetc
as ctlme execl* ll:ee blower printf strcmp unUnk*
asint execle* ll:eopen* Is print putc strcpy utime*
assert execlp* ll:exp lspunct putchar strcspn write*
atant exeev* fscanf lsspace putenv strdup
atan2t execve* fseek* Is upper puts strlen
atof execvp fstat* isxdigit putw strncat
atoi exit fie II* ldexpt qsort strncrnp
atol exp ftlme* localtlme rand strncpy
besselt, tt fabs fwrlte* locking* read* stJ:pbrk
bsearch fclose gcvt logt realloc strrchr
cabs fcvt getc log lOt re"ind strspn
canoe fdopen getcbar longjmp sbrk strtok
cell feof getcwd !seek* scanf swab
chdir* fenor getenv manoc selbuf system*
chmod* ftlush getpid* :lnatherr se!Jmp tant
chslze fgetc gets memccpy signal* tanht
clearerr fgets getw memchr slnt time
close flleno gmtlme memcmp slnht toascii
cost floor hypo! memcpy sprlntf to lower
cosht fmod isalnum memset s qrtt to upper
ere at* fopen* Is alpha mktcmp srand tzset

• Operates differently or has a di1ferentmeaning under DOS than under XENIX.
t Implements UNIX System V·styleerrorreturns.
tt Doesn't correspond to a single function, but to six: functions named jO, j1, jn, yO, yt,
andyn ..

A-7

C library Guide

A.9.1. Common Routines for DOS and UNIX System V

The XENIX-compatible routines listed in the previous section are also
compatible with the routiues by the same names in UNIX System V
environments.

Note that most of the math functions in the DOS library implement error
handling in the same manner as the UNIX System V routiues by the same
name. The math routiues marked with a dagger (t) in the list are common
routiues for DOS and XENIX that implement System V-style error han
dling. See Section A.9.1.

A.9.3 Routines Specific to DOS

The routines listed below are only available in the DOS C library. Program
mers who are wrltiug code to be ported to XENIX systems should avoid
using these routines:

bdos flush aU !sa tty segread strnset
cgets FP_OFF itoa setmode strrev
cprlntf FP.J>EG kbhlt sop en strset
cputs fputchar labs spawn) strupr
cscanf getch ltoa spawnle tell
dosexterr getehe mkdir spawn)p ultoa
eof inp movedata spawnv ungeteh
_exit int86 outp spawnve
fcloseaD int86x putch spawnvp
fgetehar intdos rename strempl
file length intdnsx rmdir strlwr

Section (DOS) in the XE.'<IX Reference contains pages describing these
routines. Refer to this section for more details on specific routiaes.

A-8

XENIX to DOS: A Cross Development System

A. lO Common System-Wide Variables

The sections below list system-wide variables that are used in the DOS C
library, as well as in XENIX and UNIX environments.

These variables are set either by the super-user or the XENIX kernel (with
tbe exception of the environ variable). Although they can be referenced,
tbey cannot be altered.

The variables specific to the DOS environment are also listed.

A.lO.l Common Variables

The following is a list of system-wide variables used in tberun-time library
and available in both the DOS and XENIXenvironments:

dayllght environ
sys_nerr timezone

Note

ermo
tzname

sys_errllst

Not all values of errno avallable on XENIX are used by tbe DOS run
time library.

A.10.1 Common Variables

The XENIX -compatible system-wide variables listed in Section A .10.1 are
also available in UNIX System V environments. There are no additional
common variables for DOS and UNIX System V.

A -9

C Library Guide

A.10.3 Variables SpeclfietuDOS

The following global variables are available only in the DOS C library. Pro
grammers who are writing code to be ported to XENIX systems should
avoid using these variables:

....dosermo

Jmode

_osmajor

_osminor

A.ll Common Include Files

Structure definitions, return value types, and manifest constants used in
the descriptions of some of the common routines, may vary from environ
mentto environment and are therefore fnlly defined in a set of include tiles
for each environment. Include files provided with the DOS C library are

. compauble with include tiles by the same names on XENIX and UNIX sys
tems. Some additional include tiles are compatible with include :files by the
same name in UNIX System V environments.

Sections A .11.1 and A .11.2list the DOS include tiles that are compatible
with XENIX and UNIX System V. The include tiles that apply only to DOS
environments are listed in section A.11.3.

A.ll.l Common Include Files for DOS and XENIX

The following DOS include tiles are compatible with the XENIX (and
UNIX) includefiles bythe samename:

assert.h
ctype.h
errno.h
fcntl.h
math.h

setjmp.h
signal.h
stdio.h
time.h
sys/locfdng.h

A.11.2 Common Include Files

syslstat.h
sysltimeb.h
sysltypes. h

The XENIX-compatible include tiles listed in section A .11.1 are also com
patible with the include tiles by the same names in UNIX System V

A - 10

XENIX to DOS: A Cross Development System

environments. In addition, the names of the following DOS include files
correspond to UNIX System V include files; however, the DOS include
files may not contain all the constants and types defined in the correspond
ingUNIX System V includefiles.

malloc.h
memory.h
��a!f!J,h
string.h

A.11.3 Include Files Specific to DOS

The following include files are used only in DOS environments and do not
have counterparts onXENIXand UNIX systems.

conio.h
direct.h
dos.h

io.h
process.h
share.h

stdlib.h
syslutime.h
v2tov3.h

·� A.12 Differences Between Common Routines

I

Sections A.12.1 through A.12.25 explain how the DOS routines in the
common library for XENIX and DOS differ from their XENIX counter
parts. These descriptions are intended to be used in conjunction with the
more detailed descriptions of DOS and XENIX routines in the XEI\.'IX
Reference.

A.12.1 abort

The DOS version of the abort routine terminates the process by a call to an
exit routine rather than through a signaL Control is returned to the parent
(calling) process with an exit status of 3 and the message:

Abnormal program terralnation

is sent to standard error. No coredump occurs onDOS.

'-.,_. A.12.2 access

The access routine checks the access to a given file. Under DOS, the real
and effective user IDs are non-existent. The permission (access) setting
can be any combination of the following values.

A - 11

C Library Guide

Value

04
02
()()

Meanlng
Read
Write
Check for existence

The "Execute" access mode (Ol) isnot implemented.

In case of error, only the EACCES and ENOENT values may be returned
for enno on DOS.

A.12.3 chdlr

In case of error, only the ENOENT value may be retnmed for en:no on
DOS.

A.l2.4 chmod

The clnnod routine can set the "owner" access permissions for a given file�
but all other permission settings are ignored. The mode argument can be
any one of the constant-expressions shown in the left column below; the
equivalent XENIX value is shown in the right column.

Conslant-Eapression Meaning XE!o."IX Value

SJREAD Read by owner 0400
S.JWRITE Write by owner 0200

SJREAD fS.JWRITE Read and write by owner 0000

The SJREAD and SJWRITE constants are defined in the sys\stat.h
include file. Note thst the OR operator (I) is used to combine these con
stants to form read and write permission.

If write permission is not given, the file is treated as a read -only file. Glviog
write-only permission is allowed, but has no alfect; under DOS, all files are
readable.

In case of error, only the ENOENT value may be retnmed for errno on
DOS.

A - 12

XENIX to DOS: A Cross Development System

A.l2.S creat

The creat routine creates a new tile or prepares an existing file for writing.
If the file is created, the access permissions are set as defined by the mode
argument. Only "owner" permissions are allowed (see cbmod above).

In case of error, only the EACCES , EMFILE, and ENOENTvaluesmaybe
returned for ermo on DOS.

Use of the open routine is preferred over creat when creating or opening
files in both DOS and XENIX environments.

A.12.6 exec

The DOS versions of the execl, execle, execlp> execv, exeeve. and execvp
routines overlay the calling process, as in the XENIX environment. H there
is not enough memory for the new process, the e:x:ec routine will fail and
return to the calling process. Otherwis:et the new process begins execu
tion.

Under DOS, the exec routines do not:
• Use the close-on-exec flag to determine open files for the new

process.
• Disable profiling for the new process (profiling is not available

under DOS).
• Pass on signal settings to the child process. Under DOS, all signals

(including signals set to be ignored) are reset to the default in the
child process.

The combined size of all arguments (including the program name) in an
exec routine under DOS must not exceed 128 bytes.

In case of error, the E2BIG, EACCES, ENOENT, ENOEXEC, and
ENOMEM values may be returned for ermo on DOS. In addition, the
EMFILEvalue may be used; under DOS, the file must be opened to deter
mine whether it is executable.

A.�lZ. 7 fopen, freopen

The DOS versions of the fop en and th!open routines open stream files just
as they do in the XENIX environment. However, under DOS the following
additional values for the type string are available.

A - 13

C Library Guide

Value

t

b

Meaning

Opens the file in text mode. Opening a file in this mode
causes translation of carriage return!linefeed {CR-LF) char
acter combinations into a single linefeed {Ll') on input.
Similarly, on output, linefeeds are translated into CR-LF
combinations.
Opens the file in binary mode. This mode suppresses trans
lation.

Seethe DOS reference pages in the XENIXRe[erence.
Copen and !reopen routines to obtain more information on the default
mode setting.

The DOS and XENIX versions of these routines also differ in their interpre
tation of append mode ("a" or "a+"). When append mode is specified in
the DOS version offopenor freopen, the file pointer is repositioned to the
end of the file before any write operation. Thus, all write operations take
place at the end of the file.

In the XENIX versions, all write operations take place at the current posi
tion of the file pointer. In append mode, the file pointer is initially posi
tioned at the end of the file, but ifthefile pointer is later repositioned, write
operations take place at the new position rather than at the end of the file.

A. lZ.S fread

The DOS tread routine uses the low-level read function to carry out read
operations. If the file has been opened in text mode, read replaces each
CR-LF pair read from the file with a single LF character. The number of
bytes returned is the number of bytes remaining after the the CR-LF pairs
have been replaced. Thus, the return value may not always correspond to
the actual number of bytes read. This is considered normal and has no
implications for detecting the end of the file.

A.lZ.9 fseek

The DOS version of the fseek routine moves the file pointer to the given
position, just as in the XENIX environment. However, for streams opened
in text mode, fseek has limited use because carriage retum-linefeed trans
lations can cause fSeek to produce unexpected results. The only fseek
operations guaranteed to work on streams opened in text mode are: seek
ingwith an offset of zero relative to any of the origin values, or seeking from
the beginningofthe file with an offset value returned from a call to ftell.

A-14

XENIX to DOS: A Cross Development System

A.lZ.lO fstat

DOS does not make as much information available for file handles as it
does for full pafhnames; thus, the DOS version of fstat returns less useful
information than the stat routine. The DOS fstat routine can detect device
files, but it must not be used with directories.

The strncture.retumed by fstat contains the following members . .

Member

st:Jnode

sUno
sLdev

sLrdev

st...nllnk
sL.uid
st...gid
st..size
sLatlme
st:Jntlme
st_�:tlme

Meaning

User read and write bits reflect the file's permission
setting. The SJFCHR bit is set for a device; other
wise, theSJFREG bitis set.
Not used.
Either drive number of the disk containing the file,
or the file handle in the case of a device.
Either drive number of the disk containing the file,
or the file handle in the case of a device.
Always l.
Not used.
Not used.
Size ofthe file in bytes.
Time oflastmodification of file.
Time oflastmodification of file (same as st...atlme).

Time of last modification of file (same as st._atlme
andstJiltlme).

In case of error, onlytheEBADFvalue maybe returned for ermo on DOS.

A.lZ.ll flell

The DOS version of the flell routine gets the current file pointer position,
just as in the XENIX environment. However, for streams opened in text
mode, the value returned by fleU may not reflect the physical byte offset,
aince text mode causes carriage return-linefeed translation. The flell rou
tine .. can be us.ed in conjunction with the fseek routine to remember and
return to file locations correctly.

A.lZ.lZ flime

Unlike the system time on XENIX systems, the DOS system time does not
include the concept of a default time zone. Instead, ftlme uses the value of
an DOS environment variable named TZ to determine the time zone. The
user can set the default time zone by setting the TZ variab le. li TZ is not
explicitly set, the default time zone corresponds to the Pacific Time Zone.

A - 15

C Libnu:y Guide

See the reference page for etlme{S) in the XE:NIX Referenee for details on
the TZ variable.

A.12.13 fwrite

The DOS fwrite routine uses the low-level write function to carry out write
operations. 1f the file was opened in text mode, every linefeed {LF) charac
ter in the output is replaced by a carriage retum-linefeed {CR-LF) pair
before beingwritten. This does not affect the return value.

A. 12.14 getpld

The getpid routine returns a process-unique number. Although the
number may be used to uniquely tdentify the process, it does not have
the same meaning as the process ID returned by getpid in the XENIX
environment�

A.U.lS locking

The DOS and XENIX versions of the locking routine differ in several
respects, as listed below.

1. Under DOS, it is not possible to lock a file only against write access;
locking a region of a file prevents both reading and writing in that
region. This means that setting LK..RLCK in the locking call is
equivalent to setting LK..LOCK, and setting LK...NBRLCK is
equivalent to settingLK...NBLCK.

2. On DOS, specifyingLK..LOCK or LK..RLCK will not cause a pro
gram to wait until the specified region of a file is unlocked. Instead,
up to ten attempts are made to lock the :file {one attempt per
second). 1f the lock is still unsuccessful after 10 seconds, the lock
Ing function retnrns an error value. On XENIX, if the :first attempt at
locking fails, the locking process "sleeps" {suspends execution)
and periodically "wakes" to attempt the lock again. There is no
limit on the number of attempts, and the process can continne
indefinitely.

3. On DOS, locking of overlapping regions of a tile is not allow!"d·

4. On DOS, if more than one region of a tile is locked, only one region
can be unlocked at a thne, and the region must correspond to a
region that was previously locked. You cannot unlock more than
one region at a thne, even if the regions are adjacent.

A - 16

XENIX to DOS: A Cross Development System

A.l2.16 !seek

In case of error, only the EBADF and EINV AL values may be returned for
ermo on DOS.

A.12.17 open

The open routine opens·� IDe batldle for a named .tile, just as in the XENIX
environment. However, two additional ofiag values (OJIINARY and
O..TEXT) are available and the O_NDELAY and 0_8YNCW values are
not available.

The O...BJNARY fiag causes the file to be opened in binary mode, regard
less of the default mode setting. Similarly, the O_TEXT fiag causes theiile
to be opened in text mode.

In case of error, only the EACCES, EEXIST, EMFILE, and ENOENT
values maybe used for ermo on DOS .

A.12.18 read

The DOS version of the read ro11tine reads characters from the file given by
a file handle, just as in the XENIX environment. However, if the file has
been opened in text mode, read replaces each CR-LFpair read from the file
with a single LF character. The number of bytes returned is the number of
bytes remaining after the the CR-LF pairs have been replaced. Thus, the
return value may not always correspond with the actual number of bytes
read. This is considered normal and bas no implications for detecting an
end-of-filecondition.

In case of error, only theEBADFvaluemaybe used forermo on DOS.

A.12.19 signal

The DOS version of the signal routine can only handle the SIGJNT signal.
In DOS, SIGINTis defined tobe iNT23H (the CONTROL-C signal).

On DOS, child processes executed through the mcec or spawn routines do
not inherit the signal settings of the parent process. All signal settings
(iocluding signals set to be ignored) are reset to the default settings in the
child process.

The DOS version of signal uses only the EJNV AL forermo.

A 17

C Llbra:ry Guide

A.11.20 stat

The stat routine returns a structure defining the current status of the given
file or directory. The structure members returned by stat have the follow
ing names and meanings on DOS.

Value

st.mode

sUno
s Ldev
sLmev
st...nllnk
st...nid
sLgld
sLslze
s Lafune
st.mfune
sLCfune

Meaning

User read and write bits reflect the file's permission
setting. The SJ]1DIR bit is set for a device; other
wise, theSJFREGbitisset.
Not used.
Drive number ofthe disk containing the file.
Drive number of the disk containing the file.
Always l.
Not used.
Not used.
Size of !he file in bytes.
Time oflastmodification of file.
Time of!ast modification of file (sameass Lafune).
Time of last modification of file (same as sLatime
andst.mtime).

fu case of error, only the ENOENT value may be retumed for ermo on
DOS.

A.12.21 system

The sys�m routine passes the given string to the operating system for exe
cution. For DOS to execute this string, the full pathname of the directory
containing COMMAND.COM must be assigned to the COMSPEC or
PATH environment variable. The system call returns an error if
COMMAND.COM cannotbe found using these variables.

fu case of error, only the EZBIG, ENOENT, ENOEXEC and ENOMEM
values maybe returned for.enno onDOS.

A.12.22 wnask

The umask routine cart set a mask for "owner" read and write access per
missions only. All other permissions are ignored. (See the discussion of
the access routine above for details.)

A - 18

�··

XENIX to DOS: A Cross Development System

A.lZ.23 unlink

The DOS version of the unlink routine always deletes the given file. Since
DOS does not implement mulliple "links" to the same file, unlinking a file
is the same as deleting it.

In case of error, only the EACCES and ENOENT values may be returned
for enno on DOS.

A.l2.24 ufune

The DOS ufune routine sets the file modification time only; DOS does not
maintain a separate access time.

In case of error, the EACCES and ENOENT values may be returned for
ermo on DOS. In addition, the EMFILE value may be used; under DOS,
the file must be opened to set the modification time.

A.12.25 write

The write routine writes a specified number of characters to the file named
by the given file handle, just as in the XENIX environment. However, if the
file has been opened in text mode, every linefeed (LF) character in the out
putis replaced by a carriage retum-linefeed (CR-LF) pair before beingwrit
ten. This does not affect ! he return value.

In case of error, only the EBADF and ENOS PC values maybe returned for
errno on DOS.

A.13 Differences In Defmitions

Many of the special delinitions given in intro(S) in the XENIXReference do
not apply to the common routines when used in the DOS environment.
The following is a list of the differences.

The proce.<r ID is still a unique integer, but does not have the same meaning
as in the XENIXenvironment.

The parent process, process group, tty group, real user, real group, effective
user and effective group IDs are not used by the common routines when run
under DOS. Furthermore, there is no super-u.ser or special processes in the
DOS environment.

A-19

C Library Guide

The filenames in DOS have two parts; a filename and a filename extension.
Filenames may be any combination of up to eight letters or digits.
Filename extensions may be any combinati(lll of up to three letters or
digits, preceded by a period (.).

The pathnam£S in DOS may be any combination of directory names
separated by a backslash (\). The slash (/) u.sedintbeXENIXenvironment
is not allowed unless the user has redefined tbe lesdingcharacterused witb
options in DOS command lines (this character is iuitiallythe slash). Direc
torynames may be any combination of up to eight letters or digits. The spe
cial names H .H and " .. " refer to the current directory and the parent direc
tory, respectively.

The drive names may be used at tbe begin of a patbname to specify a
specific disk drive or device. Drives names are generally a letter or combi
nation of letters and digits fo!lowedbya colon (:).

The access permissions in DOS are restricted to read and write bytbe owner
of the file. Since all users own all files in DOS, access permissions do little
more tban define whether or not tbe file is a read-only file or can be
modified. Execution permission and other permissions defined for files in
tbe XENlX environment do not apply the files in tbe DOS environment.

A-20

..

Appendix B

System Error Values

B.l Jntroduction B-1

B.2 errno Values B-1

B.3 Math errors B-6

System Error Values

B.l lntroduction

This appendix lists and descnbes the values to which theermo variable can
he set when an error occurs in a call to a hbrary routine. Note that only
some routines set the ermo variable. The reference pages for the routines
that set errno upon error explicitly mention the ermo variable (see the
XENIXReference).

This mention' will be found in the Return Value section of the reference
page. If no mention of ermo occurs, the routine does not set a value.

An error message is associated with each errno value. This message, along
with a user-supplied message, can be printed by using the perrorfunction.

The value of errno reflects the error value for the last cal! that set ermo.
This value is not automatically cleared by later successful calls. Thus, you
should test for errors and print errormesages immediately after a function
call to obtain accurate results.

The include file, err110.h, contains the definitions of theermo values.

B.2 errno Values

The following list shows the ermo values used in the XENIX environment,
the system error message corresponding to each value, and a brief descrip
tiop. of the circumstances that cause each error.

Value

1 EPERM

2 ENOENT

3 ESRCH

Message

Not owner.

Description

Indicates an attempt to modify a
file when the user is not the owner
or the super-user. This message is
also returned for attempts to do
things only allowed to a super
user.

No such file or direc- Occurs when a specified file does
tory. not exist, or when a directory

specified in a pathname does not
exist.

No such process. The process specified by pid in kill
or ptrace cannot be found.

B-1

C Library Guide

4 EINTR

5 EIO

6 ENXIO

7 E2BIG

8 ENOEXEC

9 EBADF

10 ECHILD

ll EAGAIN

B-2

Interrupted system An asynchronous signal (which
call. the user has elected to catch)

occurred during a system call. If
execution is resumed after pro
cessing the signal, it will appear as
if the interrupted system call
retoroed this error condition.

JJ 0 error. A physical II 0 error. May occur
on a call following the one to
which it actoally applies.

No such device or JJ 0 on a special file refers to a
address. subdevice which doesn't exist, or

beyond the limits of the device. It
may also occur when, for exam
ple, a tape drive is not on-line or
no disk pack is loaded on a drive.

Arg. list too long. An argnment list longer than 5,120
bytes is presented to a member of
the exec family.

Exec format error. A request has been made to exe-
cute a Jlle with valid permissions
but without a valid magic number
(see a. out (F)).

BadJllenumber. Either a file descriptor refers to no
open file, or a read request was
made to a write-only file (or vice
versa).

No child processes. A wait was executed by a process
which had un-waited-for child
processes.

No more processes. A fork failed because the process
table is full, or the user has the
maximum number of processes.

12 ENOMEM Not enough space.

13 EA CCES Permission denied.

14 EFAULT Bad address.

15 ENOTBLK Block device
required.

16 EBUSY Device busy.

17 EEXIST File exists.

18 EXDEV Cross-device link.

19 ENODEV No suehdevice.

20 ENOTDIR Nota directory.

21 EISDIR Is a directory.

System Error Values

During an exec or sbrk; a request
is made for more space titan is
available. Space available is a sys
tem parameter. The errormayalso
occur if the arrangement of text,
data and stack segments requires
too many registers, or if there is
not enough swap space during a
fork.

· ·

Attempt to access a file in a way
denied by the protection system.

The system encountered a
hardware fault while attempting to
use an argument from a system
call.

A non-block file was specified
where a block device was
required, e.g., mount.

An attempt was made to mount a
device that was already mounted
or an attempt was made to
dismount a device on which there
was an active file (open file,
current directory, mounted-on
file, active text segment). It will
also occur if an altern pt is made to
enable accounting when it is
already enabled.

An existing file was specified in an
inappropriate context, e.g., link.

A link to a file on another device
was attempted.

An attempt was made to apply an
inappropriate system call to a dev
ice, e.g., a write-only device.

A non-directory was specified
where a directory was required
(e.g., in a path prefix or as an argu
mentto chdir (S)).

A nattempttowriteon a directory.

B-3

C Library Guide

22 EINVAL

23 ENFlLE

24 EMFJLE

Invalid argument. An invalid argument (i.e. men
tioning an undefined signal to sig·
nal) was passed to a routine. Also
set by the math functions
described in the (S) section of the
XENIXReference.

File table overflow. The system's table of open files is
full, and (temporarily) no more
opens can be be accepted.

Too many open files. No process may have more than 60
file descriptors open at a time.

25 ENOTTY Not a typewriter. Not a typewriter.

26 ETXTBSY Text file busy. An attempt to execute a pure
procedure program which is
currently open for writing (or
reading). Also, an attempt to open
a pure-procedure program that is
beingexecutedforwriting.

27 EFBIG File too large. The size of a file exceeded the
maximum file size (1,082,201,088
bytes) orULIMIT; seeullrnlt (S).

28 ENOSPC

29 E..<;PIPE

30 EROFS

31 EMLINK

32 EPIPE

B-4

No space left on dev- During a write to an ordinary file,
ice. there is no free space left on the

device.

illegal seek. An !seek was issued to a pipe.

Read-only file sys- An attempt to modify a file or
tern. directory was made on a device

mounted read-only.

Toomanylinks. An attempt was made to make
more than the maximum number
oflinks (lOOO) to a file.

Broken pipe. A write on a pipe for which there is
no process to read the data. This
condition normally generates a sig
nal; the error is returned if the sig
nal is ignored.

33 EDOM Math arg out of
domain offunc.

34 ERANGE Math result not
representab1e.

35 EUCLEAN File system . needs
cleaning.

36 EDEADLK Would deadlock.

37 ENOTNAM Not a name file.

38 ENA VAIL Not available.

39 EISNAM A name file.

System Error Values

The argument of a function in the
math package is out of the domain
ofthe function .

The value of a function in the math
package is not represental-le
within machine precision.

An . attempt was made to
mount (S) a file system whose
super-block is not flagged clean.

A process' attempt to lock a file
region would cause a deadlock
between processes vying for con
trol of that region. Also, some
times shown as EDEADLOCK.

A creatsem (S), opensem (S),
waits em (S), sigsem (S), was
issued using an invalid semaphore
identifier.

An opensem (S), waits em (S), or
sigsem (S) was issued to a sema
phore that has not been initialized
by a call to creatsem (S). A sig
sem was issued to a semaphore out
of sequence (i.e., before the pro
cess has issued the corresponding
waltsem to the semaphore). An
nbwaltsem (S) was issued to a
semaphore guarding a resource
that is currently in use by another
process. The semaphore on which
a process was waiting has been left
in an inconsistent state when the
process controlling the semaphore
exits without relinquishing control
properly (i.e., without using a
waitsem on the semaphore).

A name file (semaphore, shared
data, etc.) was specified when not
expected.

B-5

C Library Guide

B.3 Math emll'S

The functions m the math hbrary (the mclude file math. h) will either set
enno to ERANGE or to EDOM (depending on which function is called).
Errno will be set if the calculation to be performed is inappropriate or
would result in an overflow.

The followmgis a list of the math library functions, and the values that they
return:

Function Value

exp,pow ERANGE

pow EDOM

log,loglO EDOM

sqrt EDOM

hypot, cahs

sinh, cosht tanh

B-6

Description

Set ouly for extremely huge argu
ments. A huge value is returned m
overflow conditions.

Returns a huge negative value
whenxisnon-positive andy is not
an integer, or when x, y are both
zero.

Returns a huge negative value
when the argument given is non
positive.

Returns 0 when argument is nega
tive.

Both return:

sqrt(x*x+ y*y)

Overflows are precluded.

Both smh and cosh will return a
huge value of appropriate sign
when the correct value would
overflow.

Index

A

a641
numeric conversion 2�9

abort
differences from XENIX version A-11
nll.scellaneous 2�18 _

abs
math2-7

access
differences from XEN1X version A-ll
file handling 2-5

acct
system accounting 2-17

acos
math 2-7

addch
cursor routines 2-3

addch function 5� 11
addstr

cursor routines 2-3
function 5-12

alarm
process control 2-10

argc,argu:ment count variaWe
defining 4-2
descrihad 4-2

argv ,argument value array
defining 4-2

"

described 4-2
asctime

time control 2-18
asin

math 2-7
assert

miscellaneous 2-18
atan

math 2-7
atan2

math 2->7
atoi

numeric conversion 2-9
atoi .

numeric conversion 2-9
atol

numeric conversion 2-9

B

bessel
math 2-7

box
cursor routines 2-3
function 5-31

b,k
process contro1 2-10

brkctl
function 9-6
process control Z-10

"bsearch
search 2-12

BSIZE, buffer size value 4-1
Buffer manipulation

include file 2-1
memccpy 2-1
memchr 2-l
memcmp 2-l
memcpy Z-1
memse1 2-1

Buffered l/0
character pointer 4-31
creating 4-23
descnbed 4-22
flushing a buffer 4-25
returning a character 4-24

B:ytes
reading from a file 4-27
reading from a pipe B-4
writing to a :file 4-28
writing to a pipe 8-4

c
cabs

math 2-7
calloc

function 9-2
memoty allocation 2-8, 2-9

CBREAK mode 5-36
ceil

math 2-7
Character classification and

conversion
include files 2-2
isalnum 2-2
isgraph 2-2
islower 2-2
isprint 2-2
ispunct 2-2

Index

Character classification and (continued)
isspace 2-2
isupper 2-2
isxdigit 2-2
toasdi 2-2
tolower 2-2
toupper 2-2

Character conversion
see Character classification

and conversion
Character functions. described 6-1
Character pointer

descn'bed 4-32
moving 4-32, 4-33
moving to start 4-33
reporting position 4-34

Characters
alphabetic 6-3
alphanumeric 6-2
ASCII 6-1
control 6-3
converting to

ASCII 6-2
lowercase 6-6
uppercase 6-6

d..,imal digits 6-4
he:<adechnal digit 6-4
lowercase 6-5
printable 6-4, 6-5
proc:essing, described 6-1
punctuation 6-5
reading from

a file 4-13
standard input 4-4

uppercase 6-5
writing to

a !lle 4-16
standard output 4-7

chdir
differences from XENIX version A -12
file handling 2-5

Child process, described 7-6
chmod

differences from XENlX version A-12
Jile handling 2-5

chown
file hmdling 2-5

chroot
file handling 2-5

cbsize
file bandling 2-5

clear
cmsor routines 2-3
function 5-17

clearerr
stream control 2-14

clearok
cursor routines 2-3
function 5-33

I-2

close
Jile handling 2-5
function 4-28

closedir routine 2�5
elrtobot

cursor routines 2-3
function 5-17

clrtoeol
cursor routines 2-3
funcdon 5-17

Command line
arguments, storage order 4-2
descn"bed 4-2

Common library
include files A-10
listing of common routines A-7, A-8
run-time routines

differences A-11
system-wide variables A-9

Compatibility
differences listed A-11
include files A-10
run�time routines A-7
system-wide va.riables A-9

cos
math 2-7

cosh
math 2-7

creat
differences from XBNIX

version A-13
Jile handling 2-5

creatsem
function 9-11
semaphore control Z..13

cn:node
cnrsot routines 2-3
function 5-35

Cross development system
assembly 1a.nguage source files

A-4
compiling a DOS source file A-2
creating a DOS program A-5
creating an DOS library A -6
creating object files A-4
creating source tiles A -1
-dos option A-1
dosld commands A-1
elements of A-1
from XENlX to DOS A-5
linldng object l!les A -4
running a DOS program A-5
DOS-specifi.c routines A .g
transfer of Jiles A -1
transferring programs A-5

ctennid
miscellaneous 2-18

ctime
time control 2-18

ctype.b 2-2
ctype.h file 6-1
curses.b :file 5-3
Cursor routines

addcb 2-3
addstr 2�3
box 2-3
clear 2-3
clearok 2·3
clrtobot 2-3
clrtoeol.2-3
crmode 2-3
delch 2-3
delwin 2-3
echo 2-3
erase 2-3
getch 2-3
getstr 2-3
gettmode 2-3
getyx 2-3
inch 2-3
insertln 2·3
leaveok 2-3
longname 2-3
move :2-3
mvaddch 2-3
mvaddstr 2-3
mvcur 2-3
mvdelch 2-3
mvgetcb 2-3
mvgetstr 2-3
mvinch 2-3
mvinsch 2-3
mvwaddch 2-3
mvwaddstr 2-3
mvwdelch 2-3
mvv.'getch 2-3
mvwgetstr 2-3
mvwin 2-3
mvwinch 2-3
mvwinsch 2-3
*newwin 2-3
nl 2-3
nocrmode 2-3
noecho 2-3
non1 2-3
noraw 2-3
overlay 2-3
overwrite 2-3
printw 2-3
raw 2-3
refresh 2-3
restty 2-3
savetty 2-3
scanw 2-3
scroll 2-3
scrollok 2-3
scttenn 2-3
standend 2-3

Cursor routines (�C{i)
standout 2-3
*subwin 2-3
toucbWin 2-3
unctrl 2-3
waddch 2-3
waddstr 2-3
wclear 2-3
wclrtobot 2-3
wclrtoeol 2-3
wdelch 2�3
wdeleteln 2-3
werase 2-3
wgetch 2-3
wgetstr 2-3
winch 2-3
winsch 2-3
wiosertln 2-3
wmove 2-3
wprintw 2-3
wrefresh 2-3
wscanw 2-3
wstandend 2-3
wstandout 2-3

cuserid
system accounting 2-17

D

Database manipulation
dhrnlnlt 2-5
delete 2-5
fetch 2-5
fustkey 2-5
nextkey 2-5
store 2-5

dbminit
database manipulation 2-5

Debugging� restrictions 4-2
defopen

miscelliUleous 2-18
defread

miscellaneous 2-18
delch

-cursor routines 2-3
function 5-16

delete
database manipulation 2-5

deleteln function 5-17
delwin

cursor routines 2-3
function 5-30

dial�undial
miscellaneous 2-18

Index

l-3

Index

Directory-operations routines
closedir 2-5
descrl_!Jtions 2-5
opendtr 2-5
readdir 2-5
rewlnddir 2-5
seekdir 2-5
telldir 2-5

DOS include files
assert.h 3-17
conio.h 3-17
ctype.h 3-17
direct.h 3-17
dos.h 3-17
errno.h 3-18
fcutl.h 3-18
io.h 3-18
malloc.h 3-18
mathJl 3-18
memory.h 3-18
process.h 3-18
register.h 3-18
search.h 3-19
setjmp.h 3-19
slw"e.h 3-19
lllgnal.h 3-19
spawn.h 3-19
stdlo.h 3-19
stdhb.h3-19
strlog.h 3-19
time.h3-20
v2tov:l.h 3-20

DOS sy>tem include files
locking.h 3-20
stat.h 3-20
tlmeb.h 3-20
types.h 3-20
utime.h 3-21

drand48 routine 2-12
dup function 8-6
dup,dup2

file handling 2-5

E

echo
cursor routines 2-3
function 5-35

ECHO mode 5-36, 5-9
ocvt

numeric conversion 2-9
endgrent

group file control 2-7
password file control 2� 7

I-4

End-of-file
testing 4-19
value, EOF 4-1

endpwent
group file control 2-7
pass'IVord file control 2-7

endutent
system accounting 2-17

endwin t'unction 5-10
EOF, end-of-file value 4-1
erand48 routine 2-12
erase

cursor routines 2-3
furu:tinn 5-17

erf
math 2-8

erfc
math 2�8

errno values B-1
error values

math B-6, B-1
Errors

testing files 4-19
/etc/termcap Ji!e 5-1
exec family

differences frrun XENIX version
A-13

execl
differences from X.ENIX version

A-13
function 7-3
process control 2-10

execle
differences from XENIX version

A-13
process control 2-10

execlp
differences from XENIX version

A-13
process control 2-10

exeev
differences from XENIX version

A-13
function 7-4
process control 2-10

ex:ecve
differences from XENIX version

A-13
process control 2-10

execvp
differences from XEN1X version

A-13
exit

function 7-2
process control 2-10

exp
math 2-7

(

F

fal:>s
math 2-7

fclose
function 4-20
stream control 2-14

fcntl
file handling 2�5

fcvt
nuineric conversion 2-9

fdopen
stre.am contro1 2-14

reef
function 4-19
stream control 2-14

ferror
function 4-19
stream c:ontrol 2-14

fet.ch
database manipulation 2-5

:mush
function 4-25
stream contro1 2-14

fgetc
function 4 -13
stream control 2-14

fllets
function 4�14
stream control 2-14

File descriptors
creating 4-26
described 4·26
freeing 4-28
pipes 8-1
predefined 4-26

FILE, file pointer type 4-1
File handling

access 2-5
chdir 2-5
chmod 2-5
chown 2-5
chroot 2-S
ebsize 2-5
close 2-5
creat 2-5
dup,dup2 2:...5
fcnt1 2-5
fstat 2-5
getcwd 2-5
ioctl 2-5
link 2-5
lockf 2-5
1ocking 2-5
mknod 2-5
mount 2-5
op_en 2-5
pipe 2-5

Index

File handling (continued)
l'itat 2-5
umask 2-5
umount 2-5
unUnk 2r5
ustat 2-5
utime 2�5

File pointers
creating 4 -12
defining 4-12
described 4�11
file descriptors '4-26 ·
FILE type 4-11
freeing 4-20
NULL value 4-11
pipes 8-1
predefined 4-12
recreating 4-23

fileno
stream control 2�14

Files
buffers 4-22f 4-23� 4w24� 4-25
closing

low-level access 4-28, 4-20
inherited by processes 7-7
locking 9-7
opening

for low-level access 4-26, 4-12
random access 4-31
reading

bytes 4-27
characters 4-13
formatted data 4-15
records 4-14
strings 4-14

reopening 4-23
testing

end-of-file conilition 4-19
for errors 4-19

writing
bvtes 4-28
characters 4-16
formatted output 4-17
records 4-18
strings 4-17

first key
da.tabase manipulation 2-5

!list
miscellaneous 2-18

floor
math 2-7

fmod
math 2-7

fop en
differences from XENIX version

A-13
function 4-12
stream contro1 2-14

I-5

Index

fori<
function 7-6
process control 2-10

Formatted input
reading from

a file 4-15
a pipe 8-2
standard input 4-5

Fotmatted output
writing to

a file 4-17
a pipe 8-2
standard output 4-8

fprintf
function 4-17
stream control 2-14

fputc
function 4-16
.stream control 2-14

fputs
function 4-17
stream contro1 2-14

fread
difi'erences from XENIX version

A-14
stream contro12-14

tread function 4-14
free

function 9-4
memory allocation 2-8, 2-9

freopen
differences from XENIX version

A-13
function 4-23
stream contrnl 2-14

frexp
math 2-7

fscanf
function 4-15
stream control 2-14

fseek
differences from XRNIX version

A-14
function 4-33
stream contro1 2-14

fstat
differences from XENIX version

A-lS
file handling 2-5

!tell
differences from XBNJ.X version

A-lS
function 4-34
stream control 2-14

ftime
differences from XENIX version

A-lS
time control 2-18

I-6

ftok
shared memocy 2-13

ftw routine 2-12
!write

differences from XENIX version
A-16

function 4-18
stream control 2-14

G

gamma
math 2-7

gc;1
numeric conversion 2-9

getc
function 4-13

getc,getcba.r
stream control 2�14

getch
cursor roulines 2-3
function 5-13

getchar function 4-4
getcwd

file handling 2-5
getenv

miscellaneous 2-18
getgrent

group file control 2� 7
password file control 2-7

getgrld
group :file control 2-7
password file control 2-7

getgrnam
group :file oontrol 2-7
password file control 2-7

gellogin
system accounting 2-17

get opt
miscellaneous: 2-18

getpass
group file control 2-7
password .file control -2� 7

getpgrp
process contro1 2-10

getpid
differences from XBNIX version

A-16
process contro1 2-10

getppid
process control 2-10

getpw
group file control 2-7
password file control 2-7

getpwent
group file cantro1 2-7
password file control 2-7

(

getpwnam
group file eontrol 2-7
passvtord file control 2-7

getpwuld
group file control 2-7
password file control 2·-7

gets
function 4-5
stream contro1 2-14

getstr
cursor routines 2-3
function 5-13

gettmode
cursor routines 2-3
function 5-38

getlrid
system accounting 2-17

getuline
system accounting 2-17

getutent
system accounting 2-17

getw
stream control2-14

getyx
cursor routines 2-3
function 5-33

gmtinle
time oontrol 2-18

Group file control
endgrent 2-7
endpwent 2-7
getgrent 2-7
getgrid 2-7
getgrnam 2-7
getpass 2-7
getpw 2-7
getpwent 2-7
getpwnam 2-7
getpwuld 2-7
putpwent 2-7
setgrent 2-7
setpwent 2-7

gsignal
process control 2-10

H

hcreate routine 2�12
hdestroy routine 2-12
Ii ead er files

see also Include IDes
ctype.h 2·2
malloc.h 2-8
math.h 2-7
mem.ory.h 2�1
tlmeb.b 2-18
times.h 2-12

hsearch routine 2-12
hypo!

math 2-7

I

inch
cursor routines 2-3
Junction 5-29

Includ-e fites -
a.out.h 3-1
ar.h 3-1
a.ssert.h 3-1
character classification

and conversion 2-2
core.h 3-2
ctype.h 3-2
curses.h 3-2
dbm.h 3-2
dial.h 3-2
dumprestor .h 3-3
ermo.h 3-3
execargs.h 3-3
fc..ntl.b 3-3

Index

for buffer manipulation routines 2-1
ftw.b 3-3
grp.h 3-3
in common library A-10
lockcmn.h 3-3
ma.cros .h 3-4
malloc.h 3-4
math.h 3-4
memory.h 3-5
mnttab.b 3-5
mon.h 3�5
pwd.h 3-5
regexp.h 3-5
sd.h 3-5
searcb.h 3-6
setjmp.h 3-6
sgny.h 3-6
signal.h 3-6
stand.h 3-7
stdio.h 3-7
string.h 3-7
tennio.h 3-1
time.b 3-7
unlstd.h 3-7
ustat.h 3-S
utmp.h 3-S
values.h 3-8
varagrgs,h 3-8

inits<:r fUnction 5-8
insch function 5-15
insertln

cursor routines 2-3
function 5-16

I-7

Indn

Inter-process communications
message queues 9-31

Joctl
tile handling 2-5

lsalnum
chamcter classification aud

conversion 2-2
function 6-2

isapiha function 6-3
isascil function 6-1
lscntrl function 6-3
isdlgit

character classification and
conversion 2-2. 6--4

isgraph
character classification and

conversion 2-2
islower

charactec classification and
conversion 2-2. 6-5

isprlnt
character classification and

converSion 2-2, 6-4
isptmct

clla.racter classification and
conversion 2-2� 6-5

isspace
chamcter classificatian and

conversion 2-2, 6-5
isupper

character cl8$sillcation and
conversion 2-2� 6-5

isxdigit
character classification and

conversion 2-2
lsxdigit function 6-4

JKL

jrand4& routine 2-12
kill

process control 2-10
l3tol

numeric conversion 2-9
!64a

numeric conversion 2-9
lcong4& routine 2-12
*I delete

search 2-12
ldexp

math 2-7
leaveok

cW'SOr routines 2-3
function 5-33

*!find
search 2-12

I-8

libcurses.a
screen processing hbraty 5-3

Ubtermcap.a
terminal library 5-3

libterrnllb.a
tern:Unal li!rrnry 5-3

link
file handling 2-5

localtime
time oontrol 2-18

lock
process coutrol 2-10

1ockf
llle handling 2-5

locking
differences from XENIX version

A-16
file handling 2-5
fWlCtion 9-9

Locldng Iiles
described 9-7
preparation 9-8
sys/loclting.h file 9-8
sys/types.h Jlle 9-8

log
math 2-7

logname
nUsceUaneous 2-18

longjmp
mlsceUaneous 2-18

longname
cursor routines 2-3
fUnction 5-39

Low-level functions
accessing files 4-25
descn'bed 4-25
Jlle descriptors 4-26
random access 4-31

lrand48 routine 2-12
._!search

search 2-12
!seek

differences from XENIX version
A-17

ftmction 4-32
reading a file 2-12
writing a :file 2-12

ltol3
numeric conversion 2-9

M

Macros, special I/0 functions 4-2
mallinfo

function 9-6
memory allocation 2-8

malloc
function 9-2
memory allocation 2�8, 2�9

mall opt
function 9-6
memory allocation 2-8

Math
abs 2-7
acos 2-7
asin 2-7
atan 2-7
atan2 2-7
besse1 2-7
cabs 2-7
cei1 2-7
cos 2�7
cosh 2-7
erf2-8
erfc 2-8
exp 2-7
fabs 2-7
floor 2-7
fmod 2-7
frexp 2-7
gamma 2-7
hypo! 2-7
ldexp 2-7
log 2-7
matherr 2-8
modf2-7
pow 2-7
rand,srand 2-7
sin 2-7
s1nb.2-7
sqrt 2-7
tanh 2-7

math error values B·6
math retum values B-6
math err

math 2-8
memccpy

buffer manipulation routines 2-1
menrehr

buffer manipulation routines 2� 1
memcmp

bufier manipulation routines 2-1
memepy __ _ _ _

buffer manipulation routines 2-1
Memory

accessing far segments 9-6
allocating arrays 9-2
allocating dynamically 9-1
allocating variables 9-2
freeing allocated space 9-4
information on memory allocation

9-6
optimizing merg:ory al1ocation 9-6
quick memory allocatiOn 9-4
reallocating 9-3

Index

Memory (conlinued)
tuning memory allocation 9-4

Memory allocation
calloc 2-8, 2-9
free 2-8, 2-9
functions; described 9-1
mallinfo 2-8
malloc 2-8 .. 2-9
mallopt 2-8
realJoc 2-8, 2-9

memory.h_2-_1
memset

buffer manipulation routines 2-1
Message queue functions, described

9-31
Message queues

inter-process communications
9-31

:Miscellaneous
abort 2-18
assert 2-18
ctermid 2·18
defopen 2-18
defreod 2-18
dial,undial 2-18
llist 2-18
getenv 2-18
getopt 2-18
logname 2-18
longjmp 2-18
mktemp 2-18
nllst 2-18
perror 2-18
putenv 2-19
regcmp 2-18
regex 2-18
setgid 2-18
setjmp 2-18
setuid 2-18
shutdn 2-18
swab 2-18
�nc 2-18
t>ystem 2-18
tmpfile 2-18
tmpname 2-18
ttyname,isatty 2� 18
uname 2-18
x!ist 2-1s

mknod
file handling 2-5

mktemp
miscellaneous 2-18

modf
matb 2-7

monitor
process contro1 2-10

mount
file handling 2-5

l-9

Index

move
cursor routines 2-3
fonction 5-15

mrand48 routine 2-12
mvaddch

cursor routines 2-3
mvaddstr

cursor routines 2-3
mvcur

cursor routines 2-3
function 5-37

mvdelch
cursor routines 2-3

mvgetch
cursor routines 2-3

mvgetstr
cursor routines 2-3

mvinch
cursor routines 2-3

mvinsch
cursor routines 2-3

mvwaddch
· cu.rsor routin.es 2-3

mvwaddstr
cursor routines 2-3

mvwdelch
cursor routines 2-3

mvwgetch
cursor routines 2-3

mvwgetstr
cursor routines 2-3

mvwin
cursor routines 2-3
function 5-29

mvwinch
cursor routines 2-3

mvwinsch
cltr30r routines 2-3

N

nap
process con1rol 2-10

nbwaitsem
function 9-14
semaphore conttol 2-13

NEWLINE mode 5-36
"newwin

cursor routines 2-3
newwin. function 5-19
nextkey

database manipulation 2-5
nice

process control 2-10
nl

cursor routines 2-3
function 5-35

I-10

nlist
miscellaneous 2-18

noermode
cursor routines 2-3
function 5-36

noecho
cursor routines 2-3
function 5-36

non!
cursor routines 2-3
function 5-36

noraw
cursor routines 2-3
function 5-36

Notational convention.s 1-2
nrand48 routine 2�12
NULL, nnll pointer value 4-1
Numeric conversion

a641 2-9
atof 2-9
atoi 2-9
atol 2-9
ecvt 2-9
fcvt 2-9
gcvt 2-9
13tol 2-9
164a 2-9
ltol3 2-9

Numeric-conversion routines
sgetl 2-10
sputl 2-10
strtod 2-10
strtol 2-10

0
open

differences from. XBNIX version
A-17

file handling 2-5
furu;tion 4-26

opendir routine 2-5
opensem

function 9-12
semaphore control2-13

overlay
cursor routines 2-3
function 5-Z7

overwrite
cursor routines 2-3
feuctlon 5-28

/
i "-/

p

Parent process, described 7-6
Password file control

endgrent 2-7
endpwent 2-7
getgrent 2-7
getgrid 2-7
getgmam 2-7

-getpass 2-7
getpw 2-7
getpwent 2-7
getpwnam 2-1
getpwuid Z.. 7
putpwent 2-7
setg.rent 2-7
setpwent 2-7

pause
process control 2-10

pclO{)"e
fW1ction 8M3
stream contro1 2-14

perror
miscellaneous 2-18

pipe
file handling 2-5
function 8-3� 8-8

Pipes
closing 8-3
clo$ing low-leve1 access 8-5
descn"bed 8-1
t;.le

descriptor 8-3
descriptors 8-1
pointer 8-1
pointers 8-1

low-level between processes 8-6
named pipes 8-8
opening for low-level access 8-3
opeoing to a new process 8-1
process ID 8-1
reading bytes 8-4
reading from 8-2
shell pipe symbol Il-l
writing bytes 8-4
writing to 8-2

pop en
function 8-1
stream control 2--14

Portability see Compatibility.
pow

math 2-7
prinlf

function 4-8
stream contro1 2-14

printw
cursor routines 2M3

printw function 5-12

Index

Process
termination status 7-2

Process 2-11
Process control

alarm 2-10
brk 2-10
execl 2-10
execle 2-10
execlp 2-10
execv 2-10
�ecve_2-10
exit- z.=io .
fork 2-10
getpgrp 2-10
getpid 2-10
getppid 2-10
gsignal 2-10
kill 2-10
lock 2- 10
monitor 2-10
nap 2-10
nice 2-10
pause 2-10
profil 2-10
ptrace 2-10
rdchk 2-10
sbrk 2-10
setpgrp 2-10
signal 2-10
sleep 2-10
ssignal 2-10
times 2-10
ulimit 2-10
wait 2-10

Process control functions:, descnl>ed
7-1

Process ID
descnbed 7-1

Processes
calling a system program 7-1
child 7-6
communication by pipe 8-1
descn1>ed 7 �1
lD 7-1
multiple copies 7-6
overlaying 7-3
parent 7-{}
spfitting 7-6
terminating 7-2
termination status 7-7
wtder shell control 7-5
waiting 7-7

proctl
process 2-11

profil
process control 2-10

Programs� invoking 4-2
ptrace

process contro1 2-10

I-11

Index

pule
function 4-16

putchar function 4-7
putc�putchar

stream control 2-14
putenv

miscellaneous 2-19
putpwent

group file control 2-7
password ille control 2-7

puts
function 4-7
stream c:ontro1 2-14

putuline
system accounting 2-17

putw
stream cont:ro1 2�14

qsort
search 2-12

R

Random access functions
character pointer 4-32
descnbed 4-31

Random-nlUllber generation
dnmd48 routine 2-12
erand48 routine 2-12
jrand48 routine 2-12
!cong48 routine 2-12
lrand48 routine 2-12
mrand48 routine 2-12
nrand48 routine 2-12
seed48 routine 2-12
srand48 routine 2-12

rand#srand
math 2-7

raw
cursor routines 2-3
function 5-35

RAW mode 5-36, 5-9
rdcbk

process control 2-10
read

differences from XE.NIX version
A-17

function 4-27
reading a file 2-12

readdlr routine 2-5
Reading a file

!seek 2-12
read 2�12

realloc
function 9-3
memory allocation 2-8; 2-9

Records
reading from a file 4�14

I-12

Records (continued)
writing to a file 4-18

Redirection symbol
lnput 4-9
output 4-9
pipe 4-9

refresb
cursor routines 2-3
function 5-18

regcmp
miscellaneous 2� 18

regex
miscellaneous 2-18

res tty
cursor routines 2-3
function 5-38

return values
math B-6

return values B-1
rewind

function 4�33
stream control 2-14

rewinddir routine 2-5
Routines

by category 2-1
directory operation 2-5
random-number generation 2-12

s

savetty
cursor routines 2-3
function 5-38

sbrk
process control 2-10

scanf
function 4�5
stream control 2-14

scanw
cursor routines 2-3
fuuction 5-14

Screen
descnbed 5-2
position 5-2

Screen processing
adding

characters 5-11, 5-20
strings s -12, 5-2il
values 5-12� 5-20

bold characters S-31
clearing a screen 5-17, 5-26
creating

subwindows 5-20
windows S-19

current position 5-2� 5-33
curses.h :fite 5-3
default terminal 5-9

Screen processing (continued)
deleting

a window 5-30
characters 5-16, 5-25
lines 5-17, 5-25

described 5-1
/etc/tenncap file 5-1
initializing 5-8
inserting

characters 5-15, 5-24
lines 5-16, 5-24

libcurses.a ftle-5-3
libtermcap.a file 5-3
libtennlib.a file 5-3
movement prefix 5-35
moving

a window 5-29
the position 5-15, 5-24

normal characters 5-32
overlaying a window 5-27
overwriting a window 5-28
predefined names 5-7
reading

characters 5-13, 5-22
strings 5-13, 5-22
values 5-14, 5-22

refreshing a screen 5-27
refreshing the screen 5-18
screen 5-2
scrolling 5-35
standard screen 5-11
terminal

capabilities 5-1
cursor 5-37
modes 5-35, 5-9
size 5-10

terminating 5-10
terminfo library 5-1
using 5-8
window 5-2
window flags 5-10, 5-33

Screen processing functions, described
5-l

scroll
cursor routines 2-3
function 5-35

scrollok
cursor routines 2-3
function 5-33

sdenter
function 9-22
shared data 2-13

sdfree
function 9-25
shared data 2-13

sdget
function 9-21
shared data 2-13

Index

sdgetv
function 9-24
shared data 2-13

sdleave
function 9-23
shared data 2-13

sdwaitv
shared data 2-13

sdwaitv function 9-25
Search routines

•bsearch 2-12
ftw 2-12
hcreate 2-12
hdestroy 2-12
hsearch 2-12
•tdelete 2-12
•Hind 2-12
•tsearch 2-12
qsort 2-12
•tsearch 2-12
twalk 2-12

seed48 routine 2-12
seekdir routine 2-5
Semaphore control

creatsem 2-13
nbwaitsem 2-13
opensem 2-13
semctl 2-13
semget 2-13
semop 2-13
sigsem 2-13
waitsem 2-13

Semaphore functions, described
9-10

Semaphores
checking status 9-14
creating 9-11
described 9-10
opening 9-12
relinquishing control 9-14
requesting control 9-13
UNIX and XENIX style 9-10

semctl
semaphore control 2-13

semget
semaphore control 2-13

semop
semaphore control 2-13

setbuf
function 4-23
stream contro1 2-14

setgid
miscellaneous 2-18

setgrent
group file control 2-7
password file control 2-7

setjmp
miscellaneous 2-18

I-13

--- --·-----------

Index

setpgtp
process control 2-10

setpwent
group file c<mtrol 2-7
password tile control 2-7

settenn
cursor routines 2�3

setuid
miscellaneous 2-18

setuteat
system accounting 2-17

'!l"tl routine 2-10
Shared data

attaching segments 9-21
creating segments 9-21
descnl>ed 9-19
entering segments 9-22
frecl!lg segments 9-25
leaving segments 9-23
sdenter 2-13
sdfree 2-13
sdget 2-13
sdgetv 2-13
sdleave 2-13
sdwaitv 2-13
version number 9-24
waiting for segments 9-25

Shared memory
ftok 2-13
shmat 2-13
sbmctl 2-13
sbmdt 2-13
shmget 2-13

Shared memory functions, descnbed
9-27

Shell
called as a separate process 7-5

slunat
shared mem.ory 2-13

shmcU
shared memory 2-13

shmdt
shared mem.Oiy 2-13

shmget
shared memo:ry 2-13

shutdn
miscellaneous 2-18

sigeal
differences from XRNIX version

A-17
process control 2-10

sigsem
function 9-14
sem.aphore control 2-13

sin
math 2-7

sinh
math 2-7

l-14

sleep
process control 2-10

sprlntf
function 6-12
stream control 2-14

sputl routine 2-10
sqrt

math 2-7
srand48 routine 2-12
sscanf

function 6-11
stream control 2-14

ssignal
process control 2-10

Standard error
described 4-3

Standard files
descnbed 4-3
predellned file

descriptors 4-26
pointers 4-12

reading and writing 4-4
redirecting 4-4

Standard input
described 4-3
reading

characters 4-4
funnatted input 4-5
strings 4-5

reading 4-4
redirecting 4-9

Standard JJO
Jile 4-1
fnnctions 4-1

Standard output
described 4-3
redirecting 4-9
writing

characters 4-7
formatted ontput 4-8
strings 4-7

writing 4-7
standend

cursor routines 2-3
functlon 5-32

standout
cursor routines 2-3

standout function 5-31
stat

differences from XENIX version
A-18

Jile handling 2-5
st:derr, standard error file pointer

4-1, 4-12
stdin, standard input file pointer

4-1, 4-12
stdio.h file

described 4-1
including 4·1

stdout, 11tandard output file pointer
4-1, 4-12

st:ime
time control 2-18

store
database manipulation 2-5

strcat
function 6� 7
string operations 2-16

strchr
string operations 2-16

strcmp � - · ·

function 6-7
string operations 2-16

stn:py
string operations 2-16

strcpy function 6-8
strcspn

string operations 2-16
strdup

string operations 2-l6
Stream control

clearerr 2-14
fclose 2-14
fdopen 2-14
fool 2-14
ferror 2-14
!flush 2-14
fgetc 2-14
fgets 2-14
fileno 2-14
fopen 2-14
fprint! 2-14
fputc 2-14
fputs 2-14
fread 2-14
freopen 2-14
!scant 2-14
!seek 2-14
ftell 2-14
fwrite 2-14
getc,getcha.r 2-14
gets 2-14
getw 2-14
pclose 2-14
popen 2-14
printf 2-14
putc,putcha.r 2M14
puts 2-14
putw 2-14
rewind 2-14
scanf 2-14
setbuf 2-14
sprint! 2-14
sscanf 2-14
ungetc 2-14

Stream functions
accessing files 4-11
accessing standard files 4-12.

Index

Stream func1ions (continued)
described 4-11
file pointers 4-11
random access 4-31

Stream -control routines
vfprintf 2-16
vprintf 2-16
vsprintf 2-16

String functions; described 6-7
String operations

strcat 2-16
strchr -2-16
strcmp 2-16
strcpy 2-16
strcspn 2-16
strdup 2-16
strlen 2-16
strncat 2-16
strncmp 2-16
stmcpy 2-16
strpbdc 2-16
strrchr 2-16
strspn 2-16
strtok 2-16

Strings
comparing 6-10, 6-7
concatenating 6-7. 6-9
copying 6-JO, 6-S
length 6-9
printing to 6-12
processing, described 6-1
reading from a :file 4-14
reading from standard input 4.,..5
scanning 6-11
writing to a file 4-17
writing to standard output 4-7

strlen
fnnction 6-9
string operations 2-16

stmcat
fWiction 6-9
string operations 2-16

stmcmp
string operations 2··16

stmcmp fnnction 6-10
strncpy

string operations 2-16, 6-10
sttpbtk

string operations 2-16
strrchr

string operations 2-16
strspn

string operations 2-16
strtod routine 2� 10
strtok

string operations 2-16
strtol routine 2-10
sttenn function 5-38

I-)5

Index

•subwin
cursor routines 2-3

subwin function 5-20
swab

miscellaneous 2-18
sync

miscellaneous 2-18
sys/locldng.h file 9-8
system

differences from XENIX version
A-18

function 7-1
miscellaneous 2-18

System
resources 9-1

System 2-17
System accounting

acct 2-17
cuserid 2-17
endntent 2-17
gedogln 2-17
getuid 2-17
getuline 2-17
getutent 2-17
putuline 2-17
setutent 2-17
utmpname 2-17

System include files
acct.b 3-9
a.out.h 3-8
asci.i.h 3-9
assert.h 3-9
brk..h 3-9
buf.h 3-9
callo.h 3-9
comert.h 3-9
couf.h 3-9
console.h 3-10
crtctl.h 3-10
dio.h 3-10
dir.h 3-10
errno.h 3-10
fblk.h 3-10
fcntl.h 3-10
file.h 3-10
filsys.h 3-11
inode.h 3-11
ino.h 3-11
iobuf.h 3-11
ioctl.h 3-11
ipc.h 3-11
kmon.h 3-11
lockcmn.h 3-11
lock.h 3-11
locking.h 3-12
machdep.h 3-12
map.h 3-12
mmu.h 3-12
mount.h 3-12

I-16

Sy,stem include files (<:ontinued)
msg.h 3-12
ndir.h 3-12
ndp.h 3-12
nfs.h 3-13
p>ram.h 3-13
preadi.h 3-13
proc.h 3-13
proctl.h 3-13
reg.h 3-13
relsym86.h 3-14
relsym.h 3-13
sd.h 3-14
sem.h 3-14
shm.h 3-14
slgnal.h 3-15
sites.h 3-lS
space.h 3-15
stat.h 3-15
syslnfo.h 3-15
sysmacros.h 3-15
systm.h 3-15
tennio.h 3-15
test.h 3-15
timeb.h 3-16
times.h 3-16
ttold.h 3-16
tty.h 3-16
types.b 3-16
ullmit.b 3-16
user.h 3-16
uts.uame.h 3-17
var.h 3-17

System prognuns
calling as a separate process 7-1

Systetn resource functions, descn'bed
9-1

System-wide variables
in common hbrary A-9

sys/types.h llle 9-8

T

tanh
math 2-7

telldir routine 2-5
'tERM variable 5-9
Terminal

capabilities 5-1
capability description 5-9
cursor 5-37
modes 5-35� 5-36, 5-9
screen 5-2
type 5-9

Terminal control
tgetent 2-17
tgetftag 2-17

/ -

Termina) contro1 (contil!ued)
tgetnum 2-17
tgetstr 2-17
tgoto 2-17
tputs 2-17

termination stato.s
described 7-7
processes 7-2

terminfo library 5�1
tgetent

terminal conttoJ 4:-11
tgetllag

terminal contro1 2-17
tgetnum

terminal control 2-17
tgetstr

terminal control 2-17
tgoto

terminal control 2-17
time

time control 2-18
Time control

asctime 2-18
ctime 2-18
flime 2-lll
gmtime 2-18
localtime 2-18
stirue 2-18
time 2-18
tzset 2-18

times
process contto1 2-10

tmpllle
miscellaneous 2� 18

tiDpname
miscellimeous 2-18

to ascii
character cla.ssificatlou and

conversion 2-2
function 6-2

Jolower
character classification and

conversion 2-2
to lower

function 6-6
side effects 2-2
using function vecsion 2-2

touchwin
cursor routines 2-3
function 5-30

toupper
character classification and

conversion 2-2
function 6-6
side effects 2-2
using function version 2-2

tputs
terminal control 2-17

*tsearch
search 2-12

ttyname,isatty
miscellaneous 2-18

ttyslot
system 2-17

twalk
search 2-12

tzset
time control 2-18

uv

nlimit
process control 2-10

umask

Index

differences from XEN1X verSion
A-18

file handling 2-5
umount

lile imedling 2-5
uname

miscellaneous 2-18
Unbuffered JJO

creating �-23
described 4-22
low-level functions 4-25

unctrl
cursor routines 2-3

ungetc
function 4-24
stream control 2-14

unlink
differences from XENIX version

A-19
li!e handling 2-5

ustat
file imedling 2-5

utime
differences from XENIX version

A-19
file handling 2-5

utmpname
system accounting 2-17

Variables
allocating for ai:rayS: 9-.:.2
memory allocation 9-2

vfp�ntf routine 2-16
vprintf routine 2-16
vsprintf routine 2-16

I-17

Index

wx

waddch
cU1'$Qr routines 2-3
function 5-20

waddstr
cursor routines 2-3
function 5-21

wait
function 7-7
process control 2-10

waitsem
function 9-13
semaphore control 2-13

wclear
cursor routiJles 2-3
function 5-26

wclrtobot
cursor routines 2-3
function 5-26

wclrtoeol
cursor routines 2-3
function 5-26

wdelcb
cun;or routines 2-3
:ftmcdon 5-25

wdeleteln
cursor routines 2-3
function 5-25

werase
cursor toutines 2-3
function 5-26

wgetch
cursor routines 2-3

'Wgetch function 5-22
wgetstr

cursor routines 2-3
function 5-22

winch
cursor routines 2-3
function 5-29

Wmdow
border S-31
deleting 5-30
descn"bed 5-2
llags 5-10
position 5-2 Wmdows
creating 5-19
liags S-33
moving S-29
overlaying 5-27
overwriting 5-28
reading a character 5�29
updating 5-30

winsch
cursor routines 2-3
function 5-24

1-18

winsertin
cursor routines 2-3
function 5-24

wmove
curror routines 2-3
function 5-24

wprlntw
cursor routines 2-3
function 5-21

wrefresh
cursor routines 2-3
function 5-27

write
differences from XENIX version

A-19
function 4-28
writing a lile 2-12

Writing a file
!seek 2-12
write 2-12

wscanw
cursor routines 2-3
function 5-23

wsta.ndend
cursor routines 2-3
function 5-32

wstandout
cursor rou.tines 2-3
function 5-31

XENIX to MS-DOS
cross development A-1

XENIX.IUNIX operations 9-· 1
:xlist

IIlisceUaneow 2-18

XENIX® System V

Development System

Macro Assembler User's Guide

(

Information in thls document is sobjectto change without notice and does not represent a
commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the Jaw to copy this software on magnetic tape;
disk, or any other medium for any pu:rposeotherthan the purchaser's personal use.

Portions © 1980� 1981, l982, 1983, 1984� 19.85, 19&6, t9?7 :t,.ficrosoft Corporation,
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987 The Santa Cruz Operation, Inc.
AllJi&hts reserved.

ALL USE, DUl'LlCATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDJVISION (b) (3) (ii) FOR RESTRICIBD RIGHTS IN COMPUTER
SOFIW ARE AND SUBDJVISION (b) (2) FOR LJMttilil RlGHTS IN TECHNICAL
DATA,BOTHAS SETFORTHINPAR52.227-7013.

This documentwastypesetwith an IMAGEN® 8/300 Laser Printer.

Microsoft, MS-DOS, and XENIXe.re registered trademarks of Microsoft Co:rporation.
IMAGEN is a registered trademarlt ofiMA OEN Co:rporation.

SCO Document Number: XG-S� 1-87-4.0

Co ntents

1 Introduction

1.1 Overview 1-1
1.2 Getting Started 1-2
1.3 Notational Conventions 1-3

2 Command· Line Options

2.1 Introduction 2-1
2.2 Assembling SourceFiles 2-1
2.3 OutputtingSegments inAlphabetical Order: -a 2-1
2.4 Speeifyingtbe i/O Buffer Size: -b 2-2
2.5 OutputtingCross-Reference Data: -c, -C 2-2
2.6 Creating a Pass ! Listing: -d 2-3
2. 7 Defining Symbols: -D 2-3
2.8 Creating Floating-Point Emulator Code: -e 2-4
2.9 Controllinglnclude-File Patb Names: -I 2-4
2.10 ProducinganAssembled-SourceListing: -1 2-5
2.11 PreservingLowercase lnternalNames: -Ml 2-5
2.12 Converting Names to Uppercase: -Mu 2-6
2.13 PreservingLowercase Publicand Externa! Names: -Mx 2-6
2.14 Suppressing SymbolTable lnfonnation: -n 2-7
2.15 Outputting Object-Code Files: - o, -0 2-7
2.16 Checking for Impure Memory References: -p 2-8
2.17 CreatingF!oating-Point CoprocessorCode: -r 2-9
2.18 Outputting Assembler Statistics: -v 2-9
2.19 OutputtingErrorMessages: -x 2-10
2.20 Listing False Conditionals: -X 2-10

3 Source-File Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introduction 3-1
Reading Program Code 3-1
Reading a Macro Table 3-3
Reading a Structure and Record Table 3-4
Reading a Segrnent and GroupTable 3-5
Reading a Symbol Table 3-6
Reading a Pass llisting 3-9

A Error Messages

A.l Iotroduction A-1
A.2 Macro AssemblerMessages A-1

-i -

C hapte r 1
, Introduction ' -

1.1 Overview 1-1
1.2 Getting Started 1-2
1.3 Notational Conventions 1-3

(

Introduction

1.1 Overview

This guide describes the usage, syntax, and structure of the XENIX
Macro Assembler, MASM. MASM is an assembler for the Intel<> 8086,
80186, 80286, or 80386 families of microprocessors. It can assemble the
instructions of the 8086, 8088, 80186, 80286, and 80386 microproces
sors, and the 8087 and 80287 floating-point coprocessors. It has a set
of powerful assembly-language directives that gives you complete con
trol of the segmented architecture of the 8086, 80186, 8028!i, and 80386
microprocessors. MASM instruction syntax allows a wide variety of
operand data types, including integers, strings, packed decimals,
:floating-point numbers, structures, and records.

The assembler produces 8086, 8088, 80186, 80286, and 80386 relocat
able object modules from assembly-language source files. The relocat
able object modules can be linked to create executable programs.

MASM is a macro assembler. It has a full set of macro directives that
lets you create and use macros in a source file. The directives instruct
MASM to repeat common blocks of statements, or replace macro
names with the blocks of statements they represent. MASM also has
conditional directives that provide for selective exclusion of portions of
a source file from assembly, or inclusion of additional program state
ments by simply defining a symbol.

MASM performs strict syntax checking of all instruction statements,
including strong typing for memory operands, and detects questionable
operand usage that could lead to errors or unwanted results.

MASM produces relocatable object modules that can be linked with
other high-level-language object modules. Programs can be con
structed by combining MASM relocatable object modules with object
modules created by C, Pascal, FORTRAN, or other high-level
language compilers.

1-1

Macro Assembler User's Guide

1.2 Getting Started

Before you start developing assembly-language programs, you need to
verify the following:

• The current operating system is the XENIX System V /386.

• The MASM executable files are located in the /usr/bin directory.

• You know how to use the 8086, 80286 and 80386 instruction
sets�

• Your text editor creates ASCII text files.

If the current operating system is not the XBNIX., System V /386, deter
mine the operating-system version and use the corresponding MASM
manuals.

If the MASM executable files are not located in the /usr/bin directory,
ask your system administrator for their location.

To create assembly-language programs, you need to know how to use
the 8086, 80286, and 80386 instructinn sets; The directives, operands,
operators, and expressiuns of MASM are explsined in this guide. How
ever, this gnide does not explsin how to use the instruction sets.

To assemble assembly-language programs, the source file must be in
ASCII format. If your text editor does not produce ASCII files, switch
to an editor that produces ASCII files.

1-2

c

Introduction

1.3 Notational Conventions

This guide uses the following notational conventions to define the
assembly-language syntax:

Roman

Bold

Italics

Ellipsis dots . . .

Commas ,, ,

[Brackets]

Vertical bar I

"Quotation marks"

I/0

Indicates command� keyword, directive, or
parameter names that must be typed as
shown. In most -cases, upper.case roman
represents keywords and directives, and
lowercase roman represents commands and
parameters. Uppercase and lowercase
letters can be freely mixed in some cases.

Indicates command-line options and argu
ments used to call the assembler and
assembler options.

Indicates placeholders or parameters ; i.e.,
a name that you must replace with the
value or file name required by the program.
Also indicates file names and path names
in text.

lndicate that you can repeat the preceding
item any number of times.

lndicate that you can repeat the preceding
item any number of times, as long as you
separate the item.s with a comma.

indicate that the enclosed item is optional.
If you do not use the optional item, the
program selects the default action.

Indicates that only one of the separated
items can be used. You must make a
choice between the items.

Indicate text from a source-code example.

lndicates source code created with a text
editor.

1-3

'
i

I

Chapter 2
C ommand- Line Option s

2.1 Introduction 2-1
2.2 Assembling Source Files 2-1
2.3 Outputting Segments in Alphabetical Order: -a 2-1
2.4 Specifying the I/0 Buffer Size: -b 2-2
2.5 Outputting Cross-Reference Data: -c, -C 2-2
2.6 Creating a Pass 1 Listing: -d 2-3
2. 7 Defining Symbols: -D 2-3
2.8 Creating Floating-Point Emulator Code: -e 2-4
2.9 Controlling Include-File Path Names: -I 2-4
2.10 Producing an Assembled-Source Listing: -1 2-5
2.11 Preserving Lowercase Internal Names: -Ml 2-5
2.12 Converting Names to Uppercase: -Mu 2-6
2.13 Preserving Lowercase Public and External Names: -Mx 2-6
2.14 Suppressing Symbol Table Information: -n 2-7
2.15 Outputting Object-Code Files: -o, -0 2-7
2.16 Checking for Impure Memory References: -p 2-8
2.17 Creating Floating-Point Coprocessor Code: -r 2-9
2.18 Outputting Assembler Statistics: -v 2-9
2.19 Outputting Error Messages: -x 2-10
2.20 Listing False Conditionals: -X 2-10

Command-Line Options

2.1 Introduction

This chapter describes how to use the MASM command and
command-line options to create relocatable object files. The MASM
command and command-line options are briefly described in the next
section. Each following section describes a specific command-line
option.

2.2 Assembling Source Flies

The MASM command line initiates the assembly of assembly-language
source files. To assemble one or more source files, type the MASM
command, the desired command-line options, if any, and the name of
the file(s) you want to assemble.

The MASM command line has the form:

masm [options] ftlename

The option.< can be any combination of MASM options described in
the following sections.

The filename is the name of the source file to be assembled. The
filename must have the .s extension. If the source file is successfully
assembled, then a relocatable object file is created with the .o exten
sion and the same file name as the source file.

For a complete list and brief description of MASM command-line
options, see masm(CP) in the XENIX Reference.

2.3 Outputting Segments in Alphabetical Order: · a

Syntax

-a

The - a option directs MASM to place the assembled segments in
alphabetical order before copying them to the object file. If this option
is not given, MASM copies the segments in the order encountered in
the source file.

2-1

Macro Assembler User's Guide

The following example creates an object file named jileJrame.s whose
segments are arranged in alphabetical order. Therefore, if the source
file jilename.o contains definitions for the segments DATA, CODE,
and MEMORY, the aS$embled segments in the object file have the
order CODE, DATA, and ME..\10RY.

Example

masm -a filename.s ; assembles to filename.o

2.4 Specifying the UO Buffer Size: • b

Syntax

-bnum

The -b option directs MASM to define the J/0 buffer size for source,
include, and object files, but not cross-reference or listing files. The
size of the buffer is defined in lK (IG!obyte) increments by the num
argument and can be any integer value in the range 1-64. If this option
is not placed on the command line, the default buffer size of 64K is
defined.

The following example directs MASM to define an J/0 buffer size of
45K.

Example

masm -b45 filename.s

2.5 Outputting Cross-Reference Data: -c, . c

Syntax

-c
.-c

The -c and �c options print cross-reference data for each assembled
file and for each set of assembled files, respectively. If either the ·C or
- C option is used, then the cross-reference data for each assembled
file is output to a file with the .crf extension and the same file name as
the assembled file.

2-2

Command-Line Options

The following two examples direct MASM to output cross-reference
data for each specified file.

Examples

masm -c filename.&
masm -C filename1.s filename2.s filename3.s

2.6 Creating a Pass 1 Listing: - d

Syntax

-d

The - d option directs MASM to add a Pass 1 listing to the assembly
listing file, making the assembly listing show the results of both assem
bler passes. A Pass 1 listing is typically used to locate and understand
program phase errors. Phase errors occur when· MASM makes assump
tions about the program in Pass 1 that are not valid in Pass 2.

The - d option does not create a Pass 1 listing unless you also direct
MASM to create an assembly listing. It does direct MASM to display
error messages for both Pass 1 and Pass 2 of the assembly, even if no
assembly listing is created.

The following example directs MASM to create a Pass 1 listing for the
source file filename. s into the file filename. 1st •

Example

masm -d -1 filename.s ; creates filename.lst

2. 7 Defining Symbols: -D

Syntax

-Dsymbol

The -D option directs MASM to define the symbol argument
appended to the -D option as a text macro with a null value. (See the
Macro Assembler Reference, "EQU Directive," in the chapter "Types
and Declarations" for a discussion of text macros.) The symbol will be
defined with the case in effect at that point in the command line. Any
number of - D options can be used. The defined symbol can be tested
with the IFDEF and IFNDEF directives during the assembly.

2-3

Macro Assembler User's Guide

The following example directs MASM to define symbol as a null text
macro, The default conversion to uppercase occurs in this example.

Example

masm -Dsymbol filename.s

2.8 Creating Floating-Point Emulator Code: - e

Syntax

-e

The · • option directs MASM to generate floating-point instruction
codes that can be Hfixed up" to software interrupts at link time.

This is the default option under XENIX. li an 8m87 is present, the
XENIX system chsnges the software interrupts into real 80287 instruc
tiOllll. If the 80287 chip is not present, a software emulator in the
X&'llX system is used to process the software interrupts as if the chip
were actually present. The emulator does not handle all valid 8(1287
inatructions. Unemulated instructions will give a SIOILL signat

The following example directs MASM to create emulation code for any
floating-point instructions it finds in the program.

Example

masm -e filename.s

2.9 Controlling Include-File Path Names: - I

Syntax

-Ipat!mame

The · I option directs MASM to use the specified pathname argument
as a prefix to the file names given in the INCLUDE directives in an
assembly-language program. Up to 10 · I options can be specified on
the command line to force searching of the given directories in a
specific order.

Command-Line Options

The following �!!lple forces the INCLUDE directives to search lusrlinclulk, then the cnrrent directory, for the given file name.

Example

masm -I /usr/include -I. filename.s

2.10 Producing an Assembled-Source Listing: - I

Syntax

-1 !filename]

The -I option directs MASM to generate a listing file to the standard
output file, which is usually the conoole device. If the ·I optinn has a
filename argument appended to it, then the listing ;,; written to the file
filename rather than the default listing file (whose name is the same as
that of the first input file, except that it has the extension . 1st).

The following example directs MASM to generate a source listing into
the file listfilename. lst •

''--· . Example

masm -l listfilen�e.s ; creates listfilename.lst

2.11 Preserving Lowercase Internal Names: · MI

Syntax

-Ml

The -Ml option directs MASM to preserve lowercase letters in label,
variable, and symbol names. When this option is given, nrunes that
have the same spelling but use different letter case are considered
different. For example, with the .. MJ option, uDATA" and "data" are
different. Under XENIX thU; is the default case mapping option.

The • Ml option is typically used when a source file is to be linked with
object lllOdules created by a case-sensitive compiler.

2-5

Macro Assembler User's Guide

The following example directs MASM to preserve lowercase letters in
any names defined in the source file filename.s.

Example

masm -Ml filename.s

2.12 Converting Names to Uppercase: -Mn

Syntax

-Mu

The • Mu optiot� directs MASM to convert all lowercase letters in all
symbols to uppercase.

The following example directs MASM to convert lowercase letters in all
symbols defined in the source file filename.s.
Example

masm -Mu filename.s

2.13 Preserving Lowercase Public and External Names:
- Mx

Syntax

-Mx
The • Mx optinn directs MASM to preserve lowercase letters in public

and exten1al names only when copying these names to the object file.
For all other purposes, MASM converts the inwercase letters to upper
case.

Public and external names axe any label, variable, or symbol names
that have been defined using the EXT&'! or PUBLIC directive. Since
MASM converts the letters to uppercase for assembly, these names
must have unique spellings. That is, the names ((DATA" and Hdata"
axe considered the same.

2-6

Command· Line Options

The • Mx option is used to ensure that the names of routines or vari
ables copied to. the obj;:ct !llodule h�ve !he correct spelling. The
option is used with any souree file that is to be linked with object
modules created by a case-sensitive compiler, and is particularly useful
for transporting assembler files from MS-DOS® to XENIX when work
ing with C.

The following example directs MASM to preserve lowercase letters In
any public or external names defined in the souree file filename.s.
Example

masm -Mx filename.s

2.14 Suppressing Symbol Table Information: -n

Syntax

-n

The ·n option directs MASM to suppress information about the sym
bols used in the assembled program. This option must be used in con
junction with the .) option.

The following example directs MASM to generate a listing file without
any symbol information in the file filename. 1st.
Example

masm -1-n filename.s

2.15 Outputting Object-Code Files: -o, - 0

Syntax

-oobjectfile
-Oobjectfile

The - o and • 0 options direct MASM to generate an object-code file.
If the - o or ·0 option has an objectfile argument appended to it then
object code is wntten to the file objectfile rather than the default file
(whose name is the same as that of the first input file, except that it

2-7

Macro Assembler User's Guide

has the extension .o). The - o option without a file name suppresses
the generation of an object file. The -o and ·0 options output assem
bled instructions in octal and binary formats, respectively.

The following two eXlllllples direct MASM to generate object code in
the file objectfi/e.

Examples

masm -oobjectfile filename.s
masm -Oobjectfile filename.s

2.16 Checking for Impure Memory References: - p

Syntax

-p

The • p option directs MASM to check for nnpure memory refer
ences. This option ensures that you don't declare any explicit stores
into memory via the CS segment overide operator. If you want your
code to run in 80286 protected mode, use the -p option to avoid errors
due to impure memory references. For examplej a typical violation
might look like the following. and if assembled with the -p option an
error message would be generated .

. 286
code segment

assume cs:code

codewrd dw ?

mov cs:codewrd, <data>

The following example directs MASM to check the source file
fi/ename.s for any nnpure memory references.

Example

masm -p filename.s

2-8

Command-Line Options

2.17 Creating Floating-Point Coprocessor Code: - r

Syntax

-r

The -r option directs MASM to generate floating-point instruction
code that can be executed by an 8087 or 80287 coprocessor. Programs
created using the -r optinn can run only on machines having an 8087
oi 80287 coprocessor. · · ·

·

· · · · · · · · · ·· ··· · · · ·· · · · ·· · · · · · · · · ·

The following example directs MASM to assemble the source flle
filename.s and create actual 8087 or 80287 instruction code for
floating-point instructions.

EJ<ample

masm -r filename.s

2.18 Outputting Assembler Statistics: - v

Syntax

-v

The ·V option directs MASM to print statistical information about the
assembled file to the output listing. The number of source lines, lines
assembled, symbols (in addition to the standard statistic of bytes of
symbol space available), and warning and fatal error messages are
printed to the output listing.

This example directs MASM to print statistical information about the
assembled flle fikname.s to the output listing.

Example

masm -v filename.s

2-9

M!lero Assembler User's Guide

2.19 Outputting Error Messages: -x

Syntax

-X

The • x option directs MASM to print error messages on the stmdard
error channel in addition to the messages generated in the listing file,
without displaying the source line in error. If the .] option is given,
then the ·X option has no effect. By using this option the MASM will
assemble faster. Error messages can be completely suppressed by
using the .. x option which makes assemblies "silent/' i.e., they send no
output to the standard error channel.

The following example directs MASM to print copies of error messages
only, written to the standard error file.

Example

masm -x filename.s

2.20 Listing False Conditionals: - X

Syntax

-X

The -X option directs MASM to copy to the assembly listing all state
ments forming the body of an lF directive whose expression (or condi
tion) evaluates to false. If you do not give the - X option in the com
mand line, MASM suppresses all such statements. The • X option lets
you display conditionals that do not generate co<,ie. This option
applies to all lF directives: lF, lFE, lFl, IF2, lFDEF, IFNDEF, lFB,
IFNB, lFIDN, and lFDlF.
The - X option behaves like an initial .TFCOND directive in a source
file. The .SFCOND and .LFCOND directives supercede the · X
option and .TFCOND directive.

The - X option does not affect the assembly listing unless you direct
MASM to create an assembly-listing file.

2-10

Command-Line Options

If the source file "filename.s" does not contain a .TFCOND directive,
MASM lists all false conditionals found in the source file.

The following example directs MASM to copy all statements forming
the body of an IF directive to the assembly-listing file.

Example

masm -X -1 filename.s

2-11

Chapter 3
Source- File Listings

. 3.1 . Introduction 3-1
3.2 Reading Program Code 3-1
3.3 Reading a Macro Table 3-3
3.4 Reading a Structure and Rec()rd Table 3-4
3.5 Reading a Segment and Group Table 3-5
3.6 Reading a Symbol Table 3-6
3. 7 Reading a Pass 1 Listing 3-9

j

j

j

j

j

j

j

j

j

j

j

j

'

' I ' I

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

c,

Source-File Listings

3.1 Introduction

MASM creates au assembly listing of your source file whenever you
give au assembly-listing option on tbe MASM command line (see
"Assembling Source Files'' in the chapter ''Command-Line Options"
of the Macro Assembler User's Guide. The assembly listing contains a
list of the statements in your program aud the object code generated
for each statement. The listing also lists the names and values of all
labels, variables, and symbols in your source file. MASM creates one
or more tables for macros, structures, records, .segments, groups, .and
otber symbols aud places tbese tables at tbe end of tbe assembly list
ing.

MASM lists symbols only if it encounters any in tbe program. If there
are no symbols in your program for a particular table, tbe given table is
omitted. For example, if you use no macros in your program, you will
not see a macro section in the symbol table.

The assembly listing will also contain error messages if any errors
occur during assembly. The error message follows the statement that
caused tbe error. At the end of tbe listing, MASM displays the
number of error and warning messages it issued.

The following sections explain the format of the assembly listing and
tbe meanings of special symbols used in the listing.

3.2 Reading Program Code

MASM lists the program code generated from tbe statements of a
source file. Each line has tbe form:

[line· number] offset code statement

The line· number is from tbe first statement in tbe assembly listing.
The line numbers are given only if a cross-reference file is also being
created. The offset is tbe offset from tbe beginning of the current seg
ment to the code. The code is the actual instruction code or data gen
erated by MASM for the statement. MASM gives the actual numeric
value of the code, if possible. Otherwise, it indicates what action
needs to be taken to compute the value. The statement is the source
statement shown exactly as it appears in the source file, or after pro
cessing by a MACRO, IRP, or IRPC directive.

3-1

Maero Assembler User's Guide

Jf any errors occur during assembly, the error message will be printed
directly below the statement where the error occurred, displaying the
source tile and line aumber in addition to the error number and error
message�

MASM uses the following special characters to indicate addresses that
need to be resolved by the linker or values that were generated in a
special way.

Cb.araeter Meaning

R Relocatable address; linker must resolve

E External address; linker must resolve

nn:

nnl
nn [xx]

+

c

3-2

Segment/group address; linker must resolve

EQU or directive

Segment override in statement

REP or LOCK prelix instruction

DUP expression; Dll copies of the value xr

Macro expansion

Included line from INCLUDE file

(
\

Source- File Listings

Example

XENIX Macro Assembler Page 1-1 06-25-87

0000

0000 0002
ooti2 . .

extm go:near

data segment public 'data'
assume es:data

s2 dw 2 '<lata ends

code segment public 'code'
assume cs:code

0000 start:
0000 E8 0000 E
(XX)3 26:A1 0000 R mov
(XX)? B4 4C
0009 CD 21
(XX)B

mov
.int

code ends

end

call go
ax, s2
ah, 4ch
21h

(· 3.3 Reading a Macro Table

·�·

MASM lists the names and sizes of all macros defined .in a source :file.
The list has two columns, Name and Length.

The Name column lists the names of all macros. The macro names
are listed .in alphabetical order and are spelled exactly as given .in the
source :file. Names longer than 31 characters are truncated.

The Length column lists the size of the macro .in terms of nonb lank
lines. The macro size is listed .in hexadecimal.

Example

Name
BIOS CALL
DISPLAY
DOS CALL
KEYBOARD
LOCATE
SCROLL

Length
0002
00)5
0002
(XX)3
(XX)3
(XX)4

3-3

Macro Assembler User's Guide

3.4 Reading a Structure and Record Table

MASM lists the names and dimensions of all structures and records in
a source file. The table contains two sets of overlapping columns.
The Width and # Fields columns list information about the structure
or record. The Shift, Wldth, Mask, and Initial columns list informa
tion about the structure or record members.

The Name column lists the names of all structures nnd records. The
names are listed in alphabetical order and are spelled exactly as given
in the source file. Names longer than 31 characters are truncated.

For a structure, the Width column lists the size (in bytes) of the struc
ture. The # Fields column lists the number of fields in the structure.
Both values are in hexadecimal format.

For fields of structures, the Shift column lists the offset (in bytes) from
the beginning of the structure to the field. Tills value is in hexadecimal
format. The other columns are not used.

Example

Name

PARMLIST
BUFSJZE
NAMESIZE
NAMETEXT
TERMINATOR

Width # Fields
Shift Wldth Mask Initial

001C 0004
0000
()(XJ1
00)2

001B

For a record, the Width column lists the size (in bits) of the record.
The # Fields column lists the number of fields in the record.

For fields in a record, the Shift count lists the offset (in bits) from the
low order hit of the record to the first bit in the field. The Width
column lists the numher of hits in the field. The Mask column lists the
maximum value of the field, expressed in hexadecimal format. The Ini
tial column lists the initial value of the field, if there is one. For each
field, the table shows the mask and initial values as if they were placed
in the record and all other fields were set to 0.

Example

Name Width # Fields
Shift Width Mask Initial

RECO (XXJ8 00)3
FLDl 0006 00)2 ooco 0040
FLD2 00l3 0003 0038 OOXl
FLD3 000) 0003 00l7 00l3

RECl OOlB OOl2
FLl 00l3 00)8 07F8 0400
FL2 000) 00)3 00)7 0002

3.5 Reading a Segment and Group Table

Source-File Listings

MASM lists the names, sizes, and attributes of all segments and groups
in a source file. The list has five columns: Name, Size, Align, Com
bine, and Class.

The Name column lists the names of all segments and groups. The
names in the list are given in alphabetical order, except !bat the names
of segments belonging to a group are placed under the group name.
Names are spelled exactly as given in the source file. Names longer

·�· than 31 characters are truncated.

The Size column lists tbe size (in bytes) of each segment. Since a
group has no size, only the word GROUP is shown. The size, if given,
is in hexadecimal format.

The Align column lists the alignment type of the segment. The type
can be any of the following:

BYTE
WORD
PARA
PAGE
DWORD
FWORD

lf the segment is defined with no explicit alignment type, MASM lists
tbe default alignment for that segment.

3-S

Macro Assembler User's Guide

The Combine column lists the combine type of the segment. The type
can be any one of the following:

·

NONE
PUBUC
STACK
MEMORY
COMBINE
COMMON
AT address

NONE is given if no explicit combine type is defined for the segment.

The Class column lists the class name of the segment. The name is
spelled exactly as given in the source file. If no name :is given, none is
shown.

Example

Name Size Align

AAAXQQ 0000 WORD
DATA 0024 WORD
STACK 0014 WORD
CONST 0000 WORD
HEAP 0000 WORD
MEMORY .0000 WORD
ENTXCM 0037 WORD
MAIN_8TARTUP 007E PARA

3.6 Reading a Symbol Table

Comhine Class

NONE 'CODE'
PUBUC 'DATA'
STACK 'STACK'
PUBUC 'CONST'
PUBUC 'MEMORY'
PUBUC 'MEMORY'
NONE 'CODE�
NONE 'MEMORY'

MASM lists the names, types, values, and attributes of all symbols in
the source tile. The table has four columns: Name, Type, Vlllue, and
Attr.

The Name column lists the names of all symbols. The names in the
list are given in alphabetical order and are spelled exactly as given in
the source tile. Names longer than 31 characters are truncated.

3-6

Source-File Listings

The Type column lists each symbol's type. The type can be any one of
the following:

'I)pe Meaning

L NEAR A near label

L FAR A far label

. N PROC A .near proc<?<J'llrCJ!'lJ.eL

F PROC A far procedure label

Number An absolute label

Alias An alias for another symbol

Opeode An instruction opcode

Text A memory operand, string, or other value

If TJ11e is Number, Opcode, Alias, or Text.,�, the symbol is defined by
an EQU directive or an airective. The l,YPe column also lists the
�ol's length if it is known. A length is gtven as one of the follow
mg:

Length Meaning

BYTE One byte (8-bits)

WORD One word (16-bits)

DWORD Doubleword (2 words)

FWORD Tripleword (3 words)

QWORD Quadword (4 words)

TBYI'E Ten bytes (5 words)

A length can also be given as a number. In this case, the symbol is a
xtrncture, and the nuniber defines the length (in bytes) of the xtrncture.
For example, the following type identifies a label to a structure that is
31 bytes long,
L 0031

3-7

Maero Assembler User's Guide

The Value column shows the numeric valne of the symbol. For abso
lute symbols, the value represents an absolute nutnber. For labels and
variable names, the value represents that item's offset from the begin
ning of the segment in which it is defined. If Type is Number,
Opcode, Alias, or Text, the Value column shows the symbol's
uvalue," even if the "value" is simple text. Number shows a constant
numeric value. Opcode shows a blank (the symbol is an alias for an
instruction mnemonic). Alias shows the name of another symboL
Text shows the text the symbol represents. "Text" is any operand that
does not fit one of the other three categories.

The Attr column lists the attributes of the symboL The attnbutes
include the name of the segment in which the symbol is defined, if
any, the scope of the symbol, and the code length. A symbol's scope
is given only if the symbol is defined using the EXTRN or PUBLIC
directive. The scope can be External or Qlobal. The code length is
given only for procedures.

Example
Symbols:

Name Type
SYM Nutnber
SYMl Text
SYM2 Number
SYM3 Alias
SYM4 Text
SYM5 Ope ode
SYM6 L BYTE
SYM7 L WORD
SYM8 L DWORD
SYM9 L QWORD
LABO L FAR
LABl L NEAR

Value
(XX)5
1.234
0008
SYM4
5[BP][DI]

(XX)2
0012
0022
0000
0000
0010

Attr

DATA
DATA Qlobal
DATA
External
External
CODE

Sour'Ce· Flle Listings

3. 7 Reading a Pass 1 Listing

When you specify the ·d option in the MASM command line, MASM
adds a Pass 1 listing to the assembly-listing file, making the assembly
listing file show the results of both assembler passes. The listing is
intended to help locate the sources of phase errors.

The following examples illustrate the Pass 1 listing for a source file that
assembled .without error. Although an error was prodl!c_e!l O!! P�J,� ,l,
MASM corrected . the error on Pass 2 and completed assembly
correctly.

During Pass 1, a JLE instruction to a forward reference produces an
error message.
00177E OOJLESMLSTK
file(tine) : error 9: Symbol not defined SMLSTK
0019 BB 1000 MOV BX,4096
001C SMLSTK:

MASM displays this error since it has not yet encountered the
definition for the symbol SMLSTK,

f By Pass 2, SMLSTK bas been defined and MASM <::tll1 fix the instrnc-
,..___ � �"

tion so no error occurs.

0017 7E 03
0019 BB 1000
001C SMLSTK:

JLE SMLSTK
MOV BX,4096

The JLE instrnction's code now contains 03 instead of 00. This is a
jump of 3 bytes.

3-9

Macro Assembler User's Guide

Since MASM generated the same amount of code for both passes,
there was no phase error. If a phase error had occurred, MASM
would have displayed an error message.

In the following program fragment, a mistyped label creates a phase
error. In Pass 1, the label GO is used in a forward reference aed
creates a Symbol not defined error. MASM assumes that the symbol will
be defined later and generates 3 bytes of code, reserving 2 bytes for the
symbol's actual value.

0000 code segment
0000 E9 0000 U jmp GO
file(line) : error 9: Symbol not defined GO
0003 GO label byte
0003 B8 0001 mov ax, 1

0006 code ends

In Pass 2, the label GO is known to be a label of BYTE type, which
is an illegal type for the JMP instruetion. As a result, MASM produces
only two bytes of code in Pass 2, one less than in Pass 1. The result is
a phase error.

0000 code �gment
0003 R Jmp GO
file(line) : error 57:11legal size for item
0003 GO label byte
file(line) : error 6: Phase error between passes
0003 B8 0001 mov ax, 1
0006 code ends

3-10

Appendix A
Error Mes s ages

A.1 Introduction A-1
A.2 Macro Assembler Messages A-1
A.3 Linker Error Messages A-12

A.3.1 Fatal Error Messages A-13
A.3.2 Linking Error Messages A -19
A.3.3 Warning Error Messages A-21

Error Messages

A.l Introduction

This appendix lists and explains the error messages that can be gen
erated by the Macro Assembler, MASM, and the Linker ld.

A.2 Macro Assembler Messages

This section lists and explains the messages displayed by the Macro
Assembler,MASM. MASM displays a message whenever it encounters
an error during processing. It displays a warning message whenever it
encounters questionable statement syntax.

An end-of-assembly message is displayed at the end of processing,
even if no errors occurred. The message contains a count of errors
and warning messages it displayed during the assembly. The message
has the form:

n Bytes of symbol space free
n Warning Errors
n Severe Errors

This message is also copied to the source listing.

Assembler Errors

0: Block nesting error

Nested procedures, segments, structures� macros, IRC, IRP, or
REPT are not properly terminated. An example of this error is
closing an outer level of nesting with inner level(s) still open.

1: Extra characters on line

This occurs when sufficient information to define the instruction
directive has been .received on a line and superfluous characters
beyond are received.

A-1

Macro Assembler User's Guide

2: Register already defined

This will only occur if the assembler has internal logic errors.

3: Unknown symbol type

Symbol statement has something in the type field that is unrecogniz
able.

4: Redefinition of symbol

This error occurs on Pass 2 and succeeding definitions of a symbol.

5: Symbol is multi-defined

This error occurs on a symbol that is later redefined.

6: Phase error between passes

The pogram has ambiguous instruction directives such that the
location of a label in the program changed in value between Pass 1
and Pass 2 of the assembler. An example of this is a forward refer
ence coded without a segment override where one is required.
There would be an additional byte (the code segment override) gen
erated io Pass 2 causing the next label to change. You can use the
-D option to produce a listing to aid in resolviog phase errors
between passes. See Chapter 2.

7: Already had ELSE clause

Attempt to define an ELSE clause within an existing ELSE clause
(you cannot nest ELSE without nesting JF . . . ENDIF).

8: Not in conditional block

An ENDJF or b'LSE is specified without a previous conditional
assembly directive active.

9: Symbol not defined

A symbol is used that has no definition.

A-2

(

Error Messages

10: Syntax error

The syntax of the statement does not match any recognjzable syn
tax:.

11: Type illegal in context

The type �speeified is of an unacceptable size.

12: Should have been group name

Expecting a group name but something other than this was given.

13: Must be declared in Pass 1

An item was referenced before it was defined in Pass 1. For exam
ple, "IF DEBUG" is ifiegal if DEBUG is not previously defined.

14: Symbol type usage illegal

illegal use of a PUBLIC symbol.

15: Symbol already different kind

Attempt to define a symbol differently from a previous definition.

16: Symbol is reserved word

Attempt to use an assembler reserved word illegally. For example,
to declare MOV as a variable.

17: Forward reference is illegal

Attempt to reference something before it is defmed in Pass L

18: Must be register

Register expeeted as operand but you furnished a symbol that was
not a register.

A-3

Macro Assembler User's Guide

19: Wrong type of register

Directive or instruction expected one type of register, but another
was specified. For example, INC CS.

20: Must be segment or group

Expecting segment or group and something else was specified.

21: Symbol has no segment

Trying to use a variable with SEG, and the variable has no known
segment.

22: Must be symbol type

Must be WORD, DW, QW, BYTE, or TB but received something
else.

23: Already defined locally

Tried to define a symbol as EXTERNAL that had already been
defined locally.

24: Segment parameters are changed

List of argmnents to SEGMENT were not identical to the first time
this segment was used.

25: Not proper align/combine type

SEGME.I'.'T parameters are incorrect.

26: Reference to mult defined

The instruction references something that has been multi-defined.

27: Operand was expected

Assembler is expecting an opersnd but an operator was received.

A-4

(
�

Error Messages

28: Operator was expected

Assembler was expecting an operator but an operand was received.

29: Division by 0 or overfiow

An expression is given that results in a divide by 0 or a number
larger. then can be represented.

30: Shift count is negative

A shift expression is generated that results in a negative shift count.

31: Operand types must match

Assembler gets different kinds or sizes of arguments in a case
where tbey must match. For example, MOV.

32: illegal use of external

Use of an external in some illegal manner. For example, DB M
DUP(?) where M is declared external.

33: Must be record field name

Expecting a record field name but received SOI)lething else.

error 34: Must be record field name

Expecting a record name or field name and received something
else.

error 35: Operand must have size

Expected operand to have a size, but it did not.

error 36: Must be var, label or constant

Expecting a variable, label, or constant but received something
else.

A-5

Macro Assembler User's Guide

error 37: Must be structure field name

Expecting a structure field Iiame but received something else.

error 38: Left operand must have segment

Used something in right operand that required a segment in the left
operand. (For example, ":.")

error 39: One operand must be cons!

This is an illegal use of the addition operator.

error 40: Operands must be same or 1 abs

Dlegal use of the subtraction operator.

error 41: Normal type operand expected

Received STRUC, FIEIDS, NAMES, BYI'E, WORD, or DW
when expeeting a variable label.

error 42: Constant was expected

Expecting a constant and received an item that does not evaluate to
a constant. For example, a variable name or external.

error 43: Operand must have segment

Dlegal use of SEG directive.

error 44: Must be associated with data

Use of eode related item where data related item was expected.
For example, MOV AX, <code-label> .

error 45: Must be associated with code

Use of data related item where code item was expected.

A-6

En-or Messages

error 46: Already have base register

Trying to double base register.

error 47: Already have index register

Trying to double index address.

error 48: Must be index or base register

Instruction requires a base or index register and some other register
was specified in square brackets, [].

error 49: illegal use of register

Use of a register with an inst:rootion where there is no 8086 or 8088
instruction possible.

error 50: Value is out of range

Value is too large for expected use. For example, MOV AL,SOOO.

ettor 51: Opetand not in IP segment

Access of operand is impossible because it is not in the current IP
segment.

error 52: Improper operand type

Use of an operand such that the opcode cannot be generated.

error 53: Relative jump out of range

Relative jumps must be within the range -128 to + 127 of the current
instruction, and the specific jump is beyond this range.

error 54: Index displacement must be constant

illegal use of index display.

A-7

Maero Assembler User's Guide

error SS: illegal register value

The register value specified does not fit into the "reg" field (the
value is greater than 7).

error 56: No immediate mode

Iinmediate mode speeified or an opcode that cannot accept the
immediate. For example, PUSH.

error 57: illegal size for item

Size of referenced item is illegal. For example, sblft of a double
word.

error 58: Byte register is illegal

Use of one of the byte registers in context where it is illegal. For
example, "PUSH AL," is illegal.

error 59: CS register illegal usage

Tcying to use the CS register illegally. For example, "XCHG
CS ,AX," is illegal.

error 60: Must be AX or AL

Specification of some register other than AX or AL where only
these are acceptable. For example, the 1N insttuction.

error 61: Jinproper use of segment register

Specification of a segment register where this is illegal. For exam
ple, an immediate move to a segment register.

error 62: No or unreachable CS

Tcying to jump to a label that is unreachable.

A-8

Error Messages

error 63: Operand combination illegal

Specification of a two-operand instruction where the combination
specified is illegal.

error 64: Near IMP/CALL to different CS
Attempt to do a NEAR jump or call to a location in a .different CS
ASSUME.

error 65: Label can't have segrnent override

illegal use of segrnent override.

error 66: Must have opcode after prefix

Use of a REPE, REPNE, REPZ, or REPNZ instructions without
specifying any opcode after it.

errer 67: Can't override ES segment

Trying to override the ES segment in an instruction where this over
ride is not legal. For example, "STOS DS :TARGET" is illegal.

error 68: Can't reach with segment register

There is no ASSUME that makes the variable reachable .

errer 69: Must be in segment block

Attempt to generate code when not in a segment.

error 70: Can't use EVEN on BTIE segment

Segment was declared to be byte segment and attempt to use
EVEN was made.

error 72: illegal value for DUP count

DUP counts must be a constant that is not 0 or negative.

A-9

Macro Assembler User's Guide

error 73: Symbol already external

Attempt to define a symbol as loeal that is already external.

error 74: DUP is too large for linker

Nesting of DUPs was such that too large a reeord was ereated for
the linker.

error 75: Usage of ? (indeterminate) bad

Improper use of the "?". For example, ?+5.

error 76: More values than defined with

Too many initial values given when defining a variable using a REC
or STRUC type.

error 77: Only initialize list legal

Attempt to use STRUC name without angle brackets, < >.

error 78: Direetive illegal :in STRUC

All statements within STRUC blocks must either be comments pre
ceded by a semicolon (;), or one of the Define directives.

error 79: Override with DUP is illegal

In a STRUC :initialization statement, you tried to use DUP in an
override.

error 80: Fwld cannot be overridden

In a STRUC initialization statement, you tried to give a value to a
field that cannot be overridden.

A-10

Error Messages

error 81: Override is of wrong type

In a STRUC initialization statement, you tried to use the wrong size
on override. For example, 'HELLO' for DW field.

error 82: Register can't be forward reference

error 83: Circular chain of EQU aliases

An alias EQU eventualiy points to itself.

error 84: 8087 opcode can't be emulated

Either the 8087 opcode or the operands you used with it produce
an instruction that the emulator cannot support.

error 85: End of file, no END directive

You forgot an end statement or there is a nesting error.

error 98: Override value is wrong length

There is an improper sized value in a RECORD or STRUC field.

error 99: Line too long expanding <symbol>

The line became too long for one of the assembler's internal
buffers.

error 100: Impure memory reference

You attempted 10 explicitly store into memory via the CS register.

error 101: Missing data; zero assumed

An instruction !bat expects an operand has failed to set one, and
immediate zero has been used instead.

A-11

Macro Assembler User's Guide

error 102: Segment at or near 64K limit

Too much code or data. (This is a 8086 or 80286 instruction set
message only.)

error 103: Can't change processor after first segment

An instruction set directive, such as .286 , has been given when a
conflicting directive, such as .386 , had previously been given.

error 104: Operand size does not match word size

An attempt has been made to push or pop an item different in size
from the current wordsize.

error lOS: Address size does not match word size

A 16-bit addressing mode has been nsed in a 32-bit segment or a
32-bit addressing mode has been used in a 16-bit segment.

error 106: Jump shortened, No-op instruction inserted

A jmp or jcc has been used where a jmp or jcc short would have
sufficed.

A.3 Linker Error Messages

The error messages produced by the linker fall inte three categories:

• Fatal error messages

• Linker error messages

• W arn:ing messages

A-12

Error Messages

Fatal error messages indicate a severe problem, one that prevents the
linker from processing the object code. After printing out a message
about the fatal error, the linker terminates linking without producing
an executable object file or checking for further errors. Fatal error
messages have the following form:

<location> : fatal error Llxxx: <messagetext>

Linker error. �s�ge�_ in4ic:;ate a p:.;�b!�Dl. 41-. th�_ -�,;:ec:;�!�l?._l� _q9ject _fiJ��
After printing out a message, the linker produces the executable file
and sets the error bit in the header. linker error messages have the
following form:

<location> : error L2xxx: <messagetext>

Warning messages are informational only; they do not prevent the
linker from processing the relocatable object code into executable
object code. Rather, warning messages just indicate possible problems
in the executable object file. Warning messages have the following
form:

<location> : warning L4xxx: <messagetext>

In the messages, <location> represents the input file, or pathname of
the linker if an input file is not present. The x.xx represents the mes
sage number, and <messagetext> defines the message.

A.3.1 Falal Error Messages

The following messages identify fatal errors. The linker can not
recover from a fatal error, instead the linker terminates linking after
printing the fatal error message.

fatal error L1002: unrecogoized option name

An unrecognized character was give following '-' on the command
line.

fatal error L1004: badly formed number

An invalid numeric value was given for an option.

A-13

Macro Assembler User's Guide

fatal error L100S: segment limit set too high

The number following the -s option is larger than 1024, which Is
the largest number allowed.

fatal error L1011: badly formed hex number

An invalid hexadecimal numeric value was given with an option.

fatal error L1012: number too large

A number was appended to an option greater than 2'32-1.

fatal error L1013: version number missing

The -v switch was given without a version number.

fatal error L1014: unrecognized Xenix version number

The number following the -v switch must be either 2, 3, or 5.

fatal error L1015: address missing

The -A switch requires an appended number.

fatal error L1016: -A and -F are mutually exclusive

The -A and -F switches are mutually exclusive.

fatal error L1018: Pagesize value missing

The -N option was given without a following pagesize number.

fatal error L1019: pagesize larger than OxfeOO

The -N option Is given with a pagesize value larger than OxfeOO,
whieh is the largest allowed.

A-14

Error Messages

fatal error L1020: no object modules specified

No object modules are specified on the command line. At least one
must be specified for the linker to produce an output file.

fatal error L1023: terminated by user

An interrupt was issued while the linker was operating.

fatal error L1045: too many TYPD EF records

Au object module contains more than 255 TYPDEF records.

fatal error L1046: too many external symbols in one module

An object module specifies more than the maximum llmit of 1023
external symbols. Break the module into smaller parts or reduce the
number of external references.

fatal error L1047: too many group, segment, and class names in one
module

An object module contains too many group, segment, and class
names. Reduce the number of groups, segm'e:ilts1 or classes in the
module.

fatal error L1048: too many segments in one module

An object module has more than the maximum limit of 255 seg
ments. Split the module or combine segments.

fatal error L1049: too many segments

The program contains more than the default maximum limit of 128
segments. Relink the program using the -S option assigning an
appropriate number of segments.

A-15

Macro Assembler User's Guide

fatal error L1050: too many groups in one module

The module contains more than the maximum limit of 21 group
definitions (GRPDEF records), Split the module or redefine group
definitions.

fatal error L1051: too many groups

The program contains more than the maximum limit of 20 groups,
not counting DGROUP, Reduce the number of group definitions,

fatal error L1053: symbol table overflow

The program contains more than the maximum limit of 256K sym
bols, sueh as public, external, segroent, group, class, and file
names, Reduce the amount of symbols.

fatal error L1054: requested segroent limit too high

The linker does not have have sufficient memory to describe the
number of segments requested by the -S option. Reduce the seg
ment argument to a number below 1024.

fats1 error L1057: data record too large

An LEDATA record contains more than the maximum limit of
1024 bytes of data. Note whieh translator, compiler or assembler,
produced the incorrect object module.

fatal error L1070: seginent size exceeds 64K

A single 16-bit segroent contains more than 64K bytes of code or
data. Reduce the size of the segroent less than 64K.

fatal error L1072: common area longer than 65536 bytes

The program has more than the maximum limit of 64K or' commu
nal variables allowed for 8086 and 80286 executables. Note that this
error is not generated by the macro assembler, but only by com
pilers supporting communal variables.

A-16

'--

Error Messages

fatal error L1075: segment size exceeds <number>

A 32-bit segment exceeds the maximum limit of code or data
imP.osed by the linker, which is indicated by number.
Reduce the size of the segment.

fatal error L1076: common area longer than 4G-1 bytes

The program has more than the maximum limit of 4G-1 bytes of
communal variables allowed for 80386 executables. Note that this
error is not generated by the macro assembler, but only by com
pilers supporling communal variables.

fatal error L1080: cannot open list file

The linker can not create the list (map) file.

fatal error L1081: out of space for run file

The disk on which the executable output file is being written to is
full. Free more space on the disk and restart the linker.

fatal error L1083: cannot open run file

The disk on which the executable output file is being written to is
full or the file already exists with read-only permissions. Free more
space on the disk or change permissions.

fatal error L1085: cannot open temporary file

The disk on which the temporary file is being written to is full.
Free more space on the disk and restart the linker.

fatal error L1086: scratch file missing

The linker is unable to open a temporary file recently created. Res
tart the linker.

fatal error L1087: unexpected end-of-file on scratch file

A temporary file recently created by the linker was unexpectedly
reduced in size. Restart the linker.

A-17

Macro Assembler User's Guide

fatal error L1088: out of space for list file

The disk on which the list file is being written to is full. Free more
space on the disk and restart the linker.

fatal error L1091: Ull.<lXpeeted end-of-file on library

All required data in the library file was not read before encounter
ing the end-of-file. Replace the library file and restart the linker.

fatal error L1093: object not faund

The object module specffi.ed on the command line does not exist.
Restart the linker verifying the correct object module pathname.

fatal error L1101: invalid object module

One of the object modules specified on the command line is
invalid. Restart the linker. If the fatal error persists, contact the
XENIX system administrator.

fatal error L1103: attempt to access data outside segment bounds

A data record in an object module specffi.es data extending beyond
the end of the segment. Note which translator, assembler or .com
piler, produced the incorrect object module and notify the XENIX
system administrator.

Fatal error L1113: unresolved COMDEF, internal error

An internal error has occurred, notify the XENIX The program uses
more than one segment and it is being linked impure. Impure exe
cutables can have only one segment.

fatal error L1121: <name>: group larger than 40.1 bytes

The name 32-bit group contains segments larger than 4G-1 bytes.

fatal error L1122: <name>: group larger than 64K bytes

The name 16-bit group contains segments larger than 64K bytes.

A-18

c�

Error Messages

fatal error L1123: <name>: both 16- bit and 32-bit segments in group

The name group contains both 16-bit and 32-bit segments.

fatal error L1124: relocation value missing

The -Rt or -Rd option was given without an argrnnent.

fatal error L1125: stack size missing

The -F option was given without an argument.

A.3.2 Linking Error Messages

The following messages identify errors in the executable object file.
The linker continues processing when encountering these errors.

error L2001: fixup(s) without data

A FIXUPP record occurs without a data record immediately
preceding. Note which translator� compiler or assembler� produced
the incorrect object file and notify the XENIX system administrator.

error L2002: fixup overflow near num in frame segment name target
segment segment name target offset number

Some possible causes are: (1) A group is larger than 64K bytes; (2)
the user's program contains an inter-segment short jump or inter
segment short call; (3) the user has a data item whose name
con.llicts with that of a subroutine in a library included in the link;
and (4) the user has an EXTRN declaration inside the body of a
segment. For example:

CODE segment public 'code'
extern main:far
start proc far

call main
ret

start endp
CODE ends

A-19

Macro Assembler User's Guide

The following construction is preferred:

extern
CODE
start

start
CODE

maln:fa.r
segment public 'code'
proc far
call main
ret
endp
ends

Revise the source and re-create the object file.

error L2011: name : NEAR/HUGE conflict

Both the NEAR and HUGE attributes are given for the name com
munal variable. This error only occurs in programs produced by
compilers supporting communal variables.

error L2012: name : array- element size mismatch

The FAR name communal array is declared with two or more
different array-element sizes. This error only occurs in programs
produced by compilers supporting communal variables.

error L2025: name : symbol defined mare than once

The public name symbol is defined more than once. Use only one
declaration.

error L2029: unresolved externals

One or more symbols are declared external, but they are not
declared in any other module or library. A list of unresolved exter
nal references appears after the error messages in the following
form:

unresolved...extemalJ)'mbol in file(s)

file ...
The unresolvedJXtemalJ)'mbol is the symbol that is not resolved
and file is the file(s) that the symbol is referenced.

A-20

/----.

Error Messages

A.3.3 Warning Error Messages

The following messages identify errors in the relocatable object file to
be processed, or the pathname of the linker if the object file is not
given.

warning IA020: <name> : code segment size exceede 65500

The 16-bit code segment name of length 65,501 to 65,536 bytes is
unreliable on the 80286.

warning IA031: <name> : segment declared in more than one group

The name segment is declared in more than one group.

warning IA032: <name> : segment defined both 16-, 32- bit, assuming
32

The name segment is defined both as a 16-bit and 32-bit segment
and is marked as a 32-bit segment in the segment table.

warning IA050: too many public symbols

The maximum limit of 3072 public symbols has been defined, caus
ing the -m option not to sort the symbols in the map file.

warning IA060: code group longer than 65530

A group containing 16-bit code segments with a total length of
65,501 to 65,536 bytes is unreliable on the 80286.

warning IA061: multiple code segments--should be medium model

The program defines more thnn one code segment and the -Mm,
-Ml, -Mh, or -Me option was not given. Verify that all modules
have the same memory model or link with the -Me option.

A-21

Macro Assembler User's Guide

warning IA062: multiple data segments--should be large model

The program defines more than one data segment and the -Ml,

-Mh, or -Me option was not given. Verify that all modules have
the same memory model or link with the -Me option.

warning L4063: stack option ignored for 80386 executable

A -F option was given while linking an 80386 library, linker
ignored the -F option.

warning 1Ail64: page-alignment option ignored for 80286 executable

A -N option was given while linking an 80286 library, linker
ignored the -N option.

A-22

(

Index
-a option 2-1
Assembler see also MASM

described 2-1
Assembly listing

false conditionals 2-10
pass ! listing 2-3

-b option 2-2
c 1-1
-c option 2-2
Case mappings 2-5
Cross reference 2-2
�D option 2-3
-e option 2�4
Error messages

linker A-12
macro assembler A-1

External names 2-6
Floating point emulator 2-4
.Floating point processor 2-9
FORTRANl-1
Groups

assembly li-g 3-5
Hlgh-Jevel languages 1-1
"'71 option 2-4
IFDEF 2-3
1FNDEF2-3
Instruction 1-2
Insin.Iction :set

802.87 2-4, 2-9
8087 2-9

I/0 buffer 2-2
-1 option 2-5
Linker error messages A-12
listing errors 3-2
listings

line-number 3-1
offset 3-1
offsets 3-1
resolved linker addresses 3-2
statements 3-1

Macro assembler
see alw MASM
messages A-1

Macros
assemblv listing 3�3
blocks i-1
directives 1-1

MAS.\i
assembler errors A-1
assembler sta.tistics 2-9
assembly li� 3-1
command line 2-1
converting to uppercase 2-6
define symbol 2-3
error message-s 2-10, A-1
executables 1-2
false conditionals 2-10

MASM (continued)
floating point emulator 2-4
floating point instruction code 2-9
floating point processor 2-9
generate object code file 2-7
group table 3-5
impure memory references 2-8
include file pa1hn.anies 2-4
invoking 2-1
list -false conditionals 2-10
macro listing 3-3
options

-a2-1
-b 2-2
-c 2-2
-D 2-3
-e 2-4
-12-4
-1 2-10, 2-5
-Ml 2-5
-Mu 2-6
-Mx 2-6
-n 2-7
-o 2-7
-p2-8
-r2-9
-v 2-9
-x 2-10

output assembler statistics 2-9
output error messages 2-10
output object code 2-7
pass I listing 2""3
phase errors 3-9
preserving lowercase 2-5
preserving lowercase names 2-6
produce listing file 2-5
record table 3-4
segment order 2-1
segment table 3-5
stTUcture table 3-4
suppress symbo] table information 2-7
symbol table 3-6
symbol table information 2-7

Microprocessors 1-1
-Ml option 2-5
-Mu opti�n 2-6
-Mx option 2-6
-n option 2-7
-o option 2-7
Operating system 1-2
-p option 2-8
Pascal 1-1
Pass 1 � 3-9
Phase errors 2-3, 3-9
Public names 2-6
-r option 2-9
Records

assembly listing 3-4

I-1

Index

Relocatable modules 1�1
Segments

assembly listing
align 3-5
class 3-5
combine 3-5
name 3-5
size 3-5, 3-5

SIGJLL signal 2-4
Stnu:tures

assembly listing 3-4
Symbols

assembly listing 3-6
Syntax

checking 1-1
Text editor 1-2
-v option 2-9
-x option 2-10

I-2

XENIX® System V

Development System

Macro Assembler Reference Manual

(

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Santa Cruz Operation, Inc. nm Microsoft Corporation.
The software described in this document is furnished under a license ag:reement or
nondisclosure agreement. The software may be used or copied only in accordance with
the tenns of the agreement. J1 is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions © 1900, 1981, 1982, 1983, 19&4, 1985: l.986., 1987 Microsoft Corporation.
All rights reserved.
Portions (tl_ 1983, 1984_., 1985� 1986, 1987The Santa Cruz Operation, Inc.
All rights reserved.

· · ·

ALL USE, DUPLICATION, OR DISCWSURE WHATSOEVER llY TilE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii)FOR RESTRicrEDRIGHTS IN COMPUTER
SOFTWAREAND SUllDIVISION(b) (2)FORLIMITEDRIGHTSINTECHNICAL
DATA,BarHASSETFORTHINFAR52.227-7013.

Thisdocumeutwas typesetwithan IMAGEN® 8/300Laser Printer.

Micrnsoft, MS-OOS. and XENlX arerepstered ttademaik:s ofMkrosoftCorpontion.
IMAGEN is a registered trademark: oflMAOBN Corporation.,

SCO Doo:umentNumber: X0-5-1-F:/-4.0

Contents

1 Introduction

1.1 Introduction 1-1
1.2 AboutThisGuide 1-2
1.3 WhatYouNeed 1-3
1.4 Notational Conventions 1-3

2 Elements oftlte Assembler

2.1 Introduction 2-1
2.2 Characters 2-1
2.3 Integers 2-1
2.4 Real Numbers 2-2
2.5 Encoded Real Numbers 2-3
2.6 Packed Decimal Numbers 2-4
2.7 Character and String Constants 2-4
2.8 Names 2-5
2.9 Reserved Names 2-6
2.10 Statements 2-7
2.11 Comments 2-7

3 ProgramStmcture

3.1 Introduction 3-1
3.2 Source Files 3-1
3.3 Instruction Set Directives 3-5
3.4 SEGME:t-.'T and ENDS Directives 3-7
3.5 END Directive 3-13
3.6 GROUPDirective 3-14
3.7 ASSUMEDirective 3-15
3.8 ORGDirective 3-17
3.9 EVENDirective 3-17
3.10 ALIGNDirective 3-18
3.11 PROCand ENDPDirectives 3-19

4 Types and Declarations

4.1 Introduction 4-1
4.2 Label Declarations 4-1
4.3 Data Declarations 4-2
4.4 Syrnbo!Declarations 4-9
4.5 StrnctureandRecord Declarations 4-12

- i -

5 Opemnds and Expressions

5.1 Introduction 5-1
5.2 Operands 5-1
5.3 Operators and Expressions 5-11
5.4 Forward References 5-26
5.5 Strong Typing for Memory Operands 5-28

6 Global Declamtions

6.1 Introduction 6-1
6.2 PUBLIC Directive 6-1
6.3 EXTRNDirective 6-2
6.4 Program Example 6-3

7 CondltionalAssembly

7.1 Introduction 7-1
7.2 IF and IF£! Directives 7-2
7.3 IF1 and IF2 Directives 7-3
7.4 IFDEFandiFNDEFDirectives 7-3
7.5 IFB and 1FNB Directives 7-4
7.6 IFIDNand iFDIFDirectives 7-5

ll Macros

8.1 Introduction 8-1
8.2 Macro Directives 8-1
8.3 MACRO and ENDMDirectives 8-2
8.4 Macro Calls 8-4
8.5 LOCAL Directive 8-5
8.6 PURGE Directive 8-6
8.7 REPI'andENDMDirectives 8-7
8.8 IRPandENDMDirectives 8-7
8.9 IRPCandENDMDirectives 8-9
8.10 EXITMDirective 8-9
8.11 Macro Operators 8-11

'.1 File Control

9.1 Introduction 9-1
9.2 INCLUDEDirective 9-2
9.3 .RADIX Directive 9-2
9.4 %OUT Directive 9-3
9.5 NAMEDirective 9-4
9.6 TITLE Directive 9-5
9.7 SUBTTLDirective 9-5
9.8 PAGEDirective 9-6

- :ii -

I
i
I
I

9.9 .LJST and .XLJST Directives 9-7
9.10 .SFCOND, .LFCOND, and .TFCOND Directives 9-8
9.11 .LALL, .XALL, and .SALL Directives 9-8
9.12 .CREFand .XCREFDirectives 9-9

A Instruction Summacy

A .1 Introduction A -1
A.2 801l6InstructionMnemonics A-1
A.3 8087InstructionMnemonics A-6
A.4 80186Instruction Mnemonics A-8
A.S 80286Non-Protectedlnstruction Mnemonics A-9
A.6 80286Protected Instruction Mnemonics A-10
A. 7 80287 Instruction Mnemonics A -10
A.8 80386 Non-Protected Instruction Mnemonics A -11
A.9 80386Protected Instruction Mnemonics A-13

B Directive Summacy

B.1 Directive Names B-1
B.2 · DirectiveSyntaxandFunction B-1

C SegmeutNames

C.l Introduction C-1
C.2 TextSegments C-2
C.3 Data Segments Near C-3
C.4 Data Segments Far C-4
C.S Bss Segments C-5
C.6 Constant Segments C-6

-ill-

r C hap ter 1
Introduction

1.1 Introduction 1-1
1.2 About This Guide 1-2
1.3 What You Need 1-3
1.4 Notational Conventions 1-3

c:

Introduction

1.1 Introduction

This guide describes the usage and input syntax of the Macro Assem
bler, MASM (MASM(CP)). The assembler produces relocatable
object modules from 8086, 8088, 80186, 80286, and 80386 assembly
language source files. The relocatable object modules can be linked to
create executable programs for the XENIX operating system.

MASM is an assembler for the Intel
®

8086, 80186, 80286, and 80386
fanillies of micri>processors. R can assemb le· the instructions of·the
8086, 8088, 80186, 80286, and 80386 microprocessors and of the 8087
and 80287 floating-point coprocessors. It has a powerful set of assem
bly language directives that give the programmer complete control of
the segmented a:rehitecture of the 8086, 80186, 80286, and 80386
microprocessors. MASM instruction syntax allows a wide variety of
operand data types, including integers, strings, packed decimals, float
ing point nlliilbers, structures, and records.

MASM is a macro assembler. It has a full set of macro directives that
let a programmer create and use macros in a source file. The direc
tives instruct MASM to repeat common blocks of statements or replace
macro names with the block of statements which they represent.
MASM also has conditional directives that let the programmer exclude
portions of a source file from assembly or include additional program
statements by simply defining a symbol.

MASM carries out strict syntax checking of all instruction statements,
including strong typing for memory operands. Unlike other assem
blers, MASM detects questionable operand usage that can lead to
errors or unwanted results.

MASM produces object modules that are compatible with those
created by high-level language compilers. Thus, you can make com
plete programs by combining MASM object modules with object
modules created by C, Pascal, FORTRAN, or other high-level
language compilers.

This guide does not teach assembly language programming, or give a
detailed description of 8086, 80186, 80286, or 80386 instructions. For
information on these topics you will need other references.

1-1

Macro Assembler Reference

1.2 About This Guide

This guide is organized as follows:

Chapter 1, "Introduction," explains what steps you need to take to
create these programs, and summarizes the organization of this guide
and the conventions used.

Chapter 2, "Flements of the Assembler," descnbes the characters
which can be used in a program and how to form nninbers, names,
statements, and comments�

Chapter 3, "Program Structure," descnbes program strnctores and
instruction set directives.

Chapter 4, ''T:tPes and Declerations," explains how to generate data
for a program, and how to declare labels, variables, and other symbols
that refer to instruction and data locations. It also explains how to
define types that can be used to generate data blocks that contain mul
tiple fields, such as structures and records.

Chapter 5, "Operands and Expressions," describes the syntax and
meaning of opermds and expressions used in assembly language state
ments and directives.

Chapter 6, "Global Declarations," describes global declaration direc
tives in detail.

Chapter 7, "Conditional Assembly," describes the directives that pro
vide conditional assembly of blocks of statements within a source file.

Chapter 8, "Macro Directives," explain how to create and use macros
in your source files.

Chapter 9, "File Control," describes directives !bat provide control of
tbe source, object, and listing files read and created by
MASM during an assembly.

Appendix A, "Instruction Summary," gives a complete list of the
instruction names and syntax for all processors.

Appendix B, "Directive Summary," gives a complete list of the direc
tives used by MASM with their syntax and function.

Appendix C, "Segment Names For High-Level Languages," describes
the nammg conventions used to form assembly language source files
that are compatible with object modules produced by tbe Microsoft C,
Pascal, and Fortran language compilers (version 3.0 or later).

1-2

(

Introduction

1.3 What You Need

This guide is intended to be used with the Mncro Assembler User's
Guiiie, which explains the steps required to create executable programs
from source files.

You also need to know the function and operation of the instruction
sets for the 8086, 80186, 80286, and 80386 families of microprocessors.
For an explanation of these instruction sets,

.
refer to one of the many

books that define these instructions. Refer to Appendix A, "liistruc
tion Summary," for a complete list of the instruction names and syntax
for all processorn.

1.4 Notational Conventions

This manual uses the following notational conventions to define the
assembly-language syntax:

Roman

Bold

Italics

Ellipsis dots ...

Commas ,,,

Indicates command_, keyword, directive, or
parameter names that muat be typed as
shown. In most cases, uppercase roman
represents keywords and directives, and
lowercase roman represents commands and
parameters. Uppercase and lowercase
letters can be freely mixed in some cases.

Iiidicates command-line options and argu
ments used to call the assembler and
assembler options.

Indicates placeholders or parameters; i.e.-"'
a name that you must replace with the
value or file name required by the program.
Also indicates file names and path names
in text.

liidicate that you can repeat the preceding
item any number of times.

Indicate that you can repeat the preceding
item any number of thnes, as long as you
separate the items with a comma.

1-3

Macro Assembler Reference

[Brackets]

Vertical bar I

HQuotation marks"

I/0

1-4

Indicate tbat the enclosed item is optional.
1f you do not use tbe optional item, tbe
program selects tbe default action.

Indieates tbat only one of the separated
items can be used. You must make a
choice between the items.

Indicate text from a source-code example.

Indicates source code created with a text
editor.

Chapter 2
\. Elements of the Ass embler

2.1 Introduction 2-1
2.2 Characters 2-1
2.3 Integers 2-1
2.4 Real Numbers 2-2
2.5 Encoded Real Numbers 2-3
2.6 Packed Dechnal Numbers 2-4
2. 7 Character and String Constants 2-4
2.8 Names 2-5
2.9 Reserved Names 2-6
2.10 Statements 2-7
2.11 Comments 2-7

I

Elements of the Assembler

2.1 Introduction

All assembly-language programs consist of one or more statements and
comments. A statement or comment is a combination of characters,
numbers, and names. Names and numbers are used to identify values
in instruction statements. Characters are used to form names,
numbers, and character constants.

The next section lists the characters that can be used iu a program and
the following sections- describe _how to form numbers, _ names, _state_
ments, and comments.

2.2 Characters

MASM recognizes the following character set:

A B C D B F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

? @ _ $: Microsoft . D () <> {}

2.3 Integers

S;!1ltaX

digits

digitsB

di.gitsQ
digit.sO

digitsD

digitsH

• . ' . '

2-1

M11cro Assembler Reference

An integer is an integer number: a combination of binary, octal,
decimal, or hexadecimal digits plus an optional radix. The digits are
combinations of one or more digits of the specified radix: B, Q, 0, D,
or H. The real-number designator R can also be used. If no radix is
given, MASM uses tbe current default radix (decimal). The following
table lists tbe digits tbat can be used witb each radix.

Digits Used with Each Radix

Radix
B
Q
0
D
H

Type
Binary
Octal
Octal
Decimal
Hexadecimal

Digits
0 1
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 A B C D E F

Hexadecimal numbers must always start with a decimal digit (0 to 9).
If necessary, put a leading 0 at the left of the number to distinguish
between hexadecimal numbers that start with a letter, and symbols.
For example, "OABCh" is interpreted as a hexadecimal number, but
"ABCh" is interpreted as a symbol. The hexadecimal digits A through
F can be either upper-. or lowercase.

The real number-designator can be used only with hexadecimal
numbers consisting of 8, 16, or 20 significant digits (a leading 0 can be
added).

The maximum number of digits in an integer depends on the instruc
tion or directive in which the integer is used. The default radix can be
specified by using the .RADIX directive (see the section on tbe
.RADIX directive in tbe "File Control," cbapter.

Eli:amples

01010b
01111b

132q Sah 90d 90
170 Ofh 15d 15

2.4 Real Numbers

Syntax

[+ 1 -] digits.digits E [+ 1 -] digits

2-2

I

Elements of the Assembler

A real number is a number consisting of an integer, a fraction, and
.an exponent. The digits can be any combination of decimal digits.
Digits to tbe left of the decimal point (.) represent the integer. Those
to the right of the point represent the fraction. The digits following
the exponent mark (E) represent the exponent. li an exponent is
given, the plus (+) and minus (-) signs can be used to mdieate its sign.

Real numbers can be used only with the DD, DQ, and DT directives.
The maximum number of digits in the number and the maximum range
of exponent values depends on the directive.

Examples

DD 25.23
D Q 2.523E1
DT 2523.0E-2

2.5 Encoded Real Nwnbets

Syntax

digitsR

An encoded real number is an 8-, 16-, or 20-digit hexadecimal
number that represents a real number in encoded format. An encoded
real number has a sign, a biased exponent, and a mantissa. These
values are encoded as bit fields within the number. The exact size and
meaning of each bit field depends on the number of bits in the
number. The digits must be hexadecimal digits. The number must
begin with a decimal digit (0-9) and must be followed by the real
number-designator (R).

Encoded real numbers can be declared only with the DD, DQ, and
DT directives. The number of digits for the encoded numbers used
with DD, DQ, and DT must be 8, 16, and 20 digits, respectively. (If a
leading 0 is supplied, the number must be 9, 17, or 21 digits.) See the
"Data Declatationsn section in the "Types anrl Declarations" chapter.- ,

Examples

DD 3f800000
DQ 3ff()()(X)OOOOOOOO

; l.O for DD
; l.O for DQ

2-3

Macro Assembler Refel'ence

2.6 Packed Decimal Numbers

Syntax

£+ H dtgtts

A packed decimal number represents a decimal integer that is to be
stored in packed decimal format. Packed decimal storage has a lead
ing sign byte and 9 value bytes. Each value byte contains two decimal
digits. The high-order bit of the sign byte is 0 for positive values, and 1
for negative values.

Packed decimals have the same format as other decimal integers,
except that they can take au optional plus sign (+) or minus sign (-)
and can be defined only with the DT directive. A packed decimal
must not have more than 18 digits.

Examples

DT 1234567890 ; encoded as ()(J(l()()(l()(1234567890
DT -12345678'Xl ; encoded as 8()(XX))J(J()()12345678'Xl

2. 7 Character and String Constants

Syntax

' characters'

!I characters n

A character constant consists of a single ASCII character. A string
constant is composed of two or more ASCII characters. Constants
must be enclosed in single quotation marks (') or double quotation
marks (''). String constants are case sensitive.

Single quotation marks must be encoded twice when used literally
within constants that are enclosed by single quotation marks. Simi
larly, double quotation marks must be encoded twice when used in
constants that are enclosed by double quotation marks.

2-4

(
\

Examples

'a'
1ab'
Ha."

1'This is a message. 11
'Can't fmd the file.'
"Specified mtvalueUf' not found.11

2.8 Names

Syntax

characters. --

Elements of the Assembler

A name is a combination of letters, digits, and special characters used
as a label, variable, or symbol in an assembly-language statement.
Names have the following formatting rules;

• A name mnst begin with a letter, an underscore (_), a question
mark (?), a dollar sign ($), or an at sign (@).

• A name can include any combination of upper- and lowercase
letters. All uppercase and lowercase letters remain the same
during assembly unless either the ·Ml or ·Mx option is used.

• A name can have any number of characters, but only the first 31
characters are used. All other characters are ignored.

Examples

subrout3
array
..main

2-5

Macro Assembler Reference

2.9 Reserved Names

A reserved name is any name with a special, predefined meaning to
the assembler. Reserved names include instruction and directive
mnemonics, register names, and operator names. These names can b e
used only a s defined and cannot b e redefined.

All upper- and lowercase combinations of these names are treated as
the same name. For example� the names "Length" and "LENGTH"
represent the same operator. "LENGTH" operator.

The following table lists all reserved names except instruction
mnemonics. For a complete list of instruction mnemonics, see
Appendix A1 '(Instruction Summary."

Reserved Names

%OUT cs ESP INCLUDE QWORD
.186 ex ELSE IRP .RADIX
.286 DB END IRPC RECORD
.286C DD END IF LABEL .SALL
.286P DF E.>IDM .LALL SEG
.287 DB ENDP LE SEGMENT
.386 DI ENDS LENGrH .SFCOND
.386C DL EQ .LFCOND SHL
.386P DQ EQU .LIST SHORT
.8086 DRO ES LOCAL SHR
.8087 DR1 EVEN LOW SI

DR2 EXITM LT SIZE
AH DR3 EXTRN MACRO SP
AL DR4 FAR MASK ss
AND DRS GE MOD STRUC
ASSUME DR6 GROUP NAME SIJBTTL
AX DR7 GT NE TBYTE
BH DS HIGH NEAR .TFCOND
BL DT IF NOT THIS
BP DW lFl OFFSET TITLE
BX DWORD IF2 OR TYPE
BYTE DX IFB ORG .TYPE
CH EAX IFDEF PAGE WIDTH
CL EBP IFDIF PROC WORD
COMMENT EBX lFE .PROT .XALL
CRO ECX IFIDN PTR .XCREF
CR2 EDI IFNB PUBLIC .XLIST
CR3 EDX IFNDEF PlJRGE XOR
.CREF EST USE16 USE32

2-6

Elements of the Assembler

2.10 Statements

Syntax

[name J mnemonic [operands] [;comment]

A statement is a combination of an optional name, mandatory instruc
tion or directive mnenwnic, one or more optional operands, and an
optional comment. A statement represents an action ·to·be taken by
the assembler, such as generating a machine instruction or 1 or more
bytes of data.

The following formatting rules apply to statements:

• A statement can begin in any column.

• A statement must not consist of more than 128 characters and
must not contain an embedded carriage-return-line-feed char
acter. In other words, continuing a statement on multiple lines is
not allowed.

• All statements except the last one in the file must be terminated
by a carriage-return-line-feed character.

Examples
count db 0

mov eax, ebx ; a comment
assume cs:_text, ds:dgroup

_main proc far

2.11 Comments

Syntax

;text

COMMENT delimiter
text
delimiter[text]

2-7

Macro Assembler Reference

Comments describe the action of a program at a given point, but are
ignored by the assembler. Comments using the semicolon (;) can be
placed anywhere in a program, even on the same line as a statement.
Comments using the COMMENT directive can be placed only on lines
that do not contain other statements.

lf the semicolon comment shares the line with a statement, it must be
to the right of all names, mnemonics and operands. A semicolon
comment is any combination of characters preceded by a semicnlon (;)
and terminated by a carriage-return-line-feed character.

A semicolon comment must not continue past the end of the line on
which it begins; that is, it must not contain any embedded carriage
retnrn-line-feed characters. For long comments, the COMMENT
directive can be used.

The COMMENT directive causes MASM to treat all text between the
two delimiters as a comment. The delimiter must be the first nonblank
character following the COMMENT keyword. The text is all remaining
characters up to the next occurrence of the delimiter. The text must
not contain the delimiter.

The COJ1.1MENT directive is typically used for multiple-line com
ments. Note that text can appear on the same line as the last delimiter
and is ignored by the assembler.

The first three examples use the standard semicolon (;) comment and
the last two examples use the COMMENT directive.

Examples

2-8

; This comment is alone on a line.
mov eax� ebx ; This comment follows a statement.

; Comments can contain reserved words like PUBLIC.

COMMENT •
This comment continues until the
next asterisk.
*

COMMENT +
The assembler ignores the
following MOV statement
+ moveax, 1

C hapter 3
(Program Structure

3.1 Introduction 3-1
3.2 Source Files 3-1
3.3 Instruction Set Directives 3-S
3.4 SEGMENT and ENDS Directives 3-7

3.4.1 Align Type 3-9
3.4.2 Use Type 3-9
3.4.3 Combine Type 3-10
3.4.4 Class Type 3-11
3.4.5 Segment Nesting 3-12

3.5 END Directive 3-13
3.6 GROUP Directive 3-14
3.7 ASSUME Directive 3-15
3.8 ORG Directive 3-17
3.9 EVEN Directive 3-17
3.10 ALIGN Directive 3-18
3.11 PROC and ENDP Directives 3-19

1 1
�/

Program S1lucture

3.1 Introduction

The following program structure directives let you define the organiza
tion that a program's code and data will have when loaded into
memory:

SEGMENT Segment definition

ENDS Segment end

END Source-file end

GROUP Segment groups

ASSUME Segment registers

ORG Segment origin

EVEN Segment alignment

PROC Procedure definition

ENDP Procedure end

3.2 Source Files

Every assembly language program is created from one or more source
files that contain statements defirung the program's data and instruc
tions. MASM reads source files and assembles the statements to create
object modules that can be prepared for execution by the system
linker.

All source files have the same form - zero or more program "seg
ments" followed by an END directive. The END directive, reqnired in
every souree file, signals the end of the source file. The END directive
also provides a way to define the program entry point or starting
address. All other statements in a source file are optional.

3-1

Macro Assembler Reference

The two program examples in this section illustrate the source-file for
mat for assembly language programs. The examples are complete
assembly language modules that use system calls to print the message
"Hello." on the user terminal. Linking the modules with the standard
C run-time library will produce a complete executable program. Note
that the first example contains 286 instructions and the last example
contains 386 instructions.

The following list summarizes the main features of each assembly
language module:

• The END statements, which signify the end of the source file
and define the program entry point or starting address.

• The SEGMENT and ENDS statements, which define segments
named "_DATA" and "_TEXT"

• The GROUP statement defining a group, DGROUP, which con
tains the data segment "_DATA"

• The variables "HELLO" and "TTY" in the "_j)ATA" segment,
defining the string to be displayed and the name of the file that
is opened to do this. Note that all strings are terminated with a
zero

• The instruction label "_MAIN" in the "_TEXT" segment and
its PUBLIC declaration, which provides the necessary entry
point for the run-time library to call.

• The ASSUME statements in the "_j)ATA" and "_TEXT" seg
ments, defining which segment registers will be associated with
the labels, variables, and symbols defined within the segments.

I \

(1
\...__..

�---, ' I __./

Enmples

J)ATA
IiELLO
TIY
fd
J)ATA

DGROUP

e>ctm
extm
extm
extrn

_TEXT

PUllUC

...MAN:

_TEXT

Program Structure

.286c ;Enable 286 instructions

SEGMENT WORD PUBLIC 'DATA' ;Program data segment
db ''Hello." ,0
db "/dev/tty",O
dw 0
ENDS

GROlJ,l' J)ATA

_open:near ;External entJy points
_close:near
_write:near
_exit:near

SEGMENT BYTE PUllLIC 'CODE' ;Program code segment

ASSUME cs:_TEX.Tt ds:DGROUP,
ss:DGROUP, es:DGROUP

..MAIN

;Program entry point

push 2 ;Fd - open f'/dev/tty", 2)
push offset DGROUP:TIY
call _open
add sp1 4
mov fd, ax

push 7 ;Write (fdt &hello� 7)
push offset DGROUP:HELLO
push fd
call _write
add sp, 6

push fd ;Close (fd)
call _close
add sp, 2

push 0 ;Exit (0)
call _exit

ENDS
END

3-3

Macro Assembler Reference

.386 ; Enable 386 instJ:Uctions

...DATA
HELLO
TIT
fd
...DATA

DGROUP

PUBLIC

_.MAIN:

SEGMENT DWORD PUBLIC USE32 'DATA' ; Program Data Segment
db ''Hello.", 0
db "/dovfttY', 0
dw O
ENDS

GROUP ...DATA

_open:near
_close:near
_write:nea:r
_exit :near

SEGMENT DWORD PUBLIC USE32 'CODE' ; Program Code Segment

ASSUME cs: ... TBXT, ds:DGROUP,
ss:DGROUP, es:DGROUP

push 2
push offset DGROUP:'ITY
call _open
add esp, 8
mov fd, eax

push 7
push ollioet DGROUP:HE.Lt.O
push fd
call _write
add esp, 12

push fd
call _cl0$e
add esp, 4

push 0
call _exit

ENDS
END

; Program Entry Point

; fd - open("/dev/tty'', 2)

; write(fd, &hello, 7)

; close(fd)

; exit(O)

(

(� · ..

Program Structure

3.3 Instruction Set Directives

Syntax

.186

.286

.286C

.286P

.287

.386

.386C

.386P

.8086

.8087

.PRIV

The instruction set directives enable instruction sets for given
microprocessors. When a directive is given, MASM will recognize and
assemble any subsequent instructions belonging to that microproces
sor. The instruction set directives, if used, must be placed at the
beginning of the program source file.

The following list summarizes the 8086, 286, and 386 directives that
enable each instruction set.

.8086

.8087

.186

.286

.286C

.286P

Enables the 8086 instruction set (default)

Enables 8087 floating-point instruction set

Enables 186 instruction set

Enables 286 instruction set, except for protected
mode

Enables 286 instruction, except for protected
mode

Enables 286 protected mode instruction set. It is
equivalent to the following directive sequence:

.286 .PRIV

3-5

Macro Assembler Reference

.287

.386

.386C

.386P

.P!UV

Enables 287 instruction set, but does not tnrn off
386 instruction set

Enables 386 instruction set and defines the default
word size to 4 bytes

Enables 386 instruction set and defines the default
word size to 4 bytes

Enables 386 protected-mode instruction set and
defines the default word size to 4 bytes. This
directive is the equivalent to the following
sequence:

.386 .PROT

Enables protected mode instruction set

Even though a source file may contain the .8087 or .287 directive,
MASM also requires the -r or -e option in the MASM command line
to define how to assemble floating point instructions. The -r option
directs the assembler to generate the actnal instruction code for the
floating point instruction. The -e option, enables MASM to generate
the instruction codes which changed into software interrupts at pro
gram link time.

(

c,

3.4 SEGMENT and ENDS Directives

Syntax

name SEGMENT align [use] combine 'class'
name ENDS

Program S lructure

The SEGMENT and ENDS directives mark the beginning and end of
a program segment. A program segment is a -collection of instructions
or data whose addresses are all relative to the same segment register.

The name defines the name of the segment. This name can be unique
or be the same name given to other segments in the program. Seg
ments with identical names are treated as the same segment.

The align, use, combine, and class options give the linker instruction
on how to setup segments. These options are described in the follow
ing sections.

The following 286 and 386 program examples each contain two seg
ments: "SAMPLE_TEXT" and "CONST" . The "CONST" segment
is nested within the "SAMPLE...TEXT" segment. Although a given
segment name can be used more than once in a source file, each seg
ment definition using that name must have either exactly the same attri
butes, or attributes that do not conflict.

3-7

Macro Assembler Reference

Examples

CONST
segl
CONST

CONST
segl
CONST

.286 ; enable 286 instructions
SEGMENT word public 'code'
proc far

SEGMENT word public 'CONST' ; nested segment
dw array_data
ENDS ; end nesting

DlOV es, segl
push es
mov ax� es:pointer
push ax
call _printf
add sp, 4

•••
endp
ENDS

.386 ; Eu.ablt 386 instructions
SEGMENT wnrd public 'cnde'
proc far

SEGMENT word public 'CONST'
dw array_data
ENDS ; End :o.estiag

tn.OV' es, seg1
push es
mov eax, es:pointer
push eax
call _printf
add esp, 8

rei
endp
ENDS

I

(

Program Structure

3.4.1 Align Type

The align type defines the alignment of the given segment. The align
ment defines the range of memory addresses from which a starting
address for the segment can be selected. The align type can be any
one of the following: ·

BYTE Use any byte address

WORD Use any word address (2 bytes/word)

PARA Use paragraph addresses (16 bytes/paragraph)

PAGE Use page addresses (1024 bytes/page)

DWORD Use any double word address (4 byte/dword)

If no align is given, PARA is used by default. The actual start address
is computed when the program is loaded. The linker gnarantees that
the address will be on the given bonndary.

�· 3.4.2 Use Type

The use type defines the segment wordsize. The wordsize can be
defined to be either 16 bits or 32 bits. To define a �egment wordsize of
16 bits, use the USE16 directive. Similarly, to define a segment word
size of 32 bits, use the USE32 directive. The default segment size is 32
bits.

Note

The USE16 and T)SE32 directives can only be used in 386 pro
grams.

3-9

Macro Assembler Reference

The following example defines two segments, "TEXT" and "DATA" ,
that have 16-bit and 32-bit segment wordsizes, respectively:

.386 ; Enable 386 instruction set
assume cs:_TBXT, ds:.J)ATA

_TEXT segment word use16 public 'code'

_TEXT ends

.J)A TA segment byte use32 public 'DATA'

.J)ATA ends

3.4.3 Combine Type

The combine type defines how to combine segments having the same
name. The combine type can be any one of the following:

PUBLIC

STACK

3-10

Concatenates all segments having the same name to
form a single, contiguous segment. All instruction
and data addresses in the new segment are relative to
a single segment register, and all offsets are adjusted
to represent the distance from the beginning of the
new segment.

Concatenates all segments having the same name to
form a single, contiguous segment. Tb:is combine type
is the same as the PUBLIC combine type, except that
all addresses in the new segment arc relative to the SS
segment register. The stack pointer SP register is ini
tialized to the last address of the segment. Stack seg
ments should normally use the STACK type, since
this automatically initializes the SS register. H you
create a stack segment and do not use the STACK
type, you must give instructions to load the segment
address into the SS register.

(

COMMON

MEMORY

AT address

Program Structure

Creates overlapping segments by plaeing the start of
all segments having the same name at the same
address. The length of the resulting area is the length
of the longest segment. All addresses in the segments
are relative to the same base address.

Places alL segments ____ having . . the. same .name in."the
highest physical segment in memory. lf more than
one MEMORY segment is given, the segments are
overlapped as with COMMON segments.

Causes all label and variable addresses defined in the
segment to be relative to the given address. The
address can be any valid expression, but must not con
tain a forward reference, that is� a reference to a sym
bol defined later in the source file. An AT segment
typically contains no code or initialized data. Instead,
it represents an address template that can be placed
over code or data already in memory, such as code
and data found in ROM devices. The labels and vari
ables in the AT segments can then be used to access
the fixed instructions and data.

If no combine is given, the segment is not combined. Instead� it
receives its own physical segment when loaded into memory.

3.4.4 Class 'l)pe

The class type defines which segments are to be loaded in contiguous
memory. Segments having the same class name are loaded into
memory one after another. All segments of a given class are loaded
before segments of any other class. The class name must be enclosed
in single quotation marks (').

3-11

Macro Assembler Reference

The following example illustrates the general fonn of a text segment
for a small module program. The segment name is H_TEXT" . The
segment alignment, use, and combine type are HWQRDH , HUSE16" ,
and "PUBLIC" , respectively. The class is "CODE" .

Example

cs:_TEXT
_TEXT

.386
assume
segment WORD USEl6 PUBLIC 'CODE'

_TEXT ends

3.4.5 Segment Nesting

Segments can be nested. When l'vfASM encounters a nested segment, it
temporarily suspends assembly of the enclosing segment and begins
assembly of the nested segment. Wben the nested segment has been
assembled, MASM continues assembly of the enclosing segment.
Overlapping segments are not permitted.

The following example contains two segments: a code segment called
"SAMPLE" and a data seg!llent called "CONST" • The "CONST"
segment is nested within the "SAMPLE" segment.

Example

SAMPLE segment
main proc

CONST segment
array dw
CONST ends

ret
main endp
SAMPLE ends

3-12

word public 'code' ; Outside segment
far

word public 'CONST' ; Inside segment
array_data

Program Structurtl

3.5 END Directive

Synlllx

The E:>ID directive marks the end of the module. The assembler
ignores any statements following this directive.

The optional expression defines the program entry point, the address at
which program execution is to start. Jf the program has more than one
module, only one of these modules can define an entry point. The
module with the entry point is called the ''main module." If no entry
point is given, none is assumed.

Note

If you fail to define an entry point for the main module, your pro
grlliD may not be able to initialize correctly. The program will
assemble and link without error messages, but it may crash when
you attempt to run it. Remember, one {and only one) module must
define an entry point.

ExaJ11ples
END
END ...START

; Does not define an entry
; Defines _START as entry

3-13

Macro Ass embler Reference

3.6 GROUP Directive

Syntax

name GROUP segment-name,

The GROUP directive associates a group name with one or more seg
ments. It also causes all defined labels and variables to have addresses
relative to the group beginning address rather than to the segment
beginning address. The segment-name must be the name of a segment
defined using the SEGMENT directive, or a SEG expression The name
must be unique.

The GROUP directive does not affect the order in which segments of a
group are loaded. Loading order depends on each segment's class, or
on the order the object modules are given to the linker.

Segments in a group do not have to be contiguous. Segments that do
not belong to the group can be loaded between segments that do. The
ouly restriction is that the distance (in bytes) between the first byte in
the first segment of the group and the last byte in the last segment
must not exceed 64K bytes in 8086 and 286 programs and 4G bytes in
386 programs.

Group names cw be used with the ASSUME directive and as an
operand prefix with the segment override operator (:) .

Note

A group name must not be used in more than one GROUP direc
tive in any source file. If several segments within the source file
belong to the same group, all segment names must be given in the
same GROUP directive.

3-14

(

Example

dgroup

_data

_data
_bss

_bss

GROUP
ASSUME

_data, _bss
ds:dgroup

segruent word public 'data'

ends
seginent word public 'bss'

ends
end

3.7 ASSUME Directive

Syntax

ASSUME segnumt-register : segment- name
ASSUME NOTHING

Program S truc�

The ASSUME directive specifies segment· register as the default seg
ment register for all labels and variables defined in the segruent or
group given by segment· name. Subsequent references to the label or
variable will automatically aasume the selected register when the
effective address is computed.

The segment- register must be one of the following: CS, SS, DS, ES,
FS, or GS.

Note

The FS and GS segruent registers are accessible ouly in 386 pro
grams.

3-15

Macro Assembler Refereru:e

The segment-name must be one of the following:

• The name of a segment previously defined with the SEGMENT
directive.

• The name of a group previously defined v.ith the GROUP direc
tive.

• The keyword NOTHING.

The keyword NOTHING cancels the current segment selection. The
"ASSUME NOTHING" directive cancels all register selections made
by a previous ASSUME statement.

Note

The segment overtide operator (:) can be used to override the
current segment register selected by the ASSUME directive.

Examples

3--16

ASSUME CS:code
ASSUME CS:dgroup,SS :dgroup,DS:dgroup
ASSUME ES:dgroup,FS:dgroup,GS:NOTHD!G
ASSUME NOTHING

Program S lnlcture

3.8 ORG Directive

Syntax

ORG expression

The ORG directive sets the location counter to expresswn. Subse
quent inslnlction and data addresses begin at the new value.

The expression must resolve to an absolute number. In other words, all
symbols used in the expression must be known on the first pass of the
assembler. The location counter symbol ($) can also be used.

In the example below, the statement "MOV EAX, EAX" begins at
byte 120h in the cnrrent segment. Similarly, the variable "ARRAY" is
declared to start at the address 2 bytes beyond the current address. See
the section on the Location Counter Operand in the "Operands and
Expressions" chapter for more information on the location-counter
symbol ($).

Examples

ARRAY

ORG
MOV
ORG
dw

120h
BAX, EDX
$+2
100 dup (0)

3.9 EVEN Directive

Syutax

EVEN

The EVEN directive aligns the next data or instruction byte on a word
boundary. Jf the current value of the location counter is odd, the

.

directive increments the location counter to an even value and gen
erates one NOP (no operation) instruction. If the location counter is
already even, the directive does nothing.

3-17

Macro Assembler Rererence

Note

The EVEN directive must not be used in byte-aligned segments.

In the following example, the EVEN dinective tells ¥ASM to incre
ment the location counter, and generates a single NOP instruction
(90h). This means the offset of "TEST2" is 2, not 1, as it would be
without the EVEN direetive.

Example

org 0
test1 db 1

EVEN
TEST2 dw 513

3.10 ALIGN Directive

Syntax

ALIGN [site]

The ALIGN direetive aligns the next data or instruction byte on the
current position in a segment. The size specifies the number of NOP
instructions (90h) inserted.

The ALIGN directive must be given an nrgnment that is a pewer of 2.

Note

Note that the EVEN directive is equivalent to ALIGN 2.

3-18

\

Examples

3.11

ALIGN 2
ALIGN 4
ALIGN S
ALIGN 16

PROC and ENDP Directives

Syntax

name PROC type
statements

name ENDP

Program Structure

The PROC and ENDP directives mark the beginning and end of a pro
cedure. A procedure is a block of instructions that forms a program
subroutine. Every procedure mnst have a name.

The name must be a unique name, not previously defined in the pro
gram. The optional type can be either NEAR or FAR. NEAR is
assumed if no type is given. The name has the same attributes as a
label, and can be used as an operand in a jump, call, or loop instruc
tion.

Any number of statements can appear between the PROC and ENDP
statements. The procedure should contain at least one RET directive
to return control to the point of call. Nested procedures are allowed.

3-19

Macro Assembler Reference

Examples
.236

...main PROC
push
mov
mov
push
call
add
mov
pop
RET

...main ENDP

.386
_;main PROC

push
mov
push
call
add
mov
pop
RET

...main ENDP

3-20

NEAR
bp
bp, sp

; Enable 236 instructions

ax, offset dgroup:string
ax
_printf
sp, 2
sp, bp
bp

NEAR
ebp
ebp, esp
offset dgroup:string
_printf
esp, 4
esp, ebp
ebp

; Enable 386 instructions

C hapter 4
(Typ es and Declarations

4.1 Introduction 4-1
4.2 Label Declarations 4"1

4.2.1 Near Label Declarations 4-1
4.2.2 Procedure Labels 4-2

4.3 Data Declarations 4-2
4.3.1 DB Directive 4-3
4.3.2 DW Directive 4-4
4.3.3 DD Directive 4-4
4.3.4 D F Directive 4-5
4.3.5 DQ Directive 4-6
4.3.6 DT Directive 4-7
4.3.7 DUP Operator 4-8

4.4 Symbol Declarations 4-9
4.4.1 Equal-Sign (=) Directive 4-9
4.4.2 EQU Directive 4-10
4.4.3 LABEL Directive 4-11

', 4.5 Structure and Record Declarations 4-12 ,,_/
4.5.1 Defullng Structures 4-12
4.5.2 Declaring Structures 4-13
4.5.3 Defining Records 4-15
4.5.4 Declaring Records 4-16

(

l)pes and Declarations

4.1 Introduction

This chapter explains how to generate data for a program, how to
declare labels, variables, and other symbols that refer to instruction
and data locations, and how to define types that can be used to gen
erate data blocks that contain multiple fields, such as structures and
records.

4.1 · La tiel Declarations ·

Label declarations create "labels" . A label is a name that represents
the address of a instruction. Labels can be used in jump, call, and
loop instructions to direct program execution to the instruction at the
address of the label.

4.2.1 Near Label Declarations

Syntax

name:
"-... A near label declaration creates an instruction label that has NEAR

type. The label can be used in subsequent instructions in tbe same
segment to pass execution control to the corresponding instruction.

The name must be unique, not previously defined, and it must be fol
lowed by a colon (:). Furthermore, tbe segment containing tbe
declaration must be associated with tbe CS segment register. The
assembler sets the name to the current value of the location counter.

A near label declaration can appear on a line by itself or on a line with
an instruction. Labels must be declared witb the PUBLIC or EXTRN
directive if they are located in one module but called from another
module.

Examples

start:
loop: inc
for: inc

4fbp]
8[ebp]

4-1

Maero Assembler Reference

4.2.2 Procedure Labels

Syntax

name PROC [NEAR ! FAR]

The PROC directive creates a label name and assigns its type to
NEAR or FAR. The label then represents the address of the follow
ing instruction and can be used in a jump, call, or loop instruction to
direct execution control to the first instruction of the procedure. If you
do not specify the NEAR or FAR type, MA&\.1: assumes NEAR as the
default.

When the PROC label definition is encountered, the assembler sets the
label's value to the current value of the location counter and sets its
type to NEAR or FAR. If the label has FAR type, the assembler also
sets its segment value to that of the enclosing segment.

NEAR labels can be used with jump, call, and loop instructions to
transfer program control to any address in the current segment. FAR
labels can be used to transfer program control to an address in any
segment outside the current segment.

Labels must be declared with the PUBLIC and EXTRN directive if
they are located in one module but called from another module.

4.3 Data Declarations

The data declaration directives let you generate data for a program.
The directives tranalate numbers, strings, and expressinns into indivi
dual bytes, words, or other units of data. The encoded data is copied
to the program object file.

The data declaration directives are listed below:

DB Data byte

DW Data word

DD Data doubleword

DF Data farword (6 bytes)

DQ Data quadword

DT Data ten-byte word

4-2

/- .

(
"---"

Types and Declarations

4.3.1 DB Directive

Syntax

[name] DB i.nitial-value ,,

The DB directive allocates and initializes a byte (8 bits) of storage for
each initial- value. The initial-value can be an integer, a character

. string COJ1Siant, a DUP_ op�rator, a conslat:!l expr\'SsiQ!!, .W j:jlli}SJ:ign
mark (?). The question mark (?) represents an undefined initial value.
If two or more initial values are given, they must be separated by com
mas (,).

The name is optional. If a name is given, the directive creates a vari
able of the type BYTE, whose offset value is the current location
counter value.

A string constant can have any number of characters, as long as it fits
on a si:!>gle line. 'i\'hen the string is encoded, the characters are stored
in the order given, with the first character in the constant at the lowest
address and the last at the highest.

Examples

integer DB
string DB
message DB
constantexp DB
empty DB
multiple DB
duplicate DB
high_byte DB

16
'ab'
11Enter your name: "
4 * 3
?
1, 2, 3, '$'
10 DUP(?)
255

4-3

Macro Assembler Reference

4.3.2 DW Directive

Syntax

[name] DW initial-value ,

The DW directive allocates and initializes a word (2 bytes) of storage
for each given initfal..value. An imtial-value can be an integer, a one
or two character string constant; a DUP operator, a constant expres
sion, an address expression, or a question mark (?). The question
mark (?) represents an undefined initial value. If two or more expres
sions are given, they must be separated b y commas (,).

The name is optionaL If a name is given, the directive creates a varl
ahle of the type WORD, whose offset value is the current location
counter value.

String constants must not exceed two characters in length. The last
(or ®l:y) character in the string is placed in the inw-order byte, and
either 0 or the first character is placed in the high -order byte.

Examples
integer DW 16728
character DW 'a'
string DW 'be'
constantexp DW 4 * 3
addressexp DW string
empty DW ?
multiple DW 1, 2, 3, '$'
duplicate DW 10 DUP(?)
high_ word DW 65535
arrayptr DW array
arrayptr2 DW offset dgroup:array

4.3.3 DD Directive

Syntax

[name] DD initial-value ,

The DD directive allocates and initislizes a doubleword (4 bytes) of
storage for each given initial-value. An initial-value can be an integer,
a real number, a one or two character string constant, an encoded real
number, a DUP operation, a constant expression, an address expres�
sion, or a question mark (?). The question mark (?) represents an
undefined initial value. If two or more expressions are given, they
must be separated oy commas (,).

4-4

/

Types and Declarations

The name is optional. H a name is given, the directive creates a vari
able of the type DWORD, whose offset value is the current location
counter value.

String constants must not exceed two characters in length. The last
(or only) character in the string is placed in the low-order byte, and
the first character (if there are two in the string) is placed in the next
byte. Zeroes are placed in all remaining bytes.

If the DD· directive is used··in a USE16 segment to declare a pointer
(8086 or 286 program defualt) with an address as an argument, then the
DD directive declares a near pointer. 1f the DD directive is used in a
USE32 segment (386 program default), then the D D directive declares
a far pointer.

Examples

integer DD
character DD
string DD
real DD
encodedreal D D
constantex:p DD
addsegex:p D D
empty DD
multiple DD
duplicate DD
high_double DD

4.3.4 DF Directive

Syntax

16728
'a'
'be'

1.5
3fOOIXXTh
4 * 3
real
?
1, 2, 3, '$'
10 DUP(?)
4294967295

[name] DF initial-value ,,

The DF directive allocates and initializes a farword (6 bytes) of storage
for each given inifiol-value. Au inifiol- value can be an address or
integer. If two or more initial values are given, they must be separated
by commas (,).

The name is optional. If a name is given, the directive creates a vari
able of the t;'Pe FWORD, whose offset value is the current location
counter value.

4-5

Macro Assembler Reference

Examples

multiple DF
address DF
integer DF
empty DF
addsegexp DF
constantexp DF
duplicate DF

4.3.5 DQ Directive

1, 2, 3, 4
2120h, 4222h
140737SOCXXXXJOO
?
segment
22*123163
10 DUP (?)

[name] DQ initial· value ,

The DQ directive allocates and initializes a quadword (8 bytes) of
storage for each initial-value. An initial-value can be an integer, a real
number, a one or two character string constant, an encoded real
number, a DUP operator, a constant expression, or a question mark
(?). The question mark (?) represents an undefined initial value. If
two or more initial values are given, they must be separated by com
mas (,).

The na'ltU! is optional. If a name is given, the directive creates a vari
able of the type QWORD, whose offset value is the current location
counter value.

String constants must not consist of more than two characters. The
last (or only) character in the string is placed in the low-order byte,
and the first character (if there are two in the string) is placed in the
next byte. Zeroes are placed in all remaining bytes.

Examples

integer DQ
character DQ
string DQ
real DQ
encodedreal DQ
constantexp DQ
empty DQ
multiple DQ
duplicate DQ
high_quad DQ

16728
'a'
'be'
1.5
3f(J()()()()()()(
4 * 3
?
1, 2, 3� '$'
10 DUP(?)
18446744073709551615

Types and Declarations

4.3.6 DT Directive

Syntax

[name] DT initial-value , .,

The DT directive allocates and initializes 10 bytes of storage for each
initial- value. An initial-value can be an integer expression, a packed
decimal, a one or two character string constant, an encoded real
i:mniber� a DUP operator, or ·a queStion -mark-{?).· The Cj_riestioli iriark
(?) represents an undefined initial value. If two or more expressions
are given, they must be separated by co=as (,).

The name is optional. If a name is given, the directive creates a vari
able of the type TBYTE, whose offset value is the current location
counter value.

String constants must not consist of more than two characters. The
last (or only) character in the string is placed in the low-order byte,
and the first character (if there are two in the string) is placed in the
next byte. Zeroes are placed in all remaining bytes.

Note

The DT directive assumes that constants with decimal digits are
packed decimals, not integers. If you want to specify a 10-byte
integer, you must follow the integer with the appropriate letter
specifying the numbering system you are using (for example, "D" or
"d" for decimal or "H" or "h" for hexadecimal).

4--7

Macro Assembler Reference

Examples

packeddecimal
integer
character
string

DT 1234567890
DT 16728D
DT 'a'
DT 'be'

real
encodedreal
empty
multiple
duplicate
high_tbyte

DT 1.5
DT 3f(J()()()()()(l0
DT ?
DT 1, 2, 3, '$'
DT lO DUP(?)
DT 1208925819614629174706175d

4.3. 7 DUP Operator

Syntax

count DUP (initial-value,)

The DlJP operator is a special operator that can be used with the data
declaration directives and other directives to specify multiple
occurrences of one or more initial values. The count sets the number
of times to define the initial-value. An initial value can be any expres
sion that evalutes to an integer value7 a character constant, or another
DUP operator. If more than one initial value is given, the values must
be separated by commas (,). DUP operators can be nested up to 17
levels.

In the following examples, the first example generates 100 bytes with
the value 1. The second example generates 80 words of data. The first
four words have the values 1, 2, 3, and 4, respectively. This pattern is
duplicated for the remaining words. The third example generates 125
bytes of data, each byte having the value 1. The final example gen
erates 14 doublewords of uninitiafu,ed data.

Examples

datal db
data2 dw
data3 db
data4 dd

100 DUP (1)
20 DUP (1,2,3,4)
5 DUP (5 DUP(5 DUP (1)))
14 DUP (?)

(

'J)pes and Declarations

4.4 Symbol Declarations

The symbol declaration directives let you create and use symbols. A
symbol is a descriptive name representing a number,. te>;:t> an instruc
tion, or an address. Symbols make programs easier to read and main
tain by using descriptive names to represent values. A symbol can be
used anywhere its corresponding value is allowed.

T4" �bol d��laration. directives are listed be10w:

EQU
LABEL

Assign absolutes
Equate absolutes, aliases, or text symbols
Instruction or data labels

4.4.1 Eqnal-Sign (:) Directive

Syntax

name = expression

The equal-sign (=) directive creates an absolute symbol by assigning
the numeric value of expression to name. An absolute symbol is simply
a name that represents a 16-bit value. No storage is allocated for the
number. Instead, the assembler replaces each subsequent occurrence
of the name with the value of the given expression. Tbe value is a vari
able during assembly, but it is a constant at runtime.

The expression can be an integer, a one or two character string con
stant, a constant expression, or an address expression. The
expression's value must not exceed 64K in 8086 and 286 programs or
4G in 386 programs. The name must be either a unique name, or a
name that was previnusly defined using the equal-sign (-) directive.

Absolute symbols can be redefined at any time.

Examples

integer
string
constan texp
addressexp

16728
'ab'
3 * 4
string

4-9

Macro Assembler Reference

4.4.2 EQU Directive

Syntax

name EQU expression

The EQU directive creates absolute symbols, aliases, or text symbols
by assigning the expression to name. An absolute symbol is a name
that represents 16-bit values in 8086 and 286 programs, and 32-bit
values in 386 programs. An alias is a name that represents another
symbol; and a text symbol is a name that represents a character string
or other combination of characters. The assembler replaces each sub
sequent occurrence of name with either the text or the value of the
expression, depending on the type of expression given.

The name must be a unique name, not previously defined. The expres
sion can be an integer� a string constant, a real number, an encoded
real number, an :instruction mnemonic� a constant expression, or an
address expression. Expressions that evaluate to integer values, in the
range 0 to 64K in 8086 and 286 programs or 0 to 4G in 386 programs,
create absolute symbols and cause MASM to replace name with a
value. All other expressions cause the assembler to replace name with
text.

The EQU directive is sometimes used to create simple macros. Note
that the assembler replaces a name with text or a value before attempt
ing to assemble the statement containing the name.

Symbols defined using EQU directive cannot be redefined.

Examples

integer
real
constantexp
memoryop
memoryop
mnemonic
addressexp
string

4-10

EQU 16128 ; replaced with value
EQU 3.14159 ; replaced with text
EQU 3 • 4 ; replaced with value
EQU [b p] ; replaced with text
EQU [ebp) ; replaced with text
EQU mov ; replaced with text
EQU real ; replaced with text
EQU 'Type Enter' ; replaced with text

0

Types and Declarations

4.4.3 LABEL Directive

Syntax

name LABEL type

The LABEL directive creates a new variable or label by assigning the
current location counter value and the given type to name.

Name must be ·unique and.not .previously defined. Type can b.e any one
of the following:

BYTE

WORD

DWORD

FWORD

QWORD

TBYTE

NEAR

FAR

Type can also be the name of a valid structure type.

Examples

subroutioe LABEL
barray LABEL

FAR
BYTE

4-11

Macro Assembler Reference

4.5 Structure and Record Declarations

The STRUC, ENDS, and RECORD directives define data types that
can be used to create variables that consist of multiple elements. The
directives data types associate one or more elements to a given struc
ture or record name.

The structure and record declaration directives are listed below:

STRUC and ENDS
RECORD

Structure declarations
Record types

4.5.1 Defining Structures

Syntax

structuretype STRUC
fieldindentifiers

structuretype ENDS

The STRUC and ENDS directives declare the beginning and end of a
strncture. The STRUC and ENDS directives define the name and type
of a structure and the default values of the fields contained in the
structure.

The structuretype defines the type and name of the structure. The name
must be unique. The fieldlndentifters define the name and type of each
field. Each fieldindentifler can be one of the following:

ffreldname� DB inuwlvalue,
ffieldname D W lnitialvalue,
ffieldname DD initWlvalue,

ldnameJ DF initWlvalue,
namej DQ initWlvalue,
name DT initWivalue,

The optional fieldname defines the name of each field; the DB, DW,
DD, DF, DQ, or DT directive defines the type of each field, and ini
tialvalue defines the value given to each element when the variable is
declared. Each fieldname must be unique, and ODGe defined,
represents the offset from the beginning of the structure to the
corresponding field. The initialvalue can define a number, character or
string constant, or symbol. It may also contain the DUP operator to
define multiple values. If the initialvalue is a string constant, the field
contains the same number of bytes as characters in the string. If multi
ple initialvalues are given, each inuwlvalue must be separated by a
comma (,).

4-12

G

Types and De clara lions

A structure can contain fieldindentifiers and comments only. It can
not contain any other statements. Therefore, structures cannot b e
nested.

In the following example, the structure type and name is "TABLE"
and the fieldindentifiers are "COUNT" , "VALUE" , and "NA?vrE" .
The "COUNT" field is a single byte value initialized to 10. The field
"VALUE" is an array of 10 uninitialized word values. The field
"NA:ME" is a character array of 5 bytes initialized to 'cFONT3'� . The
fieldiizdiiiztifiers "COUNT" , "VALUE" , -arid - ·"NAME" have - the
offset values 0, 1 and 21, respectively.

Example

TABLE
COUNT
VALUE
NAME
TABLE

STRUC
DB 10
DW 10 DUP (?)
DB 'FONT3'
ENDS

4.5.2 Declaring Structures

Syntax

[variablename] structurename < [initial-value],, >

A variable can contain a structure of one or more fields of different
sizes. The variablename is the name of the symbol, structurename is
the type of structure created by the STRUCT and ENDS directives,
and initial- value is one or more values defining the initial value of the
structure's field(s). One initial-value can be given for each field in the
structure.

The variablename is optional. If variablename is not given, MASM
allocates space for the structure, but does not create a name that you
can use to access the structure.

The initial-value can be an integer, string constant, or expression that
evaluates to a value having the Saine type as the corresponding field.
The angle brackets (< >) are required even if no initial-value is given.
If more than one initial-value is given, the values must be separated
with commas (,). If the DUP operator is used, only the values within
the parentheses need to be enclosed in angle brackets.

4-13

Macro Assembler Reference

You do not have to initialize all fields in a structure. Jf an initial value
is left blank, MASM automatically uses the default initial value of the
field, which was originally determined by the structure type. Jf there is
no default value, the field is uninitialized. The "Structure Operands"
section in the "Operands and Expressions" chapter illustrates several
ways to use structure data after they have been declared.

Note

You cannot initialize any structure field that has multiple values if
the field was given a default initial value when the structure was
defined. For example, assume the following structure definition:

strings

strings

STRUC
BUFFER db 100 dup (?)
CRLF db 13, lO
QUERY db 'Filename: '
ENDMARK db 36
ENDS

; Can't override
; Can't override
; String <- can override

The "BUFFER,, and "CRIF" variables cannot be overridden
because they have multiple values. The "QUERY" variable can be
overridden as long as the overriding data are no longer than
"QUERY" (10 bytes). Similarly, the ''ENDMARK" filed can be
overridden by any byte value.

The first example creates a variable named "STRUCT1" . All fields of
the structure are intialized with "TABLE" default values. The second
example creates a variable named "STRUCT2" that contains one
structure of type "TABLE" . The first field of "STRUCT2" is initial
ized to zero, the remaining fields are intialized to their corresponding
default values. The final example creates a variable named
"STRUCI'3" that contains 10 structures of the type "TABLE" . The
first field in each structure is set to the initial value 0. The remaining
fields are set to the default values.

Examples

STRUCI'1 TABLE
STRUCT2 TABLE
STRUCT3 TABLE

4-14

<>
<0,>
10 DUP(<0,>)

(

Types and Declarations

4.5.3 Deflnlng Records

Syntax

recordtype RECORD fwJdname:width [=expression],,

The RECORD directive defines an 8- or 16-bit record that contains
one or more fields. The recordtype is the type and name of the record,
fieldname is the name of a field in the record, width is the number of
bits in the field, and expression is the initial (or default) value .for the
field.

Any number of fielil.:width=expression combinations can be given for a
record, as long as each is separated from the preceding with a comma
(,). The sum of the widths for all fields must not e�Ceeed 16 .

The width must be an integer value in the range 1 to 16. If the total
width of all declared fields is larger than 8 hits, then the assembler
allocates 2 bytes to the field. Otherwise, only 1 byte is allocated.

If =expression is given, it defines the initial value for the field. If the
field is at least 7 bits wide, you can use an ASCII character for expres·
sion. The expression must not contain a forward reference to any sym
bol. If the =expression is not given, the RECORD directive does not
allocate any space.

Jn all cases, the first field you declare goes into the most significant bits
of the record. Successively declared fields are placed in the succeed
ing bits to the right. If the fields you declared do not total exactly 8
bits, or exactly 16 bits, the entire record is shifted right so that the last
bit of the last field is the lowest bit of the record. Unused bits will be
initiallzed to 0 in the high end of the record.

The first e>rnmple creates a record of type "ENCODE" that contains
three fields: "HIGH" , "MID" , and "LOW" . Each variable declared
with the record of type "ENCODE" will occupy 16 bits of memory.
The field "HIGH" is in bits 6 to 9, field "MID" in bits 3 to 5, and field
"LOW" in bits 0 to 2. The remaining high-order bits are unused. The
bit diagram below shows the record of type "ENCODE" •

(J()O(XXJ
765432

hi mid
0000 000
1076 543

lo
000
210

4-15

Macro Assembler Reference

The second example creates a record of type "ITEM:'' that contains
two fields: "CHAR" and "WEIGHT" . The two fields are initialized
with the default values of the letter Q and the number 2, respectively.
Unused bits are set to 0. The bit diagram below shows the record of
type "ITEM" .

char wt.
00000 1010001 0010
76543 2107654 3210

Examples

ENCODE RECORD HIGH:4, MID:3, LOW:3
ITEM RECORD CIIAR:7-'Q', WEIGHT:4-2

4.5.4 Declaring Records

Syntax

[variablename] recordtype < [initial-value],, >

A variable can contain a 8� or 16�bit record whose bits are divided
into one or more fields. The variablename is the name of the variable,
recordtype is the type and name of the record that has been created
using the RECORD directive, and initial- value is one or more values
defining the initial value of the record. One initial· value can be given
for each field in the record.

The variablename is optional. If no variablename is given, MASM allo
cates space for the record, but does not create a variable that can
access the record.

The initia!- value can be an integer7 string constant, or any expression
that evaluates to a value no larger than can be represented in the
specified field width when the record was defined. Angle brackets (<
>) are required even if no initial value is given. If more than one ini
tial value is given, the values must be separated with co=as (,). If
the DUP operator is used, only the values within the parentheses need
to be enclosed in angle brackets. You do not have to initialize all
fields in a record. If an initial value is left blank, MASM automatically
uses the default initial value of the field. If there is no default value,
then the field is uninitialized.

4-16

Types and Declarations

The first example creates the variable "REC1" containing the record of
type "ENCODE" . The initial values of the fields in the record are ini
tialized to the default values defined in the record. The second exam
ple creates the variable "TABLE" that contains 10 records of type

("ITEM" . The fields in these records are all set to the initial values A
\ and 2. The bit diagram shows one of the 10 bytes created:

0

00000
76543

char
1000001
2107654

wt.
0010
3210

The final example creates the variable "PASSKEY'' that contains the
record of type "ENCODE" . The first two fields of the variable are
initialized with the default values defined for the record. The last field
is initialized with the initial value of "7" . The following bit diagram
shows the variable's contents:

00000
76543

hi
00000
21076

Examples

mid lo
000 111
543 210

REC1
TABLE
PASSKEY

ENCODE
ITEM
ENCODE

<>
10 DUP(<'A',2>)
<,7>

4-17

i , _

I

(
Chapter 5
Operands and Expre ssions

5.1 · Introduction 5-1
5.2 Operands 5-1

5.2.1 Constant Operands 5-2
5.2.2 Direct Memory Operands 5-2
5.2.3 Relocatable Operands 5-3
5.2.4 Location Counter Operand 5-3
5.2.5 Register Operands 5-4
5.2.6 Memory Operands 5-5
5.2. 7 Structure Operands 5-7
5.2.8 Record Operands 5-9
5.2.9 Record Field Operands 5-10

5.3 Operators and Ex:pressions 5-11
5.3.1 Arithmetic Operators 5-11
5.3.2 SHR and SHL Operators 5-13
5.3.3 Relational Operators 5-13
5.3.4 Bitwise Operators 5-14
5.3.5 Index Operator 5-15
5.3.6 JYfR Operator 5-15
5.3.7 Segment Override (:) Operator 5-16
5.3.8 Structure Field-Name Operator 5-17
5.3.9 SHORT Operator 5-17
5.3.10 THJS Operator 5-18
5.3.11 HIGH and LOW Operators 5-19
5.3.12 SEG Operator 5-20
5.3.13 OFFSET Operator 5-20
5.3.14 TYPE Operator 5-21
5.3.15 .TYPE Operator 5-21
5.3.16 LENGTH Operator 5-22
5.3.17 SIZE Operator 5-23
5.3.18 WIDTH Operator 5-23
5.3.19 MASK Operator 5-24
5.3.20 Ex:pression Evaluation and Precedence 5-25

5.4 Forward References 5-26
5.5 Strong Typing for Memory Operands 5-28

(

0

Operands and Expressions

5.1 Introduction

This chapter describes the syntax and meaning of operands and expres
sions used in assembly language statements and directives. Operands
represent values, registers, or memory locations to be acted on by
instructions or directives. Expressions are combinations of operands
and arithmetic, logical, bitwise, and attribute operators to calculate a
value or memory location that can be acted on by an instruction or
directiye. Operators indicate w1J.at ope:rations will be performed OJ1 one
Or ID.ore valUes in an· eXpfeSsiml to calculate . the value of the eXpres
sion.

5.2 Operands

An operand is a constant, label, variable, or other symbol that is used
in an instruction or directive to represent a value, register, or memory
location to be acted on.

The operand types are listed below.

Constant

Direct Memory

Relocatable

Location Counter

Addressing

Register

Structure

Record

5-1

Macro Assembler Reference

5.2.1 Constant Operands

Syntax

number I string I expression
A constant operand is a number, string constant, symbol, or expres
sion that evaluates to a fixed value. Constant operands, lllllike other
operands, represent values to be acted on, rather tban memory
addresses.

In tbe following examples, note tbat "COUNT" is a constant only if it
was defined witb the EQU or equal-sign (-) operator, If "COUNT" is
a symbol representing a relocatable valne or address, it is not a con
stant but a direct memory operand.

Examples

mov bx, 65535/3
mov ax, 9
mov dx, 987/4
mov al, 'c'
mov eax, 1048576
mov ebx, 65535 • 20
mov ecx, COUNT

5.2.2 Direct Memory Operands

Syntax

segment : offset

A direct memory operand is a pair of segment and offset values that
represents tbe absolute memory address of 1 or more bytes of memory.
The segment can be a segment register name (CS, SS, DS, ES, FS, or
GS), a segment name, or a group name. The offset must be an
integer, absolute symbol, or expresSIOn tbat evaluates to a value within
tbe range 0 to 64K in 8086 or 286 programs and 0 to 4G in 386 pro
grams.

Examples

5-2

mov dx, SS:0031ll
mov bx, data:O
mov ex, dgroup:block

(\

Operands and Expressions

5.2.3 Relocatable Operands

Syntax

symbol

A relocatable operand is any symbol that represents the memory
address (segment and offset) of an iostruction or data to be acted on.
Relocateble operands, unlike direct memory operands, are relative to
the start of the segment or group in which the symbol is defined and
have no explicit value until the program has been lioked.

In the followiog examples, note that "COUNT" is a relocatable
operand only if it was defined with the DW directive. If "COU:>!T"
was defined with the EQU or equal-sign (-) operator, it is a constant.

The size of a symbol (16--, 32-, or 48-bits) is derived from the address
ing mode. If 16-bit addressing is used, symbols are 16-bits. If 32-bit
addressiog is used, symbols are 32-bits.

Examples

call main
mov bx:, loop
mov ex, offset dgroup:Jist
mov ebx, local
mov ebx, offset dgroup:table

_ mov ecx, _ COUNT

5.2.4 Location Counter Operand

Syntax

$

The location counter is a special operand that, during assembly,
represents the current location within the current segment. The loca
tion counter has the same attributes as a near labeL It represents an
instruction address that is relative to the current segment. Its offset is
equal to the number of bytes generated for that segment to that point.
After eru::h statement io the segment has been assembled, the assem
bler increments the location counter by the number of bytes generated.

5-3

Macro Assembler Reference

In the followmg example, the location counter forces the assembler to
count the total length of a group of declared strings, saving the pro
grammer the trouble of counting each byte.

Example

help db
f1 db
f2 db

.
flO db
distance -

'Program options:',13,10
' fl This help screen',13,10
' f2 Save file',l3,10

' flO Exit program',13,10,'$'
$-help

5.2.5 Register Operands

Syntax

register .. name

A register operand is the name of a register. Register operands
direct instnletions to carry out actions on the contents of the given
registers. The register· name can be any one of the following operands.

Register Operands

EAX AX AH AL EBX BX BH BL
ECX ex CH CL EDX DX DH DL
ESI Sl EDI DI EBP BP ESP SP
cs ss DS ES FS GS CRO CR2
CR3 DRO DRl DR2 DR3 DR4 DRS DR6
DR7 TR6 TR7

Any combination of upper and lowercase letters is allowed.

The EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP registers are
32-bit general purpose registers. These registers can be used for data
or numeric manipulation only with the 386 instruction set. The AX,
BX, CX, DX, SI, DI, BP, and SP registers are 16-bit general purpose
registers. These registers can be used for data or numeric manipula
tion with the 8086, 286, or 386 instruction set.

5-4

c�

Operands and Expressions

The AH, AL, BH, BL, CH, CL, DH, and DL registers represent the
higher 8 bits and lower 8 bits of the AX, BX, CX, and DX registers.
These registers offer additional flexibility for data or numeric manipula
tion. Similarly, they can be used with any instruction set.

The CS, SS, DS, ES, FS, and GS registers are 16-bit segment selector
registers that contain the current code, stack, and data segments. The
CS register cOntains the current code segment; The SS register con
t�_s -�� clll!e.nt _sta�k s€?gm�nt; and,_ the _p_s, ES, F�,_ -�nd 9.�_ .regis_t�rs
contain data segments.

Note

The FS and GS segment registers are accessible only in 386 pro
grams.

The CRO, CR2, CR3, DRO, DR1, DR2, DR3, DR4, DR5, DR6,
PR7, TR6, and TR7 registers are 32-bit control, debug, and test regis
ters. These registers can only be used with the 386 instruction set.

5.2.6 Memory Operands

Syntax

base + [index] + [displacement]

base + [(index • scale)] + [displacement]

Memory operands calculate the effective address. When the 8086 or
286 instruction set is enabled, the effective address is calculated by
summing the base, index, and the displacement. When using the 386
instruction set, the effective address is calculated-by summing the base,
index multiplied by the scale, and the displacement.

The base can be a register, symbol, or constant. If the 8086 or 286
instruction set is enabled and only one register operand is used, then
the base register can be any one of the BP, BX, DI, or SI registers. If
two register operands are used, then the base register can only be the
BP or BX register. Although if the 386 instruction set is enabled, then
the base register can be any 16- or 32-bit general purpose register.

Macro Assembler Reference

The index can be a register or constant. If two-register addressing
modes used and the 8086 or 286 instruction set is enahled, then the
index can be either the DI or SI register. If the 386 instruction set is
enabled, then the inikx can be any 16- or 32-bit general purpose regis
ter, except the ESP register.

The scak is an integer multiplied to the index. In 8086 and 286
addressing modes, the scale cannot be multiplied to the index to find
the effective address. Although in 386 addressing modes, the index
can be multiplied by one of the following integer values: 1, 2, 4, or 8.

The displacement can be added to both 8086, 286, and 386 addressing
mode instructions. In 8086 and 286 addressing modes, the displacement
can be an 8- or 16-bit integer value. In 386 addressing modes, the dis
placement can be an 8-- or 32-bit integer value.

The following examples show addressing modes for tbe 8086, 286, and
386 instruction sets. The first set is limited to 8086 and 286 addressing
modes and the last set is limited to 386 addressing modes.

Examples

m.ov ax, const ; 8086 and 286 addressing modes
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

ax, mem
ax� bx
ax, f bx]
ax, di]
ax. r bx - 32]
ax, 32 [di]
ax, mem [si I
ax, [si + mem]
ax, [bp J l di]
ax, mem [bx + 5] [si - 2]
ax, [bx + di - 32]

mov eax, const ; 386 addressing modes
mov
mov
mov
mov
mov
mov

eax, mem
eax, [eax]
eax, mem T eax]
eax, [ebp + eax 64]
eax, [ebp + eax * 4 - 64]
eax, mem [eax • 4]

'·

\'-

Operands and Expressions

5.2. 7 Structure Operands

Syntax

variable.field

A structure operand represents the memory address of one member of
a structure. The variable must be tile name of a structure or must be a
memory operand that resolves to lite address of a structure, and field
must be tile name of a field witllin tllat structure. The varillble is
separated from field ·by the ·structure field-name operator (.), which is
described in a following section.

The effective address of a structure operand is tile sum of tile offsets
of varillble and field. The address is relative to tile segment or group
in which tile vario.bk is defined.

The firSt example creates the structure and variable "DATE" and
"CURRENTJ)ATE" , and then puts "31" (tile value of
"CURRENTJ)A TE.DA Y") in tile AX register. Tile next instruction
puts tile value "86" in tile symbol "CURREI'-.'TJ)ATE.YEAR" .

fu. tile second and tltird CXIlillples, structure operands are used to
access values on the stack, first with tile 286 instruction set and tlten
with the 386 instruction set.

Note

The following procedures do not conform to the method of passing
parameter& used in Microsoft high-level languages.

Examples

date struc
month
DAY
YEAR

date ends

dw ?
dw ?
dw ?

; First example

CURRENTJ)ATE date <'de','31','63'>
MOV AX, CURRENTJ)ATE.DAY
mov CURRENTJ)ATE.YEAR, '86'

5-7

Macro Assembler Reference

stframe
retadr
dest
source
nbytes

stframe ends

copy

copy

stframe struc
retadr
dest
source
nbytes

stframe end.'i

copy

.286
struc
dw
dw
dw
dw

proc
mov
mov
mov
mov
mov
mov
rep
ret
endp

.386

dd
dd
dd
dd

proc
mov
mov
mov
mov
mov
mov
rep
ret

?
?
?
?

near
bx,sp
ax,ds
es,ax
di,ss:Jbx].dest
si,ss:(bx].source
cx,ss:Jbx].nbytes
movsb

?
?
?
?

near
ebx, csp
eax, ds
es, eax
edi, ss:[ebxrdest
esi, ss:[ebx .source
ecx, ss:[ebx].nbytes
movsb

; Second example
; Enable 286 instructions
; Stack fra:me
; From lowest ...

; ... to highest address

; Push nbytes, source, dest before call
; Load stack into base register

; (es) = data segment
; (di)- destination
; (si)- source
; (ex)= nbytes
; Move bytes from ds;esi to es:di

; Third example
; Enable 386 instructions
; Stack frame
; From lowest

; ... to highest address

; Push nbytes, source, dest before call
; Load stack into base register

; (es) = data segment
; (edi) = destination
; {esi} - source
; (ecx) = nbytes
; Move bytes from ds:esi to es:edi

\

(', 1�)

Operands and Expressions

5.2.8 Record Operands

Syntax

variablenamerecordtype < [initial-value], >

A record operand refers to the field values in a record. The varia�
blename is !he name of the variable containing the record. The record
type is !he type and name of !he record defined in the source file. The
optionaJ initilil-value is !he value of the field ih the record. If more
than one initial-value is given, the values must be separated by com
mas (,). The initial-value is an expression or variable that evaluates to
a constant. The enclosing angle brackets (< >) are required, even if no
initial- value is given. If no initial- value for a field is given, the default
value for that field is used. For the example, assume the following
record definition:

encode recqrdhi:4, mid:3, Io:3

The examples shows a constant with the value 209 (OD1h) move ioto
the AX register. The following bit diagram illustrates the value.

h i m i d l o
0 0 0 0 0 0 0 011 1. 0 1 0 0 0 1
7 6 5 4 3 2 1 017 6 5 4 3 2 1 0

Using record operands is similar to declaring a record and then using
the declared data except that, in using recqrd operands, you are osi!lg
constant data. See the chapter "TypeS and Declarations" for informa
tion on declaring record data.

Example

reel encode <3J2, 1>
mov AX1 reel

5-9

Macro Assembler Reference

5.2.9 Record Field Operands

Syntax

record-fte/il.name

The record field operand represents the location of a field in its
corresponding record. The operand evaluates to the bit position of the
low-order bit in the field and can be used as a constant operand.

The record-fieldname must be the name of a previously defined record
field. For the example, assume the following record definition and
declaration:

encode recordhi:4, mid:3, lo:3
RECl encode <9, 7, 4>

At this point "RECl" has a value of 636 (27Ch), shown in the bit
diagram.

h i m i d l o
value 0 0 0 0 0 0 1 OIJ 1 1 1 1 1 0 0
bb 7 6 5 4 3 2 1 0P 6 5 4 3 2 1 D

The example then copies n6" , the shift count for "HI" , to register
CL. The contents of "REC1" are then copied to DX. The shift count
of filed three ("HP' ? is next used to rotate the value of "REC1" so
that the value of "UP is now at the lowest bit. The new value is then
put back into "RECl" . At this point "REC1" has a value of 61449
(OF009b), as shown in the bit diagram below.

h i m i d l o
value 1 1 1 1 0 0 0 OIJ 0 0 0 1 0 0 1
bb 7 6 5 4 3 2 1 0P 6 5 4 3 2 1 o

Example

5-10

mov CL, HI
mov DX, RECl
ror DX, CL
mov RECl, DX

(

Operands and Expressions

5.3 Operators and Expressions

An expression is a combination of operands and operators that evalu
ates to a single value. Operands in expressions can include any of the
operands described in this section. The result of an expression can be
a value or a memory location, depending ou the types of operands and
operators used.

MASM provides a variety of operators. Arithmetic, shiftt relational,
an.d bitwise operators manipulate and compare the values of operands.
Attribute operators manipulate the attnbutes of operaads, such as
their type, address, and size.

The first few sections in thls chapter describe the arithmetic, rela
tional, and logical operators in detail. Following sections descnbe
attribute operators. In addition to the operators descnbed here, you
can use the DUP operator (see the "Types and Declarations" chapter)
and the special macro operators {see the HMacl'os" chapter).

5.3.1 Arithmetic Operators

Syntax

expressionl • expression2
expression! I expression2
expressionl MOD expression2
expression! + expression2
expressionl - expression2
+ expression
- expression

Arithmetic operators perform common mathematical operations. The
following table lists the operators and their function.

Arithmetic Operators

Operator
•

I
MOD

+

+

Function
Multiplication .
Integer division.
Remainder after division (modulus).
Addition.
Subtraction.
Positive (unary).
Negative (unary).

5-11

Macro Assembler Reference

For all arithmetic operators =ept + and -, the expressions expres
sionl and expression2 must be integer values. The + operator can be
used to add an integer value to a relocatable memory operand. The -
operator can be used to subtract an integer number from a relocatable
memory operand. The - operator can also be used to subtract one
relocatable operand from anotber, but only if the operands refer to
locations within tbe same segment. The result is an absolute value.

Note

The unary plus and minus (used to designate positive or negative
uUillbers) are not tbe same as the binsry plus and minus (used to
designate addition or subtraction) . The unary plus and minus have
a higher level or precedence, as shown in the section on "Expres
sion Evaluation and Precedence" in this chapter.

Examples

14 • 4
14 I 4
14 MOD 4
14 + 4
14 - 4
14 - +4
14 - -4
alpha + 5
alpha - 5
alpha - beta

5-12

; Equals 56
; Equals 3
; Equals 2
; Equals 18
; Equals 10
; Equals 10
; Equals 18
; Add 5 to alpha's memory location
; Subtract 5 from alpha's memory location
; Subtract beta's memory location from alpha's

(

5.3.2 SBR and SHL Operators

Syntax

expression SHR count
expression SHL count

Operands and Expressions

The SHR and SHL operators shift the given expression right or left by
count bits. Depending on the size of the register containing the expres·
sion, bits can shift off the·end of the register. For example, if count is
greater than or equal to 16 when shifting a 16-bit register, then the
result is 0.

Examples

mov AX, 01110111b SHL 3
mov AH, 01110111b SHR 3

5.3.3 Relational Operators

Syntax

expression] · EQ expression2
expression] NE expression2
expressionl LT expreseion2
expression] LE expre.ssion2
expression] GT expre.ssion2
expre.ssionl GE expression2

; equals ()(](XXJ()1110111000b
; equals 00001110b

The relational operators compare expression] and expression2 and
return true (OFFFFH) if the given condition is satisfied, or false
(OOOOH) if it is not. The following table lists the operators and the
condition to be satisfied.

Relational Operators

Operator
EQ
NE
LT
LE
GT
GE

Condition is satisfied when:
Operands are equal.
Operands are not equal.
Left operand is less than right.
Left operand is less than or equal to right.
Left operand is greater than right.
Left operand is greater than or equal to right.

Relational operators are typically used with conditional directives and

Macro Assembler Reference

conditional instructions to direct program control.

Enmples

1 EQ 0
1 NE 0
1 LT 0
1 LE 0
1 GT 0
1 GE 0

5.3.4 Bitwise Operators

Syntax

NOT expression

; False
; True
; False
; False
; True
; True

expression] AND expression2
expression] OR expression2
expression] XOR expression2

The logical operators perform bitwise operations on expressions. In a
bitwise operation, the operation is performed on each bit in an expres
sion rather than on the expression as a whole.

The following table llsts the logical operators and their meanings:

Logical Operators

Operator
NOT
AND
OR
XOR

Examples

Meaning
Inverse.
Boolean AND.
Boolean OR.
Boolean exclusive OR.

NOT lllliXXXJb

5-14

01010101B AND 11111XXXJb
01010101B OR 11110000b
01010101B XOR. 11110000b

; equals 000011llb
; equals 01011XXXJb
; equals 11110101b
; equals 10100101b

5.3. 5 Index Operator

Syntax

[expression!] [expresslon2]

Operands and Expressions

The :index operator, [], adds the value of expression] to expression2.
This operator is identical to !he addition (+) operator, except that
expression] is optional.

If expression] is given, !he expression m1lst appear to the left of !he
operator. It can be any :integer value, absolute symbol, or relocatable
operand. If no expressiorrl is given, !be integer value, 0, is assumed.
Jf expressionl is a relocatable operand, e:xpression2 must be an integer
value or absolute symbol. Otherwise, e:xpression2 can be any :integer
value, absolute symbol, or relocatable operand.

The :index operator is typically used to index elements of an array,
such as :individnal characters in a character string,

Examples
mov al, string[3]
mov eax, array[4]
mov string[last], a!
mov cl, dgroup:[l]

5.3.6 PTR Operator

Syntax

type PTR expression

; Move 4th element of string
; Move 5tb element of array
; Move :into last element
; Move 2nd byte of dgroup

The PTR operator forces the variable or label given by !be expression
to be treated as a variable or label having !be type given by type. The
type must be one of !he following names or values:

BYTE
WORD
DWORD
FWORD
QWORD
TBYTE
NEAR
FAR

1
2
4
6
8
10
OFFFFb
OFFFEh

5-15

Macro Assembler Reference

The expression can be any operand. Tbe BYTE, WORD, DWORD,
FWORD types can be used with memory operands only. The NEAR
and FAR types can be used with labels only.

The PTR operator is typjcally used with forward references to explicitly
define what size or distance a reference has. If it is not used, MASM
assumes a default size or distance for the reference. The PTR operator
is also used to give instructions access to variables in ways th.at would
otherwise generate errors. For example, you could use the PTR opera
tor to access the high-order byte of a WORD size variable.

Note
The FWORD PTR conversion can be used to do 386 far-indirect
<;alls. For example, the first call is a near call, but the second call
is a far call.

call array[ebx] callfword ptr [ebx)

In the following examples the PTR operator overrides a previous data
declaration. The procedure "SlJBROUT3" might have been declared
NEAR, while "ARRAY" and "FULI.�WORD" could have been
declared with the DW directive.

Examples

call far PTR SUBROUT3
mov byte PTR [ARRAY], 1
add al, byte PTR [FULL... WORD]

5.3. 7 Segment Override (:) Operator

Syntax

segment- register : expression
segment-name : expression
group- narrre : expression

The segment override operator {:) forces the address of a given vari
able or label to be computed using the beginning of the given segment
register, segment- name, or group-name. If a segment-narrre or group
name is given, the name must have been assigned to a segment register
with a previous ASSUME directive and defined using a SEGMENT or

5-16

c�

Operands and Expressions

GROUP directive. The expression can be an absolute symbol or relo
catable operand. The segment-register must be one of CS, SS, DS, ES,
FS, or GS.

By default, the effective address of a memory operand is computed
relative to the DS, SS, or CS register, depending on the instruction
and operand type. Similarly, all labels are assumed to be NEAR.
These default types can be overridden using the segment override
operator.

Examples

mov _text:farJabel, eax
mov eax, dgroup:variable
mov al, CS :0001H

5.3.8 Structure Field-Name Operator

Syntax

symbol. field

The structure field-name operator (.) is used to designate a field within
a structure. The symbol is an symbol operand of the structure type
and field is the name of a field within the structure. This operator is
equivalent to the addition operator (+).

Example

inc month.day
mov time.min, 0
mov [bx].dest, 0
mov [eax].dest, 0

5.3.9 SHORT Operator

Syntax

SHORT label

The SHORT operator sets the type of the given label to SHORT.
Short labels can be used in jump instructions whenever the distance
from the label to the instruction is not more than 127 bytes.

5-17

Macro Assembler Reference

Instructions using short labels are 1 byte smaller than identical instruc
tions using near labels.

Note

1n 386 programs, use the SHORT operator on conditional jumps
less than 128 bytes.

Example

jmp SHORT do_again ; Jump less than 128 bytes

5.3. 10 THIS Operator

Syntax

THIS type

The THIS operator creates an operand whose offset and segment value
are equal to the current location counter value and whose type is given
by type. The type can be any one of the following:

NEAR

BITE

DWORD

QWORD

FAR

WORD

5-18

"\.

(
\,

Operands and Expressions

FWORD

TBYTE

The THIS operator is typically used with the EQU or equal-sign (�)
directive to create labels and symbols. This is similar to using the
LABEL directive to create labels and symbols,

In the following, the first and second examples are equivalent in opera
tion. Similarly, the third and fourth examples are also equivalent.

Examples

tag EQU THIS BYTE
tag LABEL BYTE
check = this near
check label near

5.3.11 IDGH and LOW Operators

Syntax

HIGH expression
LOW expression

The HIGH and LOW operators return the high and low 8 bits of the
given expression. The HIGH operator returns the high 8 bits of the
expression; the LOW operator returns the low-order 8 bits. The
expression can be any value.

5-19

Macro Assembler Reference

Examples

mov ah, HIGH word_value
mov a!, LOW Offffh

5.3.12 SEG Operator

Syntax

SEG name

The SEG operator returns the segment value of the given name, The
name can be any label, segment name, group name, or symbol.

Example

mov eax, SEG variable_name
mov eax, SEG labeLname

5.3.13 OFFSET Ope";'IOr

Syntax

OFFSET name

The OFFSET operator returns the offset of the given name. The name
can be any label, segment name, or symboL The returned value is tbe
number of bytes between the item and tbe beginning of the segment in
which it is defined. For a segment name, the return value is the offset
from the start of the segment to the most recent byte generated for
that segment.

The segment override operator (:) can be used to force OFFSET to
return the number of bytes between the item in the 11ame and the
beginning of a named segment or group. This is the method used to
generate valid offsets for items in a group, The returned value is
alwa.)'S a relative value that is subject to change by the linker when tbe
program is actually linked.

Examples

5-20

mov bx, OFFSET subrout3
mov ebx, OFFSET subrout3
mov ebx, OFFSET dgroup:array

Operands and Expressions

5.3.14 TYPE Operatnr

TYPE name

The TYPE operatot"returns a ,number representing the type of the
given name. If the nam£ is a variable, the operator returns the size of
the operand in bytes. If the name is a label, the operator returns
OFFFFH if the lahel is NEAR, and OFFFEH if the label is FAR.

As in the second example, note that the return value can be used to
specify the type for a PrR operator.

Examples

mov eax, TYPE array
jmp (TYPE geUoc) PrR destiny

5.3.15 .TYPE Op�rator

Syntax

.TYPE name

The .TYPE operator returns a byte that defines the mode and scope of
the given name. If the name is not valid, .TYPE returns 0.

5-21

Macro Assembler Reference

The next table lists the variable's attributes as returned in bits 0, 1, 5,
and 7 .

• TYPE Operatnr and Variable Attributes

Bit Position
0
1
5
7

lfBit=O
Absolute
Not Data related
Not defined
Local scope

If Bit=l
Program related
Data ralated
Defined
External scope

If both the scope bit and delined bit are zero, the name is not valid.

The . TYPE operatnr is typically used with conditional directives, where
an argument may need tn b e tested to make a decision regarding pro
gram llow.

The following example aets "Z" to 22h (00100010b) . Bit 0 is not set in
"Z" because HX" is not program-related. Bit 1 is set because "X'' is
data-related. Bit 5 is aet because "X" is defined. Bit 7 is not set
because "X" is local. The remaining bits are never set.

Examples

X db 12
Z equ .TYPE X

5.3.16 LENGTH Operatnr

Syntax

LENGTH symbol

The LEKGTH operator returns the number of BYTE, WORD,
DWORD, QWORD, or TBYTE elements in the given symbol. The
size of each element depends on the symbol's defined type.

Only symbols that have been delined using the DUP operator return
values greater than 1. The return value is always the number that pre
cedes the first DUP operator.

5-22

Operands and Expressions

In the following examples, both LENGTH operators retorn 100 to the
ex register. The return value does not depend on any nested DUP
operators.

(Examples

array dw 100 DUP(1)
table dw 100 DUP(1,10 DUP(?))

mov ex, LENGTH array
mov ex, LENGTH table ·

5.3.17 SIZE Operator

Syntax

SIZE .symbol

The SIZE operator returns the total nnmber of bytes allocated for the
symbol. The returned value is equal to the value of LENGTH times
the value of TYPE.

In the following example, SIZE returns 200 to the EBX register.

Example

array dw 100 dup(l)
mov EBX, SIZE array

5.3.18 WIDTH Operator

Syntax

WIDTH record-fteldname I record

The WIDTH operator returns the width (in bits) of the given record
field or record. The record-fteldname must be the name of a record
defined in a field. The record must b e the name of a record.

5-23

Maem Assembler Reference

The :field name represents the bit count. The "FIELD!" field equals 13
(the width of "F1ELD2" pll.IS the width of "FIELD3") while the
''WIDTH" of "FffiLDl" equals 3.

Examples

rtype record field1:3 ,field2:6,field3:7
reel rt)'pe <>
widl WIDTH FIELD! ; Equals 3
wid2 WIDTH FIELD2 ; Equals 6
wid3 WIDTH FIELD3 ; Equals 7
wid4 WIDTH rtype ; Equals 16

5.3.1!1 MASK Operator

S:yntax

MASK record-fieldname I record

The MASK operator returns a bit mask for the bit positions in a
record occupied by the given record field. A bit in the mask contains
a 1 if that b1t corresponds to a record bit. The record-fieldname must
be the name of a record field. All other bits contain 0.

Examples

rtype
reel
ml
m2
to3
m4

5-24

recordfield1:3,field2:6,field3:7
rtype <>

MASK fieldl; Equals EOOOH (1110000000000000b)
MASK field2; Equals 1F80H (1111110000000b)
MASK field3; Equals 003FH (1111111b)

• MASK rtype ; Equals OFFFFH(1111111111111111b)

Operands and Expressions

5.3.20 Expression Evaluation and Precedence

Expressions are evaluated according to the rules of operator pre
cedence and order. Operations of highest precedence are performed
first. Operations of equal precedence are performed from left to right.
This default order of evaluation can be overridden using enclosing
parentheses. Operations in parentheses are always performed before
any adjacent operations. The following table lists the precedence of all
operators. Operators on the same line have equal precedence.

Operator Precedence

Precedence
Highest
1
2
3
4
5
6
7
8
9
10
11
12
13
Lowest

Examples

Operators

LENGTH, SIZE, WIDTH, MASK, (), [], < >
. (structure field-name operator)

PTR, OF.EIT,.EIG, TYPE, THIS
HIGH, LOW
+, - (unary)
•, /, MOD, SHL, SHR
+, - (binary)
EQ, NE, LT, LE, GT, GE
NOT
AND
OR, XOR
SHORT, .TYPE

8 / 4 * 2 ; Equals 4
; Equals 1 8 I (4 • 2)

8 + 4 * 2
(8 + 4) . 2
8 EQ 4 AND 2 LT 3
8 EQ 4 0R 2 LT 3

; Equals 16
; Equals 24
; Equals OOOOH (false)
; Equals OFFFFH (true)

5-25

Macro Assembler Reference

5.4 Forward References

Although MASM permits forward references to labels, segment names,
and symbols, such references can lead to assembly errors if not used
properly. A forward reference is any use of a name before it has been
declared. For example, in the JMP instruction below, the label "TAR- \"-
GET" is a forward reference.

JMP TARGET
mov ax, 0

TARGET:

'Whenever MASM encounters an undefined name in Pass 1, it assumes
that the name is a forward reference. H only a name is given, :MASM
makes assumptions about that name's type and segment register, and
uses these assumptions to generate code or data for the_ statement.
For example, in the Jrv!P instruction above, :MASM assumes that
"TARGET" is an instruction label having NEAR type. If the 8086 or
286 instruction set is enabled, :MASM generates 3 bytes of instruction
code for the instruction. Otherwise, MASM generates 5 bytes of code
for the 386 instruction set.

:MASM bases its assumptions on the statement containing the forward
reference. Errors can occur when these assumptions are incorrect.
For example, if "TARGET" were really a FAR label and not a NEAR
label, the assumption made by MASM in Pass 1 would cause a phase
error. In other words, MASM would generate 5 (7) bytes of instruction
code for the JMP instruction in Pass 2 but only 3 (5) in Pass 1.

5-26

(

Operands and Expressions

To avoid errors with forward fl'ferences, the segment override (:),
PTR, and SHORT operators should be used to override the assump
tions made by MASM whenever necessary. The following guidelines
list when these operators &hould be used.

• If a forward reference is a variable that is relative to the DS, SS,
or CS register, then use the segment override operator (:) to
specify th� variable's segment register, segment,

_.�� -�
oup.

Example

mov eax, SS:stacktop
inc data:tirne[l]
add eax, dgroup:J

If the segment override operator is not used, MA.SM assumes
that the variable is DS relative.

• If a forward reference is an instruction label in a JMP instruc
tion, then use the SHORT operator if the instruction is less
than 128 bytes from the point of reference.

Example

jmp SHORT target

If SHORT is not used, MASM assumes that the instruction is
greater than 128 bytes away. This does not cause an error, but
it does cause MASM to generate an extra� and unnecessary,
NOP instruction.

Note

In the event a NOP instruction is generated, MASM gen
erates a warning message.

• If a forward reference is an instruction label in a CALL or JMP
instruction, then use tbe PTR operator to specify the label's
type.

5-27

Macro Assembler Reference

Examples

CALLFAR PTR print
JMP JI,'EAR PTR exit

MASM assumes that the label has NEAR type, so PrR need not
be used for NEAR labels. If the label has FAR type, however,
and PfR is not used, a phase error will result.

• If the forward reference is a segment name with a segment over
ride operator (:), use the GROUP statement to associate the
segment name with a group name, then use the ASSUME state
ment to associate the group name with a segment register.

Example

dgroup

code

segment stack
ASSUME ss: dgroup

segment

mov ax, stack :stacktop

If you do not associate a group with the segment name, MASM
ma:y ignore the segment override and use the default segment
reg�ster for the variable. This umally results in a phase error in
Pass 2.

5.5 Strong Typing for Memory Operands

MASM carries out strict syntsx checks for all instruction statements,
ineluding strong typing for operands that refer to memory locations.
This means that any relocatable operand used in an instruction that
operates on an implied data type must either have that type, or have
an explicit type override (PTR operator).

For example, in the following program segment, the variable
"STRlNG" is incorrectly used in an move instruction.

string db "A message."
mov eax, STRING{l]

5-28

('

i ·

0

Operands and Expressions

The preceding statement will create an "Operand types must match"
error since "STRING" has BYTE type and the instruction expects a
variable having WORD type.

To avoid this error, the PTR operator must be used to override the
variable's type. The following statement will assemble correctly and
execute as expected.

mov eax, dword PTR STRING[1]

5-29

I
'

C hapter 6
Global Declarations

6.1 Introduction ·6-1
6.2 PUBLIC Directive 6-1
6.3 EXTR.'I Directive 6-2
6.4 Program Example 6-3

Global Declarations

6.1 Introduction

The global-declaration directives allow you to define labels, and sym
bols that can be accessed globally, that is, from all modules in a pro
gram. Global declarations transform "local" symbols {labels, vari
ables, and other symbols that are specified to the source files in which
they are defined) into "global" symbols that are available to all other
modules of the program.

The two J!lobaJ-declirraiion directives are PUBLIC and EXTRN . . The
PUBLIC directive is used in public declarations, which transform a
locally defined symbol into a global symbol, making it available to
other modules. The EXTR:'I directive is used in external declarations,
making a global symbol's name and type known in a source file so that
the global symbol be used in that file. Every global symbol must have
a public declaration in exactly one source file of the program. A glo
bal symbol can have external declsrations in any number of other
source files.

6.2 PUBLIC Directive

Syntax
PUBLIC name,,

The PUBLIC directive makes the label or absolute symbol specified by
name available to all other modules in the program. The name must
be the nll!lle of a label or absolute symbol defined within the current
source file. Absolute symbols, if given, can only represent 1- or Z
byte integer or string values.

MASM converts all lowercase letters in name to uppercase before copy
ing the name to the object file. The - Ml and • Mx options can be used
in MASM command lines to direct MASM to preserve lowercase letters
when copying to the object file.

The values declared public in this enmple include an absolute symbol,
a variable, a label, and a procedure.

Example

PUBLIC true, test, start
true Offffh
test db 1
start label far
clear proc near

6-l

Macro Assembler Reference

6.3 EXTRN Directive

Syntax

BXTRN name:type ,,,

The EXTRN directive defines an external variable, label, or symbol of
the specified name and type. An external item is any variable, label, or
symbol that has been declared with a PUBLIC directive in another
module of the program.

The type must match the type given to the item in its actual definition.
It can be any one of the following:

BYrE
DWORD
QWORD
NEAR
ABS
WORD
FWORD
TBYrE
FAR

The ABS type is reserved for symbols that represent absolute
numbers.

Although the actual address is not determined until the object files are
linked, the assembler may assume a default segment for the external
item, based on where the EXTRN directive is placed in the module.
If the directive is placed inside a segment, the external item is assumed
to be relative to that segment. And, the item's public declaration (in
some other module) must be in a segment having the same name and
attributes. If the directive is outside all segments, no assumption is
made about what segment the item is relative to, and the item's public
declaration can be in any segment in any module. In either case, the
segment override operator (:) can be used to override the defaults seg
ment of an external variable or label.

6-2

Examples

EXTRN
EliTRN
EXTRN
EliTRN

Global Declarations

tagn:NEAR ; 8086 or 286 instruction
varl:WORD, var2:DWORD ; 8086 or 286 instruction
tagn:NEAR ; 386 instruction
varl:DWORD, var2:FWORD ; 386 instruction

6.4 Program Example

The following source files illustrate a program that uses public and
external declarations to access instruction labels. Each program con
sists of two modules, named "STARTMOD" and "PRINTMOD" .
The "STARTMOD" module is the program's main module. The first
two modules are written with the 286 instruction set and the last two
modules are written with the 386 instruction set.

Execution starts at the instruction labeled "..:MAIN" in "START
MOD" , and passes execution to the instruction labeJed "YRINT" in
"PRINTMOD" where the "..PRINTF" routine is called to print the
message HHello." at the system console. Execution then returns to the
instruction labeled "..FINISH" in "STARTMOD" .

The "STARTMOD" files publicly declare two symbols, "..:MAIN" and
"..FINISH" , making the symbols available to the other sourte llJe in
the program. Both of these symbols are locally defined as instruction
labels later in the source file, and therefore can be used as instruction
labels in the other source file. The "STARTMOD" files also contain
an external declaration of the symbol "J'RINT" . This declaration
defines "J'RINT" to be a near label and is assumed to have been pub
licly declared in the other source file. The label is used in a JMP
instruction given later in the llle.

The "PRINTMOD" files contain a public declaration of the symbol
"..PRINT" and an external declaration of the symb(ll "..FINISH" . ln
these cases, "J'RINT" is locally defined as a near label and matches
the external declaration given to it in "STARTMOD" . The symbol
"J'INISH" is declared to be a near label, matching its definition in
"STARTMOD" •

Before the programs are executed, the source files must be assembled
individually, then linked together using the system linker.

6-3

Macro Assembler Reference

lti- Bit Made Startmod Module:

_data
_data
dgroup

_text

.286
name
public
extm
extm

; Enable 286 instructions
STARTMOD
... MAIN, ..FINISH
_e:x:i.t:near
J'RINT:near

segment word public 'data'
ends

group _data

segment byte public 'code'
assume cs:...text,ds:dgroup

...MAIN: jmp J'RINr
J'INISH:

push 0
call �exit

;exit(O)

_text ends
end

16-Bit Mode Printmod Module:

....data
string
_data
dgroup

.286
name
public
extm
extm

; Enable 286 instructions
PRINTMOD
J'RINT
_FINISH:near
J'RINTF:near

segment word public 'data'
db 'Hello.", 10, 0
ends

group _data

_text segment byte public 'code'

J'RINT :
assume cs:_text, ds:dgroup

push offset dgroup :string
call J'RINTF
add sp, 2
jmp _FINISH

_text ends
end

c \

0

Global Declarations

32-Bit Mode Startmod Module:

_data
..data
dgroup

_text

.386
name
public
extm
extm

; Enable 386 instructions
STARTMOD
_MAIN, ...FINISH
_ex:it:near
...FRL'<T:near

segment word public 'data'
ends

group _data

segment byte public 'code'
assume cs:_text, ds :dgroup

_MAIN:
jmp ...FRINT

...FINISH:
push 0
call _exit

;exit(O)

_text ends
end

32-:Bit Mode Printmod Module:

..data
string
..data
dgroup

.386
name
public
extm
extm

; Enable 386 instructions
PR:r:N'TMOD
...FR:r:N"T
....FINISH :near
...FRINTF:near

segment word public 'data'
db "Hello.u, 10, 0
ends

group ..data

_text segm_ent byte public 'code'
assume cs:_text, ds:dgroup

...FRINT:
push otfset dgroup:strlng
call YR:r:N 'TF
add esp, 4
jmp ...FINISH

_text ends
end

6-5

C hapter 7

C' Co nditional A s sembly

c

7.1 Introduction 7-1
7.2 IF and JFE Directives 7-2
7.3 IF1 and IF2 Directives 7-3
7.4 IFDEF and IFNDEF Directives 7-3
7.5 IFB and IFNB Directives 7-4
7.6 IFIDN and IFDIF Directives 7-5

0

0

Conditional Assembly

7.1 Introduction

MASM provides conditional directives to test blocks of statements
within source file_s for assembly-time conditions. The conditional
directives include the following:

IF

IFE

IFl

IF2

IFDEF

IFNDEF

IFB

IFNB

IFIDN

IFDIF

ELSE

END IF

The IF directives and the END IF and ELSE directives can be used to
enclose statements �onsidered for conditional assembly. The condi
tional block takes the form:

IF
statements

ELSE
stateinents

END IF

7-1

Macro Assembler Reference

The statements following IF can be any valid statements, including
other conditional blocks. The ELSE directive and its statements are
optional. ENDIF ends the block.

The statements in the conditional block are assembled on]y if the con-
dition specified by the corresponding IF directive is satisfied. If the , ,
conditional block contains an ELSE directive, only the statements up ' '-
to the ELSE directive will be assembled. The statements following the
ELSE directive are assembled only if the IF condition is not met. An
ENDIF directive must mark the end of the conditional block. No
more than one ELSE for each IF directive is allowed.

IF directives can be nested up to 255 levels. To avoid ambiguity, a
nested ELSE directive always belongs to the nearest preceding IF
directive that does not have its own ELSE.

7.2 IF and IFE Directives

Syntax

IF expression
END IF

IFE expression
END IF

The IF and IFE directives test the value of expression. The IF direc
tive grants assembly if expression is trne (nonzero). The IFE directive
grants assembly if expression is false (0). The expression must resolve to
an absolute value and must not contain forward references.

In the following example, the symbols within the block will only be
declared external if the symbol "DEBUG" evaluates to trne (nonzero).

Example

IF DEBUG
extm dump:far
extm trnee:far
extm breakpoint:far

END IF

7-2

(. I .

7.3 IFl and IF2 Directives

Syntax

Conditional Assembly

"--- IF1
statements

END IF

IF2
statements

END IF

The IFl and IF2 directi'les test the current assembly pass of the assem
bler and grants assembly of statements only when the corresponding
pass occurs. The IFl directive grants assembly of statements on only
Pass 1. The IF2 directive grants assembly of statements on only Pass 2.
This directive does not require any arguments.

Example

IFl
%out Pass 1 Starting

ELSE
% out Pass 2 Starting

END IF

7.4 IFDEF and IFNDEF Directives

Syntax

IFD l3F symbol
stat«ments

END IF

IFND l3F symbol
statements

END IF

7-3

Macro Assembler Reference

The IFDEF and IFNDEF directives test whether or not the given sym
bol has been defined. The IFDEF directive grants assembly if symbol
has been defined. The IFNDEF directive grants assembly if symbol
has not yet been defined.

The symbol can be any valid name. Note that if symbol is a forward
reference, it is considered undefined on Pass 1, but defined on Pass 2.

In the following example, "BUFl" is allocated only if "BUFFER" has
been defined.

Example

IFNDEF
BUFl db
END IF

BUFFER
10 dup(?)

7.5 IFB and IFNB Directives

Syntax

IFB <argument>
statements

END IF

IFNB <argument>
statements

END IF

The IFB and IFh-:B directives test argument. The IFB directive grants
assembly if argument is blank. The IFNB directive grants assembly if
argument is not blank. The argument can be any expression. The
angle brackets (< >) are required.

The IFB and IFNB directives are intended for use in macro
definitions. They can control conditional assembly of statements in the
macro, based on the parameters passed in the macro call. In such
cases, argument should be one of the dummy parameters listed by the
MACRO directive.

7-4

Conditional Assembly

In the following example, f'PUSHALLu is a recursive macro that con
tinues to call itself until it encounters a blank argument, Any register
or list of registers (consisting of up to six registers) can be passed to the macro.

Examples

PUSHAll MACRO
IFNB

END IF
ENDM

regl,reg2,reg3,reg4,regS,reg6
<regl> ;; if parameter not blank
pui;ll regl ;; push one register and repeat
PUSHALL reg2,reg3,reg4,regS,reg6

PUSHALL eax,ebx,esi,eds
PUSHALL cs,es

7.6 IFIDN and IFDIF Directives

Syntax

IFIDN <argument]>, <argument2>
statements

END IF

IFDIF <argument!>, <argument2>
statements

END IF

The IFIDN and IFDIF directives compare argumentl and argumettt2.
The IFIDN directive grants assembly jf the arguments are identical.
The IFDIF directive grants assembly if the arguments are different.
The arguments can be any expressions. To be identical, each charac
ter in argument] must match the corresponding character in argu
ment2. The angle brackets (< >) are required. The arguments must
be separated by a comma (,).
The IFIDN and IFDIF directives are intended to be used in macro
definitions. They can be used to control conditional assembly of state
ments based on the parameters passed in the macro call. In such
cases, the arguments should be dummy parameters listed by the
MACRO directive.

Macro Assembler Reference

In this example, a macro uses the lFDlF directive to check against
dividing by a constant that evaluates to 0. The macro is then called,
using a percent sign (%) on the second parameter so that the value of
the parameter, rather than its name, will be evaluated.

Example

divide MACRO
lFDlF
mov
mov
div
END IF
ENDM

divide 6,% test

7-{;

numerator, denominator
<denominator> ,0
eax:, numerator
ebx� denominator
ebx

; ; if not dividing by zero
., divide eax by ebx

;; result in accumulator

Chapter 8
Macro s

8.1 Introduction 8-1
8.2 Macro Directives 8-1
8.3 MACRO and E."'DM Directives 8-2
8.4 Macro Calls 8-4
8.5 LOCAL Directive 8-5
8.6 PURGE Directive 8-6
8.7 REPI and ENDM Directives 8-7
8.8 lRP and END M Directives 8-7
8.9 lRPC and ENDM Directives 8-9
8.10 EXITM Directive 8-9
8.11 Macro Operators 8-11

8.11.1 Substitute Operator 8-11
8.11.2 Literal Text Operator 8-13
8.11.3 Literal Character OperatOJ:- 8-13
8.11.4 Expression Operator 8-13
8.11.5 Macro Comment 8-14

0

c

Macros

8.1 Introduction

This chapter explains how to create and use macros in your source
files. It discusses the macro directives and th� specictl macro opera
tors. Since macros are closely related to conditional directives, you
may need to review the previous chapter in order to completely under
stand examples in this chapter.

Macro directives enable you to write a named block of source state
ments, then use that name :hi you Source file to represent the state
ments. Dnring assembly, MASM automatically replaces each
occurrence of the macro name with the statements in the macro
definition. You can place a block of statements anywhere in your
source file any number of times by simply defining a macro block
once, then inserting the macro name at each location where you want
the macro block to be assembled. You can also pass parameters to
macros.

A macro can be defined any place in the source file as long as the
definition precedes the first source line that calls that macro. Macros
can be kept in a separate file and made available to the program
through an INCLUDE directive.

Often a task can be done by either a macro or procedure. For exam
ple, the "ADDUP" procedure does the same thing as the "ADDUP"
macro. Macros are expanded on every occurrence of the macro name,
so they can increase the length of the executable file if called repeat
edly. Procedures take up less space, but the increased overhead of
saving and restoring addresses and parameters can make programs exe
cute slower.

8.2 Macro Directives

The MASM assembler accepts the following macro directives:

MACRO

LOCAL

PURGE

8-1

Macro Assembler Reference

REFT

IRP

IRPC

EXITM

Ef:<l)M

The MACRO and ENDM directives designate the beginning and end
of a macro. The LOCAL directive defines labels used only within a
macro, and the PURGE directive deletes previously defined macros.
The EXITM directive exits from a macro before all the statements in
the macro are expanded.

The REFT, IRP, and IRPC directives create contiguous blocks of
statements within a macro. To control the number of repetitions of
code, specify a number; or allow each block of code to be repeated
once for each parameter in a list; or by having the block repeated once
for each character in a string.

8.3 MACRO and ENDM Directives

Syntax

name MACRO [dummy-parameter,,]
statements
ENDM

The MACRO and ENDM directives ereate a macro called name that
contains statements.

The name must be a valid symbol and must be unique. It is used in
the source file to invoke the macro. The dumnry-parameter is a name
the! acts as a placeholder for values to be passed to the macro when it
is called. Any number of dummy· parameters can be given, but they
must all fit on one line. If you give more than one, you must separate
them with commas (,). The statements are any valid MASM state
ments, inclucting other MACRO directives. Any number of statements
can be used. The dummy parameter can be used any number of times
in these statements.

8-2

Macros

A macro is caned any time its name appears in a source file (macro
names in comments are ignored). MASM copies the statements in the
macro definition to the point of can, replacing any dummy parameters
in these statements with aetna! parameters passed in the calL

Maero definitions can he nested. This means a macro can be defined
within another macro. MASM does not process nested definitions until
the outer macro has been called. Therefore, nested macros cannot be
called until the outer maero has be called at least once. Macro
definitinns can be nesred to any depth. Nesting is limited only by the
amount of memory available wben the source file is assembled.

Macro definitions can contain cans to other macros. These nested
macro calls are expanded like any other macro call, but only wben the
outer macro is called. Macros can also be recursive, they can call
themselves.

Note
You must be carefnl when using the word MACRO after the
TITLE, SUBTTL, and NAME directives. Since tbe MACRO
directive overrides these directives, placing the word immediately
after these directives causes MASM to begin to create macros
named TITLE, SUBTTL, and NAME. To avoid this problem, you
shonld alter the word MACRO in some way when using it in a title
or name. For example, add a hyphen to the word, "- MACRO."
The fonowing example defines the macro "ADDUP'' , which uses
three dummy· parameters to add three values and leave their sum in
the EAX register. The three dummy-parameters will be replaced
with actual values when the macro is caiJed.

MASM assembles the statements in the macro only if the macro is
caiJed, and only at the point in the source file from which it is called.
Thus, all addresses in the assembled code are relative to the macro
caiJ, not the macro definition. The macro definition itself is never
assembled.

Example

ADDUP MACRO
mov
add
add
El'<DM

adl, ad2, ad3
EAX, adl
EAX, ad2
EAX, ad3

8-3

Macro Assembler Reference

8.4 Macro Calls

Syntax

name [actual-parameter,,]

A macro call directs MASM to copy the statements of the n:taero name
to the point of call and to replace any dummy parameters in these
statements with the corresponding actual-paramerers. The name must
be the name of a macro defined earlier in the source tile. The acrual
parameter can be any e:gpression. Any number of actual parameters
ean be given, but they must all fit on one line. Multiple parameters
must be separated with commas, spaces, or tabs.

MASM replaces the first dummy parameter with the first actual parame
ter, the second with the second, and so on. If a macro call has more
actual parameters than dummy parameters, the extra actual parameters
are ignored. If a call bas fewer actual parameters, any remaining
dummy parameters are replaced with a null (blank) string.

If you wish to pass a list of values as a single actual parameter, you
must place angle brackets (< >) around the list. The items in the list
must be separated by commas (,).

In the following examples, the first macro call passes five numeric
parameters to the macro "ALLOCBLOCK" • The second n:taero call
passes one parameter to "AILOCBLOCK" • This parameter is a list
of five numbers. The last macro call passes three parameters to the
macro "ADDUP'' . MASM replaces the corresponding dummy param
eters with exactly what is typed in the macro call parameters. Assum •

ing that "ADDUP'' is the same macro defined in the "Macros"
chapter, the assembler would e:gpand the macro to the following code:

mov eax, ebx,
add eax, 2
add eax, count

Examples

ALLOCBLOCK 1, 2, 3, 4, 5
ALLOCBLOCK <1, 2, 3, 4, 5>
ADDUP ebx, 2, count

Macros

8.5 LOCAL Directive

Syntax

(c, _ , LOCAL dummy-name,,

()

The LOCAL directive creates unique names for use in macros. The
dummy-name is a name for a placeholder that is to b e replaced by an
unique name when the macro is expanded. At least one dummy-name
Js required. Jf you give more than one, you must separate the names
with commas (,). A dummy name can be used in any statement within
the macro.

MASM creates a new name for a dummy each time the macro is
expanded. The actual name has the form:

??number

The number is a hexadeci.nlal number in the range 0000 to FFFF. Do
not give other symbol names in this format, since doing so will pro
duce a label or symbol with multiple definitions. In listiogs, the dum
myname is shown in the macro definition, but the actual names are
shown for each expansion of the macro.

The LOCAL directive is t)lpically used to create an unique label that
will be ouly used in a macro. Normally, if a macro containing a label
is used more than once, MASM will dlsplay an error message indicating
the file contains a labeled or symbol with multiple definitions, since the
same label will appear in both expansions. To avoid this problem, all
labels in macros should be dummy· names declared with the LOCAL
directive .

In the following example, the LOCAL directive defines the dummy
name's "AGAIN" and "GOTZERO" . These names will be replaced
with unique names each time the macro is expanded. For el(ample, the
fil1lt time the macro is called, "AGAIN" will be assigned the name
"??0000" and "GOTZERO" will be assigned "??0001" . The second
time through, "AGAIN" will be assigned "?10002" and "GOTZERO"
will be assigned "??o:xl3" , !lJld so on.

8-5

Macro Assembler Reference

Example

power macro factor, exponent
LOCAL AGAIN, GOTZERO
mov ex, exponent
mov ax, 1
jcxz GOTZERO
mov bx, factor

AGAIN: mul bx
loop bx

GOTZERO:
endm .

8.6 PURGE Directive

Syntax
PURGE macro-name t ' '

The PURGE directive deletes the current definition of the macro
called macro· name. Any subsequent call to that macro causes MASM
to generate an error.

The PURGE directive is intended to clear memory space no longer
needed by a macro. If the macro- name is an instruction or directive
mnemonic, the directive restores its previous meaning.

The PURGE directive is often used with a macro library to let yon
choose those macros from the library yon really need in your source
file. A macro library is simply a file containing macro definitions.
You add this library to yonr source file using the INCLUDE directive,
then remove unwanted definitions nsing the PURGE directive.

It is not necessary to PL"RGE a macro before redefining it. Any
redefinition of a macro automatically purges the previous definition.
Also, any macro can purge itself as long as the PURGE directive is on
the last line of the macro.

In the following examples, the first PURGE directive deletes the macro
named "ADD UP'' , and the second PURGE directive deletes the mac
ros named "MAC1H � "MAC2" • and ''MAC9'' .

Examples

PURGE
PlJRGE

ADDL"P
MACl, MAC2, MAC9

(

0

0

8.7 REPT and ENDM Directives

Syntax
REPT expression

statements
ENDM

Macros

The REPT and ENDM directives define a block of statel11£nts that
are to be repeated expression number of times. The expression must
evaluate to. a.16-bit.unsigned number, and must not contain external or
undefined symbols. The statements can be any valid statements.

The following example repeats the eqnal-sign (-) and DB directives 10
times. The resulting statements create 10 bytes of data whose values
range from 1 to 10.

Example

X 0
rep! 10

X x+1
db X
endm

8.8 IRP and ENDM Directives

Syntax
IRP dummy-name, <parameter,, >

statements
ENDM

The IRP and ENDM directives designate a block of statel11£nts that are
to be repeated once for each parameter in the list enclosed by angle
brackets (< >). The dummy-nal11£ is a name for a placeholder to be
replaced by the current paral11£ter. The parameter can be any legal
symbol. Any number of parameters can be given. If you give more
than one parameter, you must separate them with commas (,). The
statements can be any valid assembler statements. The dummy- name
can be used any number of times in these statements.

8-7

Macro Assembler Reference

When MASM encounters an IRP directive, it I)lakes one copy of the
statements for each parameter in the enclosed list. While copying the
statements, it repllwes all occurrences of the dummy· name in these
statements. If a null parameter (<>} .is found in the list, the dummy· name .is replaced with a null value. If the parameter list is empty, the IRP directive is ignored and no statements are copied.

Assume an IRP directive is used inside a macro definition and the
parameter list of the IRP directive .is also a dmnmy parameter of the
macro. In th.is case, you must enclose that dummy parameter within
angle brackets. For example, in the following macro definition, the
dummy parameter "X" is used as the parameter list for the IRP direc
tive:

alloc macro IRP
db
ENDM

X
y, <X>
y

If this � is called with the following tine of code, then the macro
expansion becomes the following second, third and fourth tines of
code.

alloc <0, 1, 2, 3, 4t 5, 6, 7, 8, 9>
IRP
db y
ENDM

y, <0, 1, 2, 3, 4� 5, 6, 7, 8, 9>

The macro removes the brackets from the actual parameter before
repilwing the dummy parameter. You must provide the angle brackets
for the parameter list yourself.

In the following example, the DB directive is repeated 10 times, dupli
cating the numbers in the list once for each repetition. The resulting
statements create 100 bytes of data with the values 0 through 9 dupli
cated 10 times.

Example

IRP
db
ENDM

X, <0, 1, 2, 3, 4, 5, 6, 7, 8, 9,>
10 dup (x)

(i

0

8.9 mPC and ENDM Directives

Syntax

IRPC dummy-name,string
statements

ENDM

Macros

The IRPC and ENDM directives enclose a block of statements that are
repeated once for each character in the string. The dummy-name is a
name for a placeholder to be replaced by the current character in the
string. The string can be any combination of characters in the MASM
character set. The string should be enclosed with angle brackets (<
>) if it contains spaces, commas, or other separating characters. The
statements can be any valid assembler statements.

When MASM encounters an IRPC directive, it makes one copy of the
statements for each character in the string. While copying the state
ments, it substitutes the current character for all occurrences of the
dummy-name in these statements.

Jn the following example, the DB directive is repeated 10 times, once
for each character in the string "0123456789" . The resulting state
ments create 10 bytes of data having the values 1 through 10.

Example

IRPC
db
ENDM

ex, 0123456789
x+l

8.10 EXITM Directive

Syntax

EXITM

The EXITM directive directs MASM to terminate macro or repeat
block expansion and continue assembly with the next statement after
the macro call or repeat block. The directive is typically used with lF
directives to allow conditional expansion of the last statements in a
macro or repeat block.

8-9

Macro Assembler Reference

When an EXITM is encountered, MA&'\f exits the macro or repeat
block :immediately. Any remaining statements in the macro or repeat
block are not processed. If EXITM is encountered in a macro or
repeat block nested in another macro or repeat block, MASM returns
to expanding the outer level block.

The following example defines a macro that creates no more than 255
bytes of data. The macro contains an IFE directive that checks the
expression "X-OFFH." When this expression is 0 (x equal to 255), the
EXITM directive is processed and expansion of the macro stops.

Example

alloc macro
X

X -

8-10

rep!
IFE

ELSE

END IF
x+l
endm
endm

times
0
times
X-OFFH
EXITM

;; Repeat up to 256 times
;; Does x = 255 yet?
;; If so, quit

db x ; ; Else allocate x

; ; Increment x

(:
"-· .

Macros

8.11 Macro Operators

The macro and conditional directives use the following special set of
macro operators:

& Substitute operator

<> Literal-text operator

Literal-character operator

% Expression operator

" Macro comment

\Vhen used in a macro definition or a conditional-assembly directive�
these operators carry out special control operations, such as text sub
stitution.

8.11.1 Subsfitnte Operntor

Syntax

&dummy· parameter
or
dummy-parameter&

The sub stitute operator (&) forces MASM to replace the given
dummy, parameter with its corresponding actual parameter value. The
operator is used anywhere a dummy-parameter immediately precedes
or follows other characters, or whenever the parameter appears in a
quoted string.

The following example replaces "&X" with the value of the actual
parameter passed to the macro "ERRGEN" • If the macro is called
with the statement

errgen 1, wait

the macro i• expanded to

errorwait · db 'Error 1 - wait1

8-11

Maero Assembler Reference

Example

ERRGEN
error &X

Note

macro
db
endm

r,.x
Error &y - &X!

For complex, nested macros, you can nse extra ampersands (&) to
delay the actual replacement of a dummy parameter, In general,
yon need to supply as many ampersands as there are levels of nest
in g.
For exampla, in the following macro definition, tbe substitute
operator is used twice with "Z;, to make sure its replacement
occurs while the IRP directive is being processed.

alloc macro
IRP
X&&Z
ENDM
endm

X
Z,< 1,2,3>
db

In this example, the dummy parameter "X!' is replaced immediately
when the macro is called. The dummy parameter "Z" , however, is
not replaced until the IRP directive is processed. This means the
parameter is replaced once for each number in the IRP parameter list.
lf the macro is called with

alloc var

the expanded macro will be

varl db 1
var2 db 2
var3 db 3

8-12

I
I
I

� ..

r-'\ I 1 �j

Macros.

8.11.2 Literal Text Operator

Syntax

<text>

The literal text operator directs MASM to treat text as a single literal
regardless of whether it contains commas, spaces, or other separators.
The operator is most often used with macro calls and the lRP directive
to ensure that values in a parameter list are treated as a single parame
ter.

The literal text operator can also be used to force MASM to treat spe
cial characters such as the semicolon (;) or ampersand (&) literally.
For example, the semicolon inside angle brackets <;> becomes a
semicolon. not a comment :indicator.

MASM removes one set of angle brackets each time the parameter is
nsed in a macro. When using nested macros, you will need to supply
as many sets of angle brackets as there Hie levels of nesting.

8.11.3 Literal Character Opera tor

Syntax

!character

The literal character operator forces MASM to treat character as a ·

literal. For example, you can force MASM to treat special characters
such as semicolon (;) or ampersand (&) literally. Therefore, !; is
equivalent to <;>.

8.11.4 Expression Operator

Syntax

%tR..xt

The expression operator (%) causes MASM to treat text as an expres
sion. MASM computes the expression's value, using numbers of the
current radix, and replaces text with this new value. The text must
represent a valid assembler expression,

8-13

Macro Assembler Reference

The expression operator is typically used in macro calls where the pro
grammer needs to pass the result of an expression to the macro instead
of to the actual expression.

In the following example, the macro call

printe <SYMl + SYM2 - >,%(SYM1 + SYM2)

passes the text literal "SYMl + SYM2 -" to the dummy parameter
"MSG" . It then passes the value 300 (the result of the expression
"sym + sym2" to the dummyparameter "N").

Example

printe

SYMl
SYM2

macro
%out
endm
equ
equ
printe

MSG,N
* MSG,N •

100
200
<SYMl + SYM2 - >,%(SYM1 + SYM2)

8.11.5 Macro Comment

Syntax

;;text

The macro comment is any text in a macro definition that does not
need to be copied in the macro expansion. All text following the dou
ble semicolon (;;) is ignored by the assembler and will appear only in
the macro definition 'when the source listing is created.

The regular comment operator (;) can also be used in macros. How
ever, regular comments may appear in listings when the macro is
expanded. Macro comments will appear in the macro definition, but
not in macro expansions. Whether or not regular comments are listed
in macro expansions depends on the use of the .LAIL, .XALL, and
.SALL directives described in the "File control" chapter.

8--14

. '"'

C hapter 9
File C ontro l

9.1 Introduction 9-1
9.2 JNCLUDE Directive 9-2
9.3 .RADIX Directive 9-2
9.4 %OUT Directive 9-3
9.5 NAME Directive 9-4
9.6 TITLE Directive 9-5
9.7 SUBTTL Directive 9-5
9.8 PAGE Directive 9-6
9.9 .LIST and .XLIST Directives 9-7
9.10 .SFCOh'D, .LFCOND, and .TFCOND Directives 9-8
9.11 .LALL, .XALL, and .SALL Directives 9-8
9.12 .CREF and .XCREF Directives 9-9

I

-
f

(\ ' !
�/

(, ' '
��

YJ!e Control

9.1 Introduction

This chapter describes file control directives, which provide control of
tbe source, object, and listing files read and created by MASM during
an assembly.

The file contrql directives include the following:

L'>!CLUDE
Include a Source File

.RADIX Alter Default Input Radix

o/o 0 UT Display Message on Console

NAME Copy Name to Object File

TID.E Set Program Listing Title

SUBTTL Set Program Listing Subtitle

PAGE Set Program Listing Page Size

.LIST Ust Statements in Program Listing

.XLJST SuppJ"ess Listing Statements

.LFCOND
List False Conditional in Program Listing

.SFCOND
Suppress False Conditional Listing

.TFCOND
Toggle False Conditional Listing

.LALL List Macro Expansions in Progl"llm Listing

,SALL Suppress Listing Macro Expansion

.X:ALL Exr:lude Comments from Macro Listing

.CREF List Symbols in Cross Reference File

.XCREF Suppress Symbol Listing

9-1

Macro Assembler Reference

9.2 INCLUDE Directive

Syntax
INCLUDE filename

The INCLUDE directive inserts source code from the source file given
by filename into the current source file during assembly. The filename
must name an existing file. A pathname must be given if the file is not
in the current working directory. If the named file is not found,
MASM displays an error message aod stops.

When MASM encounters an INCLUDE directive, it opens the
specified file and begins to assemble its statements. When all state
ments have been read, MAS:\t continues assembly with the next state
ment following the directive.

Nested INCLUDE directives are allowed. MASM marks included state
ments with the letter C in listings. This means a file named by an
INCLUDE directive can contain its own INCLUDE directives.

Examples

INCLUDE entry
INCLUDE include/record
INCLUDE /usr/include/as/stdio

9.3 .RADIX Directive

Syntax
.RADIX expression

; file name
; path name
; path name

The .RADIX directive sets the input radis for numbers in the source
.file. The expression defines whether the numbers are binary, octal,
decimal, hexadecimal, or numbers of some other base in the range 2 to
16. The following table lists some common values.

Numl>er
2 Binary
8 Octal

10 Decimal
16 Hexadecimal

9-2

File Control

The expressinll is always considered a decimal number regardless of the
current default radix. The default input radix is decimal.

Jn the following examples, the first .RADIX directive sets the input
radix to hexadecimal, while the second sets the input radix to binary.
The .RADIX directive does not affect the DD, DQ, or DT directives.
Numbers entered in the expression of these directives are always
evaluated as decimal unless a numeric suffix is appended to the value.

The .RADIX directive does not .affect thoo option!ll radix speci:fi00rs, B
and D, used with integers numbers. When B or D appears at the end
of any integer, it is always considered to be a radix specifier even if the
current input radix is 16.

li the input radix is 16, the number OABCD will be interpreted as
OABC decimal, an illegal number, instead of as OABCD hexadecimal,
as intended. Type OABCDh to specify OABCD in hexadecimal. Simi
larly, the number 11B will be treated as 11 binary, a legal number, but
not 11B hexadecimal, as intended. Type 11Bh to specify 11B in hexa
decimal.

Examples

.RADIX 16

.RADIX 2

9.4 %OUT Directive

Syntax

%OUT tat

The %OUT directive instructs MASM to display the text at the user's
terminal when it reaches the line containing the specified text during
assembly. The directive is useful for displaying messages during
specific points of a long assembly.

9-3

Macro Assembler Reference

The % OUT directive generates output for both assembly passes. The
IFl and lF2 directives can be used to control when the' directive is pro
cessed.

fu the following example, the %OUT directive displays the message
"First Pass -- Okay'' at the end of the assembler's :first pass, but
iguores the %OUT directive and message after the second pass.

Example

IF1
%OUT First Pass -- Okay

END IF

9.5 NA:ME Directive

Syntax

NAME module-name

The •NAME directive sets the name of the current module to module
name, A module name is used by the linker when displaying error
messages.

The module- name can be any combination of letters and digits.
Although the name can be any length, only the :first six characters are
used. The name must be unique and not be a reserved word.

If the NAME directive is not wed, MASM creates a default module
name using the first six characters of a TITLE directive. If no TITLE
directive is found, the default name ��A" is used.

The following examples sets the module name to "MAIN" .

Example

NAME MAIN

File Control

9.6 TITLE J)irective

Synlax

TITLE text

The TTI'LE directive defines the program listing title. It directs MASM
to copy text to the first lioe of each new page in the program listing.
The text can b e any combination of characters up to 60 charactt>rs in
length.

No more than one TITLE directive per module is allowed.

Note

The first six non-blank characters of the title will b e used as the
module name if the module does not contain a NAME directive.

Example

TITLE PROG1 -- 1st Program

9. 7 SUB TTL Directive

Syntax

SUBTTL text

The SUBTTL directive specifies the listing subtitle. It directs MASM to
copy text to the lioe immediately after the title on each new page in the
program listiog. The text can b e any combination of characters. Only
the first 60 characters are used. If no text is given, the subtitle line is
left blank.

9-5

Macro Assembler Reference

Any number of SUBTTL directives can be given in a program. Each
new directive replaces the current subtitle with the new text.

In the following examples, the first SUBTTL directive creates the sub
title "SPECIAL JJO ROUTINE" , while the second creates a blank
subtitle.

Examples

SUBTTL SPECIAL JJO ROUTINE
SUBTTL

9.8 PAGE Directive

Syntax

PAGE length, width
PAGE +
PAGE

The PAGE directive can be used to designate the line length and width
for the program listing, to increment the section and adjust the section
number, or to generate a page break in the listing.

1f a length and width are specified, the PAGE directive sets the max
imum number of lines per page to length, and the maximum number of
characters per line to width. The length must be in the range 10 to
255. The default is 50. The width must be in the range 60 to 132. The
default is 80. 1f width is specified, but length is not, a comma (,) must
precede width.

1f a plus sign (+) follows PAGE, the section number is incremented
and the page number is reset to 1. Program listing page numbers have
the form where section is the section number withing the module, and
page is the page number within the section:

section-minor

By default, section and page numbers start at 1-1.

1f no argument is given, PAGE starts a new output page in the pro
gram listing. It copies a form-feed character to the file and generates a
title and subtitle line.

9-6

File Control

In the following examples, the first PAGE directive creates a page
break. The second PAGE directive sets the maximum page length to
58 lines, and the maximum widtb to 60 characters. The tbird PAGE
directive sets the maximum widtb to 132 characters. The current page
length remains unchanged. And, the last PAGE directive increments

\ the current section number and sets the page number to 1.

Examples

PAGE
· ·· PAGE58,60

PAGE ,132
PAGE +

9.9 .LIST and .XLIST Directives

Syntax

.LIST

.XLIST

The .LIST and .XLIST directives control which source program lines
are copied to the program listing. The .XLIST directive suppresses
copying of subsequent source lines to the program listing. The .LIST
directive restores copying. The directives are typically used in pairs to
prevent a section of a given source file from being copied to the pro
gram listing.

The .XLIST directive overrides all other listing directives.

Example

.XLIST
; Listing suspended here

.LIST
; Listing resumes here

9-7

.Macro Assembler Reference

9.10 .SFCOND, .LFCOJIIJ), and .TFCOND Directives

Syntax

.SFCOND

.LFCOND

.TFCOND

The .SFCOND and .LFCOND directives determine whether false con
ditional blocks should b e listed. The .SFCOND directive suppresses
the listing of any subsequent conditional blocks whose IF condition is
false. The .LFCOND directive restores the listing of these blocks.
Like .LIST and .XLIST, false conditional listing directives can be used
to suppress listing of the conditional blocks in sections of a program.

The .TFCOND directive sets the defanlt mode for listing of condi
tional blocks. This directive works in conjunction with the -X option
of the assembler. If -X option is not given in the MASM command
line, .TFCOND causes false conditional blocks to be suppressed by
defanlt. If -X option is given, .TFCOND causes false conditional
blocks to be suppressed. Everytime a new .TFCOND is inserted in
the source code, llsting of false-conditionals is torned off if it was on,
or on if it was off.

Examples

.SFCOND
IF O

; This block will not be listed.
END IF
.LFCOND
IF O

; This block will be llsted.
END IF

9.11 .LALL, .XALL, and ,SALL Directives

Syntax

.LALL

.XALL

.SALL

Flle Control

The .LALL, .XALL, and .SALL directives control the listing of the
statements in macros that have heen expanded in the source file.
MASM lists the full macro definition, but lists macro expansions only if
the appropriate directive is set.

The .LALL directive causes MASM to list all the source statements in
a macro, including comments preceded by a single semicolon (;) but
not those preceded by a double semicolon (; ;). The .XALL directive
lists only those source statements that generate code or data. Com
ments are ignored.

The . SALL directive suppresses listing of all macro expansions. That
is, MASM copies the macro call to the source listing, but does not
copy the source lines generated by the call.

The .XALL directive is in effect when MASM first begins execution.

Examples

9.12

Syntax

.SALL
; No macros listed here .

. LALL
; Macros listed in full .

. XALL
; Macros listed by generated code or data only .

. CRE:F and .XCRE:F Directives

.CREF

.XCREF name,,>

The .CREF and .XCREF directives control the generation of cross
references for the macro assembler's cross-reference file. The
.XCREF directive suppresses the generation of label, variable, and
symbol cross references. The .CREF function restores this generation.

If a name is given with .XCREF, only that label, variable, or symbol
will be suppressed. All other names will be cross referenced. The
named label, variable, or symbol will also be omitted from the symbol
table of the program listing. If two or more names are be given, they
must be separated with commas (,).

9-9

Macro Assembler Reference

Example

.XCREF ; Suppress cross-referencing
of symbols in this biock

.CREF
'

.XCREF testl, test2

9-10

; Restore cross-referencing
of symbols in this block

; Don't cross reference test! or test2
in this block

Appendix A
Instruction Summary

A.l Introduction A-1
A.2 8086 Instruction Mnemonics A-1
A.3 8087 Instruction C'v!nemonlcs A-6
A.4 80186 Instruction Mnemonics A -8
A.5 80286 Non-Protected Instruction Mnemonics A-9
A.6 80286 Protected Instruction Mnemonics A -10
A. 7 80287 Instruction Mnemonics A -10
A . 8 80386 Non-Protected Instruction Mnemonics A-11
A.9 80386 Protected Instruction Mnemonics A-13

Instroetlnn Summary

A.l Introduction

The Macro Assembler, MASM, is an assembler for the Intel 8086,
80186, 80286, and 80386 family of microprocessors. It is capable of
assembling instructions for the 8086, 80186, 80286, and 80386
microprocessors and the 8087 and 80287 ftoating point coprocessors.
MASM will assemble any program written for an 8086, 80186, 80286, or
80386 microprocessor environment as long as the program uses the
instruction syntax described in this chapter.

By default, MASM recognizes 8086 and 8087 instructions only. If a
source program contains 80186, 80286, or 80287 instructions, one or
more instruction set directives must be used in the source :file to enable
assembly of the instrucliDns. The following secliDns list the syntax of
all instructions recognized by MASM and the instruction set directives.

The following table explains the abbreviations used in the 8086, 8087,
80186, 80286, 80287, and 80386 syntax descriptions:

Syntax Desriptlons

Symbol Meaning

accum
reg

segreg
rim

imm£d
mem
!JJbel

accumulator: AX, or AL
byte or word register
byte: AL, AH, BL, BH, CL, CH, DL, DH
word: AX, BX, CX, DX, SI, DI, BP, SP
dword: BAX, EBX, ECX, EDX, ESI, ED I, EBP, ESP

segment register: CS, DS, SS, ES, FS, GS
general operand: register, memory address, indexed
operand, based operand, or b ased index:ed operand
8- or 16-bit immediate value: constant or symbol
memory operand: label, variable, or symbol
instruction label

A.2 8086 Instruction MD.emonics

The 8086 instructions are listed below. MASM assembles all 8086
instructions by default.

Svntax

AAA
AAD
AAM

Action

ASCII adjust for addition
ASCII adjust for division
ASCII adjust for multip&atinn

A-1

Macro Assembler Reference

AAS
ADC accum, immed
ADC rim, immed
ADC rim, reg
ADC reg, rim
ADD accum, immed
ADD rim, immed
ADD rim, reg
ADD reg, rim
At-.'D accum, immed
AND rim, immed
AND rim, reg
AND reg, rim
CALL label
CALL rim
CBW
CLC
CLD
CLI
CMC
CMP accum, immed
CMP rim, immed
CMP rim, reg
CMP reg, rim
CMPS src, dest
CMPSB
CMPSW
CWD
DAA
DAS
DEC rim
DEC reg
DIV rim
ESC immed, rim
HLT
IDIV rim
IMUL rim
IN occum, immed
IN occum, DX
INC rim
INC reg
INT 3
INT immed
INTO
IRET
JA label
JAB label
JB label
JBE label
JC label

A-2

ASCII adjust for subtraction
Add immediate with carry to accumulator
Add immediate with carry to operaud
Add register with carry to operand
Add operand with carry to register
Add immediate to accumulator
Add immediate to operand
Add register to operand
Add operand to register
Bitwise AND immediate with accumulator
Bitwise AND immediate with operand
Bitwise AND register with operand
Bitwise AND operand with register
Call instruction at label
Call instruction indirect
Convert byte to word
Oear carry ilag
Clear direction flag
Clear interrupt flag
Complement carry flag
Compare immediate witb accumulator
Compare immediate witb operand
Compare register witb operand
Compare operand with register
Compare strings
Compare strings byte for byte
Compare strings word for word
Convert word to double word
Decimal adjust for addition
Decimal adjust for subtraction
Decrement operand
Decrement 16-bil: register
Divide accumulator by operand
Escape with 6-bit immediate and operand
Halt processor
Integer divide accumulator by operand
Integer multiply accumulator by operand
Input from port (8-bit immediate)
Input from port given by DX
Increment operand
Increment 16-bit register
Software interrupt 3 (encoded as one byte)
Software interrupt 0 through 255
Interrupt on overilow
Return from interrupt
Jump on above
Jump on above or equal
Jump on below
Jump on below or equal
Jump on carry

/
\

0

()

JCXZ label
JE label
JG label
JOE label
JL label
JLE label
IMP label
JMP rim
JNA label
JNAE label
JNB label
JNBE label
INC label
JNE label
JNG label
JNGE label
JNL lnbel
JNLE label
JNO label
JNP label
INS label
JNZ label
JO label
JP label
JPE label
JPO label
IS label
JZ label
LAHF
LDS rim
LEA rim
LES rim
LOCK
LODS src
LODSB
LODSW
LOOP /Qbel
LOOPE label
LOOPNE label
LOOPNZ label
LOOPZ label
MOV accum, mem
MOV mem, accum
MOV rim, immed
MOV rim, reg
MOV rim, segreg
MOV reg, immed
MOV reg, rim
MOV segreg, rim
MOVS dest, src

Instntction Summary

I ump on CX zero
Jump on equal
I ump on greater
Jump on greater or equal
I ump on Jess than
Jump on Jess than or equal
Jump to instruction at label
I ump to instruction indirect
Jump on not above
I ump on not above or equal
I ump on not below . .
Jump on not below or equal
Jump on no carry
Jump on not equal
Jump on not greater
Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overfiow
JUmp on not paP.ty
Jump on not sign
Jump on not zero
Jump on overllow
I ump on paP.ty
Jump on paP.ty even
Jump on paP.ty odd
Jump on sign
Jump on zero
Load AH with flags
Load operand into DS
Load effective address of operand
Load operand into ES
Lock bus
Load string
Load hyte from string into AL
Load word from string into AX
Loop
Loop while equal
Loop while not equal
Loop while not zero
Loop while zero
Move memory to accumulator
Move accumulator to memory
Move immediate to operand
Move register to operand
Move segment register to operand
Move immediate to register
Move operand to register
Move operand to segment register
Move string

A-3

Macro Assembler Reference

MOVSB
MOVSW
MUL rim
NEG rim
NOP
NOT rim
OR accum, immed
OR rim, immed
OR rim, reg
OR reg, rim
OUT DX, accum
OUT immed, accum
POP rim
POP reg
POP segreg
POPF
PUSH rim
PUSH reg
PUSH segreg
PUSHF
RCL rim, 1
RCL rim, CL
RCR rim, 1
RCR rim, CL
REPE
REP.NE
REPNZ
REPZ
RET [immed]
ROL rim, 1
ROL rim, CL
ROR rim, 1
ROR rim, CL
SAHF
SAL rim, 1
SAL rim, CL
SAR rim, 1
SAR rim, CL
SBB accum, immed
SBB rim, immed
SBB rim, reg
SBB reg, rim
SCAS dest
SCASB
SCASW
SHL rim, 1
SHL rim, CL
SHR rim, 1
SHR rim, CL
STC

A-4

Move string byte by byte
Move string word by word
Multiply accumulstor by operand
Negate operand
No operation
Invert operand bits
Bitwise OR immediate with accumulator
Bitwise OR immediate with operand
Bitwise OR register with operand
Bitwise OR operand with register
Output to port given by DX
Output to port (8-bit immediate)
Pop 16-bit operand
Pop 16-bit register from stack
Pop segment register
Pop ftag,s
Push 16-bit operand
Push 16-bit register onto stack
Push segment register
Posh ftag,s
Rotate left through carry by 1 bit
Rotate left through carry by CL
Rotate right tb:rough carry by 1 bit
Rotate right tb:rough carry by CL
Repeat if equal
Repeat if not equal
Repeat if not zero
Repeat if zero
Retnrn after popping bytes from stack
Rotate left by 1 bit
Rotate left by CL
Rotate right by 1 bit
Rotate right by CL
Store AH into !lags
Shift arithmetic left hy 1 bit
Shift arithemetic left by CL
Shift arithmetic right by 1 bit
Shift arithmetic right by CL
Subtract immediate and carry !lag
Subtract immediate and carry !lag
Subtract register and carry !lag
Subtract operand and carry !lag
Scan string
Scan string for byte in AL
Scan string for word in AX
Shift left by 1 bit
Shift left by CL
Shift right by 1 bit
Shift right by CL
Set carry !lag

\

()

STD
STI
STOS dest
STOSB
STOSW
SUB accum, immed
SUB rim, immed
SUB rim, reg
SUB reg, rim
TEST accum, immed
TEST rim, irnmed
TEST rim, reg
TEST reg, rim
WAIT
XCHG accum, reg
XCHG rim, reg
XCHG reg, accum
XCHG reg, rim
XLAT mem
XOR accum, immed
XOR rim, immed
XOR rim, reg
XOR reg, rim

Set direction flag
Set interrupt flag
Store string

Instruction Summary

Store byte in AL at string
Store word in AX at string
Subtract immediate from accumulator
Subtract immediate from operand
Subtract register from operand
Subtract operand from register
Compare immediate bits with accumulator
Compare immediate bits with operand
Compare register bits with operand
Compare operand bits with register
Wait
Exchange accumulator with register
Exchange operand with regiater
Exchange register with accumulator
Exchange register with operand
Translate
Bitwise XOR immediate with accumulator
Bitwise XOR immediate with operand
Bitwise XOR register with operand
Bitwise XOR operand with register

The string instructions (CMPS, LODS, MOVS, SCAS, and STOS) use
the DS, SI, ES, and DI registers. to compute operand locations.
Source operands are assumed to be at DS :[SI]; destination operands at
ES:[DI]. The operand type (BYTE or WORD) is defined by the
instruction mnemonic. For example, CMPSB specifies BYTE
operands and CMPSW specifies WORD operands. For the CMPS,
LODS, MOVS, SCAS, and STOS instructions, the src and dest
operands are dummy operands that define the operand type only. The
offsets associated with these operands are not used. The src operand
can also be used to specify a segment override. The ES register for
the destination operand cannot be overridden.

Examples

CMPS WORD ptr string, WORD ptr ES:O
LODS BYTE ptr string
mov BYTE ptr ES :0, BYrE ptr string

The REP, REPE, REPNE, REPNZ, or REJYL: instruction s provkle a
way to repeatedly execute a string instruction for a given count or while
a given condition is true. lf, a repeat instruction immediately precedes
a string instruction (both instructions must be on the same line), the
instructions are repeated until the specified repeat condition is false, or
the ex register is equal to zero. The repeat instruction decrements
ex by one for each execution.

A-5

Macro Assembler Reference

Example

mov ex, 10
REP SCASB

A.3 8087 Instruction Mnemonics

The 8087 instructions are listed below. MASM assembles all 8087
instructions by default.

Svntax
F2XM1
FABS
FADD
FADD mem
FADD ST, ST(i)
FADD ST(i}, S't
FADDP ST(i'), ST
FBLD mem
FBSTP mem
FCHS
FCLEX
FCOM
FCOM ST
FCOM ST(i)
FCOMP
FCOMP ST
FCOMP ST(i)
FCOMPP
FDECSTP
FDISI
FDN
FDN mem
FDN ST, ST(i)
FDN ST(i), S1'
FDNP ST(i), ST
FDNR
FDIVR mem
FDIVR ST, ST(il
FDIVR ST{i}, S'f'
FDNRP ST(l}, ST
FBNI
FFREE
FFREE ST
FFREE ST(i)
FIADD mem
FICOM mem

A-<J

Action

Calculate 2" -1
Take absolute value of top of stack
Add real
Add real from memory
Add real from stack
Add real to stack
Add real and pop stack
Load 10-byte packed decimal on stack
Store 10-byte packed decimal and pop
Change sign on the top stack element
Clear exceptions after WAIT
Compare real
Compare real with top of stack
Compare real with stack
Compare real and pop stack
Compare real with top of stack and pop
Compare real with stack and pop stack
Compare real and pop stack twice
Decrement stack pointer
Disable interrupta after WAIT
Divide real
Divide real from memory
Divide reaHrom stack
Divide real in stack
Divide real and pop stack
Reversed real divide
Reverse real divide from memory
Reverse real divide from stack
Reverse real divide in stack
Reversed real divide and pop stack twice
Enable interrupts after WAIT
Free stack element
Free top of stack element
Free ith stack element
Add 2 or 4-byte integer
2 or 4-byte integer compare

FICOMP mem
FIDIV mem
FIDIVR mem
FILD mem
FIMUL mem
FINCSTP
FINIT
FIST mem
FISTP mem
FISUB mem
FISUBR mem
FLD mem
FLDl
FLDCW mem
FLDENV mem
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FMUL
MUL mem
FMUL ST, ST(i)
FMUL ST(i), ST
FMULP ST(z'), ST
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE mem
FNSTCW mem
FNSTENV mem
FNSTSW mem
FPATAN
FPREM
FPTAN
FRNDINT
FRSTOR mem
FSAVE mem
FSCALE
FSQRT
FST
FST ST
FST ST(i)
FSTCW mem
FSTENV mem
FSTP mem
FSTSW mem
FSUB
FSUB mem
FSUB ST, ST(i)
FSUB ST(i), S't

Instruction Summaey

2 or 4-byte integer compare "l!d pop s.tack
2 or 4-byte integer divide
Reversed 2 or 4-byte integer divide
Load 2, 4, or 8-byte integer on stack
2 or 4-byte integer multiply
:Increment stack pointer
lilitialize processor aiter WAIT
Store 2 or 4-byte integer
Store 2, 4, or &-byte integer and pop stack
2 or 4-byte integer subtract
Reversed 2 or 4-byte integer subtract
Load 4, 8, or 10-byte real on stack
Load + 1.0 onto top of stack
Load control word
Load 8087 environment (14-bytes)
Load lo��:ze onto top of stack
Load log,lO onto top of stack
Load log1,2 onto top of stack
Load lo�<..":! onto top of stack
Load pi lfnto top of stack
Load +0.0 onto top of stack
Multiply real
Multiply real from memory
Multiply real from stack
Multiply real to stack
Multiply real and pop stack
Clear exceptions with no WAIT
Disable interrupts with no WAIT
Enable interrupts with no WAIT
lilitialize processor, with no WAIT
So o�:t:ation
Save 8087 state (94 b�es) with no WAIT
Store control word wtth no WAIT
Store 8087 environment with no WAIT
Store 8087 status word with no WAIT
Partial arctangent function
Partial remainder
Partial tan11ent function
Round to mteger
Restore 8087 state (94 bytes)
Save 8087 state (94 bytes) alter WAIT
Scale
Square root
Store real
Store real from top of stack
Store real from stack
Store control word with WAIT
Store 8087 environment after WAIT
Store 4, 8, or 10-byte real and pop stack
Store 8087 status word aiter WAIT
Subtract real
Subtract real from memory
Subtract real from stack
Subtract real to stack

A-7

Macro Assembler Reference

FSUBP ST(1), ST
FSUBR
FSUBR mem
FSUBR ST, ST(i)
FSUBR ST(i), ST
FSUBRP ST(i), ST
FTST
FWAIT
FXAM
FXCH
.FFREE ST
FFREE ST(i)
FXTRACT
FYL2X
FYL2PI

Subtract real and pop stack
Reversed real subtract
Reversed real subtract from memory
Reversed real subtract from stack
Reversed real subtract in stack
Reversed real subtract and pop stack
Test top of stack
Wail for last 8087 operation to complete
Examine top of stack element
Exchange con tents of stack elements
Exchange top of stack element
Exchange top of stack and ith element
Extract exponent and �gnificand
Calculate Y loil;!x
Calculate Y lollJ(x+l)

A.4 80186 Instruction Mnemonics

The 80186 instruction set consists of all 8086 instrnctions plus the fol
lowing instructions. The .186 directive must be placed at the beginning
of the source file to enable these instructions.

Svntax

BOUND reg, mem
ENTER immedl6, lmmed8
IMUL lmmed, reg

IMUL rim, lmmed

INS mem, DX
INSB mem, DX
INSW mem, DX
LEAVE
OUTS DX, mem
OUTSB DX, mem
OUTSW DX, mem
POPA
PUSH immed
PUSHA
RCL rim, immed
RCR rim, immed
ROL rim, immed
ROL rim, immed
SAL rim, lmmed
SAR rim, lmmed
SHL rim, immed
SHR rim, immed

A--8

Action

Detect value out of range
Enter procedure
Integer multiply immediate byte into
word register
Integer multiply operand by immediate
word/byte
Input string from port DX
Input byte string from port DX
Input word string from port DX
Leave procedure
Output byte/word/string to port DX
Output byte string to port DX
Output word string to port DX
Pop all registers
Push immediate word/byte
Push all registers
Rotate left through carry immediate
Rotate right through carry immediate
Retate left immediate
Relate right immediate
Shift arithmetic left immediate
Shift arithmetic right immediate
Shift left immediate
Shift right immediate

l ___ _

Instruction Summary

A.5 80286 Non-Protected Instruction Mnemonic�

The 80286 non -protected instruction set consists of all 8086 instruc
tions plus the following instructions. The .286C directive must be
placed at the beginning of the source file to enable these instructions.

Svntax

BOUND reg, mem
ENTER immed16, immed8
IMUL immed, reg

IMUL rim, immed

lNS mem, DX
lNSB mem, DX
lNSW mem, DX
LEAVE
OUTS DX, mem
OUTSB DX, mem
OUTSW DX, mem
POPA
PUSH immed
PUSIIA
RCL rim, immed
RCR rim, immed
ROL rim, immed
ROL rim, immed
SAL rim, immed
SAR rim, immed
SHL rim, immed
SHR rim, lmmed

Action

Detect value out of range
Enter procedure
Integer multiply immediate byte into
word register
Integer multiply operand by immediate
word/byte
Input string from port DX
Input byte string from port DX
Input word string from port DX
Leave procedure
Output byte/word/string to port DX
Output byte string to port DX
Output word string to port DX
Pop all registers
Push immediate word/byte
Push all registers
Rotate left through cany immediate
Rotate right through cany immediate
Rotate left immediate
Rotate right immediate
Shift arithmetic left immediate
Shift arithmetic right immediate
Shift left immediate
Shift right immediate

A-9

Macro Assembler Reference

A.6 80286 Protected Instruction Mnemonics

The 80286 protected instruction set consists of all 8086 and 80286
non-protected instructions plus the following instructions. The .286P
directive must b e placed at the beginning of the source file to enable
these instructions.

Syntax

ARPL mem, reg
LAR reg, mem
LSL reg, mem
SGDT mem
SIDT mem
SLDT mem
SMSW mem
STR mem
VERR mem
VERW mem

Aclion

Adjust requested privilege !<MOl
Load access rights
Load segment limit
Store global descriptor table (8 bytes)
Store interrupt descriptor table (8 bytes)
Store local descriptor table
Store machine status word
Store task register
Verify read aecess
Verify write access

A.7 80287 Instruction Mnemonics

The 80287 instruction set consists of all 8087 instructions plus the fol
lowing additional instructions. The .287 directive must be used to
enable these instructions.

Smtax

FSETPM
FSTSW AX
FNSTSW AX

A-10

Action

Set Protected Mode
Store Status Word in AX (wait)
Store Status Word in AX (no-wait)

0

Ins !ruction Sunnnary

A.8 80386 Non· Protected Instruction Mnemonics

The 80386 non-protected instruction set consists of all 8086 and 80286
non-protected instructions plus the following instructions. The .386
directive must be placed at the beginning of the source file to enable
these instructions.

Syntax

BT reg, reg
BT mem, reg
BT reg, immed
BT mem, immed
BT mem
BTC reg, reg
BTC mem, reg
BTC reg, inuned
BTC mem, immed
BTC mem
BTR reg, reg
BTR mem, reg
BTR reg, immed
BTR mem, immed
BTR mem
BTS reg, reg
BTS mem, reg
BTS reg, inuned
BTS mem, immed
BTS mem
CDQ

CMPSD
CWDE

IMUL
IMUL reg, rim
lliUL reg, r/m, immed
IMUL reg, immed
JNSD
IRETD
CDQ

JA
JAE
JB
JBE
JC
JE
JG

Action

Bit test
Bit test
Bit test
Bit test
Bit test
Bit test and complement
Bit test and complement
Bit test and complement
Bit test and complement
Bit test and complement
Bit test and reset
Bit test and reset
Bit test and reset
Bit test and reset
Bit test and reset
Bit test and set
Bit test and set
Bit test and set
Bit test and set
Bit test and set
Convert doubleword in EAX
to quadword in EAX:EDX
String compare double word
Convert word in AX
doubleword in EAX
rim
Uncharacterized multiply
Uncharacterized multiply
Uncharacterized multiply
String input double word

Return from a 386 32-bit
mode far interrupt
Jump on above
Jump on above or equal
Jump on below
Jump on below or equal
Jump on carry
Jump on equal
Jump on greater

A-ll

Macro Assembler Referenee

JGE
JL
JNA
JNA
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
LFS reg, mem

LGS reg, mem

LODSD mem
LSS

MOVSD
MOVSX reg, r/m
MOVZX reg, r/m
OUTSD
POP FS/GS
POPFD
POP AD
PUSH FS/GS
PUS HAD
PUSHFD
SCASD
SETA r/m
SETAE r/m
SETB r/m
SETBE r/m
SETC r/m
SETE r/m
SETG r/m
SETGE r/m
SETL r/m
SETLE r/m
SETNA r/m
SETNAE r/m
SETNB r/m
SETNBE r/m
SETNC r/m
SETNE r/m
SETNG r/m

A-12

Jump on greater or equal
Jump on less than
Jump on not above
Jump on not above or equal
Jump on not below
Jump on not below or equal
Jump on no carry
Jump on no equal
Jump on no greater
Jump on not gteater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow
Jump on not parity
Jump on not sign
Load reg and FS with far
pointer
Load reg and GS with far
pointer
Load string double word
Load reg and SS with far
pointer
String move double word
Sign extend
Zero extend
Output string double word
Pop 386 segtuent register
Pop double word fiags
Pop all double word registers
Push 386 segtuent register
Puab all double word registers
Push double word fiags
Scan string double word
Set byte if above
Set byte if above or equal
Set byte if below
Set byte if below or equal
Set byte if carry
Set byte if equal
Set byte if greater
Set byte if gteater or equal
Set byte if less
Set byte if less or equal
Set byte if not above
Set byte if not above or equal
Set byte if not below
Set byte if not below or equal
Set byte if not carry
Set byte if not equal
Set byte if gteater

r
i) 'J

SETNGE r/m
SETNL r/m
SETNLE r/m
SETNO r/m
SETNP r/m
SETNS rlm
SETNZ r/m
SETO r/m
SETP r/m
SETPE r/m
SETPO r/m
SETS r/m
SETZ r/m

Instruction Snl1!lllllry

Set byte if not greater or equal

SHLD reg/mem,reg,imm/cl
SHRD reglmem,reg,imm/cl
STGSD mem

Set byte if not Jess
Set byte lf not Jess or equal
Set byte if not overllow
Set byte if not parity
Set byte if not sign
Set byte if not zero
Set byte if overllow
Set byte if parity
Set byte if parity even
Set byte if parity odd
Set byte if sign
Set byte if zero
Shift double precision left
Shift double precision right
Store striog double word

A.9 80386 Protected Instruction Mnemonics

The 386 protected instruction set consists of all 8086 instructions and
80286 protected instructions plus tbe following instructions. The .386P
directive must be placed at the beginning of tbe source file· to enable
these instructions.

Srntax

CLTS
HLT
LGDT I1Wm
LIDT I11Rm
LLDT mem
L\1SW I11Rm
LTR I11Rm
MOV creg,creg
MOV dreg,dreg
MOV treg, treg
MOV creg,reg
MOV dreg,reg
MGV treg,reg

Action

Clear task switched fiag
Halt processor
Load global descriptor table (8 bytes)
Load interrupt descriptor table (8 bytes)
Load local descriptor table
Load maclrine status word
Load task register
Move to or from creg
Move to or from dreg
Move to or from treg
Move to or from creg
Move to or from dreg
Move to or from treg

A-13

i "

Appendix B
Directive Summary

B.1 Directive Names B-1
B.2 Directive Syntax and Function B-1

(\

c�

Directive Summary

B .l Directive Names

Directives give the assembler directions and information about input
and output, memory organization, conditional assembly, listing and
cross-reference control, and definitions. The following table illustrates
each directive.

Directives

.186 ASSUME ENDP IFDIF PAGE

.286 cdMME:N'r ENDS IFIDN l'ROC

.286C .CREF EQU IFNB PUBLIC

.286P DB EVEN IFNDEF .RADIX

.287 DD EXTRN INCLUDE RECORD

.386 DF GROUP LABEL .SALL

.386C DQ IF . LALL SEGMENT

.386P DT IF1 .LFCOND .SFCOND

.8086 DW IF2 .LIST STRUC

.8087 ELSE IFB NAME SUBTTL

.PRIV END !FE ORG .TFCOND
END IF IFDEF %OUT TITLE

Any combination of upper and lowercase letters can be used when giv
ing directive names in a source file.

B .2 Directive Syntax and Function

The following is a complete list of directive syntax and function.

. 186

.286

.286C

.286P

Enables assembly of 186 instruction set .

Enables assembly of 286 non-protected instruc
tion set.

Enables assembly of 286 non-protected instruc
tion set.

Enables assembly of 286 protected instruction set
and is equivalent to the following sequence:

.286

.PRIV

B-1

Macro Assembler Referenee

. 287

.386

.386C

.386P

. 8086

. 8087

.PRIV

Enables assembly of 287 instruction set .

E!lllbles assembly of 386 non-protected instruc
tion set and sets the default word size to 4 bytes.

Enables assembly of 386 non-protected instruc
tion set and sets the default word size to 4 bytes.

Enables assembly of 386 protected instruction set
and ill equivalent to the following sequenee:

.286

.PRIV

Enables assembly of 8086 instruction set .

Enables assembly of 8087 instruction set .

Enables the protected mode instruction set. Use
with either the .286 or .386 directives.

name - expression

ALIGN size

Assigns the numeric value of expression to name.

Aligns the segment word size to size bytes. The
size argument must be a power of 2.

ASSUME segment-register : segment-name ,,
Selects the given segment register segment-register
to be the default segment register for aU symbols
in the named segment or group. If segment.·/Ulme
is NOTHING, no register is selected.

COMMENT delimiter text delimiter

.CREF

[name] DB

Treats aU text between the given pair of delimiters
delimiter as a comment.

Restores listing of symbols in the cross-reference
listing file.

initial-value · � ·

Allocates and initializes a byte (8 bits) of storage
for each initilll- value.

(

[name] DW

[name] DD

[name) DF

[name] DQ

[name 1 DT

FLSE

Directive Summary

initial-value , , ,
Allocates and initializes a word (2 bytes) of
storage for each given initial-value.

initial- value ,,
Allocates and initializes a doubleword (4 bytes) of
storage for each given initial-value.

initial� value ,�,
.Allocates and initializes 6 .bytes of storage for
each given initial- value.

initial-value ,,
Allocates and initializes a quadword (8 bytes) of
storage for each given initial-valM.

initial-value , ,
Allocates and initializes 10 bytes of storage for
each given initiill� value.

Marks the beginning of an alternate block within a
conditional block.

END [expression 1

END IF

Marks the end of the module and optionally sets
the program entry point to expression.

Terminates a conditional block.

name EQL' expression
Assigns the expression to the given name.

name ENDP Marks the end of a procedure definition.

name ENDS

EVB."'

I
Marks the end of a segment or structure type
definition.

If necessarv� increments the location counter to
an even vaiue an(,! generates one NOP instruction
(90h).

EXTRN name : type ,n
Defines an external variable, label, or symb ol
named name and whose type is type.

B-3

Maero Assembler Reference

name GROUP segment� name ,,
Associates a group name name with one or more
segments.

lF expre.s.sion Grants assembly if the expression is non-zero
(true).

lFl Grants assembly on Pass 1 only.

IF2 Grants assembly on Pass 2 only.

lFB < argument >
(]rants assembly if the argument is biJmk.

IFDEF name Grants assembly if name is a previously defined
label, variable, or symbol.

lFDlF < argument! >, < argument2 >
Grants assembly if the arguments are different.

lFE expression Grants assembly if the expression is 0 (false).

lFIDN < argument! >, < argu�TMnt2 >
Grants assembly if the arguments are identical.

I.FNB < argument >
Grants assembly if the ar� is not blank.

lFNDEF name Grants assembly if name has not yet been defined.

INCLUDE ftkname
Inserts sonrce code from the sonrce file given by
ji.kname into the current source file during assem
bly.

name LABEL type
Creates a new variable or label b y assiguing the
current location counter value and the given type
to namR .

. LALL Lists all statements in a macro .

. LFCOND Restores the listing of conditional blocks.

.LIST

Directive Summary

Restores listing of statements in the program list
ing.

NAME module- name

ORG expression

% OUT text

Sets the name of the current module to module
name.

Sets the location counter to expression.

Displays !P.xt at the user's terminal.

name PROC type
Marks the beginning of a procedure definition.

PUBLIC name ,,
Makes the variable, label, or absolute symbol
given by name available to all other modUles in
the program .

. RADIX e-Xpression
Sets the input radix for numbers in the source file
to expression.

recordname RECORD fieldname : width [� exp 1 ,,
Defines a record type for a 8- or 16-bit record
that contains one or more :fields .

. SALL Suppresses listing of all macro expansions.

name SEGMENT align rombi.ne class
Marks the beginning of a program segment named
name and having segment attributes align, com
bine, and class •

. SFCOND Suppresses listing of any subsequent conditional
blocks whose IF condition is false.

11ltme STRUC Marks the beginning of a type definitinn for a
structure.

PAGE length , width
Sets the line length and character width of the
program listing.

B-5

Macro Assembler Reference

PAGE + Increments section page numbering.

PAGE Generates a page break in the listing.

SUBTTL text Defines the listing subtitle .

. TFCOND Sets the default mode for listing of conditional
blocks.

TITLE text Defines the program listing title .

. XALL Lists only those macro statements that generate
code or data .

. XCREF name ,,
Suppresses the listing of symbols in the cross
reference listing file .

. XLIST Suppresses listing of sub sequent source lines to
the program listing.

B-6

(
App endix C
Segment Names
For High- Level Languages

C.l Jntroduction C-1
C.2 Text Segments C-2
C.3 Data Segments - Near C-3
C.4 Data Segments - Far C-4
C.5 Bss Segments C-5
C.6 Constant Segments C-6

()

Segment Names For High-Level Languages

C.l Introduction

This appendix describes the naming conventions used to form assem
bly language source files that are compatible with object modules pro
duced by recent Microsoft language compilers. Compilers that use
these conventions include the following:

Microsoft C Version 3.0 or later

Microsoft Pascal Version 3.3 or later

Microsoft Fortran Version 3.3 or later

High-level language modules have the following four predefined seg
ment types:

_TEXT For program code

J)ATA For program data

....BSS For uninitialized space (blank static storage)

_CONST For constant data

Any assembly language source file to be assembled and linked to a
high-level language module must use these segmeots.

High-level language modules must be one of three different memory
model types when integrated with 8086 or 286 code:

Small

Middle

Large

For single code and data segmeots

For multiple code segments with a single data seg
ment

For multiple code and data segments

C-1

Macro Assembler Reference

Hlgh'-level language modules must be one of two different memory
model types when integrated with 386 code:

Pure-Text Small For text and data in separate segments

Mixed For code located in one segment and procedures
or data located in another segment

Assembly language source files to be assembled for a given memory
model must use the naming conventions given in this appendix.

C.2 Text Segments

Syntax

name_TEXT SEGMENT BYTE PUBLIC 'CODE'
statements

name_TEXT ENDS

A text segment defines a module's program code. lt contains state
ments that define instructions and data within the segment. A text seg
ment must have the name name_TEXT, where name can be any valid
name.

A segment can contain any combination of instructions and data state
ments. These statements must appear in an order that creates a valid
program. All instructions and data addresses ln a text segment are rela
tive to the CS segment register. Therefore, the the following statement
must appear at the beginning of the segment:

assume cs: name_TEXT

This statement ensures that each label and variable declared ln the seg
ment wlll be associated with the CS segment register.

Text segments must have "BYTE" allgmnent and "PUBLIC" combina
tion type, and must have the cl!ll!ll name "CODE" . These define
loading instructions that are passed to the linker. Although other seg
ment attributes are available, they should not be used. For a complete
description of the attributes, see the "Program Structure." chapter.

C-2

L �

Segment Names For Blgh-Level Languages

For small model programs, only one text segment is allowed. The seg
ment must not exceed 64K bytes in 8086 or 286 code, or 40 bytes in
386 code. All procedure and statement labels must have the NEAR
type.

Example

_TEXT segment BYTE PUBLIC 'CODE'
assume cs:_TEXT

_m:ain proc near

Jllain endp
_TEXT ends

C.3 Data Segments - Near

Syntl!X

DGROUP group...DATA
assume

...DATA SEGMENT WORD PUBLIC 'DATA'
statements

...DATA

A near data segment defines initialized data that is in the segment
pointed to by the DS segment register when the program starts execu
tion. The segment :is "near" b�ause all data in the segment is accessi
ble without giving an explicit segment value. All programs have exactly
one near data segment.

A near data segment's name must be "..DATA" . The segment can
contain any combination of data statements defining variables to be
used by the program. The segment must not exceed 64K bytes in 8086
or 286 eode and 40 byteS in 386 code. All data addresses in the seg
ment are relative to the predefined group "DGROUP" . Therefore,
the following statements must appear at the beginning of the segment:

DGROUP group ...DATA
assume ds: DGROUP

C-3

Maero Assembler Reference

These statements ensure that each variable declared in the data seg
ment will be associated with the DS segment register and DGROUP.

Near data segments must be "WORD" aligned in 8086 or 286 code and
"DWORD" aligned in 386 code, must have "PUBLIC" combination
type, and must have the class name "DATA" . These define loading
instructions that are passed to the linker. Although other segment
attributes are available, they mnst not be used.

Example

DGROUP group J)ATA

J)ATA
count
array
string
J)ATA

assume ds:DGROUP

segment
dw
dw
db
ends

word public 'DATA'
0
10 dup(1)
'Type CANCEL then press REl'URN", Oah, 0

C.4 Data Segments - Far

Syntax

nameJ)A TA SEGMENT WORD PUBLIC 'FAR..DA TA'
statements

nameJ)ATA ENDS

A far data segment defines data or data space that can be accessed
only by specifying an explicit segment value.

A far data segment's name must b e nameJ)ATA, where name can be
any valid name. The name of the first variable declared in the segment
is recommended. The segment can contain any combination of data
statements defining variables to be used by the program. The segment
must not exceed 64K bytes in 8086 or 286 code and 4G bytes in 386
code. All data addresses in the segment are relative to the ES segment
register. When accessing a variable in a far data segment, the ES regis
ter must be set to the appropriate segment value. Also, the segment
override operator must be used with the variable's name (see the
"Operands and Expressions" cbapter).

C-4

c

G

Segment Names For High-Level Languages

Far data segments must be "WORD" aligned, must have "PUBLIC"
cpmb:ination type, �d m11st ha,ve the Qlass nctroe "FAR..DA TA" .
These define loading instructions that are passed to the linker.
Although other segment attributes are available, they must not be
used.

Example

array_DATA
array

table
array_DATA

segment
dw
dw
dw
dw
dw
ends

C.S B s s Segments

Syntax

DGROUP group....BSS

word public 'far_DA TA'
0
1
2
4
1600 dup(?)

assume ds:DGROUP
....BSS SEGMENT WORD PUBLIC 'BSS'

statements
....BSS ENDS

A bss segment defines uninitialized data space. A bss segment's name
must be ".....BSS" . The segment can contain any combination of data
statements defining variables to be used by the program. The segment
must not exceed 64K bytes in 8086 or 286 code and 4G in 386 code.
All data addresses in the segment are relative to the predefined group
"DGROUP" . Therefore, the following statements must appear at the
beginuing of the segment:

DGROUP groupBSS
assume ds:DGROUP

These statements ensure that each variable declared in the bss segment
will be associated with the DS segment register and DGROUP. The
group name DGROUP must not be defined in more than one GROUP
directive in a source file. If a source file contains both a DATA and
BSS segment, the directive should be used:

DGROUP group _DATA,BSS

C-5

Macro Assembler Reference

A bss segment must be "WORD" aligned, must have "PUBLIC" com
bination type, and must have the class name ''BSS" , These define
loading instructions that are passed to the linker. Although other seg
ment attributes are available, they must not be used.

Example

DGROUP group _BSS
assume ds:DGROUP

_BSS
count
array
string
_BSS

segment
dw
dw
db
ends

word pnblic 'BSS'
?
10 dup(?)
30 dup(?)

C.6 Constant Segments

Syntax

DGROUP group CONST
assume ds:DGROUP

CONST SEGMENT WORD PUBLIC 'CONST'
statements

CONST ENDS

A constant segment defines constant data that will not change during
program execution.

The constant segment's name must be "CONST" . The segment can
contain any combination of data statements defining constants to be
used by the program. The segment must not exceed 64K bytes in 8086
or 286 code and 4G bytes in 386 code. All data addresses in the seg
ment are relative to the predefined group "DGROUP'' . Therefore,
the following statements mu.•t apPear at the beginning of the segment:

DGROUP group CONST
assume ds:DGROUP

I
\, _

f \
,� ,

G

Segment Names For lligh-Level Languages

These statements ensure that each variable declared in the constant
segment will be associated with the DS segment register and
DGROUP. The group name DGROUP must not be defined in more
than one GROUP directive in a source file. If a source file eontains a
DATA, BSS, and CONST segment, the directive should be used:

DGROUP group ..DATA,BSS, CONST

A constant segment should be "WORD" aligned, must have "PUB
LIC" combination type, and must have the class name "CONST" .
These define loading instructions that are passed to the linker.
Although other segment attributes are available, they must not be
used.

In the following example, the constant segment receives the segment
values of two far data segments: "ARRA Y_DATA" and
"MESSAGE...DATA" . These data segments must be defined else
where in the module.

Example

DGROUP group CONST

CONST
segl
seg2
CONST

assume ds:DGROUP

segment
dw
dw
ends

word public 'CONST'
ARRAY...DATA
MESSAGE...DATA

C-7

\

Index
= directive 4-9
: segment override operator 5-16
ABS type 6-2
Absolute segments 3-11
ALIGN Directive 3-18
Alignment, segment 3-9, 3-17
AND operator 5-14
Arithmetic operators 5-11
Assembly listing

false conditionals 9-8
macros 9-8
page breaks 9-6
page dimensions 9-6
subtitle 9-5
suppressing 9-7
symbols 9-9
title 9-5

Assembly passes
user messages 9-3

ASSUME directive 3-15
AT segments 3-11
Bitwise operators 5-14
Character

constants 2-4
set 2-1

Classes 3-11
Combine type 3-10
COMMENT directive 2-8
Comments 2-7, 2-8
COMMON segments 3-11
Conditional assembly

assembly passes 7-3
directives 7-1
expressions 7-2
macro arguments 7-4, 7-5
nesting 7-2
symbols 7-3

Constant operands 5-2
Constants

default radix 9-2
.CREF directive 9-9
Cross-reference listing

symbols 9-9
Data

alignment 3-18
bytes 4-3
doublewords 4-4
faiWords 4-5
quadwords 4-6
ten-byte words 4-7
words 4-4

DB directive 4-3
DD directive 4-4
Decimal numbers

DT directive 2-4
in hexadecimal2-2
packed 2-4

Declarations

Declarations (continued)
byte data 4-3
doubleword data 4-4
external 6-3
fanvord data 4-5
global 6-1
local 6-3
public 6-3
quadword data 4-6
ten-byte words 4-7
word data 4-4

Default segment registers 3-15
DF directive 4-5
Direct memory operands 5-2
Directives

conditional 7-1
data declaration

DB 4-2
DD 4-2
DF4-2
DQ 4-2
DT 4-2
DW4-2

description 3-5
file control9-1
functions B-1
macros 8-1
modular programming 6-1
summary B-1
syntax B-1

DQ directive 4-6
DT directive 4-7
DW directive 4-4
Encoded real numbers 2-3
END directive 3-13
ENDM directive 8-2, 8-7, 8-9
ENDP directive 3-19
ENDS directive 3-7
Entry point 3-13
EQ operator 5-13
EQU directive 4-10
EVEN directive 3-17
EXITM directive 8-9
Expressions 5-11
External symbols 6-2
EXTRN directive 6-2
False conditionals-9-8
Forward references 5-26
GE operator 5-13
Global symbols 6-1, 6-2
Group, definition 3-14
GROUP directive 3-14
Groups, size restriction 3-14
GT operator 5-13
Hexidecimal numbers

case 2-2
real number designator 2-2
starting digit 2-2

I-1

Index

mGH open:tor 5-19
IF directive 7-2
IF1 directive 7-3
1F2 directive 7-3
IFB directive 7-4
IFDEF direetive 7-3
IFDIF directive 7-5
lFE directive 7-2
IFIDN directive 7-5
lFNll directive 7-4
IFNDEF directive 7-3
INCLUDE directive 9-2
Index operator 5-15
Instruction set

80186A-8
80286 A-10, A-9
00287 A-10
80386 A-11, A-13
8086 A-1
8087 A-6
directives :3-5

Integer numbers
default radix 9-2
description 2-1
number of digits 2-2

IRP directive 8-7
IRPC directive 8-9
LABEL directive 4-11
Labels

declarations 4-1
default segp1ents 3-15
EXTRN directive 4-1
far 4-2
near 4-1, 4-2
PROC directive 4-2
procedure 4-2
procedures 3-19
PUBLIC dirWtive 4-1

.LALL directive 9-8
LE operator 5-13
LENGIH operator 5-22
.LFCOND directive 9-8
.LIST directive 9-7
Loading options

class 3-11
combine type 3-10
segments 3-9

LOCAL directive 8-5
Location counter 5-3
LOW operator 5-19
LT operator 5-13
MACRO directive 8-2
Macros

actual parameters 8-11
argument tesling 7-5
assembly process 8-3
calling 8-3, 8-4
comments 8-14
creating 8-2

I-2

Macros (conlinued)
dummy-parameters 8-11
execution speed 8-1
expansion 8-1
expressions 8-13
libraries 8-6
local names 8-5
nesling 8-3
operators 8-11
parameters

description 8-2� 8-4
literals 8-13

putging 8-6
termination B-9

MASK operator 5-24
Memory image

loading options 3-9
MEMORY segmentli 3-ll
Memory wordsize

loading option.s 3-9
Messages

user console 9-3
Microprocessors

instructions 3-5
Module

end 3-13
main 3-13
name 9-4

NAME directive 9-4
Names

description Z-5
formatting rules 2-5
groups3-14
leugtil 2-5
module 9�4
reserved 2-6
segment classes 3-11
segments 3-7

NE operator 5-13
Nested conditionals 7-2
NOT operator 5-14
OFFSET operator 5-20
Operands

direct memocy 5-2
location counter 5-3
record field 5-10
records 5-9
register 5-4
re1ocatable 5-3
st:roeg typing 5-28
stroctures 5-7

Operators
arithmetic 5�11
bitwise 5-14
HIGH 5-19
index 5-15
LENGIH 5-22
LOW 5-19
MASK 5-24

Operators (continued)
OFFSET 5-20
Yl'R 5-15
relational S-13
SEG 5-20
segment ovenide (:) 5-16
shift 5-13
SHORT 5-17
SIZE 5-23
THIS 5-18
TYl'E 5-21
WIDTH 5-23

OR operator 5-14
ORG directive 3-17
%OUT directive 9-3
Output files

user console 9-3
Packed decimal numbers 2-4
PAGE directive 9-6
Precedence of operators 5-25
Private segments 3-11
PROC directive 3-19
Procedures 3-19
Program

entry point 3-13
loading options 3-9
segments 3-7
source files 3-1
structure 3-1

PTR operator 5-15
PUBUC directive 6-1
PUBLIC segments 3-10
Public symbols 6-1
PURGE directive 8-6
.RADIX directive 9-2
Radixes 2-1, 9-2
Real nwnbers

description 2-2, 2-3
Record field operand 5-10
Record operands 5-9
Register operands 5-4
Relational operators 5-13
Relocatable operands 5-3
REPT directive 8-7
Reserved names 2-6
.SALL directive 9-8
SEG 5-20
Segment

alignxnent 3-17, 3-9
AT3-ll
class type 3-11
classes 3-11
combine types 3-10
COMMON 3-ll
definition 3-7
groups 3-14
loading options 3-9
MEMORY 3-ll
nesting 3-12
origin 3-17

Segment (continued)
ovenide (:) operator 5-16
Private 3-11 -
PUBLIC 3-10
STACK 3-10
word size 3-9

SEGMENT 3-7
Segments, loading 3-18
.SFCOND directive 9-8
Shift operators 5-.13
Sill.. operator 5-13
SHORT operator 5-17
SHR operator 5-13
SIZE operator 5-23
Source flie

compatible
high-level languages C-1
memory models C-1

end 3-13
including 9-2
segments C-1

STACK segments 3-10
Statements

block
repeating 8-7, 8-9
tennination 8-9

definition 2-1
description 2-7

String, constants
description 2-4

Strong typing 5-28
Structure operands 5-7
Structures

declaration 4-13
Subtitle

assembly listing 9-5
SUBTTL Directive 9-5
Symbols

absolute 4-10, 4-9
aliases 4-10
default segments 3-15
extemal 6-2
global 6-1, 6-2
labels 4-11
public 6-1
relocatable operands 5-3
variables 4-11

.TFCOND directive 9-8
TinS operator 5-18
Title, assembly listing 9-5
TITLE directive 9-5
.TYPE operator 5-21
Types

operand matching 5-28
Use type 3-9
Variables

default segments 3-15
WIDTII operator 5-23
Wordsize

Index

I-3

Index

Wordsize (continued)
segments 3�9

.XALL directive 9-8

.XCREF directive 9-9

.xLIST directive 9-7
XOR operator 5-14

I-4

	Release Notes
	Programmer's Guide
	1 Introduction
	2 make
	3 sccs
	4 lint
	5 lex
	6 yacc
	7 signals
	8 system resources
	A M4
	B System Calls
	Index

	C Language Reference
	1 Introduction
	2 elements of C
	3 Program Structure
	4 Declarations
	5 Expressions and Assignments
	6 Statements
	7 Functions
	8 Preprocessor Directives
	A Differences
	B Syntax Summary
	Index

	C User's Guide
	2 cc
	3 ld
	4 adb
	C sdb
	Index
	5 C comp with Asm
	6 Error Processing
	7 Obj and Exec File Formats
	8 Writing Device Drivers
	9 Sample Device Drivers
	A C Language Portability
	B CC and LD Error Messages

	C Library Guide
	1 Introduction
	2 Run-Time Routines by Category
	3 Include Files
	4 Using Std I/O Functions
	5 Screen Processing
	6 Character and String Processing
	7 Using Process Control
	8 Writing and Using Pipes
	9 Using System Resources
	A Xenix to DOS Cross Development
	B System Error Values
	Index

	Macro Assembler User's Guide
	1 introduction
	2 Command Line Options
	3 Source File Listings
	A Error Messages
	Index

	Macro Assembler Reference Manual
	1 Introduction
	2 Elements of the Assembler
	3 Program Structure
	4 Types and Declarations
	5 Operands and Expressions
	6 Global Declarations
	7 Conditional Assembly
	8 Macros
	9 File Control
	A Instruction Summary
	B Directive Summary
	C Segment Names for High Level Lang
	Index

	Blank Page

