
!nfonnation in this document is subject to cha.ngewithoutnotice and does not represent a
commitment on the part of The Santa Cmz Operation, lne. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms ofthe agreement. It is against the law to copy this software on magnetic tape,
disk, oranyothermediumforanypurpose other than the purchasers personal use.

Portions @ 1900, 1981, 1982, 1983, 1984, 1985, 1986. 1987 Microsoft Corporation.
All rights reserved.

·
Pqrtion.s© 198j,1984, 1985, 1986, l987The SantaCruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
---GOVERNMENT'SHALLBE EXPRESSLYSUBJECITORESTRICTIONSASSET---

FORTHINSUBDIVISION(b)(3)(li)FORRESTRICI'EDRIGHTSINCOMPUTER
SOFTWAREA.l'ID SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA,BOTHASSETFORTIIINFA.R52.227-7013.

This document was typesei with an IMAGEN® 8/300 Laser Printer.

Microsoft, MS-OOS, and XE.NIX are Tegistel'ed tmdelllarks ofMkrosoftCorpo:ration.

IMAGENlsaregisteredtradcn.uukofiMAGENCorpotation.

SCO Document Number: XG-6-21.-87-4.0

Preface

The complete XENlX Reference Manual is actually divided into six parts
and distributed as individual reference sections i n the vari.ous volumes of
the XENIX Operating, Text Processing, and Development Systems. The

�_. following table lists the name, content, and location of each reference
section.

Section Description XENlX Volume

C Commands - used with the User's Reference
XENlX Operating System.

CP Programming Commands - used Programmer's Reference
with the Development System.

CT Text Processing Commands - Text Processing Guide
used with the Text Processing
System.

DOS Routines used with the Programmer's Reference
Development System

F File Formats description of User's Reference
various system files not defined in
sectinnM.

HW Hardware specific manual pages - RUll Time Environment
information about XENlX
procedures specific to your
computer.

M Miscellaneous - information used User's Reference
for access to devices, system
maintenance, and communi-
cations.

S System Calls and Library Programmer's Reference
Routines - available for C and
assembly language programming.

In the manual pages, a given command, routine, or file is referred to by
name and section. F'or example, the programming command Hcc", which
is described in the Programming Commands (CP) section, jg listed as
cc(CP).

The alphabetized tahle of contents given on the following pages is a
complete listing of all XENIX commands, eystem calls, library routines,
and file fonnats. The permuted index, found at the end of the XENIX
User's Reference, and the the end of the XENIXProgrammer's Reference, is
useful in matching a desired task with the manual page that describes it.

'-<..

Alphabetized List
/" Commands, Systems Calls, Library Routines and File Formals

8087 8087(HW)
86rel .•............•..•.... 86rei(F)
a641••......... a641(S)
abort abort(S)
abs abs(S)
accept accept(C)
access access(S)
acct acct(F)
aect acct(S)
acctcom•...... acctcom (C)
accton accton(C)

" acos".::·"····· ,:::· triQ(S)
adb adb(CP)-
admin admin(CP)
alann alarm(S)
aliases aliases(M)
allases.hash aliases(M)
allashash alzashash(M)

ar ar(CP
a.out a.out(F�
ar ar(F
archive archi11e � �· .. ascn ascu�
asclime ctime(S)
asin trig(S)
asklime asktime (C)
assert assert(�
assign assign (
asx asx(CP
at at(
atan trig(S
atan2 trig(S)
atof atof(S)
atof strtad(S)
atol atof(S)
atol strtol(S)
autoboot autoboot(M)
awk awk(C)
backup backup(C)
backup backup (F�
banner banner(C
basename basename(C
batch at(C)
be bc(C)
bdiff bdiff(C)

bdos bdos (DOS)
bessel bessel(S)
bfs bfs(C)
boot boot(HW)
brk sbrk(S)
brkctl brkctl(S�
bsearch bsearch (S
cabs hypot(S
cal c al(C
calendar ca/endar(C)
canoe tmllloc (S)

capmfo ::; capmfo(C
cancel _ . lp(C�
cat cat(C
calimp catimp(CT)
cb cb(CP)
cc cc(CP)
cd cd(C)
cdc cdc(CP)
ceil ,. jioor(S)
ell ow cflow (CP)
cgets cgets(DOS)
character eqnchar(CT)
charmap chartmlp (CT)
chdir chdir (S)
checkcw cw (CT)
checkeq eqn (CT)
checklist checklist(F)
checkmm checkmm(CT)
chgrp chgrp (C)
chmod chnwd (C)
chmod chmod(S)
chown chown (C)
chown chown (2
chroot chroot(
chroot chroot(S
cbsize chsize(S}
clear clear(C
clearerr ferror(S
clock clock (M)
clock : dock(S)
dockrate clockrate(H�
close close (S
clri clri(C
cmchk cmchk(C)

emos cmos(HW)
cmp•..........•.... cmp(C)
col col (CT)
comb comb(C'P)
comm comm(C)
config config(C)
console console (HW)
console console(M)

delete dbm(S)
delta delta (CP)
derolf deroff(CT)
devmn devnm(C)
df df(C)
dial dial(M)
dial dlai(S)
diction diction (CT)

contains eqnchar(CT)
conv conv(S)
convkey map key (M)
core core(F)
cos trig(S)
cosh sinh (S�
cp cp(C
cplo cpi.o(C
cplo cpi.o (F)
cpp cpp(CP)
cprlntf cprintf(DOS)
cputs cputs (DOS)
creat creat(S)
creatsem creatsem(S)
cref cref(CP)
cron cron(C)
cscanf cscanf(DOS)
csh csh(C)
cspllt csplit(C)
ctags ctags(CP)
ctermid ctermid(S)
ctlme clime (S)
ccype ctype(S)

dilf dlff(C)
dilf3 dlff3(C)
dilfmk dijfmk(CT)
dir dir(F)
diremp dircmp(C)
diroame dirname (C)
disable d�able(C)
diskcmp d�p �C)
diskep d�p C)
divvy divvy C)
dmesg dmesg(C)
dos dos�C)
doscat dos C)
doscp dos C)
dos dir dos(C)
dosexterr dasexrer(DOS)
dosfonnat dos(C)
dparam dparam(C)
drand48 drand48(S)
dlype dtype(C)
du du(C)
dump dump(C)
dump dump(F)

cu cu(C)
curses curses (S)
cuserld cuserid(S)
cut cut(CT)
cw cw(CT)
cwcheck cw(CT)
cxref cxref(CP)
daemon.mn .. daemon.mn(M)
date date(C)
dbmlnit dbm(S)
de dc(C)
dd dd(C)
deassign assign(C)
deco deco(CT)
default default(M)
definitions eqnchar(CT)
defopen defopen(S)
del'read defopen(S)

dumpdir dumpdir(C)
dup dup(S)
dupl dup(S)
dvibnp dviimp { CT}
echo echo (c�
eevt ecvt(S
ed ed(C
edata end(S)
egrep grep(C)
enable enable(C)
eneo deco(CT)
end end(S)
endgrent getgrent(S)
endpwent getpwent(S)
env env(C)
environ environ (M)
eof eof(DOS)
eqn eqn(CT)

ii

eqn eqnchar(Cf)
eqncbar , eqnchar(CT)
eqncheck eqn (CT)
erand48 drand48(S)
erf eif(S)
erfc eif(S)
errno perror(S)
error error(M)
etext end (SI ex

.

............ ex(C
exec! exec (S
execle exec(S
execlp exec (S
execseg execseg(S)
execv exec(S)
execve exec(S)
execvp . : exec(S)
exit exit(DOS)
_exit exit(SI exp exp(S
explain explain(Cf
expr expr(C
fabs fioor(S
factor factor(C)
false false(C)
fclose fclase(DOS)
fclose fclase(S)
fcloseall fclase(DOS�
fen II fcntl (S
fcvt ecvt(S

fi:rstkey dbm�S
fixhdr fixhdr (C
fixperm fixperm(
floor floor (S
flushall ftushall(DOS)
fmod ftoor(S)
fopen fopen(S
for eqnchar(CT
fork fork(S
format forrnat(C
fp__off fpJeg(DOS
fprintf printf(S
fpJeg fpJeg(DOS
fputc fputc (DOS)
fputc

..

...............

.

....

.

.... putc(Sl
fputchar fputc (DOS
fputs .. : ; puts(S ·
fread [read (S
free malloc(S
freopen fapen (S
frexp•...• frexp(S)
fscanf scanf(S)
fsck .. , fsck(C)
fseek fseek(S)
rstab fstabffi
fstat stat(S
flell fseek(S
flime time(S)
fmk stdipc(S)
nw ftw(S)

fd fd(HW)
fdisk fdisk(C)
fdopen fapen(S)
feof ferror(S)
ferror forror(S)
fetch dbm(S)

fwrite fread(S)
fxlist xlist(S)
gamma gamma(S)
gcvt ecvt(S)
get get(CP)
getc getc(S)

ffinsh fclase(S)
fgetc fgetc (DO�
fgetc getc (S
fgetchar fgetc(DOS
fgets gets(S
fgrep grep(
me file(C)
me filesystem(F)
me length file/eng (DOS)
meno ferror(S)
mesys filesys�
lind jilld(C
linger finger(C

getch getch (DOS)
getcbar getc(SI getche getche(DOS
getcwd getcwd (S
getegid getu.id(S
getenv getenv(S
geteuid getu.id(S)
getgid getuid (S)
getgrent getgrent�S�
getgrgid getgrent S
getgmam getgrent S
getlogm getlagin S
gempt getopt(C

iii

getopt getopt�S)
getpass getpass S)
getpgrp • getpid S)
getpld ••......•.......•.. getpid S)
getppid • • • getpid �S)
getpw getpw S)
getpwent getpwent s�
getpwnam getpwent(S
getpwuid getpwent(S
gets geu(CP)
gets gets(S)
getly getty (M)
getlydefs•...... gettydefs �F)
getuid getuid S
getutent getut s�
getutid getut S)
getutline getut S)
getw getc(S)
gmtime•... ctlme(S)
grep . • grep(C)
group group(M)
grpcheck•..... grpcheck(C)
gsignal•••........• ssignal (S)
haltsys haltsys(C)
handler••.......... Ips(C)
bashcheek spell(CT)
bashmake • spell(Cf)
hcreate hsearch(S)
hd hd(C)
bd hd(HW)
hdestroy hsiarch (S)
hdr hdr(CP)
head head(C)
help help (CP)
hsearch hsearch (S)
hyphen hyphen(Cf)
hypot hypot(S)
id id(C)
imacct lmacct(C)
imagen. pbs imagen�
imagen.remote .•.. Imagen M)
imagen.sbs imagen M)
imagen.s pp imagen M)
imprint imprint(C)
imprint imprint (cr)
inlr init(M)
inlt init(M)
inittab inittab(F)
inode inode(F)
iv

inp inp(DOS)
ins tan install(M)
int86 int86(DOS)
int86x int86x�OS)
intdos intdos DO�
intdosx lntdosx DOS
inlro Intro (
intro Intro (CP)
inlro Intro(Cf)
intro intro (DOS)
intro Intro (F)
inlro Intro (HW)
intro Intro (M)
intro Intro (S)
ioctl ioctl(S)
!pbs ips (M)
!penn lpcrm (C)
!pes ipcs(C)
lpr ipr(C)
iprint iprint(C) ;>• �s�C
lJIS lpS
isaioum ctype(S
isalpha ctype(S)
isascii ctype(S)
isatcy isatty(DOS)
isatly ttyname(S)
isbs ips(M)
iscntrl ctype�S)
Is digit ctype S)
isgraph ctype S)
!slower ctype(S)
!sprint ctype(S)
ispunct ctype(S)
Is upper ctype S
iss pace ctype (S�
isxdigit ctype�S
itoa itoa (DOS)
ltrolf itroff(CT)
jO bessel(S)
jl bessel(S)
jn bessel(S)
join join(C)
jrand48 drand48(S)
kbhit kbhit(DOS)
=r���.:::::: .. �:.���

d
k<:m

kill kill(S)
kmem mem(M)

(� ' I
�j

I I(C)
13tol l3tol(S�
l64a a64l(S
Jabs labs(DOS
lc lc(C�
ldexp frexp(S
lex , lex(CP
lllnd••.•••...... lsearch(S)
line •.•..... ••... line(C)
link link.(S)
lint lint(CP�
In ln(C
loealtirne ctime (S

loekf lockf(S
lock

.

. loc. k(S�

Iockh)g [ackil!g(S
log exp(S
IoglO exp(S
login login
logname log!Ulme(C
logname logname(S
Iongjmp setjmp(S
look ; look(C
!order lorder(CP
IP /p(C)
1p lp(HW)
lpO /p(�
lpl lp(H
lp2 lp(
Ipadmin /padmin(C
lpinlt lpinit(C)
:����.�.:::.·::.·::::::::. ::.��.�!. �C)�
lpr lpr(C
lpsched lpsched(
lpshut lpsched(C
Ips tat lpstat(C
lrand48 drand48(�
Is ls(
!search lsearch(S
!seek lseek(S
Ito a ltoa (DOS
Itol3 l3tol(S
m4 m4(CP)
machine machine(HW)
man mail�C
make make(CP
makekey makekey
maliases aliases M

maliases.hash allases(M)
malllnro malloc(S)
maUoc malloc(S)
maUopt malloc(S
man man(CT
mapchan •....•.... mapchan (F
mapchan mapchan
map key mapkey
mapscm mapkey
mapslr mapkey(
masm TlUlsm(CP)
master master (F)
malherr . ••.•. TlUltherr(S)
mem mem(M)
memccpy memory(S)
memchr , . ..•. memory(S)
memcmp memory(S)
memcpy memory(S)
mems et memory (S)
mesg mesg(C)
messages messages(M)
mlcnet micnet(M)
mkdlr mkdir(C)
mkdlr mkdir(DOS)
mkfs mkfs(C)
mklnittab telinit(C)
mknod mknod(C)
mknod mknod(S)
mkslr mkstr(CP�
mktemp mktemp(S
mlruser mkuser (C
mm mm(CT)

=���.��.:::::::.��.��=?gj
mnttab mnttob(F)
modf frexp (S)
monitor monitor(S)
more more(C)
mount mount(C)
mount mount(S)
movedata movedata(DOS)
mrand48 drand48(S)
msgctl msgctl (S)
msgget msgget(S)
msgop msgop(S)
mv mv(C)
mvdlr mvdir(C)
nap nap(S)
nbwaitsem waitsem (S)

v

ncheck •............... ncheck (q
neqn•.......... eqn (CT)
neqn neqn(CT)
netutll netutil(q
newt'orm newform (8
newgrp newgrp(C
news news(C
nextkey dbm(S)
nice nice(q
nice , nice(�
nl nl(
nlist nlisr(S
run nm(CP)
nohup nohup(q
nrand48 drand48(S)
nroft' nroff(CT)
nnn null (M)
od od(C)
oldipr ipr(q
open open(S)
opendir directory (S)
opensem opensem(S)
outp outp(DOS)
pack pack(q
packet ips(C)
passwd passwd(C)
passwd passwd(M)
paste paste(CT)
pause pause (S�
peat pack(C
pdose popen(S
perror perror(S)
PI! pg(C)
pipe pipe(S)
plock plock(S)
popen popen(S)
pow exp(S)
pr pr(C)
prep prep(CT)
printf printf(S�
proctl proctl(S
prof prof(CP
profil profil(S)
profile profile (M)
protocol ips(C)
prs prs(CP)
ps ps(C)
pstat pstat(C)
ptrace ptrace(S)

vi

ptx ptx(CT)
putc putc(Sl
putch putch(DOS
putchar putc (S
pnteuv putenv(S
pntpwent putpwenr(S
puts puts(S)
pututllne getut(S)
putw putc(S)
pwadmin pwadmin(C)
pwcheck pwcheck (C)
pwd pwd(C)
qsort qsort(S)
quot quot(C)
ramdisk ramdisk(HW)
rand rand(S)
random random(C)
ranh'b ranlib (CP)
ratfor ratfor(CP)
rep rcp(C)
rdchk rdchk(S)
read read(S�
readdir directory(S
realloc malloc(S
reboot haltsys(C)
red red(C�
regemp regcmp(CP
regcmp regex�S
reg ex regex S
regexp ,, regexp S)
reject accept(C)
remote remme(C)
rename rename (DOg
restor restore(
restore restore(
rewind fseek(S)
rewiuddir directory(S)
rm rm(C)
rmdel rmdel(CP)
rmdir rm(C)
rmdir rmdir(C)
rmdir rmdir(DOS)
mmser rmuser(C)
rsh rsh(C)
runblg runbig (C)
sac! sact(CP)
sbrk sbrk (S)
scant scanf(S)
sccsdilf sccsdiff(CP)

sees file sees file (F)
screen screen (HW)
sdb sdb(CP�
sddate sddate(C
sdenter sdenter(S
sdfree sdget(S
sdget sdget(S)
sdgetv sdgetv(S)
sdllf sdiff(Cl
sdleave sdenter(S
sdwaitv sdgetv(S
sed sed(C
seekdir directory(S
segread segread(DOS)
sernctl semctl(S)
semget ••• .. . semget(S)
semop semop(S�
sequence ips(C
serial ips(C
setbuf setbuf(S)
setclock setclock(M)
setcolor setcolor(C)
setgid setuid(S
setgrent getgrent(S
setjmp setjmp(S
selkey setkey (C
setmnt setmnt(C
setmode setmode (DOS
setpgrp setpgrp (S
setpwent getpwent(S)

sleep sleep(S)
soelim soe/im (CT)
sopen sopen (DO�
sort sort(
spawn! spawn(DOS
spawnvp spawn (DOS
special eqnchar(CT
spell spell(CT
spellin spell(CT
spline spline(CP
split split(C
sprintf printf(S
sputl sputl(S)
sqrt exp(S)
srand rand(S)
ss cauf scan!(�
sslgnal ssignal S
stat stat
st;lt stat�S
stdio stdio(S)
slime stime(S)
store dbm(S)
strcat string(S)
strcmp strirtg(S)
strcpy string(S�
string strinq(S
strings stringst CP
strip strip (CP
strlen strlen(DOS
strlwr strlwr(DOS

scttime settime(C) stmcat strirtg(S
setuid setuld(S)
setuteot getut(S)
setvbuf setbuf(S)

stmcmp string(S
stmcpy string(S
strrev strrev(DOS

sgetl sputl(S)
sh sh(C)

strset strset(DOS
strtod strtod(S)

shl shl(C) strtol strtol(S)
slimed shmctl(S)
shmget shmget(S)
shmop shmop(S)
shutdn shutdn(S)
shutdown shutdown(C)
shV shV(�
signal signal(S
slgsem sigsem(S
sin trig(S
sinh sinh(S)
size size(CP)
sleep sleep(C)

strupr strupr(DOS)
stcy stty(C)
stty stty(H�
style style(CT
su su(
sum sum(
swab swab(S)
swapadd swapadd(S)
swapctl swapctl(C)
sxt sxt�
sync sync(C
sync sync(S

vii

sysadmin zysadmin(C)
sysadmsh ...•..... zysadmsh(2
sys_errllst •..........•. perror(S
sys....netr ...•...•.•....•. perror�S
system .••..•......• filesysti!m F)
system •.....••.......... zystem (S)
systemld ••.....•... zystemid(M)
systty •..•..•••••••..••••. zystty (M)
tall ••......•......•.......... tail(C)
tan ttig(S)
tanh•..•......• sinh(S)
tape ..•..•....•.•...•...... tape(C)
tape•.....•.. tape(HW)
tar ..•......•.........••.•.... tar(C)
tar•...........•..•.•..... tar (F)
lbl ····•·••············•····· tbl(Cf)
tdelete•.....••.. tsearch(S)
tee•.....••............... tee(C)
tclinit•..........•.... telinit(C)
tell •.......•...•......••. te!l(DOS)
telldlr ..•....••....... directory�S
tempnam tmpnam(S
tenn ..•........•...•..... term(Cf
tenn term(F
termeap termcap
terminal terminal(HW)
tenninals terminals(M)
termlnfo terminfo(F)
termlnfo terminfo (M)
termlnfo terminfo(S)
termlo termio (M)
test test(Cl
!find t.search(S
lgetent termcap(S
tgelflag••....... termcap(S
lgetnum ..••.........• termcap(S
lgelstr termcap(S)
tgoto termcap(S)
tic ...••.•...............•..... tic(C)
tid tid(C)
lime time(CP)
lime time(S)
limes times(S)
tmpme tmpji!e(S)
tmpnam tmpnam(S)
toascli conv(S)
toascii ctype(Si
to lower conv (S
tolower ctype(S

vili

top tap(M)
top.next top(M)
touch touch(C)
roup per conv(S)
toupper ctype(S)
tput tput(C)
tputs termcap(S)
1r tr(C�
trolf troff(cr
true true(C
tseardl tsearch(S)
tset tset(�
tsort tsort(CP
tty tty(
tty tty(
ttyname ttyname(S)
ttys ttys (M)
ttyslot ttyslot(S)
!walk tsearch (S)
types types(F)
TZ tz(M)
met ctime(S)
uadmln uadmin (Sl
ulimit u/imit (S
ultoa ultaa (DOS
umask umask (C
umask umask(S)
umount umount(C)
umount umount(S)
uname uname(C)
uname uname(S)
unget unget(CP)
ungete ungetc(S)
ungetch ungetch(DOS)
ungetty ungetty�
uniq uniq(
units units(C
unlink unlink(S)
unpack pack (C)
us tat ustat(S)
ulime utime(S)
utmp utmp (M)
uucico uucico(C)
uuclean u uuclean(C)
uucp uucp(C)
uulnstall uuinstall(C)
uulog uucp(C)
uuname uucp (C)
uuplck uuta(C)

J I

uustat uustat(C)
uusub ..•.............•. uusub(C�
unto uutu(C
nux ..•..•..•................ uux(C
val••.......•.•........ val(CP�
varargs ...•.•.....•... varargs(S
vedit vi(C
vfprintf vprintf(S)
vi vi(C)
view vi(C)
vmstat vmstut(C)
vprintf vprintf(S)
vsb vsh(C)
vsprintr vprintf(S)
w.•. it

.
.

.
...

.
..

.
... wait(C

.
)

walt • ., . .,, wait(S)
waitsem waifsem(S�
wall wall(C
we wc(C
what what(C)
who wha(C)
whodo whodo(C)
write write (C)
write wrifs(S)
wtmp utmp(M)
xargs xargs(C)
xllst xlist(S)
xref xref(CP)
xstr••................ xstr(CP)
yO bessel(S)
yl bessel(S)
yacc yacc(CP)
yes yes(C)
yn besse/(S)

ix

- /

Contents

Programming Commands (CP)

intro
a db
admin
ar
asx

cb
cc
cdc
eft ow
comb
cpp
cref
ctags
cxref
delta
dosld
get
gels
hdr
help
Jd
lex
lint
!order
m4
make

masm
mkstr
nm
prof
prs
ranlib
rntfor

regcmp

lntroduces XENIX Development commands.
lnvokes a general-purpose debugger.
Creates and administers sees files.
Maintains archives and libraries.
lnvokes the pre-emerge C compilerXENIX

assembler.
Beautifies C programs.
lnvokes the C compiler.
Changes the delta commentary of an sees delta.
Generates C program flow graph.
Combines sees deltas.
The C Language preprocessor.
Makes a cross-referertce listing.
Creates a tags file.
Cprogram cross reference.
Makes a delta (change) to an sees file.
XENIXto MS-DOS cross linker.
Gets a version of an sees file.
Gets a string from the standard input.
Displays selected parts of object files.
Asks for help about sees commands.
Invokes the link editor.
Generates programs for lexical analysis.
Checks C language usage and syntax.
Finds ordering relation for an object library.
Invokes a macro processor.
Maintains, updates, and regenerates groups of

programs.
lnvokes emerge C compiler XENIX assembler.
Creates an error message file from C source.
Prints name list.
Displays profile data.
Prints an sees file.
Converts archives to random libraries.
Converts Rational FORTRAN into standard

FORTRAN.
Compiles regular expressions.

i

rmdel
sact
sccsdlff
sdb
size
spllne
stackuse
strings
strip
time
tsort
unget
val
xref
xstr
yacc

ii

Removes a delta from an sees file.
Prints current sees file editing activity.
Compares two versions of an sees file.
Invokes symbolic debugger.
Prints the size of an object file.
Interpolates smooth curve.
Stack requirements for a C program, determines.
Finds the printable sttlngs iu an object file.
Removes symbols and relocation bits.
Times a command.
Sorts a file topologically.
Undoes a previous get of an sees file.
v alldates an sees file.
Cross-references C programs.
Extracts strings from C programs.
Invokes a compiler-compiler.

INTRO(CP) INTRO(CP)

Name

intro - Introduces XENIX Development System commands.

Description

This section describes use of the individual commands available in
the XENIX Development System. Each individual command is
labeled with the letters CP to distinguish it from commands avail
able in the XENIX Operating and Text Processing Systems. These
letters arc used for easy reference from other documentation. For
eltlliilple, the reference cc(CP) indicates a reference to a discussion
of the cc command in this section, where the letter ''C'' stands for
ueommand" and the letter "P" stands for HProgramming''.

Syntax

Unless otherwise noted, commands described in this section accept
·options Wid other arguments according to the following syntax:

where:

name

option

cmdarg

See Also

name [options] [cmdarg]

TI1e filename or pathname of an executable file

A single letter representing a command option. By
convention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in -abed or alternatively they are specified individu
ally as in -a -b -c -d . The method of specifying
options depends on the syntax of the individual com
mand. In the latter method of specifying options,
arguments can be given to the options. For example,
the -f option for many commands often takes a fol
lowing filaname argument.

A pathname or other command argument not begin
ning with a dash. It may also be a dash alone by
itS<Jlf indicating the standard input.

getopt(C), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one
supplied by the system and giving the cause for termination, and (in

June 21, 1987 Page 1

INTRO(C'P) INTRO(CP)

the case of "normal" termination) one supplied by the program
(see wait(S) and exit(S)). The former byte is 0 for normal termina
tion; the latter is customarily 0 for successful execution and
nonzero to indicate troUbles such as erroneous parameters, or bad
or inaccessible data. It is called variously "exit code", ((exit
status", or "return code", and is described only where special con
ventions are involved.

Notes

Not all commands adbere to the above syntax.

June 21, 1987 Page 2

I

/l.LJJ;j \ CJ')

Name

adb - Invokes a general-purpose debugger.

S;rntax

adb [-w] [-p prompt J [objftl [corefile]]

Description

ado is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe
cution of XENIX programs.

objfil is normally an executable program file, preferably containing
a symbol table; if not then the symbolic features of ado cannot be
used although the file can still be examined. The default for objfil
is a.out. corefile is assumed to be a core image file produced after
executing (Jbjfll; the default for corefile is core.

Requests to adb are read from the standard input and responses
are to the standard outpl!t. If the -w option is present then both
objfil and corefiie are created if necessary and opened for reading
and writing so that files can be modified using adb. The QUIT and
INTERRUPT keys cause adb to retnm to the next command. The
-p option defines the prompt string. It may be any combination of
characters. The default is an asterisk (*).

In general requests to adb are of the form:

[address] [, count] [command) [;]

If address is present then dot is set to address. Initially dot is set to
0. For most commands count specifies how many times the com
mand will be executed. The default count is 1. address is a special
expression having the form:

[segment:]offset

where segnumt gives the address of a specific text or data segment,
and offset gives an offset from the beginning of that segment. If
segment is not given, the last segment value given in a command js
used.

The interpretation of an address depends on the context it is used
in. If a subprocess .is being debugged then addresses are inter
preted in the usual way in the address space of the subprocess. For
further details of address mapping see Addresses.

June 21, 1987 Page 1

Expressions

The value of dot.

+ The value of dot incremented by the current increment.

..

integer

The value of dot decremented by the current increment .

The last address typed.

An octal number if integer begins with a 0; a hexadecimal
number if preceded by # or Ox; otherwise a decimal
number.

integer .fraction
A 32-bit floating point number.

'ecce' The ASCII value of up to 4 characters. \ may be used to
escape a�.

<name
The value of name, which is either a variable name or a
register name. adb maintains a number of variables (see
Variables) named by single letters or digits. If name is a
register name then the value of the register is obtained from
the system header in corejile. The register names are ax bx
ex dx di si bp ft ip cs ds ss es sp. The name ft refers to
the status flags. -,-,

symbol A symbol is a sequence of upper or lower case letters,
underscores or digits, not starting with a digit, The value
of the symbol is taken from the gymbol table in objjiJ. An
initial _ or - will be prepended to symbol if needed.

_symbol
In C, the 'true name' of an external gymbol begins with _

It may be necessary to use this name to disingnish it from
internal or bidden variables of a program.

(exp) The value of the expression exp.

Monadic opera tors

*f:XP The contents of the location addressed by exp.

-exp Integer negation.

-exp Bitwise complement.

June 21, 1987 Page 2

\

ADB (CP) ADB (CP)

Dyadic OJlerators

Dyadic operators are left-associative and are less binding than
monadic operators,

el +e2 Integer addition.

el-e2 Integer subtraction.

el0£2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

el �2 Bitwise disjunction.

el'e2 Remainder after division of el by e2.

el#e2 El rounded up to the next multiple of e2.

Commands

Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands '7'
and '/' may be followed by '•'; see Addresses for further details.)

?f

If

Locations starting at address in objfil are printed according
to the format f.

Locations starting at address in corefile are printed according
to the format f.

The value of address itself is printed in the styles indicated
by the format f. (For i format '?' is printed for the parts of
the instruction that reference subsequent words .)

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While step
ping through a format dot is incremented temporarily by the
amount given for each format letter. If no format is given then the
last format is used. The format letters available are as follows:

0 2

0 4
q 2
Q 4

June 21, 1987

Prints 2 bytes in octal. All octal numbers output by
adb are preceded by 0.
Prints 4 bytes in octal.
Prints in signed octal.
Prints long signed octal.

Page 3

d 2
D 4
X 2
X 4
u 2
U 4
f 4
F 8
b 1
c 1
c 1

s n

s "

Y 4
i n

a 0

A O
p 2

I 0

r 0
n 0
: ... " 0

+

newline

Prints in decimal.
Prints long decimal.
Prints 2 bytes in hexadecimal.
Prints 4 bytes in hexadecimal.
Prints as an unsigned decimal number.
Prints long unsigned decimal.
Prints the 32 bit value as a floating point number.
Prints double floating point.
Prints the addressed byte in octal.
Prints the addressed character.
Prints the addressed character using the following
escape convention. Character values 000 to 040 are
printed as an at-sign (@) followed by the
corresponding character in the octal range 0100 to
0140. The at-sign character itself is printed as @@.
Prints the addressed characters until a zero character
is reached.
Prints a string using the at-sign (@) escape conven
tion. Here n is the length of the string including its
zero terminator.
Prints 4 bytes in date format (see ctime(S)).
Prints as machine instructions. 11 is the number of
bytes occupied by the instruction. This style of print
ing causes variables 1 and 2 to be set to the offset
parts of the source and destination respectively.
Prints the value of dot in symbolic form. Symbols
are checked to ensure that they have an appropriate
type as indicated below.

I local or global data symbol
? local or global text symbol
- local or global absolute symbol

Prints the value of dot in absolute form.
Prints the addressed value in symbolic form using the
same rules for symbol lookup as a .
When preceded by an integer, tabs to the next
appropriate tab stop. For example, St moves to the
next 8-space tab stop.
Prints a space.
Prints a newliae.
Prints the enclosed string.
Decrements dot by the current increment. Nothing is
printed.
Increments dot by 1. Nothing i-1 printed.
Decrements dot by 1. Nothing is printed.

1f the previous command temporarily incremented dot, makes
the increment permanent. Repeat the previous command with a
count of 1.

June 21, 1987 Page 4

(\
�/

ADB (CP) ADB (CP)

[?1]1 value mask
Words starting at dot are masked with mask and compared with
value until a match is found. If L is used then the match is for
4 bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched location. If
mask is omitted then -1 is used.

[?f]w value ...
Writes the 2-byte value into the addressed location. If the com
mand is W, writes 4 bytes. Odd addresses are not allowed when
writing to the subprocess address space.

[? l]m segnum fpos size
Sets new values for the given segment's file position and size. If
size is not given, then only the file position is changed. The seg·
num must the segment number of a segment already in the
memory map (see Addresses). If ? is given, a text segment is
affected; if I a data segment.

[1/]M segnum fpos size · ·
Creates a new segment irr the m-ory map; The segment is
given file position fpos and physical size size . The segnum must
not already exist in the memory map. If ? is given, a text seg
ment is created; if I a data segment.

>name
dot is assigned to the variable or register named.

A shell is called to read the rest of the line following '!'.

$modifier
Mjscellaneous commands. The available modifiers are:

<! Read commands from the file f and return.
>/ Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by

ip. Dot is set to !p.
f Print the floating registers in single or double length.
b Print all breakpoints and their associated counts and com

mands.
c C stack backtrace. If address is given then it is taken as the

address of the current frame (instead of bp). If C is used
then the names and (16 bit) values of all automatic and static
variables are printed for each active function. If count is
given then only the first count frames are printed.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (defanlt 255).
o Sets input and output defanlt format to octal.
d Sets input and output default format to decimal.

J nne 21, 1987 Page S

ADB (CP)

x Sets input and output default format to hexadecimal.
q Exit from a db.
v Print all non zero variables in octal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers are:

brc
Set breakpoint at address. The breakpoint is executed
count-1 times before causing a stop. Each time the break
point is encountered the command c is executed. If this
command sets dot to zero then the breakpoint causes a stop.

dl Delete breakpoint at address .

. r [arguments]
Run objfil as a subprocess. If address is given explicitly then
the program is entered at this point; otherwise the program is
entered at its standard entry point. count specifies how
many breakpoints are to be ignored before stopping. argu·
ments to the subprocess may be supplied on the same line as
the command. An argument starting with < or > causes the
stan<!ard input or output to be established for the command.
All signals are turned on on entry to the subprocess.

R [arguments]
Same as the r command except that arguments are passed
through a shell b efore being passed to to the program. This
means shell metacharacters can be used in filenames.

' COS
The subprocess is continued and signal s is passed to it, see
signai(S). If address is given then the subprocess is contin
ued at this address. If no signal is specified then the signal
that caused the subprocess to stop is sent. Breakpoint skip
ping is the same as for r.

ss As for co except that the subprocess is single stepped count
times. If there is no c\l!Tent subprocess then objfil is run as
a subprocess as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the subpro
cess.

k The current subprocess, if any, is terminated.

Variables

adb provides a number of variables. Named vo;riables are s'?t ini
tially by adb but are not used subsequently. :�'<umbered vanables
are reserved for communication as follows.

June 21, 1987 Page 6

ADB (CP)

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

ADB (CP)

On entry the following are set from the system header in the
core file . If corefile does not appear to be a core file then these
values are set from objfil:

b The base address of the data segment.
d The data segment size.
e The entry point.
m The execution type.
n The number of segments.
s The stack segment size.
t The text segment size.

Add.resses

Addresses in adb refer to either a location in a file or in� actuaL
memory. When there is no current process in memory, adb
addresses are computed as file locations, and requested text and
data are read from the objfil and corefile files. When there is a pro
cess, such as after a :r command, addresses are computed as actual
memory locations.

All text and data segments in a program have associated memory.
map entries. Each entry has a unique segment number. In addi
tion, each entry has the file position of that segment's first byte, and
the physical size of the segment in the file. When a process is run
ning, a segment's entry has a virtual size which defines the size of
the segment in memory at the current time. This size can change
during execution.

When a address is given and no process is running, the file location
corresponding to the address is calculated as:

effective-file-address - file-position + offset

If a process is running, the memory location is simply the offset in ·
the given segment. These addresses are valid if and only if

0 <= offset <= size

where size is physical size for file locations and virtual size for
memory locations. Otherwise, the requested address is not legal.

The initial setting of both mappings is suitable for normal a.out and
core files. If either file is not of the kind expected then, for that
file, file posliion is set to 0, and size is set to the maximum file size.
In this way, the whole file can be examined with no address transla
tion.

June 21, 1987 Page 7

ADB (CP) ADB (CP)

So that adb may be used on large files, all appropriate values are
kept as signed 32 bit integers.

Files

a. out
core

See Also

ptrace(S), a.out(F), core(F)

Diagnostics

The message Hadb" appears when there is no current command or
format.

Comments about inaccessible files, syntax errors, abnormal lenni
nation of commands, etc.

Exit status ls 0, unless last command failed or returned nonzero
status.

Notes

A breakpoint set at the entry point is not effective on initial ootry
to the program.

System calls cannot be single stepped.

Local variables whose names are the same as an external variable
may foul up the accessing of the external.

June 21, 1987 Page 8

fi �I

ADMIN (CP) ADMIN (CP)

Name

admln - Creates and administers sees files.

S:ynta:<

admin [-n] [-i[name]] (-rrel] [-ffiag[flag-val]) [-dfiag(flag-val])
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files

Description

admin is used to create new sees files and to change parameters
of existing ones. Arguments to admin may appear in any order.
They consist of options, which begin with -, and named files (note
that sees filenames must begin with the characters s.), If a named
file doesn't exist, it is created, and its parameters are initialized
according to the specified options. Parameters not initialized by a
option are assigned a default value. If a named file does exist,

· · · · parameters corresponding to specified options are. changed, and
other parameters are left as js.

lf a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonsecs files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. lf the dash - is given, the
standard input is read; each line of the standard input is taken to
be the name of an SCCS f!le to be processed. Again, nousees
files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments
apply independently to each named file.

-n

-I[name]

June 21, 1987

This option indicates that a new sees file is to be
created.

The name of a file from which the text for a new
sees file is to be taken. The text constitutes the
first delta of the file (see -r below for delta
numbering scheme). If the I option is used, but
the filename is omitted, the text is obtained by
reading the standard input until an end-of-file is
encountered. If this option is omitted, then the
sees file is created empty. Only one sees file
may be created by an admin command on which
the i option is supplied. Using a single admin to
create two or more sees files require that they be
created empty (no -i option) . Note that the -1
option implies the -n option.

Page 1

-rrel The release into which the initial delta is inserted.
This option may be used only if the -1 option is
also used. If the -r option is not used, the initial
delts is inserted into release 1. The level of the ini
tial delta is always 1 (by default initial deltas are
named 1.1).

-f{lag This option specifies a flag, and possibly a value
for the flag, to be placed in the sees :file. Several
f options may be supplied on a single admirt com
mand liue. The allowable flags and their values
are:

June 21, 1987

b Allows use of the -b option on a get(CP)
command to create branch deltas.

cceil

fjloor

dSID

The highest release (i.e., "ceiling"), a number
less than or equal to 9999, which nuiy be
retrieved by a get(CP) command for editing.
The default value for an unspecified c flag is
9999.

The lowest release (i.e., "floor"), a number
greater than 0 but less than 9999, which may
be retrieved. by a get(CP) command for edit
ing. The default value for an unspecified f
flag is 1.

The default delta number (SID) to be used by
a get(CP) command.

Causes the "No id keywords (ge6)" message
issued by get(CP) or delta (CP) to be treated
as a fatal error. In the absence of this flag,
the message is only a warning. The message
is issued if no sees identification keywords
(see get(CP)) are found in the text retrieved
or stored in the sees file.

j Allows concurrent get(CP) commands for
editing on the same SID of an sees file.
This allows multiple concurrent updates to
the same version of the sees file.

JUst A list of releases to which deltas can no
longer be made (get -e agsinst one of these
"locked" releases fails). The list has tbe fol
lowing syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

Page 2

0

ADMIN (CP) ADMIN (CP)

-d[flag]

June 21, 1987

n

The character a in the list is equivalent to
specifying all releases for the named sees
file.

Causes delta (CP) to create a "null" delta in
each of those releases (if auy) being skipped
when a delta is made in a new release (e.g., in
making delta 5.1 after delta 2.7, releases 3
and 4 are skipped). These null deltas serve
as "anchor points" so that branch deltas may
later be created from them. The absence of
this flag causes skipped releases to be nonex
istent in the sees file preventing branch del
tas from being created from them in the
future.

qtext User-definable text substituted for all
occurrences of the keyword in sees file text
retrieved by get(CP).

mnwd module name of the sees file substituted for
all occurrences of the admin.CP keyword in
sees file text retrieved by get(CP). If the m
flag is not specified, the value assigned is the
name of the sees file with the leading s.
removed.

!type type of module in the sees file substituted
for all occurrences of
keyword in sees file text retrieved by

get(CP).

v!Pgm] Causes delta(CP) to prompt for Modification
Request (MR.) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR. number validity checking
program (see delta(CP)). (If this flag is set
when creating an sees file, the m option
must also be ·used even if its value is null).

Causes removal (deletion) of the specified flag
from an sees file. The -d option may be
specified only when processing existing sees files.
Several -d options may be supplied on a single
admin command. See the -f option for allowable
flag names.

JUst A list of releases to be Hunlocked". See the
-f option for a description of the I flag and
the syntax of a list.

Page 3

ADMIN (CP)

-a login

-elogin

-y[camment]

-m[mrlil't]

-h

June 21, 1987

ADMIN (CP)

A login name, or numerical XENIX group ID, to be
added to the list of users which may make deltas
(changes) to the sees file. A group ID is
equivalent to specifying all login names common to
that group ID. Several a options may be used on a
single admin command line. As many logins, or
numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then
anyone may add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID
is equivalent to specifying all login names common
to that group ID. Several e options may be used
on a single ad.min command line.

The comment text is inserted into the sees file as
a comment for the initial delta in a manner identi
cal to that of tklta (CP). Omission of the -y
option results in a default comment line being
inserted in the form:

YY/MM/DD HH:MM:SS by login

The -y option is valld ouly if the -i and/or -n
options are specified (i.e., a new sees file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creat
ing the initial delta in a manner identical to
delta (CP). The v Hag must be set and the MR
numbers are validated if the v flag has a value (the
name of an MR number validation program). Diag
nostics will occur if the v fiag is not set or MR vali
dation falis.

Causes admin to check the stmcture of the sees
file (see sccsftle(F)), and to compare a newly com
puted checksum (the sum of all the characters in
the sees file except those in the first line) with the
checksum that is stored in the first line of the
sees file. Appropriate error diagnostics are pro
duced.

This option inhibits writing on the file, nullifying
the effect of any other options supplied, and is
therefore only meaningful when processing existing
files.

Page 4

(

ADMIN (CP)

-·

Files

ADMIN (CP)

The sees file checksum is recomputed and stored
in the first line of the sees file (see -h, above) .

Note that use of this option on a truly corrupted
file may prevent !utnre detection of the corruption.

The last component of all sees filenames must be of the form
s.file-name. New sees files are created read-only (444 modified by
umask) (see chrnod(C)). Write permission in the pertinent direc
tory is, of course, required to create a file. All writing done by
admin is to a temporary x-file, called x.filename, (see get(CP)),
created with read-only permission if the admin command is creat
ing a new sees file, or with the same mode as the sees file if it
exists. After successful execution of admin, the sees file is
removed (if it exists), and the x-file is renamed with the name of
the sees file. This ensures that changes are made to the sees file
qnly ;if no_ errors occurred.

It is recommended that directories containing sees files be mode
755 and that sees files themselves be read-only . . The mode of the
directories allows only the owner to modify sees files contained in
the directories. The mode of the sees files prevents any
modification at all except by sees commands.

lf it should be necessary to patch an sees file for any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor. Care must be taken! The edited file should always be pro
cessed by an admin -h to check for corruption followed by an
admin -z to generate a proper checksum. Another admin -h is
recommended to ensure the sees file is valid.

admin also makes use of a transient lock file (called z.filename),
which is used to prevent siroultaneous updates to the sees file by
different users. See get(CP) for further information.

See Also

delta(CP), ed(C), get(CP), help(CP), prs(CP), what(C), sccsflle(F)

Diagnostics

Use help (CP) for explanations.

June 21, 1987 Page 5

I AR (CP) AR (CP)

Name

ar - Main:tains archives and libraries.

Syntax

ar key [posname] afi!e name ...

Description

ar maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link edi
tor though it can be used f()r my similar purpose.

key is one character from the set drqlpmx, optionally concatenated
with one or more of vuaibcln. afile is the archive file, The names
are constituent files in the archive file. The posname is the name
of a constituent file, md is required when certain keys are used.

· "The meanings of the key characters are:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the optional
character u is used with r, then only those files with modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used} then the posname
argument must be present and specifies that new files are to be
placed after (a) or before (b or I) posname. Otherwise new files
are placed at the end.

q Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added members are already in the
archive. Useful only to avoid quadratic behavior when creating
a large archive piece by piece.

t Prints a table of contents of the archive file. If no names are
given, all files in the archive are tabled. If names are given, only
those files are tabled.

p Prints the named files in the archive.

m Moves the named files to the end of the archive. If a position
ing character is present, then the posname argument must be
present and, as in r, specifies where the files are to be moved.

June 21, 1987 Page 1

AR (CP) AR (CP)

x Extracts the named files. If no names are given, all files in tl:te
archive are extracted. Unless tl:te optional character n is used
with x, an extracted tile's modification date will be set to the
date stored in tl:tat tile's archive header. In neither case does x
alter tl:te archive tile.

v Verbose. Under the verbose option, ar gives a file-by-file
description of the making of a new archive tile from the old
archive !llld the constituent tiles. When used witl:t t, it gives a
long listing of all information about the tiles. When used with x,
it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The
create option suppresses the normal message that is produced
when afile is created.

I Local. Normally ar places its temporary tiles in the directory
/tmp. This option causes them to be placed in the local direc
tory.

n New. When used with the key character x it sets the extracted
file's modification date to the current date.

When ar creates an archive, it always creates the header in the for
mat of the local system (see ar(F)).

Files

/tmp/v* Temporary tiles

See Also

ld(CP), lorder(CP), ar(F)

Notes

If the same tile is mentioned twice in an argument list, it may be
put in the archive twice.

Failure to process a library with ranlib , or failure to reprocess a
library with ranltb , will cause ld to fall. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possihle. The loader ld warns when tl:te modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the hbrary.

June 21, 1987 Page 2

c

ASX (CP) ASX (CP)

Name

asx - XENIX 8086/186/286/386 assembler.

Syntax

asx [options] source-file

Description

asx assembles 8086/186/286/386 assembly laoguage source files aod
produces linkable object modules. Note that masm(CP) is the sup
ported XENIX assembler and should be used instead of asx for new
development.

asx accepts one source-file . The source file name must have the
'' .s" extension. The resultip_g file cont<Pning the object module is
given the same base name as the source, with the ".o" extension
replacing the ".s" extension.

There are the following options:

· • Assembled segments are output in alphabetic order, instead
of in order of occurrence in the source file.

-d Creates prograro listings for both passes of the assembler.
This listing can be used to resolve phase errors between
assembler passes. The - d option is ignored· if the - I option is
not in effect.

- 1 Produces a listing file. The listing file has the same base naroe
as the source file, but has the ".1st" extension .

• Mu Disables case sensitivity for all narnes aod symbols. This
option makes upper and lowercase letters in names and sym
bols indistinguishable to the assembler. This option also
causes the symbols defined by the EXTRN and PUBLIC
directives to be output in uppercase regardless of their original
spelling.

-Mx Disables case sensitivity for all names and symbols except
those naroes defined by the EXTRN and PUBLIC directives.
This option is similar to the • Mu option except that public
and external names copied to the object file retain their origi
nal spelling.

-n Suppresses the generation of the symbol table in the program
listing. This option is ignored if the -1 option is not in effect.

June 21, 1987 Page 1

ASX {Cl') ASX (CP)

- oftlename
Directs the generated object module to the file named
filename . No default extension is assumed.

- 0 Causes values in the program listing to be displayed in octal.
The default radix is hexadecimal.

- r Causes generation of actual 80'((1/2157 instructions instead of
software interrupts for the floating point emulation package.
Object modules created using this option can only be exe
cuted on machines with an 8087 or 287.

-X Directs !he asscmhler to list any conditional block whose IF
condition resolves to false. This option can be overridden in
the source file by using the .TFCOND direetive. This option
is ignored if the -I option is not in effect.

By default, asx recognizes 8086 instruction mnemonics ouly. To
assemble 186, 286, 386, 8087, or 287 instructions, the corresponding
.186, ,286c, .286p, .386, .8087, or .287 directive must be given in
the source file.

F'des

lbin/asx

See Also

ld(CP)

Note

Unless the - r is given, asx assumes all 80'((1/287 instructions are to
be carried out using floating point emulation. The -r option should
only be used on machines with an 8087 or 287 coprocessor.

asx (CP) is also known as the Ritchie assembler. It was used before
the introduction of the emerge C compiler and is not compatible
with cc (CP). Use ld(CP) to link object modules created with asx.

June 21, 1987 Page 2

c

0

CB (CP) CB (CP)

Name

cb - Beautifies C programs.

Syntax

cb [- s] [-j] [- I leng] [file . . .]

Description

cb places a copy of the C program in file (standard input, if file is
not given) on the standard output with spacing and indentation that
displays the structure of the program. Under default options, cb
preserves all user new lines. The - s option formats the code to
match the style of Kernighan and Ritchie in The C Programming
Language. The -j option causes split lines to be put back together.
The -1 option causes cb to split lines that are longer than /eng.

See Also

cc(CP)

B.W. Kernighan and D.M. Ritchie, The C Programming Language
(Englewood Cliffs: Prentice-Hall, 1978)

Notes

Punctuation that is hidden in preprocessor statements will cause
indentation errors.

Jnne 21, 1987 Page 1

(
__ ... •

CC (CP) CC (CP)

Name

cc - Invokes the C compiler.

Syntax

cc [option ...] filename .. .

Description

cc is the XENIX C compiler command. It creates executable pro
grams by compiling and linking the files named by the filename
arguments. cc copies the resulting program to the file a.out.

The filename can name any C or assembly langnage source file or
any object or library file. C source files must have a .c filename
extension. Assembly language source files must have .s, object
files .o, and library files .a extensions. cc invokes the C compiler
for each C soutce file and copies the result to an object file whose
basename is the same as the source file but whose extension is .o.
cc invokes the XENIX assembler, masm , for each assembly source
file and copies the result to an object file with extension .o. cc
ignores object and library files until all source files have been com
piled or assembled. It then invokes the XENIX link editor, ld , and
combines all the object files it has created together with object files
and libraries given in the command line to form a single program.

Files are processed in the order they are encountered in the com
mand line, so the order of files is important. Library files are
examined only if functions referenced in previous files have not yet
been defined. Library files must be in ranlib(CP) format, that is,
the first member must be named __ SYMDEF, which is a diction
ary for the library. Only those functions that define unresolved
references are concatenated. A number of ustandard" libraries are
searched automatically. These libraries support the standard C
library functions and program startup routines. Which libraries are
used depends on the program's memory model (see "Memory
Models" below). The entry point of the resulting program is set to
the beginning of the standard startup code which then calls the
"main()n function of the program.

There are the following options:

-c

-C

Creates a linkable object file for each source file but does not
link these files. No executable program is created.

Preserves comments when preprocessing a file with -E , -P , or
-EP. That is, comments are not removed from the

June 21, 1987 Page 1

CC (CP) CC (CP)

preprocessed source. This option may only be used in conjunc
tion with -E , -P , or -EP.

-compat
Makes an. executable file that is binary compatible aeross the fol
lowing systems (as distributed by certain vendors):

XENIX-286 System V
XENIX-386 System V
XENIX-286 3.0
XENIX-8086 System V

-CSON, -CSOFF
When optimization (-0) is also specified, these options enable
or disable "common sub-expression" optimization. The default
is disabled for the small model passes and enabled for the large
(with -LAltGE).

-d Displays the various passes and their argements before they are
executed.

-Dname[=String]
Defines name to the preprocessor as if defined by #define in
each source file. The form "-Dname" sets name to 1. The
form "-Dname=string" sets name to the given string.

-dos
Directs cc to ereate an executable program for MS-DOS sys
tems.

-E Preprocesses each source file as described for -P, but copies the
resutt to the standard output. The option also places a #line
directive with the. current input line number and source file
name at the beginning of output for each file.

-EP
Preprocesses each source file as described for -E, but does not
place a #line directive at the beginning of the file.

-F num
Sets the size of the program stack to num bytes. The value of
num must be given in hexadecimal. The default stack for the
8086 is variable, starting at the top of a full 64 Kbyte data seg
ment that grows down until it reaches data. The default stack
for the 80286 is 1(1(1() bytes (hexadecimal). This option does not
apply to the 80386, which has a variable stack.

-Fa, -Faname
Create an assembly source listing in source.s or the named file.
Continues with the link if requested.

June 21, 1987 Page 2

c

('1 -___/

CC (CP) CC (CP)

-Fe, -Fcname
Create a merged assembler and C listing in source.L or in the
named file.

-Fename
Names the executable program file name.

-Fl, -Flname
Create a listing file in source.L (or the named file) with assembly
source and object code. Continues with the link if requested.

-Fm, -Fmname
Instruct the liuker to create a map listing in a file called a.map
(or the named file). This file contains the names of all segments
in order of their appearance in the load module.

-Foname
The object filename will be name instead of source.o.

-FPa, -FPc, -FPc87, -FPi, -FPi87
When Used iii conjunctio-n with- -dos - these options control the
type of floating point code generated and which library support
to use. The default is -FPi. For more information see Appen
dix A, "XENIX to DOS: A Cross Development System" , of
the XENIX C Library Guide .

-Fs, -Fsname

-g

-i

Creat�s a C smirc.e listing in source.S or the na:med file.

Includes information for the symbolic debugger. (This is
equivalent to the -Zi option.)

Creates separate instruction and data spaces for small model
programs. When the output file is executed, the program text
and data areas are allocated separate physical segments. The
text portion will be read-only and may be shared by all users
executing the file. This option is implied when creating middle
or large model programs. (Not implemented on all machines.)

-Ipathname
Adds pathname to the list of directories to be searched when an
#include file is not found in the directory containing the current
source file or whenever angle brackets (< >) enclose the
filename. If the file carmot be found in directories in this list,
directories in a stanfiard list are searched.

-K
Removes stack probes from a program. Stack probes are used
to detect stack overflow On entry to program routines. Code

June 21, 1987 Page 3

CC (CP) CC (CP)

generated for the 80386 processor does not require stack probes,
therefore this option has no effect if -M3 is specified.

-Ina me
Searches library name for unresolved function references.

-L Creates an assembler listing file containing assembled code and
assembly source instructions. The listing is made in a file whose
basename is the same as the source but whose extension is .L.
This option suppresses the -S option.

-LARGE
Invokes the large model passes of the compiler (executable on
286 and 386 processors only) . Using large model passes is
advised when "Out of heap spaceu.errors are encountered.

-M string
Sets the program configuration. This configuration defines the
program's memory model, word order, and data threshold. It
also enables C language enhancements such as advanced instruc
tion set and keywords. The string may be any combination of
the following ("s", "m", "1", and "h" are mutually exclusive):

s
m
l
h
e

0

1

2

3

b

tnum

d

June 21, 1987

Creates a small model program (defanlt).
Creates a middle model program.
Creates a large model program.
Creates a huge model program.
Enables the far, near, huge, pascal, and fortran
keywords. Also enables certain non-ANSI entensions
necessary to ensure compatibility with existing
versions of the C compiler (applies only to versions
of the C compiler that support ANSI C).
Enables 8086 code generation for compiled C source
files. Defanlt is 8086 code generation.
Enables 186 code generation for compiled C source
files.
Enables 286 code generation for compiled C source
files.
Enables 386 code generation for compiled C source
files (80386 processors only).
Reverses the word order for long types. High order
word is first. Defanlt is low order word first.
Causes all data items greater than num bytes
to be allocated to a new data segment. Num,
the data threshold, defaults to 32, 7({'/. This option
can only be used in lsrge model 8086/80286 programs
(MIO or Ml2).
Instructs the compiler to not assume SS=DS.
Warning: This option has no practical use on XENIX.
It will not cause the stack to be put in a separate
segment. It may be used for DOS cross development.

Page 4

I
I

\

CC (CP) CC (CP)

-n Sets pure text model. This option is equivalent to the -1 option.
Gives a warning that it is setting -1 when used.

-ND name
Sets the data segment name for each compiled or assembled
source file to name. If -ND is not given, the name "J)ATA" is
used.

In, large model progTlliT!s (-l'tn) the -ND option can only be used
on '1eaf modules" - those that make no calls to routines in
another segment.

-nl nwn
Sets the maximum leagth of external symbols to num. Names
longer than num are truncated before being copied to the exter
nal symbol table.

-NM name
Sets the module name for each compiled or assembled source
file to name. If not given, the filename of each source file is

- used.

-NT name
Sets the text segment name for each compiled or assembled
source file to name. If not given, the name "module_TEXT'' is
used for middle model and "_TEXT" for small model programs.
This option should not be used on 386 code.

-o filename
Defines filename to be the name of the final executable program.
This option overrides the default name a,out. Filename can not
end in .. o or .c.

-0 strf.ng

-p

Invokes the object code optimizer. The string consists of one or
more of the following characters:
d Default. Disables optimization
a Relaxes aliss checking
s Optimizes code for space
t Default. Optimizes code for speed. Equivalent to -0
x Performs maximum optimization. Equivalent to -Oactl
c E1imhlates common expressions
I Performs various loop optimizations.

Adds code for program profillog. Profillog code counts the
number of calls to each routine in the program and copies this
information to the mon.out file. This file can be examined using
the prof(CP) command.

June 21, 1987 Page 5

CC (CP) CC (CP)

-P
Preprocesses each source file and copies the result to a file
whose basename is the same as the source but whose extension
is .i.

-paek
Packs structures. Each structure member is stored at the first
available byte, without regard to int boundaries. Although this
will save space, execution will be slower because of the extra
time required to access 16 bit members that begin on odd boun
daries.

-r Invokes the incremental linker, /liblldr , for the link step.

-s Instructs the linker to strip the symbol table information from

-s

the executable output file.

Creates an assembly source listing in a file whose basename is
the same as the source but whose extension is .s. It should be
noted that this file is not suitable for assembly. This option pro
vides code for reading only.

-SEG num
Sets the maximum number of segments that the linker can han
dle to nutn, which can range from 1 to 1024. If 1024 is too
small, use the -NT option to reduce the number of different seg
ment names.

-u Eliminates all manifest defines. Also see -U.

-U definition
Removes or nndefines the given manifest define. The manifest
defines are as follows:

MJ86
M....XENIX
M__SYS3 or M...SYSill
M__SYS5 or M__SYSV
M.,;BITFIELDS
M__WORDSWAP
M...SDATA or M__LDATA
M__STEXT or M__LTEXT
J>.U8086 or J>.U186 or MJ286 or M__l386
MJ86SM or J>.U86MM or MJ86LM

-V string
Copies string to the object file created from the given source
file. This option can be used for version control.

June 21, 1987 Page 6

(� \ �.

CC (CP) CC (CP)

""' Prevents compiler warning messages from being issued. Same as
u_w o�'.

-W num

"X

Sets the output level for compiler warning messages. Jf num is
0, no warning messages are issued. Jf 1, only warnings about
program structure and overt type mismatches are issued. If 2,
warnings about strong typing mismatches are issued. Jf 3, warn"
ings for all automatic conversions are issued. This option does
not affect compiler error message output.

Removes the standard directories from the list of directories to
be searched for #include files.

"" Displays the various passes and their arguments but does not
execute them.

"Zpl, "ZpZ, "Zp4
Aligns data structures on one, two or four"byte boundaries
(80386 only).

-Zt
lnclndes information used by the symbolic debu!l8"r (sdb) in the
output file. (This is equivalent to the -g option.)

Many options (or equivalent forms of these options) are passed to
the link editor as the last phase of compilation. The -M option
with the "s", "m", and "1" configuration options are passed to
specify memory requirements. The -1, -F, and -p are passed to
specify other characteristics of the :final program.

The -D and -I options may be used several times on the command
line. The -D option must not define the same name twice. These
options affect subsequent source files only.

Memory Models

cc can create programs for four different memory models: small,
middle, large, and huge. 1n addition, small model programs can be
pure or impure. On the 8086 and 80286 processors, these various
segmentation models allow programs with code or data larger than
64K bytes. Since the 80386 can address segments lerger than 64K
bytes, the middle, large and huge models are not supported on the
80386.

June 21, 1987 Page 7

CC (CP)

Impure-Text Small Model
These programs oceopy one 64K byte physical segment in which
both text and data are combined. cc creates impure small
model programs by default. They can also be created u8ing the
-Ms option.

Pure-Text Small Model
These programs occupy two 64K byte physical segments. Text
and data are in separate segments. The text is read-ouly and
may be shared by several processes at once. The maximum
program size is 128 Kbytes. Pure small model programs are
created using the -I and -Ms options.

Middle Model
These programs occupy several physical segments, but only one
segment contains data. Text is divided among as many segments
as required. Special calls and returns are used to access func
tions in other segments. Text can be any size. Data must not
exceed 64K bytes. Middle models programs are created using
the -Mm option. These programs are always pure.

Large Model
These programs occupy several physical segments with both text
and data in as many segments as required. Special calls and
returns are used to access functions in other segments. Special
addresses are used to access data in other segments. Text and
data may be any size, but no data item may be larger than 64K
bytes. Large model programs are created using the -MI option.
These programs are always pure.

Huge Model
These programs occupy several physical segments with both text
and data in as many segments as required. It is possible to allow
a data constroct that spans 64K byte segments. This implementa
tion imposes limits on the way the data constroct is put together
and where it is located in memory. Huge model programs are
created using the -Mh option. These programs are always pure.

Small, middle, large and huge model object files can only be linked
with object and library files of the same model. It is not possible to
combine small, medium, large, and huge model object files in one
executable program. cc automatically selects the correct small,
middle,. large, or huge versions of the standard libraries based on
the configuration option. It is up to users to make sure that all of
their own object files and private libraries are properly compiled in
the appropriate model.

The special calls and returns used in middle, large, and huge model
programs may affect execution time. In particular, the execution
time of a program which makes heavy use of functions and function
pointers may dllier noticably from small model programs.

June 21, 1987 Page S

(
\

c

CC (CP) CC (CP)

In middle, large, and huge model programs, function pointers are
32 bits long. In large and huge model programs, data pointers are
32 bits long. Programs making use of such pointers must be written
carefully to avoid incorrect declaration and use of these variables.

The -NM, -NT, and -ND options may be used with middle, large,
and huge model programs to direct the text and data of specific
object files to named physical segments. All text having the same
text segment name is placed in a single physical segment. Similarly,
all data having the same data segment name is placed in a single
physical segment.

cc reads /etc/defaulUcc to obtain information about default options
and libraries. The default file may contain lines beginning with the
following patterns:

and
FLAGS

LIES-

Any parameters following the FLAGS- pattern are treated by cc as
if they had been specified at the start of the cc command line.
Parameters following the LIBS- pattern are treated as if they had
been specified at the end of the command line. This option is
intended for, but not restricted to, the specification of additional
libraries. cc always searches for a file in /etc/default that matches
the last component of the pathname by which cc was invoked.
Thus by linking cc to several different names and invoking it by
those names, different defaults can be selected.

An example /etc/default/cc file follows:

FLAGS- -LARGE -M2e

LIBS- -lx

This invokes the large model versions of the compiler passes to
generate 286 code with far and near keywords enabled, and
includes Jibx.a on all liuks.

Files
/biu/cc
/lib/pO, p1, p2, p3
/lib/p1L, p2L, p3L
/lib/*.a
/etc/default/cc

June 21, 1987

Driver
Small model passes
Large model passes
Standard libraries
Default options and libraries

Page 9

CC (CP) CC (CP)

See Also

ar(CP), ld(CP), lint(CP), machine(M), mamn(CP), ranlib(CP)
XENIX C User's Guide, C Library Guide, and C Language
Refere.nce

Notes

Error messages are produced by the progtam that detects the error.
These messages are usually produced by the C compiler, but may
occasionally be produced by the assembler or the link loader.

All object module libraries must have a current ranlib directory.
The user must make sure that the most recent library versions have
been processed with ranlib(CP) before linkiog. If this is not done,
14 cannot create executable progtams using these hbraries.

June 21, 1987 Page 10

CDC (CP) CDC (CP)

Name

. cdc - Changes the delta commentary of an sees delta.

Syntax

cdc -rSID [-m(mrlist]] [-y[comment]J files

Description

cdc changes the delta cmnmentary for the SID specified by the -r
option, of each named sees file.

delta commentary is defined to b e

.
the .Modification Request (MRl

and comment information normally specified via the delta (CP
command (-m and -y options).

If a directory is named, cde behaves as though each file in the
· c:lirectory were specified as a named file, except that nonsees files

(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read (see Warning); each line of the standard
input is ta)cer; to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of
options and file names.

All the described options apply independently to each named file:

-rSID

-m[nirlist]

June 21, 1987

Used to specify the sees ID entiiication
(SID) string of a delta for which the delta
commentary is to be changed.

Jf the sees file has the v flag set (see
admin(CP)) then a list of MR numbers to b e
added and/or deleted in the delta commen
tary of the SID specified by the -r option
may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the
same manner as that of delta(CP). In order
to delete an MR, precede the MR number
with the character ! (see Examples). Jf the
MR to he deleted is currently in the list of
MRs, it is removed and changed into a Hcom
ment" line. A list of all deleted MRs is
placed in the comment section of the delta
commentary and preceded by a comment line
stating that they were deleted.

Page 1

CDC (CP)

-y[comment]

CDC (CP)

Tf -m is not used and the standard input is a
terminal, the prompt MRs? is issued on the
standard output before the standard input is
read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see
-y option).

MRs in a list are separated by blanks and/or
tab characters. An unescaped newline char
acter terminates the MR list.

Note that if the v flag has a value (see
admin(CP)), it is taken to b e the name of a
program (or shell procedure) which validates
the correctness of the MR numbers. If a
nonzero exit status is returned from the MR
number validation program, cdc t<>l'lllinates
and the delta commentary remains
unchanged.

Arbitrary text used to replace the comment(s)
already existing for the delta specified by the
-r option. The previous comments are kept
and preceded by a comment line stating that
they were changed. A null comment has no
effect.

If -y is not specified and the standard input
is a terminal, the prompt "comments?;, is
issued on the standard output before the stan
dard input is read; if the standard input is not
a terminal, no prompt is issued. An unes
caped newline character terminates the wm
ment text.

In general, if you made the delta, you can change its delta
commentary; or if you own the file and directory you can
modify the delta commentary.

Examples

The following:

cdc -r1.6 -m''bl78-12345 lbl77-54321 bl79-00001" -ytrouble
s.file

adds bl78-12345 and b!79-00001 to the MR list, removes bl77-54321
from the MR list, and adds the conunent trouble to delta 1.6 of
s.file.

J nne 21, 1987 Page 2

I 1 ..
i

I

CDC (CP)

The following interactive sequence does the same thing.
cdc -rl. 6 s.file

(� Warning

MRs? !bl77-54321 bl78-12345 b179-00001
comments? trouble

CDC (CP)

_ Jf sees file names are supplied to the cdc command via the stan
dard input (- on the command line), then the -m and -y options
must also be used.

Files

x-file See delta(CP)

z-file See delta (CP)

See Also

admin(CP), delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

June 21, 1987 Page 3

0

CFLOW (CP) CFLOW (CP)

Name

cflow - Generates C flow graph.

Syntax

cflow [-r] [-ix] [-L] [- dnum] file . . .

Description

cflow analyzes a collection of C, YACC, LEX, assembler, and
object files and attempts to . build a graph charting the external
references. Files ending in .y, .I, .c, and .i are run through YACC,
LEX, and the C-preprocessor (bypassed for .i files) as appropriate,
and then through the first pass of lint(CP). (The -I, -D, and - U
options of the C-preprocessor are also understood.) Files suffixed
with .s are assembled and information is extracted (as in .o files)
from the symbol table. The results of this processing are collected
and turned into a graph of external references. This graph is
displayed on the standard output.

Each line of output begins with a line number, followed by a suit
able number of tabs indicating the level, the name of the global
procedure, a colon, and the definition. A global procedure is nor
mally a function not defined as an external and not beginning with
an underscore character (see the - i option on the next page). For
information extracted from C source files, the definition includes
an abstract type declaration (for example, char *), and, enclosed
by angle brackets, the name of the source file and the line number
where the definition was found. Definitions extracted from object
files indicate the filename and location counter under which the
symbol appeared (for example, text). Leading underscores in C
style external names are deleted.

Once a definition of a name has been printed, subsequent refer
ences to tb.at name contain only the _number of the line where the
definition can be found. For undefined references, only < > is
prioted.

As an example, given the following in file. c :

int

main()
{

}

June 21, 1987

i. '

f();
g();
f();

Page 1

U'LOW (CP)

f()
{

}

the command:

i = h();

cflow -ix file.c

produces the following C flow graph:

1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4 i: int, <file.c 1>
5 g: <>

CFLOW (CP)

When the nesting level becomes too deep, the -e option of pr(C)
can b e used to compress the tab expansion to something less than
every eigbt spaces.

The following options are interpreted by cflow:

.. r Reverses the Hcaller:callee" relationship producing an
inverted listing showing the callers of each function. The
listing is also sorted in lexicographical order by callee.

· lx Includes elltemal and static data symbols. The default is to
include only functions in the fiow graph.

· L Includes names that begin with an underscore. Tbe default
is to exclude these functions (and data if • ix is used).

-dnum Indicates the depth (num deehnal integer) at wltich the fiow
graph is cut off. By default tltis is a very large number.
You can not set the cutoff depth to a non positive integer.

See Also

cc(CP), lex(CP), lint(CP), masm(CP), nm(CP), pr(C), yacc(CP)

Diagnostics

Complains about bad options. Complains about multiple
definitions and only believes the first. Other messages may come
from the various programs used (for example, the C-preprocessor).

June 21, 1987 Page 2

CFLOW (CP) CFLOW (CP)

Notes

Files produced by lex(CP) and yacc(CP) cause the reordering of
line number declarations which can confuse cflow. To get proper
results, use yacc or lex input for cflow.

June 21, 1987 Page 3

c

COMB (CP) COMB (CP)

Name

comb - Combines sees deltas.

't Syntax
I /

comb [-o] [-s) [-psid] [-clist] files

Description

comb provides the means to combine one or more deltas in an
sees file and make a single new delta. The new delta replaces the
previous deltas, making the sees file smaller than the original.

comb does not perform the combination itself. Instead, it gen
erates a shell procedure that you :qtUSt save and execute to recon
struct the given sees files. comb copies the generated shell pro
cedure to the standard output. To save the procedure, you must

· redirect the output to a file. The saved file cart then be executed
like any other shell procedure (see sh (C)).

When invoking comb, arguments may be specified in any order.
All options apply to all named sees files. If a directory is named,
comb behaves as thougl1 each file in the directory were specified as
a named file, except that nonsees files (last component of the
pathname does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an sees file
to be processed; nonsees files and unreadable files are silently
ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file.

-pSID The sees IDentification string {SrD) of the oldest delta to
be preserved. All older deltas are discarded in the recon
structed file.

-clist A list (see get(CP) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-o For each get -e generated, this argument causes the
reconstructed file to be accessed at the release of the delta
to be created, otherwise the reconstructed file would be
accessed at the most recent ancestor. Use of the -o
option may decrease the size of the reconstructed sees
file. It may also alter the shape of the delta tree of the ori
ginal file.

June 21, 1987 Page 1

COMB (CP) COMB (CP)

-s This argument causes comb to generate a shell procedure
that will produce a report for each file giving the filename,
size (in blocks) after combining, original size (also in
blocks), and percentage chwge computed by:

100 • (original - combined) I original

Before any SCCS files are actually combined, you should use this
option to determine exactly how much space is saved by the com
bining process.

If no options are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

Files

comb????? Temporary files

See Also

admiu(CP), delta(CP), get(CP), help(CP), prs(CP), sccsftle(F)

Dlagoostics

Use help(CP) for explanations.

Notes

comb may rearrange the shape of the tree of deltas. Ji; may not
save any space; in fact, it is posSible for the reconstructed file to be
larger than the original.

June 21, 1987 Page 2

(

CPP (CP) CPP (CP)

Name

cpp - The C language preprocessor.

Syntax

/lib/ cpp [option . . .] [ifile [ofile]]

Description

cpp is the C language preprocessor which is invoked as the first
pass of any C compilation using the cc(CP) command. Thus the
output of cpp is designed to be in a form acceptable as input to the
next pas;; of the C compiler. As the C language evolves, the use of
cpp other than in this framework is not suggested. The preferred
way to invoke cpp is through the cc(CP) command. See m4(CP)
for a general macro processor.

cpp optionally accepts two file names as arguments. !file and ofde
are respectively the input and output for the preprocessor. They
default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P
Preprocess the input without producing the line control informa-
tion used by the next pass of the C compiler. ,

-c
By default, cpp strips C-style comments. If the -C option is
specified, all comments (except those found on cpp directive
lines) are passed along.

-Uname
Remove any initial definition of nanre, where name is a resel"'Ved
gymbol that is predefined by the particular preprocessor.

-Dname
-Dname=def

Define name as if by a #define directive. If no =def is given,
name is defined as 1.

-Jdir
Change the algorithm for searching for #include files whose
names do not begin with I to look in dir before looking in the
directories on the standard list. Thus, #Include files whose
names are enclosed in " n are searched for first in the directory
of the ifile llrgument, then in directories named in -I options,
and last in directories on a standard list. For #include files

J nne 21, 1987 Page 1

U'l' (Cl') CPP (CP)

whose names are enclosed in <>, the directory of the ifile argu
ment is not searched.

Two special names are understood by cpp. The name _ _LINE __ is
defined as the current line number (as a decimal integer) as known
by cpp, and _J'ILE...,_ is defined as the current file name (as a C
string) as known by cpp. They can be used anywhere (including in
macros) just as any other defined name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token· string.

#define name(arg, ... , arg) token· string
Notice that there ·can be no space between name and the (.
Replace subsequent instances of name followed by a (, a list of
comma separated tokens, and a) by token-siTing wbere each
occurrence of an arg in the token-siring is replaced by the
corresponding Ioken in the comma separated list.

#nndef name
Cause the definition of name (if any) to be forgotten from now
on.

#include 'rtlename"
#include <filename>

Include at this point the contents of filename (which will then b e
run through cpp). When the <filename> notation is used,
filename is searched for in the standard places only. Sec the -I
option above for more detaiL

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass
of the C compiler. Integer-constant is the line number of tbe
next line and filename is the file where it comes from. If
'Yilename" is not given, the current file name is unchanged.

#endlf
Ends a section of lines begun by a test directive (#if, #ifdeC, or
#ifndel). Each test directive must have a matching #endlf.

#ifdef name
The following lines appear in the output if name bas been tb e
subject of a previous #define without being the subject of an
intervening #undef.

#ifndef name
The following lines will not appear in the output if name bas
been the subject of a previous #define without being the subject
of an intervening #undef.

June 21, 1987 Page 2

CPP (CP) CPP (CP)

#if dermed identifier
May be used in place of the #if directive. li the identifier is
defined, the directive has a value of 1, otherwise 0. This is fre
quently used for conditional environment-specific text.

#elif constant-expression
Allows for the conditional compilation of portions of the text.
The constant-expression is evaluated and if it is not. zero, the
text immediately following (until the next ellf, else, endil) is
passed to the compiler.

#if constant-expression
The following lines appear in the output if constant-expression
evaluates to non-zero. All binary non-assignment C operators,
the ?: operator, the unary -, !, and - operators are all legal in
constant-expression. The precedence of the operators is the
same as defined by the C language. There is also a unary opera
tor defined, which can be used in constant-expression in these
two forms: defined (name) or defined name. This allows the
utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, -and names which are -known by
cpp should be used in constant-expression. In particular, the
sizeof operator is not available.

#else
Reverses the notion of the test directive which matches this
directive. So if lines previous to this directive are ignored, the
following lines appear in the output. And vice versa.

The test directives and the possible #else directives can be nested.

Files

/usr/inclnde standard directory for #include files

See Also

cc(CP), m4(CP).

Di�gnostlcs

The error messages produced by cpp are intended to be self
explanatory. The line number and filename where the error
occurred are printed along with the diagnostic.

June 21, 1987 Page 3

CPP (CP)

Notes

When newline characters were found in argument lists for macros
to be expanded, previous versions of cpp put out the newlines as
they were found and expanded. The current version of cpp
replaces tbese newlines with blanks to alleviate problems that the
previous versions had when this occurred.

June 21, 1987 Page 4

CREF (CP) CREF (CP)

Name
cref - Makes a cross-reference listing.

Syntax

cref [-acilnostux123 J files

Description

cref makes a cross-reference listing of assembler or C programs.
The program seaxches the given files for symbols in the appropriate
C or assembly language syntax.

The output report is in four columns:

1. Symbol
2. Filename
3. Current symbol or line number
4. Text as it appears in tbe jile

cref uses either an ignore file or an only file. li the -i option is
given, the next argement is taken to be an ignore file; if the -o
option is given, tbe next argement is taken to be an only file.
ignore and only files are lists of symbols separated by newlines. All
symbols in an ignore file are ignored in columns 1 and 3 of the out
put. li an only file is given, only symbols in that file will appear in
column 1. Only one of these options may be given; the default set
ting is -i using the default ignore file (see FILES below). A ssem
bler predefined symbols or C keywords are ignored.

The -s option causes current symbols to be put in column 3. In
tbe assembler, the current symbol is tbe most recent name symbol;
in C, the current function name. The -1 option causes tbe line
nlllllber within the file to be put in column 3.

The -t option causes the next available argement to be used as tbe
name of the intermediate file (instead of the temporary file
/tmp/crt??). This file is created and is not removed at tl1e end of
the process.

The cref options are:

a Uses assembler format (default)

c Uses C format

Uses an ignore file (see above)

June 21, 1987 Page 1

CREF (CP)

Puts line number in column 3 (instead of current symbol)

n Omits column 4 (no context)

o Uses an only file (see above)

s Current symbol in column 3 (default)

t User-supplied temporary file

n Prints only symbols that occur exactly once

x Prints only C external symbols

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3 Sorts output on column 3

Files

/usr/IJb/cref/• As.scmbler specific files

See Also

as(CP), cc(CP), sort(C), xref(CP)

Notes

cref inserts an ASCII DEL character into the intermediate file after
the eighth character of each name that is eight or more characters
long in the source file.

June 21, 1987 Page 2

CTAGS (CP) CTAGS (CP)

Name

ctags - Creates a tags file.

(Syntax

ctags [-a] [-u] [-v] [-w] [-x] name . . .

Description

ctags makes a tags file for vi(C) from the specified C sources. A
tags file gives the locations of specified objects (in this case func
tions) in a group of files. Each line of the tags file contains the
function name, the file in which it is defined, and a scanning pat
tern used to find the function definition. These are given in
separate fields on the line, separated by blanks or tabs. Using the
tags file, vi can quickly find these function definitions.

If the -x flag is given, ctags produces a list of function names, the
line number and file name on which each is defined, as well as the
text of that line and prints this on the standard output. With the -x
option no tags file is created. This is a simple index which can be
printed out as an off-line readable function index.

Files whose name ends in .c or .h are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:

-w Suppresses warning diagnostics.

-u Causes the specified files to be updated in tags; that is, all
references to them are deleted, and the new values are
appended to the file. (Beware: this option is implemented in
a way which is rather slow; it is usually faster to simply rebuild
the tags file.)

The tag 11Ulin is treated specially in C programs. The tag formed is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed.
This makes use of ctags practical in directories with more than one
program.

(-, ! ! .-�,��' �-'Files:------
tags Output tags file

June 21, 1987 Page 1

CI'AGS (CP) CI'AGS (CP)

See Also

ex{C), vi(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

June 21, 1987 Page 2

(

CXREF (CP) CXREF (CP)

Name

cxref - Generates C program cross-reference.

Syntax

cxref [options J file . . .

Description

cxref analyzes a collection of C files and attempts to build a cross
reference table. cxref uses a special version of cpp to include infor
mation defined by #define in its symbol table. It produces a listing
on tbe standard output of all symbols (auto, static, and glol;>al) for
each separate file, or with the .. c option for the combined files.
Each symbol contains an asterisk (•) before the declaring refer
ence.

In addition to the ·D, ·I and • U options (which are identical to
their interpretation by cc (CP)), the following options are interpreted
by cxref:

• C Prints a combined cross-reference of all input files.

-w<num> Formats output no wider !ban <num> (decimal)
columns. The default is 80 if <num> is not specified
or is less than 51.

· O file Directs output to named file.

• S Operates silently; does not print input filenames.

· t Formats listing for 80-column width.

Files

/usr/lib/xcpp special version of C-preprocessor.

See Also

cc(CP)

Diagnostics

Error messages are cryptic, but usually mean that you cannot com
pile these files.

June 21, 1987 Page 1

CXREF (CP)

Notes

cxref considers a fonnal argument in a #define macro definitinn to
be a declaration of that symbol. For example, a program that con
tains "#include ctype.h " will have many declarations of the vari
able c.

June 21, 1987 Page 2

DELTA (CP} DELTA (CP)

Name

delta - Makes a delta (change) to an sees file.

r' Syntax

'- · delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p]
files

Description

delta is used to permanently introduce into the named sees file
changes that were made to the file retrieved by get(CP) (called the
g·file, or generated file).

delta makes a delta to each sees file named by files. If a directory
is named, delta behaves as though each file in the directory were
specified as a named file, except that nonsees files (last com
ponent . of. the pathname does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard
input is read (see Warning); each line of the standard input ;, taken
to be the name of an sees file to be processed.

delta may issue prompts on the standard output dependhtg upon
certain options specified and flags (see admin(CP)) that may be
present in the sees file (see -m and -y options below).

Options apply independently to each named file.

-rSID

-s

-n

June 21, 1987

Uniquely identilles which delta is to h e made to the
sees file. The use of this keyletter iJ> necessary
only if two or more versions of the same sees file
have been retrieved for editing (get -e) by the
same person (login name}. The SID value specified
with the -r keyletter can be either the SID
specified on the get command line or the SID to be
made as reported by the get command (see
get(CP)). A diagnostic results if tile specified SID
is ainbiguous, or if it is necessary and omitted on
the command line.

Suppresses the issue, on the standard output, of
t!IC created delta's SID, as well as the J1umher of
lines inserted, deleted and unchanged in the sees
file.

Specilles retention of the edited g· file (normally
removed at completion of delta processing).

Page 1

Vl!,J.-lA t Ll:')

-glist

-m[mrlist]

-y(comment]

-p

Files

DELTA (CP)

Specifies a li:;t (see get(CP) for the definition of
list) of deltas which are to be Ignored when the file
is accessed at the change level (SID) created by this
delta.

If the sees file has the v flag set (see admin(CP))
then a Modification Request (MR) number must be
supplied as the reason for creating the new delta.

If -m is not used and the standard input is a ter
minal, the prompt MRs? is issued on the standard
output before the standard input is read; if the
standard input is not a terminal, no prompt is
issued. The MRs? prompt always precedes the
comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter
minates the MR list.

Note that if the v flag has a value (see admin(CP)),
it is taken to be the name of a program (or shell
procedure) which will validate the correctness of
the MR numbers. If a nonzero exit status is
returned from MR number validation program,
delta terminates (it is assumed that the MR
numbers were not all valid).

Arbitrary text nsed to describe the reason for mak
ing the delta. A null string is considered a valid
comment.

If -y is not specified and the stnndard input is a
terminalt the prompt comments? is issued on the
standard output before the standard input is read;
if the standard input is not a terminal, no prompt
is issned. An unescaped newline character ter
minates the comment text.

Causes delta to print (on the standard output) the
sees file differences before and after the delta is
applied. Differences are displayed in a diff(C) for
mat.

All files of tbe form ?- file are explained in Chapter 3, "SCCS: A
Source Code Control System" in the XENIX Programmer's Guide.
The naming convention for these files is also described there.

June 21, 1987 Page 2

(

c

DELTA (CP)

g-file

p-file

q-file

x-file

z-file

d-file

DELTA (CP)

Existed before the execution of delta ; removed
after completion of delta .

Existed before the exeeution of delta ; may exist
after completion of delta .

Created during the execution of delta ; removed
after completion of delta .

Created during the execution of delta ; renamed to
sees file after completion of delta .

Created during the execution of delta ; removed
dnring the execution of delta .

Created during the execution of delta ; removed
after completion of delta .

/usr/bin/bdiff Program to compute differences between the
"retrieved" file and the g-file .

Warning

Lines beginning with an SOH ASCII character (binary 001) cannot
be placed in the SCCS file unless the SOH is escaped. This charac
ter has special meaning to SCCS (see sccsfile(F)) and will cause an
error.

A get of many SCCS files, followed by a delta of those files, should
be avoided when the get generates a large amount of data. Instead,
multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line,
the -m (if necessary) and -y options must also be present. Omis
sion of these options causes an error to occur.

See Also

admin(CP), bdiff(C), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help (CP) for explanations.

June 21, 1987 Page 3

(
_ -

c�)

DOSLD (CP) DOSLD (CP)

Name

dosld - XENIX to MS-DOS cross linker

Synrnx

dosld options file . . .

Description

dosld links the object files(s) given by file to create a program for
execution under MS-DOS. Although similar to Zd(CP), dosld has
many options that differ significantly from ld. The options are
described below:

-D
DS Allocate. This instructs dosld to perform DS allocation. It
is generally used in conjunction with the -H option.

-H
Load high. This option instructs dosld to set a field in tbe
header of the executable file to tell MS-DOS to load the pro
gram at the highest available position in memory. It is most
often used with programs in which data precedes code in the
memory image.

-L
Include line numbers. This option instructs dosld to include
line numbers in the listing file (if any). Note that dosld cannot
put line numbers in the listing file if the source translator hasn't
put them in the object file.

-M
Include public symbols. This option instructs dosld to include
public symbols in the list file. The symbols are sorted twice,
lexicographically and by address.

-c
Ignore case. This option instructs dosld to treat upper and lower
case characters in symbol names as identical.

-F num
Set stack size. Tlris option should be followed by a hexadecimal
number. dosld will use this number for the size in bytes of the
stack segment in the output file.

-s num
Set segment limit. This option should be followed by a decimal
number between 1 and 1024. The number sets the limit on the
number of different segments that may b e linked together. The

June 21, 1987 Page 1

DOSLD (CP) DOSLD (CP)

default is 128. Note that the higher the value given, the slower
the link will be.

-mrllename
Create map file. This option should be followed by a filename.
dos/d will create a file with the given name in which it will put
infonnation about the segments and goups in the executable.
Additionally, public symbols and line numbers will be listed in
this file if the -M and -L options are given.

-nl num
Set name length. This option should be followed by a decimal
number. The option instructs dosld to truncate all public and
external symbols longer than num characters.

-o filename
Name ontput file. This option should be followed by a filename
which dosld will use as the name of the executable file it creates.
The default name is a. out.

-u name
Name undefined symbol. This option should be followed by a
symbol name. dosld will enter the given name into its symbol
table as an undefined symbol. The -u option may appear more
than once on the command line.

-G
Igoore group associations. This option instructs dosld to ignore
any group definitions it may find in the input files. This option
is provided for compatibility with old versions of MS-LlNK;
generally, it should never be used.

As with ld, the files passes to dosld may be either XENIX-style
libraries (objects collected using ar(CP) and indexed using
ranlib(CP)) or ordinary 8086 object files. Unless the -u option
appears, at least one of the files passed to dosld must be an ordi
nary object file. Libraries are searched only after all the ordinary
object files have been processed.

Files

/usrlbin/dosld

See Also

ar(CP), as(CP), cc(CP), ld(CP), ranlib(CP)

June 21, 1987 Page 2

c

GET (CP) GET (CP)

Name

get - Gets a version of an sees file.

Syntax

get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [- e] [-I[p]J [-p]
[- m] [-n] [-s] [-b] [-g] [-t] file • . .

Descrlption

get generates an ASCII text file from each named SCCS file accord
ing to the specifications given by its options, which begin with - .
The arguments may be specified in any order, but all options apply
to all named sees files. If a directory is named, get behaves as
though each file in the directory were specified as a named file,
except that nonSCCS files (last component of the pathname does
not begin with s.) and unreadable files are silently iguored. If a
name of - is given, the standard input is read; each line of the stan
dard input is taken to be the name of an sees file to be processed.
Again, nonSCCS files and unreadable files are silently iguored.

The generated text is normally written into a file called the g-file
whose name is derived from the sees filename by simply removing
the leading s.; (see also Files).

Each of the options is explained below as though only one sees
file is to be processed, but the effects of any option apply indepen
dently to each named file.

-rSID The SCCS IDentification string (SID) of the version
(delta) of an sees file to be retrieved.

- ccutoff cutoff date-time, in the form:

- e

June 21, 1987

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file that were created
after the specified cutoff date-time are included in the
generated ASCII text file. Units omitted from the date
time default to their maximum possible values; that is, -
c7502 is equivalent to -c750228235959. Any number of
nonnumeric characters may separate the various 2 digit
pieces of the cutoff date-time. This feature allows you
to specify a cutoff date in the form: "-c77/2/2 9:22:25".

Indicates that the get is for the purpose of editing or
making a change (delta) to the sees file via a subse
quent use of delta(CP). The - e option used in a get for
a particular version (SID) of the SCCS file prevents

Page 1

GET (CP) GET (CP)

further gets for editing on the same SID until delta is
executed or the j Qoint edit) flag is set in the sees file
(see admin(CP)). Concurrent use of get·-e for different
Sills is always allowed.

If the g-file generated by get with an - e option is
accidentally rnined in the editing process, it may be
regenerated by reexecuting the get command with the -k
option in place of the - e option.

sees file protection specified via the ceiling, floor, and
authorized user list stored in the sees file (see
admin(CP)) are enforced when the -e option is used.

- b Used with the - e option to indicate that the new delta
should have ali SID in a new branch. This option is
ignored if the b flag is not present in the file (see
admi.n(CP)) or if the retrieved delta is not a leaf delta .
(A leaf delta is one that has no successors on the sees
file tree.)

Note: A branch delta may always be created from a
nonleaf delta.

-ilist A list of deltas to be included (forced to be applied) in
the creation of the generated file. The list has the fol
lowing syntax:

-xlist

-k

-I[p]

- p

June 21, 1987

<list> ::= <range> I <list> , <range>
<range> : :- SID I SID - SID

SID, the Sees Identification of a delta, may be in any
form descnbed in the SCCS chapter in the XENIX
Programmer's Guide.

A list of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the -i option
for the list format.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The -k
option is implied by the -e option.

Causes a delta summary to be written into an 1-file. If
-Jp is used then an 1-file is not created; the delta sum
mary is written on the standard output instead. See
Files for the format of the 1-file.

Causes the text retrieved from the sees file to be writ
ten on the standard output. No g-file is created. All
output that normally goes to the standard ontpnt goes to

Page 2

c

GET (CP)

- s

- m

GET (CP)

file descriptor 2 instead1 unless the - s option is used, in
which case it disappears.

Suppresses all output normally written on the standard
output. However, fatal error messages (which always go
to file descriptor 2) remain unaffected.

Causes each text line retrieved from the sees file to be
preceded by the SID of !he delta !hat inserted the text
line in the sees file. The format is: SID, followed by a
horizontal tab, followed by the text line.

- n Causes each generated text line to be preceded with the
%M% identification keyword value (see below). The
format is: %M% value, followed by a horizontal tab,
followed by the text line. When both the -m and - n
options are used, the format is: % M% value, followed
by a horizontal tab, followed by the - m option generated
format.

- g Suppresses the actual retrieval of text from the sees
file. It is primarily used to generate an 1-file, or to verify
the existence of a particular SID.

- t Used to access the most recently created (top) delta i n a
given release (e.g., -rl), or release and level (e.g., ..
r1.2).

-aseq- no. The delta sequence number of the sees file delta (ver
sion) to be retrieved (see sccsfile(F)). This option is
used by the comb(CP) command; it is not particularly
useful and should b e avoided. If both the - r and - a
options are specified, the - a option is used. Care
should be taken when using-the - a option in conjunctiQn
with the - e option, as the SID of the delta to be created
may not be what yon expect. The -r option can be used
with the -a and - e options to control the naming of the
SID of the delta to be created.

For each file processed, get responds (on the standard output) with
the SID being accessed and with the number of lines retrieved from
the sees file.

If the - e option is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated. If
there is more than one named file or if a directory or standard
input is named, each filename is printed (preceded by a newline)
before it is processed. If the - i option is used included deltas are
listed following the notation ((Included"; if the - x option is used,
excluded deltas are listed following the notation ''Excluded".

June 21, 1987 Page 3

GET (CP) GET (CP)

Identification Ke:ywords

ldentifying information is inserted into the text retrieved from the
sees file by replacing identification keywords with their value wher
ever they occur. The following keywords may be used in the text
stored in an sees :file:

Keyword
%M%

%1%

%R%
%L%
%B%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%

%F%
%P%
%Q%
'fcC%

%Z%
%W%

%A%

June 21, 1987

Value
Module name: either the value of the m flag in the tile
(see admlfl (CP)), or if absent, the name of the sees fie
with the leading s. removed.
sees identification (SID) (%R%.%L% .%B%.%S%) of
the retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MMIDD).
Current date (MMIDD!YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MMIDD).
Date newest applied delta was created (MMIDD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see
admlfi(CP)).
sees filename.
Fully qualified sees filename.
The value of the q flag in the file (see admin(CP)).
Current line number. This keyword is intended for iden
tifying messages output by the program such as "this
shouldn't have happened" type errors. It is not
intended to be used on every line to provide sequence
numbers.
The 4-character string @(#) recognizable by what(C).
A shorthand notation for constructing what(C) strings
for XENIX · program files.
%W% � %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what(C)
strings for nonXENIX program files.
%A% = o/oZ0/o%Y% %M% %I%%Z%

Page 4

GET (CP) GET (CP)

Files

Several auxiliru:y files may be created by get. These files are known
generically as the g-file, !-file, p-file, and z-file . The letter before
the hyphen is called the tag. An auxiliary filename is formed from ·
the sees filename: the last component of all sees filenames must
be of the form s.module- nnme, the auxiliary files are named by
replacing the leading s with the tag. The g-file is an exception to
this scheme: the g-file is named by removing the s. prefix. For
example, s.xyz.c, the auxiliary filenames would be xyz.c, l.xyz.c,
p.xyz.c, and z.xyz.c, respectively.

The g-fib!, which contains the generated text, is created in the
current directory (unless the -p option is used). A g-file is created
in all cases, whether or not any lines of text were generated by the
get.]); is owned by the real user. If the ·k option is used or
implied, the g-file's mode is 644; otherwise the mode is 444. Only
the real user need have write permission in the current directory.

The 1-file contains a table showing which deltas were applied in
generating the retrieved text. The I· file is created in the current
directory if the - 1 option is used; its mode is 444 and it is owned by
the real user. Only the real user need have write permission in the
current directory.

Lines in the l-fi!JJ have the following format:

a. A blank character if the delta was applied;
* otherwise

b. A blank character if the delta was applied or wasn't applied
and ignored;
• if the delta wasn't applied and wasn't ignored

c. A code indicating a "special" reason why the delta was or
was not applied:

d. Blank

"P': Included
nx,: Excluded
''C": Cut off (by a · c option)

e. SCeS identification (SID)
f. Tab character
g. Date and time (in the form YYIMM/DD HH:MM:SS) of crea

tion
b . Blank
i. Login name of person who created delta

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

June 21, 1987 Page 5

GET (CP) GET (CP)

The p-fik is used to pass iuformation resultiug from a get with an
-e option aiung to delta . Its contents are also used to prevent a
subsequent execution of get with an • e option for the same SID
until delta is executed or the l"oiut edit flag, j, (see admin(CP)) is
set iu the SCCS file. The p·fi e is created in the directory eontain
iug the sees file and the effective user must have write permission
in that directory. Its mode is 644 and it is owned by the effective
user. The format of the p• fik is: the gotten SID, followed by a
blank, followed by the SID that the new delta will have when it is
made, followed by a blank, followed by the login name of the real
user, followed by a blank, followed by the date-thne the get was
executed, followed by a blank and the • i option if it was present,
followed by a blank and the - x option if it was present, followed by
a newliue. There can be an arbitrary number of liues in the p-fik
at any time; no two liues can have the same new delta SID.

The t· fik serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the
command (i.e., get) that created it. The %·file is created in the
directory containing the sees file for the duration of get. The
same protection restrictions as those for the p-file apply for the z
ftle . The z-file is created mode 444.

See Also

admin(CP), delta(CP), help(CP), prs(CP), what(C), sccsfi!e(F)

Diagnostics

Use help(CP) for explanations.

Noles

If the effective user has write permission (either explicitly or impli
citly) in the directory contain ing the sees files, but the real user
doesn't, then only one file may be named when the -e option is
used.

June 21, 1987 Page 6

(
\.._ _

GETS (CP) GETS (CP)

Name

gets - Gets a string from the standard input.

Syntax

gets [string]

Description

gets can be used with csh (C) to read a string from the standard
input. If string is given it is used as a default value if an error
occurs. The resulting string (either string or as read from the stan
dard input) is written to the standard output. If no string is given
and an error occurs, gets exits with exit status 1.

See Also

line(C), csh(C)

June 21, 1987 Page 1

(

c

HDR (CP) HDR (CP)

Name

hdr - Displays selected parts of executable binary files.

Syntax

hdr [-dhprsSt] file . . .

Description

hdr displays executable binary file headers, symbol tables, and text
or data relocation records in human-readable formats. It also
prints out seek positions for the various segments in the executable
binary file.

a.out, x.out, and x.out segmented formats and archives are under
stood.

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol's index or posi
tion in the symbol table, printed in decimal. The index of the first
entry is zero. The second field is the type, printed in hexadecimal.
The third field is the SJeg field, printed in hexadecimal. The
fourth field is the symbol's value in hexadecimal. The fifth field is
a single character which represents the symbol's type as in nm(CP),
except C common is not recognized as a special case of undefined.
The last field is the symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is
the symbol ID, or index, in decimal. This field is used for extemal
relocations as an index into the symbol table. It should reference
an undefined symbol table entry. The third field is the position, or
offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment referenced in the relocation: text, data, bss or EXT for
external. The fifth field is the size of relocation: byte, word (2
bytes), or long. The last field will indicate, if present, that the relo
cation is relative.

If short form relocation is present, the format consist of three
fields. The first field is the relocation command in hexadecimal.
the second field contains the name of the segment referenced; text
or data. The last field indicates the size of relocation: word or
long.

June 21, 1987 Page 1

HDR (CP)

Options and their meanings are:

-h

-d

Causes the executable binary file header and extended header to
be printed out. Each field in the header o r extended header is
labeled. This is the default option.

Causes the data relocation records to be printed out.

-t Causes the text relocation records to be printed out.

-r

-p

-·

-s

Causes both text and data relocation to be printed.

Causes seek positions to be printed out as defined by macros in
the include :file, <a .Out.b> .

Prints the symbol table.

Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.)

See Also

a.out(F), nm(CP)

June 21, 1987 Page 2

()

HELP (CP) HELP (CP)

Name

help - Asks for help about sees commands.

Syntax

help [arg.s]

Description

help finds information to explain a message from an sees com
mand or explain the use of a command. Zero or more arguments
may be supplied. If no argnments are given, help will prompt for
one.

The argnments may be either message numbers (which normally
appear in parentheses following messages) or command names.
There are the following types of argnments:

type 1

type 2

type 3

Begins with nonnumerics, ends in numerics. The non
numeric prefix is usually an abbreviation for the program
or set of routines which produced the message (e.g.,
ge6, for message 6 from the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argnment, if there is any.

When all else fails, try "help stuck".

Files
/usr/lib/help Directory containing files of message text

June 21, 1987 Page 1

LD (CP) LD (CP)

Name

ld - Invokes the link editor.

(Syntax

c

ld [options] filename ...

Description

ld is the XENIX link editor. It creates an executable program by
combining one or more object files and copying the executable
result to the file a.ont. The filename must name a:q object or
library file. By convention these names have the ".o" (for object)
or ".a" (for archive library) extensions. If more than one name is
given, the names must be separated by one or more spaces. If
errors occur while linking, ld displays an. error message; the result
ing a.out file is unexecutable.

ld concatenates the contents of !be given object files in the order
given in the command line. Library files in the command line are
examined only if there are unresolved external references encoun
tered from previous object files. Library files must be in ranlib (CP)
format, that is, the first member must be named _ _.SYMDEF,
which is a dictionary for the library. ld ignores the modification
dates of the library and the __ .SYMDEF entry, so if object files
have been added to the library since __ .SYMDEF was created, !be
link may result in an "invalid object module."

The library is searched iteratively to satisfy as many references as
possible and only those routines that define unresolved extemal
references are concatenated. Object and library files are processed
at the point they are encountered in the argument list, so the order
of files in the command Jioe is important. In general, all object
files should be given before library files. ld sets the entry point of
!be resulting program to the beginning of the first routine.

ld should be invoked using the cc(CP) instead of invoking it
directly. cc invokes ld as the last step of compilation, providing all
the necessary C-langnage support routines. Invoking ld directly is
not recommended since failure to give command line arguments in
the correct order can result in errors.

June 21, 1987 Page 1

LD (CP) LD (CP)

There are the following options:

- A num
Creates a standalone program whose expected load address (in
hexadecimal) is num. This option sets the absolute flag in the
header of the a.out file. Such program files can only be exe
cuted as standalone programs. Options ·A and • F are mutually
exclusive.

-B num
Sets the text selector bias to the specified hexadecimal number.

- c num

- C

Alters the default target CPU in the x.out header. num can be
0, 1, 2, or 3 indicating 8086, 80186, 80286 and 80386 processors,
respectively. The default on 8086/80286 systems is 0. The
default on 80386 systems is 3. Note that this option only alters
the default; if object modules containing code for a higher num
bered processor are linked, then that will take precedence over
the default.

Causes the link editor to ignore the case of symbols.

·D num
Sets the data selector bias to the specified hexadecimal number.

-F num

· i

Sets the size of the program stack to num bytes where num is a
hexadecimal number. This option is ignored for 80386 programs
which have a variable sized stack. By default 8086 programs
have a variable stack located at the top of the fust data segment,
and 80286 programs have a fixed size 4096 byte stack. The -F
option is incompatible with the -A option

Creatus separate instruCtion and data spaces for small model
programs. When the output file is executed, the program text
and data areas are allocated separate physical segments. The
text portion will be read-only and shared by all users executing
the file .

.. m name
Creates a link map file named name that includes public sym
bols.

June 21, 1987 Page 2

I
\.

r

LD (CP) LD (CP)

- Mx
Specifies the memory model. x can have the following values:
s small
m middle
I large
h huge
e mixed

-n num
Truncates symbols to the length specified by num.

- N num
Sets the pagesize to hex-num (which should be a multiple of
512) - the default is 1024 for 80386 programs. 8086/80186/80286
programs do not normally have page-aligned x. out files and the
default for these is 0.

- o name
Sets the executable program filename to name instead of a .out.

-P
Disables packing of segments

-r Invokes the incremental linker, /lib/ldr , with the arguments
passed to ld to produce a relocatable output file.

-R
Ensures that the relocation table is of non-zero size. Important
for 8086 compatibility.

-Rd num
Specify the data segment relocation offset (80386 only). num is
hexadecimal.

-Rt num

-s

Specify the text segment relocation offset (80386 only) num is
hexadecimal.

Strips the symbol table.

- S num
Sets the maximum number of segments to num. If no argument
is given, the default is 128.

-u symbol
Designates the specified symbol as undefined.

- v num
Specifies the XENIX version number. Acceptable values for
num are 2, 3, or 5; 5 is the default.

June 21, 1987 Page 3

LD (CP) LD (CP)

FDes

/bin/Id

See Also

ar(CP), masm(CP), cc(CP), ranhb(CP)

Notes

The w;er must make sure that the most recent library versions have
been processed with ranlib(CP) before linking. If this is not done,
ld cannot create executable programs U!!ing these libraries.

June 21, 1987 Page 4

(

c

LEX (CP) LEX (CP)

Name

lex - Generates programs for lexical analysis.

Syntax

lex [-ctvn] [file] . . .

Description

lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expres
sions to be Searched for, and C text to be executed when strings are
found.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in the
file is foundi then the corresponding program text is executed. The
actual string matched is left in yytext, an external character array.
Matching is done in order of the strings in the file. The strings may
contain square brackets to indicate character classes, as in [abx-z]
to indicate a, b, x, y, and z; and the operators *, +, and ? mean
respectively; any nonnegative number of, any positive number of,
and either zero or one occurrences of, the previous character or
character class. The character . is the class of all ASCII characters
except newline. Parentheses for grouping and vertical bar for alter
nation are also supported. The notation r{ d ,e} in a rule indicates
between d and e instances of regular expression r. It has higher
precedence th�n I, but lower than * , ? , + , and concatenation.
The character at the beginning of an expression permits a success
ful match only immediately after a newline, and the character $ at
the end of an expression requires a trailing newline. The character
I in an expression indicates trailing context; only the part of the
expression up to the slash is returned in yytext, but the remainder
of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol if it is within .. sym
bols or preceded by \. Thus, [a-zA-Z]+ matches a string of
letters.

Three subroutines defined as macros are expected: inputO to read
a character; unput(c) to replace a character read; and output(c) to
place an output character. They are defined in terms of the stan
dard streams, but you can override them. The program generated
is named yylexO, and the library contains a mainO which calls it.
The action REJECT on the right side of the rule causes this match
to be rejected and the next suitable match executed; the function
yymoreO accumulates additional characters into the same yytext;
and the function yyless (p) pushes back the portion of the string
matched beginning at p, which should be between yytext and

June 21, 1987 Page 1

LEJI. (CP) LEX (CP)

yytext+yyleng. The macros input and ou.tput use files yyin and
yyout to read from and write to, defaulted to sldin and stdout,
respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes %% it is copied into the external defini
tion area of the lex.yy.c file. All rules should follow a %%, as in
YACC. Lines preceding %% which l:>egin with a nonl:>lank charac
ter define the string on the left to be the remainder of the line; it
can be called out later by surrounding it with {}. Note that curly
brackets do not imply parentheses; only string substitution is done.

Example

D
%'¥o
if
[a-z]+
O{D}+

��};+ l!+lf
"/*II

[Q- 9]

printf(''IF statement\n"/;
printf("tag, value % s\n ',yytext);
printf("octal number % s\n",yytext);
printf("dccimal number %s\n",yytext);
printf("unary op\n').;
printf('binary op\u ');
{ loop:

while (input() 1- '*');
switcb (input())

}

{
case 'P: break;
case '*': unput('"'');
default: go to loop;
}

The external names generated by lex all begin with the prefix yy or
YY.

The options must appear before any files. The option -c indicates
C actions and is the default, -t causes the lex.yy.c program to be
written instead to standard output, -v provides a one-line summary
of statistics of the machine generated, -n will not priat out the -
summary. Multiple files are treated as a single file. If no files are
specified, standard input is used.

Certain tshle sizes for the resulting finite state machine can be set
in the definitions section:

'i'•P n
number of positions is n (default 2000)

%n n
number of states is n (500)

June 21, 1987 Page 2

LEX (CP) LEX (CP)

%t n
number of parse tree nodes is n (1000)

%a n
number of transitions is n (3000)

The use of one or more of the above automatically implies the -v
option, unless the -n option is used.

See Also

yacc(CP)
XENIX Programmer's Guide

June 21, 1987 Page 3

i
\

()

LINT (CP) LINT (CP)

Name

lint - Checks C language usage and syntax.

Syntax

lint [-abchnpuvx] [-Idir] [-DVname] [-oUib] [-LARGE] file . . .

Description

lint attempts to detect features of the C program file that are likely
to be bugs, nonportable, or wasteful. It also checks type usage
more strictly than the C compiler. Among the things which are
currently detected are unreachable statements, loops not entered at
the top, automatic variables declared and not used, and logical
expressions whose value is constant. Moreover, the usage of func
tions is checked to find functions which return values in some
places and not in others, functions called with varying numbers of
arguments, and functions whose values are not used.

If more than one file is given, it is assumed that all the files are to
be loaded together; they are checked for mutual compatibility. If
routines from the standard library are called from file, lint checks
the function definitions using the standard lint library llibc.In. If
lint is invoked with the -p option, it checks function definitions
from the portable lint library llibport.In.

Any number of lint options may be used, in any order. The follow
ing options are used to suppress certain kinds of complaints:

-a

-b

-c

-h

Suppresses complaints about assignments of long values to vari
ables that are not long.

Suppresses complaints about break statements that cannot be
reached. (Programs produced by lex or yacc will often result in
a large number of such complaints.)

Suppresses complaints about casts that have questionable porta
bility.

Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

June 21, 1987 Page 1

LINT (CP) LINT (CP)

-u

-v

-x

Suppresses complaints about functions and external variables
used and not defined, or defined and not used. (This option is
suitable for running lint on a subset of files of a larger program.)

Suppresses complaints about unused arguments in fuuctiolll!.

Does not report variables referred to by external declarations
but never used�

The following arguments alter lint's behavior:

-LARGE

-n

-o

-p

Uses large model versions of the compiler and lint passes. This
enables lint to handle tiexnrunes (ide!lti:fiers greater tha11 8 char
acters in kmgth).

Does not check compatibility against either the sta11dard or the
portable lint library.

Creates a hashed (i.e. faster) version of lint library lib with suffix
".In".

A !tempts to check portability to other dialects of C.

-llibname
Checks function definitions in the specified lint library. For
example, -bn causes the library lll.bm.ln to be checked.

The -D, -U, and -I options of cc(CP) are also recognized as
separate arguments.

Certain conventional comments in the C source will change the
behavior of lint:

/*NOTREACHED*f
At appropriate points stops comments about unreachable
code.

/"V ARARGSn*f
Suppresses the usual checking for variable numbers of argu
ments in the following function declaration. The data types
of the first n arguments are checked; a missing n is taken to
be O.

June 21, 1987 Page 2

(
\

LINT (CP) LINT (CP)

/*ARGSUSED*/
Turns on the -v option for the next function.

/*LINTLIBRARY*/
Shuts off complaints about unused functions in this file.

lint produces its first output on a per source file b asis. Complaints
regarding included files are collected and displayed after all source
files have been processecl. Finally, information gathered from all
input files is collected and checked for consistency. At this point,
if it is not clear whether a complaint stems from a given source file
or from one of its included files, the source filename is displayed
followed by a question mark.

Files

/usr/lib/lint[12] Program files

/usr/lib/llibc.ln, /usr/lib/llibport.ln, /usr/lib/llibm.ln,
/usr/lib/llibdbm.ln, /usr/lib/llibtermlib.ln
Standard lint libraries (binary format)

/usr/lib/llibc, /usr/lib/llibport, /usr/lib/llibm, /usr/lib/llibdbm,
/usrllib/llibtermlib
Standard lint libraries (source format)

/usr/tmp/*lint* Temporaries

See Also

cc(CP)

Notes

exit(S), and other functions which do not return, are not under
stood. This can cause improper error messages.

June 21, 1987 Page 3

LORDER (CP) LORDER (CP)

Name

!order - Finds ordering relation for an object library.

Syntax

!order file . . .

Description

lorder creates an ordered listing of object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see ar(CP)). The standard out
put is a list of pairs of object filenames. The first file of the pair
refers to external identifiers defined in the seeond. The output may
be processed by tsort(CP) to find an ordering of a library suitable
for one-pass access by ld (CP).

Example

The following command builds a new library from existing .o files:

ar cr library ' !order *.o I !sort'

Files

*symref, *symdef Temp files

See Also

ar(CP), ld(CP), tsort(CP)

Notes

Object files whose names do not end with .o, even when contained
in library archives, are overlooked. Their global symbols and refer
ences are attributed to some other file.

June 21, 1987 Page 1

M4 (CP)

Name

m4 - Invokes a macro processor�

(.
S)'IIIaX

\ m4 [options] [files]

Description

M4 (CP)

m4 is a macro processor intended as a front end for Ratfor� C, and
other languages. Each of the argument files is processed in order;
if there are no files, or if a filename is -, the standard input is
read. The processed text is written on the standard output.

The options and their effects are as follows:

-e

-s

Opefi\tes interactively. Interrupts are iguored a:Q.d the. output is
unbuffered.

Enables line S)'IIC output for the C preprocessor (#line . . .)

-Bint
Cha:Q.gus the size of the push-back and argument collection
buffers from the default of 4,096.

-Hint
('.Jlanges the size of the symbol table hash array from the default
of 199. The size should be prime,

-Sint
Changes the size of the call stack from the default of 100 slots.
Macros take three slots, and nonmacro arguments take one.

-Tint
Changes the size of the token buffer from the default of 512
bytes.

To be effective, these flags must appear before any filenames and
before any -D or -U flags:

-Dnarne[=val]
Defines name to val or to null in val's absence.

-Una me
Undefines name.

June 21, 1987 Page 1

M4 \ 1.:1') M4 (CP)

Macro Calls

Macro calls have the fonn:

name(arg1,arg2, . . . , argn)

The (must immediately follow the name of the macro. If a defined
macro name is not followed by a (, it is deemed to have no argu
ments. Leading unquoted blanks, tabs, and newlines are ignored
while collecting arguments. Potential macro names consist of
alphabetic letters, digits, and underscore _ where the first charac
ter is not a digit.

left and right single quotation marks are used to quote strings.
The value of a quoted string is the string stripped of the quotation
marks.

When a macro name is iecogu.ized, its arguments are collected by
searching for a matching right parenthesis. Macro evaluation
proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to tum up within the
value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed
b ack onto the input stream and rescanned.

m4 makes available the following bullt-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define

undefine

defn

puSbdef

popdef

June 21, 1987

The second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $n in the replacement text, where n is a
digit, is replaced by the n-th argument. Argument 0 is
the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a Jist of all the
arguments separated by commas; $@ is like $*, but
each argument is quoted (with the current quotation
marks).

Removes the definition of the macro named in its
argument.

Returns the quoted definition of its argument(s). It is
useful for renaming macros, especially built-ins.

Like define, but saves any previous definition.

Removes current definition of its argument(s), expos
ing the previous one if any.

Page 2

M4 (CP)

ifdef

shift

M4 (CP)

If the first argument is defined, the value is the second
argument, otherwise the third. lf there is no third
argument, the value is null. The word XENIX is
predefined in m4.

Returns all but its first argument. The other argu
ments are quoted and pushed back with commas in
between. The quoting nullifies the effect of the extra
scan that will subsequently be performed.

changequote Changes quotation marks to the first and second argu
ments. The symbols may be up to five characters
long. changequote without arguments restores the ori
ginal values (i.e., ").

changecom Changes left and right comment markers from the
default # and newline. With no arguments, the com
ment mechanism is effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu
ments, both markers are affected. Comment markers
may be up to five characters long.

divert m4 maintains lO output streams, numbered 0-9. The
final output is the concatenation of tbe streams in
numerical order; initially stream 0 is the current
stream. The divert macro changes the current output
stream to its (digit-string) argument. Output diverted
to a stream other than 0 through 9 is discarded.

undivert Causes immediate output of text from diversions
named as arguments, or all diverSions if no argument.
Text may be undiverted into another diversion.
Undiverting discards the diverted text.

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including the
next newline.

if else

!ncr

June 21, 1987

Has three or more arguments. If the first argumentis
the same string as the second, then the value is the
third argument. lf not, and if there are more than
four arguments, the process is repeated with argu
ments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or if it is not present, null.

Returns the value of its argument incremented by 1.
The value of the argument is calculated by interpreting
an initial digit-string as a decimal number.

Page 3

M4 (CP)

deer

eval

len

:index

substr

translit

include

sin elude

syscmd

sysval

malcetemp

m4exit

m4wrap

errprint

dumpdef

Juue 21, 1987

M4 (CP)

Returns the value of its argument decremented by 1.

Evaluates its argument as an- arithmetic expression,
usin,g 32-bit arithmetic. Operators include +, - , •, I,
%, (exponentiation), bitwise &, L ·, and ·; relation
als; parentheses. Octal and hex ulllllbers may be
specified as in C. The second argument specifies the
radix for the result; the default is 10. The third argu
ment may be used to specify the minimum number of
digits in the result.

Returns the number of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or -1 if the
second argument does not occur�

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of
the substring. A mi>sing third argument is talceu to be
wge enough to extend to the end of t)le first string.

Transliterates the characters in its first argument from
t)le set given by t)le second argument to the set given
by the third. No abbreviations are permitted.

Returns the contents of the file named in the argu
ment.

Identical to include, except that it says nothing if the
file is inaccessible.

Executes the XENIX command given in the first argu
ment. No value is returned.

Is the return code from the last call to syscmd.

Fills in a string of XXXXX in its argument with the
current process ID.

Causes immediate exit from m4. Argument 1, if
given, is the exit code; tbe default is 0.

Argument 1 will be pushed back at final EOF; exam
ple: m4wrap('cleanup()')

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named
items, or for all if no arguments are given.

Page 4

M4 (CP)

traceon

traceoff

June 21, 1987

M4 (CP)

With no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

Turns off trace globaiiy and for any macros specified.
Macros specificaiiy traced by traceon can be untraced
only by specific caiis to traceoff.

· Page 5

(
\

(�
_

c�

MAKE (CP) MAKE (CP)

Name

make - Maintains, updates, and regenerates groups of programs.

Syntax

make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n] [-b] [-e] [-t]
[-q] [-d] [names]

Des crlp tion

The following is a brief description of all options and some special
names:

-f makefi/e Description filename. makefile is assumed to be the
name of a description file. A filename of - denotes
the standard input. The contents of makefile override
the built-in rules i£ they are present.

-p

-i

-k

-s

-r

-n

-b

-e

-t

-d

June 21, 1987

Prints out the complete set of macro definitions and
target descriptions.

Ignores error codes returned by invoked commimds.
This mode is entered if the fake target name .IGNORE
appears in the description file.

Abandons work on the current entry, but eontinues
on other branches that do not depend on that entry.

Silent mode. Does not print command lines before
executing. This mode is also entered if the fake target
name .SILENT appears in the description file.

Does not use the built-in rules.

No execute mode. Prints commands, but does not
execute them. Even lines beginning with an @ are
printed.

Compatibility mode for old makefiles.

Environment variables override assignments within
makefiles.

Touches the target files (causing them to be up-to
date) rather than issues the usual commands.

Debug mode. Prints out detailed information on files
and times examined.

Page 1

MAKE (CP) MAKE (CP)

-q Question. The make command returns a zero or
nonzero status code depen ding on whether the target
file .is or is not up-to-date .

• DEFAULT lf a file must be made but there are no explicit com
mands or relevant built-in rules, the commands asso
ciated with the name .DEFAULT are used if it exists .

• PRECIOUS Dependents of this target will not be removed when
quit or interrupt are hit.

• SILENT

• IGNORE

Same effect as the -s option .

Same effect as the -i option .

make executes commands in mekefile to update one or more target
/iames. Name is typically a program. If no -r option is present,
makefile, Makefile, s.makefile, and s.Makefile are tried in order. If
makefile is -, the standard input is taken. More than one -r
makefile argument pair may appear.

make updates a target only if it depends on files that are newer than
the target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out of date.

makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, nonnull list of tar
gets, then a :, then a (possibly null) list of prerequisite files or
dependencies. Text following a ; and all following lines that begin
with a tab are shell commands to be executed to update the target.
The first line that does not begin with a tab or # begins a new
dependency or macro definition. Shell commands may be contin
ued across lines with the <backslash> <newline> sequence. (#)
and newline surround comments.

The following makefile says that pgm depends on two files a.o and
b.o, and that they in tum depend on their corresponding source
files (a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -o pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc �c b.c

Command lines are executed one at a time, each by its own shell.
A line is printed when it is executed unless the -s option is
present, or the entry .SILENT: is in make file , or unless the first
character of the command is @. The -n option specifies printing
without execution; however, if the command line has the string

June 21, 1987 Page 2

MAKE (CP) MAKE (CP)

$(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The -t (touch) option
updates the modified date of a file without executing any com
mands.

Commands returning nonzero stains normally terminate make. If
the -i option is present, or the entry .IGNORE: appears in
makejiJe, or if the line specifying the command begins with
<tab><hyphen>, the error is ignored. If the -k option is
present, work is abandoned on the current entry: but continues on
other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old ver
sion of make) to run without errors. The difference between the
old version of make and this version is that this version requires all
dependency lines to have a (possibly null) command associated
with them. The previous version of make assumed if no command
was specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless .PRECIOUS
is on it.

Environment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such� The environment vari
ables are processed before any makefile and after the internal ruies;
thus, macro assignments in a makefile override environment vari
ables. The -e option causes the environment to override the
macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except -f, -p, and -d) defined
for the command line. Further, upon invocation, make "invents"
the variable if it is not in the environment, puts the current options
into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This
proves very useful for usuper-makes". In fact, as noted above,
when the -n option is used, the command $(MAKE) is executed
anyway; hence, one can perform a lNlke -n recursively on a whole
software system lo see what wouid have been erecuted. This is
because the -n is put in MAKEFLAGS and passed to further invo
cations of $(MAKE). This is one way of debugging all of the
makefiles for a software project .,;!bout aetnally doing anything.

Mncros

Entries of the fonn stringl ::: string2 are macro definitions. Subse
quent appearances of $(stringl[:substl=[subst2]]) are replaced by
string2. The parentheses are optional if a single character macro
name is used and there is no substitute sequence. The optional

June 21, 1987 Page 3

MAKE (CP) MAKE (CP)

:substl=subst2 is a substitute sequence. If it is specified, all nono
verlapping occurrences of substl in the named macro are replaced
by subst2. Strings (for the purposes of this type of substitution)
are delimited by blanks, tabs, newline characters, and beginnings of
Jines. An example of the use of the substitute sequence is shown
under Libraries .

Internal Macros

There are five internally maintained macros which are useful for
writing rules for building targets:

$* The macro $* stands for the filename part of the current
dependent with the suifix deleted. It is evaluated only for
inference rules.

$@ The $@ macro stands for the full target name of the current
target. It is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the "manufactured" dependent
filename). Thus, in the .c.o rule, the $< macro would evalu
ate to the .c file. An example for making optimized .o files
from . c files is:

.c.o:
cc -c -0 $•.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are

. out of date with respect to the target; essentially, those
modules which must be rebullt.

$% The $% macro is only evaluated when the target is an archive
library member of the form lib(file.o). In this case, $@ evalu
ates to lib and $% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an
upper case D or F is appended to any of the four macros the mean
ing is changed to "directory part" for D and "file part" for F.
Thus, $(@D) refers to the directory part of the string $@. If there
is no directory part .I is generated. The only macro excluded from
this alternative form is $?.

June 21, 1987 Page 4

(

MAKE (CP) MAKE (CP)

Suffixes

Certain names (for instance, those ending with .o) have default
dependents such as .c, .s, etc. If no update commands for such a
file appear in makefile, and if a default dependent exists, that prere
quisite is compiled to make the target. In this case, make has
inference rules which allow building files from other files by exac
mining the suffixes and determining an appropriate inference rule to
use. The current default inference rules are:

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .l.o .r.o

.y.c .y.c .I.e .c.a .c-.a .s-.a .h-.h

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To
print out the rules compiled into the make on any machine in a
form suitable for recompilation, the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which
printf(S) prints when handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile(F)).
Thus, the rule .c-.o would transform an sees C source file into an
object file (.o). Because the s. of the sees files is a prefix it is
incompatible with make's suffix point-of-view. Hence, the tilde is
a way of changing any file reference into an sees file reference.

A rule with only one suffix (i.e . . c:) is the definition of how to build
x from x.c. In effect, the other suffix is null. This is useful for
building targets from only one source file (e.g., shell procedures,
simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file
and a rule exist is inferred as a prerequisite.

The. default list is:

.SUFFIXES: .o .c .y .I .s

Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine.
Multiple suffix lists accumulate; .SUFFIXES: with no dependencies
clears the list of suffixes.

June 21, 1987 Page 5

MAKE (CP)

Inference Ruks

The first example can be done more brielly:

pgm: a.o b.o
cc a.o b .o -o pgm

a.o b.o: incl.h

MAKE (CP)

This is because =ke has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
=kefile .

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For exam
ple, CFLAGS, LFLAGS, and YFLAGS are used for compiler options
to cc(CP), lex(CP), and yacc(CP) respectively. Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to
create a file with sufllx .o from a tlle with suffix .c is specified as an
entry with .c.o: as the target and no dependents. Shell commands
associated with the target define the rule for making a .o file from a
.c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not as a true target.

Libraries

If a target or dependency name contains parentheses* it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus lib(file. o) and $(UB)(file.o) both
refer to an archive hbrary which contains file. a. (This assumes the
LIB macro has been previously defined.) The expression
$(LIB)(filel.o fi/eZ.o) is not legal. Rules pertaining to archive
libraries have the form .XX .a where the XX is the suffix from which
the archive member is to be made. An unfortunate byproduct of
the current implementation requires the XX to be different from the
suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib :
lib(tllel.o) h'b(tlle2.o) lib(tlle3.o)
@echo h'b is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.o
nn -f $*.o

June 21, 1987 Page 6

(
\

()

MAKE (CP) MAKE (CP)

In fact, the .c. a rule listed above is built into make and is unneces
sary in this example. A more interesting, but more limited example
of an archive library maintenance construction follows:

lib :
lib (filel.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o�.c)
ar IV lib $?
rm $? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The
$? list is defined to be the set of object filenames (inside lib) whose
C source files are out of date. The substitution mode translates the
.o to .c. (Unfortunately, one cannot as yet transform to . c-) Note
also, the disabling of the .c. a: rule, which would have created each
object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly
programs and C programs.

Files

[Mm]akefile

s. [Mm]akefile

See Also

sh(C)

Notes

Some commands return nonzero status inappropriately; use -i to
overcome the difficulty. Commands that are directly executed by
the shell, notably cd(C), are ineffectual across newlines in make.
The syntax (/ib(filel.o file2.o file3.o) is illegal. You cannot build
lib(file.o) from file.o. The macro $(a:.o=.c-) is not available.

June 21, 1987 Page 7

c

MASM (CP) MASM (CP)

Name

masm - Invokes the XENIX assembler.

Syntax

masm [options] sourcefile

Description

masm is the XE!'IDC 8086/286/386 assembler. i:t reads and assem
bles 8086/80286/80386 assembly language instructions from the
source file named sourcefile. It then creates a linkable object file
name sourcefile.o, or an executable program named a.out.

The extension .s is recommended but not required. If this exten
sion is not given, masm displays a warning and continues process
ing.

There are the following options:

• •

• c

This options puts the assembled output segments in alphabetic
order before copying them to the object file.

Outputs cross reference data for each assembled file to
filename. crf.

· C

• d

Outputs cross reference data for a set of assembled file. The
cross 'reference data is written to files with the same names as
the input files, with the filename extension u .erf. })

Adds a pass 1 listing to the assembly listing file filename./l;t .

• Dsym

• •

Defines the symbol appended to the • D llag as a null TEXT
MACRO .

Generates floating point code to emulate the 8087 or 287 copro
cessor. Programs created with this option must be linked with
an appropriate math library before being executed.

• Ipath
Defines the path appended to the • I llag as the search path for
include files. Up to 10 include paths are allowed in one invoca
tion of masm.

June 21, 1987 Page 1

MASM (CP)

- l[li<tfile]
Creates an assembly listing file with the same basename as the
saurcefile or, if the listfile parameter is given, with that name but
with a h.lst" extension. The file lists the source instructionsJ the
assembled {binary code) for each instruction and any assembly
errors_ If filename is "-�" the listing is written to stdout.

- Mx
This option directs masm to preserve lower case letters in public
and external names only when copying these names to the
object file. For all other pnrposes, masm converts the lower case
to upper case.

- Mu
Disables case sensitivity. Upper ease is now treated as identical
to lower case.

- Ml

- n

Leave case of symbols alone.

This option generates information about the symbols used in the
assembled programs. The - I option must also be used for this
option to take effect.

- oabjfile
Copies the assembled instructions in octal to the file named
objfile. This file is executable only if no errors occurred during
the assembly. This option overrides the default object file name.

- Oabjfile

- r

- v

- X

Copies the assembled instructions in binary to the file named
objfile.

Generates floating point code that can only be executed by an
8087 or 287 coprocessor.

Prints verbose error statistics on console. If not selected, only
error counts are displayed.

displays error messages on the standard error channel, in addi
tion to the messages generated in the listing file.

- X
Copies to the assembly listing all statements forming thef body
of an IF directive whose expression {or condition) evaluates to
false.

June 21, 1987 Page 2

MASM (CP) MASM (CP)

Files

/bin/masm

/ See Also ;
\ a.out(F), cc(CP), ld(CP)

(- •.
__/

C_)

Macro Assembler User's Guide

Notes

The default options are -Ml and - e which enable case sensitivity
and allow emulation of a ·floating point processor. The options are
flags with the following default settings:

Flag Default Meaning of TRUE condition

a FALSE Outputs segments alphabetically
c FALSE Outputs cross reference data
c FALSE Outputs cross reference data
d FALSE Adds pass 1 listing to filename.Jst

Dsym NULL No meaning if not defined
e FALSE Floating Point emulation

I path NULL No meaning if not defined
llistfile sourcefile .1st Sourcefile is the default filename

M I Leave symbol case alone
n TRUE Outputs symbols if - 1 selected
0 TRUE Assembled output in binary
0 FALSE Assembled output in octal
r TRUE Real 8087 instead of emulated format
v FALSE Prints verbose error statistics
X TRUE Displays errors on console
X FALSE Toggle setting of conditional flag

Return Value

The masm exit codes have the following meanings:

Code Meaning

June 21, 1987

0
1
2
3
4
5
6
7

No error
Argument error
Unable to open input file
Unable to open listing file
Unable to open object file
Unable to open cross reference file
Unable to open include file
Assembly errors. If fatal, the object

file is deleted.

Page 3

June 21, 1987

8
9

MASM (CP)

Memory allocation error
Real number input not allowed

in this version�

Page 4

(

MKSTR (CP) MKSTR (CP)

Name

mkstr - Creates an error message file from C source.

Syntax

mkstr [-] messagefile prefix file ...

Description

mkstr is used to create files of error messages. Its use can make
programs with large numbers of error diagnostics much smaller,
and reduce system overhead in running the program as the error
messages do not have to be constantly swapped in and out.

mkstr will process each specified frle , placing a massaged version of
the input file in a file whose name consists of the specified prefix
and the original name. The optional dash (-) causes the error mes
sages to be placed at the end of the specified message file for
recompiling part of a large mkstr ed program.

A typical mkstr command line is

mkstr pistrings xx • .c

This command causes all the error messages from the C source files
in the current directory to be placed in the file pistrings and pro
cessed copies of the source for these files to be placed in files
whose names are prefixed with xx.

To process the error messages in the source to the message file�
mkstr keys on the string 'error('" in the input stream. Each time it
occurs, the C string starting at the ,.,, is placed in the message file
followed by a null character and a newline character; the null char
acter terminates the message so it can be easily used when
retrieved, the newline character makes it possible to sensibly cot
the error message file to see its contents. The massaged copy of
the input file then contains a !seek pointer into the file which can
be used to retrieve the message. For examplet 1he command
changes

errorf'Error on readingu� a2, a3, a4);

into

crror(m, a2, a3, a4);

June 21, 1987 Page 1

MKSTR (CP) MKSTR (CP)

where m is the seek position of the string in the resulting error mes
sage file. The programmer must create a routine error which
opens the message file, reads the string, and prints it out. The fol
lowing example illustrates such a routine.

Example

char efilname[] � "/usr/lib/pLstrings";
int efil � -1;

error(al, a2, a3, a4)
int al) a2, a3, a4;
{

char buf[256];

if (efil < 0) {
efil � open(efilname, 0);
if (efil < 0) {

perror(efilname);
exit(1);

}
}

if (lseek(efil, (long) a1, 0) I I read(elil, buf, 256) <� 0) {
printf("Unable to find error msg at seek address %d0,a1);
exit(l);
}

printf(buf, a2, a3, a4);
}

See Also

lseek(S), xstr(CP)

Credit

This utillty was developed at the University of California at
Berkeley and is used with permission.

Notes

All the arguments except the name of the file to be processed are
unnecessary.

June 21, 1987 Page 2

(
\

NM (CP) NM (CP)

Name

nm - Prints name list.

Syntax

nm [-acgnoOprsSuv] [+offset] [file ...]

Description

nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each object
file in the archive will be produced. If no file is given, the symbols
in a.out.are listed.

Each symbol name is preceded by its value in hexadecimal (blanks
if undelined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss segment
symbol), S (segment name), C (common symbol), K (8086 common
segment), or S (segment name). If the symbol table is in segmented
format, symbol values are displayed as segment:offset. If the sym
bol is local (non-external), the type letter is in lowercase. The out
put is sorted alphabetically.

Options are:

-a Attempt to print the namelist of all modules in an archive
library. Normally, nm silently ignores any library members
which are not valid object modules. Using this option causes
nm to report an error for all such modules. Note that the first
member in any library which has been processed by
ranlib(CP) is called _SYMDEF and is not a valid object
module, thus the -a option will always produce at least one
error message when used on such a library.

-c Print only C program symbols (symbols which begin with ' ')
as they appeared in the C program.

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-o Prepend file or archive element name to each output line
rather than only once.

-0 Print symbol values in octal.

-p Don't sort; print in symbol-table order.

June 21, 1987 Page 1

NM (CP) NM (CP)

-r Sort in reverse order.

-s Sort by size of symbol and display each symbol's size instead
of value. The last symbol in each text or data segment may
be assigned a size of 0. This implies the -n option.

-S Switch the display format. If the symbol table is in segmented
format, print values in non-segmented format. If not seg
mented, print values in segmented format. Segment offsets in
386 object modules and executable files a:re 32 bits rather than
16 bits.

-u Print only undefined symbols.

-v Also describe the object file and symbol table format.

Files

a. out Default input file

See Also

a:r(CP), ar(F), a.out(F)

June 21, 1987 Page 2

PROF (CP) PROF (CP)

Name

prof - Displays profile data.

Syntax

prof [-a] [-I] [file]

Description

prof interprets the file mon.out produced by the monitor subrou
tine. Under default modes, the symbol table in the named object
file (a.out default) is read and correlated with the mon.out profile
file. For each e>.iernal symbol, the percentage of time spent exe
cuting between that symbol and the next is printed (in decreasing
order), together with the number of times that routine was called
and the number of milliseconds per call.

If the -a option is used, all symbols are reported rather than just
external symbols. If the -I option is used, the output is listed by
symbol value rather than decreasing percentage.

To cause calls to a routine to be tallied, the -p option of cc must
have been given when the file containing the routine was compiled.
This option also arranges for the mon.out file to be produced
automatically.

Flles

mon.out For profile

a.out For namelist

See Also

monitor(S), profil(S), cc(CP)

Notes

Beware of quantization errors.

If you use an explicit call to liWnitor(S) you will need to make sure
that the buffer size is equal to or smaller than the program size.

June 21, 1987 Page 1

PROF (CP)

Warning

Profiling gives incorrect results for hybrid model 286 programs (i.e.
those with 16 bit text pointers within modules and 32 bit text
pointers between modules).

June 21, 1987 Page 2

PRS (CP) PRS (CP)

Name

prs Prints an sees file.

Syntax

prs [-d(dataspec]J [-r[SID]] [-e] [-1] (-a] files

Description

prs prints, on the standard output, all or part of an sees file (see
sees file (F)) in a user supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a
named file, except that nonsees files (last component of the path
name does not begin with s .), and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to b e the name of an sees file
or directory to be processed; nonsees files and uoreadable files
are silently ignored.

Arguments to prs, which may appear in any order, consist of
options, and filenames.

All the described options apply independently to each named file:

-d[dataspec]

-r[SID]

-e

-1

-a

June 21, 1987

Used to specify the output data specification. The
dataspec is a string consisting of sees file data
keywords (see Data Keywords) interspersed with
optional user-supplied text.

Used to specify the Sees IDentification (SID)
string of a delta for which information is desired.
If no SID is specified, the SID of the most recently
created delta is assumed.

Requests information for all deltas created earlii!r
than and including the delta designated via the -r
option.

Requests information for all deltas created later
than and including the delta designated via the -r
option.

Requests printiog of information for b oth
removed, i.e., delta type = R, (see rmdel(CP)) and
existing, i.e., delta type = D , deltas. Jf the -a
option is not specified, information for existing del
tas only is provided.

Page 1

PRS (CP) PRS (CP)

Data Keywords

Data keywords specify which parts of an sees file are to be
retrieved and output. All parts of an sees file (see sccsfile(F))
have an associated data keyword. There is no limit on the number
of times a data keyword may appear in a dataspec.

·

The information printed by prs consists of the user-supplied text
and appropriate values (e>:tracted from the sees file) substituted
for the recognjzed data keywords in the order of appearance in the
dataspec. The format of a data keyword value is either simple, in
which keyword substitution is direct, or multiline, in which key
word substitution is followed by a carriage return.

User-supplied text is any text other than recognjzed data keywords.
A tab is specified by \t and carriage return/newline is specified by
\n.

June 21, 1987 Page 2

PRS (CP)

TABLE 1. SCCS Files Data Keywords
K'J'l"'rd /)(Jta ltem File Section

•Dt: Delta infonnation Delta '!'able
:DI.: Delta Iine SUitisties: "
:Li: Lines inserted by Delta
:Lrl: Lines deleted by Delta
:Lu Lines t.mchanged by Delt:B

:DT: Deltl'l type
:I: sees ID <tdug (SID)
:R: Release number
:L: Levet number
:ll: Bnwch number
:S: Sequence number
:D: Date Delta created

:Dy: Year Delta r::reaied
:Om: Month Delta created
:Dd: Day Delta created

:T: Time Delta created
:Th: Hour Delta created
:Tm: Minutes Delta created
:Ts: Seconds De1te created
:P: Programmer wh created Delta

:DS: Delta se.qttence number
:DP: Predecessor Delta seq-no.
:DI: Seq-no. o! dehas incl., exc1.. ignored
:Dn: Del!.as included (seq #)
:Dx: Deltas excluded (seq #)
:Dp; Deltas ignored (seq #)
:MR: MR numbem for delta

:C: Comment& for delta
:UN: User names User Names
:FL: Flag list Fl:gs

(:Y: Module type fiag
:MF: .MR validation flag

\ :MP: MR ''alidatiou pgm name 'c � :KF: Keyword error/warning :fiag
:BF: BrMeh :llnf
:I: Joint edit ag

:LK: Locked releases
:Q: User defined keyword
'M: Module names
'FB' Floor boundacy
,en, Ceiling boundary
:Ds: Default SID
,!><!): NuU delta flag
:FD: File descriptive text Comments
:BD' Body B�,dy
:GB, Gotten body
:W: A form of what�� !!tr4'!g N/A
;A: A form of whut C stririg N/A
:Z: what(C) string delimiter N/A
:F: sees filename N/A

,pN: sees file pa!.hname N/A

• :Dt: ... :DT: :I::D: :T::P: :DS::DP:

c

June 21, 1987

PRS (CP)

Value
See below*

:Li:/:Ld:/:Lu:
nnnnn
nnnun
nnnnn
D orR

:R:.:L:.:B:.:S:
nnnn
nnnn
nnnn
�·

:Dr.I:Dm:/:Dd:
n n
un
nn

:Th:!:Tm:::Ts:
nn
nn
nn

lo-gname
nnnn
nnnn

:Dn:/:Dr:/:Dg:
:DS: :DS: ...
:DS: :DS: ...
:DS: :DS: ...

-
"'"
text
text
t=t

yes or na
te<t

yes or no
yes or no
yu or no

:R: . . .
text
text
:R:
:fu
'R:

yuorno
text
text
text

:Z::M:It:I:
,z::Y: :M: :I::Z:

@(#)
text
text

Format
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
M
M
M
M
s
s
s
s
s
s
s
s
s
s
s
s
s

M
M
M
s
s
s
s
s

Page 3

PRS (CP) PRS (CP)

Examples

The following:

prs -d0Users and/or user IDs for :F: are:\n:UN:" s�file

may produce on the standard output:

Users and/or user IDs for s.tile are:

fu
abc

prs -d''Newest delta for pgm :M:: :I: Created :D: By :P:" -r
s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only option
allowed to be used with the special case is the -a option.

Files

/tmp/pr?????

See Also

admin(CP), delta(CP), get(CP), help(CP), sccsfile(F)

Diagnostics

Use help (CP) for explanations.

June 21, 1987 Page 4

c

RANLIB (CP) RANLIB (CP)

Name

ranlib - Converts archives to random libraries.

ranllb archive . . .

Description

ranlib converts each archive to a form which can be loaded more
rapidly by the loader, by adding a table of contents named
__ .SYMDEF to the beginning of the archive. It uses ar(CP) to
reconstruct the archive, so sufficient temporary file space must b e
available in th e file system containing the current directory.

See Also

ld(CP), ar(CP), copy(C), settime(C)

Notes

Failure to process a library with ranlib, or failure to reprocess a
library with ranlib , will cause ld to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader ld warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

Juue 21, 1987 Page 1

RA TFOR (CP) RA TFOR (CP)

Name

ratfor - Converts Rational FORTRAN into standard FORTRAN.

(Syntax

ratfor [option ...] [filename . . .]

Description

ratfor converts a rational dialect of FORTRAN into ordinary irra
tional FORTRAN. ratfor provides control flow constructs essen
tially identical to those in C:

statement grouping:
{ statement; .statement; statement }

decision-making:
if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement
}

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break [n]
next [n]

It also provides some additional syntax to make programs easier to
read and write:

Free form input:
multiple statements/line; automatic continuation

Comments:
this is a comment

Translation of relationals:
>, >=, etc., become .GT., .GE., etc.

Return (expression)
returns expression to caller from function

June 21, 1987 Page 1

RATFOR (CP) RATFOR (CP)

Define:
define name replacement

Include:
include filename

The following options are available:

-h Causes quoted strings to be turned into 27H constructs.

-c Copies comments to the output, and attempts to format it
neatly. Normally, continuation lines are marked with an & in
column 1.

-6x Makes tbe continuation character x and places it in column 6.

June 21, 1987 Page 2

(
\

()

REGCMP (CP) REGCMP (CP)

Name

regcmp - Compiles regular expressions.

Syntax

regcmp [-] files

Description

regcmp, in moSt cases, precludes the need for calling regcmp {see
regex(S)) from C programs. This saves on both execution time and
program size. The command regcmp compiles the regular expres
sions in me and places the output in file.i. If the - option is used,
the output will be placed in file.c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotation marks. The output
of regcmp is C source code. Compiled regular expressions are
represented as extern char vectors. File .i files may thus be
included into C programs, or file .c files may be compiled and later
loaded. In the C program which uses the regcmp output,
regex(abc,line) applies the regular expression named abc to line.
Diagnostics are self -explanatory.

Examples

name "([A-Za-z][A-Za-z(}-9_]*)$0"

telno "\({0,1 }([2-9][01][1-9])$0\){0,1} •" "([2-9][0-9]{2})$1[-]{0, 1 }"
"([G-9]{ 4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

See Also

regex(S)

June 21, 1987 Page 1

RAfDEL (CP) RMDEL (CP)

Name

rmdel - Removes a delta from an sees file.

Syntax

nndel -rSID files

Description

rmdel removes the delta specified by the SID from each named
sees file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named sees
file. In addition, the SID specified must not be that of a version
being edited for the purpose of making a delta. That is, if a p-file
exists for fue named sees file, the SID specified must not appear
in any cn1Jy of the p-file(see get(CP)).

If a directory is named, rnulel behaves as though each file in the
directory were specified as a named file, except that nonsees files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to
be the name of an sees file to he processed; nonsees files and
unreadable files are silently ignored.

Files

x-file

z-file

See Also

See delta (CP)

See delta (CP)

delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help (CP) for explanations.

June 21, 1987 Page 1

�
(
_ _

SACT (CP) SACT (CP)

Name

sact - Prints current sees file editing activity.

Syntax

sact files

Description

sact informs the user of any impending deltas to a named sees
file. This situation occurs when get(CP) with the -e option has
been previously executed without a subsequent execution of
delta (CP). If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a
named file, except that nonSees files and unreadable files are
silently ignored. If a name of - is given, the standard input is read
with each line being taken as the name of an sees file to be pro
cessed.

The output for each named file consists of five fields separated by
spaces.

Field 1

Field 2

Field 3

Field 4

Field 5

See Also

Specifies the SID of a delta that currently exists in the
sees file to which changes will be made to make tile
new delta

Specifies the SID for the new delta to be created

Contains the logname of the user who will make the
delta i.e., executed a get for editing

Contains the date that get -e was executed

Contains the time that get -e was executed

delta(CP), get(CP), unget(CP)

Diagnostics

Use help(CP) for explanations.

June 21, 1987 Page 1

(
\

(
__�·· I

SCCSDIFF (CP) SCCSDIFF (CP)

Name

sccsdiff - Compares two versions of an sees file.

Syntax

sccsdilf -rSID1 -rSID2 [-p] [-sn] files

Description

sccsdiff compares two versions of an sees file and generates the
differences between the two versions. Any number of sees files
may be specified, but arguments apply to all files.

-rSID? SIDl and SID2 specify the deltas of an Sees file that are
to be compared. Versions are passed to bdiff(C) in the
order given.

-p Pipe output for each file through pr(C),

-sn n is the file segment size that Miff will pass to diff(C).
'This is useful when diff falls due to a high system
load.

Files

/tmp/get????? Temporary files

See Also

bdiff(C), get(CP), help(CP), pr{C)

DU.gnostics

file: No differences Jf the two versions are the same.

Use help(CP) for explanations.

June 21, 1987 Page 1

SDB (CP) SDB (CP)

Name

sdb - Invokes symbolic debugger.

Syntax

sdb [objfil [corfil [directory:directory]]]

Description
sdb is a symbolic debugger which can be used with C programs.

Objfil is an executable program file which has been compiled with
the -Zi (debug) option and linked with the -1 option. The default
for objfil is a .out. Corfil is assumed to be a core image file pro
duced after executing objfil; the default for corfil is core. A "-" in
place of corfil forces sdb to ignore any core image file. The colon
separated directory list is used to locate the source files used to
build objfil.

It is useful to know that at any time there is a current line and ___ _
current file . They are initially set to the first line in main(). The
current line and file may be changed with the source file examina
timi commands.

Names of variables are written just as they are in C programs.
Variables local to a procedure may be accessed using the form
procedure. variable . If no procedure name is given, the procedure
containing the current line is used by default.

You can also refer to structure members as variable.member,
pointers to structure members as variable->member and array ele
ments as varinble [number]. Pointers may be de-referenced by using
the form pointer[O]. You can also use combinations of these forms.

It is also possible to specify a variable by its address. You can use
all forms of integer constants which are valid in C programs, so
that addresses and numbers may be input in decimal, octal, or hex
adecimal.

Line numbers in source programs are referred to as
filename :number or procedure :number. In either case the number
is relative to the beginning of the file. If no procedure or filename
is given, the current file is used by default. If no number is given,
the first line of the named procedure or file is used.

There are several kinds of co=ands available to the sdb debugger
as described in the following sections. sdb commands appear in
boldface type. For all co=ands, items in brackets ([]) are
optional.

June 21, 1987 Page 1

SDB (CP)

Data Examination Commands

t Displays a stack trace.

T Prints the top line of the stack trace.

variable/[clm]

SDB (CP)

Displays the value of variable according to length l and format m.
A numeric count c indicates that a region of memory, beginning at
the address implied by variable, is to be displayed. lf l and m are
omitted, sdb chooses a format suitable for the variable type as
declared in the program. The length specifiers are:

b One byte ·

h Two bytes (balf word)

1 Four bytes (long word)

Legal values for
m are:

e Character

d Decimal

u Unsigned decimal

o Octal

x Hexadecimal

f 32 bit single precision floating point

g 64 bit single precision floating point

s Assumes variable is a string pointer and
prints characters starting at the address
pointed to by the variable.

a Prints characters slarting atthe variable's
address.

Disassembles with numeric/symbolic addresses.

The length specifiers are only effective with the formats c, d, u,
o, and x. lf one of these formats is specified and l is omitted,
the length defaults to two bytes. If a numeric length specifier is
used for the format variable then that many characters are

June 21, 1987 Page 2

SDB (CP) SDB (CP)

printed. Otherwise, successive characters are :printed until
eilher a null byte is reached or 128 characters are printed.

line number?[elm]

Prints the value at the address from a.out or i space given by
linenumber, according to the format lm. The default format is i.

varinble-[lm]
linenumber-[lm]
numher-[lm J

Prints the address of variable or linenumber in the format specified
by 1m . lf no format is given, then lx is used. The last variant of
this command provides a convenient way to· convert between
decimal, octal, and hendecimaL A single number cannot be used
as a line number because the command would be ambiguous; the
proc :number form must be used.

variable !value

Sets variable to the given value. The value may be any valid C
e;<pression.

x Displays "the machine registers and current maChine-language
instruction.

X Displays the current machine-language instruction.

Source File Examination Comnumds

e Displays current procedure and filenames.

e procedure

Sets the current file and current line to the file containing pro
cedure.

efilename

Sets the current file and current line number to the first line in
filename .

{regular expression [f]

"-/ Searches fmward from the current line for a line containing a string
matebing regular expression as in ed(C).

June 21, 1987 Page 3

SDB (CP) SDB (CP)

?regular expre&l'ion [?]

Searches backward from the current line for a line containing a
string matching regular expressU;n as in ed(C).

p Prints the current line.

z Prints the current line followed by the next nine lines. Sets the
current line to the last line printed.

w Creates a window by printing ten lines around the current line.

number

Sets the current line to the given line number and displays the line.

[count]+

Advances the current line by count lines and display the new line.
If count is omitted, the default is one line.

[count]-

Retreats from the current line by count lines and display the new
line. If count is omitted, the default is one line.

Execution Control Comm�Jnds

L Load the program to be debugged but do not run it. If you wish
to examine the initial values of memory locations before the
program has started to run, or if you wish to disassemble por
tions of the program without actually running it, you must first
enter the L command.

[count] r [args]
[count] R

Runs the program with the given arguments. The r command
with no arguments reuses the previous arguments to the pro
gram while the R command runs the program with no argu
ments. An argument beginning with < or > causes redirec
tion for the standard input or output respectively. If count is
given, it specifies the number of breakpoints to be ignored.

[Jinenumberj e [count]
[/inenumber C [count]

Continues after a breakpoint or interrupt. If count is given, it
specifies the number of breakpoints to be ignored. C contin
ues with the signal which caused the program to stop reac
tivated and e ignores it. If a line number is specified then a

June 21, 1987 Page 4

SDB (CP) SDB (CP)

temporary breakpoint is placed at the line and execution is
continued. The breakpoint is deleted when the command
finishes.

/inenumber g [count]
Continues after a breakpoint with execution resumed at the
given line. If count is given, it specifies the number of break
points to be ignored.

[count] s
Single steps. Runs the program through count lines. If no
count is given then the program is run for one line.

[count] S
Single steps but steps through subroutine calls.

[count] i
Machine-language single steps. Runs the program through
count machine-language instructions. If no count is given
then one machine-language instruction is executed.

[count] I
Machine-language single steps, but steps through call instruc
tions.

variable$m [count]
Single steps (as with s) nntil the specified location is modified
with a new value. Count specifies the number of instructions
to step; if omitted, count is effectively infinity. The variable
must be accessible from the current procedure. Since this
command is performed by software, it can be very slow.

[level] v
Switches verbose mode on and off, for use with single step
ping with S, s, or m. If level is omitted or is zero, then just
the current source file and/or subroutine name is printed
when either change.>. Jf level is one, each C source line is
printed before it is eJ<ecuted; if level is two, each assembler
line statement is also printed. The v command turns verbose
mode off if it is on for any level.

k Kills the debugged program.

procedure(argl ,arg2, .. .)
procedure(argl ,arg2, ...)/m

Executes the named procedure with the given arguments. The
second form causes the value to be returned by the procedure
to be printed according to format m . lf no format is given, it
defaults to d.

June 21, 1987 Page 5

SDB (CP) SDB (CP)

[linenumber] b [commalll1s]
Sets a breakpoint at the given line, If a procedure name
without a line number is given (e.g., "main"), a breakpoint is
placed at the first line in the procedure. If no linenumber is
given, a breakpoint is placed at the current line. If no com
mands are given then execution stops just before the break
point and control is returned to sdb . Otherwise the com
malll1s are executed when the breakpoint is encountered and
execution continues. Multiple commands are specified by
separating them with semicolons.

B Prints a list of the currently active breakpoints.

[linenumber] d
Deletes a breakpoint at the given line. If no lillenumber is
given, then the breakpoints are deleted interactively: each
breakpoint location is printed and a line is read from the stan
dard input, If the line begins with a y or d, then the break
point is deleted.

D Deletes all breakpoints.

I Prints the last executed line. Makes the last executed line the
current line.

linenumber a
Announces. If linenumber is of the form proc:number or
number, the command effectively does a lmenumber b J. If
lirumumber is of the form proc:, the command effectively does
a proc: b T.

Miscellaneous Commands

!command
Interprets command. Command interpreter executes com·
mand.

n£wline
Advances the current line by one line and prints the new
current line if the previous command printed a source line.
Displays the next memory location if the previous command
displayed a memory location.

Ctri-D
Scrolls. Prints the next ten lines of instructions, source or data
depending on which was printed last.

< mename
Reads commands from filename until the end of file is
reached, and then continues to accept commands from stan
dard input. When sdb is told to display a variable by a

June 21, 1987 Page 6

SDB (CP) · SDB (CP)

command in such a file, the variable name is displayed along
with the value. This command may not be nested; the
redirection character (<) may not appear as a command in a
file.

11String
Prints the given string. The C escape sequences of the form
\character are recognized, where character is a non�numeric
character.

q E:rlts the debugger.

Debugger Commands

V Prints the version number.

Q Prints a list of procedures and files being debugged.

Flies

a.out
core

"'-· See Also

adb(CP), a.out(F), cc(CP), core(F), ld(CP)

Notes

In order to make use of the symbolic debugging features of sdb, the
program being debugged must have been compiled with the -Zi
option. sdb does not use the ordinary symbol table information in
an a.ou.t file and has limited facilities for debugging at the machine
code level. If you have to debug a program that has been compiled
without using the -Zi option, it may be preferable to use adb.

June 21, 1987 Page 7

SIZE (CP)

Name

size Prints the size of an object file.

f S:yntax

size (object . . .]

Description

SIZE (CP)

size prints the (decimal) number of bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, of
each object-file argument. If no file is specified, a.ont is used.

See Also

a.out(F)

June 21, 1987 Page l

SPLINE (CP) SPLINE (CP)

Name

spline - Interpolates smoolh cUIVe.

Syntax

spline [option] . . .

Description

spline takes pairs of numbers from the standard input as abcissas
and ordinates of a function. It produces a similar set, which is
approximately equally spaced and includes the input set, on !he
standard output. The cubic spline output has two continuous
derivatives, and enough points to look smooth when plotted.

The following options are recognized, each as a separate argnment.

-a Supplies abscissas automatically (!hey are missing from !he
input); spacing is given by !he next argnment, or is assumed to
be 1 if next argnment is not a number.

-k The constant k used in !he boundary value computation

(- yO ... ky i y:' = ky;_l ' .

c

is set by the next argnment. By default k = 0.

-n Spaces output points so that approximately n intervals occur
between the lower and upper x limits. (Default n = 100.)

-p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should normally agree.

-x Next 1 (or 2) argnments are lower (and upper) x limits. Nor
mally these limits are calculated from !he data. Automatic
abcissas start at lower limit (default 0).

Dla gnos lies

When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

Notes

A limit oi 1000 input points is silently enforced.

June 21, 1987 Page 1

I -

/
(
\.....

STACKUSE (CP) STACKUSE (CP)

Name

stackuse - Determines stack requirements for C programs.

Syntax

stackuse [-m startsym] [-r fakeref) [• s Jib stack) [• o J file . . .

Descriptitm

stackuse determines fue stack requirements of one or more C
language programs. It displays tbe name of the main routine in a
rue) its stack requirements in bytes, and the number of recursive
routines. All command line switches are optional.

-msmrtsym

-rfakeref

-slibstack

· •

Prints only fue specified start ("main") symbol. Jf
this option is not specified all start symbols (fuose ·
whleh are not called by an:ybody) will be printed.

Uses the named file fakeref as a fake references
file. The format is: parent child . The special
parent .LEAF is a meta-parent meaning all leaf
nodes.

Uses the named file as library of costs for external
routines. The format is: subr stack. The special
subr .UNDEF is a meta-subroutine meaning all
undefined routines.

Prints data for all symbols, not just start symbols.

The -r and •S options may be repeated an arbitrary number of
times. The effect is additive ratber than destructive. In tbe case of
duplicate definitions, tbe first is used.

Lines of the ·r and • s files which begin wifu a pound sign (#) are
treated as comments and otherwise are ignored.

Files

/usr/lib/stackuse/•

/tmp/•

June 21, 1987

Passes, libraries

Temporaries used by passes.

Page 1

STACKUSE (CP)

Diagnostics

Usage (fatal).

STACKUSE (CP)

Redefinitions in - r, • S files, or in the source (warning).

Presence of routines for which no stack value is provided (warn
ing).

Notes

For the libstaek and fakeref files, a CoDlll:!ent character (#) is used.

June 21, 1987 Page 2

STRINGS (CP) STRINGS (CP)

Name

strings - Finds the printable strings in an object file.

I Syntax

(

strings [-] [-o] [-number] file ...

Description

strings looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline
or a null character. Unless the - flag is given, strings only looks in
the initialized data space of object files. If the -o flag is given,
then each string is preceded by its decimal offset in the file. If the
-number flag is given then number is used as the minimum string
length rather than 4.

strings is useful for identifying random object files and m any other
things.

See Also

hd(C), od(C)

Credlt

This utility was developed at the University of California at
Berkeley and is used with permission.

June 21, 1987 Page 1

c �

STRIP (CP) STRIP (CP)

Name

strip - Removes symbols and relocation bits.

Syntax

strip [-MNSdehrstx J file ...

Description

strip removes the symbol table and relocation bits ordinarily
attached to the output of the assembler and link editor. This is
useful for saving space after a program has been debugged.

If name is an archive file, strip will remove the local symbols from
any a. om format files it flnds in the archive. Certain libraries, such
as those residing in /lib, have no need for local symbols. By delet
ing them, the size of the archive is decreased and link editing per
formance is increased.

There are several options for use with strip:

-M Strip all memory image segments.
-N Strip all non-memory image segments.
-S Strip the segment table only.
-b Strip header and extended header.
-e Strip extended header.
-d Strip data and data relocation.
-t Strip text and text relocation.
-r Strip all relocation except x.out's "short fonn."
-x Strip all relocation.
-s Strip l>ymbol table.

The effect of strip is the same as use of the -s option of ld.

Flies

/tmp/stm* Temporary file

See Also

ld(C)

June 21, 1987 Page 1

(

TIME (CP) TIME (CP)

Name

time - Times a command.

Syntax

time command

Description

The given com11Ulnd is executed; after it is complete, time prints
the elapsed time during the command, the time spent in the system,
and the time spent in execution of the command. Times are
reported in seconds.

The times are printed on the standard error.

See Also

times(S)

June 21, 1987 Page 1

c

TSORT (CP)

Name

tsort - Sorts a file topologically.

Syntax

tsort [file]

Description

tsort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input
file . If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by
blanks. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also

lorder(CP)

Diagnostics

Odd data: There is an odd number of fields in the input file.

Notes

The sort algorithm is quadratic, which can be slow if you bave a
large input Jist.

June 21, 1987 Page 1

UNGET (CP) UNGET (CP)

Name

unget - Undoes a previous get of an sees file.

(Syntax

c

unget [-rSID] [-s] [-n] files

Description

unget undoes the effect of a get -e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that nonsees files and unreadable files are silently ignored.
If a name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

Options apply independently to each named file.

-rSID

-s

-n

See Also

Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the "new
delta".) The use of this option is necessary only if two
or more versions of the same sees file have been
retrieved for editing by the same person (login name).
A diagnostic results if the specified SID is uncertain,
or if it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of
the intended delta's SID.

Causes the retention of the file which would normally
be removed from the current directory.

delta(CP), get(CP), sact(CP)

Diagnostics

Use help(CP) for explanations.

June 21, 1987 Page 1

(_)

VAL (CP) VAL (CP)

Name

val - Validates an sees file.

Syntax

val -

val [-s] [-rSID] [-mname] [-ytype] files

Description

val determines if the specified file is an sees file meeting the
characteristics specified by the optional argument list. Arguments
to val may appear in any order. The arguments consist of options,
which begin with a -, and named files.

val has a special argument, - , which causes reading of the standard
input until an end=of.-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8- bit
code upon exit as described below.

The options are defined as follows. The effects of any option apply
independently to each named file on the command line:

-s

-rSID

-mname

-ytype

June 21, 1987

The presence of this argument silences the diagnos
tic message normally generated on the standard
output for any error that is detected while process
ing each named file on a given command line.

The argument value SID (Sees ID entification
String) is an sees delta number. A check is made
to determine if tbe SID is ambiguous (e. g., r1 is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or invalid (e.
g., rl.O or rl.l.O are invalid because neither case
can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to deter
mine if it actually exists.

The argument value name is compared with the
sees %M% keyword injile.

The argument value type is compared with tbe
sees % Y% keyword in file .

Page 1

VAL (CY) VAL (CP)

The g. bit code returned by val is a disjunction of the possible
errors, i. e., can be interpreted as a bit string where (moving from
left to right) set bits are interpreted as follows:

bit 0 = :Mlssing file argument

bit 1 = Unknown or duplicate option

bit 2 = Corrupted sees file

bit 3 = Can't open file or file not sees

bit 4 = SID is invalid or ambiguous

bit 5 = SID does not exist

bit 6 = % Y%, -y mismatch

bit 7 = % M0/o, -m mismatch

Note that val can process two or more files on a given command
line and in turn can process multiple command line (when reading
the standard input). In these cases an aggregate code is reterned; a
logical OR of the codes generated for each command line and file
processed.

See Also

admin(CP), delta(CP), get(CP), prs(CP)

Diagnostics

Use help(CP) for explanations.

Notes

val can process up to 50 files on a single command line.

June 21, 1987 Page 2

XREF (CP) XREF (CP)

Name

xref - Cross-references C programs.

(Syntax

c

xref [file . . .]

Description

xref reads the named fdes or the standard input if no file is speci
fied and prints a cross reference consisting of lines of the form

identifier filename line numbers . . .

Function definition i s indicated by a plus sign (+) preceding the
line number.

See Also

cref(CP)

June 21, 1987 Page 1

XS'TR (CP) XSTR (CP)

Name

xstr - Extracts strings from C programs.

Syntax

xstr [-c] [-] [file]

Description

xstr maintains a file strings into which strings in component parts of
a large program are hashed. These strings are replaced with refer
ences to this common area. This serves to implement shared con
stant strings, most useful if they are also read-only.

The command

xstr -c name

will enract the strings from the C source in name, replacing string
references by expressions of the form (&xstr[numberD for some
number. An appropriate declaration of xstr is prepended to the
file. The resulting C ten is placed in the file x.c, to then be com
piled. The strings from this file are placed in the strings data base
if they are not there al:ready. Repeated strings and strings which
are sufilces of existing strings do not cause changes to the data
base.

After all components of a large program have been compiled, a file
xs.c declaring the common xstr space can be created by a com
mand of the fonn

:x:str -c name! name2 name3 ...

This xs.c file shonld then be compiled and loaded with the rest of
the program. If possible, the array can be made read-only (shared)
saving space and swap overhead.

xstr can also be used on a single file. A command

xstr name

creates files x.c and xs.c as before, without using or affecting any
strings file in the same clirectory.

It may be useful to run xstr after the C preprocessor if any macro
definitions yield strings or if there is conditional code which con
tains strings which may not, in fact, be needed. xstr reads from its

June 21, 1987 Page 1

:x;s 1 R { CPJ XSTR (CP)

standard input when the argument - is given. An appropriate
command sequence for running xstr after the C preprocessor is:

cc -E name.c I xstr -c
cc -c x.c
mv x.o name.o

xstr does not touch the file strings unless new items are added, thus
make can avoid remaking Xll.O unless truly necessary.

Files

strings

x.c

xs.c

Data base of strings

Massaged C source

C source for definition of array Hxstr''

/tmp/Xii* Temp file when "xstr name" doesn't touch stri'ngs

See Also

mkstr(CP)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Notes

If a string is a suffix of another string in the data base, but the
shorter string is seen first by XSIT , both strings will be placed in the
data b ase when just placing the longer one there will do.

June 21, 1987 Page 2

'
\

c

YACC (CP) YACC (CP)

Name

yacc - Invokes a compiler-compiler.

Syntax

yacc [-vd) grammar

Description

yacc converts a context-free grammar into a set of tables for a sim
ple automaton which executes an LR(l) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to
produce a program yyparse. This program must be loaded with the
lexical analyzer program, yylex, as well as main and yyerror, an
error handling routine. These routines must be supplied by the
user; lex (CP) i< useful for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report on conflicts gen
erated by ambiguities in the grammar.

If the -d flag is used, the file y.tab,h is generated with the #derme
statements that associate the yacc�assigned utoken codes" with the
user�declared "token names". This allows source files other than
y.tal>.c to access the token codes.

Files

y.output

y.tab.c

y.tab.h

yacc.tmp, yacc.acts

/usr/lib/yaccpar

See Also

iex(CP)

June 21, 1987

Defines for token names

Temporary files

Parser prototype for C programs

Page 1

Dlagnostks

The number of reduce-reduce and shift-reduce conflicts is reported
on the standard output; a more detailed report is found in the
y.output file. Similarly, if some ru1es are not reachable from the
start symbol, this is also reported.

Notes

Because filenames are fixed, at most one yacc process can be
active in a given directory at a time.

June 21, 1987 Page 2

Contents

System Service (S)

in1ro

a641,164a
abort
nbs
aeces$
acct
alarm
assert
atof, atol, atol
bessel,jO�jl,jn,
yO,yl,yn
btl<ctl
bsearch
chdlr
chmod
chown
chroot
chsize
clock
close
conv, toupper,
tolower, toascfi
creat
creatsem
ctennid
ctime, localtbne,
gnttline, ascUOORe,
!:<set
ccype, isalpha,
isupper, islowerJ
isdigit, isxdigit,
isalnum, isspace,
ispUMt, isprlnt,
lsgraph, lscntrl,
isascii
curses
cuserld

Introduces system services, library routines and error
numbens.
Converts between long integer and b ase 64 ASCII.
Generates an lOT fault.
Retnrns an integer absolute value.
Determines accessibility of a file.
Enables or disables process accounting.
Sets a process' alarm clock.
Helps verifyvalidityof program.
Converts ASCII to numbers.

Performs Besselfunctions.
Allocates data in a far segment
Performs a binary search.
Changcstheworkingdirectory.
Changes mode of a file.
Changes the owner and group of a file.
Changes the root directory.
Changes the size of a file.
Real time clock.
Closes a file descriptor.

Translates characters.
Creates a new file or rewrites an existing one.
Creates an instance of a binary semaphore.
Generates a filename for a terminal.

Converts date and time to ASCII.

Classifies characters.
Performs screen and cursor functions.
Gets the login name of the user.

i

dbm, dbminit,
fetch, store,
delelie, firs !key,
nex!key
defopen, defread
dial
directory
drand48
dup, dup2
eevt, fcvt, gcvt
end, etext, edata
erf
ex eel, execv,
e:xecle, execve,
execlp, execvp
exeeseg
exit
exp1' log, pow,
sqrt, loglO

felose, fflusb
fend
feJTOr, feof,
cleataT, fileno
:ftoor, fabs, ceil,
fmod

fopen, freopen,
fdopen
fork
tread, fwrllie
frexp, ldexp, modf

fseek, flieD, rewind
ftw
gamma
getc� getchar,
fgetc, getw
getewd
gelienv
getgrent, getgrgid,
getgrnam,
setgrent, endgrent
gedogin
getopt
getpass

ii

Performs datab ase functions.
Reads default entries.
Establish an outgoing terminal line connection.
Performs directory operations.
Generates pseudo-random numbers.
Duplicates an open file descriptor.
Petforms output conversions.
Last locations in program.
Errorfuuction

Executes a file.
Makes a data region executable.
Terminates a process.

Pertorms exponential, logarithm, power, square root
functions.
Closes or flushes a stream.
Controlsopeu files.

Determines stream status.

Performs absolute value, floor, ceiling and remainder
functions.

Opens a stream.
Creates anew process.
Performs buffered binary input and output.
Splits floating-point number into a mantissa and an
exponent.
Repositions a stream.
Walks a file tree.
Performs log gamma function.

Gets character or word from a stream.
Gets pathname of current working directory.
Getsvalueforenvironmentname.

Getgroup file entry.
Gets login name.
Gets option letter from argument vector.
Reads a password.

getpid, getpgrp,
getppid
getpw
getpwent,
getpwuid,
getpwn.am,
setpwent,
endpwent
gets, fgets
geluid, geteuld,
getgid, getegid

gelut
hseareh
hypot, cabs
wcfl
kill
131ul, ltol3
link
lock
lockf
locking
loguame
!search
!seek
malloc, free,
realloc, calloc
matherr
memory
mkood
mktcmp
monitor
mount
msgctl
msgget
msgop
nap
nice
nlist
open
opensem
pause
pettnr, sys_errlist,
sys_nerr, enno

Gets process, process group> and parent process IDs.
Gets password for a given user ID.

Gets password file entry ..
Gets a string from a stream.

Gets real user� effective user, real group, and effective
group IDs.
Accesses utmp file entry.
Manageshash searchtables.
Determines Euclidean distance.
Controls character devices.
Sends a signal to a processor a group of processes.
Converts between 3-byte integers and long integers.
Links a new filename to an existing file.
Locks a process in primary memory.
Provide semaphores and record locking in files.
Locka or unlocks a file region for reading or writing.
Finds login name of user.
Performs linear search and update.
Moves read/write file pointer.

Allocates main memory.
Error handling function .
Memory operations.
Makes a directory. or a special or ordinary file.
Makes a unique filename.
Prepares execution profile.
Mountsafile system.
Message control operations.
Message queue.
Message operations.
Suspends execution for a short interval.
Changes priority of a process.
Gets entries from name Jist.
Opensfileforreadingor writing.
Opens a semaphore.
Suspends a process until a signal occurs.

Sends system error messages.

pipe
ploek
popen, pelose
printf, fprintf,
sprintf
pro ell
profil
ptraee
putc, putchar,
fputc,putw
putenv
potpwent
pnts, fpnts
qsort
rand�snmd
rdehk
read
regex, regcmp
regexp
sbrk,brl<
seanf, fscanf,.
sseanf
sdenter t sdleave
sdget
sdgetv, sdwaitv
semetl
semget
semop
setbuf
seijmp, longjmp
setpgrp
setuid, setgid
shmetl
shmget
shmop
shntdn
signal
sigsem
sinh, cosb� tanh
sleep
sputl
ssignal, gslgnal
stat, fs tat
stdio
sldlpe
slime

iv

Creates an interprocess pipe.
Lock process, text, or data in memory.
Initiates IJO to or from a process.

Fm:matsoutput.
Controls processes or process groups.
Creates an execution time profile.
Traces a process.

Puts a character or word on a stream.
Changes or adds environment variable.
Writes a .password file entry.
Puts a string on a stream.
Performs a sort.
Generates a random number.
Checks to seeifthereisdata to be read.
Reads from a file.
Compiles and executes regular expressions.
Regular expression compile and match routines.
Changes data segment space allocation.

Converts and formats input.
Synchronizes access to a shared data segment.
A !tachs and detachs a shared data segment.
Synchtonizes shared data access.
Semaphore control.
Semaphores, gets set.
Semaphore operations.
Assigns bufferingto a stream.
Performs anonlocal ugoto".

. Sets process group ID.
Sets user and group IDs.
Sharedmemorycontrol
Shared memory, gets.
Shared memory operations.
Flushes block IJO and halts the CPU.
Specifies what to do upon receipt of a signal.
Signals a process waiting on a semaphore.
Performs hyperbolic functions.
Suspends execution fot an interval.
Accesses longintegerdata.
Implements software signals.
Gets file status.
Perfonns standard buffered input and output.
Standard interprocess communications package.
Sets the time.

strlng, st:rcat,
strneat, stremp,
strnemp, strepy,
strncpy, strlen,
strchr, stiTchr,
strpbrk, strspn,
strespn, strtok,
strdup
strtud
strtul
swab
swapadd
sync
system
termcap, tgetent,
tgetnurn, tgetftag,
tgets tr, tgoto,
tputs
terminfo
time, ftime
times
tmpfile
tmpnarn
trig, sin, cos, tan,
asin, a cos, a tan,
atan2
!search
ttyllllrne, isat1y
ttyslot
nadmln
ntimit
nrnask
umount
una me
nngete
nnlink
us tat
utime
varargs
vprintl'
wait
waits em,
nbwaUsern

wrlte
xlis t, fxlis t

Perform string operations.
Converts string to double precision numbers.
String to integer.
Swaps bytes.
Adds swap area.
Updatestbesuper-block.
Executes a shell command.

Performs terminal functions.
Terminal description database.
Gets time and date.
Gets process and child process tbnes.
Creates a temporary file.
Creates a name for a temporary file.

Performs trigonometric functions.
Manages binarys search trees.
Finds the name of a terminal.
Finds the slot in tbe utmpfileof the current user.
Administrative control.
Gets and sets user limits.
Sets and gets file creatinn mask.
Unmounts a file system.
Gets name of currentXR'ITXsystem.
Pushes character back into input stream.
Removes directory entry.
Gets file system statistics.
Sets file access and modification tbnes.
Variable argument Jist.
Prints formatted output of a varargs argument list.
Waits for a child process to stop or terminate.

Awaits and checks access to a resource governed by a
semaphore.
Writes to a file.
Gets name Jist entries from files.

v

INTRO(S) INTRO (S)

Name

intro - Introduces system services, library routines and error
numbers.

Syntax

#include <errno.h:>

Description

This section describes all system services. System services include
all routines or system calls that are available in the operating system
kernel. These routines are available to a C program automatically as
part of the standard hbrary libc. Other routines are available in a
variety of libraries. On 8086/88, and 286 systems, versions for
Small, Middle, and Large model programs are provided {that is,
three of each library). On 386 systems, Small, Middle, and Large
programs for 286 processes and Small model programs for 386
processes are provided.

To use routines in a program that are not part of the standard
library Jibe, the appropriate library must be linked. This is done by
specifying -1 name to the compiler or linker, where name is the
name listed below. For example -1 m , and -1 tenncap are specifi
cations to the linker to search the named libraries for routines to be
linked to the object module. The names of the available libraries
are:

c The standard library containing all system call interfaces,
Standard IJO routines, and other general purpose services.

m The standard math library.

tenncap
Routines for accessing the tem:cap data base describing
terminal characteristics.

curses Screen and cursor manipulation routines.

dbm Data base management routines.

" The standard XENlX hbrary.

Most services that are part of the operating system kernel have one
or more error returns. An error condition is indicated by an other
wise impossible retomed value. This is almost always -1; the indi
vidual descriptions specify the details. An error number is also
made available in the external variable errno . errno is not cleared
on successful calls, so it should be tested only after an error has

June 21, 1987 Page 1

llV l�U \ :S) INTRO (S)

been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in <errno.h>.

1 EPERM Not owner:
Typically, this error indicates an attempt to modify a file in
some way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory:
This error occurs when a filename is specified and the file
should exist but doesn't, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process:
No process can be found corresponding to that specified b y pid
in kiU or ptrace .

4 EINTR Interrupted system call:
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. If exe
cution is resumed after processing the signal, it will appear as if
the interrupted system call returned this error condition.

5 EIO I/0 error:
Some physical I/0 error. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address:
I/0 on a special file refers to a subdevice which does not exist,
or beyond the limits of the device. It may also occur when, for
example, a tape drive is not on -line or no disk pack is loaded
on a drive.

7 E2BIG Arg list too long:
An argument list longer than 5,120 bytes is presented to a
member of the exec family.

8 ENOBXBC Exec format error:
A request is made to execute a tile which, although it has the
appropriate permissions, does not start with a valid magic
number (see a.out(F)).

9 EBADF Bad file number:
Either a Jile descriptor refers to no open file, or a read (respec
tively write) request is made to a file which is open ouly for writ
ing (respectively reading).

June 21, 1987 Page 2

(,_ /

Il'.'TRO (S) INTRO (S)

10 ECIDLD No child processes:
A wait was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes:
A fork failed because the system's process table is full or the
user is not allowed to create any more processes.

12 ENOME.'-1: Not enough space:
During an exec, or sbrk, a program asks for more space than
the system is able to supply. This is not a temporary condition;
the maximum space size is a system parameter. The error may
also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not
enough swap space during a fork.

13 EACCES Permission denied:
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT Bad address:
The system encountered a hardware fault in attempting to use
an argmnent of a system call.

15 ENOTBLK Block device required:
A nonblock file was mentioned where a block device was
required,.. e.g., in mount.

16 EBUSY Device busy:
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an
active file (open :file, current directory, mounted-on file, active
text segment). It will also occur if an attempt is made to enable
accounting when it is already enabled.

17 EEXIST Flle exists:
An existing file was mentioned in an inappropriate context, e.g.,
link.

18 EXDEV Cross-device link:
A link to a file on another device was attempted.

19 ENODEV No such device:
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

20 ENOTDIR Not a directory:
A nondirectory was specified where a directory is required, for
example, in a patb prefix or as an argument to chdtr(S).

June 21, 1987 Page 3

lNTRO (S) INTRO (S)

21 EISDIR Is a directory:
An attempt to write on a directory.

22 EINVAL Invalid argument:
An invalid argument (e.g., dismounting a nonmounted device;
mentioning an undefined signal in signal or kill; reading or writ
ing a file for which /seek has generated a negative pointer).
Also set by tbe matb functions described in tbe (S) entries of
this manual.

23 ENFILE File table overfiow:
The system's table of open files is full and temporarily no more
opens can be accepted.

24 BMFILE Too many open files:
No process may have more tban 60 tile descriptors open at a
time.

25 ENOTTY Not a character device

26 ETXTBSY Text file busy:
An attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt to
open for writing a pure-procedure program tbat is being exe
cuted.

27 EFBIG File too large:
The size of a file exceeded tbe maximum file size (1,082,201,088
bytes) or ULIMIT; see ulimit(S).

28 ENOSPC No space left on device:
During a write to an ordinary file, tbere is no free space left on
tbe device.

29 ESPIPE Dlegal seek:
An lseek was issued to a pipe.

30 EROFS Read-only file system:
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links:
An attempt to make more than tbe maximum number of links
(1000) to a file.

32 EPIPE Broken pipe:
A write on a pipe for which there is no process to read tbe data.
This condition normally generates a signal; tbe error is returned
if the signal is ignored.

June 21, 1987 Page 4

INTRO (S) INTRO (S)

33 EDOM Math arg out of domain o f func:
The argument of a function in the math package is out of the
domain of the function.

34 ERANGE Math result not representable:
The value of a fuuction in the math package is not representable
within machine precision.

35 EOCLEAN File system needs cleaning:
An attempt was made to mount(S) a file system whose super
block is not fiagged clean.

36 EDEADLOCK Would deadlock:
A process' attempt to lock a file region would cause a deadlock
between processes vying for control of that region.

36 EDEADLK Would deadlock:
A process' attempt to lock a tile region would cause a deadlock
between processes vying for control of that region.

37 ENOTNAM Not a name tile:
A creatsem(S), opensem(S), waitsem(S), or sigsem(S) was issued
using an invalid semaphore identifier.

38 ENAVAfL Not available:
An opensem(S), waitsem(S) or sigsem(S) was issued to a sema
phore that has not been initialized by a call to creatsem(S). A
slgsem was issued to a semaphore out of sequence; i.e., before
the process has issued the corresponding waitsem to the sema
phore. A n nbwaitsem was issued to a semaphore guarding a
resource that is currently in use by another process. The sema
phore on which a process was waiting has been left in an incon
sistent state when fbe process controlling the semaphore exits
without relinquishing control properly; i.e., without issuing a
waitsem on the semaphore.

39 EISNAM A name file:
A name file (semaphore, shared data, etc.) was specified when
not expected.

43 ENOMSG No message of desired type:
An attempt was made to receive a message of a type that does
not exist on the specified message queue; see msgop(S).

44 EIDRM Identifier removed:
This er.ror is returned to a process that resumes execution due to
the removal of an identifier from the file system's name space;
see msgctl(S), semctl(S), and shmctl(S).

June 21, 1987 Page S

INTRO (S)

45 ENOLCX No locks available:
The system's lock table was full, and a file locking or unlocking
operation wru; attempted which would have created an addi
tional lock table entry.

Definitions

Process ID

Each active process in !he system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 0 to
30,000.

Parent Process ID

A new process is created by a currently active process; see fork(S).
The parent process ID of a process is the process ID of its creator.

Process Group ID

Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This ID
is the process ID of the group leader. This grouping permits the
signaling of related processes; see kiii(S).

Process Group Leader

A process group leader is any process whose process group ID is
the same as its process ID . Any process may become a group
leader by calling setgrp(S). A process inherits the process group ID
of the process that created it, see fork(S) and exec(S).

TTY Group iD

Each active process can be a member of a terminal group that is
identified by a positive integer called the TTY group ID. This
grouping is used to terminate a group of related process upon termi
nation of one of the processes m the group; sec exit(S) and
signal(S).

Real User ID and Real Group lD

Each user allowed on the system is identified by a positive integer
called a real user ID.

June 21, 1987 Page 6

(

' ·-...� --

INTRO (S) INTRO (S)

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

An active process has a real user ID and a real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process'
real user ID and real group ID respectively, urrless the process or
one of its ancestors evolved from a file that had the set-user-ID bit
or set-group ID bit set; see exec(S).

Super- User

A process is recognized as a super- user process and is granted spe
cial privileges if its effective user ID is 0.

SpeciiJl Processes

The processes with a process ID of 0 and a process ID of 1 are spe
cial processes and are referred to as procO and procl.

procO is the scheduler. procl is the initialization process (init).
Procl is the ancestor of every other process in the system and is
used to control the process structure.

Filename

Names consisting of up to 14 characters may be used to name an
ordinary :file, special file or directory.

These characters may be selected from the set of all character
values excludmg 0 (null) and the ASCII code for a slash (1).

Note that it is generally unwise to use •, ? , [, or] as part of
filenames because of the special meaning attached to these charac
ters by the shell. Likewise, the high order bit of the character
should not be set.

Patlmame and Path Prefu

A pathname is a null-terminated character string startmg with an
optional slash (/), followed by zero or more directory names

June 21, 1987 Page 7

IN11W (S) INTRO (S)

separated by slashes, optionally followod by a filename. A filename
jg a string of 1 to 14 characters other than the ASCII slash and null,
and a directory name is a string of 1 to 14 characters (other than
the ASCII slash and null) naming a directory.

If a pathname begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

A slash by itself names the root directory.

Unless specifically statod otherwise, the null pathname is treated as
if it named a nonexistent file.

Directory

Directory entries are called links. By convention, a directory con
tains at least two :links, * and ··� referred to as udot" and "dot-dot"
respectively. Dot refers to the directory itself and dot-dot refers to
its parent directory.

Root Direcrory and Current Working Directory

Each process has a concept of a root directory and a current work
ing directory for the purpose of resolving pathname searches associ
ated with it. A process' root directory need not he the root direc
tory of the root tile system. See chroot (C) and chroot (S).

File Access Permissions

Read, write, and execute/search permissions on a file are grantod to
a process if one or more of the following are true:

The process' effective user ID is super-user.

The process' effective user ID matches the user ID of the owner
of the Jile and the appropriate access bit of the "owner" portion
(0700) of the file mode is set.

The process' effective user ID does not match the user ID of the
owner of the Jile, and the process' group ID matches the group
of the file, and the appropriate access bit of the "group" portion
(a70) of the file mode is set.

The process' effective user ID does not match the user ID of the
owner of the Jile, and the process' effective group ID does not
match the group ID of the file, and the appropriate access bit of
the "other" portion (f11) of the file mode jg set.

June 21, 1987 Page 8

(

INTRO (S) INTRO (S)

Otherwise, the corresponding permissions are denied. See
chmod(C) and chmod(S).

Message Queue Idenl.lfier

A message queue identifier (msqid) is a unique positive integer
created by a msgget(S) system call. Each msqid has a message
queue and a data structnre associated with it. The data structure is
referred to as msqid_ds and contains the following members:

struct
ushort
ushort
ushort
ushort
time_t
time_t
time_t

ipc_perm msg_perm; /* operation permission struct *I
msg_qnum; /* number of msgs on q *I
msg..qbytes; /* max number of bytes on q *I
msgJspid; /* pid of last msgsnd operation *I
msgJrpid; /* pid of last msgrcv operation */
msg_stime; /* last msgsnd time *I
msg_rtime; /* last msgrcv time */
msg_ctime; /* last change time */

/"'' Times measured in sees since *I
/* 00:00:00 GMT, Jan. 1, 1970 *I

msg_penn is an ipc...penn structure that specifies the message
operation permission (see below). The structure includes the fol
lowing members:

ushort enid;
nshort cgid;
ushort nid;
ushort gid;
ushort mode;

/* creator user id *I
I* creator group id •t
/* user id */
/* group id */
!* r/w permission */

msg_qnum is the number of messages currently on the queue.
msg_qbytes is the maximum number of bytes allowed on the queue.
msgJspid is the process ID of the last process that performed a
msgsnd operation. msg_lrpid is the process ID of the last process
that performed a m.sgrcv operation. msgJtime is the time of the
last msgsnd operation, msg_rtime is the time of the last msgrcv
operation, and msg_cthne is the time of the last msgctl(S) opera
tion that changed a member in the above structure.

Message Operation Pennissions

In the msgop(S) and msgcti(S) system call descriptions, the permis
sion required for an operation is given as H{token}'�, where
"token" is the type of permission needed. It is interpreted as fol
lows:

00400 Read by user

June 21, 1987 Page 9

INTRO (S) INTRO (S)

Write by user
Read, write by group
Read, write by others

Read and write permissions on a msqid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msi!-J_)enn.uid or
msi!-J_)enn.culd in the data structure associated with msqid, and
the appropriate bit of the "user" portion (0600) of
msi!-J_)enn.mode is set,

The effective user ID of the process does not match
lllSI!-J_)enn.uid or 1111li!-J_)erm.cuid and the effective group ID of
the process matches msi!-J_)crm.gid or 1111li!-J_)erm.egid ,and the
appropriate bit of the "group" portion (060) of msi!-J_)enn.mode
is set.

The effective user lD of the process does not match
1111lg_perm.nid or msi!-J_)enn.cuid and the effective group ID of
the process does not match msi!-J_)erm.gid or msi!-J_)erm.egid
and the appropriate bit of the "other" portion (06) of
msg_perrn.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer created
by a semget(S) system call. Each sertlid has a set of semaphores
and a data struetnre associated with it. The data structnre is
referred to as semid..Jis and contains the following members:

struct
ushort
time_t
timeJ

ipc..,perm sem..,perm; I* operation permission struct •1
sem_nsems; /* number of sems in set •1
SCIILotime; 1• last operation time *I
seiiL.Ctime; I* last change time *I

I* Times measured in sees since *I
I" 00:00:00 GMT, Jan. 1, 1970 *I

sem..,penn is an ipc..perrn struetnre that specifies the semaphore
operation permission (see below). This structnre includes the fol
lowing members:

ushort cuid;
ushort cgid;
usbort uld;
ushort gid;
nsbort mode;

June 21, 1987

I* creator user id *I
I* creator group id *I
I* user id *I
I* group id *I
1• ria permission *I

Page 10

(
\.

c

INTRO (S) INTRO (S)

The value of sel1LJisems is equal to the number of semaphores in
the set. Each semaphore in the set is referenced by a positive
integer referred to as a "semJium" . SemJJ.nm values run sequen
tially from 0 to the value of seiilJlsems minus 1. sem_otirne is the
time of the last semop(S) operation, and sem_ctirne is the time of
the last semctl (S) operation that changed a member of the above
structure.

A semaphore is a data structure that contains the following
members:

ushort
short
ushort
ushort

semval;
sempid;
semncnt;
semzcnt;

/* semaphore value *I
/* pid of last operation *I
/* # awaiting semval > cval */
/* # awaiting semval = 0 *I

semval is a non-negative integer. sempid is equal to the process ID
of the last process that performed a semaphore operation on this
semaphore. semncnt is a count of the number of processes that
are currently suspended awaiting this semaphore's semval to
become greater than its current value. semzcnt is a count of the
number of processes that are currently suspended awaiting this
semaphore's semval to become zero.

Semaphore Operation Permissions

In the semop(S) and semctl(S) system call descriptions, the permis
sion required for an operation is given as "{token}", where
"token" is the type of permission needed and is interpreted as fol
lows:

00400
00200
00060
()()()()6

Read by user
Alter by user
Read, alter by group
Read, alter by others

Read and alter permissions for a semid are granted to a process if
one or more of the foliowing are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem....penn.uid or
sem....penn.cuid in the data structure associated with semid, and
the appropriate ''user" portion (0600) bit of sem_penn.mode is
set.

The effective user ID of the process does not match
sem....penn.uid , or sem_penn.cuid and the effective group ID of
the process matches sem_penn.gid or sem....penn.cgid and the
appropriate bit of the "group" portion (060) of sem_penn.mode
is set.

June 21, 1987 Page 11

INTRO (S) INTRO (S)

The effective user ID of the process does not match
sem_penn.uld or sem_penn.euid and the effective group ID of
the proce� does not match seltLjlenn.gld or seltLjlenn.cgid
and the appropriate bit of the "other" portion (06) of
sem_penn.mode is set.

Otherwise, the correspondiog permissions are denied.

Shared Memory Idendfier

A shared memory idendfier (shmid) is a unique positive ioteger
created by a shmget(S) system call. Each shmid has a segment of
memory (referred to as a shared memory segment) and a data struc
ture associated with it. The data structure· is referred to as
shmid..ils and contaios the following members:

. struct
iot
ushort
ushort
short
timeJ
time_t
timeJ

ipc_perm shm._perm; /* operation permission struct */
sbm_segsz; /* size of segment */
shm_cpid; /* creator pid */
shmJpid; /* pid of last operation */
shmJlattch; /* number of current attaches */
shm....atime; /* last attach time */
shm._dthne; /* last detach time */
sbm._ctime; /* last change time */

/* Times measured in sees since */
/* 00:00:00 GMT, Jan. 1, 1970 *I

shltLjlenn is an ipc_pcrm structure that specifies the shared
memory operation permission (see below). The structure iocludes
the following members:

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode;

I* creator user id *I
/* creator group id */
I* user id *I
I* group id • I
I* r/w permission */

shm...segsz specifies the size of the shared memory segment.
slun....cpid is the process ID of the process that created the shared
memory identifier. shmJpid is the process ID of the last process
that performed a shmop(S) operation. shm...naUCh is the number
of processes that currently have this segment attached. shm....atbne
is the time of the last shmot operation. shm...dtime is the time of
the last shmdt operation, and shm....ctime is the time of the last
shmctl(S) operation that changed one of the above structure
members.

June 21, 1987 Page 12

(

INTRO (S) INTRO (S)

Shared Memory Operation Permissions

In the shmop(S) and shmctl(S) system call descriptions, the permis
sion required for an operation is given as "{token}", where
"token" is the type of permission needed. It is interpreted as fol
lows:

00400
00200
00060
00006

Read by user
Write by user
Read, write by group
Read, write by others

Read and write permissions on a shmid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_penn.uid or
shm_penn.cuid in the data structure associated with shmid and
the appropriate bit of the "user" portion (0600) of
shm_penn.mode is set.

The effective user ID of the process does not match
shm__perm.uid or shm__perm.cuid and the effective group ID of
the process matches shm__perm.gid or shm__perm.cgid and the
appropriate bit of the "group" portion (060) of shrn__perm.mode
is set.

The effective user ID of the process does not match
shm__perm.uid or shrn__perm.cuid and the effective group ID of
the process does not match shm_penn.gid or shm_penn.cgid
and the appropriate bit of the "other" portion (06) of
shm__penn.mode is set.

Otherwise, the corresponding permissions are denied.

See Also

close(S), ioctl(S), open(S), pipe(S), read(S), write(S)

June 21, 1987 Page 13

\

c�

A64L (S) A64L (S)

Name

a641, 164a - Converts between long integer and base 64 ASCII.

Syntax

long a641 (s)
char *s;

cbar *164a (I)
long I;

Description

These routines are used to maintain numbers stored in base 64
ASCII. This is a notation by which long integers can be
represented by up to six characters; each character represents a
"digit'' in a radix 64 notation.

The characters used to represent (!;digits)' are • for 0, I for 1� 0
through 9 for 2 through 11, A through Z for 12 through 37, and a
through z for 38 through 63.

a64l takes a pointer to a null-terminated base 64 representation and
returns a corresponding long value. l64a takes a long argument and
returns a pointer to the corresponding base 64 representation.

Notes

The value returned by l64a is a pointer into a static buffer, the con
tents of which are overwritten by each call.

June 21, 1987 Page 1

ABORT (S) ABORT (S)

Name

abort '- Generates an IOT fault.

int abort ()

Description

abort first closes all open files, if possible, then causes an I/0 trap
signal (SIGIOT) to be sent to the calling process. This usually
results in termination with a core dump.

abort can return control if the calling process is set to catch or
ignore the SIGIOT signal; see signal(S).

See Also

adb (CP), exit(S}, signal(S}

Diagnostics

If an aborted process returns control to the shell (sh (C)), the shell
usually displays the message "abort - core dumped".

June 21, 1987 Page 1

ABS (S)

Name

abs - Returns an integer absolute value.

S:!'1ltaX

int abs ())
int i;

Description

abs returns tbe ab�o\ute value of its integer operand.

See Also

fabs in floor(S)

Notes

ABS (S)

If tbe largest negative integer supported by the hardware is given,
tbe function returns it unchanged.

June 21, 1987 Page 1

ACCESS (S) A CCESS (S)

Name

access - Determines accessibility of a file.

Syntax

lnt access (path, amode)
char *path;
int amode;

Description

path points to a pathname naniing a file. access checks the named
file for accessibility according to the bit pattern contained in
amode, using tbe real user ID in place of the effective user ID, and
the real group ID in place of the effective group ID. The bit pat
tern for amode can be formed by adding any combination of the
following:

04 Read
02 Write
01 Execute (search)
00 Check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a
null pathname. [ENOBNT]

The named file does not exist. [ENOBNT]

Search permission is denied on a component of the path prefix.
[EACCBS]

Write access is requested for a file on a read-only file system.
[BROFS]

Write access is requested for a pure procedure (shared text) file
tbat is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested
access. [BACCES]

path points outside the process' allocated address space.
[EFAULT]

June 21, 1987 Page 1

ACCESS (S) ACCESS (S)

access checks the permissions for the owner of a IDe by checking
the "owner" read, write, and execute mode bits� For members of
the IDe's group, the "group" mode bits are checked. For all others,
the "other'; mode bits are checked.

Return Value

If the requested access is permitted, a value of 0 is returned. Oth
erwise, a value of -1 is returned and errno is set to indicate the
error.

See Also

chmod(S), stat(S)

Notes

The super-user (root) may access any file, regardless of permission
settings.

June 21, 1987 Page 2

\

(
\ '-.., _ _

ACCT (S) ACCT (S)

Name

acct - Enables or disables process accounting.

Syntax

#include <sys/types.h>

int acct (path)
char *path;

Description

acct is used to enable or disable the system's process accounting
routine. If the routine is enabled, an accounting record will be
written on an �ccounting file for each process that terminates. A
process can be terminated by a call to exit or by receipt of a signal
which it does not ignore or catch; see exit(S) and signal(S). The
effective user ID of the calling process must be super-user to use
this call.

path points to the pathname of the accounting file. The accounting
file format is given in acct(F).

The accounting routine is enabled if path is nOnZero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

acct will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user.
[EPERM]

An attempt is being made to enable accounting when it is
already enabled. [EBUSY]

A component of the path prefix is not a directory. [ENOTDIR]

One or more components of the accounting file's pathname do
not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. [EACCES]

mode permission is denied for the named accounting file.
[EACCES]

June 21, 1987 Page 1

ACCT (S) ACCT (S)

The named file is a directory. IEACCESJ

The named file resides on a read-only file system. [EROFS]

path points to an illegal address. IEF A ULT]

Retum Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

accton(C), acctcom(C), acct(F)

June 21, 1987 Page 2

ALARM (S)

Name

alarm - Sets a process' alarm clock.

Syntax

unsigned alann (sec)
unsigned sec;

Description

ALARM (S)

alarm sets the calling process' alarm clock to sec seconds. After
sec Hreal-time" seconds have elasped, the alarm clock sends a
SIGALRM signal to the process; see signal(S).

Although alarm does not wait for the signal after setting the alarm
clock, pause (S) may be used to make the calling process wait,

Alarm requests are -not stacked; successive calls reset the calling
process' alarm clock.

If sec is 0, any previously made alarm request is canceled.

fork(S) sets the alarm clock of a new process to 0. a process
created by exec (S) inherits the time left on the old process's alarni
clock.

Return Value

alarm returns the amount of time previously remaining in the cal
ling process' alarm clock.

See Also

pause(S), signal(S)

June 21, 1987 Page 1

(

I

ASSERT (S)

Name

assert Helps verify validity of program.

Syntax

#include <stdio.h>
#include <assert.h>

void assert (expl'!ssion)
lnt expression;

Description

ASSERT (S)

This macro is useful for putting diagnostics Into programs under
development. When it is executed, if expression is false (zero), it
displays:

Assertion failed: expression, file name, line nnn

on the standard error file and aborts. nam£ is the source filename
and nnn is the source line number of the assert statement.

Notes

To suppress calls to assert, use the ·Dl'I"DEBUG option (see
cpp(CP)), or Insert the preprocessor control statement, #define
NDEBUG before the #include <assert.h> statement when compil
ing the program.

See Also

abort(S), cpp(CP)

June 21, 1987 Page 1

,-- �

ATOP (S)

Name

atof, atoi, atol - Converts ASCII to numbers.

Syntax

donble atof (nptr)
char *nptr;

int atol (nptr)
char *nptr;

long atol (nptr)
char *nptr;

Descrlplion

ATOF (S)

These functions convert a string pointed to by nptr to floating,
integer, and long integer numbers respectively. The first unrecog
nized character ends the string.

atof recognizes a string of !be form:

[+ I] digits[. digits][el E [+ 1 -] digits]

where !be digits are contingnous decimal digits. Any number of
tabs and spaces may precede the string. The + and - signs are
optional. Either e or E may be used to mark the beginning of !be
exponent.

atoi and atol recognize strings of the form:

[+ I -] digits

where !be digits are contiguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are
optional.

See Also

scanf(S)

(· Notes
,_

There are no provisions for overflow.

These routines must be linked by using the -Jm linker option.

June 21, 1987 Page 1

BESSEL (S) BESSEL (S)

Name

bessel, jO, j1, jn, yO, y1, yn Performs Bessel functions.

Syntax

#Include <matl>.h>

double jO (x)
double x:

double j 1 (x)
double x;

double jn (n, x)
double x;

double yO (x)
double x;

double yl (x)
double x;

double yn (n, x)
int n;
double x;

Description

jO and jl return Bessel functions of x of the first kind of orders 0
and 1 respectively. jn returns the Bessel function of x of the first
kind of order n. The value of x must be positive.

yO and yl retnrn Bessel functions of x of the second kind of orders
0 and 1 respectively. yn returns the Bessel function of x of the
second kind of order n.

See Also

matherr(S)

Diagnostics

Negative arguments cause yO, yl, and yn to return a ·HUGE value
and to set errno to EDOM. In addition, a message indicating
DOMAIN error is displayed on the standard error output. Argu
ments too large in magnitude cause jO, jl, and yl to return zero
and to set errno to ERANGE. ln addition, a message indicating

June 21, 1987 Page l

BESSEL (S) BESSEL (S)

'!LOSS error is displayed on the standard error output. These
error-handling procedures can be changed with the rruJtherr(S)
function.

Noles

These routines must be linked by using the -bn linker option.

June 21, 1987 Page 2

BRKCTL (S)

Name

brkctl Allocates data in a far segment.

BRKCTL (S)

(Syntax

(, __

#include <sys/brk.h>

char far •brkctl(command, increment, ptr)
int command;
long increment;
char far •ptr;

Description

The brkctl system call allocates and deallocates memory in addi
tional data segments in small and middle model programs. In order
for the C compiler to make use of the return values in small and
middle model programs, brkctl must be declared to return a far
pointer. To enable the 'far' keyword for small model C programs,
the -Me option to the compiler must b e used. Middle model C
programs require the -Mme option.

command is either BR...ARGSEG, BR_NEWSEG, or BRJMPSEG.

increment is a signed long increment. If positive, it must b e less
than 64K; if negative, its absolute value must be less than the sum
of the total memory in all far segments plus the amount allocated in
the near segment after process creation.

ptr is used only when command is BR...ARGSEG.

If increment is positive, brkctl returns a far pointer to the base of at
least increment number of bytes of memory (see box on next page).

li the command is BR....IMPSEG, and a negative increment causes
one or more segments to be freed, the 'segment in question' (see
the Return Values section) is the last remaining segment that was
not freed. BRJMPSEG implies the use of the iast data segment.
Unless the process is small or middle model aod cu.rrently has only
one data segment, a positive increment that would overflow the last
data segment causes a new segment to be allocated.

lf the command is BR_ARGSEG, the increment may not be more
negative than the size of the segment. The third argument (ptr), is
assumed to be a far pointer in all models; the offset portion is
never used.

June 21, 1987 Page 1

BRKCTL (S) BRKCTL (S)

If the command is BR.NEWSEG, the increment may not be nega
tive at alL Any memory allocated is guaranteed to be at the base of
a new segment.

Return Value

brkctl() almost always retntns a far pointer to the base of the
affected region, (char far *)-1 on error.

When the increment is greater than 0, the return value is a pointer
to the base of the newly allocated memory.

When the increment is less than or equal to 0, the return value is a
pointer to the first illegal byte in the segment in question (usually
the base of the deallocated memory). If that segment is full (exactly
64K bytes), the return value will be a pointer to the base of the next
segment (which may or may not exist).

Comm.a.:o.d Increment !'tr Action

B!LA:RGSEG Q <valid far ptr> report on segment
BILA:RGSEG olher <valid far ptr> increment specified

segment

BR.lffiWSEG Q allocate new stgment,
size = 0

BR.lffiWSEG other allocate new segment1
size """ increment

BJ.UMPSEG 0 report on last segment;
may free up empty
segment(s)-

BRJMPSEG other increment last segment;
on large model (or
small and middle J model with mutiple
data segments) ,may
allocate new segment.

See Also

cc(CP), ld(CP), machine(M), malloc(S), sbrk(S)

Notes

The brkct/ system call should be used only for dynamically allocat
ing additional segments in small and middle model programs. All
other uses should be avoided in favor of sbrk(S), malloc(S), and
other standard l.JNIX aystem services. The functionality of brkcl/
may change in future releases.

June 21, 1987 Page 2

BRKCTL (S) BRKCTL (S)

brkctl is currently available only on protected mode XENIX.

In all models, the 'near' data segment must be the first data seg
ment.

brkctl calls with BRJMPSEG and a negative increment that would
affect a shared data segment are refused.

June 21, 1987 Page 3

BSEARCH (S)

Name

bsearch - Perfonns a binary search.

Syntax

#include <search.h>

char *bsearch (key, base, nel, widlh, compar)
char *key;
char *base;
unsigned nel, width;
lnt (*compar) O;

Description

BSEARCH (S)

bsearch is a binary search routine generalized from Knuth (6.2.1}
Algorithm B. It returns a pointer Into a table indicating the loca
tion at which a datum may be found. The table must be previously
sorted in increasing order according to a provided comparison func
tion, compar. key is a pointer to the datum to be located in the
table. base is a pointer to the elements at the base of the table. nel
is lhe number of elements in the table. width is lhe size of an ele
ment in bytes. compar is the name of the comparison routine. It is
called with two arguments which are pointers to lhe elements being
compared. The routine must return an integer less than, equal to�
or greater than zero, depending on whether the first argument is to
b e considered less than, equal to, or greater than the second.

Example

The example below searches a table containing pointers to nodes.
The nodes consist of a string and its length. The table is ordered
alphabetically on the string in the node pointed to by each entry.

The following code fragment reads in strings and either finds the
corresponding node and prints out the string and its length, or
prints an error message, (as shown on the next page).

June 21, 1987 Page 1

BSEARCH (S)

#include <stdio.h>
#include <search.h>

#defme TABSIZE

BSEARCH (S)

1000

struct node {
char •string;
int length;

I* these are stored in the table */

};
struct node table!TABSIZE]; /* table to be searched *I

{
struct node *node...ptr, node;
int node_compare(); I* routine to compare 2 nodes *I
char str....space£20]; /* space to read string into */

node. string = str_space;
while (scanf("o/os", node.string) !=EOF} {

node...ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node...ptr !=NULL) {
(void)printf("string = %20s, length = "'od\n",

} else {
node...ptr->string, node_ptr-> length);

(void)printf("not found: "'os\n", node. string);

}
I*

. ,

}
}

This routine compares two nodes based on an
alphabetical ordering of the string field .

int
node_compare(node1,node2)
struct node *nodel, *node2;
{

retom strcmp(nodel->string, node2->string);
}

See Also

hsearch(S), lsearch(S), qsort(S), tsearch(S)

June 21, 1987 Page 2

BSEARCH (S) BSEARCH (S)

Dlalllloslics

Jf the key cannot be found in the table, a NULL (0) pointer is
returned.

Notes

The pointers to the key and the element at the base of the table
should be of type pointer-to-element and cast to type pointer-to
character. The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in addition to
the values being compared. Although declared as type pointer-to
character, the value xeturned should be cast into pointer-to
element.

June 21, 1987 Page 3

c

c

CHDIR (S)

Name

chdir - Changes the working directory.

Syntax

int chdir (path)
char *path;

Description

CHDIR (S)

path points to the pathname of a directory. chdir causes the
named directory to become the current working directory, the start
ing point for path searches for pathnames not beginning with /.

chdir will fail and the current working directory will be unchanged
if one or more of the following are true:

A component of the pathname is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path
name. [EACCES]

path points outside the process' allocated address space.
IEFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chroot(S)

June 21, 1987 Page 1

(
\

(
\."----.

c

CRMOD (S)

Name

chmod Changes mode of a file.

Syntax

int chmod (path, mode)
char •path;
int mode;

Descrlptinn

CHMOD (S)

path points to a pathname naming a file. chml)d sets the access
permission portion of the named file's mode. It sets the access per
mission pcrtion according to the bit pattern contained i n ml)de .

Access permission bits for mode can be formed by adding any com
bination of the following:

04000 Set user ID on execution
02000 Set group ID on execution
01000 Save text image after execution
00400 Read by owner
00200 Write by owner
00100 Execute (or search if a directory) by owner
()()()4{) Read by group
00020 Write by group
00010 Execute (or search) by group
00004 Read by others
00002 Write by others
00001 Execute (or search) by others

To change the mode of a file, the effective user ID of the process
must match the owner of the file or must be super-user.

1f the effective user ID of the process is not super-user, mode bit
01000 {save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the effec
tive group ID of the process does not match the group lD of the
file, mode bit 02000 (set group ID on execution) is cleared.

1f an executable file is prepared for sharing, when its last user ter
minates, mode bit 01000 prevents the system from abandoning the
swap-space image of the program-text portion of the file. Thus,
when the next user executes the file, the text need not be read from
the file syxtem but can simply be swapped in, saving time. Many
systems have relatively small amounts of swap space, and the
same-text bit should be used sparingly, if at all.

June 21, 1987 Page 1

(.HMOD (S) CHMOD (S)

chmod will fail and the file mode will be unchanged if one or more
of the following are true:

A component of the path prelix is not a directory. [ENOIDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective ,user ID does not match the owner of the file and
the effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFSJ

path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

See Also

chown(S), mknod(S)

June 21, 1987 Page 2

(
�

CHOWN (S)

Name

chown - Changes the owner and group of a file.

Syntax

int chown (path, owner, group)
char *path;
int owner, group;

Description

CHOWN (S)

path points to a pathname naming a file. The owner ID and group
ID of the named file are set to the numeric values contained in
owner and group respectively.

Only processes with an effective user ID equal to the file owner or
super-user may change the ownership of a file.

lf chown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respec
tively, will be cleared.

chown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

A component of the path prefix is not a directory. IENOTDIR]

The named file does not exist. IENOENT]

Search permission is denied on a component of the path prefix.
IEACCES]

The effective user ID does not match the owner of the file, and
the effective user ID is not super-user. IEPERM]

The named file resides on a read-only file system. IEROFS]

path points outside the process' allocated address space.
IEFAULT]

(

June 21, 1987 Page 1

CHOWN (S) CHOWN (S)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chmod(S)

June 21, 1987 Page 2

(_

CHROOT (S)

Name

chroot - Changes the root directory.

Syntax

int chroot (path)
char *path;

Des crlp tion

CHROOT (S)

path points to a pathname naming a directory. chroot causes the
named directory to become the root directory, the starting point for
path searches for pathnames beginning with /. The user's working
directory is unaffected by the chroot system call.

To change the root directory, the effective user ID of the process
must be super-user.

The " .. " entry in the root directory is interpreted to mean the root
directory itself. Thus, " .. " cannot be used to access files outside
the root directory.

chroot will fail and the root directory will remain unchanged if one
or more of the following are true:

Any component of the pathname is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

path points outside the process' allocated address space.
IEFAULT]

Retnrn Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chdir(S), chroot(C)

J nne 21, 1987 Page 1

CHSIZE (S)

Name

chsize - Changes the size of a file.

(� Syntax

int chsize (f!ldes, size)
int fildes;
long size;

Description

CHSIZE (S)

ftldes is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call . chsize changes the size of the file associated with
the file descriptor ftldes to be exactly si2;e bytes in length. The rou
tine either truncates the file, or pads it with an appropriate number
of bytes. If size is Jess than the initial size of the file, then all allo
cated disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit (S) is enforced when chsize
is called, rather than on subsequent writes. Thus chsize fails, and
the file size remains unchanged if the new changed file size would
exceed the ulimit.

Retum Value

Upon successful completion, a value of 0 is returned. Otherwise,
the value -1 is returned and errno is set to indicate the error.

See Also

creat(S), dup(S), lseek(S), open(S), pipe(S), ulimit(S)

Notes

In general if ch.size is used to expand the size of a file, when data is
written to the end of the file, intervening blocks are filled with
zeros. In a few rare cases, reducing the file size may not remove the
data beyond the new end-of-file. This routine must be linked with
the linker option -lx.

June 21, 1987 Page 1

CLOCK (S) CLOCK (S)

Name

clock - Reports CPU time used.

Syntax

long clock ()

Description

clock returns the amount of CPU time (in microseconds) used
since the first call to clock. The reported time equals the sum of
user and system times of the calling process and any terminated
child processes for which wait or system (S) were executed.

The resolution of the clock is machine dependent. Refer to the
manual page machine (HW) for the clock resolution on your system.

See Also

machine(HW), system(S), times(S), wait(S)

(Notes

c

The microsecond value returned by clock is compatible with sys
tems that have CPU clocks with much higher resolution. Because
of this, the value returned will wrap around after accumulating only
2147 seconds of CPU time (about 36 minutes).

June 21, 1987 Page 1

CLOSE (S)

Name

close - Ooses a flle descriptor.

Syntax

int close (fildes)
int flldes;

Description

CLOSE (S)

fildes is a flle descriptor obtained from a creat, open, dup, {C1ltl, or
pipe system call. close closes the file descriptor indicated by f7ldes.
All outstanding record locks on the file indicated by fiides that are
owned by the calling process are removed.

close will fail if f7ldes is not a valid open file descriptor. [EBADF]

Retnm V aloe

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

creat(S), dup(S), exec(S), fcntl(S), open(S), pipe(S)

June 21, 1987 Page 1

CONV (S)

Name

conv, toupper, tolower, toascii - Translates characters.

Syntax

#include <ctype.lt>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascli (c)
int e;

Description

CONV (S)

toupper and tolower convert the argument c to a letter of opposite
case. Arguments may be the integers -1 through 255 (the same
values returned by getc;(S)). If the argument of tvupper represents
a lowercase letter, the result is the corresponding uppercase letter.
If the argument of tvlower represents an uppercase letter, the result
is the corresponding lowercase letter. All other arguments are
retomed unchanged.

,Joupper and .Jolower are macros that accomplish the same thing
as toupper and to/ower but have restricted argument values and are
faster. Joupper requires a lowercase letter as its argument; its
result is the corresponding uppercase letter. .Jolower requires an
uppercase letter as its argument; its result is the corresponding
lowercase letter. All other arguments cause unpredictable results.

toascii converts integer values to ASCII characters. The function
clears all bits of the integer that are not part of a standard ASCll
character; it is intended for compattbility with other systems.

See Also

ctype(S)

June 21, 1987 Page 1

CONV (S) CONV (S)

Notes

Because Joupper and _.to/ower are implemented as macros, they
should not b e used where unwanted side effects may occur.
Removing the _.toupper and Jolower macros with the #under direc
tive causes the corresponding library functions to be linked instead.
This allows any arguments to be used without worry about side
effects.

June 21, 1987 Page 2

(

c :

CREAT (S)

Name

creat - Creates a new file or rewrites an existing one.

Syntax

int creat (path, mode)
char *path;
int mode;

Description

GREAT (S)

creat creates a new ordinary file o r prepares to rewrite an existing
file named by the pathname pointed to by path .

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
process' effective user ID, the file's group ID is set to the process'
effective group ID, and the access permission bits (i.e., the low
order 12 bits of the file mode) are set to the value of mode . mode
may have the same values as described for chmod(S). creat will
then modify the access permission bits as follows:

All bits set in the process' file mode creation mask are cleared.
See umask(S).

The "save text image after execution bit" is cleared. See
chmod(S).

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned and the file is open for writing, even if the
mode does not permit writing. The file pointer is set to the begin
ning of the file. The file descriptor is set to remain open across
exec system calls. See fcntl(S). No process may have more than 60
files open simultaneously. A new file may be created with a mode
that forbids writing.

creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOIDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The pathnarne is null. [ENOENT]

June 21, 1987 Page 1

CREAT (S) CREAT (S)

The file does not exist a:n.d the directory in which the file is to
be created does not permit writing. [EACCES]

The named file resides or would reside on a read -only file sys
tem. [EROFS)

The file is a pure procedure (shared text) file that is being exe
cuted. [ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [EISDlR]

Sixty file descriptors are currently open. [EMFILEJ

path points outside the process' allocated address space.
[ENOSPC]

The directory to contain the file cannot be extended. [EFAULT]

The system file tshle is full. [ENFILE]

Return Value

Upon successful completion, a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
e"no is set to indicate the error.

See Also

close(S), dup(S), lseek(S), open(S), read(S), umask(S), write(S)

Notes

open (S) is preferred to creat.

June 21, 1987 Page 2

(

CREATSEM (S) CREATSEM (S)

Name

creatsem - Creates an instance of a binary semaphore.

Syntax

int = creatsem(sei11J1l1me,mode)
char *sem_name;
int mode;

Description

creatsem defines a binary semaphore named by sem....name to be
used by waitsem(S) and sigsem(S) to manage mutually exclusive
access to a resource, shared variable, or critical section of a pro�
gram. creatsem returns a unique semaphore number, sem_flum,
which may then be used as the parameter in waitsem and sigsem
calls. Semaphores are special files of 0 length. The filename space
is used to provide unique identifiers for semaphores. mode sets the
accessibility of the semaphore using the same format as file access
bits. Access to a semaphore is granted only on the basis of the read
access bit; the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive,
such as waitsem or sigsem, by creatsem which initializes it to some
value, or by opensem which opens the semaphore for use by a pro
cess. Synchronizing primitives are guaranteed to be executed
without interruption once started. These primitives are used by
associating a semaphore with each resource (including critical code
sections) to be protected.

The process controlling the semaphore should issue:

sern__num = creatsem("semaphore .. , mode);

to create, initialize, aad open the semaphore for that process. Ali
other processes using the semaphore should issue:

sem_num - opensemf'semaphore');

to access the semaphore's identification value. Note that a process
cannot open and use a semaphore that has not been initialized by a
call to creatsem, nor should a process open a semaphore more than
once in one period of execution. Both the creating and opening
processes use waitsem and sigsem to use the semaphore sem.JZum.

June 21, 1987 Page 1

CREATSEM (S) CREATSEM (S)

Compatibility

creatsem can only be used to define XENIX version 3.0 semaphores,
not XENIX System V semaphores.

See Also

opensem(S), waitsem(S),. sigsem(S)

Diagnostics

creatsem returns the value -1 if an error occurs. If the semaphore
named by semJiame is already open for. use by other processes,
ermo is set to EEXIST. If tbe file specified exists but is not a sema-

. phore type, erma is set to EN01NAM. If tbe semaphore has not
been initiali:zed by a call to creatsem, e"no is set to ENA VAll".

Notes

After a creatsem you must do a waitsem to gain control of a given
resource.

This feature is a XENIX specific enhancement and may not be
preseut iu all UNIX implementations. This function must be linked ··-
witb the linker option -lx.

J uue 21, 1987 Page 2

I
\

CTERMID (S)

Name

ctermid - Generates a filename for a terminal.

Syntax

#include <stdio.h>

char •ctermid(s)
char *s;

Description

CTERMID (S)

ctermid returns a pointer to a string that, when used as a filename,
refers to the controlling terminal of the calling process.

If (int)s is zero, the string is stored in an internal static area, the
contents of which are overwritten at the next call to ctermid, and
the address of which is retnrned. 1f (int)s is nonzero, then s is
assumed to point to a character array of at least L_ctennld ele
ments; the string is placed in this array and the value of s is
retu.rned. The manifest constant L_ctermid is defined in
<stdio.h> .

(;
'� ' Notes

The difference between ctermid and ttyname (S) is that tty name
must be given a file descriptor and it returns the actual name of the
terminal associated with that file descriptor, while ctermid returns a
magic string (/dev/tty) that will refer to the terminal if used as a
filename. Thus ttyname is useless unless the process already has at
least one file open to a terminal.

See Also

ttyname(S)

June 21, 1987 Page 1

(

CTIME (S) CTIME (S)

Name

ctime, locaJtime, gmtime, asctime) tzset - Converts date and time
to ASCII.

Syntax

char •clime (clock)
long *clock;

#include <llme.h>
#include <sys/types.h>

strnct tm •Iocaltlme (clock)
long •clock;

strnct tm •gmtlme (clock)
long *clock;

char *asctlme (tm)
struct tm *tm;

void tzset ()

extern long llmezone;
extem long altzone;
extern lnt dayllght;
extern char *t:zname[2J;

Deseriplion

ctime converts a time pointed to by clock (such as returned by
time(S)) into ASCII and returns a pointer to a 26-character string in
tbe following form:

Sun Sep 16 01:03:52 1973\n\0

li necessary, fields in tbis string are padded with spaces to keep tbe
string a constant length.

/ocaltime and gmtime return pointers to strnctures containing the
time as a variety of individual quantities. These quantities give the
time on a 24-hour clock, day of montb (1-31), month of year (0-
11), day of week (Sunday = 0), year (since 1900), day of year (0-
365), seconds from GMr (East < 0), a flag tbat is nonzero if sum
mer time (daylight saving time) is in effect, and tbe name of tbe
timezone. /ocaltime corrects for the time zone and possible sum
mer time. gmtime converts directly to Greenwich time (GMT),
which is the time !be XENIX system uses.

June 21, 1987 Page 1

CTIME (S} CTIME (S)

asctime converts the times returned by localtime and gmtime to a
26-character ASCII string and returns a pointer to this string.

The structure declaration for tm is defined in /usr/lnclude/time.h.

The external long variable timezone contains tbe difference, in
seconds, between GMT and local standard time (e.g., in Eastern
Standard Time (EST), timezone is 5*&!*&!); similarly, the external
long variable altzone contains the difference, in seconds, between
GMT and local summer time (e.g., in Eastern Daylight Time (EDT),
altt:One is 4*&!*00); the external integer variable daylight is nonzero
if and only if summer time conversion should be applied.

If an environment variable named TZ is present, asctime uses tbe
contents of tbe variable to override tbe default time zone as deter
mined by ftimeO (see time(S)). The value of TZ is described in
detail on tbe tz(M) manual page. The effects of setting TZ are thus
to change tbe values of tbe external variables timezone , altzone,
and daylight. In addition, tbe time zone names contained in tbe
external variable

char •tzname[2] - {"EST", ''EDT"};

are set from tbe environment variable. The rule for when to
change between standard time and summer time can be specified in
tbe TZ string. If a rule is not specified, the standard U.S.A. Day
light Savings Time conversion is applied. The program knows
about the peculiarities of this conversion in 1974 and 1975 and tbe
change in 1987. The function tzset sets tbe external variables from
TZ ; it is called by asctime and may also be called e:xplicitly by the
user.

See Also

environ(M), getenv(S), time(S), tz(M)

Notes

The return values point to static data, whose content is overwritten
by each call.

Changes to TZ are immediately effective, (i.e. if a process changes
the TZ variable, tbe next call to a ctime (S) routine returns a value
based on the new value of tbe variable).

June 21, 1987 Page 2

(

CTYPE (S) crYPE (S)

Name

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, is graph, iscntrl, isascii, tolower, to upper, to ascii -
Classifies or converts characters.

Syntn

#include <ctype.h>

int is alpha (c)
int c;

Description

These macros classify ASCII-coded integer values by table lookup.
Each returns nonzero for true, zero for false. isascii is defined on
all integer values; the rest are defined only where isascii is true and
on the single non-ASCII value EOF (see stdio (S)).

isalpha

is upper

is lower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

June 21, 1987

c is a letter

c is an uppercase letter

c is a lowercase letter

c is a digit [0-9]

c is a hexidecimal digit [0-9], [A-F] or [a-f]

c is an alphanumeric

c is a space, tab, carriage return, newline, vertical
tab, or form feed

c is a punctuation character (neither control nor
alp han urn eric)

c is a printing character, octal 40 (space) through
octal 176 (tilde)

c is a printing character, like isprint except false
for space

Page 1

CITPE (S)

iscntrl

isascii

CITPE (S)

c is a delete character (octal 177) or ordinary con
trol character (less than octal 40).

c is an ASCII character, code less than 0200

lf the argument to any of these macros is not in the domain of the
function, the result is undefined.

The following macros convert to ASCII-coded integer values.
to/ewer and toupper are implemented as macros, but can be
undefined to get non-macro versions from llbe. Non-alphabetic
values passed to toupper and to/ower will be returned unchanged.

to/ewer
If c is an uppercase letter) it is returned as a lowercase letter

toupper
li c is a lowercase letter, it is returned as an uppercase letter

toascii
c is truncated to the lowest 7 bits

See Also

ascii(M)

June 21, 1987 Page 2

CURSES (S)

Name

curses - Performs screen and cursor functions.

Syntax

#include <eurses.h>
WINDOW *curser, *stdscr;

cc -DM_TERMCAP filename -ltcap -ltennlib

Description

CURSES (S)

These routines give the user a method of updating screens with rea
sonable optimization. They keep an image of the current screen,
curser. The user modifies this image by modifying the standard
screen, stdscr, or by setting up a new screen. The refresh and
wrefresh routines make the current screen look like the modified
one. In order to initialize the routines, the routine initscr must be
calied before any of the other routines that deal with windows and
screens are used.

The routines are linked with the linker options -ltcap and -Itenn·
Jib. Programs using these routines must be compiled with
M_TERMCAP defined.

Functions

int addch(ch)
char ell;

int adds trt)tr)
char *str;

Adds a character to stdscr

Adds a string to stdscr

int box(win,vert,hor)
WINDOW *win;
char vert, hor;

Draws a box around a window

int cnnodeO
Sets cbreak mode

int clearO
Clears stdscr

June 21, 1987 Page 1

CURSES (S)

int clearok(win,state)
WINDOW *win;
bool state;

Sets clear flag for win

int elrtobotO
Clears to bottom on stdscr

int elrtoeolO
Oears to end of line on stdscr

in! delehO
Deletes charactet from stds cr

int deletelnO
Deletes line from stdscr

lnt delwin (win)
WINDOW •win;

int echoO

int endwinO

int eraseO

int getehO

int gets lr(str)
char *stl";

int gettmnde 0

Delete win

Sets echo mode

Terminates screen processing

Erase s tdscr

Gets a char through stdscr

Gets a string through stdscr

Gets tty modes

int getyx(win,y ,x)
WINDOW *win;
int y,x;

Gets current (y,x) position of win

int inchO
Gets char at current (y,x) co-ordinates

WINDOW *lnitscrO
Initializes screens

June 21, 1987

CURSES (S)

Page 2

�- -
(\,
' '

r "'-.., __ /

CURSES (S)

int insch(c)
char c;

int insertlnO

Inserts character in stdscr

Inserts blank line in stdscr

int leaveok(win,state)
WINDOW *win;
boo] state;

Sets leave flag for win

int longname(tennbuf,name)
char *tennbuf, *name;

int move (y ,x)
int y,x;

Gets long name from termbuf

Moves to (y,x) on stdscr

int mvaddch(y,x,ch)
int y,x;
char ch;

Moves to (y,x) and adds character
ch

int mvaddstr(y,x,str)
int y,x;
char *str;

Moves to (y,x) and adds string
str

int mvcur(lasty,lastx,newy,newx)
int lasty, lastx, newy, newx;

Moves cursor tbe from (!asty,lastx)
to (newy,newx)

int mvdelch(y,x)
int y,x;

Moves to (y,x) and deletes
character from stdscr

int mvgetch(y,x)
int y,x;

Moves to (y,x) and gets a char
tbrougb stdscr

int mvgetstr(y,x,str)
int y,x;
char •str;

June 21, 1987

Moves to (y,x) and gets a string
through stdscr

CURSES (S)

Page 3

CURSES (S)

htt mvinch(y,x)
int y,x;

Moves to (y,x) and gets char at
current co-ordinates

htt mvinsch(y,x,c)
int y,x;
ehar c;

Moves to (y,x) and inserts
character in stdscr

htt mvwaddch(win, y,x,ch)
WINDOW "win;
htt y.x;
cbar ch;

Moves to (y,x) in win and
adds character ch

int mvwaddstr(win,y,x,str)
WINDOW "win;
int y,x;
char *str;

Moves to (y,x) in win
and adds string str

int mvwdelch(win,y,x)
W1NDOW •win;
int y,x;

Moves to (y,x) in win
and deletes the character

lnt mvwgetch(win,y,x)
W1NDOW *win;
int y,x�

Moves to (y,x) in win and
gets a character

lnt mvwgetstr(y,x,str)
WINDOW *win;
int y,.x;
char *str;

Moves to (y,x) in win
and gets a string

int mvwln(wln,y,x}
WINDOW *win;
int y,x;

Moves upper corner of win to (y,x)

June 21, 1987

CURSES (S)

Page 4

(,_ - '

CURSES (S)

int mvwinch(win,y,x)
WINDOW *win;
int y,x;

Moves to (y,x) in win and
gets character at current co-ordinates

int mvwinsch(win,y,x,c)
WINDOW *win;
int y,x;
char c;

Moves to (y,x) in win and
inserts character

WINDOW *newwin(lines ,cols,begin..,y,begin....x)
int lines, cols, bigin_y, begin_x;

Creates a new window

int niO
Sets newline mapping

int nocnnode 0
Unsets cbreak mode

int noechoO
Unsets echo mode

int noniO
Unsets newline mapping

int norawO
Unsets raw mode

int overlay(winl,win2)
WINDOW *winl, *win2;

Overlays winl on win2

int overwrite(winl,win2)
WINDOW *winl, *win2;

Overwrites winl on top of win2

int printw(fmt,argl,arg2, ...)
char *fmt;

Prints args on stdscr

int rawO
Sets raw mode

int refreshO
Makes current screen look like stdscr

June 21, 1987

CURSES (S)

Page 5

CURSES (S)

int resttyO
Resets tty flags to stored value

int savettyO
Stored current tty flags

int scanw(lint,argl,arg2, ••.)
char •tmt;

Scans for args through salscr

int scro U(win)
W1NDOW *win;

Scrolls win one line

int scroUok(win,slate)
W1NDOW *win;
boo! state;

Sets scroll flag

int settenn(name)
char •name;

Sets term variables for name

in! standendO
Clears standout mode of stdscr

int standoutO

CURSES (S)

Sets standout mode for characters in subsequent
output to stdscr

W1NDO W *subwin (win, lines ,cols,begin_y ,beginJ:)
W1NDOW *win;
int lines, cols, begin_y, begin_;x;

Creates a subwindow in win

int touchwin(win)
W1NDOW *win;

int unctrl(ch)
char cb;

Prepares win for complete update on
next refresh.

Printable version of ch

int waddch(win,ch)
W1NDOW *win;
char ch;

Adds char to win

int waddstr(win,str)
W1NDOW *win;
char *str;

June 21, 1987 Page 6

CURSES (S)

Adds string to win

In! wclear(win)
WJNDOW *win;

Clear win

lnt wclrtobol(win)
WJNDOW *win;

Clears to bottom of win

lnt wclrtoeol(win)
WJNDOW *win;

Clears to end of line on win

int wdclcb(win)
WJNDOW *win;

Deletes current character from win

inl wdeletein(win)
WJNDOW *win;

Deletes line from win

lnt werase(win)
WJNDOW •win;

Erase win

lnl wgetch(win)
WJNDOW *win;

Gets a char through win

lnt wgelstr(win,str)
WJNDOW •win;
char *str;

Gets a string through win

lnt winch(win)
WJNDOW *win;

Gets char at current (y,x) in win

int winsch(win,c)
WJNDOW *win;
char c;

Inserts character c in win

lnt winsertln(win)
WJNDOW *win;

Inserts a blank line in win

lnt wmove(win,y,x)
WINDOW *win;
int y,x;

Sets current (y,x) co-ordinates on

June 21, 1987

CURSES (S)

Page 7

CURSES (S) CURSES (S)

int wprintw(win,fmt,argl,arg2, .••)
WINDOW *win;
char *tmt;

Print args on win

int wrefresh(win)
WINDOW *win;

Makes screen look like win

int wscanw(win.fmt,argl,arg2, • . •)
WINDOW *win;
char *fmt;

Scans for args through win

int wstandend(win)
WINDOW *win;

aears standout mode for win

int wstandout(win)
WINDOW *win;

See Also

Sets standout mode for characters on
subsequent output to win

termcap(M), stty(C), setenv(S), terminfo(S)
XENIX C Library Guide

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

June 21, 1987 Page 8

CUSERID (S)

Name

cuserld - Gets the login name of the user.

(Syntax

#include <stdio.h>

char *cuserid (s)
char *s;

Description

CUSERID (S)

cW!!erid returns a pointer to string which represents the login name
of the owner of the current process. If (int)s is zero, this represen
tation is generated in an internal static area, the address of which is
returned. If (int)s is nonzero, s is assumed to point to a11 array of
at least L_cuserid characters; the representation is left in this array.
The manifest constant Lsuserid is defined in <stdio.h>.

Diagnostics

If the login name cannot be found, cuserid retnms NULL; if s is
nonzero in this case, \0 will be placed at •s.

See Also

getlogin(S), getpwent in getpwent(S)

Notes

cU.'!!erid uses getpwnam (see getpwent(S)); thus the results of a user's
call to the latter wiU be obliterated by a subsequent call to the
former.

June 21, 1987 Page 1

(

DBM (S) DBM (S)

Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs datab ase
functions.

Syntax

cypedef struct { char •dplr; lnt dsize; } datum;

lnt dbminit(r.le)
char •rile;

datum fetch (key)
datum key;

lnt store(key, content)
datum key, content;

lnt delete (key)
datum key;

datum frrs!keyO;

datum nextkey(key);
datum key;

Des crip lion

These functions mnlntain key/content pairs in a database. Th e
functions will handle very large (a billion blocks) databases and will
access a keyed item in one or two file system accesses. The func
tions are obtained with the loader option -ldbm.

keys and contents are described by the datum typedef. A datum
specifies a string of dsi.ze bytes pointed to by dptr. Arbitrary binary
data, as well as normal ASCll strings, are allowed. The database is
stored in two files. One file is a dinectory containing a bit map and
has .dir as its suffix. The second file contains all data and has .pag
as its suffix.

Before a database can be accessed, it must be opened by dbminit.
At the time of this call, the files file.dir and file.pag must exist.
(An empty database is created by creating zero-length .dir and .pag
files.)

Once open, the data stored under a key is accessed by fetch and
data is placed under a key by store . A key (and its associated con
tents) is deleted by delete. A linear p ass through all keys in a data
base may be made, in an (apparently) random order, by use of first
key and nextkey. [ustkey w:ill return the first key in the database.

June 21, 1987 Page 1

DBM (S) DBM (S)

With any key nextlay will return the next key in the database. This
code will traverse the database:

for(key-firstkeyQ; key.dptr!=NULL; key-nex:tkey(key))

Diagnostics

All functions that retur:n an int indicate errors with negative values.
A zero retur:n indicates ok. Routines that return a datum indicate
errors with a null (0) dptr.

Notes

The .pag file will contain holes so that its apparent size is about
four times its actual content. Older XBNIX systems may create real
file blocks for these holes when touched. These files cannot be
copied by normal means (cp, cat, tp, tar, ar) without filling iu the
holes . •

dptr pointers returned by these subroutines point into static storage
that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the
internal block size (currently 512 bytes). Moreover all key/content
pairs that hash together must fit on a single block. store will return
an error iu the event that a disk block fills with inseparable data.

delete does not physically reclaim file space, although it does make
it available for reuse.

The order of keys presented by fustkey and nextkey depends on a
hashing function.

These routines are not reentrant, so they abould not be used on
more than one database at a time.

Credit

Thls utility was developed at the Uulversity of Callforula at
Berkeley and is used with permission.

June 21, 1987 Page 2

DEFOPEN (S)

Name

defopen, defread - Reads default entries.

Syntax

int defopen(f"llename)
char *filename;

char *defread(pattem)
char *pattern;

Description

DEFOPEN (S)

defopen and defread are a pair of routines designed to allow easy
access to default definition files. XENIX is normally distributed in
binary form; the use of default files allows OEMs or site adminis
trators to customize utility defaults without having the source code.

defopeh opens the default file named by the pathname in filename.
defopen returns null if it is successful in opening the file, or the
fopen failure code (errno) if the open fails.

defread reads the previously opened file from the beginning until it
encounters a line beginning with pattern. defread then retun1s a
pointer to the first character in the line after the initial pattern. If a
trailing newline character is read it is replaced by a null byte.

When all items of interest have been extracted from the opened file
the program may call defopen with the name of another file to be
searched, or it may call defopen with NULL, which closes the
default file without opening another.

Files

The XENIX convention is for a system program xyz to store its
defaults (if any) in the file /etc/defau!Uxyz.

Diagnostics

defopen returns zero on success and nonzero if the open fails. The
retnrn value is the errno value set by fopen (S).

defread returns NULL if a default file is not open, if the indicated
pattern could not be found, or if it encounters any line in the file
greater than the maximum length of 128 characters.

June 21, 1987 Page 1

DEFOPEN (S) DEFOPEN (S)

Notes

The return value points to static data, whose contents are overwrit
ten by each call.

June 21, 1987 Page 2

DIAL (S) DIAL (S)

Name

dial - Establishes an out-going terminal line connection.

Syntax

#include <dial.h>

int dial (call}
CALL call;

void undial (fd}
int fd;

Description

dial returns a file-descriptor for a terminal line open for read/write.
The argument to dial is a CALL structure (defmed in the <dial.h>
header file).

When it is finished with the terminal line, the calling program must
invoke undilll to release the semaphore that has been set during the
allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr; /* pointer to termio attribute struct *I
int band; r• transmission data rate */
int speed; r• 212A modem: low=300, high=1200 •r
char *line; /'* device name for out-going line */
char *telno; /* pointer to tel-no digits string •t
int modem; /* specify modem control for

direct lines *I
char *device; /*Will hold the name of the device used

to make a connection */
int devJen; /* The length of the device used to

make connection •1
} CALL;

The CALL element speed is intended for use only with an out-going
dialed call, in which case its value should be either 300 or 1200 to
identify the 113A modem, or the high or low-speed setting on the
212A modem. Note that the 113A modem or the low-speed setting
of the 212A modem will transmit at any rate between 0 and 300 bits
per second. However, the high-speed setting of the 212A modem
transmits and receives at 1200 bits per second only. The CALL ele
ment baud is for the desired transmission baud rate. For example,
one might set baud to 110 and speed to 300 (or 1200). However, if
speed is set to 1200, baud must be set to high (1200).

June 21, 1987 Page 1

DIAL (S) DIAL (S)

If the desired terminal line is a direct line, a string pointer to its
device name should be placed in the line element in the CALL
strncture. .Legal values for such terminal device names are kept in
the L- devil:es file. In this case, the value of the baud element
does not have to be specified as it will be determined from the L·
devices file.

The telno element is a pointer to a character string representing the
telephone number to be dialed. Such numbers may consist of sym
bols only described on the acu(?). The termination symbol will be
supplied by the dial function, and shonld not be included in the
telna string passed to dial in the CALL structore.

The CALL element modem is used to specify modem control for
direct lines. This element should be non-zero if modem control is
required. The CALL element attr is a pointer to a tennlo strnc
tore, as defined in the tennlo.h header file. A NULL value for this
pointer element may be passed to the dial function, but if such a
structure is included, the elements specified in it will be'set for the
outgoing terlliinal line before the connection is established. This is
often important for certain attributes such as parity and baud rate.

The CALL element device is used to hold the device name (cui..)
that establishes the connection.

The CALL element dev..Jen is the length of the device name that is
copied into the array device.

Flles

/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK..tty-device

See Also

alarm(S), dial(M), read(S), termcap(M), uucp(C), write(S)

Diagnostles

On failure, a negstive value indicating the reason for the failure will
be returned. lvfnemonics for these negstive indices listed below are
defined in the <dial.h> header file.

INTRPI' -1
DJIUNG -2
NO..ANS -3
ILLJlD -4
AJ'ROB -5
LJ'ROB -6

June 21, 1987

I* interrupt occurred */
!* dialer hung (no return ftom write) •t
I* no answer within 10 seconds */
I* illegal baud rate *I
/* acu problem (openQ failure) *I
t• line problem (open() failure) */

Page 2

DIAL (S)

Notes

NOJ.DV -7
DV .. Nl'..A
DV_NT...K-9
NO...BD..A

NO...BD_K

DIAL (S)

I* can't open LDEVS file */
-8/* requested device not available *I
I* requested device not known */
-10/* no device available at
requested baud */
-11/* no device known at
requested baud */

An alarm(S) system call for 3600 seconds is made (and caught)
within the di£11 module for the purpose of "touching" the LCK • • file
and constitutes the device allocation semaphore for the terminal
device. Otherwise, uucp(C) may simply delete the LCK •• entry on
its 90-minute clean-up rounds. The alarm may go off while the
user program is in a read(S) or write (S) system call, causing an
apparent error return. If the user program expects to be around for
an hour or more, error returns from reads should be checked for
(errno= =EINTR), and the read possibly reissued.

Warnings

When you include the <dial.h> header file, the <termio,h>
header file is automatically included.

Note that the above routine uses <std1o�h>, which causes it to
increase its program size, otherwise not using standard IIOt more
than might be expected.

June 21, 1987 Page 3

r-1

DIRECTORY (S) DIRECTORY {S)

Name

opendir, readdir, telldir, seekdir_, rewinddir, closedir - Performs
directory operations.

Syntax

#include <sys/ndir.ll>

DIR *opendir(fllenllme}
char *filename;

struct direct *readdir(dirp}
DlR •dirp;

long telldir(dirp}
DIR *dirp;

seekdir(dirp, Joe}
DIR *dirp;
long Joe;

rcwlnddir(dirp)
DIR *dirp;

dosedir(dirp}
DIR *dirp;

Description

opendir opens the directory named by filename md associates a
directory stream with it. opendir returns a pointer to be used to
identify the directory stream in subsequent operations. The NlJLL
pointer is returned if filename cannot be accessed or if it is not a
directory.

readdir returns a pointer to the next directory entry. It returns
NULL upon reaching the end of the directory or detecting an
invalid seekdir operation.

telldir retorns the current location associated with the named
directory stream.

seekdir sets the position of the next readdir operation on the
directory stream. The new position reverts to the one associated
with the directory stream when the telldir operation was performed.
Values returned by telldir are good only for the lifetime of the Dill.
pointer from which they are derived. If the directory is closed and
then reopened, the telldir value may be invalidated due to

June 21, 1987 Page 1

DIRECTORY (S) DIRECTORY (S)

undetected directory compaction. It is safe to use a previous telldir
value immediately after a call to opendir and before any calls to
readdir.

rewlnddir resets the position of the named directory stream to tbe
beginning of tbe directory.

closedir causes tbe named directory stream to be closed, and the
structure associated witb tbe DIR pointer to be freed.

Sample code which searches a directory for the entry "name" is
shown below:

See Also

len � strlen(name);
dirp opendir('.");
for (dp = readdir(dirp); dp 1� NULL; dp - readdir(dirp))

if (dp-><Lnamlen = len &&
lstrcmp(dp->d....llame, name)) {

}
closedir(dirp);

closedir(dirp);
return FOUND;

return NOT__FOUND;

close(S), lseek(S), open(S), read(S)

Notes

This routine must be linked with the linker option .Jx.

June 21, 1987 Page 2

/
(
\

DRAND48 (S) DRAND48 (S)

Name

drand48, erand48, Jrand48, nrand48, mrand48, jrand48, srand48,
seed48, lcong48 - Generates uniformly distributed pseudo-random
numbers.

Syntax

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Jrand48 ()

long nrand48 (xsnhi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seedl6v)
unsigned short seedl6v[3];

void Jcong48 (pararn)
unsigned short pararn[7J;

See Also

rand(S)

Description

This family of functions generates pseudo-ran!lom numbers using
the well-known linear congrnential algorithm and 48-bit integer
arithmetic.

The functions drand48 and erand48 retnrn non-negative double
precision floating-point values uniformly distributed over the inter
val [0.0, 1.0].

Functions lrand48 and nrand48 retum non-negative long integers
uniformly distributed over the interval [0, 2"].

June 21, 1987 Page 1

DRAND48 (S) DRAND48 (S)

Functions mrand48 and jrand48 return signed long integers uni
formly distnbuted over the interval [-231, 2"].

Functions srand48, seed48 and lcong48 are initialization entry
points, one of which should be invoked before either drand48,
lrand48 or mrand48 is called. (Although it is not reconunended
practice, constant default initializer values will be supplied automat
ically if drand48, lrand48 or mrand48 is called without a prior call
to an initialization entry point.) functions erand48, nrand48 and
jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer
values, $X1, according to the linear congruential formula

The parameter is m -2'"' thus, 48-bit integer arithmetic is per
formed. Unless lcong48 has been invoked, the multiplier value u
and the addend value c are given by:

a - SDEECE66D 16 • 273673163155 8
c = B 16 = 13a-

The value returned by any of the functions drand48, erand48,
lrand48, l!l'and48, mrmtd48 or jrand48 is computed by first generat
ing the next 48-bit x, in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned,
are copied from the high-order (leftmost) bits of X, and
transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit
X; generated in an internal buffer; that is why they must be initial
ized prior to being invoked. The functions erand48, nrand48 and
jrand48 require the calling program to provide storage for the suc
cessive X1 values in the array specified as an argument when the
functions are invoked. That is why these routioes do not have to
be initialized; tbe calling program merely has to place the desired
initial value of x, into the array and pass it as an argument. By
using different arguments, functions erand48, nrand48 and jrand48
allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, i.e., the sequence
of numbers in each stream will not depend upon how many times
the routines have been called to generate numbers for the other
streams.

The initializer function srand48 sets the high-order 32 bits of X, to
the 32 bits contained in its argument. The low-order 16 bits of X;
are set to the arbitrary value 330E , ..

The initializer function seed48 sets the value of x; to the 48-bit
value specified in the argument array. In addition, tbe previous
value of X; is copied into a 48-bit internal buffer, used only by

June 21, 1987 Page 2

DRAND48 (S) DRAND48 (S)

seed48, and a pointer to this buffer is the value returned by seed48.
This returned pointer, which can just be ignored if not needed, is
useful if a program is to be restarted from a given point at some
future time - use the pointer to get at and store the last X1 value,
and then use this value to reinitialize via seed48 when the program
is restarted.

The initialization fnnction lcong48 allows the user to specify the ini
tial X,, the multiplier value $a , and the addend value c. Argument
array elements param[0-2] specify X1 , param[3- 5] specify the muJ
tiplier a , and param[6] specifies the 16-bit addend c. After lcong48
has been called, a subsequent call to either srand48 or seed48 will
restore the "standard" multiplier and addend values, a and c , speci
fied on the previous page.

See Also

nmd(S)

Notes

These routines are coded in portable C. The source code for the
portable version can even be used on computers which do not sup
port floating-point arithmetic. 1n such a situation, functions
drand48 and erand48 do not exist; instead, they are replaced by
two new functions shown below.

long irand48 (m}
unsigned short m;

long krand48 (xsubi, m}
unsigned short xsubl[3], m;

Functions irand48 aad krand48 return non-negative long integers
uniformly distn'buted over the interval [0, m -1].

June 21, 1987 Pagu 3

(

./

('

DUP (S)

Name

dup, dup2 - Duplicates an open file descriptor.

Syntax

int dup (rlldes)
int rlldes;

int dup2(rlldes , rlldes2)
int rlldes, rlldes2;

Description

DUP (S)

fiZdes is a file descriptor obtained from a creat, open, dup, JentZ, or
pipe system call. dup returns a new file descriptor having the fol
lowing in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system
calls. See JentZ (S).

dup returns the lowest available file descriptor. dup2 causes fiZdes2
to refer to the same file as fiZdes. If fildes2 already referred to an
open file, it is closed first.

dup will fail if one or more of the following are true:

fiZdes is not a valid open file descriptor. [EBADF]

Sixty file descriptors are currently open. [EMF1LE]

Retom Value

Upon successful completion a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

Notes

This routine must be linked using the linker option -lx.

June 21, 1987 Page 1

DUP (S) DUP (S)

See Also

creat(S), close(S), exec(S), fcntl(S), open(S), pipe(S) .

June 21, 1987 Page 2

ECVT (S)

Name

ecvt, fcvt, gcvt Performs output conversions.

Syntax

char *ecvt (value, ndigit, dccpt, sign)
double value;
int ndigit,. *decpt, •sign;

char *fcvt (value, ndigit, decpt, sign)
dnuble value;
int ndigit, *deep!, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

Description

ECVT (S)

ecvt converts the val�UJ to a null-terminated string of ntligit ASCI!
digits and returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned
digits). If fue sign of the result is negative, the word pointed to by
sign is nonzero, otherwise it is zero. The low-order digit is
rounded.

fc!•t is identical to ecvt, except that the correct digit has been
rounded for FORTRAN F format output of fue number of digits
specified by ndigits.

gcvt converts the value to a null-terminated ASCll string in buf and
returns a pointer to buf. It attempts to produce rtdigit significant
digits in FORTRAN F format if possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

See Also

printf(S)

Nntes

The return values point to static data whose content is overwritten
by each call.

J unc 21, 1987 Page 1

END (S)

Name

end, etext, edata - Last locations in program.

(Syntax

extern char *end;
extern char *etext;
extern char *edata;

Description

END (S)

These names refer neither to routines nor to locations with interest
ing contents. The address of etext is the first address above tbe
program text. edata is tbe first address above the initialized data
region. ena is the first address above the uninitialized data region.

See Also

brk(S), malloc(S).

Warning

No assumptions should be made with respect to tbe ordering of the
program text, initialized data, and uninitialized data regions. For
example, the assumption can't be made that the addresses following
tbe address of etex:t will reference tbe uninitialized data region.

No assumptions can be made concerning the contiguity of informa
tion within a region. A region may be split among different parts
of memory. Therefore, no assurance can be made that addresses
within a region are consecutive.

June 21, 1987 Page 1

(

ERF (S) ERF (S)

Name

erf, erfc - Error function and complementary error function.

Syntax

#include <rna th.h>

double elf (x)
double x;

double erlc (x)
double x;

Description

erf returns the error function of x, defined as � je-12dt.
v . ,

erfc, which returns 1.0 - erf(x), is provided because of the extreme
Joss of relative accuracy if erf(x) is called for large x and the result
subtracted from 1.0 (e.g., for x � 5, 12 places are lost).

(See Also

exp(S)

Notes

These routines must be linked by using the -1m linker option.

June 21, 1987 Page 1

EXEC (S) EXEC (S)

Name

execl, execv, execle, execve, execlp, execvp - Executes a file.

Syntax

lnt execl (path, argO, argl, • • • , argn, (char *)0)
char •path, *argO, *argl, �.-, *argn;

lnt execv (path, argv)
char *path, *argv[] ;

lnt execle (path, argO, argl, ... , argn, (char *)0, envp)
char *path, *argO" *argl, .•• , *argn, *envp [] ;

int execve (path, argv, envp);
char *path, •argv[] , *envp[];

lnt exedp (file, argO, argl, ... , argn, (char *)0)
char *file, *argO, *argl, �··' *argn;

lnt execvp (file, argv)
char •rue, *argv[];

Description

exec in all its fonns transforms the calling process into a new pro
cess. The new process is constructed from an ordinary, executable
file called the "new process file." There can be no return from a
successful exec because the calling process is overlaid by the new
process.

path points to a pathname that identifies the new process file.

file points to the new process file. The path prefix for this f'!le is
obtained by a search of the directories passed as the environment
line "PATH =" (see environ (M)). The environment is supplied by
the shell (see sh(C)).

argO, argl , . . . , argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present. and it
must point to a string that is the same as path (or its last com
ponent).

argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new pro
cess. By convention, argv must have at least one member, and it
must point to a string that is the same as path (or its last com
ponent). argv is terminated by a null pointer.

June 21, 1987 Page 1

EXEC (S) EXEC (S)

envp is an array of character pointers to null-tenninated strings.
These strings constitute the envirorunent for the new process.
Envp is terminated by a null pointer.

·

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
fctttl(S). For those me descriptors that remain open, the file
pointer is unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by th<;> calling process
will be set to be ignored by the new process. Signals set to be
caught by the calling process will be set to terminate new process;
see signal(S).

If the set-user-ID mode bit of the new process file is. set (see
chmod (S)), exec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the set-group-ID
mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as
those of the calling process.

Proming is disabled for the new process; see profil(S).

The new process also inherits the following attnbutes from the cal
ling process:

Nice value (see nil:e(S))

Pro<Oess ID

Parent process ID

Process group ID

semadj values (see semop(S))

TTY group fD (see exit(S) and signai(S))

Trace flag (see ptrace(S) request 0)

Time left until an alarm clock signal (see alo.rm(S))

Current working directory

Root directory

File mode creation mask (see umask(S))

June 21, 1987 Psge 2

('

c

EXEC (S) EXEC (S)

File size limit (see ulimit(S))

utime, slime, cutime, and cstime (see tim£s(S))

From C, two interfaces are available: execl and execv. execl is use
ful when a known file with known arguments is being called; the
arguments to execl are the character strings constituting the file and
the arguments. The first argument is conventionally the same as
the filename (or its last component). A 0 argument must end the
argument list.

The execv version is useful when the number of arguments is unk
nown in advance. The arguments to execv are the name of the file
to be executed and a vector of strings containing the arguments.
The last argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char "'"'argv, ••envp ;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is con
ventionally at least one and the first member of the array points to
a string containing the name of the file.

argv is directly usable in another execv because argv[argc] is 0.

envp is a pointer to an array of strings that constitute the environ
ment of the process. Each string consists of a name, an "=", and a
null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(C) passes an environment entry for each glo
bal shell variable defined when the program is called. See
environ(M) for some conventionally used names. The C run-time
start-off routine places a copy of envp in the global cell environ,
which is used by execv and execl to pass the environment to any
subprograms executed by the current program. The exec routines
use lower-level routines as follows to pass an environment expli
citly:

execle{file, argO, arg1, . . . , argn, 0, environ);
execve(file, argv, environ);

execlp and execvp are called with the same arguments as execl and
execv, but duplicate the shell's actions in searching for an execut
able file in a list of directories. The directory list is obtained from
the environment.

June 21, 1987 Page 3

EXEC (S) EXEC (S)

exec will fail and return to the calling process if one or more of the
following are true:

One or more components of the new process file's pathname do
not exist. [ENOENT]

A compnnent of the new process file's path prefix is not a direc
tory. [ENOTDIR]

Search permission is denied for a directory listed in the new
process file's path prefix. [EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission.
[EACCES]

The new process file has the appropriate access permission, but
has an invalid magic number in its header or some other execut
able file format inconsistency. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXTBSY]

The new process requires more memory than is physically avail
able for user programs or the program would not fit on the swap
disk. [ENOMEM] :_

The number of bytes in the new process' argument list is greater
than the system-impnsed limit of 5120 bytes. [E2BIG]

The new process file is not as long as indicated by the size
values in its header. [EFAULT]

path , argv, or envp point to an illegal address. [EFAULT]

Return Value

If exec returns to the calling process an error has occurred; the
return value will be -1 and errno will be set to indicate the error.

See Also

exit(S), fork(S), proctl(S), semop(S)

June 21, 1987 Page 4

(

(\

EXEC (S) EXEC (S)

Notes

exec may still fail when physical memory is larger than the swap
disk (see ENOMEM above). However, this restriction may be lifted
using one of the following proctl(S) calls:

PRHUGEX
Allows programs to be executed by this process even if
they exceed the available swap disk space. Such pro
grams must still fit in the available physical memory and
tbe caller's effective user ID must be the super-user.
Such HUGE processes are locked in memory to prevent
them from being swapped.

PRNORMX

June 21, 1987

Makes a process unable to exec HUGE programs. This
call may be executed b y any user.

Page 5

EXECSEG (S)

Name

execseg - Makes a data region executable.

Syntax

#include <xdata.b>

exeode_t execseg(oldaddr, size)
exdata_t oldaddr;
unsigned size;

int unexecseg(addr)
excode_t addr;

Description

EXECSEG (S)

execseg(S) is passed the current data address and size of the region
to be e:Xl:lcuted and it returns the starting address of a region that is
at least size number of bytes which can safely be branched to. On
the Intel 8086 and 80286, processor an alias CS descriptor is associ
ated with the same memory as the data segment in which the
oldaddr region lies. This means that offsets in the executable seg
ment to access a given byte are essentially the same as the offsets in
the original data segment, except the selector is different.

Note that "excode_t" and "exdata_t" are 'far' pointers on the 8086
and 80286. On an architecture where pages in the same 'segment'
are any combination of read/write/execute, the returned address is
identical to the parameter passed to execseg(S).

We recommend that programs using this function on 8086- and
80286-based processors be large model, or that programmers be
very familiar with "hybrid model" as well as with the use and
misuse of far data.

When an error occurs, execseg(S) returns ((excode_t)-1), with emw
set to ENONEM. Errors include an invalid data address or size,
and an inability to allocate a new data selector.

The unexecseg() system call disables an addr previously returned
from execseg(S) from being used as an executable region. Specifi
cally, on the 8086 and 80286 architectures, this call frees the selec
tor used for the executable region. It returns 0 on success, or a -1
on error. For example, if addr is not an address returned by
execseg(S), then a -1 is returned and it en be used as an executable
region.

June 21, 1987 Page 1

EXECSEG (S) EXECSEG (S)

Example:

excode_t funcp; char far *datap;

datap=obrkctl(BR..NEWSEG,lOOOL,OL);
load_witb_code(datap,lOOO) /*loads executable code into

Notes

data region datap*/
funcp-execseg(datap,lOOO); (*funcp)()
/*call subroutine*/ if (unexecseg (fnncp)---1){

printf("nnexecseg failed\n''); exit(!); }

On the Intel 8086 and 80286 architectures, execseg(S) expects far
addresses to be passed. Only experienced programmers shonld use
Ibis feature.

Since tbe execseg return value and address arguments are 'far'
pointers, any program including xdata.h must be compiled using tbe
·Me option.

The following restrictions apply to the execute data system call.
Even tbougll an address and size are passed to execseg, tbe entire
segment contabring tbe requested addresses are aliased. The
address and size are validated before tbe aliasing is allowed, No
part of tbe data segment tbat is aliased may be deallocated (via
sbrk(S) or brkctl(S)) while it is aliased. This restrictinn applies to
the entire segment that is aliased, even if only a small piece of tbe
segment was aliased. After unexecseging the aliased segment, tbe
data segment may be deallocated. Each call to execseg results in a
new alias segment being used, even if the data segment is already
aliased.

Due to compiler confusion, you may get tbe message "at least one
void operand" when using execseg. Please ignore it.

June 21, 1987 Page 2

(

EXIT (S)

Name

exit, _exit - Terminates a process.

Syntax

exit (status)
void int status;
void _exit (status)
int status;

Description

EXIT (S)

exit terminates the calling process. All of the file descripturs open
in the calling process are closed.

If the parent process of the calling process is executing a wait , it is
notified of the calling process' termmation al)d the low-order 8 bits
(i.e., hits 0377) of status are made available to it; see wait(S). If
the parent is not waiting, the child's status will be made available to
it when the parent subsequently executes wait(S).

If the parent process of the calling process is not executing a wait,
the calling process is transfonned into a "wmbie process." A zom
bie process is a process that only occupies a slot in the process
table, it has no other space allocated either in user or kernel space.
The process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by times(S).

The parent process ID of all of the calling process' existing child
processes and zombie processes is set to 1. This means the initiali
zation process (see intro(S)) inherits each of these processes.

Each attached shared memory segment is detached and the value of
sbm_nattacb in the data structure associated with its shared
memory identifier is decremented by 1.

For each semaphore for which the calling process b as set a semadj
value (see serrwp(S)), that semadj value is added to the semval of
the specified semaphore.

lf the process has a text, data lock, or process, an unlock is per
formed (see pwck(S)).

An accounting record is written on the accounting file if the
system's accounting routine is enabled; see acct(S).

June 21, 1987 Page 1

EXIT (S) EXIT (S)

If the process ID, TTY group ID, and process group ID of the cal
ling process are equal, the SIGHUP signal is sent to each of the
processes that has a process group ID equal to that of the calling
process�

The C function exit may cause cleanup actions before the process
exits. The ...J!Xit circumvents all cleanup.

Soo Also

acct(S), intro(S), plock(S), semop(S), signai(S), wait(S)

Warning

See Wanung in signal(S)

June 21, 1987 Page 2

EXP (S) EXP (S)

Name

exp, log, pow, sqrt, log10 - Performs exponential, logarithm,
power, square root functions.

Syntax

#indude <ma!h.h>

double exp (x)
double x;

double log (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

double loglO (x)
double x;

Description

exp returns the exponential function of x .

log returns the natural logarithm o f x.

pow returns x'.

sqrt returns the square root of x .

See Also

intro(S), hypot(S), sinh(S)

Diagnostics

exp and pow return a HUGE value when the correct value would
overflow. An unusuq]iy large argument may also result ln errno
being set to ERANGE. log and loglO return HUGE negative values
and set errno to EDOM when x is nonpositive. A message indicat
lng DOMAIN error (or SING error when x is 0) is printed on !he
standard error output. pow returns a huge negative value and sets
ernw to EDOM when x is non positive and y is not an integer, or
when x and y are both zero. sqrt returns 0 and sets errno to EDOM

June 21, 1987 Page 1

EXP (S) EXP (S)

when x is negative. A message indicating DOMAIN error is printed
on the standard error output.

These error-handling procedures may be changed with the function
matherr(S).

Notes

These routines must be linked by using the -1m linker option.

June 21, 1987 Page 2

(

FGLOSE (S)

Name

fclose, fflush - Closes or flushes a stream.

Syntax

#Include <stdio.h>

int fclose (stream)
FILE *stream;

int mush (stream)
Fll .. E *stream;

Description

FCLOSE (S)

fclose causes any buffers for the named stream to be emptied, and
the file to be closed. Buffers allocated by the standard
input/output system are freed.

fclo.se is perlormed automatically upon calling exit(S).

!flush causes any buffered data for the named output stream to be
written to that file. The stream remains open.

These functions return 0 for success, and EOF if any errors were
detected.

See Also

close(S), fopen(S), setbuf(S)

June 21, 1987 Page l

/
(

FCNTL (S) FCNTL (S)

Name

fcntl - Conirols open files.

Syntax

#include <fcntl.h>

in I fcntl (nldes, cmd, arg)
int nldes, cmd;

Description

fcntl provides for control over open files. fiJdes is an open file
descriptor obtained from a creat, open, dup, fcntl, or pipe system
call. arg is either an int or a pointer , depending on the cmd given.
See below.

The crrui s available are:

F...DUPFD

F_GETFD

F_SETFD

Returns a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Saroe open file (or pipe) as the original file.

Saroe file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Saroe file status flags (i.e., both file descriptors share the
saroe file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(S) system
calls.

Gets the close-on -exec flag associated with the file
descriptor fildes. If the low-order bit is 0 the file will
remain open across exec, otherwise 1he file will be closed
upon execution of exec .

Sets the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or otherwise as above).

June 21, 1987 Page 1

FCNTL (S) FCNTL (S)

F_GETFL
Gets file status flags: O_RDONLY, O_WRONLY,
O_RDWR, O...NDBLA Y, or O_APPBND.

F_SETFL Sets file status flags to arg. Only certain flags can be set.

F_GETLK
Gets the first lock which blocks the lock description given
by the variable of type struct flock pointed to by arg (see
below). The information retrieved overwrites the infor
mation passed tu fcntl in the flock structure. 1f no lock is
found that wonld prevent this lock from being created,
then the structure is passed back unchanged except for
the lock type which will be set to F_L'NLCK.

F....SETLK
Sets or clears a file segment l<:>ck according to the Variable
of type struct flock J?Ointed to by arg (see below). The
FSETLK command 1s used to establish read {F _RDLCK)
and write (F _ WRLCK) locks, as well as remove either
type of lock (F _UNLCK). If a read or write lock cannot
be set, fcntl will immediately return an error value of - 1.

F_SETLKW
This command is the same as FSETLK except that if a
read or write lock is blocked by other locks, the process
will sleep until the segment is free to be locked.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a
file at a given time. The file descriptor on which a read lock is
being placed must have been opened with read access.

A write lock prevents any process from read locking or write lock
ing the protected area. Only one write lock may exist for a given
segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write access.

The structure flock describes the type (l.Jype), starting offset
(Lwhence), relative offset (lJtart), size (Uen), process ID {l..pid)
and system ID (IJYsid) of the segment of the file to be affected as
shown below:

struct flock {
short Ltype: /* F...:RDLCK, F_WRLCK, F_UNLCK*/

};

short Lwhence: /* flag to choose starting offset •!
long Lstart: /* relative offset in bytes */
long Uen: /* if 0 then until EOF *I
short Lpid: /* returned with F _GETLK *I
short Lsysid: /* returned with F _GETLK *I

June 21, 1987 Page 2

(

FCNTL (S) FCNTL (S)

/_whence is 0,1 or 2 to indicate that the relative offset will be meas
ured from the start of the file, current position or end of the file,
respectively.

The process ID and system ID fields are only used with the
F _GETLK command to return the value for a blocking lock.
Locks may start and extend beyond the current end of a file, but
may not be negative relative to the beginning of the file. A lock
may be set to always extend to the end of file by setting Uen to
zero (0). If such a lock also has !..,start set to zero (0), the whole
file will be locked. Changing or unlocking a segment from the mid
dle of a larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by the calling
process causes the old lock type to be removed and the new lock
type to take affect. All locks associated with a file for a given pro
cess are removed when a file descriptor for that file is closed by
that process or the process holding that file descriptor terminates.
Locks are not inherited by a child process in a fork(S) system call.

fcntl fails if one or more of the following is true:

jildes is not a valid open file descriptor. [EBADF]

cmd is F _DUPFD and 60 file descriptors are currently open.
[EMFILE]

cmd is F _DUPFD and arg is negative or greater than 60.
[EINVAL]

cmd is F_GETLK, F_SETLK, or F_SETLKW and arg or the data
it points to is not valid. [EINVAL]

cmd is F _SETLK, the type of lock (l...Jype) is a read (F _RDLCK)
or write (F _ WRLCK) lock and the segment of a file to be locked
is by another process or the type is a write lock and the segment
of a file to be locked is already read or write locked by another
process. [EAGAIN]

cmd is F _SETLK or F _SETLKW, the type of lock is a read or
write lock and there are no more file locks available (too many
segments are locked). [ENOLOCK]

cmd is F _SETLK, the lock is blocked by a lock from another
process and putting the calling process to sleep or waiting for
that lock to become free, would cause a deadlock. [EDEADLK]
or [EDEADLOCK]

June 21, 1987 Page 3

FCNTL (S) FCNTL (S)

Return Value

Upon successful completion, the value returned depends on and as
follows:

F_DUPFD
A new file descriptor

F_GETl:.D
Value of ftag (ouly the low-order bit is defined)

F-.SETFD
Value other than -1

F_GETFL
Value of file flags

F _sp;fFL Value other than -1

F_GEUK
V aluc other than -1

F_SETLK
Value other than -1

F_SETLKW
Value other than -1

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

See Also

close(S), exec(S), Iocld(S), open(S)

Notes

fcntl provides mandatory record locking.

June 21, 1987 Page 4

FERROR (S) FERROR (S)

Name

ferror, feof, clearerr. Itleno - Determines stream status.

Syntax

#Include <stdio.h>

in! feof (stream)
FILE *stream;

int ferror (stream)
FILE •stream

clearerr (stream)
FILE •stream

int meno(stream)
FILE •s tream;

Description

feof returns nonzero when end-of-file is read on the named input
stream, otherwise zero.

ferror returns nonzero when an error has occurred reading or writ
ing the named stream, otherwise zero* Unless cleared by clearerr,
the error indication lasts until the stream is closed�

clearerr resets the error indication on the named stream.

fileno returns the integer file descriptor associated with the stream,
see open (S).

feof, {error, and fileno are implemented as macros; they cannot be
redeclared.

See Also

open(S), fopen(S)

June 21, 1987 Page 1

(
\

FLOOR (S) FLOOR (S)

Name

floor, fabs, ceil, fmod - Performs absolute value, floor, ceiling and
remainder functions.

Syntax

#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double finod (x, y)
double x, y;

double fa bs (x)
double x;

Description

fabs returns Jx J.

floor returns the largest integer (as a double precision number) not
greater than x.

ceil returns the smallest integer not less than x.

[mod returns the number f such that x = iy + f, for some integer i ,
and 0 "5,[<y.

See Also

abs(S)

Notes

These routines must be linked by using the -hn linker option.

June 21, 1987 Page 1

FOPEN (S)

Name

fopen, freopen, fdopen - Opens a stream.

Syntax

#Utdude <stdio.h>

FlLE *fopen (filename, type)
char *filename, *t;ype;

J11LE *freopen (r.Iename, type, stream)
char *fllename, *type;
FILE *stream;

J11LE *fdopen (fildes, type)
int fildes;
char *type;

Description

FOPEN (S)

Jopen opens the file named by filename and associates a stream
with it. fopen r;:turns a pointer to be used to identify tbe stream in
subsequent operations.

type is a character string having one of the following values:

r Open for reading

w Create for writing

a Append; open for writing at end of file, or create for writing

r+ Open for update (reading and writing)

w+ Create for update

a+ Append; open or create for update at end of file

[reopen substitutes the named file in place of the open stream . It
returns the original value of stream. The original stream is closed,
regardless of whether the open call ultimately succeeds.

[reopen is typically used to attach the preopened constant names
stdin, stdout, and stderr to specified files.

June 21, 1987 Page 1

FOPEN (S) FOPEN (S)

fdopen associates a stream with a file descriptor obtained from
open, dup, creat, or pipe (S). The type of the stream must agree
with the mode of the open file. The type must be provided because
the standard 1/0 library has no way to query the type of an open
file descriptor. fdopen returns the new stream.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not'be directly
followed by input without an intervening fseek or rewind, and input
may not be directly followed by output without au intervening
[seek, rewil!d , or an input operation which encounters the end of
the file.

When a file is opened for append (that is, when type is , or
"a+")_. it is impossible to overwrite information already in the ·:file.
fseek may be used to reposition the file pointer to any position in
the file but when output is written to the file, the current file
pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the out
put. If two separate processes open the same file for append, each
process may write freely to the file without fear of destroying output
being written by the other. The output from the two processes will
be intermixed in the file.

See Also

open(S), fclose(S)

Diagnostics

[open and freopen return the pointer NULL if filename cannot be
accessed.

June 21, 1987 Page 2

(�

FORK (S) FORK (S)

Name

fork - Creates a new process.

Syntax

int fork ()

Description

fork causes creation of a new process. The new process (child pro
cess) is an exact copy of the calling process (parent process). This
means the child process inherits the following attributes from the
parent process:

environment

close-on-exec flag (see exec(S))

signal handling settings (that is, SIGJ>FL, SIGJGN, function
address)

set-user-ID mode bit

set-group-ID mode bit

process group ID

tty group ID (see exit(S) and signal(S))

current working directory

root directory

file mode creation mask (see umask(S))

file size limit (see ulimlt(S))

The child process diliers from the parent process in the following
ways:

The child process has a unique process lD.

The child process has a dilierent parent process ID (i.e., the
process ID of the parent process).

The child process has its own copy of the parent's file descrip
tors. Each of the child's file descriptors shares a common file
pointer with the corresponding file descriptor of the parent. .

June 21, 1987 Page 1

FORK (S) FORK (S)

All semadj values are cleared (see semap(S)).

The child process' utime, stime, cutime, and cstime are set to 0;
see times(S).

The time left on the parent's alarm clock is not passed on to the
child.

fork returns a value of 0 to the chfid process.

fork returns the process lD of the child process to the parent pro
cess.

fork will fail and no child process will be created if one or mote of
the following are true:

The system-imposed limit on the total number of processes
under execution would be exceeded. (EAGAIN]

The system-imposed limit on the total number of processes
under execution by a single user would be exceeded. (EAGAIN]

Not enough memory is available to create the forked image.
(ENOMEMJ

Return Value

Upon successful completion, fork returns a value of 0 to the child
process and returns the process lD of the child process to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errrw is set to indicate the
error.

See Also

exec(S), sdget(S), semop(S), shmop(S), wait(S)

June 21, 1987 Page 2

FREAD (S) FREAD (S)

Name

fread, fwrite - Performs buffered binary input and output.

(Syntax

(_

(

#include <stdio.h>

int fread (ptr, size, nitems , stream)
char *ptr;
int size, nitems;
F1LE •stream;

int fwrlte (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
F1LE *stream;

Description

fread reads, into a block beginning at ptr, nitems of data of the
type of *ptr from the named input stream, where an item of data is
a sequence of bytes (not necessarily terminated by a null byte) of
length size. fr.ead stops appending bytes if an end-of-file or error
condition is encountered while reading stream, or if nitems items
have been read. fread leaves the file pointer in stream, if defined,
pointing to the byte following the last byte read, if there is one.
fread does not change the contents of stream. It returns the
number of items actually read.

[write appends at most nitems of data of the type of *ptr beginning
at ptr to the named output stream. [write stops appending when it
has appended nitems items of data or if an error condition is
encountered on stream. [write does not change the contents of the
array pointed to by ptr. [write increments the file pointer in stream,
if defined, by the number of bytes written. It returns the number
of items actually written.

See Also

fopen(S), getc(S), gets(S), printf(S), putc(S), puts(S), read(S),
scanf(S), write(S)

Diagnostics

fread and [write return the number of items read or written. If
sizeof or nitems is non -positive, no characters are read or written
and 0 is returned by both fread and [write .

J uoe 21, 1987 Page 1

(

/
r.

FREXP (S) FREXP (S)

Name

frexp, ldexp, modf - Splits floating-point number into a mantissa
and an exponent.

Syntax

double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

Description

Every non-zero number can be written uniquely as x • 211 wher the
"mantissa" (fraction) x is in the range 0.5 :$; I x < 1.0 and the
"exponent" n is an integer. frexp returns the mantissa of a double
value and stores the exponent indirectly in the location pointed to
by exptr. If value is 0, both results returned by frexp are 0.

ldexp returns the quantity value*(2**exp).

nwdf returns the positive fractional part of value and stores the
integer part indirectly through iptr.

Diagnostics

If ldexp would cause overflow, ± HUGE is returned (according to
the sign of value), and errno is set to ERANGE.

If ldexp would cause underflow, zero is returned and errno is set to
ERANGE.

Notes

These routines must be linked by using the -1m linker option.

June 21, 1987 Page 1

(·� -- -

FSEEK (S) FSEEK (S)

Name

fseek, ftell, rewind - Repositions a file pointer in a stream.

Syntax

#include <std!o.h>

lnt fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptmame�

long ftell (stream)
FlLE *stream�

void rewlnd(stream)
FILE •stream;

Description

fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from
the beginning, the current position. or the end of the file, accord
ing as ptrnarne has the value 0, 1, or 2.

fseek undoes any effects of ungetc(S).

After fseek or rewind, the next operation on an update file may b e
either input or output.

ftell returns the current value of the offset relative to the beginning
of the file associated with the named stream. The offset is meas
ured in bytes.

rewind(stream) is equivalent to fseek(streorn, OL, 0), except that no
value is retumed.

See Also

lseek(S), fopen(S), popen(S), ungetc(S)

Diagnostics

fseek returns nonzero for improper seeks� otherwise z�ro.

June 21, 1987 Page 1

\. __ _

I
\

FTW (S)

Name

ftw - Walks a file tree.

Syntax

#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

Description

FTW (S)

ftw recursively descends the directory hierarchy routed in path. For
each object in the hierarchy, ftw calls fn , passing it a pointer to a
null-terminated character string. This string contains the name of
the object, a pointer to a stat structure with information about the
object, and an integer. Possible values for the integer include
FfW _F for a file, FfW _D for a directory, FfW _DNR for a directory
that cannot be read, and FfW...NS for an object for which stat
could not be successfully executed. These values are defined in the
<ftw.h> header file. If the integer is FfW_DNR, descendants of
the directory will not be processed. If the integer is FfW...NS, the
stat structure will contain meaningless information. For example, a
file in a directory with read but without execute permission could
cause FTW_FN to be passed to fn .

ftw visits a directory before visiting any of its descendants. The file
tree traversal continues until the tree is exhausted, fn returns a
nonzero value, or some error is detected within ftw (for example,
an I/0 error). If the file tree is exhausted, ftw returns zero. If fn
returns a nonzero value, ftw stops traversing the file tree and
returns the value returned by fn. If ftw detects an error, it returns
-1, and sets the error type in errno.

ftw uses one file descriptor for each level in the tree. depth limits
the number of file descriptors. This argument must not be greater
than the number of file descriptors currently available for use.
Zero or negative values for depth are interpreted as 1. ftw will run
more quickly if depth is at least as large as the number of levels in
the tree.

See Also

stat(S), malloc(S)

June 21, 1987 Page 1

FTW(S) FTW (S)

Notes

Because ftw is recursive .. it can terminate with a memory fault when
applied to very deep file structures.

ftw uses malloc(S) to allocate dynamic storage during its operation.
If ftw is forcibly terminated (for example, by longjmp being exe
cuted by fn or by an interrupt routine), ftw will not have a chance
to free that storage, and it will remain permanently allocated. A
safe way to handle interrupts is to store the fact that an interrupt
has occurred, and have fn return a nonzero value at its next invoca
tion.

June 21, 1987 Page 2

/

(

GAMMA (S)

Name

gamma - Performs log gamma function.

Syntax

#include <math.h>
extern int signgam;

double gamma (x)
double x;

Description

GAMMA (S)

gamma returns ln if(ix D 1 . The sign of f(ix D is returned in the
external integer signgam. The following C program fragment might
be used to calculate r:

if((y - gamma (x)) >LN_MAXDOUBLE)
error ();

y - exp (y) * sign gam;

where LN_MAXDOUBLE is the least value that causes exp(S) to
return a range error and is defined in the <values .h> header file.

Diagnostics

For negative integer arguments, a HUGE value is returned and
errno is set to EDOM. A message indicating SING error is printed
on the standard error output.

If the correct value would overflow, gamma returns a HUGE value
and errno is set to ERANGE.

These error-handling procedures may be changed with the
matherr(S) function.

See Also

exp(S), matherr(S)

Notes

These routines must be linked by using the -1m linker option.

June 21, 1987 Page 1

,.
\

GETC (S) GETC (S)

Name

getc, getchar, fgetc, getw - Gets character or word from a stream.

Syntax

#include <stdio.h>

int getc (stream)
FILE *stream;

inl getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

Description

getc and getchar are macros. getc returns the. next character from
the named input stream as an integer. It also moves the file
pointer, if defined, ahead one character in stream. getchar() is
identical to getc (stdin).

fgetc behaves like getc, but is a genuine function, not a macro; it
may therefore be used as an argument. fgetc runs more slowly than
getc, but takes less space per invocation.

getw returns the next word from the named input stream. getw
increments the associated file pointer, if defined, to point to the
next word. The size of a word is the same as an integer and varies
from machine to machine. getw assumes no special alignment in
the file.

See Also

ferror(S), fopen(S), fread(S), gets(S), putc(S), scanf(S)

Diagnostics

These functions return the integer constant EOF at the end-of-file
or upon a read error. Because EOF is a valid integer, ferror(S)
should be used to detect getw errors.

June 21, 1987 Page 1

GETC (S) GETC (S)

Notes

stre11m arguments with side effects are treated inoorrectly because
getc is implemented as a macro. In partlcular, ugetc(*f++)"
doesn't work properly. fgetc should be used instead.

Files written using putw(S) are machine-dependent and may not be ' ,.
read using getw on a different processor because of possible differ-
ences in word length and byte ordering.

Warning

If the integer value returned by getc,, getchar, or fgetc is stored into
a character variable and then compared against the integer constant
EOF_. the comparison may never succeed because sign-extension of
a character on widening to integer is machine-dependent.

June 21, 1987 Page 2

GETCWD (S) GETCWD (S)

Name

getcwd Get the pathname of current working directory.

Syntax

char *getcwd (pnbuf, maxlen)
char *pnbuf;
int maxlen;

Description

getcwd returns a pointer to the current directory pathname. If
pnbuf is a NULL pointer, getcwd will obtain max/en bytes of space
using malloc(S). In this case, the pointer returned by getcwd may
be used as the argument in a subsequent call to free(S). If pnbuf is
not a NULL pointer, then the pathname is placed in the space
pointed to by pnbuf and pnbuf is returned.

In all cases, the value of max/en must be at least two greater than
the length of the pathname to be returned.

getcwd is implemented by using popen(S) to pipe the output of the
/ pwd(C) command into the specified string space.

I
\

Example

char *cwd, *getcwd(};

if ((cwd getcwd((char *)NULL, 64)) �� NULL) {
perror("pwd");
exit(l);

}
printf("%s\n", cwd);

See Also

pwd(C), malloc(S), popen(S)

I une 21, 1987 Page 1

GETCWD (S) GETCWD (S)

Em>rs

[EINV AL] size is zero

[ENOMEM] no space is available

{ERANGEJ size not large enough to hold the path name.

Diagnostics

Returns NULL with errtW set if max/en is not large enough.

Notes

maxlen must be 2 more than the true length of the pathilame.

June 21, 1987 Page 2

(
\

GETENV (S)

Name

getenv - Gets value for environment name.

Syntax

char *getenv (name)
char *name:

Description

GETENV (S)

getenv searches the environment list (see environ(M)) for a string of
the form name::value and returns pointer to the value if such a
string is present. Otherwise a NULL pointer is returned.

See Also

sh(C), exec(S)

June 21, 1987 Page 1

GETGRENT (S) GETGRENT (S)

Name

getgrent, getgrgid, getgmam, setgrent, endgrent - Get group file
entry.

Syntax

#include <grp.h>

struct group •get:grent ();

struct group •get:grgid (gid)
int gld;

struct group *getgrnam (name)
char •name;

int s etgnmt () ;

int endgrent ();

Description

getgrent, getgrgid and getgmam each return pointers. The format
of the structure is defined in /usr/lnclnde/grp.h.

The members of this structure are:

gr....name

gr_passwd

gr_gid

gr..Jllem

The name of the group.

The encrypted password of the group.

The numerical group ID.

Null-tenninated vector of pointers to the indivi
dual member names.

getgrerrt reads the next line of the file, so successive calls may be
used to search the entire file. getgrgid and getgrnam search from
the beginning of the file until a matching gid or name is found, or
end-of-file is encountered.

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. endgrent may be called to close the group file
when processing is complete.

Files

/etc/group

June 21, 1987 Page 1

GETGRENT (S) GETGRENT (S)

See Also

getlogin(S), getpwent(S), group(M)

Diagnostics

A null pointer (0) is returned on end-of-file or error.

Notes

All information is contained in a static area, so it must be copied if
it is to be saved.

June 21, 1987 Page 2

I

GETLOGIN (S) GETLOGIN (S)

Name

getlogin - Gets login name.

Syntax

char *getlogin ();

Description

getlogin returns a pomter to the login name as found m /etc/utmp.
It may be used m conjunction with getpwnam to locate the correct
password file entry when the same user ID is shared by several login
names.

If getlogin is called withm a process that is not attached to a termi
nal device, it returns NULL. The correct procedure for determmmg
the login name is to call cuserid, or to call getlogin and if it fails, tu
call getpwuid.

Files

i�· ·•
/etc/utmp

See Also

cuserid(S), getgrent(S), getpwent(S), utmp(M)

Diagnostics

Returns NULL if name not found.

The return values point to static data whoSe content is overwritten
by each call.

June 21, 1987 Page 1

'
l.

GETOPT (S)

Name

getopt - Gets option letter from argument vector.

Syntax

#include <stdio.h>

int getopt (argc, argv, optstring)
int argc;
char •argv[];
char *optstring;
extern char *optarg;
extern int optind, opterr;

Description

GETOPT (S)

getopt returns the next option letter in argv that matches a letter in
optstring. optstring is a string of recognized option letters; if a
letter is followed by a colon, the option is expected to have an
argument that may or may not be separated from it by whitespace.
optarg is set to point to the start of the option argument on return
from getopt.

getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first nonop
tion argument), getopt returns EOF. The special option - - may be
used to delimit the end of the options; EOF will be retnrned, and -
- will be skipped.

Diagnostics

getopt prints an error message on stderr and returns a question
mark (?) when it encounters ao option letter not included in opt
string. This error message may be disabled by setting opterr to
zero.

June 21, 1987 Page 1

GETOPI' (S) GETOPI' (S)

Examples

The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b, and the options f and o, both of which require
argmnents:

main (argc, argv)
int argc;

·
char **argv;
{

int c;
extern int optind;
:nem char *optarg;
.
while ((c - getopt (argc, argv, "abf:o:"J) !- EOF)

switch (c) { ,

}

June 21, 1987

case 'a':
if (bflg)

errfls>+;
else

afls>+;
break;

case 'bf:

case 1f':

if (aflg)
errflgH;

else
bprocQ;

break;

ifile = optarg;
break;

case 1o':
ofile = optarg;
bufsiza = 512;
break;

case '?1:
errfls>+;

} '
if (errflg) {

fprintf (stderr, "usage: . • . '');
exit (S);

}
for(; optind < argc; optind++) {

if (access (argv[optind], 4)) {

Page 2

GETPASS (S)

Name

getpass - Reads a password.

Syntax

char *getpass (prompt)
char *prompt;

Description

GETPASS (S)

getpass reads a password from the file /dev/tty, or if that cannot be
opened, from the standard input, after prompting with the null
terminated striug prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most eight characters.

Files

/dev/tty

Notes

The return value points to static data whose content is overwritten
by each call.

June 21, 1987 Page 1

GETPID (S) GETPID (S)

Name

getpid, getpgrp, getppid - Gets process, process group, and parent
process IDs.

Synlax

lnt getpid 0

int getpgip ()

lnt getppid ()

Description

getpid returns the process ID of the calling process.

getpgrp returns the process group lD of the calling process.

getppid returns the parent process ID of the calling process.

See Also

exec(S), fork(S), intro(S), setpgrp(S), signal(S)

June 21, 1987 Page 1

(

(

GETPW (S)

Name

getpw - Gets password for a given user ID.

Syntax

int getpw (uid, but)
int uid;
char *buf;

Description

GETPW (S)

getpw searches the password file for the uid, and fills in buf with
the corresponding line; it returns nonzero if uid could not be
found. The line is null-terminated. uid must be an integer value.

Files

I etc/passwd

See Also

getpwent(S), passwd(M)

Diagnostics

Returns nonzero on error.

Notes

This routine is included only for compatibility with prior systems
and should not be used; see getpwent(S) for routines to use instead.

June 21, 1987 Page 1

c

GETPWENT (S) GETPWENT (S)

Name

getpwent, getpwuid, getpwnam, setpwent, endpwent - Gets pass
word file entry.

Syntax

#include <pwd.h>

stroct passwd *getpwent () ;

stroct passwd *getpwuid (uid)
lnt uld;

stroet passwd *getpwnam (name)
ehar *name;

iat setpwent () ;

In! endpwent () ;

Description

getpwent, getpwuid and getpwnam each returns a pointer to a struc
ture containing the fields of an entry line in the password file. The
structure of a password entry is defined in /usr/lnclude/pwd.h.

The fields have meanings described in passwd(M). (The
pw...comment field is unused.)

getpwent reads the next line in the file, so successive calls can be
used to search the entire file. getpwuid and getpwnam search from
the beginning of the flle until a matching uid or name is found, or
EOF is encountered.

A call to setpwent has the effect of rewinding the password file to
allow repeated seaiches. endpwent may be called to close the pass
word file when processing is complete.

Flles

/etc/passwd

See Also

getlogin(S), getgrent(S), passwd(M)

June 21, 1987 Page 1

GETPWENT (S) GETPWENT (S)

Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is contained in a static area so it must be copied if
it is to be saved.

June 21. 1987 Page 2

(

GETS (S)

Name

gets, fgets Gets a string from a stream.

Syntax

#include <stdio.h>

char •gets (s)
char *s;

char •rgets (s, n, stream)
char *s;
int n;
FILE •stream;

Description

GETS (S)

get:l reads a string into s from the standard input stream stdin. The
function replaces the newline character at the end of the string with
a null character before copying to s. gets returns a pointer to s.

fgets reads characters from the stream until a newline character is
encountered or until n-1 characters have been read. The charac
ters are then copied to the string s. A null character is automati
cally appended to the end of the string before copying. fgets
returns a pointer to s.

See Also

ferror(S), fopen(S), fread(S), getc(S), puts(S), scanf(S)

Diagnostics

gets and fgets return the constant pointer NULL upon end-of-file
or error.

Notes

gets deletes the newline ending its input, but fgets keeps it.

June 21, 1987 Page 1

GETUID (S) GETUID (S)

Name

getuid, geteuid, getgid, getegid - Gets real user, effective user, real
group, and effective group IDs.

Syntax

unsigned short getuid 0

unsigned short geteuid 0

unsigned short getgid ()

unsigned short getegid 0

Description

getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

(getegid returns the effective group ID of the calling process.

"--· ·
See Also

intro(S), setuid(S)

c

June 21, 1987 Page 1

(

GETUT (S) GETUT (S)

Name

getutent, getutid, getutline, pututline, setutent, endutent, utmpnarne
- Accesses utmp file entry.

Syntax

#include <sys/types.h>
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp *line;

void pututliue (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (rile)
char *file;

Description

getutent, getutid, and getutline each return a pointer to the follow
ing type of structure:

struct utmp {
char ut_user[8];
char ut_id[4];
char uUine[12];
short ut_pid;
short ut_type;
struct exit_status {

/*User login name*/
/*/etc/inittab id (usually line #)*/
/*device name (console, lnxx)*/
/*process id */
/*type of entry* I

short e_termination /*Process termination status*/
short e_exit; /*The exit status of a process*/

} ut_exit; /*The exit status of a process*/

time_t ut_time;
/*marked as DEADYROCESS.*/
/*Time entry was made*/

};
getutent reads the next entry from a utmp -like file. If the file is not
already open, getutent opens it; when getutent reaches the end of
the file, it fails.

June 21, 1987 Page 1

GETUT (S) GETUT (S)

getutid searches forward from the current point in the utmp file
until it finds an entry with a utJype matching id -> utJype if the
type specified is RUN_L VL, BOOT_TIME, OLD_TIME, or
NEW_TIME. If the type specified in id is INITJ>ROCESS,
LOGINJ>ROCESS, USERJ>ROCESS, or DEADJ>ROCESS, then
getutid returns a pointer to the first entry whose type matches one
of these four types and whose ut...id matches id -> ut_jd. If the
end of the file is reached without a match, getutid fails.

getutline searches forward from the current point in the utmp file
until it reaches an entry of the type LOGIN_pRQCESS or
USERJ>ROCESS which has an utJine string matching the line ->
utJine string. If the end of the file is reached without a match,
getutline fails.

pututline writes out the supplied utmp structure into the ntmp file.
If pututline finds that it is not already in the proper place in the file,
it uses getutid to search forward for the proper place. A user of
pututline could search for the proper place using one of the getut
routines. If putut/ine does not find a matching slot for the new
entry, it adds a new entry to the end of the file.

setutent resets the input stteam to the beginning of the file. This
should be done before each search for a new entry if the user
desires that the entire ftle be examined.

endutent closes the currently opened file.

utmpname allows the user to change the name of the file examined,
from /ete/utmp to any other file. Generally, this other file will be
/ete/wtmp. If this file does not exist, it will not be apparent until
the first attempt to reference the file is made. utmpname does not
open the file; it just closes the old file if open and saves the new
file name.

Files

/etc/utmp
/etclwtmp

See Also

ttyslot(S), utmp(M)

Diagnostics

A NULL pointer is returned upon failure to read (either because of
permissions or the end of the file) or upon failure to write.

June 21, 1987 Page 2

) /

GETUT (S) GETUT (S)

Comments

With these routines, the most current entry is saved in a static
structure. Multiple accesses require that the structure be copied
before further accesses are made. Each call to either getutld or
getutline sees the routine examine the static structure before per
forming more I/0. If the contents of the static structure match
what the routine is searching for, the search stops. For this reason,
to use getutline to search for multiple occurrences, the user must to
remove the static after each success, or getutline will just return the
same pointer over and over again.

There is one exception to the rule of removing the structure before
further reads are done: the implicit read done by pututline (in cases
where it finds that it is not alxeady in the correct place in the file)
will not hurt the contents of the static structure returned by getu
tent, getutid, or getutline routines if the user has just modified those
contents and passed the pointer back to pututline.

These routines used buffered standard I/0 for input, but pututline
uses an unbuffered non-standard -write to avoid race conditions
between processes trying to modify the utmp and wimp files.

June 21, 1987 Page 3

�·!
\

(

HSEARCH (S) HSEARCH (S)

Name

hsearch, bcreate, hdestroy - Manages bash search tables.

Syntax

#Include <search.h>

ENTRY *hsearch (item, action)
ENTRY Item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

Description

hsearch is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. This routine returns a pointer into a hash table indi
cating the location at which an entry can be found. item is a struc
ture of type ENTRY (defined in the <search.h> header file) con
taining two pointers:

item. key points to the comparison key

ltem.data points to any other data associated with the com
parison key

Pointers to types other than character should be cast to pointer
to-character. acticn is a member of an enumeration type ACfiON
indicating the disposition of the entry if it cannot be found in the
table. ENTER indicates that the item should be inserted in the
table at the appropriate point. FIND indicates that no entry should
be made. The retnm of a NULL pointer indicates unsuccessful
resolution.

hcreate makes sufficient space for the table, and must be called
before hsearch is used. nel is an estimate of the highest number of
entries the table will contain. The algoritinn can adjust this number
upwards in order to obtain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by another
call to hcreate. ·

June 21, 1987 Page 1

HSEARCH (S) HSEARCH (S)

hsearch uses open addressing with a multiplicative hash function.
However, its source code has many other optiol18 available which
the user may select by compiling the hsearch source with the follow
ing symbols defined to the preprocessor:

DIY
Use the remsinder modulo table size as the hash function
instead of the multiplicative algorithm.

USCR
Use a User Supplied Comparison Routine for determining table
membership. The routine should be named hcornpar and
should behave in a manner similar to strcmp (see string(S)).

CHAINED
Use a linked list to resolve collisions. If this option is selected,
the user has the following options:

START Place new entries at the beginning of the
linked list (default is at the end).

soRTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in des-
cending order.

In addition, there are preprocessor flags for obtsining debugging
printout (-DDEBUG) and for including a test driver in the calling
routine (-DDRIVER). Consult the source code for further details.

Return Valne

hsearch returns a NULL pointer if either the action is FIND and the
item could not be found or the action is ENTER and the table is
full.

Example

The following fragment of code will read in strings followed by two
numbers and store them in a hash table, discarding duplicates. It
will then read in strings and find the matching entry in the hash
table and print it out:

#include <stdio.h>
#include <search.h>

struct info { /*This is the info stored in the table*/
int age, room; /* other than the key. *I

};
#define NUM..EMPL 5000 /* # of elements in search table */

June 21, 1987 Page 2

!

HSEARCH (S)

main ()
{

t• space to store strings *)
char string.;;pace[NUM_EMPL-20];
t• space to store employee info •t
struct info info_space[NUM...EMPL];
!•next avail space in string_.space */
char •str_ptr - string.;;pace;
/•next avail space in info_space*/
struct info •info....ptr = info_space;
ENTRY item, "found...item, *hsearch ();
!• name to look for in table •!
char name_to_iind[30];
int i = 0;

I* create table */
(void) hcreate(NUM...EMPL);

HSEARCH (S)

while (scan("%s%d%d", str...,ptr, &infor...,ptr ->age,
&info..ptr ->room) != EOF && i++ < NUM_EMPL) {
/*put info in structure, and structure in item •!
itcrn.key = str...,ptr;

}

item.data - (char *)info...,ptr;
str_ptr += strlen(str...,ptr) + 1;
info_ptr++;
I* put item into table •t
(void) hsearch(item, ENTER);

!• access table •/
item.key = name_to_find;
wbile (scanf("%s", item.key) != EOF) {

}
}

if ((found...item = hsearch(item, FIND)) I= NULL) {
t• if item is in the table •I
(void)printf(''found %s, age + % d , room = % d\n",

found...item->key,
((struct info *)found...item->data)->age,
((struct info *)found...item->data)->room);

} else {

}

(void)printf("no such employee % s\n",
name_to_iind)

(See Also
"--

bsearch(S), lsearch(S), malloc(S), string(S), tsearch(S).

June 21, 1987 Page 3

HSEARCH (S) HSEARCH (S)

Diagnosli�s

Returns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTilR and the table is full.

Notes

Only one hash search table may be active at any given time.

Warning

hsearch and hcreate use malloc (S) to allocate space.

June 21, 1987 Page 4

(\

HYJ:'01' {1>)

Name

hypot, cabs - Determines B!lclidean distance.

Syntax

#include <math.h>

double hypot (x, y)
double "• y;

double cabs (z)
stnlct {double x, y;} z;

Description

hypot md cabs return:

sqrt(x:*x + y"y)

Both take precautions against Unwarranted overflows.

See Also

sqrt in exp(S), matherr(S)

Diagnostics

HYPOT (S)

When the correct value reaches overflow, hypot returns a HUGE
value and sets errno to ERANGE.

These' error-hmdling procedures may be changed with the
matherr(S) function.

Notes

These routines must be linked by using the -1m linker option.

June 21, 1987 Page 1

IOCTL (S) IOCTL (S)

Name

ioctl - Controls character devices.

S:yntax

#incl11de <sys/ioetl.h>

int ioetl(fildes, request, arg)
int fildes;

Description

ioctl performs a variety of functions on character special files (dev
ices). Tile arguments request and arg depend on which device ioctl
is being applied to. The writeups of various devices in Section M
discuss how ioctl applies to them.

ioctl fails if .on;: or :mor;: of the following are true:

A signal is caught during ioctl system call. [EINfR)

fildes is not a valid open file descriptor. [EBADF]

fildes is n-ot associated with a character special device.
[ENOTI'Y]

request or arg is not valid. See termio (M). (EIJ\'V AL)

A signal was caught during the ioctl system call. [EINTR]

Retum Valu.e

If an error has occurred, a value of -1 is returned and errno is set
to indicate the error.

See Also

tty(M), termio(M)

J uue 21, 1987 Page 1

KILL (S)

Name

kill - Sends a signal to a process or a group of processes.

Syntax

#include <signal.h>

int kill (pid, sig)
int pid, sig;

Description

KILL (S)

kill sends a signal to a process or a group of processes. The pro
cess or group of processes to which the signal is to be sent is speci
fied by pid. The signal that is to be sent is specified by sig and is
either one from the list given in sigmil(S), or 0. li sig is 0 {the null
signal), error checking is performed but no signal is actually sent.
This can be used to. check the validity of pid.

The real or effective user ID of the sending process must match the
effective user ID of the receiving process unless, the effective user
ID of the sending process is super-user, or the process is sending to
itself.

The processes with a process ID of 0 and a process ID of 1 are spe
cial processes (see intro (S)) and will be referred to below as procO
and procl respectively.

li pid is greater than zero, sig will be sent to the process whose
process ID is equal to pid. pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and
procl whose process group ID is equal to the process group ID of
the sender.

If pid is -1 and the effective user 1D of the sender is not super
user, sig will be sent to all processes excluding procO and procl
whose real user ID is equal to the effective user ID of the sender.

li pid is -1 and the effective user ID of the sender is super-user,
sig will be sent to all processes excluding procO and procl.

If pid is negative but not -1, sig will be sent to all processes whose
process group ID is equal to the absolute value of pid.

June 21, 1987 Page 1

KILL (S) KILL (S)

kal will fail and no signal will b e sent if one or more o f the follow
ing are true:

Sig is not a valid signal number. IEINV AL]

No process can be found eorrespondirtg to that specified by pid.
IESRCH]

The sendirtg process is not sendirtg to itself, its effective user ID
is not super-user, and its effective user ID does not match the
real user JD of the receivirtg process. IEPERM]

Return Value

UpOn sru:cessful completion, a value of 0 is returned. Otherwise, a
v�ue of -1 is re�ed and errno is set to indicate the error.

See Also

kili(C), getpid(S), setpgrp(S), sigual(S)

June 21, 1987 Page 2

L3TOL (S) L3TOL (S)

Name

13tol, ltol3 Converts between 3-byte integers and long integers .

(Syntax

void l3tol (lp, cp, n)
long *Jp;
char *cp;
int n;

void ltol3 (cp, lp, n)
char *cp;
long •Jp;
lnt n;

Description

13tol converts a list of n 3-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by lp .

ltol3 performs the reverse conversion from long integers (lp) to 3-
byte integers (cp).
These functions are useful for file system maintenance where tbe ·
block numbers are 3 bytes long.

See Also

filesystem(F)

June 21, 1987 Page 1

LINK (S) LINK (S)

Name

link - Links a new filename to an existing file.

Syntax

int link (pathl, path2)
char *pathl, *path2;

Description

pathl points to a pathname naming an existing file. path2 paints to
a pathname giving the new filename to be linked. link makes a new
link by creating a new directory entry for the existing file using the
new name. The contents of the existing file can then be accessed
using either name.

link will fail and no link will be created tt one or more of the fol
· lowing are true:

A component of either path prefix is not a directory.
[ENOTDIR]

A component of either path prefix does not e:rist. [ENOENT]

A component of either path prefix denies search permission.
[EACCES]

The file named by pathl does not exist. [ENOENT]

The link named by path2 already e:rists. [EEXIST]

The file named by pathl is a directory and the effective user ID
is not super-user. [EPERM]

The link named by path2 and the file named by pathl are on
difierent logical devines (file systems). [EXDEVJ

path2 points to a null pathname. [ENOENT]

The requested link requires writing in a directory with a mode
that denies write permission. [EACCES]

The requested link reqnires writing in a directory on a read-only
file system. [EROFS]

path points outside the process' allocated address space.
[EFAULT]

June 21, 1987 Page 1

LINK (S) LINK (S)

The maximum number of Jines to a file is exceeded. [EMLINK]

The directory to contain the file cannot be extended. [ENOSPC]

Return Value

When the linking procedure is successfully completed, a value of 0
is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also

ln(C}, nnllnk(S)

June 21, 1987 Page 2

LOCK (S)

Name

lock - Locks a process in primary memory.

Syntax

int lock(flag);
int flag;

Description

LOCK (S)

If the flag argument is nonzero, the process executing this call will
not be swapped except if it is required to grow. If the argument is
zero, the process is unlocked. This call may only be executed by
the super-user.

Notes

locked processes interfere with the compaction of primary memory
and can cause deadlock. Systems with small memory configura
tions should avoid using this call. It is best to lock process soon
after booting because that will tend to lock them into one end of
memory.

This feature is a XENIX specific enhancement and may not be
present in all UNIX implementations. This routine must be linked
using the linker option -lx.

June 21, 1987 Page 1

LOCKF (S)

Name

lock:f - Provide semaphores and record locking on files.

Syntax

#include <unistd.h>

int Joekf(mdes, function, size)
long size;
int rtldes, function;

Description

LOCKF (S)

lockf locks a specified region of the file given by the file descriptor,
fildes , against access by all other processes. Other processes which
attempt to use the locked region will either return an error or wait
until the region is unlocked. More than one region in a file can be
locked. When the process closes the file (or terminates), all locks ·
are removed. See fcnti(S) for more information about record lock
ing.

fildes is an open file descriptor. The file descriptor must have
0_ WRONL Y or O_RDWR permission in order to establish a lock
with the /ockf function call.

The function argument specifies what action to lake. The possible
values are defined in <unistd.h> and as follows:

F_ULOCK
Unlock a previously locked region.

F_LOCK
Lock the region for exclusive use. If the region is not avail
able, the calling process sleeps until the region is available.

F_TLOCK
Test for locks, then lock the region for exclusive use. If the
region is not available, li;Jckf returns immediately and sets
errno to EAGAIN .

F_TEST
Test the region for other processes' locks. This argument is
used to determine whether or not another process has placed
a lock on the specified region.

The size argument is the number of contiguous bytes to be locked
or unlocked. The region to be locked starts at the current position
in the file and extends forward for a positive size and backward for
a negative size (the preceding bytes up to bnt not including the

June 21, 1987 Page 1

LOCKF (S) LOCKF (S)

cUl'l"elll offset). If the siu is 0, the region extends from the current
position in the file to the current or future end of the file. An area
does not need to be allocated to the file in order to be locked as
such locks may exist past the end-of-file.

The sections locked with F .LOCK or F _TLOCK may, in whole or in
part, contain or be contained by a previously locked region for the
same process. When this occurs, or if overlapping regions occur,
the regions are combined. If the request requires that a new ele
ment be edded to the table of active locks and this table is already
full, an [EDEADLK] (or [EDEADLOCK]) error is returned and
the new region is not locked.

·

FJ-OCK and F_TLOCK requests differ only by the action taken if
the resource is not available. F .LOCK will cause the calling process
to sleep until the resource is available. F _TLOCK will cause the
f].Ulction ·to return a -1 at1d set errno to [EAGAINJ error if the
region is already locked by another process.

F _ULOCK requests may, in whole or in part, release one or more
locked regions controlled by the process. When regions are not
fully released, the remaining regions are still locked by the process.
Releasing the center region of a locked region requires an addi
tional element in the table of active locks. If this table is full, an
[BDEADLK] (or [EDEADLOCKD error is returned and the
requested region is not released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Therefore, calls to lockf(S) or fcntl(S) scan for a
deadlock prior to sleeping on a locked resource. An [EDEADLK]
(or [EDEADLOCK]) error return is made if sleeping on the locked
resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(S)
routine may be .used to provide a timeout facility in applications
that require this facility.

The lockf routine will fail if one or more of the following are trne:

fildes is not a valid open descriptor. [EBADF]

cmd is F _TLOCK or F _TEST and the region is already locked by
another process. [EAGAIN]

cmd is F ...LOCK or F_TLOCK and a deadlock occurs. Also the
cmd is either of the above or F _ULOCK, and there are not
enough entries in the system lock table to honor the request.
[EDEADLK] or [EDEADWCK]

June 21, 1987 Page 2

LOCKF (S) LOCKF (S)

Return Values

When the lock routine is successfully completed, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also

alarm(S), chmod(S), close(S), creat(S), fcntl(S), open(S), read(S),
write(S),

Notes

Record and file locking should not be used in combination with the
standard I/0 routines, such as fopen(S), fread (S), and fwrite (S).
Instead, the more primitive, non-buffered routines such as open(S)
should be used. Unexpected results may occur in processes that do
buffering in the user address space. The process may later
read/write data which is or was locked.

June 21, 1987 Page 3

(

('

c /

LOCKING (S) LOCKING (S)

Name

locking - Locks or unlocks a file region for reading or writing.

Syntax

#include <sys/types.h>
#include <sys/locking.h>

int locking(fildes, mode, size);
int flldes, mode;
long size;

Description

locking allows a specified number of bytes iu a file to be controlled
by the locking process. Other processes which attempt to read or
write a portion of the file contaiuiug the locked region may sleep
until the area becomes unlocked depending upon the mode in
which tbe file region was locked.

A file must be open with read or read/write permission for a read
lock to be performed. Write or read/write permission is required
for a write lock. If either of these conditions are not met, the lock
will fail witb the error EINV AL.

A process !bat attempts to write to or read a file region that has
been locked agaiust readiug and writiug by another process (usiug
the LKLOCK or LK...NBLCK mode) will sleep until the region of
the file has been released by the lockiug process.

A process that attempts to write to a file region that has been
locked agaiust writiug by another process (usiug the LK...RLCK or
LK_NBRLCK mode) will sleep until the region of the file has been
released by the lockiug process, but a read request for that file
region will proceed normally.

A process that attempts to lock a region of a file that contaius
areas that have been locked by other processes will sleep if it has
specified the LK_LOCK or LK...RLCK mode in its lock request, but
will return with tbe error EACCES if it specified LK..NBLCK or
LK..NBRLCK.

fildes is the value returned from a successful creat, open, dup, or
pipe system call.

June 21, 1987 Page 1

LOCKING (S)

mode specifies the type of lock operation to be performed on the
file region. The available values for mode are:

LK....UNLCK O
Unlocks the specified region. The calling process releases a ·
region of the file it had previously locked.

LKJ>OCK 1
Locks the specified region. The calling process will sleep until
the entire region is available if any part of it has been locked by
a different process. The region is then locked for the calling
process and no other process may read or write in any part of
the locked region. (lock against read and write).

LK....NBLCK 2
Locks the specified region. If any part of the region is already
locked by a different process, return the error EACCES instead
of waiting for the region to become available for locking (non
blocking lockrequest).

LK...RLCK 3
Same as LK....LOCK except that the locked region may be read by
other processes (read permitted lock).

LK....NBRLCK 4
Same as LKJ>.l>LCK except that the locked region may be read
by other processes (nonblocking, read permitted lock}.

The locking utility uses the current file pointer position as the start
ing point for the locking of the file segment. So a typical sequence
of commands to lock a specific range within a file might be as fol
lows:

fd-open("datafile", O....RDWR);
lseek(fd, 200L, 0);
locking(fd, LK..LOCK, 200L);

Accordingly, to lock or unlock an entire file a seek to the beginning
of the file (position 0) must be done and then a locking call must be
executed with a size of 0.

size is the number of contiguous bytes to be locked or unlocked.
The region to be locked starts at the current offset in the file. If
size is 0, the entire file (up to a maximum of 2 to the power of 30
bytes) is locked or unlocked. size may extend beyond the end of
the file, in which case only the process issuing the lock call may
access or add information to the file within the boundaty defined by
size.

June 21, 1987 Page 2

LOCKING (S) LOCKING (S)

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process' locked
area. Thus calls to locking, read, or write scan for a deadlock prior
to sleeping on a locked region. An EDEADLK (or EDEADLOCK)
error return is made if sleeping on the locked region would cause a
deadlock.

Lock requests may, in whole or part, contain or b e contained by a
previously locked region for the same process. When this occurs,
or when adjacent regions are locked, U1e regions are combined into
a single area if the mode of the lock is the same (i.e.; either read
perrnit1ed or regular lock). If the mode of the overlapping locks
differ, the locked areas will be assigned assuming that the most
recent request must be satisfied. Thus if a read only lock is applied
to a region, or part of a region, that had been previously locked by
the same process against both reading and writing, the area of the
file specified by the new lock will be locked for read ouly, while the
remaining region, if any, will remain locked against reading and
writing. There is no arbitrary limit to the number of regions which
may be locked in a file. There is however a system-wide limit on
the total number of locked regions. This limit is 200 for XENIX
systems.

Unlock requests may: in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process.
Release of the center section of a locked area requires an addi
tional locked element to hold the separated section. If the Jock
table is full� an error is returned, and the requested region is not
released. Only the process which locked the file region may unlock
it. An unlock request for a region that the process does not have
locked, or that is already unlocked, has no effect. When a process
terminates, all lccked regions controlled by that process are
unlocked.

If a process has done more than one open on a file, all locks put
on the file by that process will be released on the first close of the
file.

Although no error is returned if locks are applied to special files or
pipes, read/write operations on these cypes of files will ignore the
locks. Locks may not be applied to a directory.

See Also

c creat(S), open(S), read(S), write(S), dup(S), cinse(S), lseek(S)

Diagnostics

locki.ng returns the value (int) - 1 if an error occurs. If any portion
of the region has been locked by another process for the LK...LOCK

June 21, 1987 Page 3

and LK..:RLCK actions and the lock request is to test only, errno is
set to EAGAlN when used with XENIX System V binaries. If the
binary using this routine is a XENIX 3.0 binary, this errno is set to
EACCES. Jf the file specified is a directory, errno is set to
EACCES. Jf locking the region would cause a deadlock, errno is
set to EDEADLK (or EDEADLOCK). If there are no more free
internal locks, ermo is set to EDEADLK (or EDEADLOCK).

Notes

Thls routine must be linked with the linker option -lx.

June 21, 1987 Page 4

LOGNAME (S)

Name

Jogname - Finds login name of user.

i Syntax \
char •Jogname();

Description

LOGNAME (S)

wgname returns the current user name from login to stdout.

Files

/etc/profile

See Also

env(C), login(M), profile(M), envixon(M)

(

June 21, 1987 Page 1

LSEARCH (S) LSEARCH (S)

Name

lsearch, lfind - Performs linear search and update.

(Syntax

c

c)

#include <stdio.h>
#include <search.h>
char *]search (key, base, ne]p, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar)O;

char *lf'md (key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar) O;

Description

/search is a linear search routine generalized from Knuth (6.1)
Algorithm Q. It returns a pointer into a table indicating the loca
tion at which a datum may be found. If the item does not occur, it
is added at the end of the table. The first argument is a pointer to
the datum to be located in the table. The second argument is a
pointer to the base of the table. The third argument is the address
of an integer containing the number of items in the table. It is
incremented if the item is added to the table. The fourth argument
is the width of an element in bytes. The last argument is the name
of the comparison routine. It is called with two arguments which
are pointers to the elements being compared. The routine must
return zero if the items are equal, and nonzero otherwise.

lfind is the same as /search except that if the datum is not found, it
is not added to the table.

Example

This fragment of code will read � TABSIZE strings of length �
ELSIZE and store them in a table, eliminating duplicates:

#include <stdio.h>
#include <search.h>

#define TABSIZE 50

June 21, 1987 Page 1

LSEARCH (S) LSEARCH (S)

#define ELSIZE 120

char line(ELSIZE], tab(TABSIZE](ELSIZE), *!search();
unsigned nel = 0;
int strcmp() ;
while (fgets(line, ELSIZE, stdin) != NULL &&

nel < TABSIZE)

See Also

(void) lsearch(line, (char •)tab, &nel,
ELSIZE, strcmp);

bsearch(S), hsearch(S), qsort(S), tsearch(S)

Diagnostics

Jf the datum searched for is found, both /search and /find return a
pointer to it. Otherwise, /find retums NULL and L•earch returns a
pointer to the newly added element.

Notes

The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to
character.

The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.

Although declared as type yointer-to-character, the value returned
should be cast into type pomter-to-element

Unpredictable events can occur if there is not enough room in the
table to add a new item.

June 21, 1987 Page 2

LSEEK (S) LSEEK (S)

Name

lseek - Moves read/write file pointer.

Syntax

long lseek (lildes, offset, whence)
int lildes;
long offset;
int wbence;

Description

flldes is a file descriptor returned from a creat, open , dup , or fcntl
system call. /seek sets the file pointer associated with fildes as fol
lows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful compJetionJ the resulting pointer location as meas
ured in bytes from the beginning of tbe file is returned.

/seek will fail and the file pointer will remain unchanged if one or
more of the following are true:

fildes is not an open file descriptor. [EBADF]

fi/des is associated with a pipe or fifo. [ESPIPE]

whence is not 0, 1 or 2. [EINV AL and SIGSYS signal)

The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

Retum Value

Upon successful completion, a nonnegative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

June 21, 1987 Page 1

L.!:it£I!K l :.')

See Also

creat(S), dup(S), fcntl(S), open(S)

June 21, 1987

LSEEK (S)

Page 2

r
I

MALLOC (S) MALL OC (S)

Name

malloc, free� realloc, calloc - Allocates main memory.

Syntax

char *malloc (size) unsigned size;

void free (ptr)
char *ptr;

char •realloc (ptr, size)
char *ptr;
unsigned size;

char •calloe (nelem, elslze)
unsigned nelem, els:i7.e;

Description

There are two versions of the ma/Joc(S) package. Both versions are
documented in these mallnc(S) manual pages; the description for
the other package starts on page 3. This portion of the manual
page documents the standard, default mallnc (S) package. This ver
sion of malloc and free provide a simple general-purpose memory
allocation package. malloc returns a pointer to a block of at least
size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by
mallnc; tbis space is made available for further allocation, but its
contents are left undisturbed.

Undefined results will occur lf space assigued by ma/loc is overrun
or if some random number is handed to free.

malloc allocates the first contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing
adjacent free blocks as it searches. It calls sbrk (see sbrk(S)) to get
more memory from the system when there is no suitable space
already free.

realloc changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents
will be unchanged up to the lesser of the new and old sizes. If no
free block of size bytes is available in the storage arena, then realloc
will ask malloc to enlarge the arena by size bytes and will then move
the data to the new space.

June 21, 1987 Page 1

MALLOC (S) MALLOC (S)

reaRoc also works if ptr points to a block freed since the last call of
mal/oc, realloc, or cal/oc; thus sequences of free, maRoc and real
foe can exploit the search strategy of malloc to do storage compac
tion.

calloc allocates space for au array of Mlem elements of size elsi:t;e.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any tjpe of
object.

See Also

brkct!(S), malloc(S), sbrk(S)

Diagnostics

malloc, reaRoc and cal/oc return a null pointer (0) if there is no
available memory or if the area has been delectably corrupted by
storing outside the bounds of a block. When real/oc returns 0, the
block pointed to by ptr may be destroyed.

Note

As noted, mal/oc calls sbrk to allocate memory. Since sbrk takes a
signed integer as its argument, maRoc will fall if au attempt is made
to allocate more memory than a signed integer will hold (32K -1).

Search time increases when many objects have been allocated; that
is, if a program allocates but never frees, then each successive allo
cation takes longer. For an alternate and more flexible implemen
tation see the malloc(S) documented on pages 3-5 of this manual
entry.

June 21, 1987 Page 2

c

MALLOC (S) MALLOC (S)

Name

malloc, free, realloc, calloc, mallopt, mallinfo - Allocates main
memory quickly.

Syntax

#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char •realloc (ptr, size)
char *ptr;
unsigned size;

char •calloc (nelem� elsize)
unsigned nelem, elsize;

iut mallopt (cmd, value)
int cmd, value;

struct malliufo malliufo

Description

There are two versions of the malloc(S) package. This is the library
version which provides a simple general-purpose memory allocation
package, that runs considerably faster than the other ma/loc(S)
package. Both versions are documented in these malloc(S) manual
pages; the description of the standard default package starts on
page 1.

This malloc(S) package is fo11nd in the library "malloc" and is
loaded when the option -hnalloc is used with cc(CP) or /d(CP).

malloc retnms a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated by
ma/loc; after free is performed this space is made available for
fnrther allocation, and its contents destroyed (see mallopt below
for a way to change this behavior).

Undefined results occur if the space assigned by ma/loc is overrun
or if some random number is handed to free.

June 21, 1987 Page 3

MALLOC (S) MALLOC (S)

rea/Joe changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents
will be unchanged up to the lesser of the new and old sizes.

ca/loc allocates space for an array of nelem elements of size e[size.
The space is initialized to zeros.

ma/lopt provides for control over the allocation algorithm. The
available values for cmd are:

M..MXFAST
Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The defanlt value for max{tlst is
0.

M...NLBLKS
Set numfb/ks to value. The above mentioned "large
groups" each contain numlblks blocks. numlblks must
be greater than 0. The default value for numlblks is
100.

M....GRAIN Set grain to value. The sizes of all blocks smaller than
17Ulx{ast are considered to be rounded up to the nearest
multiple of grain. grain must be greater than 0. The
default value of grain is the smallest number of bytes
which will allow alignment of any data type. value will
be rounded up to a multiple of the default when grain
is set.

M....KEEP Preserve data in a freed block until the next 17Wlloc,
realloc, or calloc. This option is provided only for
compatibility with the old version of 17Ullloc and is not
recommended.

These values are defined in t.he <maDoc.h> header file.

mal/opt may be called repeatedly, but may not be called after the
fust small block is allocated.

mal/info provides instrumentation descnbing space usage. It
returns the ;otructure:

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;

June 21, 1987

!• total space in arena */
!• number of ordinary blocks *I
I* number of small blocks */
I* space in holding block headers */
I* number of holding blocks */
t• space in small blocks in use •t
I* space in free small blocks */
!• space in ordinary blocks in use */

Page 4

(

MALLOC (S) MALLOC (S)

}

int fordblks;
int keepcost;

I* space in free ordinary blocks */
/* space penalty if keep option */
I* ill used */

This structure is defined in tbe <malloc.h> header file.

Each of tbe allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
objeet.

See Also

XENIX Programmer's Guide
brkctl(S), malloc(S), sbrk(S)

Dla gnostics

mctlloc, realloc and calloc return a NULL pointer if there is not
enough available memory. When rea/Joe returns NULL, tbe block
pointed to by ptr is left intact. If mallopt is called after any alloca
tion or if cmd or value arc invaHd, non-zero is returned. Other
wise, it returns zero.

Warnings

Thill package usually uses more data space than tbe other
mctlloc(S).

The code size is also bigger than tbe other malloc(S).

Note that unlike tbe other mctlloc(S), this package does not
preserve tbe contents of a block when it is freed, unless the
M...KEEP option of mallopt is used.

Undocumented features of the other malloc(S) have not been.
duplicated.

These routines must be linked with the -Jmalloc linker option.

June 21, 1987 Page S

(

MATHERR (S)

Name

matherr - Error-handling function.

Syntax

#include <math,h>

lnt matherr (x)
stroct exception *x;

Description

MA THERR (S)

mntherr i s invoked by functions ln the Math Lib rary when errors
are detected. Users may define their own procedures for handling
errors, by including a function named mntherr ln their programs.
mntherr must be of the form described above. When an error
occurs, a �?"inter to the exception structure x will be passed to the
user-supplied matherr function. This structure, which is defined in
the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

};
The element type is an integer describing the type of error that has
occurred, from tbe following list of constants (defined in the
header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

argument domain error
argument singularity
overflow range error
underflow range error
total loss of significance
partial loss of significance

The element nam£ points to a string containing the name of the
function that incurred the error. The variables argl and arg2 are
the arguments with which the function was invoked. retval is set to
the default value that will be returned by the function unless the
user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message
will be printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling
procedures, descnbed with the math functions involved, will be
invoked upon error. These procedures are also summarized in the

June 21, 1987 Page 1

MATHERR (S) MATHERR (S)

table below. In every case, ermo is set to EDOM or ERANGE and
the program continues.

Example

#include <math.h>

int
matherr(x)
register struct exception *x;
{

}

switch (x-> type) {
case DOMAIN:

I*
• change sqrt to return sqrt(-arg1), not 0
•I

if (!strcmp(x->name, "sqrt")) {
x->retva.l - sqrt(-x->arg1);
return (0);

I*
:/tint message and set errn.o

}
case SING:

I*
• all other domain or sing errors,
:,rint message and abort

fprlntf(stderr� 11doma.in error in °/os\n'\ x->name);
abort();

case PLOSS:

}

I*
* print deuilled error me�age
*I

fprintf(stderr, .,oss of significance in %s(%g) - %g\n",
x->name, x->arg1, x->retval);

return (1);
I*
• take no other action
*I

return (0);
I•
• all other errors, execute default procedure
*I

June 21, 1987 Page 2

MATHERR (S)

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors

- :DOMAIN SING OVERFLOW UNDERFLOW
,. JIDOM EDOM ERANGE ERANGE

BESSEL: - - - ' -

l..o, vl, = faro < 0\M, -H - -
l..xr, - - H 0

LOGI LOG10!

(axg < �� M, -B - -

i�- o - M -H - -

POWo - - ±H 0
eg .. non�int M, O - -

0 •• non� nos

SQRT: M O - - -
GAMMA: - M, H H -

HYPOT: - - H -

±H
'

""" - - ' -

k-nsHo - - H -

IN COS, TAN: - -

ASIN, ACOS•
ATAN2: M O -

ABBREVIATIONS
•

M
H

-H
±H
n

As much as possible of the value is returned .
Message ;. printed (EDOM error).

Notes

HUGE is returned*
-HUGE is returned.
HUGE or -HUGE is returned.
0 is: r . ..1.

MATHERR (S)

n.oss PLOSS
ERANGE ERANGE

M, O • '
- -

- -

- -
- -
- -
- -

- -
- -

- -
- -

-

M, O •

- -

These routines must be linked by using tbe -bn linker option.

June 21, 1987 Page 3

MEMORY (S) MEMORY (S)

Name

memccpy, memchr� memcmp, memcpy, memset � Memory opera
tions.

Syntax

#include <memory .h>

char *memccpy (sl, s2� c� n)
char *sl, *s2;
int c, n;

char *memchr (s,c,n)
char *s�
int c, n;

int memcmp (s 1, s 2, n)
char *s 1, 4s2;
int n;

char •memepy (sl, s2, n)
char *s 1, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n;

Description

These functions operate as efficiently as possible on memory areas;
however, they do not check for the overflow of any receiving
memory area. Memory areas are arrays of characters bounded by a
count, not terminated by a null character.

nwmccpy copies characters from memory area s2 into sl, stopping
after the first occurrence of character c has been copied, or after n
characters have been copied, whlchever comes first. It returns a
pointer to tbe character after tbe copy of c in sl. If c was not
found in the first n characters of s2, memccpy returns a NULL
pointer.

memchr returns a pointer to the first occurrence of character C in
the first n characters of memory area s. If c does not occur, this
functinn returns a �ULL pointer.

June 21, 1987 Page 1

MEMORY (S) MEMORY (S)

memcmp compares its arguments, looking at the first n characters
only, and returns an integer. This integer will be less than, equal
to, or. greater than 0 according to whether sl is lexicographically
less than, equal to, or greater than s2.

memcpy copies n characters from memory area s2 to sl. It returns
sl .

memset sets the first n characters in memory area s to the valne of
character c. It returns s .

These routines are declared in the <memory.h> header file.

Notes

memcmp uses native character comparison, which is signed on
some systems and unsigned on others; therefore, the sign of the
value returned is device-dependent when one of the charll{)ters has
its high-order bit set.

Character movement is performed differently in different imple
mentations, so overlapping moves may yield unexpected results.

June 21, 1987 Page 2

c

MKNOD (S) MKNOD (S)

Name

mknod - Makes a directory, or a special or ordinary file.

Syntax

int mknod (path, mode, dev)
char *path;
int mode, dev;

Description

mknod creates a new file named by the pathname pointed to by
path. The mode of the new file is initialized from mode. Where
the value of mode is interpreted as follows:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 Directory
0050000 Name special file
0060000 Block special
0100000 or 0000000 Ordinary file

(XX)4()()() Set user ID on execution

0002000 Set group ID on execution

0001000 Save text image after execution

OCI:XJ777 Access permissions; constructed from the following
0000400 Read by owner
0000200 Write by owner
0000100 Execute (search on directory) by owner
0000070 Read, write, execute (search) by group
0000007 Read, write, execute (search) by others

Values of mode other than those above are undefined aud should
not be used.

The file's owner ID is set to the process' effective user ID. The
file's group ID is set to the process' effective group ID.

The low-order 9 bits of mode are modified by the process' file
mode creation mask: all bits set in the process' file mode creation
mask are cleared. See umask(S). H mode indicates a block, char
acter, or name special file, then dev is a configuration-dependent
specification of a character or block 1/0 device. Jf mode does not
indicate a block, character, or name special file, then dev is
ignored. For block and character special files, dev is the special

June 21, 1987 Page 1

MKNOD (S) MKNOD (S)

file's device number. For name special files, dev is the type of the
name file, either a shared memory file or a semaphore.

mknod may be invoked only by the super-user for file types other
than named pipe-special files.

mknod will fail and the new file will not be created if one or more
of the following are true:

The process' effective user lD is not super-user. [EPERM)

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT)

A component of the path prefix denies search permission.
[EACCES]

The directory in which the file is to be created is located on a
read-only file system. [EROFS]

The named file exists. [EEXIST)

path points outside the process' allocated address space.
[EFAULT)

The directory to contain the new file cannot be extended.
[ENOSPC]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

See Also

chmod(S), creatsem(S), exec(S), filesystem(F), mkdir(C),
mknod(C), sdget(S), umask(S),

Notes

Semaphore files should be created with the 'creamem(S) system call.

Share data files should be created with the sdget(S) system call.

June 21, 1987 Page 2

MKTEMP (S) MKTEMP (S)

Name

mktemp - Makes a unique filename.

(Syntax

c

char *mktemp(template)
char *template;

Description

mktemp replaces template with a unique filename and returns the
address of template. The template should look like a filename with
six trailing X's, which will be replaced with the current process ID
preceded by a letter. The Jetter will be chosen so that the resulting
name does not duplicate an existing file.

See Also

getpid(S), tmpfile(S), trnpnam(S)

Notes

It is possible to run out of letters.

June 21, 1987 Page 1

(
\ '-- -

c

MONITOR (S)

Name

monitor - Prepares execution profile.

Syntax

void monitor (Iowpc,highpc,bufTer,bufsize,nfunc)
int (•Jowpc) (), (0highpc) ();
short *buffer;
int bufsize, nfunc;

Description

MONITOR (S)

monitor is an interface to profil(S). lowpc and highpc are ·the
addresses of two functions; buffer is the address of a user-supplied
array of bufsize short integers. monitor arranges to record a histo
gram of periodically sampled values of the program counter, and of
counts of calls of certain functions, in the buffer. The lowest
address sampled is that of lowpc and the highest is just below
highpc. At most nfunc call counts can be kept; only calls of func
tions compiled with the profiling option -p of cc(CP) are
recorded. For the results to be significant, especially where there
are small, heavily used routines, it is suggested that the buffer be no
more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext();

monitor((int (•)())2, etext, buf, bufsize, nfunc);

etext lies just above all the program text.

To stop execution monitoring and write the results on the file
mon.out, use

monitor((int (•)())0);

prof(CP) can then be used to examine the results.

Files

mon.out

See Also

cc(CP), prof{CP), profii{S)

June 21, 1987 Page 1

MONITOR (S) MONITOR (S)

Notes

An executable program created by cc -p automatically includes
calls for mJ)nifor with default parameters; monitor needn't be called
explicitly except to gain fine control over profiling.

Warning

Profiling gives incorrect results for hybrid model 286 programs (i.e.
those with 16 bit text pointers within modules and 32 bit text
pointers between modules).

June 21, 1987 Page 2

c

MOUNT (S) MOUNT (S)

Name

mount Mounts a file system.

Syntax

int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

Description
moMt requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identi
fied by dir. spec and dir are pointers to pathnames.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwf/ag is used to control write permission on
the mounted file system; if 1, writing is forbidden, otherwise writing
is permitted according to individual file accessibility.

mount may be invoked only by the super-user.

mount will fail if one or more of the following are true:

The effective user ID is not super-user. IEPERM]

Any of the named files does not exist. IENOENT]

A component of a path prefix is not a directory. IENOTDIR]

spec is not a block special device. IENOTBLK]

The device associated with spec does not exist. IENXIO]

dir is not a directory. IENOTDIR]

spec or dir points outside the process' allocated address space.
[P..FAULT]

dir is currently mounted on, is someone's current working direc
tory, or is otherwise busy. IEBUSY]

The device associated with spec is currently mounted. IEllUSY]

There are no more mount table entries. IEBUSY]

June 21, 1987 Page 1

MOUNT (S) MOUNT (S)

Retum Value

Upon successful completion a value of (} is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

mount(C), umount(S)

June 21, 1987 Page 2

(

MSGCTL (S) MSGCTL (S)

Name

msgctl Provides message control operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid� cmd;
struct msquid_ds *buf;

Description

msgctl provides for message control operations specified by cmd.

The cmds available are:

IPC_.STAT
Places the current value of each member of the data
structure associated with msqid into the structure pointed
to by buf. Contents of this structure are defined in
intro (S).

IPC_.SET Sets the value of the following members of the data struc
ture associated with msqid into the structure pointed to by
b«f:

msg..perm. uid
msg..perm.gid
msg..perm.mod !• only low 9 bits*/
msg_.q bytes

This cmd can only be executed by a process that has an
effective user ID equal to either a super-user or to the
value of msg_perm.uid in the data structure associated
with msqid. Only a super-user can raise the value of
msg...JJbytes .

IPC...R.MID
Removes the message queue identifier specified by msqid
from the gystem and destroys the message queue and data
structure associated with it. This cmd can only be exe
cuted by a process that has an effective user ID equal to
either a super-user or to the value of msg_:perm.uid in the
data structure associated with msqid.

June 21, 1987 Page l

MSGCTL (S) MSGCTL (S)

msgctl will fail if one or more of the following are true:

msqid is not a valid message queue identifier. [EINVAL]

cmd is not a valid cOillilU!Ild. IEINVAL]

cmd is equal to IPC...STA T and buf points to an address in
read-only shared data. !EINVAL]

cmd is equal to IPC....STAT and read oeeration permission is
denied to the calling process (see intro (S)). {EACCES]

cmd is equal to IPC_RMID or IPC....SET. The effective user
ID of the calling process does not equal that of a super-user
nor does it equal the value of msg...;perm. uid in the data struc
ture associated with msqid. [EPERM]

Cmd is equal to IPC....SET, an attempt is being made to
increase to the value of msg...llb;rtes, and the effective user ID
of the calling process is not equal to that of soper user.

buf points to an illegal address. [EPAULT]

Return Value

A value of 0 is retumed upon successful completion. Otherwise,
-1 is returned and errno is set to indicate the error.

See Also

intro (S), msgget(S), msgop(S)

Notes

Programs using this function must be compiled with the -Me com
piler option.

June 21, 1987 Page 2

('

(

MSGGET (S)

Name

msgget - Gets message queue.

Syntax

#include <sys/lypes.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

Description

MSGGET (S)

msgget returns the message queue identifier associated with key .

A message queue identifier, an associated message queue, and data
structure (see intra (S)) are created for key if one of the following is
true:

key is equal to IPCJ'RIV ATE .

key does not already have a message queue identifier associated
with it, aud (msgflg & IPC_CREAT) is "true".

Values for the data structure associated with the new message
queue identifier are initialized as follows:

msg_penn.cuid and msg_penn.uid are set equal to the effective
user ID of the calliug process. msg_perm.cgid and
msg_perm.gid are set equal to the effective group ID of the cal
ling process.

The low-order 9 bits of msg_perm.mode are set equal to the
low-order 9 bits of msgflg.

msg_qnum,msg_Jspid,msg_)rpid, and msg_rtime are set equal
to 0.

msg_ctime is set equal to the current time.

ms g_q bytes is set equal to the system limit.

msgget fails if one or more of the following is true:

A message queue identifier exists for key ; however, operation
permission as specified by the low-order 9 bits of msgflg would
not be granted (see intro(S)). [EACCES]

June 21, 1987 Page 1

MSGGET (S) MSGGET (S)

A message queue identifier does not exist for key and (msgfig &
IPC_CREAT) is "false". [ENOENT]

A message queue identifier would be created but the system-
imposed limit on tbe maximum number of allowed message /
queue identifiers for the system would be exceeded. [ENOSPC]

A message queue identifier exists for the key but ((msgfig &
IPC__CREAT) & (msgfig && IPC...EXCL)) is "true". [EEXIST]

Return Value

Upon successful completion, the message queue identifier is
returned. This is a non-negative integer. Otherwise, a value of -1
is returned and errno is set to indicate the error.

See Also

intro(S), msgctl(S), msgop(S).

Notes

Programs using this function must be compiled witb the -Me com
piler option.

June 21, 1987 Page 2

MSGOP (S)

Name

msgop Message operations.

/ S)'lltaX

#include <sys/types.h>
#include <sys /ipc.h>
#include <sys/msg.h>

lnt msgsnd (msqid, msgp, msgsz, msgflg)
lnt msquid;
struct msgbuf *msgp;
int msgsz, msgflg;

lnt msgrcv (msqid, msgp, msgsz, msgtyp, msgllg)
lnt msqld;
struct msgbuf *msgp;
int msgsz;
long ms gtyp;
lnt msgllg;

Description

MSGOP (S)

msgsnd is used to send a message to the queue associated with the
message queue identifier specified by msqid..

msgp points to the structure containing the message. The structure
contains the following members:

long mtype;
char mtext[);

I* message type *I
I* message text *I

mtype is a positive integer that can be used by the receiving process
for message selection (see msgrcv below). mtext is text of length
msgsr bytes. msgsz can range from 0 to a maximum imposed by the
system.

msgflg specifies the action to be taken if one or more of the follow
ing conditions is true:

The number of bytes already on the queue is equal to
msg_qbytes (see intro (S)).

The number of messages on all the queues system-wii!e equals
the syxtem-imposed limit.

June 21, 1987 Page 1

MSGOP (S)

The actions msgflg specifies include:

The message will not be sent and the calling process will return
immediately if (msgflg & IPC..NOW AIT) is true.

If (msgflg & IPC..NOWAIT) is false, the calling process will
suspend execution until one of following the occurs:

The condition causing the suspension no longer exists. In
this case, the message is sent.

msqid is removed from the system (see m.sgcti(S)). In
this case, errno is set equal to EIDRM, and a value of -1
is retorned.

The calling process receives a signal that is to be caught.
In this case the message is not sent and the calling pro
cess resumes execution in the manner described in
slgnai(S).

msgsnd will fail and no message will be sent if one or more of the
following are true:

msqid is not a valid message queue identifier. [EINVAL]
. "

Operation permission is denied to the callmg process (see
intro(S)). [EACCES]

mtype is less than 1. [EINVAL)

The message cannot be sent for one of the preceding reasons
and (msgflg & IPC_NOWAIT) is true. [EAGAIN)

msgsz is less than zero or greater than the system-imposed limit.
[EINVAL]

msgp points to an illegal address. [EF A UL T]

Upon successful completion, the following actions are t>lken with
respect to the data structure associated with msqid (see I1llro(S)).

msg_qnum is incremented by 1.

msg.Jspid is set equal to the process ID of the calling process.

msg__sthne is set equal to the current time.

June 21, 1987 Page 2

(

MSGOP (S) MSGOP (S)

msgrcv reads a message from the queue associated with the message
queue identifier (msqid) and places it in the structure pointed to by
msgp. The structure contains the following members:

long
char

mtype;
mtext[];

/* message �e */
/* message text *I

mtype is the received message's type. This is specified by the send
ing process. mtext is the text of the message. msgsz gives the size in
bytes of mtext. If the received message is larger than msgsz bytes
and (msgfig & MSG...NOERROR) is true, the message is truncated
to msgsz bytes. The truncated part of the message is lost and no
notice of the truncation is given to the calling process.

msgtyp specifies the type of message requested:

If msgtype equals zero, the first message on the queue is
received.

If msgtyp is greater than zero, the first message of type msgtyp is
received.

If msgtyp is less than zero, the first message of the lowest type
less than or equal to the absolute value of msgtyp is received.

msgftg specifies an action if a message of the desired type is not on
the queue. These include:

If (msgfig & IPG_NOWAI'I) is true, calling process returns
immediately with a return value of -1 and errno is set equal to
EN OMS G.

If (msgfig & IPC...NOWAIT) is false, calling process suspends
execution until one of the following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. errno is set equal to
EIDRM and a value of -1 is returned.

·

The calling process receives a signal that is to b e caught.
In this case, a message is not received and the calling pro
cess resumes execution in the manner described in
signal(S).

msgrcv will fail and no message will be received if one or more of
the following are true:

msqid is not a valid message queue identifier. [EINVAL]

June 21, 1987 Page 3

MSGOP (S) MSGOP (S)

bufpoints to an address in· read-only shared data. [BINVAL]

Operation permission is denied to the calling process.
[BACCBS]

msgsz is less than 0. [EINVAL]

mtext is greater than msgsz and (msgflg & MSGJ;OBRROR) is
false. [B2BIG]

The queue does not contain a message of the desired type and
(msgtyp & IPCJ;OWAIT) is true. [BNOMSG]

msgp points to an illegal address. [EF AUL T]

Upon successful completion, the following actions are taken on the
data structure associated with msqid (see Inrro (S)).

msg_qnum is decreased by 1.

msgJrpid is set equal to the process ID of the calling process.

msg__rtlme is set equal to the current thne.

Return Values

If msgsnd or msgrcv return because of a signal received, a value of
-1 is returned to the calling process and errno is set to EINTR. If
these operations return because msqid was removed from the sys
tem, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return values are:

msgsnd returns 0.

msgrcv returns a value equal to the number of bytes placed into
mtext.

Otherwise� -1 is returned and errno is set to indicate the error.

See Also

intro(S), msgctl(S), msgget(S), signal(S).

Notes

Programs using this function must be compiled with the -Me com
piler option.

June 21, 1987 Page 4

(" -
\

c

NAP (S)

Name

nap - Suspends execution for a short interval.

Syntax

long nap (period)
long period;

DescriPtion

NAP (S)

The C1lJTent process is suspended from execution for at least the
number of milliseconds specified by perwd, or until a sigoal is
received.

Return Value

On successful completion, a long integer indicating the number of
milliseconds actually slept is returned. If the process recieved a sig
nal while napping, the return value will be -1, and errno will be set
to EINTR.

See Also

sleep(S)

Notes

This function is driven by the system clock, which in most cases
has a granularity of tens of milliseconds. This function must be
linked with the linker option -Jx.

June 21, 1987 Page 1

NICE (S)

Name

nice - Changes priority of a process.

Syntax

int nice (incr)
int iner;

Description

NICE (S)

nice adds the value of incr to the nice value of the calling process.
A process' nice value is a positive number for which a higher value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to tbe corresponding limit.

nice will not change the nice value if incr is negative or greater than
40, and if !he effective user ID of the calling process is not super
user. [EPERM]

Return Value

Upon successful completion, nice returns the new nice value minus
20. Note that nice is unusual in the way return codes are handled.
It differs from most other system calls in two ways: the value -1 is
a valid return code (in the case where the new nice value is 19),
and the system call either works or ignores the request; there is
never an error.

See Also

cxec(S), nice(C)

June 21, 1987 Page 1

NLIST (S) NLIST (S)

Name

nlist - Gets entries from name list.

I Syntax
\

#include <a.out.h>

int nlist (filename, nl)
char *filename;
stru.ct nlist *nl

Description

nlist examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an
array of structures containing names, types and values. The list is
terminated with a null name. Each name is looked up in the name
Jist of the file. If the name is found, the type and value of the
name are inserted in the next two fields. If the name is not found,
both entries are set to 0. See a. out(F) for a discussion of the sym
bol table structure.

{ See Also '-...__ -

(

a.out(F), xlist(S)

Diagnostics

nlist return -1 and sets all type entries to 0 if the file cannot be
read, is not an objeCt file, or contains an invalid name list. Other
wise, nlist returns 0. A return value of 0 does not indicate that any
or all symbols were fonod.

Jnoe 21, 1987 Page 1

OPEN (S) OPEN (S)

Name

open - Opens file for reading or writing.

Syntax

#include <fenll.h>
int open (path, oflag[, mode))
char *path;
int oflag, mode;

Description

path points to a pathname naming a file. open opens a file descrip
tor for the named file and sets the file statns flags according to the
value of ojlag. ojlag values are constructed by using flags from the
following Jist (only one of the first three flags below may b e used):

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY

June 21, 1987

This fiag may affect subsequent reads and writes. See
read(S) and write(S).

When opening a FIFO with O_RDONLY or O_WRONLY
set:

lf O_NDELA Y is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

lf O..NDELAY is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

Page 1

OPEN (S) OPEN (S)

When opening a file associated with a communication
line:

If O�"'DELA Y is set:

The open will return without waiting for carrier.

If O_NDELAY is clear:

The open will block untU carrier is present.

O_APPEND
If set, the file pointer will be set to the end of the tUe
prior to each write.

O..cREAT If the file exists, this flag has no effect. Otherwise, the
file's owner ID is set to the process' effective user ID,
the file's group lD is set to the proeess' effective group
ID, and the low-order 12 bits of the tUe mode are set to
the value of mode modified as follows (see creat(S)):

All bits set in the process' file mode creation mask
are cleared. See umask(S).

The "save text image after execution bitn of the
mode is cleared. See chmod (S}.

O_TRUNC If the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

O...EXCL If O...EXCL and O_CREA T are set, open will fail if the
file exists. ·

O_SYNCW Every write to this file descriptor will be synchronous,
that is, when the write system call completes, data is
guaranteed to have been written to disk .

. Upon successful completion, a nonnegative integer, the file descrip
tor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See fcntl(S).

No process may have more than 60 file descriptors open simultane
ously.

June 21, 1987 Page 2

OPEN (S) OPEN (S)

The named file is opened unless one or more of the following are
true:

A component of the path prefix is not a directory. [ENOTDIR]

O_CREAT is not set and the named file does not erist.
[ENOENT]

A component of the path prefix denies search permission.
[EACCES]

oflag permission is denied for the named file. [EACCES]

The named file is a directory and ojlag is write or read/write.
[EJSDIR]

The named file resides on a read-only file system and ofiag is
write or read/write. [EROFS]

Sixty file descriptors are currently open. [EMFILE]

The named ·rue is a character special or block special file, and
the device associated with this special file does not exist.
[ENXIO]

The file is a pure procedure (shared text) file that is being exe
cuted and oflag is write or read/write. [ETXTBSY]

path points outside the process' allocated address space.
[EFAULT]

O_CREAT and O....EXCL are set, and the named file exists.
[EEXIST]

O_NDELA Y is set, the named file is a FIFO, 0_ WRONLY is set,
and no process has the file open for reading. [ENXIO]

A signal was caught during the open system call. [EJNTR]

The system file table is full. [ENFILE]

The directory to contain the file cannot be extended, the file
does not exist, and O_CREAT is specified. [ENOSPC]

Return Value

Upon successful completion, a nonnegative integer, namely a file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

June 21, 1987 Page 3

OPEN (S) OPEN (S)

See Also

chmod(S), close(S), creat(S), dup(S), fcntl(S), lseek(S), read(S),
wnask(S), write(S)

Notes

The O_SYNCHW flag is a XENlX specific enhancement whlch may
not be present in all UNIX implementations.

June 21, 1987 Page 4

OPENSEM (S)

Name

opensem - Opens a semaphore.

Syntax

int opcnscm(sem_name)
char *sem_name;

sem_nnm = opensem(sem,_name);

Deseription

OPENSEM(S)

opensem opens a semaphore named by sem..name and returns the
unique semaphore identification number semJtum used by waitsem
and sigsem. creatsem should always be called to initialize the sema
phore before the first attempt to open it.

System Compatibility

opensem can only be used to open semaphores created under
XENIX version 3.0, not for XENIX System V semaphores.

See Also

creatsem(S), sigsem(S), waitsem(S)

Diagnostics

opensem returns a value of -1 if an error occurs. If the semaphore
named does not exist, errno is set to ENOENT. If the file specified
is not a semaphore file (i.e., a file previously created by a process
using a call to creatsem), errno is set to ENOTNAM. If the sema
phore has become invalid due to inappropriate use, errno is set to
ENAVAIL.

Notes

This feature is a XEN!X specific enhancement which may not b e
present in all UNIX implementations. This function must b e linked
with the linker option -lx.

June 21, 1987 Page 1

Ul'l!:N:iEM (S) OPENSEM (S)

Warning

It is not advisable to open the same semaphore more than once.
Although it is possible to do this, it may result in a serious
deadlock.

June 21, 1987 Page 2

PAUSE (S) PAUSE (S)

Name

pause - Suspends a process until a signal occurs.

Syntax

int pause ();

Description

pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the cal
ling process.

If the signal causes termination of the calling process, pause will
not return.

If the signal is caught by the calling process and control is returned
from the signal catching function (see signal(S)), the calling process
resumes execution from the point of suspension; with a return value
of -1 from pause and errno set to EINTR.

See Also

alann(S), kill(S), signal(S), wait(S)

June 21, 1987 Page 1

PERROR (S) PERROR (S)

Name

perror, sys_errlist, sys_nerr, errno - Sends system error messages.

Syntax

void perror(s)
char *s;

extern int ermo;

extern char *sys_errlist[];

extern int sys_nerr;

Description

perror produces a short eJTor message on the standard eJTor,
describing the last error encountered during a system call from a C
program. First the argmnent string s is printed, then a colon, then
the message and a newline. To be of most use, the argument string
shonld be the name of the program that incUJTed the error. The
error number is taken from the external variable errno" which is set
when errors occur but not cleared when correct calls are made.

To simplify variant formatting of messages, the vector of message
strings sys..£rrlist is provided; ermo can be used as an index in this
table to get the message string without the newline. sys.Jlerr is the
largest message number provided for in the table; it should be
checked because new eJTOr codes may be added to the system
before they are added to the table.

See Also

intro(S)

June 21, 1987 Page 1

PIPE (S)

Name

pipe - Creates an interprocess pipe.

Syntax

int pipe (fiides)
int fi!des [2] ;

Description

PIPE (S)

pipe creates an IJO mechanism called a pipe and return.s two file
descriptors in the array fildes. fildes[O] is opened for reading and
fildes[1] is opened for writing and the O_NDELA Y flag is clear. The
descriptors remain open across fork(S) system calls, making com
munication between parent and child possible.

Writes up to 10240 bytes of data (10 times BSIZE) are buffered by
the pipe before the writing process is blocked. A read on file
descriptor fildes[O] accesses the data written to fildes[l] on a first
in-first-out basis.

No process may have more than 60 file descriptors open simultane
ously.

pipe will fail if 19 or more file descriptors are currently open.
[EMF1LE] It will also fail if the system file table is full. [ENF1LE]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

sh(C), read(S), write(S), fork(S), popen(S)

June 21, 1987 Page 1

/ i \

PLOCK (S)

Name

plock - Lock process, text, or data in memory.

S)'lltaX

#Include <sys/lock.h>
lnl plocl< (op)
lnl op;

Description

PLOCK (S)

plock allows the calling process to lock its text segment (text lock),
its data segment (data lock), or both its text and data segments
(process lock) into memory. Locked segments are hnmune to all
routine swapping. plock also allows these segments to be unlocked.
The effective user ID of the calling process must be root user to use
this call. op specifies the following:

PROCLOCK
Lock text and data segments into memory.

TXTLOCK
Lock text segment into memory.

DATLOCK
Lock data segment into memory.

UNLOCK
Remove all process locks.

plock will fall and not perform the requested operation if one or
more of the following are true:

The effective user ID of the calling process is not root. [EPERM)

op is equal to PROLOCK and a process lock, a text lock, or a data
Jock already exists on the calling process. [EINV AL]

op is equal to TXTLOCK and a text Jock, or a process lock already
exists on the calling process. [EJNVAL]

op is equal to DA TLOCK and a data lock, or a process Jock already
exists on the calling process. [EINV AL]

op is equal to UNLOCK and no type of Jock exists on the calling
process. [EINVAL]

June 21, 1987 Page 1

PLOCK(S) PLOCK (S)

Return Value

Upon successful completion, a value of 0 is returned to the calliug
process. Otherwise, a value of -1 is returned snd emw is set to
:indicate the error.

See Also

exec(S), exit(S), fork(S)

June 21, 1987 Page 2

POPEN (S) POPEN (S)

Name

popen, pclose - Initiates I/0 to or from a process.

Syntax

#IDclude <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE •stream;

Des cripllon

The arguments to popen are pointers to null-terminated strings con
taining, respectively, a shell command line and an I/0 mode, either
"r"' for reading or "w" for writing. popen creates a pipe b etween
!he calling process and !he command to be executed. The value
returned is a stream pointer !hat can be used (as appropriate) to
write to !he standard input of the command or read from its stan
dard output.

A stream opened by popen should be closed by pclose , which waits
for the associated process to terminate and returns the exit status of
the command. Because open files are shared between processes., a
type "r" command may be used as an input filter, and a type "w"
as an output filter.

See Also

pipe(S), wait(S), fclose(S), fopen(S), system(S)

Dlagoostlcs

popen returns a null pointer if files or processes cannot be created,
or if the shell cannot be accessed.

pclose returns -1 if stream is not associated with a popen ed com
mand.

Notes

Ooly one stream opened by popen can be in use at once. Buffered
reading before opening an input filter may leave tbe standard input
of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing; see [close (S).

June 21, 1987 Page 1

----------- ---···

(
\

PRINTF (S)

Name

printf, fprintf, sprintf - Formats output.

Syntax

#include <stdio.h>

int printf (format [, arg] • • •)
c. bar •tonna t;

int fprintf (slream, format [, arg 1 • • •)
FlLE *stream;
char *format;

int sprintf (s, fonnat [, arg] • • •)
char *s, *fonnat;

Description

PRINTF (S)

print[places output on the standard output stream stdout. fprintf
places output on the named output stream. spri:ntf places output,
followed by the null character (\0) in consecutive bytes starting at
•s; it is the user's responsibility to ensure that enough storage is
available. Each function returns the number of characters placed
(not including the \0 in the case of sprtntf), or a negative value if an
output error was encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The format is a character string that con
tains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of
which results in fetching of zero or more args. The results are
undefined if there are insufficient args for the format. lf the for
mat is exhausted while args remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character %.
After the o/e, the following appear in sequence :

Zero or more flags, which modify the meaning of the conver
sion specification.

An optional decimal digit string specifying a minimum field
width. Jf the converted value has fewer characters than the field
width, it will be padded on the left (or right, if the left
adjustment flag described below has been given) to the field
width. Jf the field width is preceded with a "0" (e.g., %04), the
converted value will be padded with zeroes. lf the width is pre
ceded with a blank (e.g., % 4), the value will be preceded with

J nne 21, 1987 Page 1

PRINTF (S) PRJNTJi (S)

blanks. Padding with 7.eroes may be applied to numeric conver
sions only. Strings and characters cannot be zero padded.

A precision that gives the minimum number of digits to appear
for the d� o, u, x, or X conversions) the number of digits to
appear after the decimal point for the e and f conversions, the
maximum number of significant digits for the g conversion, or
the maximum number of characters to be printed from a string
in s conversion. The precision takes the form of a period (.)
followed by a decimal digit string: a null digit string is treated as
zero.

An optional ! specifying that a following d, o, u, x, or X conver
sion character applies to a long integer arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (•)
instead of a digit string. In this case, an integer arg supplies the
field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen, so the args specifying
field width or precision must appear before the arg (if any) to be
converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within
the field.

The result of a signed conversion will always begin with
a sign (+ or -).

If the first character of a signed conversion is not a sign,
a blank will be prepended to the result. This implies
that if the blank and + tlags both appear, the blank flag
will be ignored.

This flag specifies that the value is to be converted to an
"alternate form." For e, d, s, and u conversions, the
flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a
zero. For x (X) con version, a nonzero result will have
Ox (OX) prepended to it. For e, E, f, g, and G conver
sions, the result will always contain a decimal point,
even if no digits follow the point (normally, a deciraal
point appears in the result of these conversions only if a

· digit follows it). For g and G conversions, trailing
zerces will not be removed frcm the result (which they
normally are).

June 21, 1987 Page 2

PRINTF (S) PRINTF (S)

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal (d),
unsigned octal (o), unsigned decimal (u), or hexadecimal
notation (x and X), respectively; the letters abcdef are
used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum
number of digits to appear; if the value being converted
can be represented in fewer digits, it will be expanded
with leading zeroes. The default precision is 1. The
result of converting a zero value with a precision of zero
is a null string (unless the conversion is o, x, or X and
the # flag is present).

f The float or double arg is converted to decimal notation
in the style "[-]ddd.ddd", where the number of digits
after the decimal point is equal to the precision
specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point
appears.

e,E · The float or double arg is converted in the style
"[-]d.ddde±dd", where there is one digit before the
decimal point and the number of digits after it is equal
to the precision; when the precision is missing, 6 digits
are produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of e introducing the exponent. The exponent
always contains exactly two digits. However, if the value
to be printed is greater than or equal to 1E+ 100, addi
tional exponent digits will be pointed as necessary.

g,G The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the preci
sion spocifying the number of significant digits. The
style used depends on the value converted: style e will b e
used only if the exponent resulting from the conversion
is less than -4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal point
appears only if it is followed by a digit.

c The character arg is printed.

s

June 21, 1987

The arg is taken to be a string (character pointer) and
characters from the string are printed until a null charac
ter (\0) is encountered or the number of characters indi
cated by the precision specification is reached. If the
precision is missing, it is taken to be infinite, so all char
acters up to the first null character are printed.

Page 3

PRINTF (S) PRJNTF (S)

% Print a %; no argument is converted.

In no· case does a nonexistent or small field width cause truncation
of a field; if the result of a convenion is wider than the field width,
the field is simply expanded to contain the conversion result. Char
acters generated by print[and fprintf are printed as if putchar had
been called (see putc(S)).

Esamples

To print a date and thne in the form "Sunday, July 3, 10:02",
where weekday and month are pointers to null-terminated strings:

printf("% s, %s %d, %.2d:%.2d", weekday, month, day,
hour, min);

To print rr to five deeimal places:

printf("pi = %.sr·, 4•atan(l.O));

See Also

ecvt(S), putc(S), scanf(S)

June 21, 1987 Page 4

(

PROCFL (S)

Name

proctl - Controls active processes or process groups.

Syntax

#include <sys/proctl.h>

proctl(pid, command, arg)
int pid, command;
char *arg;

Description

PROCTL (S)

proctl performs a variety of functions on active processes or pro
cess groups. It has the same form as the ioctl (S) system call,
except that a process ID (pid) is substituted for a file descriptor as
the first parameter.

command is an integer mnemonic, specifying the action to be
taken, and arg is a pointer to a data structure which defines the
parameters associated with the command if necessary.

If pid is greater than zero (0), the command affects the process
whose process ID is equal to pid. pid may be 1.

If pid is zero, the command is sent to all processes, except
processes 0 and 1 whose process group ID is equal to the process
group ID of the sender.

If pid is -1 and the effective user ID of the sender is not the super
user, the command is sent to all processes, except processes 0 and
1 whose real user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, the
command is sent to all processes except processes 0 and 1.

If pid is negative but not -1, a signal is sent to all processes whose
process group ID is equal to the absolute value of pid.

proctl will fail if one or more of the following are true:

command or arg is not valid. [EINVAL]

No process can be found to match the specified pid. [ESRCH]

The user ID of the sending process is not super-user, and its
real or effective user ID does not match the real or effective user
ID of the receiving process. [EPERM]

June 21, 1987 Page 1

PROCTL (S) PROCTL (S)

The program has requested more memory than is available.
[BNOMEM]

arg is not a valid address. [BFAULT]

Memory Restrictions

exec(S) may fail when the required physical memory is larger than
the available swap space. This restriction may be lifted using one of
the following proctl commands:

PRHUGEX

Allows programs to be executed by this process even if they
exceed the available swap space. Such programs must still fit in
the available physical memory and the caller's effective user ID
must be supercuser. Such HUGE processes are locked in
memory to prevent them from being swapped. Processes that
are marked HUGE with this system call but are not greater than
the size of the swapper behave normally but can expand into a
HUGE, locked process.

PRNORMX

Makes a process unable to exec(S) H UGE programs. This call
may be executed by any user. If an attempt is made to classify a
process as normal using the PRNORMX call when the process is
already too big to swap, the proctl call will fail, returning BIN
VAL.

For example, you can use the following code to allow a process to
be executed even if it exceeds the available memory swapping
space:

if (argc < 2) {
fputs ("usage: runbig command arg •.. \n", stderr);
exit(2);

}
argv{argc] � 0;

if (proctl(getpid0, PRHUGEX, (char •) 0) < 0) {
perror (''1'UJ1big'1;
exit(I);

}

Return Valne

If an error has occurred, a value of -1 is returned and errno is set
to indicate the error.

June 21, 1987 Page 2

PROCI'L (S)

See Also

exec(S), ioctl(S), kill(S)

Notes

PROCTL (S)

This function must be linked with the linker option -lx.

June 21, 1987 Page 3

PROFIL (S)

Name

profil - Creates an execution time profile.

Syntax

void prom (buff, bufslz, oll'llet, scale)
char *buff;
lnt bufsiz, seale;
lnt (*offset) O;

Description

PROFIL (S)

buff points to an area of core whose length (in bytes) is given by
bufsiz. After Ibis call, the user's program counter is exaroioed each
clock tick> where a clock tick is some fraction of a second given in
machine(HW). offset is subtracted from it, and the result multi
plied hy scale . If the resulting number corresponds to a word
inside buff, that word is incremented. An uentry" is def'mcd as a
series of bytes with length sizeof(short).

The scale is interpreted as an unsigned, fiXed-poiot fraction with
hioary poiot at the left: 0177777 (octal) gives a 1-1 mapping of pc's
to words io buff; 07m7 (octal) maps each pair of instruction
words together. 02(octal) maps all instructions onto the hegioniog
of buff (prodnciog a non-interrupting core clock).

Profiling is tnmed off by giving a scale of 0 or 1. It is rendered
ioeffective hy givlng a bufsiz of 0. Profiling is turned off when an
exec is executed, but remains on in child aod parent both after a
fork. Profiling will be tnmed off if ao update io buff wonld cause a
memory fault.

See Also

prof(CP), monitor(S)

June 21, 1987 Page 1

('

PTRACE (S) PTRACE (S)

Name

ptrace Traces a process.

int ptrace (request, pid, addr, data);
int request, pid, data, addr;

Description

ptrace provides a means j>y which a parent process may control the
execution of a child process. Its primary use is in the implementa
tion of breakpoint debugging; see adb (CP). The child process
behaves nonnally until it encounters a signal (see signal (S) for the
list), at which time it enters a stopped state and its parent is noti
fied via wait (S). When the child is in the stopped state, its parent
can examine and modify its "memory image'' using pttace. Also.
the parent can cause the child either to tertninate or continue, with
1lte possibility of ignoring the signal that cansed it to stop.

The addr argument is dependant on the underlying machine type,
specifically the process memory model. On systems where the
memory management mechanism provides a uniform and linear
address space to user processes, the argument is declared as:

int *addr;

which is sufficient to address any l�cation in the process' memory.
On machines where the user address space is segmented (even if
the particular program being traced has only one segment allo
cated), the form of the addr argument is:

struct saddr {
unsigned short
long

} *addr;

sa_seg;
sa_off;

which allows the caller to specify segment and offset in the process
address space.

The request argument determines the precise action to be taken h y
ptrace and is one of the following:

0 This request must be issued by the child process if it is
to be traced by its parent. It tnrns on the child's trace
fiag that stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the
state specified by jUne ; see signnl(S). The pid, addr,
and data argmnents are ignored, and a return value is

June 21, 1987 Page 1

PTRACE (S) PTRACE (S)

not defined for this request. Peculiar results will ensue
if the parent does not expect to trace the child.

The remainder of the requests can only he used hy the parent pro
cess. For each, pid is the process ID of the chUd. The child must
be in a stopped state before these requests are made.

1, 2 The word at location addr in the address space of the
cbild is returned to th e parent process. If I aud D
space are separated, request 1 returns a word from I
space, and request 2 returns a word from D space. If I
and D space are not separated, either request 1 or
request 2 may he used with equal results. The data
argument is ignored. Th�e two requests will fail if
addr is not the start address of a word, in which case a
value of -1 is returned to the parent process and the
parent's emw is set to ElO.

3 With this request, the word at location addr in the
cbild's USER area in the system's address space (see
<sys/user.h>) is returned to the parent process. The
data argument is iguored. This request will fail if addr
is not the start address of a word or is outside the
USER area, in which case a value of -1 is returned to
th e parent process and the parent's errno is set to EIO.

4, 5 With these requests, the value given hy the data argu
ment is written into th e address space of the child at
location addr. If I and D space are separated, request
4 writes a word into I space, and request 5 writes a
word into D space. If I and D space are not separated,
either request 4 or request 5 may he used with equal
results. Upon successful completion, the value written
in to the address space of the child is returned to the
parent. These two requests will fail if oddr is a loca
tion in a pure procedure space aud another process is
executing in that space, or addr is not the start address
of a word . Upon failure a value of -1 is returned to
the parent process and the parent's errno is set to ElO.

6 With this request, a few entries in the child's USER
area can be written. data gives the value that is to be
written and addr is the location of the entry. The few
entries that can he written follow:

-The general registers

-Any floating-point status registers

-Certain bits of the processor status

June 21, 1987 Page 2

PTRACE (S) PTRACE (S)

7 This request causes the child to resume execution. If
the data argument is 0, all pending signals including the
one that caused the child to stop are canceled before it
resumes execution. If the data argument is a valid sig
nal number, the child resumes execution as if it had
incurred that signal and any other pending signals are
canceled. In a linear address space memory model, the
value of addr must be (int *)1, or in a segmented
address space the segment part of addr must be zero
and the offset part of addr must be (int *)1. Upon suc
cessful completion, the value of data is returned to the
parent. This request will fail if data is not 0 or a valid
signal number� in which case a value of -1 is returned
to the parent process and the parent's errno is set to
EIO.

8 This request causes the child to terminate with the
same consequences as exit(S).

9 Execution continues as in request 7; however, as soon
as possible after execution of at least one instruction,
execution stops again. The signal number from the
stop is SIGTRAP. This is part of the mechanism for
implementing breakpoints. The exact implementation
and behaviour is somewhat CPU dependant.

As indicated, these calls (except for request 0) can be used
only when the subject process has stopped. The wait system
call is used to determine when a process stops; in such a
case the termination status returned by wait has the value
0177 to indicate stoppage rather than genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent exec(S) cails. If a traced process calls
exec, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.

Errors

ptrace will in general fail if one or more of the following are true:

request is an illegal number. [EIO]

Notes

pid identifies a child that does not exist or has not executed a
ptrace with request 0. [ESRCH]

The implementation and precise behaviour of this system call is
inherently tied to the specific CPU and process memory model in

June 21, 1987 Page 3

PTRACE (S) PI'RACE (S)

use on a particular machine. Code using this call is likely to not be
portable across all implementations without some change.

See Also

adb(CP), exec(S), signal(S), wait(S), machine(HW)

June 21, 1987 Page 4

PUTC (S) PUTC (S)

Name

putc, putchar, fputc, putw - Puts a character or word on a stream.

Syntax

#include <stdio.h>

lnt pute (c, stream)
int c;
FILE *stream;

lnt putehar (c)
htt e;

lnt fputc (c, stream)
lnt c;
FILE *stream;

lnt putw (w, stream)
lnt w;
FILE *stream;

{ Description

\- .

(

putc appends the character c to the named output stream (at the
position where the file pointer, if defined, is pointing). It returns
the character written.

putchor(c) is defined as putc (c, stdout).
fputc behaves like pule, but is a genuine function rather than a
macro; it may therefore be used as an argument. fputc runs more
slowly than putc, but takes less space per invocation.

putw appends the word (i.e., integer) w to the output stream. putw
neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the
output does not refer to a terminal; this default may b e changed by
setbuf(S). The standard stream stderr is by default unbuffered
unconditionally, but use of freopen {see fopen(S)) causes it to
become buffered or line-buffered; setbuf(S), again, sets the state to
whatever is desired. When an output stream is unbuffered, infor
mation appears on the destination file or terminal as soon as ·writ
ten; when it is buffered, many characters are saved up and written
as a block. See !flush in fc/ose(S).

June 21, 1987 Page 1

PUTC (S) PUTC (S)

See Also

fclose(S), ferror(S), fopen(S), fread(S), getc(S), printf(S), puts(S)

Diagnostics

When a character or word is successfully put on a stream, these
functions each return the valne they have written. These functions
return the constant EOF upon error. This will occur if the file
stream is not open for writing or if the output file cannot be grown.
Because EOF is a valid integer, ferror(S) should be used to detect
putw errors.

Notes

The stream argument with side effects is not treated correctly,
because putc is :implemented as a macro. In particular,

putc (c, *f++);

does not work sensibly. fputc should be used instead.

Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent and may not be
read using getw on a different processor.

June 21, 1987 Page 2

(

PUTENV (S}

Name

putenv - Changes or adds value to environment.

Syntax

int putenv (string)
eb�r *sPiflg;

Description

PUTENV (S)

string points to a string of the form "name =value'"'. putenv makes
the value of the environment variable name equal to value by alter
ing an existing variable or creating a new one. In either case, tl1e
string pointed to by string becomes part of the environment, so
altering the string will change the environment. The space used by
string is no longer used once a new string-defining name is passed
to putenv.

See Also

environ(M), exec(S), getenv(S), malloc(S)

Diagnostics

putenv returns non-zero if it was unable to obtain enougb space via
maUoc for an expanded environment, otherwise zero.

Warnings

putetW manipulates the environment pointed to by environ, and can
be used in conjunction with getenv. However, envp (the third argu
ment to main) is not changed.

This routine uses malloc(S) to enlarge the environment.

After putenv is called, environmental variables are not in alphabeti
cal order.

A potential error is to call putenv with an automatic variable as the
argument, then exit the calling function while string is still part of
the environment.

June 21, 1987 Page 1

PUTPWENT (S)

Name

putpwent Writes a password file entry.

Syntax

#include <pwd.ll>

int pulpwent (p, f)
stroct passwd *p;
FU..E *f;

Descrlpdon

PUTPWENT (S)

putpwent is the inverse of getpwent(S). Given a pointer to a passwd
structure created by getpwent (or getpwuid or getpwnam), putpwent
writes a line on the stream f. The line matches the format of
/etc/passwd.

See Also

passwd(M), getpwent(S)

Diagnostics

putpwent returns nonzero if an error was detected during its opera
tion, otherwise zero.

JUne 21, 1987 Page 1

(

PUTS (S)

Name

puts, fputs - Puts a string on a stream.

Syntax

#include <stdio.h>

int puts (s)
cbar *s;

lnt fputs (s, stream)
c::har •s;
F1LE •stream;

Description

PUTS (S)

puts copies the null-terminated string s to the standard output
stream stdont and appeods a newline character.

fputs copies the null-terminated string s to the named output
stream.

Neither routine copies the ternrlnating null character.

Dlaguostlcs

Both routines return EOF on error.

See Also

ferror(S), fopen(S), fread(S), gets(S), printf(S), putc(S)

Notes

puts appends a newline, fputs does not.

June 21, 1987 Page 1

!

QSORT (S)

Name

qsort - Performs a quicker sort.

Syntax

void qsort O>ase, nel, width, compar)
char *base;
unsigned nel, width;
int (*compar)();

Description

QSORT (S)

qsort is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the
number of elements; the third is the width of an element in bytes;
the last is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to} or greater than 0
according to how much the first argument is to b e considered less
than, equal to, or greater than the second.

Notes

The pointer to the base of the table should be of type pointer-to
element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrazy
data may he contained in the elements in addition to the values
being compared.

The order in the output of two items which compare as equal is
unpredictable.

See Also

hsearch(S), lsearch(S), sort(C), striog(S)

June 21, 1987 Page 1

(

(

RAND (S)

Name

rand, srand - Generates a random number.

Syntax

void srand (seed)
unsigned seed;

int rand ()

Description

RAND (S)

rand uses a multiplicative congruential random number generator
with period 232 to return successive pseudo-random numbers in the
range from 0 to 215-1.

The generator is reinitialized by calling srand with 1 as argument.
It can be set to a random starting point by calling srand with an
unsigned integer in argument seed.

See Also

drand48(S)

Note

The spectral properties of rand are limited. drand4B(S) provides a
much better, more elaborate, random-number generator.

June 21, 1987 · Page 1

/

RDCHK (S)

Name

rdchk - Checks to see if there is data to be read.

Syntax

int rdchk(fdes);
int fdes;

Description

RDCHK (S)

rdchk checks to see if a process will block if it attempts to read the
file designated by fdes. rdchk returns 1 if there is data to be read or
if it is the end of the file (EOF). 1e this context, the proper
sequence of calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes);

See Also

read(S)

Diagnostics

rdchk returns -1 if an error occurs (e.g., EBADF}, 0 if the process
will block if it issues a read and 1 if it is okay to read. EBADF is
returned if a rdchk is done on a semaphore file or if the file speci
fied doesn't exist.

Notes

This function must be linked with the linker option -Jx.

June 21, 1987 Page l

READ (S)

Name

read - Reads from a file.

Syntax

int read (r.Ides, buf, nbyte)
int r.tldes;
char *buf;
unsigned nbyte;

Description

READ (S)

fiJdes is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call.

read attempts to read nbyte bytes from the file associated with
fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the
file given by the file pointer associated with fildes. Upon return
from read, the file pointer is incremented by the number of bytes
actually read.

Devices that are incapable of seeking always read from the current
position. The value of a· file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes
actually read and placed in the buffer; this number may be less than
nbyte if the file is associated with a communication line (see
ioctl(S) and tty(M)), or if the number of bytes left in the file is less
than nbyte bytes. A value of 0 is returned when an end-of-file has
been reached.

When attempting to read from an empty pipe (or FIFO):

If O....NDELA Y is set, the read will return a 0.

If O....NDELA Y is clear, the read will block until data is written
to the file or the file is no longer open for writing.

When attempting to read a file associated with a character special
file that has no data currently available:

If O....NDELA Y is set, the read will return a 0.

If O....NDELA Y is clear, the read will block until data becomes
available.

June 21, 1987 Page 1

READ (S) READ (S)

read will fail if one or more of the following are true:

flldes is not a valid file descriptor open for reading. [EBADF]

buf points outside the allocated address space. [EF AUL T]

A signal was caught during the read system call. fEINTR]

Return Vahle

Upon successful completion a nonnegative integer is retnrned indi
cating the number of bytes actually read. Otherwise, -1 is returned
and errno is set to indicate the error.

See Also

creat(S), dup(S), fcnti(S), ioctl(S), opcn(S), pipe(S), rdchk(S),
tty(M)

Notes

Reading a region of a file locked with locking causes read to hang
indefinitely until the locked region is unlocked.

June 21, 1987 Page 2

(
\

(
\"-)

REGEX (S) REGEX (S)

Name

regex, regcmp - Compiles and executes regular expressions.

Syntax

char *regcmp(stringl[,string2, • . •] , (char *)0);
char *stringl, *string2, . . . ;

char *regex(re,subject[,retO, . . .]);
char *re, *subject, *retO, . . . ;
extern char * __locl;

Description

regcmp compiles a regular expression and returns a pointer to the
compiled form. malloc (S) is used to create space for the vector.
It is the user's responsibility to free unneeded space so allocated.
A zero return from regcmp indicates an incorrect argument.
regcmp (CP) has been written to generally preclude the need for this
routine at execution time.

regex executes a compiled pattern against the subject string. Addi
tional arguments are passed to receive values back. regex returns
zero on failure or a pointer to the next unmatched character on
success. A global character pointer _joel points to where the
match began. regcmp and regex were derived from the editor,
ed(C) however, the syntax and semantics have been changed
slightly. The following are the valid symbols and their associated
meanings.

$

+

These symbols retain their current meaning.

Matches the end of the string, \n matches the newline.

Within brackets the minus means through. For example,
[a-z] is equivalent to [abed . . . xyz]. The - cao appear
as itself only if used as the last or first character. For
example, the character class expression []-] matches the
characters] and -.

A regular expression followed by + means "one or more
times". For example, [0-9]+ is equivalent to
[0-9][0-9]*.

{m} {m,} {m,u}
Integer values enclosed in { } indicate the number of
times the preceding regular expression is to be applied. rri.
is the minimum number and u- is a number, less than 256,
which is the maximum. If only m is present (e.g., {m}),

June 21, 1987 Page 1

REGEX (S) REGEX (S)

it indicates the exact number of times the regular expres
sion is to be applied. {m,} is analogous to {m,infinity}.
The plus (+) and star (*) operations are equivalent to
{1,} and {0,} respectively.

(• • •)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ l)th argu
ment following the subject argument. At present, at most
ten enclosed regular expressions are allowed. regex
makes its assignments unconditionally.

(. . •) Parentheses are used for grouping. An operator, e.g. •,
+, { }, can work on a single character or a regular expres
sion enclosed in parenthesis. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

Examples

Example 1:

char *cursor, *newcursor, *ptr;

newcurs��·
- regex((ptr-regemp("'\n",O)),cursor);

free(ptr);

This example will match a leading newline in the subject strio.g
pointed at by cursor.

Example 2:

char ret0[9];
char *newcursor, *name;

name - regcmp("([A-Za--z][A-za-z0-9}(0,7})$0",0);
newcursor = regex(name,"123Testing321",ret0);

This example will match through the string "Testing3" and will
return the address of the character after the last matched character
(cuxsor+ll). The strio.g "Tesling3" will be copied to the character
array retO.

Example 3:
#include ".file.iu
char *string, *newcursor;

newcursor = regex(name,string);

June 21, 1987 Page 2

(

/
'
\

REGEX (S) REGEX (S)

This example applies a precompiled regular expression in file.i (see
regcmp(CP)) against string.

See Also

ed(C), regcmp(CP), free(S), malloc(S)

Notes

The user program may run out of memory if regcmp is called itera
tively without freeing the vectors no longer required. The following
user-supplied replacement for mal/oc (S) reuses the same vector
saving time and space:

I* user's program */

malloc(n)
{

}

June 21, 1987

static int rebu£(256];
return &rebuf;

Page 3

(

(

(

REGEXP (S) REGEXP (S)

Name

regexp - Regular expression compile and match routines.

Syntax

#define INIT <declarations>
#define GETC () < getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#derme ERROR(val) <error code>

#include <regexp.h>

char •compile("mstring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;

int step(string, expbuf)
char *string, *expbuf;

Description

This page describes general purpose regular expression matching
routines in the form of ed (C), defined in /usr/include/regexp.h.
Programs such as ed(C), sed(C), grep(C), expr(C), etc., which per
form regular expression matching use this source file. In this way,
only this file need be changed to maintain regular expression com
patibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared
before the #include <regexp.h> statement. These macros are
used by the compile routine.

GETC()

PEEKC()

UNGETC(c)

June 21, 1987

Return the value of the next character in the
regular expression pattern. Successive calls
to GETC() should return successive charac
ters of the regular expression.

Return the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned by
GETC()).

Cause the argument c to be returned by the
next call to GETC() (and PEEKC()). No
more than one character of pushback is ever
needed and this character is guaranteed to be

Page 1

REGEXP (S) REGEXP (S)

the last character read by GETC(). The value
of the macro UNGETC(c) is always ignored.

RBTURN(pointer) This macro is used on normal exit of the
compik routine. The value of the argnruent
pointer is a pointer to the character after the
last character of the compiled regular expres
sion. This is useful to programs which have
memory allocation to manage.

ERROR(val) This is the abnormal retnrn from the compile
routine. The argnment val is an error
number (see table below for meanings). This
call should never retnrn.

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

MEANING
Range endpoint too large.
Bad number,
"\digit" out of range.
illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \{ \}.
[1 imbalance.
Regnlar expression overllow.

The syntu of the compile routine is as follows:

compile{instring, expbuf, endbuf, oof)

The first parameter instring is never used explicitly by the compile
routine but is useful for programs that pass down different pointers
to input characters. It is sometimes used in the INIT declaration
(see below). Programs which call functions to input characters or
have characters in an external array can pass down a value of ((char
*) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more that the highest address that the
compiled regular expression may be placed. If the compiled
expression cannot fit in (emlbuf-expbuf) bytes, a call to
ERROR(50) is made.

The parameter eof is the character which marks the end of the reg
ular expression. For example, in ed{C), this character is usually a
/.

June 21, 1987 Page 2

/
!

REGEXP (S) REGEXP (S)

Each program that includes this file must have a #define statement
for !NIT. This definition will be placed right alter the declaration
for the function compile and the opening curly brace ({). It is
used for dependent declarations and initializations. Most often it is
used to set a register variable to point to the beginning of the regu
lar expression so that this register variable can be used in the
declarations for GETC(), PEEKC() and UNGETC(). Otherwise it
can be used to declare external variables that might be used by
GETC(), PEEKC() and UNGETC(). See the example below of the
declaratiens taken from grep(C).

There are other functions in this file which perform actual regular
expression malcbing, one of wbich is tbe function step. The call to
step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to
be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
which was obtained by a call of the function compile .

The function step returns one, if the given string matches the regu
lar expression, and zero if the expressions do not match. If there is
a match, two external character pointers are set as a side effect to
the call to .<tep. The variable set in step is loci. This is a pointer
to the first cbaracter that matched the regular expression. The vari
able loc2, which is set by the function advance , points to the cbar
acter alter the last character that matches the regular expression.
Thus if the regular expression matches the entire line, locl will
point to the first character of string and loc2 will point to the null
at the end of string.

step uses the external variable eire[which is set by compile if the
regular expression begins with •. If this is set then step will only try
to match the regular expression to the beginning of the string. If
more than one regular expression is to be compiled before the the
first is executed, the value of eire[should be saved for eacb com
piled expression and eire[sbould be set to that saved value before
each call to srep.

The function advance is called from step with the same arguments
as step. The purpose of step is to step through the string argument
and call advance until advance returns a one indicating a match, or
until the end of string is reached. lf one wants to constrain strbtg
to the beginning of the line in all cases, step need not be called;
simply call advance.

When advance encounters a • or \{ \} sequence in the regular
expression it will advance its pointer to the string to be matched as
far as possible, and will recursively call itself trying to match tbe

June 21, 1987 Page 3

REGEXP (S)

rest o f the string to the rest of the regular expression. A s long as
there is no match, advance will back up along the string until it
finds a match, or reaches the point h1 the stthlg that initially
!fil!tched the * or \{ \}. h is sometimes desirable to stop this
backing up before the initial point in the string is reached. If the
external character pointer loca is equal to the point in the string at
sometime during the backing up process, advance will break out of
the loop that backs up and will return zero. This is used by ed(C}
and sed(C) for substitutions done globally (not just the first
occurrence" but the whole line) sO, for example, expressions like
s/y*//g do not loop forever.

The routines ecmp and getrange are trivial and are called by the
routines previously mentioned.

Examples

The following is an example of how the regular expression macros
and calls look from grep(C):

#define INIT
#define GETC()
#define PEEKC()
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

register char *sp - instring;
(*sp++}
(•sp)
(--sp)
return;
regerr(}

compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if(step(tinebuf, expbuf})
l!liCCeed(};

Files

/usr/include/regexp.h

See Also

ed(C), grep(C), sed(C).

Notes

The handling of circf is awkward.
The routine ecmp is equivalent to the Standard I/0 routine strncmp
and shonld be replaced by that routine.

June 21, 1987 Page 4

/

SBRK (S)

Name

sbrk, brk - Changes data segment space allocation.

Syntax

char *sbrk (lncr)
lnt lncr;

lnt brk (addr)
char *addr;

Description

SBRK (S)

sbrk and brk are used to dynamically change the amount of space
allocated for !he data segment of the calling process; see exec(S).
The change is made by resetting the break value of the process.
The break value is the address of !he first location beyond the end
of the data segment. The amount of allocated space increases as
the break value increases.

sbrk adds incr bytes to the break value and changes !he allocated
space accordingly. incr can be negative, in which case the amount
of allocated: space is decreased.

In 286 large model programs, if incr is greater than tbe number of
unallocated bytes remaining in the current data segment, sbrk
automatically allocates all the requested bytes in a new data seg
ment. This guarantees that the requested bytes will reside entirely
in one segment. If incr is negative and its absolute value is equal to
!he number of allocated bytes in the current data segment, the seg
ment is automatically freed for other use. If incr is negative aud its
absolute value is greater than the number of allocated bytes in !he
current segment, the segment is freed, and the additional bytes are
removed from the previous data segment. (The previous data seg
ment contains space allocated by the most recent sbrk !hat did not
affect the current segment.)

sbrk will fail without making any change in the allocated space if:

A change would result in more space being allocated than is
allowed by a system-iroposed maximum (see ulimit(S)).
(ENOMEM]

An attempt is made to remove more space than has actually
been allocated.

An attempt to remove space causes the new break valne to be
Jess than the original break value. The original break value is
always taken to be break value when process execution began

June 21, 1987 Page l

SBRK (S) SBRK (S)

plus any shared data bytes that have been allocated since that
time.

brk sets the the current break value to addr, and changes the allo
cated space accordingly. brk fails if the address references a data
segment that does not exist, or if it references beyond the max
imum possible size of the current data segment.

Return Value

Upon successful completion, s/>rk returns a pointer to the begin
ning of the allocated space. brk returns 0 on successful completion.
Otherwise, a value of -1 is returned and emro is set to indicate the
error. In large model programs, if sbrk allocates a new data seg
ment, the return value is the starting address of that new segment.

See Also

exec(S)

Notes

In 286 large model programs, the call "sbrk(O)" does not neces
sarily return the starting address of the next sbrk call. In particular,
if the next call causes an additional data segment to be allocated,
the break values returned by these two calls will not be the same.
The return value from "sbrk(O)" should only be regarded as a
marker for the original end of data.

June 21, 1987 Page 2

(

(
\

SCANF (S)

Name

scanf, fscanf, sscanf - Converts and formats input.

S:yntax

#include <stdio.h>

iot scanf (fonnat [, pointer] . . .)
char *fonna t;

iot fscan[(stream, fonnat [, pointer] . . .)
FILE *scream;
char *format;

iot sscanf (s , fonnat [, pointer] . . .)
char *s, *fonnat;

Description

SCANF (S)

scan{ reads from the standard input stream stdin . fscanf reads
from the named input stream. sscanf reads from the character
string s. Each function reads characters, interprets them according
to a format, and stores the results in its arguments. Each expects,
as arguments, a control string format described below, and a set of
pointer arguments indicating where the converted input should b e
stored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control
string may contnin:

1. Blanks, tabs, or newlines which cause input to be read up to the
next nonwhitespace character.

2. An ordinary character (not %), which must match the next char
acter of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing character *, an optional numer
ical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assigument suppression was indi
cated by •. The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is
defined as a string of nonspace characters ; it extends to the next
inappropriate character or until the field width, if specified, is

June 21, 1987 Page 1

SCANF (S) SCANF (S}

exhausted. For all descriptors except "[" and "c,, white space
preceding an input field is igeored.

The conversion character indicates the interpretation of the input
field; the corresponding pointer argument must usually be of a res
tricted type. For a suppressed field, no pointer argument is given.
The following conversion characters are allowed:

% A single % is expected in the input at this point; no assignment
is done.

d A decimal integer is expected; the corresponding argument
should be an integer pointer.

u An unsigned decimal integer is expected; the corresponding
argument should be an unsigeed integer pointer.

o An octal integer is expected; the corresponding argnment should
be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s A character string is expected; the corresponding argument
should be a character pointer pointing to an array of characters
large enough to accept the stting and a terminating \0, which
will be added automatically. The input field is terminated by a
space character or a newline.

c A character is expected; the corresponding argument should be
a character pointer. The normal skip over space characters is
suppressed in this case; to read the next nonspace character,
use %ls. If a field width is given, the corresponding argument
should refer to a character array; the indicated number of char
acters is read.

e, r, g
A floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for float·
ing point numbers is an optionally signed string of digits, possi
bly containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by an option
ally signed integer.

[Indicates· stting data and the normal skip over leading white
space is suppressed. The left bracket is followed by a set of
characters, which we will call the scanset, and a right bracket;
the input field is the maximal sequence of input characters con
sisting entirely of characters in the sc!lllset. The caret (), when
it appears as the first character in the scanset, serves as a com
plement operator and redefines the scanset as the set of all

June 21, 1987 Page 2

('
'

(

SCANF (S) SCANF (S)

characters not contained in the remainder of the scanset string.
There are some conventions used in the construction of the
scanset. A range of characters may be represented by the con
struct first-last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal
to last, or else the dash will stand for itself. The dash will also
stand for itself whenever it is the first or the last character in the
scanset. To include the right square bracket as an element of
the scanset, it must appear as the first character (possibly pre
ceded by a caret) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The correspond
ing argument must point to a character array large enough to
hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, o, and x may be capitalized and/or
preceded by I or h to indicate that a pointer to long or to short
rather than to int is in the argument list. Similarly, the conversion
characters e, f, and g may be capitalized and/or preceded by I to
indicate that a pointer to double rather thail to float is in the argu
ment list. The I or h modifier is ignored for other conversion char
acters.

scant conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control string.
(In the latter case, the conflicting character is left unread in the
input stream.) This is very important to remember, because subtle
errors can occur when not taking this into account.

scant returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early
conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

Examples

The call:

int i; fioat x; char name[50];
scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

June 21, 1987 Page 3

SCANF (S) SCANF (S)

will assign to i the value 25, to x the value 5.432, and name will
contain nthompson \0". Or:

int i;
·aoat x; char name[50J;

scanf ("%2d%f%*d% [1234567890]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to I, 789.0 to x, skip 0123, and place the string 56W in
name. The next call to getchar (see getc(S)) will return "a".

See Also

atof(S), getc(S), printf(S), strtod(S), strtol(S)

Diagnostics

These functions return EOF on end of input and a short count for
missing or illegal data items.

Notes

The success of literal matches and suppressed assigements is not
directly determinable.

Trailing whitespace (including a newline) is left unread unless
matched in the control sjrlng.

June 21, 1987 Page 4

(

SDENTER (S) SDENTER (S)

Name

sdenter, sdleave - Synchronizes access to a shared data segment.

Syntax

#lndude <sys/sd.h>

int sdenter(addr,flags)
char *addr;
int flags:

int sdleave(addr)
char *addr;

Description

sdenter is used to indicate that the current process is about tn
access the contents of a shared data segment. addr is the valid
return code from a previous sdget (S) call. The actions performed
depend on the value of flags. flags values are formed by OR-iog
together entries from the following list:

SD..NOWAIT lf another process has called sdenter but not sdleave
for the indicated segment, and the segment was not
created with the SD_UNLOCK flag set, return an
ENA VAIL error instead of waiting for the segment
to become free.

SD_WRITE Indicates that the process wants to write data to the
shared data segment. A process that has attached
to a shared data segment with the SDJU)ONL Y flag
set will not be allowed to enter with the SD_WRITE
fiag set.

st!.leave is used to indicate that the current process is done modify
ing the contents of a shared data segment.

Only changes made between invocatations of sdenter and sdleave
are guaranteed to be reflected in other processes. sdenter and
sdleave are very fast; consequently, it is recommended that they be
called frequently rather than leave sdenter in effect for any period
of time. In particular, system calls should be avoided between
sdenter and sdleave calls.

The fork system call is forbidden between calls to sdenter and
sdleave if the segment was created without the SD_UNLOCK flag.

June 21, 1987 Page 1

SDENTER (S) SDENTER (S)

Return Value

Successful calls return 0. Unsuccessful calls return -1, and errno is
set to indicate the error. errno is set to EINV AL if a process docs
an sdenter with the SD_WRITE !lag set and the segment is already
attached with the SD_RDONI�Y !lag set. errno is set to ENA VAIL if
the SD_NOWAIT flag is set for sdenter call and !be shared data seg
ment is not free.

See Also

sdget(S), sdgetv(S)

Notes

This feature is a XENIX specific enhancement and may not be
present on all UNIX implementations. This routine must be linked
with the linker option -lx.

June 21, 1987 Page 2

(

(
\

SDGET (S) SDGET (S)

Name

sdget, sdfree - Attaches and detaches a shared data segment.

Syntax

#include <sys/sd.h>

char •sdget(path, flags, size, [mode])
char *path;
int flags, mode;
long size;

int sdfree(addr);
char *addr;

Description

sdget attaches a shared data segment to the data space of the
current process. The actions performed are controlled by the value
of flags. flags values are constructed by OR-ing flags from the fol
lowing list:

SD..RDONLY
Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists and is not in use
(active), this flag will have the same effect as creating
a segment from scratch. Otherwise, the segment is
created according to the values of size and rrwde.
Read and write access to the segment is granted to
other processes based on the permissions passed in
mode, and functions the same as those for regular
files. Execute permission is meaningless. The seg
ment is initialized to contain all zeroes.

SD_UNLOCK
If the segment is created because of this call, the seg
ment will be made so that more than one process can
be between sdenter and sdleave calls.

sdfree detaches the current process from the shared data segment
that is attached at the specified address. If the current process has
done sdenter but not an sdleave for the specified segment, sdleave
will be done before detaching the segment.

June 21, 1987 Page 1

SDGET (S) SDGET(S)

When no process remains attached to the segment, the contents of
that segment disappear, and no process can attach to the segment
without creating it by using the SD_CREA T fiag in sdget. errno is set
to EEXIST if a process tries to create a shared data segment that
exists and is in use. ermo is set to ENOTNAM if a process
attempts an sdget on a file that exists but is not a shared data type.

Notes

Use of the SD_UNLOCK fiag on systems without hardware support
for shared data may cause severe performance degradation.

For 286 programs, it is strongly recommended that sdget and other
shared data functions be reserved for large model programs only.
Small or middle model programs that attempt to use shared data
may run out of available memory. Also, due to the 286 hardware, it
is not possible to enforce the read-only aspect of smail model
shared data. However, read-only segments are honored in large
model programs.

The 386 provides a 32 bit address space, even in smail model. As a
result, shared data may be conveniently used without regard to the
restrictions that apply to 286 programs.

sdget automaticaily increments the process's original break value to
the memory location immediately after the shared data segment.
Tbis affects subsequent sbrk or brk calls which attempt to restore
the original break value. In particular, attempts to restore the
break value to its value before the sdget cail causes an error.

Tbis feature is a XBNIX specific enhancement and may not be
present in all UNIX implementations. This routine must be linked
using the linker option -lx.

Return Value

On successfnl completion, the address at which the segment was
attached is returned. Otherwise, -1 is returned, and errno is set to
indicate the error. errno is set to EINVAL if a process does an
sdget on a shared data segment to which it is already attached.
errno is set to EEXIST if a process tries to create a shared data seg
ment that exists and is in nse. errno is set to ENOTNAM if a pro
cess attempts an sdget on a file that exists but is not a shared data
type.

The mode parameter must be included on the first call of the
sdget() function.

June 21, 1987 Page 2

SDGET (S) SDGET (S)

See Also

sdenter(S), sdgetv(S), sbrk(S)

Notes

The size variable in sdget has changed from unsigned to long
between XENIX Version 3.0 and XENIX System V. Although this
requires that source code be modified to use a long site parameter
when compiling with the System V libraries, an unsigned size
parameter will stili be correctly interpreted by the kernel when
passed by binaries compiled with the Version 3.0 libraries.

June 21, 1987 Page 3

(

SDGETV (S)

Name

sdgetv, sdwaitv - Synchronizes shared data access.

Synmx

#include <sys/sd.h>

int sdgetv(addr)
int sdwaitv(addr, vnum}
char •addr;
int vnum;

Description

SDGETV (S)

sdgetv and sdwaitv may be used to synchronize cooperating
processes that are using shared data segments. The return value of
both routines is the version number of the slurred data segment
attached to the process at address addr. The version number of a
segment changes whenever some process does an sdleave for that
segment.

sdgetv simply returns the version number of the indicated segment.

sdwaitv forces the current process to sleep until the version number
for the indicated segment is no longer equal to vnum.

Return Value

Upon successful completion, both sdgetv and sdwaitv retrrrn a posi
tive integer that is the current version number for the indicated
shared data segment. Otherwise, a value of -1 is retrrrned, and
errno is set to indicate the error.

See Also

sdenter(S), sdget(S)

Notes

This routine must be linked using the linker option .J:x.

June 21, 1987 Page 1

SEMCTL (S) SEMCTL (S)

Name

semctl Controls semaphore operations.

Syntax

#include <sys/types .h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int s emid, cmd;
int semnum;
union semun {

int val;
struct semid_ds *but
ushort *an"8y;

} arg;

Description

semctl provides a variety of semaphore control operations as speci
fied by emil.

The following cmds are executed with respect to the semaphore
specified by semid and semnum:

GETV AL Return the value of semval (see intro (S)).

SETV AL Set the value of semval to arg. val. When this emil
is successfully executed, the semodj value
corresponding to the specified semaphore in all
processes is cleared.

GETPID Return the value of sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of sem:a:nt. {READ}

The following emil s return and set, respectively, every semval in the
set of semaphores.

GET ALL

SET ALL

June 21, 1987

Place semvals into array pointed to by arg.array.

Set semvals according to the array pointed to by
arg.array . When this cmd is successfully executed
the semadj values corresponding to each specified
semaphore in all processes are cleared.

Page 1

SEMCrL (S)

The following cmds are also available:

IPC_..STAT Place the cmrent value of each member of the
data structure associated witb semid into the struc
ture pointed to by arg.buf. The contents of this
structure are defined in lntro (S).

IPC...sET Set the value of the following members of the data
structure associnted with semid to the correspond
ing value found in the structure pointed to by
arg.buf:
selll...l'enn.uid
•OIILl'enn.gid
selll...l'enn.mode t• only low 9 bits • I

This cmd can only be executed by a process that
has an effective user ID equal to either that of the
super-user or to the value of selll...l'enn.uld in the
data structure associated with semid.

IPC....R.'\flD Remove the semaphore identifier specified by
semid from the system and destroy the set of sema
phores and data structure associated with it. This
cmd can only be executed by a process that has an
effective user ID equal to either that of the super
user or to the value of selll...l'enn.uid in the data
structure associated with semid.

sem.ctl will fail if one or more of the following are true:

semid is not a valid semaphore identifier. fEINVALJ

semnum is less than zero or greater than sern._nsems.
[Eh'IVAL]

cmd is not a valid command. (EINVAL]

cmd is equal to GETALL or IPC.JlTAT and arg points to
an address in read-only shared data. [EINVAL]

Operation permission is denied to the calling process (see
intro (S)). [EACCES]

cmd is SETV AL or SETALL and the value to which semval is
to be set is greater than the system imposed ma:ximum.
[ERANGE)

cmd is equal to IPC...RMID or IPC..SET and the effective user
ID of the calling process is not equal to that of super-user
and it is not equal to the value of Selll...l'enn.uld in the data
structure associated with semid. [EPERM]

June 21, 1987 Page 2

SEMCTL (S) SEMCTL (S)

arg.buf points to an illegal address. [EFAULT]

arg.array points to an illegal address. [EFAULT]

Retum Value

Upon successful completion, the value returned depends on cmd as
follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcn t.
A value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

See Also

intro(S), semget(S), semop(S)

r' r.otes
i

(

Programs using this function must be compiled with the -Me com
piler option.

June 21, 1987 Page 3

SEMGET (S) SEMGET (S)

Name

semget - Gets set of semaphores.

Syntax

#inelnde <sys/I}'J)cs.h>
#include <sys/ipc.h>
#inclnde <sys/sem.h>

int scmget (key, nsems, scmflg)
key.J; key;
int nsems� semflg;

Des crlptlon

semget returns the semaphore identifier associated with key.

A semaphore identifier, and an associated data structure and set
containing nsems semaphores (see intro (S)) are ereated for key if
one of the following are true:

key is equal to IPC....PRIV ATE.

key does not already have a semaphore identifier associated with
it, and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new sema
phore identifier is initialized as follows:

sem...:penn.<uid, sem...:penn.uld, sem...:penn.cgld, and
sem...:penn.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of sem__:penn.mode are set equal to the
low-order 9 bits of semflg.

sem_nsems is set equal to the value of nserns .

SCllLOthne is set equal to 0 and sem_ctime is set equal to the
current time.

semget will fail if one or more of the following are true:

nse:ms is either less than or equal to zero or greater than the
system-imposed limit. [EINVAL]

A semaphore identifier exists for key, but operation permission
(see intro(S)) as specified by the low-order 9 bits of semfig
would not be granted. [EACCES]

June 21, 1987 Page 1

SEMGET (S) SEMGET (S)

A semaphore identifier exists for key, but the number of sema
phores in the set associated with it is less than nsems and nsems
is not equal to zero. [FlNV AL)

A semaphore identifier does not exist for key and (semj!g &
!Pc_CREAT) is "false". [ENOENT)

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed system wide sema
phore identifiers would be exceeded. [ENOSPC)

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed system wide sema
phores would be exceeded. [ENOSPC)

A semaphore identifier exists for key but ((semj!g &
IPC_CREAT '') and (" semflg & IPC...EXCL)) is ''true". [EEX
ISTj

Return Value

Upon successful completion, a non-negative integer, namely a
semaphore identifier, is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

See Also

intro(S), semctl(S), semop(S)

Notes

Programmers using this function must be compiled with the ·Me
compiler option.

June 21, 1987 Page 2

/

SEMOP (S) SEMOP (S)

Name

semop Performs semaphore operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (sernid, sops, nsops)
int semid;
strnct sembuf •sops;
int nsops;

Description

semop is used to automatically perform an array of semaphore
operations on the set of semaphores associated with the semaphore
identifier specified by semid. sops is a pointer to the array of
semaphore-operation structures. nsops is the number of such struc
tures in the array. The contents of each structure includes the fol
lowing members;

short
short
short

sem_num;
sem_op;
semJlg;

I* semaphore nmnber *I
I* semaphore operation */
I* operation flags */

Each semaphore operation specified by sem_pp is performed on the
corresponding semaphore specified by semid and sem...num.

sem_pp specifies one of three semaphore operations as follows:

If sem..pp is a negative integer, one of the following will
occur:

J nne 21, 1987

Jf semval (see intro (S)) is greater than or equal to the
absolute value of sem_pp, the absolute value of sem.JJp
is subtracted from semval. Also, if (sem..flg &
SEM_UNDO) is "true", the absolute value of sem.JJp is
added to the calling process' semadj value (see exiJ(S))
for the specified semaphore.

Jf semval is less than the absolute value of sem_pp and
(sem..Jlg & IPC_NOWAIT) is "true", semop will return
immediately.

Jf semval is less than the absolute value of sem_pp and
(sem..Jlg & IPC_NOW AIT) is "false", semop will incre
ment the semncnt associated with the specified

Page 1

SEMOP (S) SEMOP (S)

semaphore and suspend execution of the calling pro
cess until one of the following conditions occur.

semval becomes greater than or equal to the abso
lute value of sem..JJp. When this occurs, the value
of semncnt ssociated with the specified semaphore
is decremented, the absolute value of sem..JJp is
subtracted from semva! and, if (sem.jlg &
SEM_UNDO) is "true", the absolute value of
sem..Pp is added to the calling process' semadj
value for the specified semaphore.

The semliJ for which the calling process is await
ing action is removed from the system (see
semctl(S)). When this occurs, errno is set equal
to EIDRM. and a value of -1 is returned.

The calling process receives a signal that is to be
caught. When this occurs, the value of semm:nt
associated with the specified semaphore is decre
mented, and the calling process resumes execu
tion in the manner prescribed in signal(S).

If sem..Pp is a positive integer, the value of sem..Pp is
added to semval and, if (sem.j/g & SEM...UNDO) is "true",
the value of sem..Pp is subtracted from the calling process'
semadj value for the specified semaphore.

If sem...JJp is zero, one of the following will occur:

If semval is zero, semop will retnm inunediately.

If semval is not equal to zero and (sem.jlg &
IPCJIIO WAIT) is "true", semap will retnm immediately.

If semval is not equal to zero and (sem_jlg &
IPCJIIOW AlT) is "false", semop will increment the
semzcnt associated with the specified semaphore !llld
suspend execution of the calling process until one of
the following occurs:

semml becomes zero, at wruch time the value of
semzcnt associated with the specified semaphore is
decremented.

The semid for which the calling process is await
ing action is removed from the system. When this
occurs, mno is set equal to EIDRM, and a value
of -1 is returned.

June 21, 1987 Page 2

(
\

SEMOP (S) SEMOP (S)

The calling process receives a signal that is to be
caught. When this occurs, the value of semz.cnt
associated with the specified semaphore is decre
mented, and the calling process resumes execu
tion in the manner prescribed in signal(S).

semop will fail if one or more of the following are true for any of
the semaphore operations specified by sops:

semid is not a valid semaphore identifier. [EINVAL]

sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.
[EFBIG]

nsops is greater than the system-imposed maximum. [E2BIG]

Operation permission is denied to the calling process (see
intro(S)). [EACCES]

The operation would result in suspension of the calling process
but (sem...flg & IPC...NOWAIT) is "true". [EAGAIN]

The limit on the number of individual processes requesting a
SEM...UNDO would be exceeded. [ENOSPC]

The number of individual semaphores for which the calling pro
cess requests a SEM...UNDO would exceed the limit. [EINV AL]

An operation would cause a semval to overflow the system
imposed limit. [ERANGE]

An operation would cause a semadj value to overflow the
system-imposed limit. [ERANGE]

sops points to an illegal address. [EFAULT]

Upon successful completion, the value of semid for each sema
phore specified in the array pointed to by sops is set equal to the
process ID of the calling process.

Return Value

lf semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. lf it
returns due to the removal of a semid from the system, a value of
-1 is returned and errno is set to EIDRM.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

June 21, 1987 Page 3

SEMOP (S) SEMOP (S)

See Also

exec(S), exit(S), fork(S), intro(S), seructl{S), semget(S), signal{S)

Notes

If SEMVMX = 3?:767, semop will not be able to make semval
overllow the limit (ERANGE) because sem_op:<: +32768 (signed
short) looks like negative sem_op. Therefore, it will not increase
semval to put it over the limit; instead, it will tcy to subtract :;a:
32768 from seruval {EAGAIN). Programs using this function must
be compiled with the ·Me compiler option.

June 21, 1987 Page 4

i

SETBUF (S) SETB UF (S)

Name

setbuf, setvbuf - Assigns buffering to a stream.

Syntax

#include <stdio.h>

void setbuf (stream, buf)
FlLE *stream;
char *buf;
iut setvbuf (stream, type, buf, size)
FILE *stream;
char *buf;
int type, size;

Description

setbuf is used after a stream has been opened but before it is read
or written. It causes the character array buf to be used instead of
au automatically allocated buffer. If buf is the constant pointer
NULL, input/output will be completely unbuffered.

A manifest constant BUFSIZ, defined in tbe <stdio.h> file, tells
how big an array is needed:

char buf[BUFSIZJ;

setvbuf may be used after a stream has been opened but before it is
read or written. type determines how stream will be buffered.
Legal values for type (defined in stdio.h) are:

JOFBF Causes input/output to be fully buffered.

JoLBF Causes output to be line buffered; tbe buffer will be
flushed when a newline is written, the buffer is full, or
input is requested.

JONBF Causes input/output to be completely unbuffered.

If buf is not the Null pointer, the array it points to will be used for
buffering, instead of an automatically allocated buffer. size speci
fies the size of the buffer to b e used. The constant BUFSIZ in
<stdio.h> is suggested as a good buffer size. If input/output is
unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other
input/output is fully buffered.

June 21, 1987 Page 1

SETBUF (S) SETBUF (S)

A buffer is normally obtained from malloc(S) upon the fl.t'St getc(S)
or putc(S) on the file, except that output streams directed to termi
nals, and the standard error stream stderr are normally not buf
fered. A common source of error is allocation of buffer space as
an :'automatic" variable in a code block, and then failing to close
the stream in the same block.

See Also

fopen(S), gelc(S), malloc(S), putc(S), sldio(S)

Dlagnos tics

If an illegal value for type or sb.e is provided, Jietvbuf returns a
non-zero value. Otherwise, the value returned will be zero.

June 21, 1987 Page 2

(

Name

setjmp, longjmp - Performs a nonlo�al "goto".

Syntax

#include <se!Jmp.h>

int setjmp (env)
jmp.J>uf env;

void Jongjmp (env, val)
jmp_buf env;
int val;

Description

:SE'J'JMP (S)

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

setjmp saves its stack environment in env for later u.se by /ongjmp .
It returns a value of 0.

longjmp restores the environment saved by the last call of setjmp.
It then returns in such a way that execution continues as if the call
of setjmp had just returned the value val to the corresponding call
to setjmp. The routine which calls setjmp must not itself have
returned in the interim. longjmp cannot return a value of 0. If
longjmp is invoked with a second argmnent of 0, it will return a
value of 1. All accessible data have values as of the time longjmp
was called. The only exception to this is register variables. The
value of register variables is undefined in the routine that called
setjmp when the corresponding longjmp is invoked.

See Also

signal(S)

Warning

If longjmp is called even though env was never primed by a call to
setjmp, or when the last such call was in a function which has since
returned, absolute chaos is guaranteed.

June 21, 1987 Page 1

(

SETPGRP(S) SETPGRP (S)

Name

setpgrp - Sets process group ID.

Syntax

lnt setpgrp ()

Description

setpgrp sets the process group ID of the calling process to the pro
cess ID of the calling process and returns the new process group
ID.

There are many ramifications to be considered before invoking
setpgrp. When a process is made a process group leader with
setpgrp, the terminal that controlled the process that issued the
serpgrp statement is lost as the controlling terminal for the new pro
cess group. The new process group takes as its controlling terminal
the next terminal it opens that is not already open. All child
processes of the new process group leader are controlled by the
new controlling terminal.

The controlling terminal is responsible for signals (INTR, KILL,
EOF) sent to the process group leader and it child processes, If
there is no controlling terminal, it becomes more difficult to inter
rupt a process.

As an example, setpgrp is used to separate daemon processes from
controlling terminals so that they may not be interrupted from any
terminal by a KILL or INTR signal.

Return Value

.retpgrp returnJl the value of the new process group ID.

See Also

exec(S), fork(S), getpid(S), intro(S), kill(S), signal(S), tennio(M)

June 21, 1987 Page 1

\

SETUID (S)

Name

setuid, setgid - Sets user and group IDs.

Syntax

lnt setnid (uid)
lnt uid;

lnt se{llid (gid)
lnt gid;

Description

::if£1'UW \:S)

setuiil. is used to set the real user ID and effective user ID of the
calling process.

setgid is used to set the real group ID and effective group ID of the
calling process.

If the effective user ID of the calling process is super-user, the real
user (group) ID and effective user (group) ID are set to uiil. (giil.).

lf the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to u.iil. (gid), the effective user
(group) ID is set to uiil. (giil.).

setuiil. will fail if the real user (group) ID of the calling process is
not equal to uiil. (giil.) and its effective user ID is not super-user.
[EPBRM]

The uiil. is out of range. [EINV AL]

If the effective user ID of the calling process is not super-user, but
the saved set-user (group) ID from exec(S) is equal to uiil. (giil.),
the effective user (group) ID is set to uiil. (gid).

Retum Value

Upon successfui completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

getuid(S), intro{S)

June 21, 1987 Page 1

(

SHMCTL (S) SHMCTL (S)

Name

shmctl - Controls shared memory operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, bul)
int shmid, cmd;
struct shmld....ds *buf;

Description

shmctl provides a variety of shared memory control operations as
specified by cmd. The following cmds are available:

IPC..S'TAT

IPC...sET

IPC__RMID

June 21, 1987

Place the current value of each member of
the data structure associated with shmid into
the structure pointed to by buf. The con
tents of this structure are defined in intro (S).

Set the value of the following members of the
data structure associated with shmid to the
corresponding value found in the structure
pointed to by buf:
shm..perm.uid
shm..perm.gid
shm..perm.mode /* only low 9 bits */

This cmd can only be executed by a process
that has an effective user ID equal to either
that of the super-user or to the value of
shm_penn.uid in the data structure associ
ated with shmid.

Remove the shared memory identifier
specified by shmid from the system and des
troy the shared memory segment and data
structure associated with it. This cmd can
only be executed by a process that has an
effective user ID equal to either that of the
super-user or to the value of shm_perm.uid
in the data structure associated with shmid.

Page 1

M:tM(.;lL \:SJ SHMCTL (S)

Diagnosdcs

shmctl will fail if one or more of the following are true:

shmid is not a valid shared memory identifier. [EINV AL]

cmd is not a valid command. [EINVAL]

cmd is equal to IPC....STAT and operation permission is denied
to the cailiug process (see intro(S)). (EACCES]

·

cmd is equal to IPC.JlMID or IPC...BET and the effective user ID
of the cailiug process is not equal to that of the super-user and
it is not equal to the value of shm...,perm.uld in the data struc
ture associated with shmid. [EPERM]

bufpoints to an illegal address. [EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and err no is set to indicate the error.

See Also

intro(S), siunget(S), shmop(S)

Notes

Programs using this function must be compiled with -Me compiler
option.

J nne 21, 1987 Page 2

SHMGET (S) SHMGET (S)

Name

shmget - Gets a shared memory segment.

Syntax

#include <sys/cypes.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_! key;
int size, shmflg;

Description

shmget returns the shared memory identifier associated with key .

A shared memory identifier and an associated data structure and
shared memory segment of size size bytes (see intro(S)) are created
for key if one of the following are true:

key is equal to IPC...PRJV ATE.

key does not already have a shared memory identifier associated
with it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

sbiii..J)erm.cuid, shiii_J)erm.uid, shm._perm.cgid, and
shm._perm.gld are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of sbm_perm.mode are set equal to the
low-order 9 bits of shmflg. shm...segsz is set equal to the value
of size.

shmJpid, sbm_natteb, shlli.Jitime, and shm....dtime are set
equal to 0.

slun....ctime is set equal to the current time.

(- shmget will fail if one or more of the following are true:

size is Jess than the system-imposed minimum or greater than
the system-imposed maximum. The minimum for 286 processes
is l byte, and the maximum is 64K or 65535 bytes. The
minimum and maximum for 386 processes are configurable.
[EINVAL]

June 21, 1987 Page 1

SHMGET (S) SHMGET(S)

A shared memory identifier exists for key but operation permis
sion (see intro(S)) as specified by the low-order 9 bits of shmflg
would not be granted. [EACCES)

A shared memory identifier exists for key but the size of the seg- ·"

ment associated with it is less than si:J;e, which cannot be equal
to zero. [BINV AL)

A shared memory identifier does not exist for key and (shmflg &
IPC_CREAT) is "false". [ENOENT)

A shared memory identifier is to be created but the system
imposed lim1t on the maximum number of allowed shared
memory identifiers system wide would be exceeded. [BNOSPCl

A shared memory identifier and associated shared memory seg
ment are to be created but the amount of available physical
memory is not sufficient to fill the request. [ENOMEM]

A shared memory identifier exists for key but ((shmjlg &
IPC_CREAT) and (shmflg & IPC_.EXCL)) is ''true". [EEXISTJ

Return Value

Upon successful completion, a non-negative integer� namely a
shared memory identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also

intro(S), shmctl(S), shmop(S)

Notes

Programs using this function must be compiled with -Me compiler
option.

June 21, 1987 Page 2

SHMOP (S)

Name

shmop - Performs shared memory operations.

Syntax

For 386 processes:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmtlg)
int shmid;
char *shmaddr;
int shmflg;

int shmdt (shmaddr)
char *shmaddr;

For 286 processes:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char far *shmat (shmid, shmaddr, shm:flg)
int shmid;
char far *shmaddr;
int shmDg;

int shmdt (shmaddr)
char far *shmaddr;

Descriptinn

SHMOP (S)

shmat attaches the shared memory segment associated with the
shared memory identifier specified by shmM to the data segment of
the calling process. The segment is attached at the address speci
fied by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first
available address as selected by the system.

For 286 processes, if shmaddr is not equal to zero and (shmftg
& SHM...RND} is "true," the segment is attached at the first
avallshle address given by (shmaddr - (shmaddr modulus
SHMLBA}} (SHMLBA = 64K or 65536 bytes).

June 21, 1987 Page 1

�ttMUl' l�)

If shmaddr is not equal to zero and (shmfig & SHMJ!.ND) is
"true", the segment is attached at the address given by
(shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to Zero and (shmjlg & SHIILRND) is
"false", the segment is attached at the address given by
shmaddr.

The segment is attached for readiug if (shmfig & SHM_RDONLY) is
"true", otherwise it is attached for reading and writing.

shmdt detaches from the calling process's data segment the shared
memory segment located at the address specified by shmaddr.
shmat will fail and not attach the shared memory segment if one or
more of the followlog are true:

shmid is not a valid shared memory identifier. [EINVAL]

Operation permission is denied to the calling process (see
intro(S)). [EACCES]

The available data space is not large enough to accommodate
the shared memory segment. [ENOME!V!J

shmaddr is not equal to zero, and the value of (shmaddr -
(shmaddr modulus SHMLBA)) is an illegal address. [EINVAL]

shmaddr is not equal to zero, (shmjlg & SHM_R.'�D) is "false",
and the value of shmaddr is an illegal address. [EINV AL]

For 286 processes, the shared memory segment is already
attached by the calllog process. [EINVAL)

The number of shared memory segments attached to the calling
process would exceed the system-imposed limit. [EMFILE]

shmdt detaches the shared memory segment located at !be
address specified by shmaddr from the calling process data seg
ment. [EINV AL]

shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared
memory segment. [EINVAL)

June 21, 1987 Page 2

(

SHMOP (S) SHMOP (S)

Return Values

Upon successful completion, the return values are as follows:

shmat returns the data segment start address of the attached
shared memory segment.

shmdt returns a value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the
e:rror.

See Also

exec(S), exit(S), fork(S), intro(S), shmctl(S), shmget(S)

Notes

Programs using this function must be compiled with the -Me com"
piler option.

For 286 processes, if a program is compiled Ulling small or middle
model, the char far variables cannot be used as arguments to the
standard llbc.a routines because these routines require char near
pointers. If the llbc.a routines are required, the program must be
compiled using large or huge model. If both the llbc.a routines and
small or middle model compiling are required, the XENlX 3.0
shared data system calls must be used.

Small data 386 processes must specify shm11ddr equal to zero (i.e.
you must allow the system to attach the shared memory segment at
whatever address it chooses).

June 21, 1987 Page 3

(

(

SHUTDN (S)

Name

shutdn Flushes block I/0 and halts the CPU.

SynUlx

#include <sys/fllsys.h>
#include <sys/param.h>
#include <sys/types.h>

void shutdn (sblk, ntsblk, arg);
struct lllsys *sblk, *nsblk;
int arg;

Description

SHUTDN (S)

shutdn causes all information in memory that should b e on disk to
be written out. Thls includes modified super-blocks, modified
inodes, and delayed block I/0. The super-blocks of all writable
file systems are flagged 'clean', so that they can be remounted
without clean:iug when XENIX is rebooted. shutdn then prints
"Normal System Shutdown" on the console and halts the CPU.

The system then stays down or reboots dependant on whether arg
is 0 or 1.

If sb/k. is greater than 1, it specifies the address of a super-block to
be written to the root device as the last I/0 before the halt, pro
vided that nsblk is given as its bit-wise inverse. This facility is pro
vided to allow file system repair programs to supercede the system's
copy of the root super-block with one of their own.

If sblk is 1, the second argument is a command and the third argu
ment is the argument to the command. The CONFPANIC com
mand, a system configurable system call, is given the argument 0 to
stay down, or 1 to reboot. When shutdn is called in this way, the
purpose is not to bring down the system, but rather, to give instruc
tions to the kernel regarding the way to deal with the next panic.

shutdn locks out all other processes while it is doing its work.
However, it is recommended that user processes b e killed off (see
kili(S)) b efore calling shutdn as some types of disk activity could
cause file systems to not be flagged "clean".

The caller must be the super-user.

June 21, 1987 Page 1

SHUTDN (S) SHUTDN (S)

See Also

fsck(C), haltsys(C), shutdown(C), mount(S), kili(S)

Notes

This routine must be linked using the linker option -l:x.

June 21, 1987 Page 2

SIGNAL (S) SIGNAL (S)

Name

signal - Specifies what to do upon receipt of a signal.

Syntax

#Include <signal.h>

int (*signal (sig , func)) ()
int sig;
int ("func}();

Description

signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. sig
specifies the signal and June specifies the choice.

slg can be assigned any one of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUIT
SIGIIL
SIGTRAP
SIGIOT
S!GEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR

01 Hangnp
02 Interrupt
03* Quit
04* illegal instruction (not reset when caught)
OS• Trace trap (not reset when caught)
06* 110 trap instruction
07* Emulator trap instruction
08* Floating-point exception
09 Kill (cannot be caught or ignored)
10* Bus error
11* Segmentation violation
12* Bad argument to system call
13 Write on a pipe with no one to read it
14 Alarm clock
15 Software termination signal
16 User-defined signal 1
17 User-defined signal 2
18 Death of a child (see Warning below)
19 Power fail (see Warning below)

See number 7 below for the significance of the asterisk in the above
list.

June is assigned one of three values: SIG_DFL, SIGJGN, or a func
tion address . The actions prescribed by these values are described
below.

The SIG..JlFL value causes termination of the process upon receipt
of a signal. Upon receipt of the signal sig, the receiving process is
to be terminated with the following consequences:

June 21, 1987 Page 1

SiGNAL (S) SIGNAL (S)

1. All of the receiving process' open file descriptors will be
closed.

2. If the parent process of the receiving process is executing a
wait, it will be notified of the termination of the receiving pro- /
cess and the terminating signal's number will be made available
to the parent process; see wait(S).

3. If the parent process of the receiving process is not executing a
wait, the receiving process will be transformed into a zombie
process (see exit(S) for definition of zombie process).

4. The parent process ID of each of the receiving process' existiog
child processes and zombie processes will be set to 1. This
means the initialization process (see lntro(S)) inherits each of
these processes.

5. An accounting record will be written on the accounting file if
the system's acconnting routine is enabled; see acct(S),

6. If the receiving process' process ID, tty group ID, and process
group ID are equal, the signal SIGHUP will be sent to all of the
processes that have a process group ID equal to the process
group ID of the receiving process.

7. A "core image" will be made in the current working directory
of the receiving process if sig is one for which an asterisk (•)
appears in the above list and the following conditions are met:

- The effective user ID and the real user ID of the receiving
process are equal.

- An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have a mode of 0666
modified by the file creation mask (see umask(S)), a file owner
ID that is the same as the effective user ID of the receiving pro
cess, a file group ID that is the same as the effective group ID
of the receiving process

The SIGJGN value causes the process to ignore a signal. The sig
nal sig is to be ignored. Note that the signal SIGKILL cannot be
ignored.

A function address value causes the process to catch a signal.
Upon receipt of the signal sig, the receiving process is to execute
the signal-catching function pointed to by June. The signal number
sig will be passed as the only argument to the signal-catching func
tion. There are the following consequences:

1. Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted
and the value of June for the caught signal will be set to

June 21, 1987 Page 2

(

SIGNAL (S) SIGNAL (S)

SIG....DFL unless the signal is SIGILL, SIGTRAP, SIGCLD, o r
SIGPWR.

2. When a signal that is to be caught occurs during a read, a
write, an open, or an ioctl system call on a slow device {like a
terminal; but not a file), during a pause system call, or during a
wait system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching function will be executed and then the interrupted sys
tem call will return a -1 to the calling process with errno set to
EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending
SIGKILL signal.

signal will fail if one or more of the following are true:

sig is an illegal signal number, including SIGKILL. [EINVAL]

June points to an illegal address. [EFAULT]

Return Value

Upon successful completion, signal returns the previous value of
June for the specified signal sig. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also

kill(C), kill(S), pause(S), ptrace(S), wait(S), setjmp(S).

Warning

Two other signals that behave differently than the signals described
above exist in this release of the system; they are:

SIGCLD
SIGPWR

18 Death of a child (not reset when caught)
19 Power fail (not reset when caught)

There is no guarantee that, in future releases of XENIX, these sig
nals will continue to behave as described below; they are included
only for compatibility with other versions of XENIX. Their use in
new programs is strongly discouraged.

June 21, 1987 Page 3

SIGNAL (S) SIGNAL (S)

For these signals, June is assigned one of three values: SIGJ)FL,
SIGJGN, or a function address. The actions prescribed by these
values are as follows:

SlGJ)FL - ignore signal
The signal is to be ignored.

SIGJGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process' child processes will not create zombie
processes when they terminate; see exit(S).

function address - catch signal
If the signal is SIGPWR, the action to be taken is the
same as that described above for June equal to function
address. The same is true if the signal is SIGCLD
except, that while the process is executing the signal
catching function any received SIGCLD signals will b e
queued and the signal-catching function will be continu
ally reentered until the queue is empty.

The SIGCLD affects two other system calls (wait(S), and exit(S))
in the following ways:

wait If the June value of SIGCLD is set to SIGJGN and a wait
is executed, the wait will block until all of the calling
process' child processes terminate; it will then return a
value of -1 with err no set to ECHlLD.

exit If in the exiting process' parent process the June value of
SIGCLD is set to SlGJGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in
the pipeline the parent of the proceeding processes. A process
that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD to
be caught.

Notes

The defined constant NSIG in slgnalh standing for the number of
signals is always at least one greater than the actual number.

The calling process must make another call to signal after a signal is
caught before another signal can be caught. If this L' not done,
subsequent signals are processed in the default manner (see the
description for SIG.JJFL).

June 21, 1987 Page 4

(

SIGSEM (S)

Name

sigsem - Signals a process waiting on a semaphore.

Syntax

int sigsem(sell1.Jlum);
int sei11Jlnm;

Description

SIGSEM (S)

sigsem signals a process that i s waiting on the semaphore semJlum
that it may proceed and use the resource governed by the sema
phore. sigsem is used in conjunction with waitsem (S) to allow syn
chronization of processes wishing to access a resource. One or
more processes may waitsem on the given semaphore and will be
put to sleep until the process which currently has access to the
resource issues a sigsem call. If there are any waiting processes, sig
sem causes the process which is next in line on the semaphore's
queue to be rescheduled for execution. The semaphore's queue is
organized in first in first out (FIFO) order.

See Also

creatsem(S), opensem(S), waitsem(S)

System Compatibility

sigsem can only be used to signal semaphores created under XENIX
Version 3.0, not for XENIX System V semaphores.

Diagnostics

sigsem returns the value (int) -1 if an error occurs. If semJI.um
does not refer to a semaphore type file, errno is set to ENOTNAM.
If semJI,um has not been previously opened hy opensem, errno is
set to EBADF. If the process issuing a sigsem call is not the
current "owner" of the semaphore (i.e., if the process has not
issued a waitsem call before the sigsem), errno is set to EN AVAIL.

C Notes

This feature is a XENIX specific enhancement and may not be
present in all UNIX implementations. This function must be linked
using the linker option -lx.

J uoe 21, 1987 Page 1

SINH (S)

Name

sinh, cosh, tanh - Performs hyperbolic functions.

Syntax

#include <madt.h>

double sinh (x) .
double x;

double cosh (x)
double x;

double tanh (x)
double x;

Description

SINH (S)

These functions compute the designated hyperbolic functions for
real arguments.

Diagnostics

sinh and cosh return JWGE (and sinh may return -HUGE for
negative x) when the correct value would overflow and set ermo to
ERANGE.

These error�handling procedures can be changed widt dte
matherr(S) function.

See Also

matherr(S)

Notes

These routines must be linked by using the -bn linker option.

June 21, 1987 Page 1

(_

SLEEP (S)

Name

sleep - Suspends execution for an interval.

Syntax

unsigned sleep (seconds)
unsigned seconds;

Description

SLEEP (S)

The current process is suspended from execution for the number of
seconds specified by tbe argument. The actual suspension time may
be less than that requested because scheduled wakeups occur at
fixed 1-second intervals, and any caught signal will terminate the
sleep following execution of that signal's catching routine. Also,
the suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The
value returned by sleep will be the "unslept" amount (the requested
time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested sleep time, or
premature arousal due to another caught signal.

The routine is implemented by setting an alarm sigt>al and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alam> signal before calling sleep ; if the sleep time exceeds
the time till such alarm signal, the process sleeps only until the
alarm signal would have occurred, and the caller's alarm catch rou
tine is executed just before the sleep routine returns, but if the sleep
time is less than the time till such alarm, the prior alarm time is
reset to go off at the same time it would have gone off without the
interveniog sleep.

See Also

alarm(S), nap(S), pause(S), sigoal(S)

June 21, 1987 Page 1

(
\.

SPUTL (S) SPUTL (S)

Name

sputl, sgetl Accesses long integer data in a machine-independent
fashion.

Syntax

void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

Description

spud takes the four bytes of the long integer value and places them
in memory starting at the address pointed to by buffer. The order
ing of the bytes is the same for all machines.

Starting at the address pointed to by buffer, sgetl retrieves the four
bytes in memory and returns the long integer value in the byte ord
ering of the host machine.

sputl and sgetl provide a machine-independent way to store long
numeric data in binary form in a file without converting to charac
ters.

June 21, 1987 Page l

('·

SSIGNAL {S)

Name

ssignal, gsignal - Implements software signals.

Syntax

#include <signal.h>

int {*ssignal (sig, action)) ()
int sig, (*action)() ;

int gsignal (sig)
int sig;

Description

SSIGNAL {S)

ssignal aod gsignal implement a software facility similar to
signal (S). This facility is used by the standard C library to enable
the user to indicate the disposition of error conditions, and is also
made available to the user for his own purposes.

Software signals made available to users are associated with integers
in the inclusive range 1 through 15. An action for a software signal
is established by a call to ssignal, and a software signal is raised by
a call to gsignal. Raising a software signal causes the action esta
blished for that signal to be taken .

The first argnment to ssignal is a number identifying the type of sig
nal for which an action is to be established. The second argument
defines the action; it is either the name of a (user defined) action
function or one of the manifest constants SIG_DFL (default) or
SIGJGN (ignore). ssignal returns the action previously established
for that signal type; if no action has been established or tbe signal
number is illegal, ssignal returns SIG_DFL.

gsignal raises the signal identified by its argnment, sig :

If an action function has been established for sig, then that
action is reset to SIG...DFL and the action function is entered
witb argument sig. gsignal returns the value returned to it by
the action function.

If the action for sig is SIGJGN , gsignal returns tbe value 1
and takes no other action.

If tbe action for sig is SIG_DFL , gsignal returns the value 0
and takes no other action.

June 21, 1987 Page 1

Notes

s::;JGNAL (S)

If sig has an illegal value or no action was ever specified for
slg, gsignal returns the value 0 and takes no other action.

There are some additional signals with numbers outside the range 1
through 15 that are used by the standard C library to indicate error
conditions. Thus, some signal numbers outside the range 1 through
15 are legal, although their use may interfere with the operation of
the standard C library.

June 21, 1987 Page 2

STAT (S) STAT (S)

Name

stat, fstat - Gets file status.

(Synrnx

c

c

#include <sysltypes.h>
#include <syslsrnt.h>

int s Ul t (path, buf)
char *path;
struct stat *buf;

int fsrnt (fiides, buf)
int fiides;
struct stat *buf;

Description

path points to a pathname naming a file. Read, write or execute
permission of the named file is not required, but all directories
listed in the pathname leading to the file must be searchable. stat
obtains information about the named file.

Similarly, fstat obtains information about an open file known by
the file descriptor fildes, obtained from a successful open, creat,
dup, fcntl, or pipe system call.

buf is a pointer to a stat structure into which information is placed
concerning the file.

The contents of the structure pointed to by buf include the follow
ing members:

ushort
ino_t
dev_t

dev_t

short
ushort
ushort
ofU
time_!
time_!
time_!

June 21, 1987

st_mode;
stJno;
st_dev;

st_rdev;

st..nlink;
st_uid;
st_gid;
st_..size;
st_atime;
st_mtime;
st_ctime;

/* File mode; see mknod (S) *I
/* Inode number */
/* ID of device containing *I
/* a directory entry for this file *I
/* lD of device */
I* This entry is defined only for */
/* special files *I
I* Nnmber of links *I
/* User ID of the file's owner *I
/* Group ID of the file's group *I
/* File size in bytes *I
/* Time of last access *I
/* Time of last data modification */
/* Time of last file status change *I
/* Times measured in seconds since */
I* 00:00:00 GMT, Jan. 1, 1970 *I

P�ge 1

;:>1A1 (S) STAT (S)

st...atime Time when file data was last accessed. Changed by the
following system calls: creat(S), mknod (S), ptpe(S),
ulime(S), and read(S).

sLmtime Time when data was last modified. Changed by the fol- ,,
lowing system calls: creat(S), mknod(S), ptpe(S),
utime(S), and write(S).

su:time Time when file status was last changed. Changed by the
following system calls: chmod{S), chown(S), creat(S),
lillk (S), mknod(S), ptpe(S), utime (S), and write(S).

st...rdev Device indentification. In the case of block and charac
ter special files this contains the device major and minor
numbers; in the case of shared memory and sema
phores, it contains the type code. The file
/usr/inclnde/sys/types.h contains the macros majorO
and minorO for extracting major and minor numbers
from st_rdev. See /usr/lnclnde/sys/stat.h for the sema
phore and shared memory type code values SJNSEM
and SJNSHD.

stat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOIDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

buf or path points to an invalid address. [EF AULT]

fstat will fail if one or more of the following are true:

fildes is not a valid open file descriptor. [EBADF]

buf points to an invalid address. [EFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and e"no is set to indicate the error.

See Also

chmod(S), chown(S), creat(S), link(S), mknod(S), time(S),
unlink(S)

June 21, 1987 Page 2

(

STDIO (S) STDIO (S)

Name

stdio - Performs standard buffered input and output.

Syntax

#include <stdio.h>
F1LE *stdin, *stdout, *stderr;

Description

The stdio library contains an efficient, user-level 1/0 buffering
scheme. The in-line macros getc(S) and putc(S) handle characters
quickly. The macros getchar, putchar, and the higher-level rou
tines fgetc , [gets, fprintf, fputc, fputs, fread, fscanf, [write, gets,
getw, print[, puts, putw, and scan[all use getc and putc; they can
be freely intermixed.

A file with associated buffering is called a "stream" and is declared
to be a pointer to a defined type F1LE . [open (S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the "include" file and
associated with the standard open files:

stdin
stdout
stderr

Standard input file
Standard output file
Standard error file

A constant "pointer" NULL designates the null stream.

An integer constant EOF is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual
descriptions for details).

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

#include <stdio.h>

Most of the functions and constants mentioned in this section of
the manual are declared in that "include" file and are described
elsewhere. The constants and the following "functions,, are imple
mented as macros (redeclaration of these names is perilous): getc,
getchar, putc, putchar, feof, [error, and fileno .

June 21, 1987 Page 1

STDIO (S) S17JIO (S)

See Also

open(S), close(S), read(S), write(S), ctermid(S), cuserid(S),
fclose(S), ferror(S), fopen(S), fread(S), fseek(S), li"tc(S), gets(S),
popen(S), printf(S), putc(S), puts(S), scauf(S}, setbuf(S},
systcm(S), tmpnam(S}

Diagnostics

Invalid stream pointers can cause grave disorder, possibly including
program termination. Individual function descriptiona descnbe the
possible error conditions.

June 21, 1987 Page 2

(

STDIPC (S)

Name

ftok Standard interprocess communication package.

Synlllx

#include <sys/types.h>
#include <sys/ipc.h>

key_t fl<>k(path, id)
char *path;
char id;

Description

STDIPC (S)

All interprocess commWlication facilities require the user to supply
a key to b e used by the msgget(S), semget(S), and shmget(S) system
calls to obtain interprocess communication identifiers. One sug
gested method for forming a key is to use the ftok subroutine
described below. Another way to compose keys is to include the
project ID in the most significant byte and to use the remaioing
portion as a sequence number. There are many other ways to form
keys, but it is necessary for each system to define standards for
forming them. If some standard is not adhered to, it will be possi
ble for unrelated processes to unintentionally interfere with each
other's operation. Therefore, it is strongly suggested that the most
significant byte of a key refer to a project so that keys do not con
flict across a given system.

ftok returns a key b ased on path and an id that is usable in subse
quent msgget, semget, and shmget ;-ystem calls. path must be the
path name of an existing file that is accessible to the process. id is
a character which uniquely identifies a project. Note that ftok will
return the same key for linked files when called witb tbe same id
and that it will return different keys when called with the same file
name but with different ids.

See Also

intro(S), msgget(S), semget(S), sbmget(S)

/ .. Diagnostics I.
ftok returns (key_t) -1 if path does not exist or if it is not accessi
ble to the process.

June 21, 1987 Page 1

STDIPC (S) STDIPC (S)

Warning

If the file whose path is passed to ftok is removed when keys still
refer to the file, future calls to ftok with the same path and id will
return an error. If the same file is recreated, then ftok is likely to
return a different key than it did the original time it was called.

June 21, 1987 Page 2

S11ME (S)

Name

stime - Sets the time.

Syntax

#include <sys/types.h>
#include <sys/timeb.h>

lnt stime {tp)
long •tp;

Description

STIME (S)

Slime sets the system's idea of the time and date. tp points to the
value of time as measured in seconds from 00:00:00 GMT January
1, 1970.

slime will fail if the effective user ID of the calling process is not
super-user. [EPERM]

Retum Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate !he error.

See Also

time(S)

June 21, 1987 Page 1

Name

strin� strcat, stmcat, strcmp, strncmp, strcpy, strncpy, strlen�
strchr, strrchr, strpbrk, strspnt sttcspn, strtok, strdup Performs
string operations.

Syntax

char •strcat (s1, sZ)
char *sl,. *s2;

char *slmcat (s 1, s2, n)
char *s 1, *s 2;
blt n;

int strcmp (sl, s2)
char *s l, *s2;

int slmcmp (sl, s2, n)
char *s l, *sZ;
int n;

char •strcpy (sl, s2)
char *sl, *s2;

char *slmcpy (sl, s2, n)
char *s1, *s2;
int n;

int strlen (s)
char *s;

char *strehr (s, c)
char *s;
int c;

char *strrchr (s, c)
cbar *s;
int c;

char •strpbrk (sl, s2)
char *sl,. *s2;

int strspn (s 1, s2)
char *s 1, *s2;

int strcspn (sl, s2)
char *sl, *s2;

June 21, 1987 Page l

char •strtok (sl, s2)
char *sl"" "s2;

char *strdnp (s)
char �;

Descriplion

,_,l.J'UiVU' \\:))

These functions operate on null-terminated strings. They do not
check for overflow of any receiving string.

strcat appends a copy of string s2 to the end of string sl. stmcat
copies at most n characters. Both return a pointer to the null
terminated result.

strcmp compares its arguments and returns an integer greater than,
equal to, or less than 0, according to whether sl is lexicographically
greater than, equal to, or less than s2. strncmp makes the same
comparison but looks at no more than n characters.

strcpy copies string s2 to sl, stopping after the null character has
been moved. strncpy copies exactly n characters, truncating or
null-padding s2; the target may not be nnll-terminated if the length
of s2 is n or more. Both return sl .

.strlen returns the number of non-null characters in s.

strchr (strrchr) returns a pointer to the first (last) occurrence of
character c in string s � or NULL if c does not occur in the string.
The null character terminating a string is considered to be part of
the string.

strpbrk returns a pointer to the f'rrst occurrence in string sl of any
character from string s2, or NULL if no character from sZ exists in
sl .

strspn (strcspn) returns the length of the initial segment of string sl
which consists entirely of characters from (not from) string s2.

strtok considers the string sl to consist of a sequence of :r.ero or
more text tokens separated by spans of one or more characters
from the separator string s2. The first call (with pointer sl speci
fied) returns a pointer to the first character of the first token, and
will have written a NULL character into sl immediately following
the returned token. Subsequent calls with zero for the first argu
ment, will work through the string sl in this way until no tokens
remain. The separator string s2 may be different from call to call.
When no token remains in sl , a NULL is returned.

June 21, 1987 Page 2

I
I
"'· .

STRING (S) STRJNG (S)

strdup returns a pointer to a duplicate copy of the string pointed to
by s. The duplicate string is automatically allocated storage using a
mallcc(S) system call. This call allocates tbe exact number of bytes
needed to store the string and its terminating null character.

Notes

For user convenience, all the string functions are declared in the
<string.h> header file.

strcmp uses native character comparison, which is signed on some
machiJJ.es, unsigned on others. Thus, when one of the characters
has its high-order bit set, the sign of tbe value returned is
implementation-dependent.

All string movement is performed character by character starting at
the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

June 21, 1987 Page 3

STRTOD (S) STRTOD (S)

Name

strtod, atof - Converts a string to a double-precision number.

Syntax

double strtod (str, ptr)
char *str, **ptr:

double ataf (str)
char *str;

Description

strtod returns as a double-precision floating point nurober the value
represented by the character string pointed to by str. The string is
scanned up to the first unrecognized character.

strtod recognizes an optional string of "white-space" characters (as
defined by isspace in ctype (S)), then an optional sign, then a string
of digits optionally containing a decimal point, then an optional e
or E followed by an optional sign or space, followed by an integer.

If the value of ptr is not (char ••)0, a pointer to the character ter
minating the scan is returned in the location pointed to by ptr. H
np numb er can be formed, *ptr is set to str, and zero is returned.

atof(str) is equivalent to strtod(str, (char **)0) .

See Also

ctype(S), scanf(S), strtoi(S)

Diagnostics

If the correct value would cause overflow, ±HUGE is returned
(according to the sign of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and
ermo is set to ERA-1\IGE.

June 21, 1987 Page 1

li1X1V.L (I>J

Name

strtol, atol, atoi - Converts string to integer.

Syntax

long slrtol (str, ptr, base)
char *s1r'" **ptr;
int base;

long atol (str)
char *str;

lnt atol (sir)
char *str;

Desertption

i>ll<lV.L (:>)

strtol retnrns as a long integer the value represented by the charac
ter string pointed to by stt. This routine scans the string up to the
first character inconsistent with the base. It ignores leading white
space characters as defined by isspace (see ctype(S)).

lf the value of prr is not {char ..)0, strtol returns a pointer to the
character terminating the scan at the location pointed to by ptr. If
no integer can be formed, that location is set to str, and strtol
returns zero.

base is used as the base for conversion if it is positive and not
greater than 36. If base is 16, leading zeros are ignored after an
optional leading sign) and u0x1' or "OX" is ignored. If base is zero,
the string determines the base in the following manner: a leading
xero indicates octal conversion after an optional leading sign; a
leading nox" or HQX" indicates hexadecimal conversion; in other
cases, decimal conversion is used.

Truncation from long to int can take place upon assignment or by
explicit cast.

atol(str) is equivalent to strtol(str, (char**)O, 10).

atoi(str) is equivalent to (int) strtol(str, (char**)O, 10).

I une 21, 1987 Page 1

U.l..!.'l.l. \.JL.t \"') � l t< I UL \ '>)

See Also

ctype(S}, scanf(S), strtod(S}

Notes

Overflow conditions are ignored.

June 21, 1987 Page 2

SWAB (S)

Name

swab - Swaps bytes.

Syntax

void swab (from, to, nbytes)
char *from, *to;
in! llbYieS;

Description

SWAB (S)

swab copies nbytes pointed to by from to the positinn pointed to by
tQ, exchanging adjacent even and odd bytes. It is useful for tran
sporting binary data between machines that differ in the ordering of
bytes. nbytes should be even.

June 21, 1987 Page 1

c

SWAPADD (S) SWA,PADD (S)

Name

swapadd - Specifies additional devices for paging and swapping.

Description

This command is available only in XENJX-386. If you have
XENIX-386, see your Release Notes for the complete version of
this reference page.

June 21, 1987 Page 1

SYNC (S} SYNC (S}

Name

sync - Updates the super-block.

Syntax

void sync ()

Description

sync causes all information in memory that should be ou disk to be
written out. This includes modilied super-blocks, modified inodes,
and delayed block JJO.

It should be used by programs which examine a file system, for
example fsck, df, etc.

The writing, although scheduled, is not necessarily complete upon
return from sync.

See Also

sync(C)

June 21, 1987 Page 1

I
\.

SYSTEM (S)

Name

system - Executes a shell command.

Syntax

#include <stdio.h>

int system (siring)
char *string;

Description

SYSTEM (S)

system causes the string to b e given to sh(C) as input a s if the string
had been typed as a command at a terminal. The current process
waits until the shell has completed, then returns the exit status of
the shell.

Return Value

Errors, such as syntax errors, cause a non-zero return value and
execution of the command file is abandoned. Otherwise, the exit
status of the last command executed is returned.

See Also

sh(C), exec(S)

Diagnostics

system stops if it can't execute sh (C).

June 21, 1987 Page 1

(

TERMCAP (S) TERMC4P (S)

Name

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - Perfonns terminal
functions.

\ Syntax

char PC;
char *BC;
char *UP;
short ospeed;

lnt tgetent(bp, name)
char *bp, *name;

In! tgetnum (id)
char *id;

lnt tge!Dag(id)
char *id;

char •
tgetslr(id, area)
char *id, •*area;

char *
tgoto(cm, destcol, destline)
char *em;
int des !col, destline;

void tputs(cp, affcnt, outc)
register char *cp;
lnt affcnt;
lnt (*outc)O;

Description

These functions extract and use capabilities from the terminal capa
bility data base termcap(F). Tbese are low level routines; see
curses(S) for a higher level package.

tgetent extracts the entry for terminal name into the buffer at bp. bp
should be a character buffer of size 1024 and must be retained
through all subsequent calls to tgetnum, tgetflag, and tgetstr. tgetent
returns -1 if it cannot open the terrncap file, 0 if the terminal name
given does not have an entry, and 1 if all goes well. It looks in the
environment for a TE�'vfCAP variable. If found, and the value
does not begin with a slash, and the terminal type name is the same
as the environment string TERM, the TERMCAP string is used
instead of reading the tenncap file. If it does begin with a slash,

June 21, 1987 Page 1

TERMCAP (S)

the string is used as a patlmame rather than /etc/termcap. This can
speed up entry into programs that call tgetent, as well as to help
dehug new ternrinal descriptions or to make one for your ternrinal
if you can't write the file /etc/termcap.

tgetnum gets the numeric value of capahility id, returning -1 if it is
not given for the terminal. tgetflag returns 1 if the specified capa
bility is present in the ternrinal's entry, 0 if it is not. tgetstr gets the
string value of capability id, placing it in the buffer at area, advanc
ing the area pointer. It decodes the ahbreviations for this field
described in termcap(F), except for cursor addressing and padding
infonnation.

tgoto returns a cursor addressing string decoded from em to go to
column destcol in line tkstline. It uses the external variahles UP
(from the up capability) and BC (if be is given rather than bs) if
necessary to avoid placing \n, Ctrl·D or NULL in the returned
string. Pro�ams which call tgoto should be sure to turn off the
TAB3 bit (see tty (M)), since tgoto may now output a tab. Note
that programs using tenncap should turn off TAB3 anyway since
some terminals use Ctrl· I for other functions, such as nondestruc
tive space.) If a % sequence is given which is not understood, then
tgoto returns OOPS.

tputs decodes the leading padding information of the string cp;
affcnt gives the number of lines affected by the operation, or 1 if
this is not applicable, outc is a routine which is called with each
character in tum. The external variable ospeed should contain the
output speed of the terminal as encoded by Stty (S). The external
variable PC should contain a pad character to be used (from the pc
capahility) if a NULL is inappropriate.

Files

/usr/libllibtenncap.a -ltermcap library
/etc/termcap data base

See Also

curses(S), termcap(M), tty(M)

June 21, 1987 Page 2

(
\

(

TERMCAP (S) TERMCAP (S)

Credit

This utility was developed at the U11iversity of California at
Berkeley and is used with permission.

Notes

These routines can be linked by using the -ltermcap linker option.

June 21, 1987 Page 3

(

TERMINFO (S)

Name

terminfo - terminal description database.

Syntax

#include <eurses.h>
#include <term.b>

TERMINFO (S)

cc -DM_TERMINFO [-DMINICURSES) . . . -ltinfo [-lx)

Description

These routines give the user a method of updating screens with rea
sonable optimization. In order to initialize the routines, the routine
initscr must be called before any of the other routines that deal with
windows and screens are used. The routine endwin should be
called before exiting. To get character-at-a-time input without
echoing, (most interactive, screen oriented-programs want this)
after calling initscr you should call "nonE(); cbreak(); noecho();"

The full · curses interface permits manipulation of data structures
called windows which can be thought of as two dimensional arrays
of characters representing all or part of a CRT screen. A default
window called stdscr is supplied, and others can be created with
newwin. Windows are referred to by variables declared "WINDOW
*", the type WINDOW is defined in eurses .h to be a C structure.
These data structures are manipulated with functions described
below, among which the most basic are move, and addch. (More
general versions of these functions are included with names begin
ning with 'w', allowing you to specify a window. The routines not
beginning with 'w' affect stdser.) Then refresh() is called, telling
the routines to make the users CRT screen look like stdscr.

Mini-Curses is a subset of curses which does not allow manipula
tion of more than one window. To invoke this subset, use -DMINI
CURSES as a cc option. Mini-Curses is smaller and faster than full
curses.

If the environment variable TERMINFO is defined, any program
using curses will check for a local terminal definition before check
ing in the standard place. For example, if the standard place is
/usr/hl>/terminf"o, and TERM is set to "vt100", then normally the
compiled file is found in /usr/lib/tennlnfo/v/vtlOO. (The "v" is
copied from the first letter of "vt100" to avoid creation of huge
directories.) However, if TERMINFO is set to /usr/mark/mytenns,
curses will first check /usr/markfmytenns/v/vtlOO, and if that fails,
will then check /usr/lib/tenuinfo/v/vtlOO. This is useful for
developing experimental definitions or when write permission in
/usr/lib/terminf"o is not available.

June 21, 1987 Page 1

TERMINFO (S) TERMINFO (S)

See Also

tenninfo(F), tenninfo(M)

Funetions

Routines listed here may be called when using the full curses.
Those marked with an asterisk may be called when using Mini
Curses.

addch(ch)•

addstr(str)•
attroff(attrs)•
attron(attrs)•

.attrset(attrs)•
baudrate()•

-. beep()•
" box(win, vert, hor)

clear()
v clearok(win, bf}

clrtobot()
clrtoeol()

�, cbreak()�
delay_output(ms)•
delch()
deleteln()

" delwin(win)
.; doupdate()
• echo()•

� endwin()•
erase()
erasecbar()
fixtenn()

4 flasb()
' flushinp()•

getch()*
getstr(str)
gettmode()
getyx(win, y, x)
hasjc()
has.JI()

"-' idlok(win, bf)*
inch ()

v initscr()•
inscb(c)
insertln()
intrflush(win, bf}

June 21, 1987

add a character to stdscr
(like putchar) (wtaps to next
line at end of line)
calls addch with each character in str
tum off attributes named
turn on attributes named
set current attributes to attrs
current terminal speed
soUnd beep on terminal
draw a box around edges of win
vert and hor are chars to use for vert.
and hor. edges of bo�
clear stdscr
clear screen before next redraw of win
clear to bottom of stdscr
clear to end of line on stdscr
set cbreak mode
insert ms millisecond pause in output
delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase stdscr
return user,s erase character
restore tty to ''in curses" state
flash screen or beep
throw away any typeahead
get a char from tty
get a string through stdscr
establish current tty modes
get (y, x) co-ordinates
troe if terminal CI!Ul do insert character
true if terminal can do insert line
use tenninal's insert/ delete line if bf != 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE

Page 2

TERMINFO (S)

keypad(win, bf)
killchar()

" leaveok(win, flag)

longname()
meta(win, flag)•

move(y, x)"'
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur{oldrow, oldcol, newrow,

newcol)
mvde!ch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y� x, c)
mvprintw(y, x, fmt, args)
mvscnnw(y, x, fmt, args}
mvwaddch{w:in, y, x, ch)
mvwadd str(win, y, x, str)
mvwdelch{w:in, y, x)
mvwgetch(w:in, y, x)
mvwgetstr(w:in, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, Y� x, fmt� args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols)
newtenn(type, fd)

" newwin(lines, cols, begin_y,
begin..>:)

' nl()*
nocbreak()•

··� nodelay(win, bf)
noecho()•
non!()•

. noraw()•
'� overlay(winl, win2)
\,,overwrite(winl • wio2)

pnoutrefresh(pad, pminrow,
pminco,4 sminrow, smincol�
smaxrow, smaxcol)

printw(fmt, arg1, arg2, . . .)
" raw()•

refresh()*

June 21, 1987

TERMINFO (S)

enable keypad input
return current user's kill ch aracter
OK to leave cursor anywhere after
refresh if flag!-0 for wfnb otherwise curso1
must be left at current position_
return verbose name of terminal
allow meta characters on input if
flag ,_ 0
move to (y, x) on stdscr
move(y, x) then addch(ch)
similar ...
low level cursor motion

like delch, but move(y, x) first
etc.

create a uew pad with given dimensions
set up new terminal of given type to
output on fd
create a new window

set newline mapping
unset cbreak mode
enable no delay input mode through getch
unset echo mode
unset newline mapping
unset raw mode
overlay win1 on win2
ovetwrite winl on top of win2
like prefresh but with no output until
doupdate called prefresh(pad� pmin,row,
pmincol, sminrow � smincol, smaxrow,
smaxool) refresh from pad starting with
given upper left corner of pad with
output to given portion of screen
pr:intf on stdscr
set raw mode
make current screen look like stdscr

Page 3

resettenn()•
resetty()*
savetenn()•
savetty()•
seanw(fmt, argl, arg2, ••.)

" S<:roll(win)
' scrollok(win, flag)

seUerm(new)
setscrreg(t, b)
settenn(type)
setupterm(term, filenumt errret)
standend()•
standout()•

� subwin:(w:in, lines, cots, begin_y.
begin..Jt)

' touchwin(win)
traceoff()
traceon()
typeehead(fd)
unctrl{ch)*

,, weddch(win, ch)
,'- waddstr(win, str)
"' wattroff(win, attrs)
'" wattron(win, attrs)

� wattrset(win, attrs)
,,wclear(win)
' wclrtobot{win)
' wclrtoeol(win)
... wdelch(win,):'J
' wdeleteln(win)
'i werase(win)

� wgetch(win)
' wgetstr(win, str)
" winch(win)
"v winsch(win, c)

'v winsertlo(win)
wmove(win, y, x)

'v wooutrefresh(win)
-'wprlntw(win, fmt, argl, arg2, ...)
"< wrefresh(win)
-wscanw(win, fmt, argt, arg2, .••)

wsetscrreg{win, t, b)
v wstandend(win)

·v wstandout(win)

June 21, 1987

TERM.INFO (S)

set tty modes to "out of curses" state
reset tty flags to .stored value
save current modes as "in curses" state
store current tty flags
scanf through stdacr
scroll win one line
allow terminal to scroll if flag !-()
now talk to terminal new
set user scrolliag region to lines t through b
estehlish terminal with given type

cleax standout mode attribute
set standout mode attribute
create a subwindow

change all of win
tum off debugging trace output
tum on debugging trace output
use f:de descriptor fd to check typeahead
printable version of ch
add char to win
add string to win
turn off attrs in win
turn on aJtrs in win
set attrs in win to attrs
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a cher through win
get a string through win
get char at current (y, x) in win
insert char mto win
insert line into win
set current (y, x) co-ordinates on win
refresh but no .screen output
printf on win
make screen look like win
scanf through win
set scrolling region of win
clear standout attribute in win
set standout attribute in win

Page 4

)

TERMINFO (S) TERMINFO (S)

Temoinfo Level Routines

These routines should be called by programs wishing to deal
directly with the terminfo database. Due to the low level of this
interface, it is discouraged. Initially, setupterm should be called.
This will define the set of terminal dependent variables defined in
terminfo(M). The include files curses.b and tenn.b should be
included to get the definitions for these strings, numbers, and flags.
Parameterized strings sbould be passed through tparm to instantiate
them. All terminfo strings (including the output of tparm) should
be printed with tputs or putp. Before exiting, resetterm should be
called to restore the tty modes. {Programs desiring shell escapes
can call re.setterm before the sbell is called and fixterm after return
ing from the shell.)

fi:x!enn()

resetterm()
setuptenn(term, fd; rc)

tparm(str, pl, p2, .. . , p9)

tputs(str, affcnt, putc)

putp(str)

vidputs(attrs, pate)

vidattr(attrs)

Tenncap Compatibility Routines

restore tty modes for tenninfo use
(called by setupterm)
.reset tty modes to state before program enlt)
read in database. Terminal type is the
character string term, all output is to UNIX
System file descriptor fd. A status value is
returned in the integer pointed to by rc: 1
is normal. The simplest call would be
setupterm(O, 1, 0) which uses all defaults.

instantiate string str with parms P··
apply padding info to string str. 1
affcnt is the number of lines affected,
or 1 if not applicable. Putc is a
putchar-like function to which the
characters are passed� one at a time.
h!llldy function that caJls tputs
(str, 1, putchar)
output the string to put terminal in video
attribute mode attn, which is any
combination of the attributes listed below.
Chars are passed to putchar-like
function pu.tc.
Like vidputs but outputs through
putchar

These routines were included as a conversion aid for programs that
use termcap(S). Their parameters are the same as used in tenncap.
They are emulated using the tenninfo(M) database. They may b e
removed at a later date.

tgetent(bp, name)
tgetflag(id)
tgetnum(id)

June 21, 1987

look up termcap entry for name
get boolean entry for id
get numeric entry for id

Page 5

11£Xl\!1Nl<'U (S) TERMJNFO (S)

get string entry for id
apply p_arms to given cap

tgetstr(id, area)
tgoto(cap, col, row)
tputs(cap, affcnt, fn) apply padding to cap calling fu as

put char

Atlrlbutes

The following video attributes can be passed to the functions
attron ,attroff,attrset.

A...STA�OUT Terminal's best highlighting mode
A_UNDERLINE Underlining
A..REVERSE Reverse video
AJ!LINK Blinking
A_D IM Half bright
AJlOLD Extra bright or bold
AJlLANK Blanking (invisible)
AJ'ROTEcr Protected
A.ALTCHARSETA!ternate character set

Function Keys

The following function keys might be returned by getch if keypad
has been enabled. Note that not all of these are currently sup
ported, due to lack of definitions in terminfo or the terminal not
transmitting a unique code when the key is pressed.

Name Value
KEYJllUlAK 0401
KEY_DOWN 0402
KEY_UP 0403
KEY_LEFI' 0404
KEYJUGHT 040S

Key name
break key (unreliable)
The four arrow keys • • .

KEY..HOME 0406 Home key (upward+left arrow)
KEY__BACKSPACE 0407 backspaee (unreliable)
KEY_FO 0410 Function keys. Space for 64 is reserved.
KEY_F(n) (KEY..FO+(n)) Formula for fn.
KEY_DL OSlO Delete line
KEYJL 0511 Insert line
KEY _DC 0512 Delete character
KEYJC 0513 Insert char or enter insert mode
KEY_EIC OS14 Exit insert char mode
KEY_CLEAR 051S Clear screen
KEY..EOS 0516 Clear to end of screen
KEY..EOL 0517 Clear to end of line
KEY_SF 0520 Scroll 1 1ine forwBid
KEY...SR 0521 Scroll l line backwards (reverSe)
KEY_NPAGE 0522 Next page
KEY...PPA GE 0523 Prev:ious page
KEY_ST AB 0524 Set tab

June 21, 1987 Page 6

'
_

(
\

TERMINFO (S)

KEY_CTAB
KEY_CATAB
KEY _ENTER
KEY..SRESET
KEY _RESET
KEYJ'RINT
KEYJ,L

June 21, 1987

0525
0526
0527
0530
0531
0532
0533

TERMINFO (S)

Clear tab
Clear all tabs
Enter or send (unreliable}
soft (pa:rtial) reset (unreliable}
reset or hard reset (unreliable)
print or copy
home down or bottom (lower left)

Page 7

(>

c

TIME (S)

Name

time� ftime - Gets time and date.

Syntax

long time ((long 0) 0)

long time (tloc)
long *tloc;

#include <sys/types .h>
#include <sys/timeb.h>

void ftime(tp)
struct timeb *tp;

Description

TIME (S)

time returns the current system time in seconds since 00:00:00
GMT, January 1, 1970.

H tloc {taken as an integer) is nonzero, the return value is also
stored in the location to which tloc points.

ftime returns the time in a structure {see below under Return
Value .)

time will fail if tloc points to an illegal address. [EFAULT] Like
wise, ftime will fail if tp points to an illegal address. [EFAULT]

Return Value

Upon successful completion, time returns the value of time. Other
wise, a value of -1 is returned and errno is set to indicate the error.

June 21, 1987 Page 1

TIME (S) TIME (S)

The ftime entry fills in a structure pointed to by its argument, as
defined by <sys/timeb.h>:

,.
• Structure returned by ftime system call
.,

struct timeb { · long time;

};

unsigned short millitm;
short timezone;
short dstflag;

Note that the timezone value is a system default timezone and not
the value of the TZ environment variable.

The structure contains the time since the epoch in seconds, up to
1000 milliseconds of more-precise interval, the local time zone
(measured in minutes of time westward from Greenwich), and a
flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year.

See Also

date(C), stime(S), ctime(S)

Notes

Since ftime does not return the correct timezone value, its use is
not recommended. See clime(S) for accurate use of the TZ vari
able. This routine must be linked using the linker option -lx.

June 21, 1987 Page 2

Name

times - Gets process and child process times.

Syntax

#include <sys/lypes.h>
#include <sys/tlmes.h>

long times (tp)
struct tms *tp;

Description

times fills the structure pointed to by tp with time-accounting infor
mation.. This information comes from the calling process and each
of its terminated child processes for which it has executed a
wait(S).

All times are in clock ticks where a tick is some fraction of a
second defined in machine (M.).

tms_;p,time is the CPU time used while executing instructions in the
user space of the calling process.

tms...stb'ne is the CPU time used by the system on behalf of the cal
ling process.

tms...cutime is the sum of the u!Unes and cu!Une s of the child
processes.

tms_cstime is the sUm of the stlmes and cstime s of the child
processes.

tUnes will fail if tp points to an illegal address. [EFAULT]

Return Value

Upon successful completion, times returns the elapsed real time, in
clock ticks, since an arbitrary point in the past, such as the system
start-up time. This poir!t does not change from one invocation of
!Unes to another. lf times fails, a -1 is returned and errno is set to

.---- indicate the error. (
See Also

exec(S), fork(S), time(S), wait(S), machine(M.)

June 21, 1987 Page 1

\

c/

1Ml'nLJ:: �s J

Name

tmpfile Creates a temporary file.

Syntax

#include <stdio.h>

FILE *tmpi:tle ()

Des crip tiou

TMl'FILE (S)

tmpfile creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically
be deleted when the process using it terminates. The file is opened
for update.

Return Value

If the file cannot be opened, an error message is printed and a
NULL pointer is returned.

See Also

creat(S), unlink(S), fopen(S), mktemp(S), tmpnam(S)

June 21, 1987 Page 1

TMPNAM (S) TMPNAM (S)

Name

tmpnam. tempnam - Creates a name for a temporary file.

Syntax

#include <stdio.h>

char •tmpnam (s)
char *s;

char *tempnam (dir, piX)
char *dir, *piX;

Description

These functions generate filenames that can safely be used for a
temporary file.

tmpnam always generates a filename using the path-prefix defined
as P _tmpdir in the <stdio.h> header file. If s is NULL, tmplUJm
leaves its result in an internal static area and returns a pointer to
that area. The next call to tmpnam will destroy the contents of the
area. lf s is not NULL, it is assumed to be the address of an array
of at least L_tmpnam bytes, where L_tmpnam is a constant defined
in <stdlo.h>; tmpnam places its result in that array and returns s .

tempnam allows the user t o controHhe choice o f a directory. The
argument dir points to the name of the directory in which the file is
to be created. Jf dir is NULL or points to a string which is not a
name for an appropriate directory, the path-prefix defined as
P _tmpdir in the <stdlo.h> header flle is used. If that directory is
not accessible, /tmp will be used as a last resort. This entire
sequence can be up-staged by providing an environment variable
TMPDIR in the user's environment, whose value is the name of the
desired temporary flle directory.

Many applications prefer their temporary files to have certain favor
ite initial letter sequences in their names. Use the pfx argument for
this. This argument may be NULL or point to a string of up to five
characters to be used as the first few characters of the temporary
filename.

tempnam uses malloc(S) to get space for the constructed filename,
and returns a pointer to this area. Thus, any pointer value returned
from tempnam may serve as an argument to free(S) (see malloc(S)).
lf tempnam cannot return the expected result for any reason, i.e.,
malloc(S) failed, or none of the above mentioned attempts to find
an appropriate directory was successful, a NULL pointer will be
returned.

June 21, 1987 Page 1

TMPNAM (S) TMPNAM (S)

See Also

creat(S), fopen(S), malloc(S), mklemp(S}, tmpfile(S), unlink(S)

Notes

These functions generate a different file name each time they are
called.

Files created using these functions and either fopen(S) or creat(S)
are temporary only in the sense that they reside in a directory
intended for temporary use, and their names are unique. It is the
user's responsibility to use unlink(S) to remove the file when its use
is ended.

If called more than 17,576 times in a single process, these functions
will start recycling previously used names.

Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using these
functions or mktemp(S), and the f'tlenames are chosen to make
duplication by other means unlikely.

June 21, 1987 Page 2

TRIG (S) TRIG (S)

Name

sin, cos, ta:n, asin, acos, atan, atan2 - Performs trigonometric func
tions.

Syntax

#include <math.h>

double sin (x)
double x;

don ble cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double :<;

double alan (x)
double x;

double atan2 (y, x)
double x, y;

Description

sin , cos and tan return trigonometric functions of radian argu
ments. The magnitude of the argument should be checked by the
caller to make sure the result is meaningful.

asin returns the arc sin in the range -r./2 to 7!/2.

acos returns the arc cosine in the range 0 to 71'.

atan returns the arc tangent of x in the range -r./2 to r./2.

atan2 returns the arc tangent of ylx in the range -11: to r..

See Also

matherr(S)

June 21, 1987 Page 1

TRIG (S) TRIG (S)

Diagnostics

sin, ros, and tan lose accuracy when their argument is far from
zero. For arguments sufficiently large, these functions return zero
when there wonld otherwise be a complete loss of significance. In
this case, a message indicating a TLOSS error is displayed on the
standard error output. For less extreme arguments causing partial
loss of significance, a PLOSS error is generated but no error mes
sage is displayed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos ls greater_ than
one, or if both arguments of atan2 are zero, zero is returned and
erma is set to EDOM. In additinn, a message indicating a DOMAIN
error is displayed on the standard error output.

These error-handling procedures may be changed with the
matther(S) function.

Notes

These routines must be linked with the -lm linker option.

June 21, 1987 Page 2

(

(

TSEARCH (S) TSEARCH (S)

Name

!search, tfind, !delete, !walk - Manages binary search trees.

Synblx

#Include <search.h>

char •tsearch (key, rootp, compar)
char •key;
char ••rootp;
int (*com par) ();

char *tfind (key, rootp, compar)
char *key;
char **rootp;
lnt (*compar)();

char *!delete (key, rootp, compar)
char *key;
char ••rootp;
lnt (*compar)();

char *twalk (root, action)
char •root;
void •action();

Des crlp tion

The routines tsearch, tfind, tdelete, and twalk manipulate binary
search trees. They are generalized from Knuth (6.2.2) Algorithms
T and D. All comparisons are done with a user-supplied routine.
This routine is called with two arguments, the pointers to each of
the elements being compared. An integer is ·retemed less than,
equal to, or greater than 0, corresponding to whether the first argo
men! is considered less than, equal to, or greater than the second
argument. The comparison function need not compare every byte,
so other data may be contained in the elements in addition to the
compared values.

tsearch is used to build and access the tree. key is a pointer to a
datum to be accessed or stored. If there is a datum in the tree
equal to the value pointed to by key (*key), a pointer to this datum
is returned. Otherwise, •key is inserted, and a pointer to it
returned. The calling routine must store data, since only pointers
are copied. rootp points to a variable that points to the root of the
tree. A NULL value for this variable means an empty tree; in this
case, this variable will be set to point to the datom at the root of
the new tree.

June 21, 1987 Page 1

TSEARCH (S)

tftnd will search for a datum in the tree, returning a pointer to it if
found; however, if the datum is not found, tftnd will return a NULL
pointer. The arguments for tftnd are the same as for tsearch .

tdelete deletes a node from a binary search tree. The arguments are
the same as for /search. The variable pointed to by rootp is
changed if the deleted node was the root of the tree. tdelete returns
a pointer to the parent of tbe deleted node, or a NULL pointer if
the node is not found.

twalk traverses a binary search tree. root is the root of the tree to
be traversed. Any node in a tree may be used as the root for a
walk below tbat node. action is the name of a routine to be invoked
at each node. action is called with three arguments:

- the address of the node being visited.

- a value from an enumeration data type typedef enum {
preorder, post· order, endoder, leaf} VISIT; depending on
whetber this is the first, second, or third time that the node has
been visited, or whether the node is a leaf. (This data type is
defined in tbe <search.h> header file.)

- the level of the node in the tree, with the root being level
zero.

The pointers to the key and the root of the binary search tree
shonld be of type pointer-to-element, and cast to type pointer-to
character. The value returned should also be cast into type
pointer-to-element, although it is declared as type pointer-to
character.

Examples

The following code fragment reads in strings and stores structures
containing a pointer to each string and a count of its length. It
then walks tbe tree, printing out the stored strings and tbeir lengtb
in alphabetical order:

#include <search.h>
#include <stdio.h>

struct node { /*pointers to these are stored in tbe tree*/
char *string;
int lengtb;

};
char string._space[lOOOO]; /*space to store strings*/
struct node nodes[500]; /"nodes to store*/
struct node *root NULL; /*this points to root*/

main ()

June 21, 1987 Page 2

TSEARCH (S) TSEARCH (S)

(

{
char •strptr � String_$pace;
struct node "nodeptr = nodes;
void prinLnode (), twalk();
init i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500) {
!•set node*/
nodeptr-> string � strptr;
nodeptr->length = strlen(strptr);
!•put node into the tree*/
(void) !search ((char *)nodeptr, &root,

node_compare);
/*adjust pointers, so we don't overwrite tree*/
strptr += nodeptr ->length + 1;
nodeptr++;

} .
twalk(root, pnnLnode);

}
,.

. ,
int

This routine compares two nodes based on an
alphabetical ordering of the string field .

node_compare(nodel, node2)
struct node *nodel, *node2;
{

f·
return strcmp(nodel->string, node2->string);

This routine prints out a node, the first time
twalk encounters it.

.,
void
prinLnode(node, order,
struct node **node;
VISIT order;
int level;

level)

{
if (order = preorder II order =leaf) {

(void)printf("string � %20s, length = %d\n",
(*node)->string, (•node)->length);

}
}

_ See Also

bsearch(S), hsearch(S), lsearch(S)

June 21, 1987 Page 3

1-:JEARCH (S) TSEARCH (S)

Diagnostics

A NULL pointer is returned by tsearch if there is not enough space
available to create a new node.

A NULL pointer is returned by tsearch, tfind and tdelete if rootp is
l:>'ULL on entry.

If the datum is found, both tsearch and tfind return a pointer to it.
If not, tfmd returns NULL, and tsearch returns a pointer to the
inserted item.

Warning

The root argument to twa/k is one level of indirection less than the
rootp arguments to tsearch and tdelete.

There are two nomenclatures used to refer to the order in which
tree nodes are visited. tsearch uses preorder� postorder, and
endorder to respectively refer to visiting a node before any of its
children, after its left child and before its right, and after both chil
dren. The other nomenc1atures uses proorder, inorder, and pos
torder to refer to the same visits.

Notes

If the calling function alters the pointer to the root, results can not
be predicted.

June 21, 1987 Page 4

TTYNAME (S) TTYNAME (S)

Name

ttyname, isatty - Finds the name of a terminal.

(Syntax

(__

char •ttyname (fildes)

int isatty (fildes)
int fildes;

Description

ttyname returns a pointer to the null-terminated pathname of the
terminal device associated with file descriptor fildes.

isatty returns 1 if fildes is associated with a terminal device, 0 other
wise.

Files

/dev/*

Diagnostics

ttynam£ returns a null pointer (0) if fildes does not describe a termi
nal device in directory /dev.

Notes

The return value points to static data whose content is overwritten
by each call.

June 21, 1987 Page 1

TTYSLOT (S) TTYSLOT (S)

Name

ttyslot - Finds the slot in the utmp file of the current user.

(Syntax

(

int ttyslot ()

Description

ttyslot returns the index of the current user's entry in 'the /etc/utrnp
file.

Files

/etc/utmp

See Also

getut(S), ttynarne(S)

__ _ Diagnostics

A value of 0 is returned if an error was encountered while searching
for the terminal name or if none of the above file descriptors is
associated with a terminal device.

Juue 21, 1987 Page 1

c

UADMIN (S) UADMIN (S)

Name

uadmin Administrative control.

Syntax

#include <sys/uadmin.h>

int undmin (cmd, fen, mdep)
int cmd, fen;
char *mdep;

Description

uadmin provides control for basic administrative functions. This
system call is tightly coupled to the system administrative proc
cedures and is not intended for general use.

The commands available as specified by cmd are:

A_SHUTDOWN
The system is shut down. All user processes are killed, the
buffer cache is flushed, and the root file system is unmounted.
The action to be taken after the system is shut down is
specified by fen. If mdep is non-null, then it points to a
superblock to be written to the disk.

Values of fen for this cmd are:

AD ...HALT Halt the processor.

A D _BOOT Reboot the system.

ADJBOOT Interactive reboot, prompt for system name.

A ...REBOOT
The system stops immediately without any further processing.
The action to be taken next is specified by fen as above.

A...REMOUN1'
The buffer cache is invalidated and the superblock is read in
agein. This should only be used during the startup process.

A_SETCONFIG
Some internal systemwide kernel state as specified by fen is
set to a value as specified by mdep.

June 21, 1987 Page 1

UADMIN (S) UADMIN (S)

Values of fnc for this cmd are:

AD_BOOTPANIC If mdep is 1, system
panics cause the system
to reboot. If mdep is
0, the system waits for
a keystroke.

Diagnostics

Upon successful completion, the value returned depends on cmd as
follows:

A_SHUTDOWN
A..REBOOT
A_REMOUNT

Never returns .
Never returns.
0

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

uadmin fails if the effective user ID is not super-user [EPERM].

Notes

AD _BOOT and AD_IBOOT do the same thing.

June 21, 1987 Page 2

(
\

(
\"-.. -

ULIMIT (S) ULIMIT (S)

Name

ulimit - Gets and sets user limits.

Syntax

#include <sys/ulimit.h>

long ulimit (cmd, newlimit)
int cmd;
long newlimit;

Description

This function provides for control over process limits. The cmd
values available are:

UL_GF1LLIM (1)
Gets the process' file size limit. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any
size can be read.

UL_SFlLLIM (2)
Sets the process' file size limit to the value of newlimit. Any
process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. H a
process with an effective user ID other than super-user
attempts to increase its file size limit, ulimit will fail and the
limit will be unchanged. [BPERM]

UL_GMEMLJM
Gets the maximum possible break value. If the process is a
large model 80286 program, then the largest possible data size
(in bytes) is returned. See sbrk(S).

UL_GTXTOFF
Gets the number of bytes between the beginning of user text
and the text address given by newlimit. In this case, newlimit
must have type

int (*newlimit) 0;

Return Value

Upon successful completion, a nonnegative value is returned. Oth
erwise, a value of -1 is returned and errno is set to indicate the
error. EINVAL indicates an invalid cmd value.

June 21, 1987 Page 1

ULIMIT (S) ULIMIT (S)

See Also

login(:M), machine(HW), chsize(S), sbrk(S), write(S).

Notes

The file limit is only enforced on writes to regular files. Tapes,
disks, and other devices of any size can be written.

The file /etc/default/login contains the value of ULIMIT set at
login time by the login pro(!fam. The super-user can set the max
imum (increase or decrease) file size using this vsriable. The value
is in 512 byte blocks. The default value is 4096 blocks (2 mega
bytes). Use even values for filesystems with 1024 byte blocks (see
machine(HW)).

June 21, 1987 Page 2

(_

UMASK (S)

Name

U!ll.liSk - Sets and gets file creation mask.

SJ'lltaX

int umask (cmask)
i�t CJDaslq

Des cripticm

UMASK (S)

umask sets the process' file mode creation mask to cmask and
retarDs the previous value of the mask. Only the low-order 9 bits
of cmask and the file mode creation mask are used .

Return Value

The previous value of the file mode
.
creation mask is retnrned.

See Also

mkdir(C), mknod(C), sh(C), chmod(S), mknod(S), open(S)

June 21, 1987 Page 1

UMOUNT (S) UMOUNT (S)

Name

umount - Unmounts a file system.

Syntax

int umount (spec)
char *spec;

Description

umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. spec
is a pointer to a pathname. After unmounting the file system, the
directory upon which the file system was mounted reverts to its
ordinary interpretation.

umount may be invoked only by the super-user.

umount will fail if one or more of the following are true:

The process' effective user ID is not super-user. [EPERM]

spec does not exist. [ENXIO]

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

spec is not a block special device. [ENOTBLK]

spec is not mounted. [EINV AL]

A file on spec is busy. [EBUSY]

spec points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

mount(C), mount(S)

June 21, 1987 Page 1

UNAMJ!, (:S)

Name

uname - Gets name of current XENIX sy:;tem.

Syntax

#Include <sys/utsname.h>

lnt uname (name)
stnict utsname *name;

Des crlption

UNAME (S)

uname stores information identifying the current XENIX system in
the structure pointed to by name.

uname uses the structure defined in <sys/utsname.h> :

strnct utsname {

};

char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];
char reserved[15];
unsigned short sysorigin;
unsigned short sysoem;
long sysserial;

uname returns a null-terminated character string naming the.
current XENIX system in the character array sysname. Similarly,
nodename contains the name th at the system is known by on a
communications network. Should be the same as site name in
/etc/systcmid. release and version further identify the operating
system. rrwchine identifies the processor that the system nms on,
from the list: 18086, i80186, i80286, i80386, MC68000, MC68010,
MC68020, NS16032, NS32032, Z8001, Z8002, VAX11780,
VAX11730, PDP1123, and PDP1170. reserved is a reserved field.
sysorigin and syseom identify the source (numbers) of the XENIX
version. sysserial is a software serial number which may be zero if
unused.

uname will fail if name points to an invalid address. [EFAULT]

Retnm Value

Upon successful completion, a nonnegative value is returned. Oth
erwise, -1 is return� and enno is set to indicate the error.

June 21, 1987 Page 1

UNAME (S)

See Also

uname(C)

Notes

Not all fields may be set on a particular system.

This function ls a XENIX specific enhancement and may not be
present on all U�lX implementations.

June 21, 1987 Page 2

UNGETC (S) UNGETC (S)

Name

ungetc - Pushes character back into input stream.

(· Syntax

(

#include <stdio.h>

lnt ungete (c, stream)
char c;
FILE *stream:

Description

ungetc pushes the character c b ack on an input stream. The char
acter will be returned by the next getc call on that stream. ungetc
returns c.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered.
Attempts to push EOF are rejected.

fseek (S) erases all memory of pushed back characters.

See Also

fseek(S), getc(S), setbuf(S)

Diagnostics

ungetc returns EOF if it can't pusb a character back.

June 21, 1987 Page 1

UNLINK (S) UNLINK (S)

Name

unlink ·� Removes directory entry.

(Syntax

lnt unlink {path)
char *path;

Description

unlink removes the directory entry named by the pathname pointed
to by path.

The named file is unlinked unless one or more of the following are
true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Write permission is denied on the directory containing the link
to be removed. [EACCESJ

The named tile is a directory and the effective user ID of the
process is not super-user. [EPERM]

The entry to be unlinked is the mount point for a mounted file
system. [EBUSY]

The entry to be unlinked is '�." or " .. " in the root directory of a
mounted filesystem. [EBUSY]

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed. [ETXTBSY]

The directory entry to be unlinked is part of a read-only file sys
tem. [EROFS]

path points outside the process' allocated address space.
[EFAULT]

When all Jinks to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last
link is removed, the removal is postponed until all references to the
file have been closed.

June 21, 1987 Page 1

UNLINK (S) UNLINK (S)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

rm(C), close(S), link(S), open(S)

June 21, 1987 Page 2

[
\

(

USTAT (S) USTA T (S)

Name

ustat - Gets file system statistics.

Syntax

#include <sys/types.h>
#include <ustat.h>

lnt ustat (dev, but)
dev_t dev;
struct us tal *but;

Description

ustat returns information about a mounted file system. dev is a
device number identifying a device containing a mounted file sys
tem. buf is a pointer to a ustat structure that includes the following
elements:

daddr_t f...Jfree;
ino_t Ltinode;
char Uname[6];
char Upack[6];

I* Total free blocks */
I* Number of free inodes */
I* Filsys name */
I* Filsys pack name */

ustat will fail if one or more of the following are true:

dev is not the device number of a device containing a mounted
file system. JEINV AL]

buf points outside the process' allocated address space.
(EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

stat(S), filesystem(F), fsname(M)

Notes

When using file systems from previous versions of XE�lX, fsck(C)
must be run on the file system before mounting. Otherwise the
ustat system call will not work correctly. This only needs to b e
done once.

June 21, 1987 Page l

UTIME (S)

Name

utime - Sets file access and modification times.

Syntax

#include <sys/types.h>
int utime (path, times)
char *path;
stmct utimbuf *times;

Description

UTIME (S)

path points to a pathname naming a file. utime sets the access and
modification times of the named file.

If tbnes is NULL, the access and modification times of the file are
set to the current time. A process must be the oWner of the file or
have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf
structure and the access and modification times are set to the
values contained in the designated structure. Only the owner of the
file or the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct utimb uf {

};

time_t actime; /* access time */
time_tmodtime; /* modification time */

utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix.
[EACCES]

The effective user ID is not super-user and not the owner of the
file and times is not NULL. [EPERM]

The effective user ID is not super-user and not the owner of the
file and times is NULL and write access is denied. [EACCES]

June 21, 1987 Page 1

WlMb �:>) UTIME (S)

The file system containing the file is mounted read-only.
[EROFS]

times is not NULL and points outside the process' allocated
address space. [EFAULT]

path points outside the process' allocated address space.
[EFAULT]

Retnm Value

Upon successful completion, a value of 0 is retnmed. Otherwise, a
value of -1 is returned and errnn is set to indicate the error.

See Also

stat(S)

June 21, 1987 Page 2

VARARGS (S)

NAME

varargs variable argument list

Synposis

Description

#include <varargs.h>

limction(va....alist)
va_dcl
vaJlst pvar;
vaJtart(pvar);
f = va....arg(pvar, type);
va_end(pvar);

VARARGS (S)

This set of macros provides a means of writing portable procedures
that accept variable argument lists. Routines having variable argu
ment lists (such as prtntf(S)) that do not use varargs are inherently
nonportable, since different machines use different argmnent pass
ing conventions.

va_a!ist is used in a function header to denote a variable argmnent
list.

'
va_dcl is a declaration for va_alist. Note that there is no semicolon
after va_dcl.

va_list is a type which can be used for the variable pvar, which is
used to traverse the list. One such variable must always be
declared.

vaJtart(pvar) is called to initialize pvar to the beginning of the list.

va_arg(pvar, type) will return the next argmnent in the list pointed
to by pvar. type is the type the argmnent is expected to be. Dif
ferent types can be mixed but it is up to the routine to know what
type of argmnent is expected since it cannot be determined at run
time.

va_end(pvar) is used to finish up.

Multiple traversals, each bracketed by va_start ... va_end, are possi
ble.

Jnne 21, 1987 Page 1

VARARGS (S)

Example

#include <stdio .h>
#include <varargs.h>

mainO
{

show(2, 3.1, ''but", 4.1, "end");
show(l, 5.9, ''hello'');

}
show(4� 6.2� .. oops", 5.3, "blah"� 5.1, '�ovelyn, 2.3, "madrigar};

,.
* the first argument is an int which tells how many pairs follow.
• the pairs are doubles and character pointers
•

• remember that when variables are passed to functions
* floats are promoted to doubles and chars to ints .
. ,

show(n, va...alist)
int n;
va...dcl
{

}

Notes

vaJist ap;
int i·
double f;
char *p;

va...start(ap);
for (i � 0; i < n; ++i) {

f � va._arg(ap, double);

}

p � va...arg(ap, char *);
printf('%4.1f %s\n", f, p);

va._end(ap);

It is up to the calling routine to determine how many argmnents
there are, since it is not possible to determine this from the stack
frame. For example, excel passes a 0 to signal the end of the list.
ptintf can tell how many argmnents are supposed to be there by the
format of the list.

June 21, 1987 Page 2

(

VPRINTF (S) VPRINTF (S)

Name

vprintf, vfprintf, vsprintf - Prints formatted output of a varargs
argument list.

Syntax

#include <stdio.h>
#include <varargs.h>

lnt vprintf (fonnat, ap)
char *format;
vaJist ap;

lnt vfprlntf (stream, fonnat, ap)
FILE *stream;
char *fonnat;
vaJist ap;

lnt vsprlntf (s, fonnat, ap)
cbar *s, *fonnat;
va.Jist ap;

Description

vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and
sprintf respectively, except that instead of b eing called with a vari
able number of arguments, they are called with an argument list as
defined in varargs.h.

Example

The following demonstrates how vfprintf could be used to write an
error routine:

#include <stdin.h>
#include <varargs.h>

,.
* error should be called like
• error(functioDJlame, fonnat, arg1, arg2 . . .);
.,

J•V ARARGSO•/
void
error(va._alist)

June 21, 1987 Page 1

VPRINTF (S) VPRINTF (S)

t• Note that the function_name and format arguments cannot be
• separately declared because of the definition of varargs.
*I

va..dcl
{

va.Jist args;
char *fmt;

va.....start(args);
!• print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", ViLarg(args, char *));
fmt - viLBig(args, char *);

}

Files

t• print out remainder of message •t
(void)vfprintf(fmt, args);
va...end(args);
(void)abort();

/usr/include/varargs.h

See Also

printf(S)

June 21, 1987 Page 2

,/

WAIT (S) WAIT (S)

Name

wait Waits for a child process to stop or terminate.

Syntax

lnt walt (staUoc)
lnt •statJoc;

lnt walt ((lnt *)0)

Description

wait suspends the calling process until it receives a signal that is to
be caught (see signal(S)), or until any one of the calling process'
child processes stops in a trace mode (see ptraee(S)) or terminates.
If a child process stopped or terminated prior to the call on wait,
return is immediate.

If .statJoc (taken as an integer) is nonzero, 16 bits of information
called "status" are stored in the low-order 16 bits of the location
pointed to by stotJoc. Status can be used to differentiate between
stopped and terminated child processes and if the child process ter
minated, status identifies the cause of termination and passes useful
Information to the parent. This is accomplished in the following
manner:

If the child process stopped, the high-order 8 bits of status will
be zero and the low-order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low-order
8 bits of status will be zero and the high-order 8 bits will contain
the low-order 8 bits of the argument that the child process
passed to exit; see exit(S).

If the child process terminated due to a signal, the high -order 8
bits of status will be zero and the low-order 8 bits will contain
the number of the signal that caused the termination. In addi
tion, if the low-order seventh bit (i.e., bit 200) is set, a "core
image" will have been produced; see signal(S).

If a parent process terminates without waiting for its child processes
to terminate, the parent process ID of each child process is set to
1. This means the initialization process inherits the child processes;
see intro (S).

June 21, 1987 Page l

WAIT (S) WAIT (S)

walt will fail and return immediately if one or more of the following
are trne:

The calling process has no existing unwaited-for child processes.
[ECHILD)

stat..]oc points to an illegal address. [EFAULT]

ReiUm Value

lf wait returns due to the receipt of a signal, a value of -1 is
returned to the calling process and ermo is set to EINTR. lf wait
returns due to a stopped or terminated child. process, the process
1D of the child is returned to the calling process. Otherwise, a
value of -1 is returned ahd errno is set to indicate the errQr.

See Also

exec(S), exit(S), fork(S), pause(S), signal(S)

Wamlng

See Warning in signal(S).

June 21, 1987 Page 2

(

WAITSEM (S) WAITSEM (S)

Name

waitsem, nbwaitsem - Awaits and checks access to a resource
governed by a semaphore.

Syntax

int waitsem(sern_num);
int sern....num;

int nbwaitsern(sern_num);
int sem....nnm;

Description

waitsem gives the calling process access to the resouree governed by
the semaphore senu�um. If the resource is in use by another pro
cess, waitsem will put the process to sleep until the resource
becomes available; nbwaitsem will return the error ENA VAIL.
waitsem and nbwaitsem are used in conjunction with sigsem to allow
synchronization of processes wishing to access a resource. One or
more processes may waitsem on the given semaphore and will be
put to sleep until the process which currently has access to the
resource issues sigsem. sigsem causes the process which is next in
line on the semaphore's queue to be rescheduled for execution.
The semaphore's queue is organized in first in first out (FIFO)
order.

System Compatibillcy

waitsem can only be used to synchronize semaphores created under
X1lNIX Version 3.0, not for XENIX System V semaphores.

See Also

creatsem(S), opensem(S), sigsem(S)

Diagnostics

waitsem returns the value (int) -1 if an error occurs. If sem_num
has not been previously opened by a call to opensem or creatsem,
errno is set to EBADF. If sem..flum does not refer to a semaphore
type file, e"no is set to ENOTNAM. All processes waiting (or
attempting to wait) on the semaphore return with e"no set to ENA
VAIL when the process controlling the semaphore exits without
relinquishing control (thereby leaving the resource in an undeter-

June 21, 1987 Page 1

WAITSEM (S) WAITSEM (S)

minate state). If a process does two waitsems in a row without
doing an intervening sigsem, emw is set to EJNVAL.

Notes

This feature is a XENJX specific enhancement and may not be
present in all UNIX implementations. This routine must be linked
with the linker option -Ix.

June 21, 1987 Page 2

' I

WRITE (S) WRITE (S)

Name

write - Writes to a file.

S:!"'laX

lnt write (fildes, but, nbyte)
lnt f"ddes;
char *buf;
unsigned nbyte;

Description

jildes is a file descriptor obtained from a creat, open , dup , fcntl, or
pipe system call.

write attempts to write nbyte bytes from the buffer pointed to by
buf to the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from write, th.e file pointer is incremented by th.e number of
bytes actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefined.

If the O_.APPEND flag of the file status flags is set, the file pointer
is set to the end of the file prior to each write.

write will fail and the file pointer will remain unch.anged if one or
more of the following are true:

fildes is not a valid file de.scriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for read
ing by any process. IF.PIPE and SIGP!PE signal]

An attempt was made to write a file that exceeds the process'
file sine limit or the maximum file sine. See ulimit(S). [EFBJG]

buf points outside the process' . allocated address space.
[EFAULT]

A signal was caught during the write system call. [EINTR]

There is no free space remaining on the device containing the
file.

June 21, 1987 Page 1

. \>J) WKllJ!, �;:,}

If a write requests that more b}'les be written than there is room for
(e.g., the ulimit (see ulimft(S)) or the physical end of a medium),
only as many bytes as there is room for will be written. For exam
ple, suppose there is space for 20 b}'les more in a file before reach
ing a limit. A write of 512 b}'les will return 20. The next write of
a nonzero number of b}'les gives a failure return (except as noted
below).

If the file being written is a pipe (or FIFO), no partial writes are
permitted. Thus, the write will fall if a write of nbyte b}'les exceeds
a limit.

If the file being written is a pipe (or FIFO) and the OJIDELAY fia�J
of the file flag word is set, then a write to a fuU pipe (or FIFO)
returns a count of 0. Otherwise (O..NDELAY clear), writes to a full
pipe (or FIFO) block until. spaee becomes available.

Retnm Value

Upon successful completion, the number of bytes actnally written is
retnrned. Otherwise, -1 is returned and errno is set to indicate the
error.

See Also

creat(S), dup(S), lseek(S), open(S), pipe(S), ullmit(S)

Notes

Writing a region of a file locked with locking causes write to hang
indefinitely until the locked region is unlocked.

June 21, 1987 Page 2

XLIST (S)

Name

xlist, fxlist - Gets name Jist entries from files.

Syntax

#include <a.out.h>

int xlist(f'llename, xi)
ebar *flJename:
struct xlist xl[];

#include <a.out.h>
#include <stdlo.h>
int fxlls t(fp. xl)
FILE *fp;
struct xllst xl[];

Description

XLIST (S)

fxllst performs the same function as xlist, except that fxlist accepts a
pointer to a previously opened file intead of a filename.

xlist examines the name list in the given executable output file and
selectively extracts a list of values. The name list structure xl con�
sists of an array of xlist structures containing names, types, values,
and segment values (if applicable). The list is terminated by either a
pointer to a null name or a null pointer. Each name is looked up
in the name list of the file. If the name is found, the type and value
of the name are inserted into the next two fields. The segment
value (if it exists) is inserted in the third field. If the name is not
found, both entries are set to zero, See a. out(F) for a discussion of
the xlist structure.

x.out and a.out formats are understood, as well as 8086 relocatable
and x.out segmented formats.

If the symbol table is in a. out format, and if the symbol name given
to xlist is longer th� eight characters, only the first eight characters
are used for comparison. In all other cases, the name given to xlist
must be the same length as a name list entry in order to match.

If two or more symb ols happen to match the name given to xlist,
then the type and value used will be those of the last symbol found.

June 21, 1987 Page 1

XLIST(S) XLIST (S)

See Also

a.out(F)

Diagnostics

xlist returns -1 and sets all type entries to 7<:ro if the file cannot be
read, is not an object file, or contains an invalid name list. Other
wise, xlist returns zero . A return value of zero does not indicate
that any or all of the given symbols were found.

June 21, 1987 Page 2

Contents

DOS Development (DOS)

intro
bdos
cgets
cprintf
cputs
cscanf
dosexterr
eof
exit
fcloseall, fclose
fgetc, fgetchar
filelength
flus hall
fp_off, fp__seg
fputc, fputchar
getch
getche
inp
int86
int86x
intdos
intdosx
is a tty
ito a
kbhlt
labs
Ito a
mkdir
movedata
outp
putch
rename
nndir
segread
setmode
sop en
spawn!, spawnvp
strlen
strlwr
strrev

Introduction to DOS cross development functions.
Invokes aDOS system call.
Gets a string.
Formats output.
Puts a string to the console.
Converts and formats console input.
Gets DOS error messages.
Determines end-of-file.
Terminates the calling process.
Closes streams.
Gets a character from a stream.
Gets the length of a file.
Flushes all output buffers.
Return offset and segment.
Write a character to a stream.
Gets a character.
Gets and echoes a character.
Returns a byte.
Executes an interrupt.
Executes an interrupt.
Invokes aDOS system call.
Invokes aDOS system call.
Checks for a character device.
Converts numbers to integers.
Checks the console for a keystroke.
Returns the absolute value of alonginteger.
Converts long integers to characters.
Creates a new directory.
Copies bytes from a specific address.
Writes a byte to an output port.
Writes a character to the console.
Renames a file or directory.
Deletes a directory.
Command description.
Sets translation mode.
Opens a file for shared reading and writing.
Creates a new process.
Returns the length of a string.
Converts uppercase characters to lowercase.
Reverses the order of characters in a string.

strset
strupr
tell
ultoa
ungetch

ii

Sets all characters in a string to one charater.
Converts lowercase characters to uppercase.
Gets the current position ofthe file pointer.
Converts numbers to characters.
Returns a character to the console buffer.

INTRO (DOS) INTRO (DOS)

Name

intro - Introduction to DOS cross development functions.

Description

This section contains manual pages describing functions that can be
used to create program files executable under the DOS operating
system. These functions are specifically for use in creating DOS
executable program files.

Source files containing these functions must be compiled with the
• dos flag. For example:

cc -dos test.c

The resnlting a. out file is executable only under the DOS operating
system. These functions cannot be used to create program files
executable under XENIX.

June 21, 1987 Page 1

�
(
\

BDOS (DOS)

Name

bdos - Invokes a DOS system call.

Syntax

#include <dos.h>

int bdos (dosfn, dosdx, dosal);
int dosfn;
unsigned int dosdx;
unsigned int dosal;

Description

BDOS (DOS)

The bdos function invokes the MS-DOS system call specified by
dosfn after placing the values specified by dosdx and dosal in the
DX and AL registers, respectively. bdos executes an INT 21H
instruction to invoke the system call. When the system call returns,
bdos returns the content of the AX register.

bdos is intended to be used to invoke DOS system calls that either
take no arguments or only take arguments in the DX (DH,DL)
and/ or AL registers.

Return Value

bdos returns the value of the AX register after the system call has
completed.

See Also

intdos (DOS), intdosx(DOS)

Example

#include <bdos.h>

char *buffer = "Enter file name:$";

/* AL is not needed, so 0 is used */
bdos (9, (unsigned) buffer, 0);

June 21, 1987 Page 1

BDOS' (DOS) BDQS' (DOS)

Notes

This call should not be used to invoke system calls that indicate
error:s by setting the carry flag. Since C programs do not have
access to this flag, the status of the return value cannot be deter
mined. The intdos function should be used in these cases.

This call must be compiled with the -dos flag.

June 21, 1987 Page 2

(_

CGETS (DOS)

Name

ogets - Gets a string.

Syntax

#include <conio.h>

char •cgets (str) ;
char * str:

Description

CGETS (DOS)

The cgets function reads a string of characters directly from the
console and stores the string and it< length in the location pointed
to by str. The str must be a pointer to a character array. The first
element of the array, str[O], must contain the maximum length (in
characters) of the string to be read. The array must have enough
elements to hold the string, a terminating null character (\0), and
two additional bytes.

cgets continues to read characters until a carriage retum/linefeed
combination (CR-LF) is read, or the specified number of charac
ters have been resd. The string is stored starting at str[2]. Ji a CR
LF combination is read, it is replaced with a null chracter (\0')
before being stored. cgets then stores the actual length of the string
in the second array element, str[l].

Return Value

cgets returns a ·point�r to the start of the string, which is at str [2].
There is no error returned.

See Also

getch(DOS), getche(DOS)

June 21, 1987 Page 1

CGETS (DOS) CGETS (DOS)

Example

Notes

#include <conio.h>

char buffer[82];
char *result;
int numread;

buffer = 80; I maximum number of chracters *I
I* note that *buffer is equivalent
•• to buffer[O]
*I

I* The following statements input a string from the
•• keyboard and find its length .
. ,

result = cgets(buffer);
numread � buffer[1];

I* Result points to the string, and numread is its
** length (not counting the carriage return, which has
•• been replaced by a null chracter).
*I

This call must be compiled with the • dos fl.ag.

June 21, 1987 Page 2

CPRINTF (DOS)

Name

cprintf - Formats output.

Syntax

#include <conio.h>

int cprintf (format[arg . . .)) ;
char *format;

Description

CPRINTF (DOS)

Tl1e cprintf function formats and prints a series o f characters and
values directly to the console, using the patch function to output
characters. Each argument (if any) is converted and output accord
ing to the corresponding format specification in the format. 'Ibe
format has the same form and function as the format argument for
the print/ function; see the printf reference page for a description of
the format and arguments.

Return Value

cprintf returns the number of characters printed.

See Also

fprlntf(S), prlntf(S), sprintf(S)

Example

#include <conio.h>

int i - -16, j - 29;
unsigned int k - 511;

/* 'Ibe following statement prints i--16, j..Ox1d, k-511 *I

cprlntf C'i=%d, j=% #x, k=0/<� U\n11,i,j,k);

J unc 21, 1987 Page 1

CPRINTF (DOS)

Notes

Unlike the fprintf, print/, and sprint/ fllllctions, cprintf does not
translate linefeed (LF) characters into carriage retum/linefeed com
binations (CR-LF) on output.

This call must be compiled with the • dos fiag.

June 21, 1987 Page 2

CPUTS (DOS) CPUTS (DOS)

Name

cputs Puts a string to the console.

Syntax

#Include <conio.h>

void cputs (str);
char *str;

Descripdon

The cputs function writes the null-terminated string pointed to by
str directly to the console. Note that a carriage retnrn/linefeed
combination (CR-U') is not automatically appended to the string
after writing.

Relllm Value

There is no retnrn value.

See Also

puteh(DOS)

Example

Notes

#Include <conio.h>

char *buffer - "Insert data disk in drive a: \r\n";

I* The following statement outputs a prompt to the
** console.
*I

cputs (buffer);

This call must be compiled with the -dos flag.

June 21, 1987 Page 1

(

CSCANF (DOS)

Name

cscanf - Converts and formats console input.

Syntax

#include <conio.h>

int cscanf (fonnat[arg . . .]);
char *fonnat;

Description

CSCANF (DOS)

The cscanf function reads data directly from the console into the
locations given by the arguments (if any), using the getche function
to read characters. Each argument must be a pointer to a variable
with a type that corresponds to a type specifier in the format. The
format controls the interpretation of the input fields and has the
same form and function as the format argument for the scanf func
tion.

Return Value

cscanf returns the number of fields that were successfully converted
and assigned. The return value does not include fields which were
read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A
return value of 0 means that no fields were assigned.

See Also

fscanf(S), s canf(S), sscanf(S)

June 21, 1987 Page 1

CSCANF (DOS) CSCANF (DOS)

Example

Notes

#include <conio.h>

int result;
char buffer[20];

cprintf ("Please enter file name: '');

/* The following statement stores string input
•• from the keyboard .
. ,

result = cscilnf ("%19s",buffer);

I* Result is the number of correctly matched input
** fields. It is zero if none could be matched .
. ,

This call must be compiled witb tbe • dos flag.

June 21, 1987 Page 2

/ .

(_

DOSEXTERR (DOS)

Name

dosexte.rr - Gets DOS error messages

Summary

#include <dos.h>

inl dosexterr (buffer);
struct DOS ERROR *buffer;

Description

DOSEXTERR (DOS)

The dosexterr function obtains the register values returned by the
MS-DOS system call 59H and stores the values in the structure
pointed to by buffer. This function is useful when making system
calls under MS-DOS Version 3.0 or later, which offers extended
error handling. See your MS-DOS reference for details on MS
DOS system calls.

The structure type DOSERROR is defined in dos.h as follows:

struct DOSERROR {
int exterror;
char class;
char action;
char locus;
};

Giving a NULL pointer argument causes dosexterr to return the
value in A X without filling in the structure fields.

Return Value

The dosexterr function returns the value in the A X register (identi
cal to the value in the exterror strueture field).

See Also

perror(S)

June 21, 19&7 Page 1

DOSEXTERR (DOS) DOSEXTERR (DOS)

Example

#include <dos.h>
#include <feutl.h>
#include <stdio.h>

struct DOSERROR doserror;
int fd;

if ((fd = open ("test.dat", ORDONLY)) == -1) {
dosexterr (&doserror);
print£ ("error=%d, class=%d, actiou=%d, locus=%d\n",

doserror.exterror, doserror.class,
doserror.action, doserrorJocus);

}

Notes

The dosexte" function should only be used under MS-DOS Ver
sion 3.0 or later.

This call must be compiled with the • dos flag.

June 21, 1987 Page 2

(

EOF (DOS)

Name

eof - Determines end-of-file.

Syntax

#include <io.h>

int eof (handle);
int handle;

Description

EOF (DOS)

The eof function determines whether end-of-file has been reached
for the file associated with handle.

Return Value

eof returns the value 1 if the current position is end-of-file, 0 if it is
not. A return value of -1 indicates an error; in this case errno is
set to EBADF, indicating an invalid file handle.

See Also

ferror(S), perror(S)

June 21, 1987 Page 1

J£Ul'' (DU:S)

Example

#include <io.h>
#include <fcntl.h>

int fh, count;
char hn£[10];

fh = open ("data",ORDO.NL Y);

EOF (DOS)

/* The following statement tests for an end-of-file condition
** before reading .
. ,

while (!eof (fh)) {
count = read (fh, hnf, 10);

}

Notes

This call must be compiled with the ·dos flag.

Juue 21, 1987 Page 2

/

EXIT (DOS) EXIT (DOS)

Name

exit - Terminates the calling process.

Syntax

#include <process.b>

void exit (status);

void _exit (status);

int status;

Description

The exit and JXit functions terminate the calling process. exit
flushes all buffers and closes all open files before terminatin g the
process. _exit terminates the process without flushing stream
buffers. Statu.s is typically given the value 0 to indicate a normal
exit and set to some other value to indicate an error.

Although the exit and JXit calls do not return a value, the low
order byte of status is made available to the waiting parent process,
if there i� one, after the calling process exits. If there is no parent
process waiting on the exiting process, the status value is lost.

Return Value

There is no return value.

See Also

abort(S), exec (S), spawn(DOS)

June 21, 1987 Page 1

EXIT (DOS) EXIT (DOS)

Example

Notes

#include <process.h>
#include <stdio.h>

FILE •stream;

I* The following statements cause the process to
•• terminate, after flushing buffers and closing
** open files, il another file cannot be opened.
*I

if ((stream � fopen ("data","r'')) �� NUlL) {
perror ("couldn't open data file'');
exit (1);
}

!• The following statements cause the process to
** terminate immediately if a file cannot be opened.
*I

if ((stream fopen ("data","r'')) •• NUlL) {
perror ("couldn't open data file'');
exit (1);
}

These calls must be compiled with the • dos Jlag.

June 21, 1987 Page 2

(
\�

FCLOSEALL (DOS)

Name

fclose, fcloseall � Closes streams.

Syntax

#include <s tdio.h>

lnt fclose (stream);
FD.,E •stream;

lnt fclosean ();

Des criptlon

FCLOSEALL (DOS)

The [close and fcloseall functions close a stream or streams. All
buffers associated with the stream(s) are flushed prior to closing.
System-allocated buffers are released when the stream is closed.
Buffers assigned using setbuf are not automatically released.

The [close function closes the given stream. The fcloseall function
closes all open streams except stdin, stdout� stderr� stdaux, and
stdprn.

Return Value

[dose returns 0 if the stream is successfully closed. fcloseall returns
the total number of streams closed. Both functions return EOF to
indicate an error.

See Also

close(S), fopen(S), fclose(S)

June 21, 1987 Page 1

FCLOSEALL (DOS) FCLOSEALL (DOS)

Example

Notes

#include <stdio.h>

FILE *stream;
int numclosed;

stream. = fopen {*'data", "r'j;

I* The following statement closes the stream.
*I

.

fclose (stream);

/* The following statement closes all streams except
•• stdin, stdout, stderr, stdalll<', and stdpm.
*I

numclosed - fcloseall ();

These calls must be compiled with the • dos flag.

June 21, 1987 Page 2

FGETC (DOS) FGETC (DOS)

Name

fgetc, fgetchar - Gets a character from a stream.

/ I Syntax

#include <stdio.h>

int fgetc (stream);
FILE *stream;

int fgetchar () ;

Description

The fgetc function reads a single character from the input stream at
the current position and increments the associated file pointer (if
any) to point to the next character. fgetchar is equivalent to
fgetc (stdin).

Return Value

fgetc and fgetchar return the character read. A return value of
EOF may indicate an error or end-of-file; however, the EOF value
is also a legitimate integer value, so feof or ferror should be used to
verify an error or end-of-file condition.

See Also

putc(S), fputchar(DOS), getc(S)

J uoe 21, 1987 Page 1

PGETC (DOS) PGETC (DOS)

Example

#include <stdio.h>

FILE *stream;
char buffer[81];
int i;
int ch;

I* The following statements gather a line of input from
1 ** a stream.
*I

for (i 0; (i < 80) && ((ch - fgetc (stream)) l= EOF) &&
(ch l= '\n'); i++)
buffer[i] = ch;

buffer[i] = '\0';

I* "fgetchar ()" could be used instead of "fgetc (stream)" in
•• the for statement above to gather a line of input from
•• stdin (equivalent to "fgetc (stdin)").
•I

Notes

fgetc and fgetchar are identical to getc and getchar, but are func
tions,. not macros.

These calls must be compiled witb the • dos fiag.

June 21, 1987 Page 2

(

FILE LENGTH (DOS) FILELENGTH (DOS)

Name

filelength - Gets the length of a file.

Syntax

#include <io.h>

long fllelengdt (l•andle);
int handle;

Description

The filelength function returns the length in bytes of the file associ
ated with the given handle.

Return Value

ftlelength returns the file length in bytes. A return value of -lL
indicates an error, and errno is set to EBADF to indicate an invalid
file handle.

See Also

chsize(S), ferror(S), stat(S)

Example

#include <io.h>
#include <stdio.h>
#include <stdlib.h>

FILE •stream;
long length;

f ("d '')
stream = open ata , r ;

/* The following statements attempt to determine the
** length of a fiJe associated with a stream.
•;

length - filelengtl1 (fileno (stream));

if (length = -lL)
perror ('filelengtlt failed");

June 21, 1987 Page 1

FILELENGTH (DOS)

Notes

FILELENGTH (DOS)

This call must be compiled with the -dos :flag.

June 21, 1987 Page 2

FL USHALL (DOS) FL USHALL (DOS)

Name

flushall - Jllushes all output buffers.

(Syntax

(
'-

(

#include <stdio.h>

int flushall () ;

Description

The function jlushall causes the contents of all buffers associated
with open output streams to be written to the associated files. All
streams remain open after the call.

Return Value

flushall returns the number of open streams (input and output) .
There is no error return.

See Also

fclose(S)

Example

#include <stdio.h>

int numflushed;

/* The following statement resolves any pending i/o on
** all streams .
. ,

numflushed � flushall ();

June 21, 1987 Page 1

FLUSHALL (DOS) FLUSI:IALL (DOS)

Notes

Buffers are automatically flushed when they are full, when streams
are closed, or when a program terminates normally without closing
streams.

This call must be compiled with the · dos flag.

June 21, 1987 Page 2

(
" ·

C .

FP_OFF (DOS)

Name

fp_off, fp...seg - Return offset and segment.

Syntax

#include <dos.lt>

unsigned FP _OFF(longptr);

unsigned FP SEG(longptr);

char far *longptr;

Description

FP.J)FF (DOS)

The FP _OFF and FP ..SEG macros return the offset and segment,
respectively, of the long pointer longptr.

Return Value

FP_OFF returns an unsigned integer value representing an offset.
FP ..SEG returns an unsigned integer value representing a segment
address.

See Also

s egrea d (DOS)

Example

Notes

#include < dos.h>

char far *p;
unsigned int sp;
unsigned int op;

sp - FP_SEG(p);
op - FP_OFF(p);

These calls must be compiled with the - dos fiag.

June 21, 1987 Page 1

(
�

FPf1TC (DOS)

Name

fputc, fputchar - Write a character to a stream.

Syntax

#include <stdio.h>

lnt fi>utc (c, stream);
lnt c;
FILE *stream;

lnt fputchar (c);
int c;

Description

FPI.JTC (DOS)

The fputc function writes the slngte character c to the output stream
at the current position. fputchar is equivalent to fputc(c, stdout).

Retnm Value

fputc and fputchar retnm the character written. A return value of
EOF may indicate an error. However, since the EOF value is also
a legitimate integer value, use [error to verify an error condition.

See Also

fgetc(DOS), getc(S), putc(S)

June 21, 1987 Page 1

FPUTC (DOS) FPUTC (DOS)

Example

Notes

#include <stdio.h>

FILE *stream;
char buffer[81];
int i·
int dh;

I* The following statements write the contents of a buffer to
•• a stream. Note that the output occurs as a side effect
** within the for statement's second expression, so the
** statement body is null . . ,
for (i = 0; (i < 81) &&

((ch = fputc (buffer[i],stream)) != EOF); i++)

I* "fputchar ()" could be used instead of "fputc (stream)"
•• in the for statement above to write the buffer to stdout
** (equivalent to "fputc (stdout)") . . ,

fputc and fputchar are identical to putc and putchar, but are func
tions, not macros.

These calls must be compiled with the • dos llag.

June 21, 1987 Page 2

(

GETCH (DOS)

Name

getch - Gets a character.

Syntax

#include <conio.h>

lnt getch ();

Description

The getch function reads, without echoing, a single character
directly from the console. Characters typed are not echoed. If a
CONTROL-C is typed, the system executes au INT 23H
(CONTROL-C exit).

Return Value

getch returns the character read. There is no error return.

See Also

cgets (DOS), getche(DOS), getchar(S)

Example

Notes

#include <conio.h>
#include <ctype.h>

int ch;

I* This loop gets characters from the keyboard until a
•• non-blank character is seen. Preceding blank
•• characters are discarded .
. ,

do {
ch = getch ();
} while (isspace (ch));

This call must be compiled with the -dos flag.

I une 21, 1987 Page 1

(

GETCHE (DOS)

Name

getche Gets and echoes a character.

Syntax

#include <conio.l•>

lnt getche ();

Description

GETCHE (DOS)

The getche function reads a single character from the console and
echoes the character read. If a CONTROL-C is typed, the system
executes an INT 23H (CONTROL-C exit).

Return Value

gerche returns the character read. There is no error return.

See Also

cgets(DOS), getch(DOS)

Example

#include <conio.h>
#include <ctype.h>

int ch;

1• Get a character from the keyboard and echo it to the
** console. If it is an upper case letter, convert it
** to lower case and write over the old character.
•t

ch - getche () ;

if (isupper (ch))
cprintf ("\b%c",tolower (ch));

(_ Notes

This call must be compiled with the - dos flag.

June 21, 1987 Page 1

INP (DOS)

Name

inp - Returns a byte.

Syntax

#include <conio.h>

iot iop (port);
unsigned port;

Description

INP (DOS)

The inp function reads one byte from the input port specified by
port. The port argument can be any unsigned integer number in the
range 0 to 65, 535.

Return Value

inp returns the byte read from port. There is no error return.

(See Also

/

outp(DOS)

Example

Notes

#include <conio.h>

unsigned port;
char result;

/* The following statement inputs a byte from the port
** that 'port' is currently set to .
. ,

result - iup (port);

This call must be compiled with the - dos flag.

June 21, 1987 Page 1

INT86 (DOS) INT86 (DOS)

Name

int86 - Executes an interrupt.

i, Syntax

(

(_

#include <dos.ll>

int int86(intno, inregs, outregs);
int intno;
union REGS *inregs;
union REGS *outregs;

Description

The int86 function executes the 8086 software interrupt specified by
the interrupt number intno. Before executing the interrupt, int86
copies the contents of inregs to the corresponding registers. After
the interrupt returns, the function copies the current register values
to outregs. It also copies the status of the system carry flag to the
cflag field in outregs. The inregs and outregs arguments are unions
of type REGS. The union type is defined in tile include file dos .ll.

Int86 is intended to be used to invoke DOS interrupts directly.

Return Value

The return value is the value in the AX register after the interrupt
returns. If the flag field in outregs is nonzero, an error has
occurred and the doserrno variable is also set to the corresponding
error code.

See Also

bdos(DOS), intdos(DOS), intdosx(DOS), int86x(DOS)

June 21, 1987 Page 1

INT86 (DOS) INT86 (DOS)

Example

Notes

#include <signal.h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

I*
* Use int86 routine to generate a CONTROL-C interrupt
• (interrupt number Ox23) which would be caught by the
• interrupt handling routine inthandler. Note that the
• values in the regs struct do not matter for this
* interrupt .
. ,

#define CNTRLC Ox23
int inthandler (int);
uninn REGS regs;

signal (SIGINT, inthandler);

.
int86(CNTRLC, ®s, ®s);

Segment registers are not included in inregs or ouuegs,

This call must be compiled with the -dos flag.

June 21, 1987 Page 2

/

INT86X (DOS)

Name

int86x - Executes an interrupt.

Syntax

#inclnde <dos.h>

int int86x (intno, inregs , outregs, segregs);
int intno;
union REGS *inregs ;
union REGS *outregs;
struct SREGS *scgregs;

Description

INT86X (DOS)

The int86x function executes the 8086 software intermpt specified
by the interrupt number intno. Unlike the int86 function, int86x
accepts segment register values in segregs, letting progrlims that use
long model data segments or far pointers specify which segment or
pointer should be used during the system call.

Before executing the specified interrupt, int86x: copies the contents
of inregs and segregs to the corresponding registers. Only the DS
and ES register values in segregs are used. After the interrupt
returns, the function copies the current register values to outregs
and restores DS. It also copies the status of the system carry flag
to the cflag field in outregs. The inregs and outregs arguments are
unions of type REGS. The segregs argument is a structure of type
SREGS. These types are defined in the include file dos.h.

mt86x: is intended to he used to directly invoke DOS intermpts that
take an argument in the ES register, or take a D S register value that
is different than the default data segment.

Retnrn Value

The return value is the value in the AX register after the interrupt
returns. If the flag field in outregs is nonzero, an error has
occurred and the doserrno variable is also set to the corresponding
error code.

\ See Also

bdos (DOS), intdos (DOS) , intdosx(DOS), int86(DOS), seg.
read (DOS) , FP ...SEG(DOS)

June 21, 1987 Page 1

INT86X (DOS) INT86X (DOS)

Example

#include <signal.h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

,.
• Use int86x routine to generate an interrupt Ox:21 (system
• call), which invokes the DOS 'Change Attributes' system
* call. The int86x routine is used because the filename to
• be referenced may be in a segment other than the default
• data segment (it is referenced by a far pointer), so the
• DS register must be explicitly set via the SREGS struct.
*I

#define SYSCALL Ox:21 /* INT 21H invokes system
calls *I

#define CHANGE_A TTR Ox43 /* system call 43H - ehange
attributes */

char far *filename; I* filename in 'far' data
segment */

union REGS inre!l)l, outre!l)l;
struct SREGS segre!l)l;
int result;

inre!l)l.h.ah - CHANGE_A TTR; /* AH is system call
number */

inre!l)l.h.al � 0; /• AL is function (get
attributes) */

inregs.x.dx � FP_OFF(filename); /* DS:DX points to file
name */

segregs.ds � FP_SEG(filename); ·
result � int86x (SYSCALL, &inregs, &outre!l)l, &segregs) ;
if (outregs.x.cflag) {

printf ("can't get attributes of file; error number 'Yod\n",
result);

exit (1);
}

else {
f ("A 'b "' "'-\n") pnnt ttri s = to 'ff11.. � outregs.x.cx ;

}

June 21, 1987 Page 2

/

INT86X (DOS) INT86X (DOS)

Notes

Segment values for the segregs argument can be obtained by using
either the segread function or the FP _,5EG macro.

This call must be compiled with the • dos flag.

June 21, 1987 Page 3

(
\

INTDOS (DOS)

Name

intdos - Invokes a DOS system call.

Syntax

#include <dos.b>

int intdos ()nregs, outregs);
union REGS *inregs;
union RE('�'l *outregs;

Description

INTDOS (DOS)

The intdos function invokes the DOS system call specified by regis
ter values defined in inregs and returns the effect of the system call
in outregs. The inregs and outregs arguments are unions of type
REGS. The union type is defined in the inclnde file dos.b.

To invoke a system call, illtdos executes an lli'T 21H instruction.
Before execnting the instruction, the function copies the contents
of inregs to the corresponding registers. After the INT instruction
returns, illtdos copies the current register values to outregs. It also
copies the status of the system carry flag to the cflog field in
outregs. If this field is nonzero, the flag was set by the system call
and indicates an error condition.

intdos is intended to be used to invoke DOS system calls that take
arguments in registers other than DX (DH/DL) and AL, or to
invoke system calls that indicate errors by setting tbe carry flag.

Return Value

intdos retums tl1e value of the AX register after the system call has
completed. If the flag field in outregs is nonzero, an error has
occlll'Ted and doserrno is also set to the corresponding error code.

See Also

bdos(DOS), int86(DOS), int86x(DOS), intdosx(DOS)

I une 21, 1987 Page 1

INTDOS (DOS) INTDOS (DOS)

Example

Notes

#include <dos.b>
#include <stdio.b>

Wlion REGS inregs, outregs;

/* The following statements get the cnrrent date using
•• dos function call 2a hex.
*I

inregs.h.ah = Ox2a;
intdos �&inregs,&outregs);
printf (date is %d/%d/%d\n",outregs.h.dh,outregs.h.dl,

outregs.x.cx);

This call must be compiled with the -dos ll.ag.

June 21, 1987 Page 2

INTDOSX (DOS)

Name

intdosx - Invokes a DOS system call.

Syntax

#inchtde <dos.h>

int intdosx (inregs, ontregs, segregs);
union REGS •inregs;
union REGS *outregs;
stroct SREGS •segregs;

Description

INTDOSX (DOS)

The intdosx function invokes the DOS system call specified by
register values defined in inregs and returns the effect of the system
call in outregs. Unlike the intdos function, intdosx accepts segment
register values in segregs, letting programs that use long model data
segments or far pointers specify which segment or pointer should
be used during the system call. The inregs and outregs arguments
are unions of type REGS. The segregs argument is a strncture of
type SREGS. These types are defined in the include file dos.h.

To invoke a system call, intdosx executes an JNT 21H instrnction.
Before executing the instruction, the function copies the contents
of inregs and segregs to the corresponding registers. Only the DS
and ES register values in segregs are used. After the INT instruc
tion returns, intdosx copies the current register values to outregs
and restores DS. It also copies the status of the system carry flag
to the cjlog field in outregs. If this field is nonzero, the flag was set
by the system call and indicates an error condition.

intdosx is intended to be used to invoke DOS system calls that take
an argument in the ES register, or that take a DS register value that
is different from the default data segment.

Return Value

intdosx returns the value of the AX register after the system call has
completed. If the flag field in outregs i s nonzero, an error has
occurred and doserrno is also set to the corresponding error code.

See Also

bdos (DOS), intdos (DOS), segread (DOS), FP ...SEG(DOS)

June 21, 1987 Page l

INTDOSX (DOS) INTDOSX (DOS)

Example

#include <dos.h>

union REGS inregs, outregs;
struct SREGS segregs;
char far *dir = "/testlbin11;

I* The following statements change the current working
** directory with dos function call 3b hex.
*I

inregs.h.ah = Ox3b ; I* change directory • I
inregs.x.dx = FPOFF(dir); I* file name offset */
segregs.ds = FPSEG(dir); /* file name segment */
intdosx (&inregs,&outregs,&segregs);

The above example must be compiled using tbe -Me flag.

Notes

Segment values for the segregs argument can be obtained by using
either tbe segread function or tbe FP _$EG macro.

This call must b e compiled with the - dos flag.

June 21, 1987 Page 2

1 -

(
\

ISATTY (DOS) ISATTY (DOS)

Name

isatty - Checks for a character device.

Syntax

#include <io.h>

Jut Is a tty (handle);
lnt handle;

Description

The isatty function determines whether the given ho.ndle is associ
ated with a character device (that is, a terminal, console, printer or
serial port).

Return Value

lsatty returns a nonzero value if the device is a character device.
Otherwise, the return value is 0.

Example

:Sotes

#include <io.h>

int fh;
long loc;

if (isatty (fh} �� 0)
Joe = tell (fh); 1• if not a device, get current

** position
.,

This call must be compiled with the • dos flag.

June 21, 1987 Page 1

(

lTOA (DOS)

Name

itoa. Converts integers to characters.

Syntax

#include <stdlib.h>

char *itoa (value, string, radix);
int value;
char *strlng;
int radix;

Description

lTOA (DOS)

The itoa function converts the digits of the given value to a null
terminated character string and stores the result in string. The
radix argument specifies the base of value. It must b e in the range
2-36. If radix equals 10 and value is negative, the first character of
the stored string is the minus sign (-).

Return Value

itoa returns a pointer to string. There is no error retum.

See Also

ltoa(DOS), ultoa(DOS)

Example

#include <stdlib.h>

int radix = 8;
cl1ar buffer[20];
char *p;

p itoa (-3445,buffer,radix); 1• p = "171213" */

June 21, 1987 Page l

Noles

The space allocated for string must be large enough to hold the
returned string. The function can return up to 17 bytes.

This call must be compiled with the - dos flag.

June 21, 1987 Page 2

(
\

KBHIT (DOS) KBHIT (DOS)

Name

kbhit - Checks the console for a keystroke.

Syntax

#include <conio.h>

lnt kbblt () ;

Descrlptlon

The kbhit function checks the console for a recent keystroke.

Return Value

kbhit returns a nonzero value if a key has been pressed. Otherwise,
it returns zero.

Example

Notes

#Include <conio.h>

int result;

I* The following statement tests to see if a key has
** been hit .
. ,

result - khhit ();

I* If result is nonzero, a keystroke is waiting in the
•• buffer. It can be fetched with getch or getche.
** If getch or gctche were called without first checking
•• kbh:it, the program might pause while waiting for
*" input.
.,

This call must be compiled w:ith the • dos !lag.

June 21, 1987 Page 1

(
\..._ -

LABS (DOS)

Name

Jabs - Returns the absolute value of a long integer.

Syntax

#include <stdlib.h>

loug Jabs (u);
long n;

Description

LABS (DOS)

The labs function produces the absolute value of its long integer
argument n.

Return Value

labs returns the absolute value of its argument. There is no error
return.

See Also

abs(DOS), fabs(DOS), hypot(S)

Example

#include <stdlib.h>

long x, y;

x - -41567L;
y Jabs (x); /* y - 41567L */

Notes

This call must be compiled with the -dos fiag.

June 21, 1987 Page 1

(

LTOA (DOS) L TOA (DOS)

Name

Ito a Converts long integers to characters.

Syntax

#include <stdlib.h>

char *ltoa (value, string, radix);
long value;
char *strlng;
int radix;

Description

The ltoa function converts the digits of the given value to a null
terminated character string and stores the result in string. The
radix argument specifies the base of value. It must be in the range
2-36. If radi;x equals 10 and value is negative, the first character of
the stored string is the minus sign (-).

Return Value

ltoa returns a pointer to string. There is no error return.

See Also

iloa (DOS), ultoa(DOS)

Example

Notes

#include <stdlib.h>

int radix 10;
char buffer[20];
char *p;

p = ltoa (-344115L,buffer,radix);/* p - "-3441.15" •!

The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

This call must be compiled with the -dos fiag.

June 21, 1987 Page 1

(
\,�----

MKDIR (DOS)

Name

mkdir - Creates a new directory.

Syntax

#include <dlrect.h>

int mkdir (pathname);
thar *pathname;

Description

MKDIR (DOS)

The mkdir fn)lction creates a new directory with the specified path·
name. Only one directory can be created at a time, so only the last
component of pathname can name a new directory.

Retnm Value

mkdir returns the value 0 if the new directory was created . A
return value of -1 indicates an error, and errno is set to one of the
following values:

Value Meaning

EACCES Directory not created: the given name is the
name of an existing file, directory, or device.

ENOEN'l' Pathname not found.

See Also

chdir(S), rmdir(DOS)

June 21, 1987 Page 1

M.KD!R (DOS) MKDIR (DOS)

Example

#include «lirect.h>

in t result ;

/* The following two statements create two new directories:
** one at the root on drive b :) and one in the "tmp"

Notes

•• subdirectory of the current wor!cing directory.
•!

result - mkdir (''b:/tmp'); /* ''b :\\tmp" could also
•• be used
*I

result - mkdir nmp/sub");
** be used
.,

I* "tmp\\sub" could also

This call must be compiled with the • dos flag.

June 21, 1987 Page 2

(

(
\

MOVEDATA (DOS) MOVEDA TA (DOS)

Name

movedata - Copies bytes from a specific address.

Syntax

#include <memory.h>

void movedata (srcseg, srcoff, destseg, destoff, nbytes);
int srcseg;
int srcoff;
int destseg;
int des toil;
unsigned nbytes;

Description

The movedata function copies nbytes bytes from the source address
specified by srcseg:srcoff to the destination address specified by
destseg:desroff.

movedata is intended to be used to move far data in small or
medium model programs where segment addresses of data are not
implicitly known. In large model programs, the memcpy function
can be used since segment addresses are implicitly known.

Return Value

There is no error return.

See Also

memory(S), segread(DOS), FP _OFF (DOS)

June 21, 1987 Page 1

MOVEDATA (DOS) MOVEDATA (DOS)

Example

Notes

#include <memory.h>
#include <dos.h>

char far *src;
char far *dest;

I* The following statement move 512 bytes of data from
•• src to the dest.
•!

movedata(FP_SEG(src), FP_OFF(src), FP...SEG(dest),
FP _OFF(dest, 512);

X - -14.87654321;
y = modf (x,&n); 1• y = -0.87654321, n = -14.0 •!

Segment values for the srcseg and destseg arguments can be
obtained by using either the segread function or the FP ...SEG
macro.

movedata does not handle all cases of overlapping moves correctly
(overlapping moves occur when part of the destination is the same
memory area as part of the source). Overlapping moves are han
died correctly in the memcpy function.

This call must be compiled with the -dos !lag.

June 21, 1987 Page 2

OUTP (DOS) OUTP (DOS)

Name

outp Writes a byte to an output port.

Syntax

#include <conio.h>

int outp (port, value);
unsigned port;
int value;

Description

The outp function writes the specified value to the output port
specified by port. The port argument can be any unsigned integer
in the range 0 to 65,535. value can be any integer in the range 0 to
255.

Retnm Value

outp returns value. There is no error return.

See Also

lnp(DOS)

Example

Notes

#Include <conio.h>

int port, byte_val;

1• The following statement outputs a byte to the port
•• that 'port' is currently set to.
*I

outp (port,byte,_val) ;

This call must be compiled with the -dos fiag.

June 21, 1987 Page 1

(
\

PUTCH (DOS)

Name

putch Writes a character to the console.

Syntax

#Include <conlo.h>

void putch (c)
int c;

Description

PUTCH (DOS)

The putch function writes the character c directly to the console.

Return Value

There is no return value.

See Also

cprintf(DOS), getch(DOS), getche(DOS)

Example

#include <conio.h>

I* This example shows how the getche function could be deflnvci
** using putch and getch.

Notes

*I

int getche ()
{

}

int ch;

ch - getch ();
putch (ch);
return (ch);

This call must be compiled with the • dos flag.

June 21, 1987 Page 1

RENAME (DOS) RENAME (DOS)

Name

rename - renames a file or directory.

(Syntax

#include <io.h>

int rename (newname, oldname);
char *newname;
char *oldname;

Description

The rename function renames the file or directory specified by old
name to the name given by newname. oldname must specify the
pathname of an existing file or directory. Newname must not
specify the name of an existing file or directory.

The rename function can be used to move a file from one directory
to another by giving a different pathname in the newname argu
ment. However, files cannot be moved from one device to another
{for example, from Drive A to Drive B). Directories can only b e
renamed, not moved.

Return Value

rename returns 0 if it is successful.

See Also

creat(S), fopen(DOS), open(S)

Example

Notes

#include <io.h>

int result;

I* The following statement changes the file "data" to
*"' have the name "input".
*I

I ("' " "d t ") resu t = rename mput , a a :

This call must be compiled with the - dos flag.

June 21, 1987 Page 1

(

Rll1.DIR (DOS)

Name

rrndir Deletes • directory.

Syntax

#Include < direct.h>

lnt nndir (patlmame);
char *pathname;

Description

RMDIR (DOS)

The rnuiir function deletes the directory specified by pathname.
The directory must be empty, and it must not be the current work
ing directory or the root directory.

Return Value

rnuiir returns the value 0 if the directory is successfully deleted. A
return value of -1 indicates an error, and errno is set to one of the
following values:

Value Meaning

EACCES The given pathname is not a directory, . the
directory is not empty, or the directory is the
current working directory or root directory.

ENOENT Pathname not found.

See Also

chdir(S), mkdir(DOS)

June 21, 1987 Page 1

Rl¥fDIR (DOS) RMDIR (DOS)

Example

Notes

#include <direct.h>

int resultl, result2;

I* The following statements delete two directories:
** one at the root, and one in the current working
** directory.
*I

resultl - rmdir ("/data");
result2 rmdir ("data");

This call must be compiled with the • dos fl.ag.

June 21, 1987 Page 2

(

SEGREAD (DOS) SEGREAD (DOS)

Name

segread - command description

Syntax

#include <dos.h>

void segread (segregs);
struct SREGS *segregs;

Description

The segread function fills the structure pointed to by segregs with
the current contents of the segment registers. The function :is
intended to be used with the intdosx and int86x functions to retrieve
segment :register values for later use.

Retorn Value

There is no return value.

See Also

intdosx(DOS), int86x(DOS), FPSEG(DOS)

Example

Notes

#include <dos.h>

struct SREOS segregs;
unsign.ed int cs, dslt es� ss;

I* The following statements get the current values of
•• the segment registers.
*I

segmad (&segregs);
cs segregs.cs;
ds - segregs.ds;
es segregs.es;
ss segregs. ss;

This call must be compiled with the -dos fiag.

J nne 21, 1987 Page 1

(
\

SETMODE (DOS) SETMODE (DOS)

Name

setmode - Sets translation mode.

Syntax

#Include <fcntl.h>
#Include <io.h>

int setmode (handle, mode);
int handle;
int mode;

Description

The setnuJde function sets the translation mode of the file given by
handle to mode. The mode must be one of the following manifest
constants:

Manifest Constant Meaning

O_TEXT Set te>.'l (translated) mode. Carriage
return/linefeed combinations (CR-LF) are
translated into a single linefeed (LF) on
input. Linefeed characters are translated
into carriage return/linefeed combinations
on output.

O_BlNARY Set binary (untranslated) mode. The
above translations are suppressed.

setnwde is typically used to modify the default translation mode of
stdin, stdout, stderr, stdaux, and stdprn, but can b e used on any
file.

Return Value

H successful, setnwde returns the previous translation mode. A
retm:n value of -1 indicates an error, and errno is set to one of the
following values:

Value Meaning

EBADF Invalid file handle

EINV AL Invalid mode argument (neither O_TEXT nor
O_BINARY)

June 21, 1987 Page 1

SETMODE (DOS) SETMODE (DOS)

See Also

ereat(S), fopen(S), open(S)

Example

Notes

#include <stdio.h>
#include <fcntLh>
#include <io.h>

int result;

I* The following statement sets stdin to be oinary
•• (initially it is text).
*I

result � setmode (fileno (stdin),OBJNARY);

This call must be compiled with the • dos flag.

June 21, 1987 Page 2

\

(

(

SOPEN (DOS) SOPEN (DOS)

Name

sopen Opens a file for shared reading and writing.

Syntax

#inelude <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <share.h>
#include <io.h>

int sopen (pathname, ollag, shllag[, pmode]);
char *pathname;
int ollag;
int shllag;
int pmode;

Description

The sopen function opens the file specified by pathname and
prepares the file for subsequent shared reading or writing as defined
by ojlag and shjlag. oftag is an integer expression formed by com
bining one or more of the followiog manifest constants, defined in
fcntl.h. When more than one manifest constant is given, the con
stants are joined with the OR operator <1).

Ollag Meaning

O...APPEND Reposition the file pointer to the end of the
file before every write operation.

O_CREA T Create and open a new file; this has no effect
if the file specified by pathname exists.

O..EXCL Return an error value if the file specified by
pathnam£ exists. Only applies when used
with O_CREAT.

O...RDONL Y Open file for reading only; if this flag is
given, neither O....RDWR nor O_WRONLY
may be given.

O...RDWR

June 21, 1987

Open file for both reading and writing; if this
flag is given, neither O...RDOI'<"L Y nor
0_\VRONLY may be given.

Page l

O>Vl:'l'-JV tVU:>) SOPEN (DOS)

O_TRUNC Open and truncate an existing file to 0 length;
the file must have write permission, and the
contents of the f!le are destroyed.

0_ WRONL Y Open file for writing only; if this flag is given,
neither O_RDONL Y nor O_RDWR may be
giVf?D.

O_BINARY Open file in · binary (untranslated) mode.
(See fopen for a description of binary mode.)

O_TEXT Open file in text (translated) mode. (See
fopen for a description of text mode.)

_TRUNC destroys the complete contents of an existing file. Use
with care.

Shflag is a constant expression consisting of one of the following
manifest constants, defined in share.h. See your MS-DOS docu
mentation for detailed information on sharing modes.

Shflag Meaning

SH_COMPA T Set compatibility mode.

SHJ)ENYRW Deny read and write access to file.

SHJ)ENYWR Deny write access to file.

SHJ)ENYRD Deny read access to file.

SHJ)ENYNONE Permit read and write access.

The pmode argument is reqnlred only when _CREA T is specified.
If the file does not exist, pmode specifies the file's permission set
tings, which are set when the new file is closed for the first time.
Otherwise, the pmode argument is ignored. The pmode argument is
an integer expression containing one or both of the manifest con
stants SJWRITE and SJREAD, defined in syslstat.h. When both
constants are given, they are joined with the OR operator (1). The
meaning of the pmode argument is as follows:

Vaiue Meaning

SJWRITE Writing permitted

S.JREAD Reading permitted

SJREAD I SJWRITE Reading and writing permitted

June 21, 1987 Page 2

/

(

SOPEN (DOS) SOPEN (DOS)

If write permission is not given, the file is read-only. Under MS
DOS all files are readable; it is not possible to give write-only per
mission. Thus, the modes SJWRITE and SJREAD I SJWRITE
are equivalent.

sopen applies the current file permission mask to p11U)de before set
ting the permissions (see u.mask) .

Return Value

sopen returns a file handle for the opened file. A return value of
-1 indicates an error, and errno is set to one of the following
values:

Value Meaning

EACCES

EEXIST

EINVAL

EMFlLE

ENOENT

See Also

Given pathnmne is a directory; or the file is
read-only but an open for writing was
attempted ; or a sharing violation occurred
(the file's sharing mode does not allow the
specified operations; MS-DOS versions 3.0
or later only).

The _CREA T and _EXCL flags are specified
but the nmned file already exists.

SHARE. COM not installed.

No more file handles avallable (too many
open files).

File or path name not found.

close(S), creat(S), fopen(S), open(S), umask(S)

June 21, 1987 Page 3

I>Vl'J£N (VUS)

Example

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include < share.h>
#include <io.h>

extern unsigned char _osmajor;
int fh;

/* Theosmajor variable is used to test
** the MS-DOS version number before
** calling sopen .
. ,

SOPEN (DOS)

if (_osmajor > � 3)
fh � sopen ("data", O..RDWR I OJIINARY, SH..DENYRW);

else
fh - open C'data", O..RDWR I OJIINARY);

Notes

The sopen function should be used only under MS-DOS version 3.0
or later. Under earlier versions of MS-DOS, the shjlag argument is
ignored.

File sharing modes will not work correctly for buffered files, so do
not use fdopen to associate a file opened for sharing (or locking)
with a stream.

This call must be compiled with the • dos flag.

June 21, 1987 Page 4

SPkWNL (DOS) SPA1¥NL (DOS)

Name

spawn!, spawnvp - Creates a new process.

(Syntax

/

(

#include <stdio.h>
#include <process.h>

lut spawn! (modeOag, pathname, argO, argl. .. argn, NULL);

int spawnle (modellag, pathname, argO, argl. •. argn, NULL, envp);

int spawnlp (modeOag, pathname, argO, argl ... argn, �'TILL);

int spawnv (modeflagt pathnamet argv) ;

int spawnve (modeOag, pathname, argv, envp);

int spawnvp (modellag, pathname, argv) ;

int modellag;
char *pathname;
char *argO,.*argl •.• *argn:
char *argv [) ;
char *envp [);

Description

The spawn functions create and execute a new child process.
There must be enough memory available for loading and executing
the child process. The nwdeflag argument determines the action
taken by the parent process before and during the spawn. The fol
lowing values for nwdeflag are defined in process .h:

Value

P_WAIT

P...NOWAIT

Meaning

Suspend parent process until execution of
child process is complete

Continue to execute parent process con
currently with child process

P_OVERLA Y Overlay parent process with child, destroying
the parent (same effect as exec calls)

Only the P_WAIT and P_OVERLA Y nwdeflag values may
currently be used. The P ...NO WAIT value is reserved for possible
future implementation. An error value is returned if P...NOWAIT is
used.

Juue 21, 1987 Page l

SPAWNL (DOS) SPAWNL (DOS)

The pathname argument specifies the file to be executed as the
child process. The pathname can specify a full path (from the
root), a partial path (from the current working directory), or just a
filename. Tf pathname does not have a filename extension or end
with a period (.), the spawn calls first append the extension .COM
and search for the file; if unsuccessful, the extension .EXE is
attempted. If pathname has an extension, only that extension is
used. If pathname ends with a period, the spawn calls search for
pathname with no extension. The spawnlp and spawnvp routines
search for pathname (using the same procedures) in the directories
specified by the PATH environment variable.

Argoments are passed to the child process by giving one or more
pointers to character xtrings as arguments in the spawn call. These
character strings form. the argument Jist for the child pwcess. The
combined length of the sttings forming the argument Jist for the
child process must not exceed 128 bytes. The tenninaring null .
character ('\0') for each string is not included in the count, but
space characters (automatically inserted to separate arguments) are
included.

The argument pointers may be passed as separate are;uments
(spawnl, spawnl£, and spawnlp) or as an array of pomters (spawnv,
spawnve, and spawnvp). At least one argument, argO or argv[O],
must be passed to the child process. By convention, this argument
is a copy of the pathname argoment. (A difierent value will not
produce an error.) Under versions of MS-DOS earlier than 3.0, the
passed value of argO or arg[O] is not available for use m the child
process. However, under MS-DOS 3.0 and later, the pathname is
available as argO or arg(Oj.

The spawnl, spawn/e and spawnlp calls are typically used in cases
where the number of arguments is known in advance. argO is usu
ally a pointer to pathname. argl through argn are pointers to the
character strings forming the new argument Jist. Following argn
there must be a NULL pointer to mark the end of the argument
list.

spawnv, spawnve, and spawrwp are useful when the number of argu
ments to the child process is variable. Pointers to the arguments
are passed as an array, argv. argv[O] is usually a pointer to the
pathname. argv[l] through argv[n] are pointers to the character
sttings forming the new argument Jist. argv[n+ 1] must be a NULL
pointer to mark the end of the argoment Jist.

Files that are open when a spawn call is made remain open in the
child process. In the spawnl, spawnlp, spawnv, and spawrwp calls,
the child process inherits the environment of the parent. spawnle
and spawnve allow the user to alter the environment for the child
process by passmg a list of environment settings through the envp

June 21, 1987 Page 2

f
\

SPAWNL (DOS) SPAWNL (DOS)

argument. envp is an array of character pointers, each element of
which points to a null-terminated string defining an environment
variable. Such a striog has the form:

NAME-value

where NA:ME is the name of an environment variable and value is
the string value to which that variable is set. (Notice that value is
not enclosed in double quotes.) When envp is NULL, the child pro
cess inherits the environment settings of the parent process.

Return Value

The return value is the exit status of the child process. The exit
status is 0 if the process terminated normally. The exit status can
also be set to a nonzero value if the child process specifically calls
the exit routine with a nonzero argument. If not set, a positive exit
statu.' indicates an abnormal exit via an abort or an interrupt.

A return value of -1 indicates an error (the child process is not
started), and errno is set to one of the following values:

Value Meanhag

E2BIG The argument list exceeds 128 bytes or the
space required for the environment informa
tion exceeds 32K bytes.

EINV AL Invalid modeftng argument.

ENOENT File or pathname not found.

ENOEXEC The specified file is not executable or has an
invalid executable file format.

ENOME..\.f Not enough memory is available to execute
the child process.

See Also

abort(S), execfS), exit(DOS)

June 21, 1987 Page 3

l)lll tt'lVL (DU!5) SPAWNL (DOS)

Example

Notes

#include <stdio.h>
#include <process.h>

extern char **environ;

char *args[4];
int result;

args[O] � "child";
args[l] � "one";
args[2] = "two";
args[3] = NULL;

f* All of the following statements attempt to spawn a
** process called 11¢hild.exetl and pass it 3 arguments.
•• The first 3 suspend the parent, and the last 3
•• overlay the parent with the child.
*f

result = spawnl (P_WAIT,"child.exe","child", "one","twon7
NULL);

result = spawnle (P_WAIT,"child.exe11,"child",uone",
"two",NULL,environ);

result = spawnlp (P_WAIT,11child-.exe","child","one",
11tw011,NULL);

result = spawnv (P_OVERLAY,"child.exe", args);
result spawnve (P_OVERLA Y, "child.exe",args,environ);
result spawnvp (P_OVERLA Y,"child.exe",args);

The spawn calls do not preserve the translation modes of open files.
If the child process must use files inherited from the parent, the set�
mode routine should be used to set the translation mode of these
files to the desired mode.

Signal settings are not preserved in child processes created by calls
to spawn routines. The signal settings are reset to the default in the
child process.

These calls must be compiled with the � dos flag.

June 21, 1987 Page 4

(

Sl B.LIDV (DO<SJ

Name

strlen Returns the length of a string.

Syntax

#include <string.h>

lnt strlen (string);
char *string;

Description

The str/en function returns the length in bytes of string , not includ
ing the terminating null character ('\0').

Return Value

strlen returns the string length. There is no error return.

Example

Notes

#include <string.h>

char *string - ''some space";
int result;

I* Determine the length of a string.
.,

result = strlen (string); /* result = 10 */

This call must be compiled with the • dos flag.

June 21, 1987 Page 1

(

STRLWR (DOS) STRLWR (DOS)

Name

strlwr - Converts uppercase characters to lowercase characters.

Syntax

#include <string.h>

char •strlwr (string);
char *string;

Description

The strlwr function converts any uppercase letters in the given
null-terminated string to lowercase. Other characters are not
affected.

Return Value

strlwr returns a pointer to the converted string. There is no error
return.

See Also

strupr(DOS)

Example

Notes

#include <string.!»

char string[100], •copy;

I* Make a copy of a string in lower case .
. ,

copy � strlwr (strdup (string));

· This call must be compiled with the - dos flag.

June 21, 1987 Page 1

(

STRREV (DOS) STRREV {DOS)

Name

st:rrev - Reverses the order of characters in a string.

Syntax

#include <strlng.h>

char •strrcv (string);
char *string;

Description

The strrev function reverses the order of the characters in the given
string. The terminating null charaeter ('\0') remains in place.

Return Value

strrev returns a pointer to the altered string. There is no error
return.

See Also

strut(DOS), strset(DOS)

Example

Notes

#include <string.h>

char string[100];
int result;

I* Determine if a string is a palindrome (the same
•• string read forwards and backwards) .
. ,

result = strcmp (string,strrev (strdup (string)));

I* If result==O the string is a palindrome.
*I

This call must be compiled with the -dos flag.

June 21, 1987 Page 1

! '

(\

STRSET (DOS) STRSET (DOS)

Name

strset - Sets all characters in a string to one charater.

Syntax

#indude <string.lt>

char *strset (string, c);
char *string;
cha:r c;

Descrlptiun

The strset function sets all characters of the given string except the
terminating null character ('\0') to c.

Retum Value

strset retums a pointer to the altered string. There is no error
return.

See Also

strlng(S)

Example

Notes

#include <string.h>

char string[100], •result;

/* Set a string to be all blanks.
*I

.

result = strset (string,' ') ;

This call must be compiled with the • dos flag.

June 21, 1987 Page 1

/

(

(
__.

STRUPR (DOS) STRUPR (DOS)

Name

strupr - Converts lowercase characters to uppercase.

Syntax

#include <string.h>

char *strupr (string);
char *sbing;

Description

The strupr function converts any lowercase letters in the given string
to uppercase. Other characters are not affected.

Return Value

strupr returns a pointer to the converted string. There is no error
return.

See Also

strlwr(DOS)

Example

Notes

#include <string.h>

char string[100], *copy;

/* The following statement makes a copy of a string in
** uppercase.
*I

copy - strupr (strdup (string));

This call must be compiled with the -dos flag.

J nne 21, 1987 Page 1

TELL (DOS) TELL (DOS)

Name

tell - Gets the current position of the file pointer.

! Syntax

('

#include <io.h>

long tell {handle);
int handle;

Description

The tell function gets the current position of the file pointer (if any)
associated with handle. The position is expressed as the number of
bytes from the beginning of the file.

Return Value

tell returns the current position. A return value of -1L indicates an
error, and errno is set to EBADF to indicate an invalid file handle
argument. On devices incapable of seeking (such as terminals and
printers), the return value is undefined.

See Also

fs eek(S), Is eek(S)

Example

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

int fh;
long position;

fh = open C'data", ORDONLY);

position = tell (fh); /* remember current position */

!seek (fh, position, 0); 1• seek to previous position */

June 21, 1987 Page 1

TELL (DOS) TELL (DOS)

Notes

This call must be compiled with the -dos flag.

June 21, 1987 Page 2

ULTOA (DOS) ULTOA (DOS)

Name

ultoa - Converts nUmbers to characters .

(Syntax

/

(
,...___ -

#include <stdlib.h>

char *ultoa (value, string, radix);
unsigned long value;
char *string;
lnt radix;

Description

The ultoa function converts the digits of the given value to a null
terminated character string and stores the result in string. No over
flow checking is performed. The radix argument specifies the base
of value. It must be in the range 2-36.

Retnrn Value

ultoa returns a pointer to string. There is no error return.

See Also

itoa(DOS), ltoa (DOS)

Example

Notes

#include <stdlib .h>

int radix - 16;
char buffer[40];
char *p;

1• p will be "501d9138 • I
p ultoa (1344115000L,buffer,radix);

The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

This call must be compiled with the -dos ftag.

June 21, 1987 Page 1

UNGETCH (DOS) UNGETCH (DOS)

Name

ungetch Returns a character to the console buffer.

Syntax

#inclnde <conio.h>

lnt ungetch (c);
int c;

Descrlptlnn

The ungetch function pushes the character c back to the console,
causing c to be the next character read. ungetch fails if it is called
more than once before the next read.

Return Value

ungetch returns the character c if it is successful. A return value of
EOF indicates an error.

See Also

cscanf(DOS), getch(DOS), gelche(DOS)

June 21, 1987 Page 1

UNGETCH (DOS) UNGETCH (DOS)

Example

Notes

#include <conio.h>
#include <ctype.h>

char buffer[100];
int count = 0;
int ch;

I* The following code gets a token, delimited by blanks
** newlines, from the keyboard .
. ,

ell � getche ();

while (isspace (ch)) /* skip preceding white space */
ch � getche ();

while (count < 99) { !• gather token */
if (isspace (ch)) /* end of token */
break;

buffer[count++] ch;
ch � getche ();
}

ungetch (ell); /* put back delimiter */
buffer[count] � '\0'; /* null terminate the token */

This call must be compiled with the -dos flag.

June 21, 1987 Page 2

Permuted Index
Commands, System Calls, Library Routioes and File Fonnats

This pennuted index is derived from the "Name" description lines found on each
reference manual page. Each index line shows the title of the entry to which the line
refers, followed by the reference manual section letter where the page is found.

To use the pennuted index search the middle column for a key word or phrase. The right
hand column contains the name and section letter of the manual page that documents the
key word or phrase. The left column contains additional useful information about the
command. Commands or routines are also listed in the context of the index line, followed
by a colon (:). This denotes the "beginning" of the sentence. Notice that in many cases,
the lines wrap, starting in the middle column and ending in the left column. A slash (/)
indicates that the description line is truncated.

l3tol, ltol3: Converts between 3-byte integers and long/
accepts a number of 512-byte blocks. • • •

between long integer and base 64 ASCII. a641, 164a: Converts
Object Modules. 86rel: Jntel 8086RelocatableFormatfor •

asx: XENIX 8086/186/286/386Assembler.
Format for Object Modules. 86rel: Inte18086 Relocatable •

long integer and base 64 ASCII. a641, I64a: Converts between •
abort: Generates an lOT fault.

value. abs: Returns an integer absolute
abs: Returns an integer absolute value. • • • • • •

and/ /fabs, ceil, fmod: Performs absolute value, floor, ceiling •
integer. labs: Returns the absolute value of along

blocks. acceptsanumberof512-byte
files. settime: Changes the access and modification dates of

a file. touch: Updates access and modification times of
utime: Sets file access and modification times. •

of a file. access: Determines accessibility
dosls, dosrm, dosrmdir: Access DOS files.

directory. cbmod: Changes the access permissions of a file or
Synchronizes shared data access. sdgetv, sdwaitv: • •

a/ /nbwaitsem: Awaits and checks access to a resource governed by
sdenter, sdleave: Synchronizes access to a shared data segment.

sputl, sgetl: Accesses long integer data in a/
endutent, utmpname: Accesses utmpfile entry.

access: Determines accessibility of a file.
csplit: Splits files according to context.

rmuser: Removes a user account from the system.
accton: Tumson accounting.

Enables ordisablesprocess accounting. acct: • • • •
acct: Format of per-process accounting file.

Searches for and prints process accounting files. acctcom:
imacct: Generate an IMAGEN accounting report.

process accounting. acct: Enables or disables
accounting file. acct: Format of per-process

13tol(S)
login(M)
a64!(S)
86re!(F)
asx(CP)
86re!(F)
a641(S)
abort(S)
abs(S)
abs(S)
ftoor(S)
labs(DOS)
!ogin(M)
settime(C)
touch(C)
utime(S)
access(S)
dos(C)
chmod(C)
sdgetv(S)
waitsem(S)
sdenter(S)
sputi(S)
getut(S)
access(S)
csplit(C)
nnuser(C)
accton(C)
acct(S)
acct(F)
acctcom(C)
imacct(C)
acct(S)
acct(F)

I-1

Permuted Index

process accounting files. acctcom: Searches for and prints
accton: Turns on accounting.

sin, cos, tan, asin, acos, atan, atan2: Performs/ • •
Printscurrent SCCSfileed.iting activity. sact: • • • • • • • •

debugger. adb: Invokes a general-purpose
Copies bytes from a specific address. movedata:

mkuser: Adds a login ID to the system.
nl: Addslinenumberstoafile.

lineprinters. lpinit: Adds, reconfigures and maintains
swapadd: Addsswaparea.

swapctl: Adds swap area. • • • • • •
putenv: Changes or adds value to environment.

SCCS files. admin: Creates and administers
admin: Creates and administers SCCS files.

netutil: Administers the XENIXnetwork.
uuinstall: Administers UUCP control files.

pwadmin: Pedorms password aging administration.
sysadmsh: Menu driven system administration utility. •

uadmin: administrative control.
pwadmin: Pedorms password aging administration.

alarm: Sets a process' alarm clock. • • • • •

.

clock. alarm: Sets a process• alarm
aliashash: Micnet alias hash table generator. o

table generator. aliashash: Micnet alias hash
faliases: Micnet aliasing files. • • • • • • •

brkctl: Allocates data in afar segment.
malloc, free, realloc, calloc: Allocates main memory.

brk: Changes data segment space allocation. sbrk, • • • • • •
file. inittab: Alternative login terminals

terminals/ telinit, mkinittab: Alternative method oftum.ing
Generatesprograllisforlexical analysis. lex: • • • • • o • o

document. style: Analyzes characteristics of a •
link editor output. a. out: Format of assembler and

ar: Archive file format.
libraries. ar: Maintains archives and • o

de: Invokes an arbitrary precision calculator.
cpio: Format of cpio archive. o • • • • • o

the names of files on a backup archive. dumpdir: Prints
ar: Archivefileformat . •

tar: archive format.
ar: Maintains archives and libraries.

tar: Archives files. • • •
cpio: Copies file archives in and out. •
ranlib: Converts archives to random libraries.

swapadd: Adds swap area.
swapctl: Adds swap area. • • • • • • • • • •

varargs: variable argument list. • • • • • •
output of a varargs argument list. !Prints formatted

getopt: Gets option letter from argument vector. • o o o o
expr: Evaluates arguments as an expression.

echo: Echoes argumeiJts. o o o • • • •
between long integer and base 64 ASCIT. a64l, 164a: Converts

ascii: Map of the ASCIT character set.
tzset: Converts date and time to ASCIT. /gmtime, asctime,

character set. ascii: MapoftheASCll •

I-2

acctcom(C)
accton(C)
trig(S)
sact(CP)
adb(CP)
movedata(DOS)
mkuser(C)
nl(C)
lpinit(C)
swapadd(S)
swapctl(C)
putenv(S)
admin(CP)
admin(CP)
netutil(C)
uuinstall(C)
pwadmin(C)
sysadmsh(C)
nadmin(S)
pwadmin(C)
alann(S)
alann(S)
aliashash(M)
aliashash(M)
aliases(M)
brkctl(S)
malloc(S)
sbrk(S)
inittab(F)
telinit(C)
lex(CP)
style(CT)
a.out(F)

ar(F)
ar(CP)
de(C)
cpio(F)
dumpdir(C)

ar(F)
tar(F)
ar(CP)
tar(C) .
epic(C)
ranlib(CP)
swappadd(S)
swapct!(C)
varargs(S)
vprintf(S)
getopt(S)
expr(C)
echo(C)
a64l(S)
ascii(M)
ctime(S)
ascu(M)

atof, atoi, atol: Converts ASCII to numbers. • • • •
and/ ctime, Iocaltime, gmtime, asctime, tzset: Converts date

Performs/ sin, cos, tan, asin, acos, atan, atan2:
commands. help: Asksforhelp about SCCS •

time of day. asktime: Prompts for the correct
output. a.out: Format of assembler and link editor

asx: XENIX 8086/186/286/386 Assembler. • • • • • • • •
masm:InvokestheXENIX assembler. • • • • • • • •

program. assert: Helpsverifyvalidityof
deassigns devices. assign, deassign: Assigns and

assign, deassign: Assigns and deassigns devices.
setbuf, setvbuf: Assigns buffering to a stream.

setkey: Assigns the function keys. • •
Assembler. asx: XENIX 8086/186/286/386
a later time. at, batch: Executes commands at

sin, cos, tan, asin, acos, atan, atan2: Performs/
sin, cos, tan, asin, aces, atan, atan2: Performs trigonometric/ •

to numbers. atof, atoi, atol: Converts ASCII
double-precision/ strtod, at of: Converts a string to a •

numbers. atof, atoi, atol: ConvertsASCIIto
integer. strtol, atol, atoi: Converts string to

integer. strtol, atol, atoi: Converts string to
atof, atoi, atol: ConvertsASCIIto numbers.

data segment. sdget, sdfree: Attaches and detaches a shared
the system. autoboot: Automaticallyboots •

autoboot: Automatically boots the system.
resource/ waitsem, nbwaitsem: Awaits and cliecks access to a

processes. wait: Awaits completion of background
a pattern in a file. awk: Searches for and processes

wait: Awaits completion of background processes.
Prints the names of ftles on a backup archive. dumpdir:

Performsincrementalfile system backup. backup: • • • •
sddate: Prints and sets backup dates. • • • • •

/Default backupdeviceinformation.
Performs incremental file system backup. dump: • • • . •

format. backup: Incremental dump tape
file system backup. backup: Performs incremental

sysadmin: Performs ftle system backups and restores files. • •
fixed disk for flaws and creates bad track table. badtrk: Scans

flaws and creates bad track/ badtrk: Scans fixed disk for
banner: Prints large letters.

between long integer and base 64 ASCII. /164a: Converts
and sets the configuration data base. cmos: Displays
and sets the configuration data base. cmos: Displays

Terminal capability data base. terrncap: • • .
terminal capability data base. terrninfo:

names from pathnames. basename: Removes directory
later time. at, batch: Executes commands at a

be: Invokes a calculator. • • •
for diff. bdiff: Compares files too large

bdos: Invokes a DOS system call.
cb: BeautifiesCprograms.

jO, jl,jn, yO, yl, yn: Performs Bessel functions. bessel,
Performs Bessel functions. bessel, jO, jl, jn, yO, yl, yn:

bfs: Scans big files.

Permuted Index

atof(S)
ctime(S)
trig(S)
help(CP)
asktime(C)
a.out(F)
asx(CP)
masm(CP)
assert(S)
assign(C)
assign(C)
setbuf(S)
setkey(C)
asx(CP)
at(C)
trig(S)
trig(S)
atof(S)
strtod(S)
atof(S)
strtol(S)
strtol(S)
atof(S)
sdget(S)
autoboot(M)
autoboot(M)
waitsem(S)
wait(C)
awk(C)
wait(C)
dumpdir(C)
backup(C)
sddate(C)
archive(F)
dump(C)
backup(F)
backup(C)
sysadmin(C)
badt<k(M)
badt<k(M)
banne<(C)
a64I(S)
cmos(HW)
cmos(HW -86)
tenncap(M)
tenninfo(M)
basename(C)
at(C)
bc(C)
bdiff(C)
bdos(DOS)
cb(CP)
bessel(S)
bessel(S)
bfs(C)

l-3

Permuted Index

fixhdr:Chaugesexecutable blnaryfileheaders . • ,. .
selected parts of executable binary files. hdr: Displays

fread, fwrite:Performsbuffered binaryinputandoutput. •
bsearch!Perfonnsa binary search. * • • • •

tfind, tdelete, twalk:Manages binary .search trees. tsearch,
Creates an instance of a binary semaphore. creatsem:

Removes symbols and relocation bits. strip: • • • • • • • •
shutdn: F1ushes block 1/0 and halts the CPU.

cmchk: Reports hard disk block size. • • • • •
df: Reportnumberoffreedisk blocks. • • • • • •

Calculates checksum and counts blocks in a .file. sum:
accepts anumberof512-byte blocks. • • . • • •

boot: XENIX boot program. • • •
boot: XENIXbootprogram.

autoboot: Automatically boots the system. • • • • •
allocation. sbrk, brk: Changes data segment space

segment. brkctl: Allocates data-in afai
search. bsearcb:Performsablnacy

a cha.tacterto the console buffer. ungetch: Retu.m.s
output. fread, !Wrlte: Performs bufferedbinaryinputand

I-4

stdio: Performs standard buffered input and output.
setbuf, setvbuf:Assigns buffering to a-Stream.

flus hall: Flushes all output buffers. • � � • • �
mknod: lluilds special files. •

inp: Returns a byte. • � • • • • •
outp:Wrltesa bytetoanoutputport.

movedata: Copieil bytes from a specific address.
swab: Swaps bytes. • • • • • • • • •

cc: Invokes the C compiler. • • • • • • •
cfiow: Genemtes C:flow graph. • • • • • •

cpp:The Clanguagepreprocessor.
lint: Checks Clanguageusageand syntax.

cx.ref: Generates C program cross-reference.
cb:Beautifies cprograms. • •

stackrequiremeutsfor Cprograms. /Determines
xref: Cross-references C programs. • • • • • •

xstr: Extracts strings from Cprograms. • • • • • •
anerrormessagefilefrom Csource. mkstr:Creates

distance. hypot, cabs! Determines Euclidean
cal: Prints a calendar. • • •

blocks.in afile. sum: Calculateschecksumandco\lllts
be: Invokes a calculator.

lnvokesanarbitraryprecision calculator. de: � � • • • • •
cal: Prints a calendar. • • • • • • • •

service. calendar: Invokesaremindet
bdos: Invokes a DOS system call.

lntdos! Invokes aDOS system call.
intdosx: Invokes a DOS system call.

Data returned by stat system call. stat:
exit: Tenninates the: calling process.

malloe, free� realloc,. calloc: Allocates main memory.
cu: Calls another XENIXsystem.

lineprinter. lp, lpr� cancel: Send/cance1 requests to
termcap: Terminal capability-data base,
termlnfo: te:rmlnal capability data base. • • • • •

fixhdr(C)
bdr(CP)
ftead(S)
bseareh(S)
lsearch(S)
ereatsem(S)
strip(CP)
shutdn(S)
cmchk(C)
df(C)
sum(C)
logln(M)
boot(HW)
boot(HW)
autoboot(M)
sbrk(S)
brkct!(S)
bsearoh(S)
ungetch(DOS)
fread(S)
ll!dio(S)
selbuf(S)
ftushall(DOS)
mknod(C)
lnp(DOS)
outp(DOS)
movedata(DOS)
swab(S)
ec(CP)
cfiow(CP)
cpp(CP)
llnt(CP)
cxrei(CP)
cb(CP)
stackuse(Cl')
xref(CP)
xstt(CP)
mkstr(CP)
h)'pot(S)
cal(C)
sum(C)
be(C)
de(C)
cal(C)
calendar(C)
bdos(DOS)
lntdos(DOS)
lntdosx(DOS)
stat(!')
exit (DOS)
malloc(S)
cu{C)
lp(C)
termcap(M)
tcrmlnfo(M)

descriptiOns into term info/ capinfo: converttenncap
files. cat: Concatenates and displays •

catimp: Convert C/ Afrfiles to imPRESS format.
Generntetroftwidth files and catab file. channap:

imPRESS format. catimp: Convert Cl A1T files to
cb: Beautifies C programs. • •
cc: Invokes theCcompiler.
cd: Changes working directory.

commentary of an SCCS delta. cdc: Changes the delta
value, floor,/ floor,fabs1 ceil, fmod:'Perfonns absolute

/Performs absoluteva1ue1 1loor1 ceiling and remainder functions.
cfiow: Generates Cfiow graph.
cgets: Gets a string. • • • •

delta:Mok.esa delta (change)to anSCCSfile.
clockrate: Changesclock rate • • • • *

allocation. sbrk, brk: Changesdatasegmentspace
headers. fixhdr: Cltanges executable binary file

chgrp: ChangesgrouplD. • • •
passwd: Changes login password.
chmod: Changesmodeofafile.

environment. putenv: Changesoraddsvalueto
chown: Changes owner ID. • •

nice: Changesprlorltyo.faprocess.
comma.nd. chroot: Changes root directory for • ,

modification dates of/ settime: Changes the access and
ofa file or directory. cbmod: Changes the access permissions

an SCCSdelta. cdc: Changes the deltacommentaryof
file, newform: Changes the format of a text • •

file. chown: Changes the owner and group of a
chroot: Changestherootdirectory.
chsize: Changes the size of a :file.
chdir: Changes the working directory.

cd: Ch.angesworldng directory,
stream. ungetc; Pusbes cbarncterbackintoinput

eqncha.r: Contains special cbaracterdefinitionsforeqn.
isatty: Olecksfora character device. • � •

ioctl: Controls character devices.
fgetc, fgetchar: Gets a characterfromastream.

getch: Getsa character • • � • • • •
getche:Getsandechoesa character. • • • • . •

getc, getchar) fgetc, getw: Gets clunacterorwordfrom a stream.
/putcha.r, fputc, putw!Putsa characterorwordonastream.

ascii:MapoftheASCll characterset. • • • �
fputc, fputcbar: Write a character to a stream. • • • •

ungetch: Returns a character to the console buffer.
putch: Writes a character to the console.

Displays:/ changes hard disk characteristics. dparam:
style: Analyzes characteristics of a document.

tolower, toascii: Translates characters. conv, toupper,
toascii: Classifies or converts characters. /tolower, toupper;
strrev: Reverses the order of characters in a string.

charater. strset: Sets all characters in a string to one
ltoa: Converts long integers to chacacters. • • • .. �

strlwr: Converts uppercase characters to lowercase.
strupr:Convertslowercase characterstoupperca.se.

Permuted Index

c:apinfo(C)
cat(C)
catimp(CT)
charmap(CT)
catimp(CT)
cb(CP)
cc(CP)
cd(C)
cdc(CP)
lloor(S)

, lloor(S)
cfiow(CP)
cgets(DOS)
delta(CP)
clockrate(HW)
sbrk(S)
fixhdr(C)
chgrp(C)
passwd(C)
chmod(S)
putenv(S)
chown(C)
nlce(S)
chroot(C)
settime(C)
chmod(C)
cdc(CP)
newform(C)
chown(S)
chroot(S)
chsize(S)
chdir(S)
cd(C)
uogetc(S)
eqnchar(CT)
isat1)1(DOS)
ioctl(S)
fgete(DOS)
ge!ch(DOS)
getche(DOS)
getc(S)
putc(S)
ascii(M)
fputc(DOS)
ungetch(DOS)
putch(DOS)
dparam(C)
style(CT)
wnv(S)
ctype(S)
strrev(DOS)
s!rset(DOS)
ltoa(DOS)
strlwr(DOS)
strupr(DOS)

I-5

Permuted lnde.:x,

tr: Translates characters.
ultoa: Converts numbers to characters.

we: COunts lines� words and characters.
characters in a string toone chararer. strset: Sets an

files and catab file. charmap: Generate tro:ffwidtb
directory. chdir: Changes the working

fstab:Filesystemmotmtand checkcommands,
constant-width textfor/ ew, checkcw, cwcheck: Prepares

mathematical text/ eqn, neqn} checkeq, eqncheck:Formats
processed byfsck. checklist: List of file systems •

ofMMmacros. checkmm, mmcheck: Checks usage
waitser:n, nbwaitsem: Awaits and checks access to a resource/ •

fsck: Checks and repairs file systems.
syntax. lint: ChecksCianguageusageand •

isatty: Checks for a character device.
g:rpcheck: Checksgroupfile.

diction: Checks language usage. .. •
pwcheck: Checkspasswordfile. � • •

kcy:stroke. kbhlt: Checkstheconsolefwa • •
to berea<!. rdchk: Checkstoseeiftherelsdata

cheekmm� mmcheck: ChecksusageofMMmacrt>&.
.tlle. sum: Cak:ulates checksum and counts blocks in a

chgrp: Changes group]]). • •
times: Gets: process and child process times. • • • • •

terminate. wait: Waits for a child process to stop or
chmod: Changesmodeofafile.

penuissionsof a file or/ chmod: Changes the ac:cess
chown: Changes owner ID.

· group of a file. chown: Changes the owner and
for command. chroot: Changes root directory

directory. chroot: Chariges the root
file. chs:ize:Changesthesizeofa •

tolower, toupper, toascii: Classitiesorconverts/ /isascii,
directory, uuclean: Clean-up the uucp spool

clear: Clears a terminal screen.
stream status. ferror, feof .. Clearerr,fileno:Determines

clear; Clearsa tenninalscreen.
clrl: Clears lnode. • • • • • •

a shellcommandintcrpreterwith C-likesyntax. csh:Invokes
alarm� Sets a procesE alarm clock. • • • • •

sys1emreal-1im.e(timeofday) clock. clock: The
clockrate: Changes clock mte. • • • •

clock: Reports CPU timeusod.
system real-time (time of day) clock. set clock: Setstbe

(timeofday)clock. clock: The systerareal-tim,e •
clockrate: Cha.ngesclockrate.

operations. closedir. Performs directory •
close: Closes a file descriptor.

fclose, filush: Closes or flushes ameam. • •
shuts down the/ haltsys, reboot: Closes out the file systems: and

fclose, fcloseall: aosesstreams. • • • • • •

I-6

chi: Clears inode. • • • • •
size. cmchk: Reports hard disk block

configuration data base. cmos� Displays and sets the
cmp: Compares two files.

tr(C)
ultoa(DOS)
we(C)
strset(DOS)
chanrutp(C'I)
chdir(S)
fstab(F)
cw(CT)
eqn(CT)
checklist(F)
checkmm(cr)
waitsem(S)
fsck{C)
llni(CP)
isatty(DOS)
grpcheck(C)
dlcUon(C'I)
pwcheck(C)
kbh!t(DOS)
rdchk(S)
checkmm(CT)
sum(C)
chgrp(C)
times(S)
wai!(S)
chmod(S)
chmod(C)
chown(C)
chown(S)
chroot(C)
chroot(S)
chsize(S)
ctype(S)
uuclean(C)
clear(C)
ferror(S)
clear(C)
clrl(C)
csh(C)
slsm!(S)
clock(M)
clocktate(HW)
clock(S)
setclock(M)
clock(M)
clockrate(HW)
directory(S)
close(S)
fclose(S)
haltsys(C)
fclose(DOS)
clrl(C)
cmchk(C)
cmos(HW)
cmp(C)

col: Filters reverse linefeeds.
screen: tty[Ol-n], co1or, monochrome, ega,. •

setoolor: Set screen co1or. � • � • � � • • • •
Jc: Lists directorycontentsin columns. • � • • • • • •

comb: Combines sees deltas.
comb: CombinesseeSdeltas. • • •

common to two sorted files. comm: Selects or rejects lines
nice: Runs a command at a different priority.

Changes rootdirectoryfor command. chroot: � • • • • •
segread: command description.

env: Sets environment for command execution. • • • • •
quits. nohup: Runs: a command immune to hangupsand

rsh: Invokesarestricted shell (command interpreter). • • • •
sh; Invokes the shell command interpreter.

sh V: Invokes the shell command interpreter.
syntax. csh: Invokes a shell commandinterpreterwith C-like

uux: Executes command on remoteXBNIX.
getopt: Parses command options. • � �

system! Executesasheli command. • �
time: Times a command. • � • • .. •

at, batch: Executes: commands atalatertime. ,
cron: Executes commands at specified times.

micnet:TheMicnet default commands file.
File system mount and check commands. fstab:

help: Asks for help about sees commands. • • •
intro:IntroducesXENIX commands. • • �

XENIXDevelopmentSystem commands. intro: Introduces
Introduces text processing commands, intro: • • • • •
system. remote: Executes commands on aremoteXENIX

xargs: Constmctsand executes commands. • • .. • • • • •
cdc: Changes the delta commentary of an sees delta.

comm: Selectsorrejectslines common to two sorted files.
/the status ofinter-process communication facilities. •
ftok: Standard interprocess communication package.

dircmp: Compares directories.
sdift Compares files side-by-side.

di!J. bdiff: Compares files too large for
diskcp1 diskcmp; Copies or compares floppy disks.

difB: Compares threefiJes. � � ,.
cmp: Compares two files. � * _. •
diff: Compares two text files. • •

ftle. sccsdiff: Compares two versions of an sees
regexp:Regularexpression compileandmatchroulines:,

termi.nfo: F{lmlat of compiled terrninfo file.
cc:InvokestheC compiler. • . • • • • • •

tic: Terminfo compiler. • • • • • • • •
yacc: Invokes a compiler-compiler.

expressions. reg ex, regcmp: Compiles and executes regular
regcmp: Compiles regular expressions.

erf, erfc: Error function and complementaryerrorfunction.
processes. wait: Awaits comp1etionofbackground • •

pack� peat, unpack: Compresses and expands files.
cat: Concatenates and displays files.

conditions. test: Tests • • •
system. conlig: Configures aXENlX • •

Permuted Index

col(Cf)
screen(HW)
setcolor(C)
lc(C)
comb(CP)
comb(Cr)
comm(C)
nice(C)
cbroot(C)
segread(DOS)
env(C)
nohup(C)
rsh(C)
sh(C)
shV(C)
csb(C)
uux(C)
getopt(C)
system(&)
time(CP)
at(C)
cron(C)
micnet(M)
{stab(F)
help(CP)
lntro(C)
Intro(CP)
Intro(CT)
remote(C)
l<lll'J!'(C)
cdc(CP)
comm(C)
ip<s(C)
stdipc(S)
dircmp(C)
sdiil'(C)
bdiff(C)
di&kcp(C)
diJ!3(C)
cmp(C)
diff(C)
sccsdilf(Cr)
rege:<p(S)
terminfo(F)
cc(CP)
tic(C)
yacc(CP)
regex(S)
regcmp(CP)
erf(S)
wait(C)
pack(C)
cat(C)
test(C)
oonJlg(C)

I-7

Permuted Index

cmos: Displays and sets the configuration data base. • .. •
/mapscm.,mapstr,convkey:, Configuremonitorscreen/ • •

mapchari: Configure tty device mapping.
config: ConfiguresaXENIXsystem. •

spoolingsystem. lpadmin: Configuresthelineprinter • •
an out-going terminal line connection. dial: Establishes
Retumsa charactertothe COllsolebuffer. ungetch:

cputs: Puts a string to the console, • • • • • •
console:Syslem consoledevice.

kbhit: Checks the console for a keystroke.
cscanf: Converts and formats console input. • • • •

messages: Description of system console messages.
putch: Writes a character to the console. • .. • • • •

console: System console device.
cw. cheekcw, cwcheck:Prepares constant-width texrfortroff.

mkfs: Constructs a file system. • •
commands. xargs; Constroctsandexecutes -. �

nroffltroff. tbi, andeqn constructs. deroff: Removes
definitionsforeqn. eqnchar: Contaiusspecialcharacter

lc! Lists directory contents in columns.
ls: Gives information about contents of directories.

l: Lists information about contents of directory. •
Splitsfilesaccordingto context. cs.plit: • • • •

UUCP control files. uuinstall: Administers
inittioir: Process control initialization.

msgctl: Provides message control operations. • • • •
n.admin: administrative control. • • • • • • • • •

uucp status inquiry and job control. uustat: • • • .. •
ioctl: Controls character devices.
fcntl: Controls open files. • • � •

semctl: Controls semaphore operations.
operations. sbmctl: Controlssharedmemory

Translates characters. conv 7 toupper� to lower, toascii:
tenn: Conventionalnames. • • • • .

fcvt, gcvt: Performs output conversions. ecvt, • • • � • •
and human-readable/ deco, e:nco: Convert between imPRESS fonnat

fonnat. catlmp: ConvertC/AITfilestoimPRESS
format. dvilinp: ConvertDVIfilestoimPRESS

intoterminfoJ capinfo= converttermcapdescriptions
double-precision/ strtod, atof: Convertsa strlngtoa

I-8

dd: Convertsandcopiesafile. • •
input. cscanf: Convertsandfonnatsconsole

scanf, fscanf, sscanf: Converts and formats inpUt. •
libraries. ranlib: Convertsarchivestorandom •

atof1 atoi, atol: ConvertsASCIIto nwnbers. "
andlongl l3tol, ltol3: Convertsbet:ween3-bytelntegers

and base 64 ASCD. &6411 164a: Converts between long integer •
toupper, toascll: Classilies or converts characters. /to lower, ..

/gmtime1 asctime, tzset: Converts date and time to ASCII.
characters. ltoa: Convertslongintegersto

uppercase. strupr� Converts lowercase characters to
ultoa: Converts numbers to characters.

itoa: Converts numbers to integers.
standard FORTRAN. ratfQr: ConvertsRationalFORTRA�into

strtol. atol7 atoi: Converts string to integer. � • • •

cmos(ll:W)
mapkey(M)
mapcba:a(M)
conllg(C)
Ipadmin(C)
dit!l(S)
ungetcb(DOS)
cputs(DOS)
console(M)
kbbit(DOS)
cscanf(DOS)
messages(M)
putch(DOS)
coosole(M}
ew(CT)
mk:fs(C)
xargs(C)
deroff(CT)
eqnchar(CT)
lc(C)
Is{ C)
I(C)
csplit(C)
uuiwmill(C)
init{M)
msgctl(S)
uadmin(S)
uustat(C)
ioctl(S)
.t'cntl(S)
semctl(S)
shmcti(S)
oonv(S)
tenn(CT)
ecvt(S)
deco(CT)
catimp(CT)
dviimp(CT)
caplnfo(C)
strtod(S)
dd(C)
cscanf(DOS)
scanf\S)
ronlib(CP)
atof(S)
13tol(S)
a641(S)
ctype(S)
ctime(S)
ltoa(DOS)
strupr(DOS)
ultoa(DOS)
ltoa(DOS)
ratfor(CP)
strtol(S)

/

(

fonnat. iprint: ConvertstextfilestoDVI
units: Converts units. • • .. • •

lowercase. strlwr: Convertsuppercasecharactersio
screen/ map key, mapscm�mapstr. oonvkey; Configure monitor •

dd: Converts and copies a file. •
address. movedata: Copies bytes from a specific

cpio: Copies file archives in and out.
systems. rep: CopiesfilesacrossXENIX • •

cp: Copiesfi.Ies. • • • • • • • •
copy: Copiesgroups oftlles. � • • •

disk.cp, diskcrnp: Copies o:r compares floppy disks.
copy:Copiesgroupsoftiles, •

PublicXENIX-to-XENlXfile copy. uuto, uupick: � • • • �
core: Format of core image file.

oore; Format of coreimagefile, • • • �
askrtme: Promptsfol'the correct time of day. • • • • •

explain: CorrectsJanguageusage.
atan2: Performs/ sin, cos, tan. asin, acos, atan,

functions. sinh, cosh, tanh: Performs hyperbolic
sum: Calculates checksum and counts blocks in a file. •

characters. we: Counts lines, words and • •
cp: Copies files. • • • • •

cpio:Format of cpioarchive. � � � • � • •
and out. cpio: Copies file archives in

cpio: Format of cpio archive.
preprocessor. cpp: The C language

cprintf: Formats output.
Flushes block IJO and halts the CPU. shutdn:

clock: Reports CPUtimeused.
console. cputs: Puts a string to the

rewrites an existing one. creat: Create.s a new file or
tile. tmpnam, tempnam: Creates a name fora temporary

lllkdir: Creates anew directory. • •
an existing one. creat: Create$ anew file or rewrites

fork: Creates anew pJ1)Cess.
spawnlJ spawnvp: Createsanewp.roces.�.

ctags: Creates a tags file.
tee: Creates ateeina pipe . ..

tmpfile: Creates a temporary file.
fromC source. mkstr. Creates an error message file

profile. profit: Creates an execution time �
semaphore. creatsem: C..reates an instance of a binary

pipe: Creates an interprocesspipe. •
files. arlrnin: Creates and administers SCCS

/Scans fixed disk for Haws and creates bad track table.
umask: Sets and gets tile creation mask. � � • • • • •

a binary semaphore. creatsem: Creates an instance of
listing. cref:Makes a cross�reference

specified times. cron: Executescommandsat •
intro: Introduction to OOS cross developmentfunctions.
dosld: XENIXtoMS-DOS cross linker. � � �
cx:ref: GeneratesCprogrn.m cross-reference. • • • � � •

cref: Makes a cross-reference listing.
xref: Cross-references C programs,

console input. cscanf: Converts and fonnats

PemiUied Index

iprlnt(C)
units(C)
strlwr(DOS)
mapkey(M)
dd(C)
movedata(DOS)
cpio(C)
rep(C)
cp(C)
copy(C)
diskcp(C)
copy(C)
uuto(C)
core(F)
core(F)
asklime(C)
explain(CT)
trig(S)
sinh(S)
sum(C)
we(C)
cp(C)
cpio(F)
cpio(C)
cpio(F)
cpp(CP)
cprlntf(DOS)
shutdo(S)
clock(S)
cputs(DOS)
creat(S)
tmpruun(S)
mkdir(DOS)
creat(S)
fork(S)
spawn(DOS)
ctags(CP)
tee(C)
tmpfile(S)
mkstr(CP)
profii(S)
creatsem(S)
pipe(S)
admin(CP)
badtrk(M)
umask(S)
creatsern{S)
cref(CP)
cron(C)
intro(DOS)
dosld(CP)
cxref(CP)
cref(CP)
xref(CP)
cscanf(DOS)

I-9

Pennutedlndex

interpreterwith C-like syntax. csh: Invokes a shell command
to context. csplit: Splits files according

ctags: Creates a tags file. • • �
fora terminal. ctermid: Generatesafil_ename

asctime, tzset: Converts date/ ctime, localtime, gmtime, • •
islower, isdigit, isx:digit,/ ctype, isalpha, isupper,

cu: Calls another XENIX system.
pointer. tell: Gets the current position of the file

activity. sact: Prints current sees file editing
the slot in the utmp file o�the current user. ttyslot: Fmds
getcwd: Getthepatbnameof currentworkingdirectory.

uname: Prints the name of the current XENIXsystem. •
uname: Gets name of currentXENIXsystem. •

cursor functions. curses: Perlorm.s screen and
curses: Performs screen and cursor functions. • • • • •
spline: Iriterpolates smooth curve. • • • • • • • • •

the user. cuserid: Gets the login name of
each line of a file. cut: Cuts out selected fields of
line of a file. cut: Cuts out selected fields of each

constant-width text for tro:ff. cw, checkcw, cwcheck: Prepares
text for troff. cw, checkcw, cwcheck: Prepares constant-width

cross-reference. ex ref: Generates C program
daem.on.mn: Micnet mailer daemon. • • • • • • • • • • •

daemon.mn: Micnet mailer daemon.
sdwaitv: Synchronizes shared data access. sdgetv,

and sets the configuration data base. cmos: Displays
term cap: Terminal capability data base. • • • • •
tenninfo: terminal capability data base. • • • • • • •

brkctl: Allocates data in a far segment.
/sgetl: Accesses long integer data in a machine-independent.

plock:Lock process, text, or data in memory.
prof: Displays profile data. • • • • • • • • • •

execseg: makes a data region executable.
call. stat: Data returned by stat system

Synchronizes access to a shared data segment. sdenter, sci-leave:
Attachesand detaches ashared data segment. sdget, sdfree:

sbrk, brk: Changes datasegmentspaceallocation.
rdchk: Checks to see if there is data to be read. • • • • • •

types: Primitive system data types. • • • • • • • •
firstkey, nextkey: Perlonns database functions. /delete,

terminfo: terminal description database. • • • • • •
tput: Queries the terminfo database. • • • • • •

/gmtime, asctime, tzset: Converts date and time to ASCII.
date: Prints and sets the date. • • • • • • • •

date: Prints and sets the date.
time, ftime: Gets time and date. • • • • • • • •

the access and modification dates of files. /Changes
sddate: Prints and sets backup dates. • • • • • •

Promptsforthecorrecttime of day. asktime:

!-10

The system real-time (time of day) clock. clock:
the systemreal-time{timeof day) clock. setclock: Sets
firstkey, nextkey: Perlorms/ dbminit, fetch, store, delete,

precision calculator. de: Invokes an arbitrary • •
dd: Converts and copies a file.

devices. assign, deassign: Assigns and deassigns

csh(C)
csplit(C)
ctags(CP)
ctermid(S)
ctime(S)
ctype(S)
cu(C)
tell(DOS)
sact(CP)
ttyslot(S)
getcwd(S)
uname(C)
uname(S)
curses{S)
curses(S)
spline(CP)
cuserid{S)
cut(CT)
cut(CT)
cw(CT)
cw(CT)
cxref(CP)
daemon.mn(M)
daemon.mn(M)
sdgetv(S)
cmos(HW)
tenncap(M)
tenninfo(M)
brkctl(S)
sputl(S)
plock(S)
prof(CP)
execseg(S)
stat(F)
sdenter(S)
sdget(S)
sbrk(S)
rdchk(S)
types(F)
dbm(S)
terminfo(S)
tput(C)
ctime(S)
date(C)
date(C)
time(S)
senime(C)
sddate(C)
asktime(C)
clock(M)
setclock{M)
dbm(S)
de(C)
dd(C)
assign(C)

assign1 deassign; Assigns and deassigns devices,
adb:Invokes ageneral-purpose debugger, • • � �

sdb:lnvokes symbolic debugger. • • + •

imPRESS format and/ deco, enco: Convert between
micnet: The:Mlcnet default commands file.

information directory, default: Default program
detopen, defread:Reads defa11I1entries . • • • � •

directory. default: Defaultprograminfo�ation
Contains special character definitionsforcqn, cqnchar:

entries. defopen, defread� Reads default
defopen, defread: Reads default entries.

Performs/ dbminit, fetch, store, delete, ftrstkey, nextkey:
rmdir: Deletesadirectory. .. • •

pathname. dimame: Delivers directory part of
file. tail: Delivers the last part of a �

the delta oommentary of an SCCS delta. cdc: Changes
delta: Makes a delta (cha.nge) to an SCCS file.

delta. cdc; ehangesthe deltacomrnentaryofanSCCS
rmdel: Removes a delta from an sees file. • • •

an SeCS file. delta: Makes a delta (change) to
comb: Combines SCCS deltas. • • • • • • • � •

terminal. mesg: Permits or deniesmessagessentto a
tbl, andeqnconstructs. deroff: RemovesnroffJtroff,

terminfo: terminal description database. • • •

Machine: Description of host machine.
messages. messages: Description of system console

segread: command description. • • • • • • • •

descriptions into tenninfo descriptions. I convert tenncap
capinfo: convert termcap descriptions into terminfo/

close; Closesa file descriptor. • • • • • • • •

dup2; Duplicatesan openfiJe descriptor. dup, • • �

sdget, sdfree: Attaches and detaches a shared data segment.
file. access: Determines accessibility of a • �

dtype: Determines disk type. • • • • •

eof: Detenninesend-of-file . • • • •

bypot) cabs: DetenninesEuc!ldean distance.
file: Determines file type.

forCprograms. stackuse: Determines stack requirements
ferror * feof, clear err� fi1eno: Determines stream status. • •

whodo: Delennineswhois doingwbat.
console: System console device. • • � • •

error: Kernel error output device. • • • • • • • ..

/Default backup deviceioformation. • • •

master: Master device i.nlormation table.
lp� lpO) lpl, lp2: Line printer device interfaces • • •

isatty: Checks for a character device. • • • • • •

mapchan: Format of tty device mapping files.
mapchan: Configure tty device mapping.

devnm: Identifies device name.
systty: System maintenance device. • • • •

deassign: Assigns and deassigns devices. assign1
ioctl: Controls cha.rn.cter devices. • • • •

devnm: Identifies device name.
blocks. df: Report number of free disk

dial: Djals a modem,

Permuted Index

assign(C)
arlb(CP)
sdb(CP)
deco(CT)
micnet(M)
default(M)
defopen(S)
default(M)
eqncbar(CT)
defopen(S)
defopen(S)
dbm(S)
nndir(DOS)
dirname(C)
tail(C)
cdc(CP)
delta(CP)
cdc(CP)
nndel(CP)
delta(CP)
comb(CP)
mesg(C)
deroff(CT)
tenninfo(S)
machine(HW)
messages(M)
segread(DOS)
capmfo(C)
eapinfo(C)
close(S)
dup(S)
sdget(S)
access(S)
dtype(C)
eoi(DOS)
hypot(S)
file(C)
stackuse(CP)
ferror(S)
whodo(C)
conso1e(M)
error(M)
archive(F)
master(F)
lp(HW)
isatty(DOS)
mapcban(F)
mapeban(M)
devnm(C)
S}�tty(M}
assign(C)
ioctl(S}
devnm(C)
df(C)
dial(M)

I-11

Permutedlnda.

terminal line connection. dial: Establishes an out-going
dial: Dials i:nnodem. • • • • • •

diction: Cl:tecks bmgQageusage.
diff: CQmpares two text files.
diff3: Colll.paresthreefiles.

diffmk: Marks differences between fi.leJ'I.
between files, diffmk: Marks differences

dir: F(rrllla.t of a directory.
dircmp: Compares directories,

dircmp: Cqmpare.s directories.
infonnation about contents of <lirectorie:s. is: Gives

mv; Moves or renames files and directories.
nn, nndi.r: Removes files or directories.

nndir: Removes directories.
cd:Changesworking directory. •

chdir: Changes the working directory. • ..
access permissions of a rue or directory. chmod: Cliangesthe

cbroot: C'lll'lltges:theroot directory. • • • • • • • • •
lc: Lists directory contents in columns.

Default program information directory. default:
dir: Format of a directory. • • • • • •

unlinle Removes directory entry.
cbroot: Changes root directoryforcommand.

uucico: Scan the spool directoryforwork. • •
the pa.thname of current working: directocy. getcwd: Get

information about contents of directory. I: Lists
mkdir: Makes a directory. • • •

mkdir: Creates a new directory. o o •
mvdir: Moves a directory. o o o

pwd: Prints working directory name.
base name� Removes directory names from pathnames.

closedir. Performs directory operations. • • ..
ordinaryfile. m.k.nod:Makesa directory. oraspecjaJor � •

dimame: Delivers directory part ofpathname.
rename� renames aftle or directory. • o o • • • • •

rmdir:Deletesa directory. � • • • • • � ..
uuclean: Clean-uptheuucp spool directory • • • � • • • � •

ofpatlmame. dimame: Deliversdirectorypart
printers. disable:TumsofftermiQ.alsand

ac:ct: Enables or disables process accounting.
type� modes, speed, and line discipline. /Sets terminal

cmchk: Reports hard disk block size. • •
df:Reportnumberoffree diBkhlocks. • • • ,. • •

dparam:Displays/changeshard diskcharacteristics.
hd: Internal hard disk drive • • • • • • • •

track/ badtrk: Scans fixed disk for flaws and creates bad
£disk: Maintain disk partitions. o • • • • •

dtype: Determines disk type. • • • • • • • •
du: Summarizes disk usage. • • • • • • •

floppy disks. diskcp. diskcmp: Copies or compares
comparesfioppydisks. disk,cp, diskcmp: Copies or

Copiesorcomparesfloppy disks. diskcp, d.iskcmp: •
format: forrnat.lloppy disks • • � • • • • • • •

umount: Dismounts a file structure.
vedit: Invokes a screen-oriented display editor. vi, view. •

I-12

dial(S)
dial(M)
dictlon(Cl")
dill'(C)
dlfi'3(C)
diffmk(Cl")
diffmk(CT)
dir(F)
dircmp(C)
dircmp(C)
Is(C)
mv(C)
nn(C)
nndir(C)
cd(C)
chdir(S)
chmod(C)
chroot(S)
lc(C)
default(M)
dir(F)
unlink(S)
chroot(C)
uueico(C)
getcwd(S)
I(C)
mkdir(C)
mkdir(DOS)
mvdir(C)
pwd(C)
basename(C)
directory(S)
mk.uod(S)
dimame(C)
rename(DOS)
rmdir(DOS)
unclean(C)
dimame(C)
disable(C)
acct(S)
getty(M)
cmehk(C)
df(C)
dparam(C)
bd(HW)
badtrk(M)
fdisk(C)
dtype(C)
du(C)
diskcp(C)
dlskcp(C)
diskcp(C)
funnat(C)
umount(C)
vi(C)

c

configuration data base. cmos: Displays and sets the
cat: C'..oncatenates and displays files.

format. hd: Displays:filesin hexadecim.al
od� Displays files in octal format.

prof: Displaysprofiledata. • • •
executable binaryfiles. hdr: Displays selected parts of

cbanu::terlstlcs. dparam: Display�>/changeshard disk
mail: Sends, reads or disposes of mail. • • • • •

cabs; Detennines Euclidean distance. hypot, • • • • •
lcong48: Generatesunifonnly distributed. srand48, seed48,

divvy -b block_device -c c/
Analyzescharacteristicsofa document. style: • • • • • •

mm macros. mm: Prints documents formatted with the
nunt: Typesets docUinents. • � • • • • � •

whodo: Detennineswhois doingwbat. • • • • • • • •
intro: Introduction to DOS cross development functions.

dosexterr: Gets DOS error messages.
dosls, dosnn, dosrmdir; Access DOS files. • • •

bdos: Invokes a DOS system call. • •
intdos: Invokesa DOSsystemcalL • •

intdosx: lnvokes a DOSsystemcall . • �
messages. dosexterr: Gets DOS error

linker, dos1d: XEl\""0{ to MS-DOS cross
DOS :files. dosls, domn, dosrmd1r: Access

files. dosls, dosrm,dosrmdir: AccessDOS •
dosls� dosnn, dosnndir: Access DOS files. � �

/atof: Converts a string to a double-precision number. • • •
disk characteristics. dparam: Displays/changes hard

hd: Internal hard disk drive. • • • • • • • • • •
utility. sysadmsh: Menu driven system administration

sx.t: Pseudo-device driver. • .. • • • • .. • •
tenn: Terminal driving tables fornroff.

dtype: Determines dlsk type.
du: Summarizes disk usage.

format. dump: Incremental dump tape
system backup. dump:Petfonns incremental file

backup : Incremental dump tape fonnat.
dump: Incremental dump tape fonnat. • � • * •

fllesonabackuparchive. dumpdir:Printsthenamesof •
file descriptor. dup. dup2: DUplicates an open

descriptor. dup, dup2: DupJicatesanopen tile •
descriptor. dup1 dup2: Duplicates an open file

dvllmp: Convert DVIfiles to imPRESS format.
iprint: Convertstextfiles to DVIformat. • .. • • • • •

imPRESSfonnat. dvilmp: ConvertDVIfilesto
echo: Echoes arguments.

getche: Gets and echoes a character. • • •
echo: Echoes arguments. • • •

output conversions. ecvt, fcvt, gcvt: Performs
ed: Invokes the text editor.

program. end, etext, edata: Last locations in
sact: Prints current sees file editing activity.

ed: Invokes the text editor.
ex : Invokes a text editor.

ld:Invokesthelink editor.

Permuted f11dex

cmos(liW)
cat(C)
hd(C)
od(C)
prof(CP)
hdr(CP)
dparam(C)
mail(C)
hypot(S)
drand48(S)
divvy(C)
style(CI)
mm(CI)
mmt(CT)
whodo(C)
intro(DOS)
dosexter(DOS)
dos(C)
bdos(DOS)
intdos(DOS)
intdosx(DOS)
dosex�<><{DOS)
dosld(CP)
dos(C)
dos(C)
dos(C)
strtod(S)
dparam(C)
bd(HW)
sysadmsh(C)
sxt(M)
term(F)
dtype(C)
du(C)
dump (F)
dump(C)
backup(F)
dump(F)
dumpdir(C)
dup(S)
dup(S)
dup(S)
dvilmp(CT)
iprint(C)
dviimp(cr)
echo(C)
getche(DOS)
echo(C)
ecvt(S)
ed(C)
end(S)
sact(CP)
ed(C)
ex(C)
ld(CP)

I-13

Permuted Index

ld: In:vokes thelittk editor. • • ·• • • �
Fonnat of ass:emblenmd link editor output. a.out:

the stream editor. sed:Invokes •
a screen-oriented display editor. /view; vedit:Iuvokes

effective user, relllgroup. and effective group IDs. /real user,
/getgid, getegid: Gets real user, effective user, real group, andJ

color�monochrome, ega,. /tty[Ol-n], . • • • •
for a pattern. grep, egrep, fgrep: Searches a file

input. soellm: Eliminates .so'sfromnroff •
line printers. enable: Turns on terminals and

a�counting. acct: Enablesordisablesprooess � •
fonuatandhoman�readable/ deco, enco: Convert between imPRESS

makekey: Generates an enCJ:)ption key. • • • • • •
locations in program. end, etext. edata: Last

/getsrgid, getgmam, setg;rent, endgrent: Get group rue entry.
oof: Determines end-of -file. • • • • • • • •

/getpwuid, getpwnam, setpwent, endpwent; Gets password file/
utmp file entry. endutent, utmpname: Accesses

defopen, defread: Readsdefa:ult entries. • • • • .. •
:xllst, fxlist: Gets name list entries from files. • .. • • •

lllist:Gets entriesfromnamelist.
wtmp:Formatsofutmpandwtmp entries. utmp, • • • • • �

endgrent: Get group file entry. /getgmam, setgrent,
endpwent: Gets password lile en!ty. /getpwnarn, setpwent,

utmpname: Accesses utmp :file entry. endutent, • • � •
putpwent: Writes a password file entry. • • • • • • • • • •

unlink: Removes directory entry. • • • • .. • • • • •
command execution. env: Sets environment for •

environ: The user environment.
proftle: Sets up an environment at login time. •
environ: The user environment. • • • • • •

execution. env: Sets environmentforcommand
getenv:Getsvaluefor environmentname . • • • •

putenv: Changes or adds value to environment. • • • .. • •
TZ: Ttme zone en\ironmentvarlable. • • •

eof:Determinesend-of-file.
Removesnroffltro:ff, tbl, and eqnconstructs:. deroff.:

chru:aorerdefinitlonsfm eqn. eqnchar: Contains special
Formatsmathematical text for/ eqn, neqn, cbeckeq, eqncbeck:

charaeterdefinitionsforeqn. eqnchar:Containsspecial • • •
text for/ eqn,neqn. checkeq, eqncheck: Formats mathematical

complementaryerrorfunction. erf�erfc:Errorfunctionand • • •
complementaryet'T()r/ erf, erfc:Ertodunctionand- • • • • •

perror, sys_errlist� sys_ne:rr, errno: Sends system error/ • . . •
error .function. erf, erfc: Error function and complementary

Error function and complementary error function. erf, erlc: •
device. error: Kem�l error output �

source. m.kstr: Creates an error message file from C
dosexterr: Gets DOS error messages. • • • • •

sys.....netT, enno: Sends system error messages. /sys_errlist,
services,llbra:ryroutinesand error numbers. /system � •

error:Kemel enoroutputdevice • • • • •
matherr: Erro.r-handlingfunctio.o.

bash check: Finds spelling errors. lhashma.ke, spellin,
terminallineconnectlon. dial: Establishesanout-going

I-14

ld(M)
a.out(F)
sed(C)
vi(C)
getuid(S)
getuid(S)
screen(HW)
grep(C)
soelim(Cf)
enable(C)
acct(S)
deco(CI')
makekey(M)
end(S)
getgrent(S)
eof(DOS)
getpwent(S)
getut(S)
defopen(S)
xllst(S)
nlist(S)
utmp(M)
getgrent(S)
getpwent(S)
getut(S)
putpwent(S)
unlink(S)
env(C)
environ(M)
profile(M)
environ(M)
env(C)
getenv(S)
putenv(S)
12(M)
cof(DOS)
derolf(CI')
eqnchar(CI')
eqn(CI')
eqncbar(CI')
eqn(CI')
erf(S)
erf(S)
pcrror(S)
erf(S)
erf(S)
error(M)
mkstr(CP)
dosexter(DOS)
perror(S)
Intro(S)
error(M)
matherr(S)
spell(Cf)
dlai(S)

setmnt: Establishes /etc/mnttab table.
setmnt: Establishes /etc/mnttab table.

program. end, etext, edata:Lastlocationsin
hypot, cabs: Determines Euclidean distance. � � •

expression. expr: Evaluatesarguments a s an ..
ex:Invokesa text editor. 4 4

execlp, execvp: :Executes a/ ex.ecl, execv, execle, execve,
Executes a file. execl, execv� ex:ecle� execve, ex:eclp, execvp:
execl} execv, execle, execve� execlp, execvp: Executes a rue.

executable, ex:ecseg: ma.lcesa dataregion ..
fixhdr: Changes executable binary file headers.

hdr: Displays selected pans of executable binary files.
execseg: makes a data region executable. • • • • • • •

execle, execve, execlp, execvp: Executes a file. ex eel, execv �
system: Executesa shellcommand.

int86: Executes an interrupt, • • •

int86x: Executes an interrupt. • • •

XENIX. uux: Executes command on remote
time. at, batch: Executescommandsatalater

times. cron: Executes commands at specified
XENIXsystem. remote: Executes commands on a remote

xargs: Constructs and executes commands.
regex, reg!':mp: Compiles and executes regular expressions.

Setsenvironmentforcommand execution. env: • • • • •
nap� Suspends execution for a short intervaJ.

sleep: Suspends execution for an interval .
sleep: Suspends execution for an interval,

monitor: Prepares execution profile.
profil: Creates an execution time profile.

execvp: F..xecutes a file. execJ, execv, execle, execvel ex:eclp,
a :file. execl, execv, exede, execve, e.xeclp; e.x.ecvp: Executes

ex.ecv � execle, execve. ex:eclp, execvp: :Executes a file. eJC.ecl,
link: LinksanewfUenarneto an existing file. • • • • • • •

a new file or rewrites an existing one. creat: Creates
process. exit, _exit� Tenninates a � •

exit, _exit: Terminates a process.
process. exit: Terminates the calling

false: Retumswithanonzero exit value. • � • � • • •
true:RetuUlliwithazero exltvalue. • � • • • • •

Performs exponential,/ exp. Jog. pow, sqrt, loglO:
peat, unpack: Compresses and expands files. pack,

usage. explain: Corrects language
number into a mantissa and an exponent. /Splits floating-point

/log� powt sqrt, loglD: Performs exponential1logarithm, power,/
expression. expr: Evaluates arguments as an

routines. rege.x.p: Regular expression compile and match
expr: Evaluates arguments as nn expression. 4 • • • • • •

regcmp: Compiles regular expressions. • • � • • • •

Compiles and executes regular expressions. regex, regcmp:
programs. xstr: Extracts strings from C

absolute value, fioori floor, fabs, ceil, fmod: Petfonns •

of inter-process communication facilities. /Reports the siatus
factor: Factoranumber. � • • � •

factor: Fac.tora number . • �
faliases: Micnet a.liasingfiles,

Permuted Index

setmnt(C)
setmnt(C)
end(S)
hypot(S)
expr(C)
ex(C)
exec(S)
exec(S)
exec(S)
'llUl<&eg(S)
fixhdr(C)
hdr{CP)
execseg(S)
exec(S)
system(S)
int86(DOS)
int86x(DOS)
uux(C)
at(C)
cron(C)
remote(C)
x>rrgs(C)
regex(S)
env(C)
nap(S)
sleep(C)
sleep(S)
monitor(S)
pro6J(S)
exec(S)
exec(S)
exec(S)
link(S)
creat(S)
exit(S)
exlt(S)
exit(DOS)
false(C)
true(C)
exp(S)
pack(C)
explaln(CT)
frexp(S)
exp(S)
expr(C)
regexp(S)
expr(C)
regcmp(CP)
regex(S)
xstr(CP)
fioor{S)
ipcs(C)
factor(C)
factor(C)
aliases(M)

1-15

Permuted Index

exit value. false: Retumswitb a nonzero
abort: Generates an lOT fault. • • • • • • • •

streams. fclo.se,fcloseall: O.oses ..
flushes a stream. fclose, fflush: Closes or •

fclose, fcloseall: Closes streams.
fcutl: Controls open files.

conversions. ecvt, fcvt, gcvt: Performs output
fdisk: Maintain disk partitions.

fopen� freopen, fdopen: Opens a stream.
/to:tna.ehine related miscellaneous features and files. • • •

Introduction to miscellaneous features and files. intro:
Determines stream/ ferror� feoft clearerr, fi.leno;

Determines stream status. ferror. feof, clearett, fileno:
nextkey: Performs/ dbminitt fetch, store, delete, :first key,

stream. fclose, ffiush: Ooses orftushes a
character from a stream. fgetc, fgetchar: Gets a • • •

word from a! getc,getchar1 fgetc, getw: Getscharacter or
a stream. fgetc £ fgetchar: Gets a character ftOq.t

stream. gets, fgets:Oetsastringfro.ttUt
pattern. grep, egrep, fgr�p: Searchesafilefora

Comparesfilestoolargefor diff. bdiff:
cut: Cuts out selected fields of each line of a' file.

of file systems processed by jsck. checklist: List • • •
ungctty: Suspends/restarts a getty process. • • • • •

times. utime: Sets file access and modification
Determinesacces&J:bilityofa file. access: • • • • •

Formatofper-processaccowtting file. aect: • • • • • •
cpio: Copies file archives in and out.

forandprocessesapatternina IDe. awk: Searches • -
troffwidthfilesandcatab file. cbarmap:Oen.e:nlte

chmod; Changes mode of a file. • • • • •
Changes the owner and group of a file. chown: •

chsize: Changes the size of a file. • .. � • •
uupick:Puhlic: XENIX-to-XENIX: file copy. uu.to�

core: Format of core image file. • • • • •
umask: Sets and gets IDe creation mask.
ctags� Createsatags file . • • • • • • •

fields of each fine of a 6Je. cut: Cuts out selected
dd: Converts andcopiesa file • • • • • • •

a delta (change) toan SCCS tile. delta:Makes • • • •
close: aoses a tile descriptor. • • • • •

dup, dup2: Duplicates an open file descriptor. • • • • •

l-16

file: Determines file type,
sact: Prints current sees file editing activity. .. • •

setgrent, endgrent: Get group file entry. /getgrgid, getgmam,
endpwent: Gets password file entry. /getpwnam, setpwent�

utmpname: Accesses utmp file entry. endutent,
putpwent:Writesapassword fileentry. • � • • • • • •

execlp, execvp: Executes a file, /execv,execle,execve,
.filelengtb: Oetsthe length ofa file � • • •
grep, egrep, fgrep: Sear<:hesa file for a pattern. .. • • •

open: Opens filefotreadingorwrlting.
writing. sopen: Opens a fileforsharedreadingand

ar: Archive file format.
intro: Introduction to file formats. • • • • • •

false(C)
abort(S)
fclose(DOS)
fclose(S)
fclose(DOS)
fcntl(S)
ecvt(S)
fdisk(C)
fopen(S)
Intro(HW)
Intro(M)
ferror(S)
fetror(S)
dbm(S)
fclose(S)
fgetc(DOS)
getc(S)
fgetc{DOS)
gets(S)
grep(C)
bdiil'(C)
cut(CT)
checklist(F)
ungetty(M)
utime(S)
access(S)
acct(F)
cpio(C)
awk(C)
channap(CT)
chmod(S)
chown(S)
chsize(S)
uuto(C)
CO<e(F}
lllllllllk(S)
etags(CP)
cut(CT)
dd(C)
delta(CP)
close(S)
dup(S)
lile(C)
sact(CP)
ge!Jrent(S)
getpwent(S)
getut(S)
pntpwent(S)
exec(S)
fileleng(DOS)
grep(C)
open(S)
sopen(DOS)
ar(F)
lntro(F)

'<-_

(
\

mkstr: Creates an error message file from C source.
group: Format ofthe group file. • • • • • • •

grpcheck: Checks group file. • • • • • • •
Changes executable binary file headers. fixbdr:
Alternative login terminals file. inittab:

spHt: Splits a file into pieces.
a new filename to an existing file. link: Links

ln: Makesalinkto a file . • • • •
mem, kmem: Memory image file. • • • • •

TheMicnetdefaultcommands file. micnet: •
or a special or ordinary fi1e. mknod: Makes a directory,

Changesthefonnatofatext file. newform:
nl: Adds line numbers to a file. • • • • • • • •

null: Thenu11 file. • • • • • • • •
/Finds the slot in the utmp file of the current user.

the access permissions of a file or directory. /Changes
rename: renames a file or directory.

one. creat: Creates a new file or rewrites an existing
pasNd: The password file. • • • • • • • • •

/ftelJ, rewind: Repositions a file pointer in a stream.
lseek: Moves read/write file pointer.

Gets the current position of the file pointer. tell:
prs: Prints an SCCS file.

pwcheck: Checks password file. • • • • • , •
read:Readsfroma file . • • • • • •

locking: Locks or unlocks a file region for reading or/
Removes a delta from an SCCS file. rmdel:

Compares two versions of an SCCS file. sccsdiff:
sccsfile: Format of an SCCS file. • • •

Prints the size of an object file. size:
stat, fstat: Gets file status.

printable strings in an object file. strings: Finds the
mount: Mounts a file structure.

umount: Dismounts a file structure.
checksum and connts blocks in a file. sum: Calcu1ates

backup: Performs incremental file system backup.
dump: Performs incremental file system backup.

files. sysadmin: Performs file system backups and restores
volume. file system: Format of a system

mkfs: Constructs a file system. . • • • • • •
commands. fstab: File system mount and check

mount: Mounts a flle system.
quat: Summarizes file system ownership.

restore, restor: Invokes incremental file system restorer.
ustat: Gets file system statistics.

mnttab: Format of mounted file system table.
umount: Unmounts a file system.

TheMicnet system identification file. systemid:
haltsys, reboot: Closes out the file systems and shuts down the/

fsck: Checks and repairs file systems. • • • • •
fsck. checklist: List of file systems processed by

Delivers the last part of a file. tail:
Format of compiled terminfo file. terminfo:
tmpfile: Creates a temporary file. • • • • •

Creates a nameforatemporary file. tmpnam, tempnam:

Pennuted Index

mkstr(CP)
group(M)
grpcbeck(C)
fixhdr(C)
inittab(F)
split(C)
link(S)
In(C)
mem(M)
micnet(M)
mknod(S)
newform(C)
nl(C)
null(M)
ttyslot(S)
chmod(C)
rename(DOS)
creat(S)
passwd(M)
fseek(S)
lseek(S)
tell(DOS)
prs(CP)
pwcheck(C)
read(S)
locking(S)
rmdel(CP)
sccsdiff{CP)
sccsfile{F)
size(CP)
stat(S)
strings(CP)
mount(C)
umount(C)
sum(C)
backup(C)
dump(C)
sysadmin(C)
filesystem(F)
mkfs(C)
fstab(F)
mount(S)
quot(C)
restore{ C)
ustat(S)
mnttab(F)
umount(S)
systemid(M)
haltsys(C)
fsck(C)
checklist(F)
tail(C)
tenninfo(F)
tmpfile(S)
tmpnam(S)

I-17

Permuted Index

tsort: Sorts a tiletopo1ogicaUy. � .. ,. • •
and modification times of a file. touch: Updates access

ftw:Walksa llletree.
tty>: Login terminals file. • • •

llle: Determines file type.
Undoesa previousgetofao SCCS file, unget:

Reports repeated lines ina file. uniq:
val: Validates an sees file. • • •

write:Writestoa file . • • •
uma.sk: Sets file-creation modemaslt.

file. filelength: Getstheleugthofa
ctennid: Generates a filename fora terminal.

mktemp: Makes a unique filename. • • • • • • •
Unk:Link s anew filenametoanexistingfile.

status. ferror, feof, cle.arerr, fi.leno: Determines stream
csplit: Splits files according to context.

andprintsprocessaccounting files. acctcom: Searches for
:rep: Copies filesacrossXENI:xsystems,

Creates and administers SCCS files. admin: • • • •
faliases; Micnet aliasing files. • • • • .. •

charmap:Generatetro:ffwidth filesandcatahfile.
mv:Movesorrenames filesand directories.

bfs: Scans big files.
cat: Concatenates and displays files. • • • • • •

cmp: Compares two files. • • • • • •
lines common to two sorted files. comm: Selects or rejects

copy: Copies groups of files.
cp: Copies files.

diff3: Compares three files.
diff: Compares two text files.

Marks differences between tiles. diffmk:
dosrm, dos:nndir: AccessDOS files. dosls,

fcntl: Controls open .files.
find: Fmds Jiles.

parts of executable binary tiles. hdr. Displays selected
hd: Displays files in hexadecimal format.
ad; Displays lilesinoctalfonnat . • • �

miscellaneousfeaturesand files. /to:machlnerelated
tomiscellaneousfea1uresand files. intro:Introduction

semaphores and record locking on files. lockf; Provide • � •
Fonnat of tty deviee mapping Illes. mapehan:

mknod: Builds special Illes. • • • • • • • • •
dumpdir: Prints the names of files onabackup.archlve.

iruprlnt:Printstext filesonaniMAGENprinter.
imprint: print text files on an IMAGEN printer.

pr: Prints tilesonthestandardoutput.
queue. ipr, oldipr: Put liles onto theiMAGENprlnter

nn, rmdir: Removes files or directories.
unpack: Compresses and expands files. pack, peat, • • • •

paste: Merges lines of files. • • • • • • • • •
access and modification dates of tiles. settime: Changes the

sdiff: Compares tiles side-by-side.
sort: Sorts and merges files. • • • • • • • • •

file system backups and restores files. sysadmin: Pedonns
tar. Archives files. • • • • • • • • •

I-18

tsort(CP)
teuch(C)
ftw(S)
ttys(M)
file(e)
unget(CP)
un.iq(e)
val(CP)
write(S)
wnask(C)
fileleng(DOS)
etermid(S)
mktemp(S)
Hnk(S)
ferror(S)
clipUt(C)
acctcom(C)
rep(e)
admin(CP)
ali.ues(M)
charmap(CI)
mv(e)
bfs(C)
eat(e)
emp(e)
oomm(e)
copy(C)
cp(C)
diiO(C)
diff(e)
diffmk(CI)
dos(e)
fcnti(S)
find(e)
hd.r(eP)
hd(C)
od(e)
lntro(IIW)
lntro(M)
lockf(S)
mapcllan(F)
mknod(e)
dumpdir(e)
imprint(C)
imprint(CI)
pr(e)
ipr(C)
rm(e)
pack(e)
paste(CT)
settime(e)
sdiff(e)
sort(e)
sysadmin(e)
tar(e)

(

iprint: Converts text files to DVIformat. • • • �
cati.mp: ConvertC/AJT filesto imPRESSfunnat.

dviimp: ConvertDVI files to imPRESS format.
for printing. lpr: Sends files to the lineprinter queue

bdiff: Compares files too largefordiff. • • •

top.next: The Micuettopology files. top, • • • • • • • •

control files. uuinstall: Administers UUCP
wbat: Identifies files. • • • • •

GetsnameJistentriesfrom tiles. xtistJ fxlist: • • •

/Default information for mounting filesystetns. • • • • •

col: Filtersreverselinefeeds.
documents formatted with the mm macros. mm! Prints

find; Finds files. • " • • •

hyphen: Finds hyphenated words.
finger: Finds information about users.
look: Finds lines in a sorted list. •

logname: Findslogin nameofu.ser.
object library. larder. F1nds ordering relation for an

hashmake_. spellin, bash check: fimds spelling errorS. spell,
ttyname, isatty: Finds the name of a terminal.

an object file. strings: Finds the printable strings in
of the current user. ttyslot: Finds the slot in the utmp file

users. finger: Finds information about
dbminit, fetch, store, delete, firstkey. nextkey: Performs/ •

/Prints: formatted output of a vamrgs argument list. • • • •
bad track table. badtrk: Scans fixed disk for flaws and creates

binary file headers. fixhdr: Changes executable
badtrk: Scans fixed disk for flaws and creates bad track/

frexp, ldex:p, modf: Splits floating-pointnwnberinto aJ
/fmod: Performs absolute value, floor, ceiling and remainder/
Performs absolute value, floor,/ floor, fabs, ceil, fmod:

diskcmp: Copiesorcompares ftoppydisks. diskcp� • �
fonnat: format fioppydisks . • • � • • •

cflow: GeneratesC ftowgraph. • � � • • •

buffers. fiushall: F1usbes all output
fclose,fflush: Closes or ftushes a stream.

flush aU: Flushes all output buffers.
CPU. shutdn: Flusbes block i/Oandhaltstbe

floor .I floort fabs, ceil, fmod:Perfom1s absolute value,
stream. fopen .. freopen, fdopen: Opens a

fork: Creates a new process. � •

en co: Convert between imPRESS format and human-readable/ deco1
ar: Archive file forrrtat. • • � •

backup:Inerementaldrunptape format. • • • • • • • • • • • •

ConvertC/A/Tfi.Iesto 1mPRESS format. catimp: • • • � • • � •

format and humanMreadahle format. /Convert between imPRESS
dump;Incrementaldumptape fonnat • • • • • • • • '" •

ConvertDVIfiJes:to imPRESS format. dviimp: • • • • •

format: formatfioppy disks.
S6re1: Intelro86 Rclocatable Format for Object Modules.

format: format floppy disks.
Displaysfi1esinhexadecimal format. hd;

Converts textfilesto DVI format. iprint: • • •

od: Displays fl.1es in octal format. • • • • • •

dir: Fonnat of a directory.

Permuted Index

iprint(C}
catimp(CT)
dviimp(CI')
lpr(C)
bdil!{C)
top(M)
uuinstali(C}
what(C)
xlist(S)
filesys(f)
eol(CT)
mm(C'I)
lind(C)
hyphen(CI')
fingel\C)
look(CI')
logname(S)
lorder(CP)
spell(CT)
ttyname(S)
strings(CP)
ttyslot(S)
finge<(C)
dbm(S)
vprintf(S)
badtrk(M)
fixhdr(C)
badtrk(M)
frexp(S)
tloor(S)
tloor(S)
diskcp(C)
format(C)
ctlow(CP)
tlushall(DOS)
fclose(S)
ftushall(DOS)
shutdn(S)
ftoor(S)
fopen(S)
fork(S)
deco(CT)
er(F)
backup(!')
catimp(CT)
deco(CI')
dump(F)
dviimp(CI')
lormat(C)
86rel(F)
fonnat(C)
hd(C)
iprint(C)
od(C)
dir(F)

I-19

Permuted index

file system: Format of a system volume. iilesystem(F)
newform: Changes the format of a texHi1e. • • • • uewform(C)

inode: Fortnat ofaninode. • • • • inode(F)
sccsfile: FormatofanSCCSfile. � • sccs6le(F)

editoroutput. a.out: Format ofassemblerandlink a.out(F)
file. ten.ninfo: Format of compiled terminfo terminfo(F}

core: Format ofcoreimage:file. core(F)
cpio: Format ofcpioarchive. • • • cpio{F)

table. mnttab� Fonnafofmountedfilesystem mnrtab(F)
file. acct: Format ofper-processaccounting acct(F)

group: Fonnatoftbegruupli!e. • • • group(M)
liles. mapchan: Fonnat ofttydevkemapping mapcban(l")

tar: archive format. • • • • • • • tar{F)
cscanf: Converts and formats console input. cscanf(DOS)

fscan:f, sscanf: Convertu.nd formatdnput. scanf, • sca.nf(S)
in teo: Introduction to file formats. ·• " • • • • Intro(F)

eqn, neqn, checkeq� eqncheck: Formats mathematical text for/ eqn(CI')
neqn: Formatsroatheitiatie·s. neqn(CT)

entries. utmp, wtinp: Fonnatsofutmp andwtmp utmp(,M)
cprintf: Formatsoutput. cprintf(DOS)

printf, fprintf, sprlntf: Fonnatsoutput. • • , • , printf(S)
tro:ff. tbl: Formats tablesfornro.ffor • tbl(CI')

vfpri.ntf, vsprintf: Prints formatted output of a/ vprintf, vpri.ntf(S)
macros. mm;Prlntsdocuments fonnattedwiththemm mm(CT)

nroff: Atext formatter. � • • .. • • • • • nroff(CT)
rat! or: Converts Rational FORTRAN into standard FORTRAN. ratfor(CP)

Rational FORTRAN into standard FORTRAN. ratfor: Converts ratfor(CP)
and segment. fp_off, fpJCg: Return offset fp..seg(DOS)

output. prlntf, fprintf, sprintf: Formats . • . printf(S)
segment. fp_off, fp_seg: Return offset and fp_seg(DOS)

character to a stream. fputc, fputchar: \Vrite a • • • fputc(DOS)
word on a/ putc, putch.ar� fputc,putw:Putsa characteror putc(S)

s-tream. fputc� fputchar: Wrltea charactertoa fputc(DOS)
stream. puts,. fputs: Puts a string on a puts(S)

binary input and output. fread, !v.rite: Performs buffered fread(S)
main memory. malloc, free,realloc� caUoc: Allocates • malloc(S)

fopen� freopen;fd.open: Opensastream. � fopen(S)
floating-point number into a! frexp, ldexp, modf; Splits ., frexp(S)

fonnatsinput. scan£, f;canf,.,canf:Convertsand scanf(S)
syst<ms. fsck:Checksandrepairsllle fsck(C)

Repositions a file pointer ina/ fseek, ftell� rewind: • • • • fseek(S)
checkcommaud•. !stab: F'!le system mount and fstab(F)

stat, fstat: GetsfiJe status. stat(S)
filepointerin a/ fseek.� ftell, rewind: Repositions a fseek(S)

thne� ftime: Getstime anddate. • time(S)
commUJJication package. ftok; Standard interprocess stdipc(S)

ftw: Walks a file tree. ftw(S)
function. erf, eric: Error function and complementary error erf(S)

fUJJction and complementary error function, ed, edc: Error erf(S)
gamma: Performs log gamma function. gamma(S)

setkey: Assigns the function keys. setkey(C)
matherr: Error-handling function. matherr(S)

jn, jQ, yl, yn: Performs Bessel functions. bessel, jO, jl, bessei(S)
PerfOims screen and cursor functions. curses: cu.rses{S)

I-20

nextkey: Performs database functions. I delete� ficstkey, dbm(S)

(

(�

logarithm, power, square root functions. /exponential,
floor, ceiling and remainder functions. /absolute value,
to DOS cross development functions. intra: Introduction

cosh, tanh: Performs hyperbolic functions. sinh, • • • • •
tgoto, tputs: Performs terminal functions. /tgetftag, tgetstr,
atan2: Performs trigonometric functions. /asin, aces, atan,

input and output. fread, !write: Performs buffered binary
from files. xlist, fxlist: Gets name list entries

gamma: Performs log gamma function. • • • • •
function. gamma:Perfonnsloggamma

conversions. ecvt, fcvt, gcvt: Performs output • • •
adb: Invokes a general-purposedebugger.

report. imacct: Generate an IMAGEN accounting
catab file. channap: Generatetroffwidth files and

terminal. ctermid: Generatesafilename for a •
ptx: Generates a permuted index.

random: Generates a random number.
rand, srand: Generates a random number.

makekey: Generates an encryption key.
abort: GeneratesaniOTfault.
cftow: Generates C flow graph. • •

cross-reference. cxref: Generates C program • • •
numbers. ncheck: Generatesnames from inode

analysis. lex: Generates programs for lexical
srand48, seed48, lcong48: Generates uniformly distributed.

Micnet alias hash table generator. aliashash:
character or word from a/ getc, getchar, fgetc, getw: Gets

getch: Gets a character.
character orword from a/ getc, getchar, fgetc, getw: Gets

character. getche: Gets and echoes a
current working directory. getcwd: Get the pathname of

getuid, geteuid, getgid, getegid: Gets real user,/ • •
environment name. getenv: Gets value for • • •

real user, effective/ getuid, geteuid, getgid, getegid: Gets
effective/ getuid, geteuid, getgid, getegid: Gets real user,

setgrent, endgrent: Get group/ getgrent, getgrgid, getgmam, •
endgrent: Get group/ getgrent, getgrgid, getgmam, setgrent, •
Get group/ getgrent, getgrgid, getgmam, setgrent, endgrent:

getlogin: Gets login name. • •
argument vector. getopt: Gets option letter from

getopt: Parses command options.
getpass: Reads a password.

process group, and/ getpid, getpgrp, getppid: Gets process,
process, process group, and/ getpid, getpgrp, getppid: Gets
group, and/ getpid, getpgrp, getppid: Gets process, process

user ID. getpw: Gets password for a given
setpwent, endpwent: Gets/ getpwent, getpwuid, getpwnam,
Gets/ getpwent, getpwuid, getpwnam, setpwent, endpwent:

endpwent: Gets/ getpwent, getpwuid, getpwnam, setpwent,
fgetc, fgetchar: Gets a character from a stream.

getch: Gets a character. • • • • • •
shmget: Gets a shared memory segment.

cgets: Gets a string. • • • • • • • •
gets, fgets: Gets a string from a stream.

input. gets: Getsastringfrom the standard

Permuted Index

exp(S)
floor(S)
intro(DOS)
sinh(S)
termcap(S)
trig(S)
fread(S)
xlist(S)
gamma(S)
gamma(S)
ecvt(S)
adb(CP)
imacct(C)
charmap(CT)
ctermid(S)
ptx(cr)
random(C)
rand(S)
makekey(M)
abort(S)
cftow(CP)
cxref(CP)
ncheck(C)
lex(CP)
drand48(S)
aliashash(M)
getc(S)
getch(DOS)
getc(S)
getche(DOS)
getcwd(S)
getuid(S)
getenv(S)
getuid(S)
getuid(S)
getgrent(S)
getgrent(S)
getgrent(S)
getlogin(S)
getopt(S)
getopt(C)
getpass(S)
getpid(S)
getpid(S)
getpid(S)
getpw(S)
getpwent(S)
getpwent(S)
getpwent(S)
fgetc(DOS)
getch(DOS)
shmget(S)
cgets(DOS)
gets(S)
gets(CP)

I-21

Permuted Index

getche: Gets and echoes a character. •
ulimit: Gets and sets user limits. • • •

getc, getchar, fgetc, getw: Gets characterorwordfroma/
dosexterr: GetsDOSerrormessages . •

nlist: Gets entries from name list.
a stream. gets, fgets: Gets a string from

umask: Sets and gets file creation mask.
stat, fstat: Gets file status . • • • • •

ustat: Gets file system statistics.
standard input. gets: Gets a string from the

getlogin: Gets login name. • •
logname: Getsloginname. • • • •

msgget: Gets message queue.
files. xlist, fxlist: Gets name list entries from
system. uname: Gets name of current XENIX
vector. getopt: Getsoptionletterfrom argument

/getpwnam, setpwent, endpwent: Gets password file entry. • • •
ID. getpw: Getspassword foragivenuser

times. times: Gets process and child process
getpid, getpgrp, getppid: Gets process, process group, and/

real/ /geteuid, getgid, getegid: Gets real user, effective user, •
semget: Gets set of semaphores. • • •

file pointer. tell: Gets the cwrent position of the
file length: Gets the length of a file.

cuserid: Gets the login nameoftheuser.
tty: Gets the terminal's name.

time, ftime: Gets time and date. • • • • •
getenv: Getsvalueforenvironmentname.

and terminal settings used by getty. gettydefs: Speed
modes, speed, and line/ getty: Sets terminal type,

settings used by getty. gettydefs: Speed and terminal
getegid: Gets real user,/ getuid, geteuid, getgid,

from a/ getc, getchar, fgetc, getw: Gets character or word •
of directories. Is: Gives information about contents

date and time/ ctime, localtime, gmtime, asctime, tzset: Converts
longjmp: Pedormsanonlocal "goto". setjmp, • • • • • • •

and checks access to a resource governed by a semaphore. I Awaits
cfiow: GeneratesCfiow graph. • • • • • • • • • •

:file fora pattern. grep, egrep, fgrep: Searches a
/real user, effective user, real group, and effective group IDs.

/getppid: Gets process, process group, and parent process IDs.
newgrp: Logsuserinto anew group. • • • • • • • • • •

copy: Copies groups of files. • • • • • • •
updates, and regenerates groups of programs. /Maintains,

grpcheck: Checks group file.
signals. ssignal, gsignal:lmplementssoftware

shutdn: FlushesblockJJO and halts the CPU. • • • • • •
file systems and shuts down the/ baltsys, reboot: Closes out the
serial sequence packet protocol handler. ips: Imagen

ips, isbs, ipbs: IMAGEN protocol handlers. • • • • •
nobup: Runs a command immune to hangups and quits.

I-22

cmchk: Reports hard disk block size.
dpara.m.: Displays/changes bard disk characteristics.

bd: lntemal barddisk.drive.
bcreate, hdestroy: Manages bash search tables. bsearcb,

getche(DOS)
ulimit(S)
getc(S)
dosexter(DOS)
nlist(S)
gets(S)
wnask(S)
stat(S)
ustat(S)
gets(CP)
getlogin(S)
logname(C)
msgget(S)
xlist(S)
uname(S)
getopt(S)
getpwent(S)
getpw(S)
times(S)
getpid(S)
getuid(S)
semget(S)
tell(DOS)
fileleng(DOS)
cuserid(S)
tty(C)
time(S)
getenv(S)
gettydefs(F)
getty(M)
gettydefs(F)
getuid(S)
getc(S)
Is(C)
ctime(S)
setjmp(S)
waitsem(S)
cflow(CP)
grep(C)
getuid(S)
getpid(S)
newgrp(C)
copy(C)
make(CP)
grpcheck(C)
ssignal(S)
shutdn(S)
haltsys(C)
ips(C)
ips(M)
nohup(C)
cmchk(C)
dparam(C)
hd(HW)
hsearch(S)

alias hash: Micnet alias hash table generator.
spell, ba.shmake, spellin, hashcheck� Finds spel11ngl • �

Fjnds spelling errors. spell, hashmake� spellin, hashcheck:
search tables. hsearch, he reate, hdestroy: Manages hash

hexadecimal format. hd: Disp1aysfi1es in • • • • •

hd: Internal hard disk drive.
tables. hsearch, hcreate, hdestroy: Manages hash search

executable binary files. hdr. Displays selec:ted parts of
Changes executable binary tile headers. fixhdr:

program. asserr: Helpsverifyvalldltyof
hd: Displa}-s files in hexadecimalfonnat.

Machine: Description of host machine,
Manages hash search tables. hsearch, hcreate� hdestroy:

between imPRESS fonnat and human-readable format. /Convert
sinh� cosh1 tanh: Perlonns byperbolicfunctions. • • • • � •

hyphen: Flnds hyphenated words.
hyphen: Finds hyphenated words. • •

Euclidean distance. hypot, cabs: Detennines
chgrp: Changes group ID. • • • • .. • • • •

chown: Changes owner ID. • • .. • • • •

Getspasswordfor agiven U$Cf ID. getpw: • • • • •

andnames. id: Prlntsuser and groupiDs
setpgrp:Setsprocessgroup ID . • . • • • • � • •

mkuser: Addsa login IDtothe system • • • •

systemid: The.Micnet syrtem identification file.
deVnm: Identifies device name.

what: Identiftesfiles, • • � •

id:Ptintsuserandgroup IDsand names.
group1 and parent process IDs. /Gets process, process

reaJ group, and effective group IDs. /real user, effective user,
setgid: Setsus.erandgroup IDs. setuid, • � • • • • • •

accounting report. imacct; Generate an IMAGEN
core; Format of core image file. • • • • • � � • •

mem, kmem: Memory image file. .. • • • .. • .. � •
imacct: Generate an IliAAGEN accoo.ntingreport.

imprint: Prints text files on an IMAGEN printer.
imprint: printtex.tfiles onan DdAGEN printer.

/imagen.spp1 imagen.remote: IMAGE� printer interlace/
itroff:Trofftoan IMAGENprinter.

ipr, oldipr: 1\rt files: onto the IMAGEN printer queue.
ipsl isbs. ipbs: IMAGE� protocol handlers.

protocolhandler. ips: Imagen serial sequence packet
imagen.remote:/ imagen.sbs, imagen.pbs1 imagen.spp,

f:unagen. pbs, imagen.spp, imagen.remote: IMAGEN printer/
imagen.spp, Unagen.remote:/ imag:en.sbs� ima�.pbs,

WAGEN/ imagen.sbs,imagen.pbs) imagen.spp, imagen.remote: •
nohup: Runs a command immune to bangups and quits.

ssignal, gsignal: Implements software signals.
deco, en co: Convert between imPRESS format and/

catimp: Convert C/ Afffiles to imPRESS format.
dvlimp; ConvertDVIfilesto imPRESSfonnat.

IMAGEN printer. imprint: print text files on an
IMAGE� printer. imprint: Prints text files on an

backup: IncrementaJdump tapefonnat.
dwnp: Incremental dumptapefonnat.

Permuted Index

aliashash(M)
spell(CT)
spell(CT)
hsearch(S)
hd(C)
hd(H\\1)
hsearch(S)
hdr{CP)
fixhdr{C)
assert(S)
hd(C)
machine(HW)
hsearch(S)
deco(CI')
sinh(S)
hyphen(CT)
hyphen(CT)
hypot(S)
chgrp(C)
chown(C)
getpw(S)
id(C)
setpgrp(S)
mkuser(C)
systemid(M)
devnm(C)
what(C)
id(C)
getpid(S)
getuid(S)
setuid(S)
imacct(C)
core(F)
mem(M)
imacet(C)
imprint(C)
imprint(CI')
imagen(M)
itrolf(CT)
ipr(C)
ips(M)
ips(C)
imagen(M)
imagen(M)
imagen(M)
imagen(M)
nohup(C)
ssignal(S)
deco(CI')
catimp(CT)
dvtimp(CI')
imprint(CT)
imprint(C)
backup(F)
dump(F)

l-23

Pemw.tedfnder

backup: Performs incremental file system backup.
dump: Per!Ol"lll8 incremental file system backup,

restore, restor: Invokes incrementar'fi1e system/
ptt: Generates a permuted index. • • • • •

/Default backup device information. • • � •
prints lineprinter status information. lpstat:

pstat: Reports system information. • • • •
initialization. init, inir: Process control

initiali:r.ation. init, inir:Processcontrol
init, inir: Process control initialization.
process. popen, pclose: Initiatesi/Otoorfroma

terminals file. inittab: Alternative login
clri: Cle&s :inode, • • • • • • •

in ode: Format of an in ode.
inode: Ponnatofan iuode. •

ncheck: Generates names from in ode numbers.
inp: Returns a byte. • •

fwrlte: Performs buffered binary input and output. fread,
Performs standard bulfered input and output. stdio:

Convertsand formatswnsole input. cscanf: • � ..
Getsa stringfromthe standard input. gets;

ssc;a.nf: Convertsandfurma.ts input. sca:nf, fscanf,
Ellminates .so;sfromnroff input. soelim: • � ..
Pushes character back into input stream. ungetc:

uustat: uucp status inquiry and job control.
script. install: Installation shell

install: Installation shell script.
creatsem: Creates an instance ·of a binary semaphore.

illt86: Executes an interrupt. •
int86x: Executes an interrupt.

call. intdos: Invokes a DOS system
call. intdosx: Invokes aDOS system

abs: Returns an integer absolutevalue.
/164a: Converts between long illtegeraudbase64ASCII.

sputl, sgetl: Aecesseslong integerdataina/ • � • �
theabsolutevalueofalong integer. labs: Retums � �

atol, atoi: Converts string to integer. strtol, • • • • •
flto13: Converts between 3-byte integers and long integers.

ito a: Converts numbers to integers. • • • • • • •
between3-byteintegersand long !ntegers. llto13:Converts

ltoa: Coo:vertslong integers to characters. • •
for Object Modules. 86rel: Intel8086 Relocatable Format

imagen.remote: IMAGEN printer interface scripts. /lmagen.spp,
termio:General terminal interface. • • • • • •

I, tty2[a-h] , ttyZ(A-H]: Interface to serial ports.
tty: Special terminal interface. � • • • • �

lpl, lp2:Ilneprinterdevlce interfaces. lp, lpO,
hd; Internal hard disk drive.

spline: Interpolatessmoothcurve.
a restricted shell (command interpreter). rsh:Invokes

sh:lnvokestheshellcommand interpreter. • � • • • •
shV:Invokestheshellcommand interpreter. • • • • • •

I-24

csh: Invokes a shell command interpreter with C-like syntax.
ipcs: Reports the status of inter-process communication/

package. ftok: Standard interprocesscommunication ..

backup(C)
dump(C)
restore(C)
ptx(CT)
archive(F)
lpstat(C)
pstat(C)
init(M)
init(M)
init(M)
popen(S)
inittab(F)
clri(C)
inode(F)
inode(F) • ncheck:(C)
inp(DOS)
fread(S)
stdio(S)
cscanf(DOS)
gets(CP)
scanf(S)
soelim(CT)
negetc(S)
uustat(C)
install(M)
instali(M)
creatsem(S)
int86(DOS)
intll6x(DOS)
intdos(OOS}
intdosx(DOS)
abs(S) • a64l(S) • sputl(S} • labll{DOS)

• st:rtol(S) • 13to!(S}
itoa(DOS)
13tol(S}
ltoa(DOS)
86rei(F)
ilrulgen(M)
termlo(M)
serW(RW)
tty(M)
lp(RW)
hd(RW)
spline(CP)
rsh(C)
Sh(C)
ShV(C)
csh(C)
!pes(C)
stdipe(S)

pipe: Creates an interprocesspipe,
int86: :Executes an intemtpt. • •

int86x:Executes an intenupt. • •

Suspends execution fora short intetVal. nap;
sleep:Suspendsexecutionforan intetVaL • � �
sleep: Suspends execution for an intetVal. • • •

services, library routines and/ intro; Introduces system
processing commands. intro: Introduces text •

commands. intro: Introduces XENIX
Development System coJI11ll.3nds. intro: Introduces XENIX

development functions. intro: Introduction to DOS cross
formats. intro: Introduction to tHe

reJatedmiscellaneousfeaturesl intro: Introduction to machine
miscellaneous features and/ intro: Introduction to • • "'

library routines and/ intro: Introduces system services,
commands. intro: Introduces text processing �

intro: IntrodueesXENIXcommands.
System commands. intro: IntroducesXENIXDevelopment

development functions. intro: Introduction to DOS cross • • •

intro: Introduction to file formats.
miscellaneous features/ intro! Introduction to machine related

features and files. intro: Introduction to miscellaneoos
be: Invokesacalculator.

yacc: Invokes a compiler-compller.
bdos: Invok:esa DOSsystemcall.

intdos: Invokes a DOS system call.
intdosx: Invokes a DOS system calL

debugger. adb: Jnvokes ageneral-purpose •
m4: Invokesamacro processor.

calendar: Invokes a reminder service.
(command interpreter). rsh: Invokes a restricted shell

red: Invokes a restricted version of.
display/ vi, view, vedit: Invokes a screen-oriented • •

interpreter with C-Jike/ csh: Invokesa shell command
ex: Invokes a text editor.

caJculator. de: Invokes an arbitrary precision
restore, restor: Invokes incremental file system/

sdb: Invokes symbolic debugger.
cc: InvokestheC compller • • -

ld: Invokes the link editor.
ld: Invokesthelink editor.

interpreter. sh: Invokes the shellcommand
interpreter. sh V: Invokes the shell command

sed! Invokes the stream editor. •

ed: Invokes lhetexteditor.
masm: Invokes tbeXENIX.assembler.

shutdn: Rushes block I/0 and halts the CPU.
popen, pclose: Initiates I/0 to or from a process.

devices. iocth Controls character
abort: Generates an IOTfault. • • • • • •

ips, isbs, ipbs: IMAGEN protocol handlers.
semaphore set or shared memory. ipcrm: Removes a message queoe,

inter-process communication! ipcs: Reports the status of •

IMAGEN printer queue. ipr, oldipr. Put files onto the
DVIformat. iprint: Converts text files to

PermtJted huiex

p;pe(S)
int86{DOS)
int86x(DOS)
nap(S)
sleep(C)
sleep(S)
Intro(S)
fu!TO(C'J)
Intro(C)
Intro(CP)
intro(DOS)
Intro(F)
Intro(HW)
Intro(M)
Intro(S)
Intro(C'J)
Intro(C)
Jntro(CP)
intro(DOS)
Intro(F)
Intro(HW)
Intro(M)
be(C)
yacc(CP)
bdos(DOS)
intdos(DOS)
intdosx(DOS)
adb(CP)
m4(CP)
calendar(C)
rsh(C)
red(C)
vi(C)
csh(C)
ex(C)
de(C)
restore(C)
sdb(CP)
cc(CP)
ld(CP)
ld(M)
sb(C)
sbV(C)
sed(C)
ed(C)
masm(CP)
shutdn(S)
popen(S)
iocU(S)
abort(S)
ips(M)
;perm(C)
ipcs(C)
ipr(C)
iprint(C)

I-25

packetprota<;:olhandler. ips: lmagen seriahequence
handlers. ips, isbs, ipbs: IMAGEN protocol

ftSlower t isdigit, isxdigit� isalnum, isspace� ispunct/
isdigit, isxdigit ,I ctype * isalp ha� isupper, isl�,

/isprlnt, isgraph, iscntrl� isascii, tolower� toupper ,/
device. isatty� Checks for a character

terminal. rtyname, isatty:Fmds thenameofa •
handlers. ips, isbs, ipbs: IMAGEN protocol

/ispunct, isprlnt, isgraph, iscntrl, isascii, tolower,/ •
/isalpha, i.supper, islower, isdigit, isxdigit, isalnum,J
/isspace, ispUilct, isprint, isgraph, iscntrl, isascii,/ ..

ctype, isalpba, isuppe:r, islower, isdigit, isxdigit.f
/isalnum, issp.aoo, lspunct, isprint, isgraph, iscntrl,/ •
/isxdigit, isalnum, isspace; ispunct, isprint, isgraph,/

/isdigit, isxdigir, isalnum, 1sspaee�ispunct, isprint,/
isdigit,/ ctype� isalpha, isupper� islower, isdigit; �
/Uupper� islower, isdigit, isxdigit, isalnum, isspace,l

news: Print news items . • • • • • • • • •
integers. itoa: Converts numbers to
printer. itroff:TrofftoaniMAGEN

Bessel functions. bessel, jO, jl, jn, yO, yl, yn: Performs
Bessel functions. bessel, jO, jl, jn, yO, yl, yn: Performs •

functions. bessct,jO�Jl, jn, }'QJyltyn: Performs Bessel
join: Joins two relations.

join� Joins two relations. • � • • •
keystroke. kbhit: Checks the console fora

error: Kernel error output device.
makekey: Generates an encryption key. • • • • • • • • • •

keyboard: The PC keyboard. • • • • • • • •
keyboard: The PC keyboard.

setk.ey; Assigns the function keys. • • • • • , • • •
kbbit: Checks the console for a keystroke. .. • • • • • •

processoragroupof/ kill: Sends a signal to a
kill: Terminates a process.

mem, kmem:Memocyim.age.file.
contents of directory. I: Lists information about

3-byteintegersand long/ l3tol, ltol3: Converts between
integerandbase64/ a641; J64a:Convertsbetweeulong •

of a long integer. labs: Returns the absolute value
cpp: The C language preprocessor.

lint: Check:sC languageusageandsyntax.
diction: (."becks language usage.

explain: Corrects language usage.
shl:Slwll layermanager.
columns. Ic: Lists directory contents in

distributed. srand48, seed48, Icong48: Generates uniformly
ld; Invokes the link editor.
ld: Invokes the link editor.

floating-point number/ frexp, ldexp, modf: Splits • • •
filelengtb: Gets the length of a file. • • • • •
strlen: Returns the length of a string. • • • •

getopt: Gets option letter from argument vector.
banner: Prints large letters. • • • • • • • • •

lexical analysis. lex: Generates programs for
lex: Generates programs for lexic:alanalysis. • • • • •

I-26

ips(C)
lps(M)
etype(S)
etype(S)
etype{S)
isatty(DOS)
ttyname(S)
ips(M)
etype(S)
ctype(S)
etype(S)
etype(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
news(C)
ltoa(DOS)
itrof!(CI')
bessei(S)
bessel(S)
bessel(S)
join(C)
join(C)
kbhit(DOS)
error(M)
maltekey(M)
keyboard(fiW)
keyboard(HW)
setkey(C)
kbhit(DOS)
kill(S)
klll(C)
mem(M)
l(C)
I:ltol(S)
a64l(S)
labs(DOS)
epp(CP)
Unt(CP)
dlction(CI')
explain(CT)
sbl(C)
lc(C)
drand48(S)
ld(CP)
ld(M)
frexp(S)
fileleng(DOS)
strlen(DOS)
getopt(S)
banner(C)
lex(CP)
lex(CP)

(

(�

and update. }search, Ifind: Perfonnslinearsearch
ar: Maintains archives and libraries. • • • • •

Converts archives to random libraries. ran lib:
ordering relation for an object library. larder: Finds

/Introduces system services, library routines and error/
ulimit: Gets and sets user limits. • • • • • • • •

line: Reads one line. • • • • • • . • •
lsearch, lfind: Performs linear search and update.

col: Filters reverse linefeeds. • • . • • • •
cancel: Send/ cancel requests to lineprinter. lp, lpr, • • •

lpr: Sends files to the lineprinter queue for printing.
lpshut, lpmove: Starts/stops the lineprinter request. lpsched, •

Ipadmin: Configures the lineprinter spooling system.
lpstat: prints lineprinter status information.

Adds, reconfigures and maintains lineprinters. lpinit: . . • • •
files. comm: Selects orrejects lines common to two sorted

uniq: Reports repeated lines in a file. • • •
look: Finds lines in a sorted list.

head: Prints the first few lines of a stream. •
paste: Merges lines of files. • • •

we: Counts lines, words and characters.
ld: Invokes the link editor.
ld: Invokes the link editor. • • • • • • •

a.out: Fonnatof assembler and link editor output.
existing file. link: Links a new filename to an
ln: Makes a link toafile . • • • . • •

dosld: XENIX toMS-DOS cross linker. • • • • . • • . •
existing file. link: Links anew filename to an •

and syntax. lint: Checks Clanguage usage
xJist, fx:list: Gets name list entries from files.

look: Fmds lines in a sorted list.
nlist: Gets entries from name list. • . • • • • • •

nm: Prints name list. . • • • • • • •
byfsck. checklist: List of file systems processed

terminals: List of supported terminals.
varargs: variable argument list. . . • • • • • • • • •

of avarargsargument list. /Prints formatted output
cref: Makes a cross-reference listing. • • • • • • • • •

columns. Ic: Listsdirectorycontentsin •
of directory. 1: Lists information about contents

who: Lists who is on the system. •
In: Makes a link to a file. . .

tzset: Converts date and/ ctime, local time, gmtime, asctime,
end, etext, edata: Last locations in program. • • •

memory. lock: Locks a process in primary
memory. plock: Lock process, text, or data in •

record locking on files. lockf: Provide semaphores and
region for reading or writing. locking: Locks or unlocks a file

Provide semaphores and record locking on files. loclcf:
memory. lock: Locks aprocessinprimary •

forreading or/ locking: Locks or unlocks a file region
gamma: Performs log gamma function.

exponential, logarithm,/ ex:p, log, pow, sqrt, loglO: Performs

logarithm,/ exp , log, pow, sqrt, loglO: Performs exponential, •
/loglO: Performs exponential, logarithm, power, square root/

Permuted Index

lsearch(S)
ar(CP)
ranlib(CP)
lorder(CP)
Intro(S)
ulimit(S)
line(C)
lsearch(S)
col(CT)
lp(C)
lpr(C)
lpsched(C)
Ipadmin(C)
lpstat(C)
lpinit(C)
comm(C)
uniq(C)
look(CT)
head(C)
paste(Cf)
we(C)
ld(CP)
ld(M)
a.out(F)
link(S)
In(C)
dosld(CP)
link(S)
lint(CP)
xlist(S)
look(CT)
nlist(S)
nm(CP)
checklist(F)
terminals(M)
varargs(S)
vprintf(S)
cref(CP)
lc(C)
l(C)
who(C)
In(C)
ctime(S)
end(S)
lock(S)
plock(S)
lockf(S)
locking(S)
lockf(S)
lock(S)
locking(S)
gamma(S)
exp(S)
exp(S)
exp(S)

I-27

mkuser:Addsa loginiDtothesy.stem.
getlogin: Gets login name.
logname: Gets login name.

cusedd: Gets the loginuru:neofthepser.
logna:me:Pinds loginnameofuser.

passwd: Changes login password.
terminal: Login terminal

inittab: Alternative login terminals :file.
ttys: Login terminals file.

Sets up an environment at login time. profile:
user. logna.me: Finds login name of

logrtame: Gets login name. • •
newgtp: Logsusecintoanewgroup.

"goto". setjmp, longjmp: Performs a nonlocal
for an object library. ktrder. Finds ordering relation

uppercase. strupr: Converts loweccasecharactersto • �
Con\'ertsuppercase characters to lowercase. strlwr:

device interfaces, lp) lpO, lpl, lp2: IJne printer
requests ro lineprinter. Jp? lpr, cancel: Send/cancel

device interfaces. lP: lpO� lpl,lp2: Line printer
mteda<es. lp, lpO, lpl, lp2: Line printer device

interfaces. lp, JpO, lpl, lp2:Lineprinterdevice � •
lineprinterspoolingsystem. lpadmin:Conliguresthe • •

mainta.i:nsllneprinters. lpinit: Adds, reconfigures and
lineprinter/ lpsched. tpshut, lpmove: Starts/stops the •

requests to Uneprinter. lp, Ipr, cancel: Send/cancel • • •
lineprinterqueueforprinlillg. lpr: Sendsfilestothe

Starts/stops the lineprinter/ lpsched, lpshut, lpmove:
lineprinter request. lpsched, lpshut, lpmove: Starts/stops the

status information. lpstat: prints lineprinter • • •
contents of directories. ls: Gives information about

search and update. lsearch, lfind: Performs linear
pointer. lseek:Movesread/writellle

characters. ltoa: Converts long integers to
integers and longl l3tol} ltol3: Converts betweert3-byte

m4:lnvokesamacroprocessor.
machine. Machine:Descriptionofhost

Machine: Description of host machine, � • • • • • • • �
features/ intro: Introduction to machine related miscellaneous
Aceesseslongintegerdataina machine-independent. /sgetl:

m4:Invo�sa macroprocessor
mmcheck: Checks usage of MM macros. checkmm, .. • • • •

formatted with tbemm nuu:ros. rom: Prints documents
program. tape: Magnetic tape maintenance

Sends, readsordisposesof mall. mall: � � � � ., .. . �
of mail. mail: Sends, reads or disposes

da.emou.mn: Micuet mailer daemon.
free, realloc, calloc: Allocates main memory. malloc,

fdisk: Maintain disk partitions.
libraries. ar: Maintainsarchivesand

lpinit: Adds1 reconfigures and maintains lineprinters.
regenerates groups of/ make: Maintains, updates, and

systty: System maintenance device.
tape: Magnetic tape maintenance program.

key. make key; Generates an encryption

I-28

-r(C)
getlogin(S)
logname(C)
cll$orld(S)
logname(S)
passwd(C)
tcnnlnal(HW)
mittab(F)
ttys(M)
profile(M)
log:name(S)
tog:name(C)
newgrp(C)
setjmp(S)
lordCT(CI')
strupr(OOS)
str!WI(OOS)
lp(HW)
lp(C)
lp(HW)
lp(HW)
lp{HW)
Ipadmin(C)
lp!nlt(C)
lpsched(C)
lp(C)
lpr(C)
lpsched(C)
lpsched(C)
lpstat(C)
ls(C)
lsearch(S)
lseek(S)
ltoa(DOS)
tltol(S)
m4(CP)
machine(HW)
machine(HW)
Intro(HW)
gputl(S)
m4(CP)
checl<mm(CI)
mm(CI)
tape(C)
mail(C)
mail(C)
daemon.nm(M)
malloe(S)
fdisk(C)
ar(CP)
lplnlt(C)
make(CP)
systt)'(M)
tape(C)
mal<ekey(M)

\

(\

cref: Makes a cross-reference listing.
execseg: makes a data region executable.

SCCSfile. delta: Makes a delta (change) to an •

mltdir: Makes a directory. • • • • •

or ordinary me. mknod: Makes a directory. or a special
ln: Makes alinktoafile.

mktemp: Makesauniquefilename.
anotheruser. su: Makes the user a super-user or

Allocate.'l main memory. maJioc, free, realloc, ca1Joc:
shl: SheH layer manager. • � • • • .. • •

tsearch, tfind, tdelete, twalk: Manages binary search trees.
hsearch, hcreate, hdestroy; Manages bash search tables.

/ftoating-pointnumberinto a mantissa and an e:xponent. •

ascii: MapoftheASCUcharacterset.
mapping. rnapchan: Configure tty device

mapping files. mapchan: Format of tty device
convkey: Configure monitor/ mapkey. mapscm. rnapstr 1

mapchan: Format ofttydevice mapping files. • • .. • • •

mapchan: Configure ttydevice mapping,
Configure monitor screen mapping. /mapstr, convkey:

Configure monitor/ mapkey, mapscm,mapstr, convkey:
monitorscreenl mapkey� mapsc:rn, :mapstr, convkey: Configure

diffmk: Marks differences between files.
umask: Sets file-creationmode mask. • • • • � • • • • •

Sets andgetstilecreation mask. umask: • • • • • • • •

assembler. mMm: Invokes the XENIX
master: Master device infonnation table.

infonnationtable. master:Masterdevice • • •

Regularexpressioncompileand match routines. regexp: • •

/neqn, checkeq� eqncheck: Fonnats mathematical text for nroff,/
neqn:Formats mathematics. • • • • • •

function. matherr: Error-handling
mem, kmem: Memory image file.

mem, bnem: Memory image file, • • • • •

queue, semaphore set or shared memory, /Removes a message
lock.: Locks a process in primary memory. • • • • • •

realloc,calloc: Allocates main memory. malloc,free,
shmctl: Controls shared memory operations.

shrnop: Performs shared memory operations.
Lock process, text, or data in memory. plock.:

shmget: C'rers ashared memory segment.
Reports virtual memory statistics. vmstat:

administration/ sysadmsh: Menu driven system
sort: Sortsand mergesftles . • • • � • •

paste: Merges lines of files.
sent to a tenninal. mesg: Permits or denies messages

msgctl: Provides message control operations.
mkstr: Creates an error message file from C source.

msgop: Message operations.
msggct: Gets message queue. . • * • • •

shared memory. ipcnn: Removes a message queue, semaphore set or
console messages. messages: Description of system

dosex:terr: GetsDOSenor messages. • • • • •

Description of system console messages. messages:
errno: Sends system error messages. /sys_nerr,

Permuted Index

cref(CI')
execseg(S)
delta(CP)
mkdir(C)
mknod(S)
ln(C)
mktemp(S)
su(C)
malloe(S)
shl(C)
lsearch(S)
hsellrch(S)
frexp(S)
ascll(M)
mapchan(M)
mapchan(F)
mapkey(M)
mapchan(F)
mapchan(M)
mapkey(M)
mapkey(M)
mapkey(M)
diffmk(CI)
umask(C)
umask(S)
masm(CP)
master(F)
master(F)
regexp(S)
eqn(CI)
neqn(CT)
matherr(S)
mem(M)
mem(M)
ipcnn(C)
lock(S)
malloc(S)
shmctl(S)
shmop(S)
plock(S)
sbmget(S)
vmstat(C)
sysadmsh(C)
sort(C)
paste(CT)
mesg(C)
msgctl(S)
mkstr(CP)
msgop(S)
msgget(S)
ipcrm(C)
messages(M)
dosexter(DOS)
messages(M)
perror(S)

I-29

Pert?'Wtetilndex

mesg: Permits or denies messages sent to a terminal.
telinit� mkinittab: Alternative method oftumingten:ninals on/

generator. aliasbash: Mieneta.lias bub table
fallases; Micnet aliasing .files.

micnet: The M.icnet default commands file.
daemon.mn: Micnetmailerdaemon. • •

tile. s:ystemid: The :Micnet systemidentifi(lation
commands file. micnet: TheMicnet default

top, top.next�'The :rv.ticnettopologyfiles. • • •

/Introduction to machine related miscellaneous features and/
files. iatro: Introduction to miscellaneous features and

mk:dir: Creates a new directory.
mtdlr: Makes a directory. • •

mkfs:Constructsafilesystem.
turning terminals on/ tetinit, mk.inittab: Alternative method of

mknod: Builds special files.
special or ordinary file. mknod: Makes a directory, or-a •

file from C source. mkstr: Creates an error m-essage
mktetnp: Makes a unique filename.

system. mkuser:AddsaloginiDtothe •

mmcheck: Checks mage of :MM nutcros. checkmm,
with the rnm macros. mm: Prints documents for.matted

macros. checkmm; mmcheck: Checksusageof�
mmt: Typesets documents.

system table. mnttab: Fonnat of mounted file
umask: Sets file-creation mode mask. •

chmod: Changes mode o:fafiJe.
setmode: Sets translation mode.

dial:Dialsa modem; • • •

getty: Sets terminal type, modes, speed� and line/
tset: Sets terminal modes. • • • � • • •

number into-a/ frexp, ldexp, modf: Splitsfloating-point
settime; Changes the access and modification dates of files.

touch: Updates access and modification times of a file.
utime: Sets file access and modifteation times. • • • •

RelocatableFon:natforObject Modules. 86rel; Jnte1 8086 •

profile. monitor: Prepares execution
/mapstr, eonvkey: Configure monitor screen mapping.

I-3Q

Sets theoptionsforthe video monitor. stty:
uusub: Monitoruucp network. � ..

tty[01-n]. color, monochrome, ega,. screen:
fstab: Hie system mount and check commands.

mount: Mounts a file structure.
mount: Mounts a file system.

mnttab: Format of mounted file system table.
/Defaultinformationfor mou.nting1ilesystems. � . ..

mount: Mountsafi.le strncture.
mount: Mountsafilesystem.

specific address. movedata: Copies bytes from a
mvdir: Moves a directory. • • • • •

directories, mv: Moves orr�esfilesand
lseek! Movesreadlwriteiilepointer.

dosld: XENIX to MS-DOS cross linker.
operations. msgctl: Provides message control

msgget: Gets message queue. • �

mesg(C)
tellnlt(C)
allashash(M)
alia.ses(M)
rnienet(M)
daemon.mn(M)
systemld(M)
mlcnet(M)
top(M) Jntro(HW)
Jntro(M)
mkdir(DOS)
mkd!r(C)
mkls(C)
telinit(C)
mknod(C)
mknod(S)
mksfi'(CP)
mktemp{S)
mknser(C)
checkmm(CI)
mm(CI)
che<kmm(CI)
mmt(CT)
mnttab(F)
umask(C)
ehmod(S)
setmode(DOS)
diai(M)
getty(M)
tset(C)
frexp{S)
settime(C)
touch(C)
utime(S)
1!6!:ei(F)
monitor(S)
mapkey(M)
stty(HW)
uusub(C)
screen(HW)
fstab(F)
mount(C)
mount(S)
mnttab(F)
filesys(F)
mount(C)
mount(S)
movedata(DOS)
mvdir(C)
mv(C)
lseek(S)
dosld(CP)
msgcti(S)
msgget(S)

m;;gop: Message operations. •

directories. mv: Moves orrenames files and
mvdir: Moves a directory.

devnm; Identifies device name.
Getsvalue forenvironmcnt name. getenv:

getlogln; Gets login name,
logname: Gets login name,

pwd: Prints working directory name,
tty: Getstheterminal's name.

ncbeck: Generates names from inodenumbers.
basename: Removes directory name& from pathnames. •

Printsuserandgroup iDsand names. id: • • �
archive. dumpdir: Prints the names of files on a backup

term: Conventional names. • • • • • • • •

short interval. nap: Suspends execution for a
access to a resource/ waitsem, nbwattsem: Awaits and checks

in ode numbers. ncheck: Generates names from
mathematical text for/ eqn, neqn, checkeq, eqncheck; Formats

neqn:Formats mathematics. • •
network. netutil: Administers theXENIX

netutil: Administers the XENIX network. • • • • • • • • • •

uusub: Monitoruucp network. • • � • • • • • • •

text file, newfonn: Changes the format of a
group. newgrp: Logsuserinto anew

news: Print news items. • • • • • • •

news: Print news items.
/fetch, store. delete, firstkey, nextkey: Performs database/

process. nice: Changes priority of a •

differentpriority. nice:Runs acommandata •

nl: Adds line numbers to a file.
Jist. nlist: Getsentrles fromname •

nm: Prints name Jist.
hangupsand quits. nohup: Runs a command immune to

setjmp, longjmp: Performs a nonlocai ugoto'�. • • •

false:Returnswitha nonzeroexitvalue.
nroff:A text formattet.

soelim: Elimirnrtt>.s .so'sfrom nroffinput.
tbl: Formats tables for nroff ortroff.

Termina1 drivingtablesfor nroff. term:
Formats mathematical text for nroff1 troff. /eqncheck:

constructs, deroff: Removes nroff/troff, tbl; and eqn
null: The null file. • • • •

null: The nuD file.
factor: Factor a number.

random: Generates a random number.
rand, srand: Generates a random number.

astringtoadouble-proc.ision number. strtod, atof: Converts
atoi, atol: ConvertsASCUto numbers. atof, • • • • • •

libraryroutines and error numbers. /system services,
Generatesnamesfrom inode numbers. ncheck:

nl: Adds tine numbers to a. .file. • • •

ultoa: Converts numbers to characters.
itoa: Converts numbers to integers.

size: Prints the size of an object file. • • • • • •

the printable strings in an object file. strings: Fmds

Permuted Index

rn'Kop(S)
mv(C)
mvdir{C)
dcvnm(C)
getenv(S)
getlogin(S)
lognamc(C)
pwd(C)
tty(C)
ncheck{C)
oosename(C)
id(C)
dumpdir{C)
term(CT)
nap(S)
waltsem(S)
ncheck{C)
eqn{CT)
neqn{CT)
netutil(C)
netutii(C)
uwmb(C)
newform(C)
newgrp{C)
news(C)
news(C)
dbm(S)
nice(S)
nice(C)
nl{C)
nlist(S)
nm(CP)
nohup(C)
setjmp(S)
false(C)
nrolf(CT)
soelim(CT)
tbi(CT)
term(F)
eqn(CT)
deroff{CT)
null(M)
nuii{M)
factor(C)
random{ C)
rand(S)
strtod(S)
atof(S)
Intro(S)
ncheck(C)
ni{C)
ultoa(DOS)
itoa{DOS)
size(CP)
strings(CP)

I-31

Permuted Index

Finds ordering relation for311 object library. !order: • • •
8086 Relocatable Format for Object Modules. 86rel: Intel

a process until a signal occurs. pause: Suspends
od: Displays files in octal format. • • • • •

format. od: Displays filesinoctal
Invokes a restricted version of. red: • • • • o • •
oftuming terminals on and off. I Alternative method

fp_off, fp_seg: Return offset and segment. • •
IMAGEN printer queue. ipr, oldipr:Putfiles ontothe •
new file or rewrites an existing one. creat: Creates a

ipr. oldipr: Put files onto the IMAGEN printer queue.
and writing. sopen: Opensafilefor sharedreading

opensem: Opens a semaphore.
fopen, freopen, fdopen: Opens a stream. • • • • • •

writing. open: Opensfileforreadingor • • •
opensem: Opens a semaphore.

closedir:Performs.directory operations.
msgctl; Provides message control operations.

msgop: Message operations.
semctl: Controls semaphore operations.
semop: Performs semaphore operations.

shmctl: Controls shared memory operations.
shmop: Performs shared memory operations.

strdup: Performs string operations.
vector. getopt: Gets option letter from argument

stty: Sets the options for a terminal.
stty: Sets the options for the video monitor.

getopt: Parses command options. • • • • • • • • • •
library. lorder: Finds ordering relation for an object

a directory, or a special or ordinary file. mknod: Makes
Copiesfilearchivesinand out. cpio: • • • • • • • • •

dial: Establishes an out-goingterminalline/ • • •
port. outp: Writes a byte to an output

of assembler and link editor output. a. out: Format
fl.ushall:Flushesall outputbu:ffers. • •

ecvt, fcvt, gcvt: Perfonns output conversions.
cprintf: Formats output. • • • • •

error:Kemelerror outputdevice.
buffered binary input and output. fread, fwrite: Performs

/vsprintf: Prints formatted output of a varargs/
outp: Writes a byte to an output port.

pr: Prints files on the standard output. • • • • •
fprintf, sprintf: Formats output. printf, • •

standard buffered input and output. stdio: Performs
chown: Changes the owner and group ofafile.

chown: Changes owneriD. • o o • • • •
quot: Summarizes file system ownership. • • • • • •

and expands files. pack, peat, unpack: Compresses
interprocess communication package. ftok: Standard

ips: Imagen serial sequence packet protocol handler.
Gets process, process group, and parent process IDs. /getppid:

getopt: Parses command options. • •
fdisk: Maintain disk partitions. • o o • • • • • •

files. hdr: Displays selected parts of executable binary • •
passwd: Changes login password.

I-32

lorder(CP)
86re!(F)
pause(S)
od(C)
od(C)
red(C)
telinit(C)
fp_seg(OOS)
ipr(C)
creat(S)
ipr(C)
sopen(OOS)
opensem(S)
fopen(S)
open(S)
opensem(S)
directory(S)
msgct!(S)
msgop(S)
semctl(S)
semop(S)
shmctl(S)
shmop(S)
string(S)
getopt(S)
stty(C)
stty(HW)
getopt(C)
lorder(CP)
mknod(S)
cpio(C)
dia!(S)
outp(DOS)
a.out(F)
flushall(DOS)
ecvt(S)
cprintf(DOS)
error(M)
fread(S)
vprintf(S)
outp(DOS)
pr(C)
printf(S)
stdio(S)
chown(S)
chown(C)
quo!(C)
pack(C)
stdipc(S)
ips(C)
getpid(S)
getopt(C)
fdisk(C)
hdr(CP)
passwd(C)

passwd; The password file. • • •
pwadmin: Pedonns password aging administration. •

setpwentt endpwent: Gets password file entry. /getpwnam,
putpwent: Writeu password file entry.

passwd: The password flle. • • • • • •
pwcheck: Checks password file. • • • • • •

getpw: Gets password for agivenuseriD.
getpass: Readsa password, • • • • • • ,.

passwd: Changes login password. • • • • • • •
paste: Merges tines of files.

Delivers directory part of pathname. dimame:
directory, getewd: Cret the path name of current worlcir;g

Removesdirectorynamesfrom pathnames. basename:
fgrep: Searchesa:filefora pattern. grep, egrep,

Searches for and processes a pattern in a file. awk:
a signal occurs. pause: Suspends a process until
keyboard:The l'C keyboard. • • • • • • •

ex.pandsfiles. pack, peat, unpack: Compresses and
a process. popeu, pcJose: InitiatesllO to or from

bsearch: Perfonns abinarysearch.
setjmp, longjmp: Performs a nonlocal :�goto1'. •

qsort: Performs a quicker sort. • • •
floor 1 fabs, ceil. fmod: Performs absolute value, 1loo:rl/

bessel, jO, jl, jn, yO) yl, yn: Performs Bessel functions.
and output. fread) f\\'tite: Performs buffered binary input
/delete, firstkey, nextkey: Performs database functions.

closedir: Performsdirectoryoperations.
exp, log, pow, sqrt, loglO: Perfonns exponential, logarithm,/

restores files. sysadrrtin: Performs file system backups and
sinh, cosh, tanh: Performs hyperbolic ftmctions. •

backup. backup: Performsincrementalfilesystem
backup. dump: Performs incrementalfilesystem

update. lsearch, lfind: Performs linear search and • •
gamma: Perfonns loggamm.afunction.

ecvt1 fcvt� gcvt: Performs output conversions.
administration. pwadmin: Performs password aging

functions. curses: Performs screen and cursor
semop: Performs semaphore operations.

operations. shmop: Performs shared memory
and output. stdio: Performs standard buffered input

strdup: Perf rums string operations.
/tgetflag. tgetstr, tgoto, tputs: Performs terminal functions. �

tan1 asin, acosl atan, atan2: Perfonns trigonometric/ /cos,
chmod: Changes the access permissions of a file or/

to a terminaL mesg: Pennits or denies messages sent
ptx: Generates a permuted index. .. • .. • �
acct: Format of per-processaccountingfile.

errno: Sends system error/ perror, sys_errlist� S)'&.Jlerr,
split: Splitsafileinto pieces. • • • • • • • • •

pipe. pipe: Creates an interprocess
pipe; Createsaninl·erprocess pipe. � • ,. • • • • • * •

tee:Createsateeina pipe. • • • • • • • • • •
data in memory. plock: Lock process, tex:t, or

rewjud: Repositions a file pointer ina stream. /ftell,
Jseek:Moves read/v.rritefile pointer � •

Permuted Index

passwd(M)
pwadmin(C)
getpwenr(S)
putpweut(S)
passwd(M)
pwcheck(C)
getpw(S)
getpass(S)
passwd(C)
paste(CT)
dirname(C)
getcwd(S)
basename(C)
grep(C)
awk(C)
pause(S)
keyboard(HW)
paclc(C)
popen(S)
bsearch(S)
setjmp(S)
qson(S)
floor(S)
bessel(S)
fread(S)
dbm(S)
di<ectory(S)
exp(S)
SJ'l'Odmin(C)
sinh(S)
backup(C)
dump(C)
lsearch(S)
gamma(S)
ecvt(S)
pwadmin(C)
curses(S)
semop(S)
shmop(S)
stdio(S)
string(S)
tenncap(S)
trig(S)
chmod(C)
mesg(C)
ptx(CT)
acct(F)
perror(S)
split(C)
pipe(S)
pipe(S)
tee(C)
p!ock(S)
fseek(S)
lseek(S)

I-33

Permuted Index

thecnrrentpositionofthefile pointer. tell: Gets • • • � •
or from a process, pop en, pclose: Initiates I/O to

outp:Writesabytetoan output port. •
, tty2[A-H]:Interface to serial ports. I, ttyl[A-H] , tty2[a-b]

exponential,/ exp, log, pow, sqrt; log10: Performs • •
/Pedonns exponential, logarithm, power, square root functions.

output. pr: Prints files on the standard
de: Invokes an arbitrary precision calculator.

statistical processing. prep: Prepares text for • • • •
troff. cw. checkcw 1 cwchcck: Prepares constant-width text for

monitor: Prepares execution profile.
processing. prep: Prepares text for statistical •

cpp: The C la:riguage preprocessor. • • • • • •
unget: Undoes a previous get of an SCCS file.

lock:Locksa processin primarymemory. � • • • _ .
types: Primitive system data types.·
news: Printn�items. • • • • •

printer. imprint: prlnttextfilesonaniMAGEN
file. strings: Finds the printable strings in an object
lp, lpO, Jpl. 1p2: Line printer device interfaces.

PrintstextfilesonaniMAGEN" printer. imprint:
printtextfilesonaniMAGEN printer. imprint; • • • •

/imagen.remote:IMAGEN printerinter.facescripts. �
itroff:TrofftoaniMAGEN printer
PutfilesontotheiMAGEN printer queue. ipr, oldipr:

disable: Turns off terminals and printers. • • • • •
Tumson terminalsand line printers. enable: • • •

Formats output. print!, fprintf, sprintf:
to the lineprinter queue for printin$. lpr: Sends files

cal: Printsacalendar . • • •
prs: PriotsanSCCStile • • •

sddate: Printsandsetsbackupdates.
date: Printsandsetsthe date. • • �

acti\ity. sact: PrintscurrentSCCSfileediting
themmm.acros. mm: Printsdocumentsformattedwith

output. pr: Printsfilesontbe>tandard •
vprintf, vfp:rintf, vsprintf: Printsformattedoutputofa/

banner: Prlntslmgeletters.
information. lp$tat! printslineprinterstatus • 4

nm; Prints .name list. • • .. • •
acctcom: Searches for and prlntsprocessaccountjngftles.

yes: Priotsslringrepearedly. • • •
printer. imprint: PrintstextfilesonaniMAGEN

stream. head: Prints the firstfe:w·Unes of a
XENIX system. uname: Prints the name oft he current

backup archive. dumpdir: Prlntsthenamesoffileson a •
file. size: Priotsthe sizeofanobject • •

names. id: Printsuserand groupiDs and
pwd: Prlntsworkingdirectotyname.

Runs a command at a different priority. nice:
nice: Changes prlorltyofaprocess.

acct: Enables or disables process accounting:.
acctcom: Searches for and prints processaccountingfiles.

alarm: Sets a process'a1armclock. •
times: Gets p:rocessandchlldprocesstimes.

I-34

tell(DOS)
popen(S)
outp(DOS)
serlai(HW)
exp{S)
exp(S)
pr(C)
de(C)
prep(CI)
cw(CI)
monitor(S)
prep(cr)
opp{CP)
uoget(CP)
lock(S)

• types(F) • news(C) • imprint(CT) • strinp(CP)
lp(HW)
imprint(C)
imprint(CI)
imogen(M)
itroff(CT)
ipr(C)
disable(C)
enable(C)
printf(S)
lpr(C)
cal(C)
prs(CP)
sddate(C)
date(C)
sact(CP)
mm(CT)
pr(C)
vprintf(S)
banner(C)
lpstat(C)
nm(CP)
acctcom(C)

yes(C)
imprint(C)
bead(C)
uname(C)
dumpdir(C)
size(CP)
id(C)
pwd(C)
nice(C)
nice(S)
a<ct(S)
acctcom(C)
alarm(S)
times(S)

init, inir: Process control initialization .
exit: Tenninatestbe calling process. � • • • • • • •

exit,.J!.Xit: Terminates a process. • • • • • • • •

fork; Creates anew process • • • • • � • • •

/getpgrp, getppid: Gets process, process group, and parent/
setpgrp: Sets process group lD.

processgroup, and parent processiDs. /Getsprocess.
lock: Locks a process in primary memory.

kill: Terminatesa process . • • • • • • • • •

nice: Cbangespriorltyofa process . • �
kill: Sends a signal t() a process or a group of processes.

InitiatesiJOtoorfroma process. popen, pclose: � •

getpid, getpgrp. getppid: Gets process, process group, and/
ptrace: Traces a process. • • • • • • •

spawnl, spawnvp: Creates anew process . • • • • • • •

ps: Reports process status. • • • •

memory. plock:Lock process, text, or data in
times: Gets process and child process times. • • • •

wait: Waitsforachild process to stop or terminate.
Suspends/restartsagelly process. ungetty: • • • • •

pause: Suspends a process until a signal occurs.
sigsem: Signals a process waiting on a semaphore.

cbecldist: List of file systems processed by jsck. • • • • •

awk: Searches for and processes a pal1em in a file.
to a process or a group of processes. kill: Sends a signal

Awaits completion of background processes. wait:
intro: Introduces text processing commands.

Prept:u:e:s text for statistical processing. prep:
shutdown: Terminates all processing. , • • • •

m4: Invokes a macro processor. � • • • • •

prof: Djsplaysprofile data,
time profile. protu: Creates an execution

prof: Displays profile data. • • • • • • •

monitor: Prepares execution profile. • • • • • • • • •

Creates an execution time profile. profil: � • .. • • •
at login time. profile! Sets up an environment

assert:Helpsverifyvalidityof program.
boot: XENIXboot program.

etext, edata: Last locations in program. end,
tape: Magnetic tape maintenance program.

cb: Beautifies C programs. • •

lex: Generates programs for lexical analysis,
and regenerates groups of programs. /Maintains, updates,

stackrequirementsforC programs. stackuse:Determines
xref: Cross-referencesC programs. •

x.str: Extracts stringsfrom C programs. • • • • • • • • •
day. asktime; Promptsforthecorrecttimeof

Imagenserla1 seqnencepacket protocolhandler. ips: • • • •

ips, isbs, ipbs: IMAGEN protocol handlers. .. • • • •

locking on files. lockf: Provide semaphores and record
operations. msgctl: Provides message control

prs: Prints an SCCS file. �
ps: Reports process status.

sxt: Pseudo-device driver.
information. pstat: Reportssystem - •

Penrtttted Index

init(M)
exit(DOS)
exit(S)
fod:(S)
getpid(S)
setpg<p(S)
getpid(S)
!ock(S)
ldli(C)
nice(S)
kil!(S)
popen(S)
getpid(S)
ptrnce(S)
spawn (DOS)
ps(C)
plock(S)
times(S)
wait(S)
ungetty(M)
pause(S)
sigsem(S)
checklist(F)
awk(C)
kil!(S)
wait(C)
lntro(CT)
prep(CT)
shutdown(C)
m4(CP)
prof(CP)
profil(S)
prof(CP)
monitor(S)
p10fii(S)
profile(M)
assert(S)
boot(HW)
end(S)
tape(C)
cb(CP)
lex(CP)
make(CP)
stackusc(CP)
xref(CP)
xstr(CP)
asktime(C)
ips(C)
ips(M)
lockf(S)
msgctl(S)
prs(CP)
ps(C)
sxt(M)
pstat(C)

I-35

Permuted Index

ptrace: Traces a process.
ptx: Generates a permuted index.

stream, ungetc: Pushes character back into input
acharacterorword onal putc. putchar, fputc� putw! Puts

console. putch: Wrltesacharacterto the •
characterorword ona/ putc, putchar,fputc,putw: Putsa

environment. putenv: Changes or adds value to
entry. putpwent: Writes a password file

putc, putchar, fputc, putw: Puts a character or word on a/
puts� fputs: Putsastrlngona stream.

cputs: Puts a stri.ng to the console.
stream. puts1 fputs: Puts a string on a �

on a/ putc, putchar, fputc, putw:Putsacharacter orword
administration. pwadmin: Performs password aging

pwcheck: Checks password file.
name. pwd: Prints workingdirectory

qsort: Performsaquickersort.
tput; Queries the tenninfo database.

Sends files to the lineprinter queue for printing. lpr.
files onto the IMAGEN printer queue. ipr, oldlpr: Put

msgget: Gets message queue. � • • • • • •
ipcrm: Removes a message queue, semaphore set or shared/

qsort:Performsa quickersort . • • • • � � • • •
acommand iromuneto hangupsand quits. nohup: Runs • • • • • •

ownershjp, quot: Slllllillarizes file system • •
number. rand, srand: Generates a random
number. random: Generates a random

ranlib: Converts archives to randomh'braries.
random: Generatesa randomnumber. � " • • •

rand, Srand: Generatesa randomnumber. � * � • •
randomllbrarles, ranlib: Converts archives to

clockrate: Changes clock rate. • • • • • • ... • • �
�ORTRAN into standard FORTRAN. ratfor.: Converts Rational

FOR�. ratfor: Converts Rational FORTRAN into standard
systeihs. rep: Copies files across XENIX

data to be read. rdchk: Checkstoseeifthere is
to see if there is data to be read. rdehk: Checks

read: Rea.dsfrom a file.
sop en: Opens a file for shared reading and writing. • ,�

or unlocksafileregionfor readingorwrtting. /l,ocks
open: Opens file tor reading or writing.

getpass: Readsapassword.
defopen, defread: Reads default entries.

read: Reads fromaiile . • •
line: Reads one line.

:mail: Sends. reads or disposes of mail.
lseek: Moves read/write tile pointer.

memory. malloc, free, realloc, ca.lloc: Allocates main
clock:Thesystem real-time (timeofday)clock.

setclock: Sets the system real-time (time of day) clock.
systel'I1S and shutsdown/ haltsys:� reboot: Closesoutthefile .

Specifies what to do upon receipt of a signal. signal:
lineprlnters. lpinit: Add$, reconfigures and maintains

lockf: Provide semaphores and record locking on files.
version of. red:In:vokesa restrlcted • •

I-36

ptrace(S)
ptx(CI')
ungetc(S)
putc(S)
putch(DOS)
putc(S)
putenv(S)
pulpwent(S)
putc(S)
puts(S)
eputs(DOS)
puts(S)
putc(S)
pwadmin(C)
pwcheck(C)
pwd(C)
qsort(S)
tput(C)
lpr(C)
ipr(C)
mSfjget(S)
ipcrm(C)
qsort(S)
nohup(C)
quot(C)
rand(S)
random(C)
ranlib(CP)
random(C)
rand(S)
ranlib(CP)
clockrate(HW)
ratfor(CP)
ratfor(CP)
rcp(C)
rdchk(S)
rdchk(S)
read(S)
sopen(DOS)
locldng(S)
open(S)
getpass(S)
defopen(S)
read(S)
line(C)
mail(C)
lseek(S)
malloc(S)
clock ('d)
setclock(M)
haltsys(C)
signal(S)
lpinlt(C)
lockf(S)
red(C)

(
\

(�

regular expressions. reg ex, regcmp: Compiles and executes
expressions. regcmp: Compiles regular • •

make: Maintains, updates, and regenerates gronps of programs.
executes regular expressions. regex, regcmp: Compiles and
compile and match routines. regexp: Regular expression

execseg: makes a data region execntable.
locking: Locks or unlocks a file region for reading or writing.

match routines. regexp: Regular expression compile and
regcmp: Compiles regular expressions . • • • •

regcmp: Compiles and executes regular expressions. regex,
sorted files. co nun: Selects or rejects lines common to two

intra: Introduction to machine related miscellaneous features/
larder: Finds ordering relation for an object library. •

join: Joins two relations. • • • • • • • • •
Modules. 86rel: Intel8086 RelocatableFonnat for Object

strip: Removes symbols and relocation bits. • • • • • • •
value, floor, ceiling and remainder functions. I absolute

calendar: Invokes a reminder service. • • • • • •
remoteXENJX system. remote: Executes commands on a

remote: Executes commands on a remoteXENIX system.
uux: Executes command on remote XENIX. • • • • • •

flle. nndel: Removesa deltafrom an SCCS
semaphore set or shared/ ipcrm: Removes a message queue,

system. nnuser: Removes a user account from the
nndir: Removes directories. • • • •

unlink: Removes directory entry.
pathnames. basename: Removes directorynamesfrom

rm, rmdir: Removes files or directories, •
eqn constructs. deroff: Removes nroff/troff, tbl, and

bits. strip: Removes symbols and relocation
directory. rename: renames a file or

rename: renames a file or directory. •
mv: Moves or renames files and directories.

fsck: Checks and repairs file systems. •
uniq: Reports repeated lines in a file.

yes: Prints string repeatedly.
Generate an IMAGEN accounting report. imacct:

blocks. df: Reportnumberoffreedisk
clock: Reports CPUtimeused . • •

cmchk: Reports hard disk block size.
ps: Reports process status.

file. uniq: Reportsrepeated lines ina •
pstat: Reports system information.

inter-process/ ipcs: Reportsthe statusof
vmstat: Reports virtual memory statistics.

stream. fseek, ftell, rewind: Repositions a file pointer in a
Starts/stops the lineprinter request. /lpshut, lpmove:

lp, lpr, cancel: Send/cancel requests to lineprinter.
stackuse: Determines stack requirements forC programs.

I Awaits and checks access to a resource governed by a/
incremental file/ restore, restor: Invokes •

Invokes incremental file system/ restore, restor: • • • •
Invokes incremental file system restorer. /restor: • • •

Perf onus file system backups and restores files. sysadmin:
interpreter). rsh: Invokes a restricted shell (command

Permuted Index

<egex(S)
regcmp(CP)
make(CP)
regex(S)
regexp(S)
execseg(S)
locking(S)
regexp(S)
regcmp(CP)
regex(S)
comm(C)
Intro(HW)
lorder(CP)
join(C)
86rel(F)
strip(CP)
Ooor(S)
calendar(C)
remote(C)
remote(C)
uux(C)
rmdel(CP)
ipcrm(C)
nnuser(C)
rmdir(C)
unlink(S)
basename(C)
rm(C)
deroff(CT)
strip(CP)
rename(DOS)
rename(DOS)
mv(C)
fsck(C)
uniq(C)
yes(C)
imacct(C)
df(C)
clock(S)
cmchk(C)
ps(C)
uniq(C)
pstat(C)
ipcs(C)
vmstat(C)
fseek(S)
lpsched(C)
Ip(C)
stacknse(CP)
waitsem(S)
restore(C)
resto<e(C)
restore(C)
sysadmin(C)
rsh(C)

1-37

Permuted Index

red: Invokes a restricted version of.
fp_off1 fp_seg� Return offset and segment.

stat; Data returned by stat system call,
inp: Returnsabyte. � o • • • •

console buffer. ungetch: Returosacharactertothe •
value. abs: Retumsanintegerabsolute

long integer. labs: Returns the absolute value of a
strlen: Retums the length of a string.

value. false: Returns with a nonzero exit
true: ReturnswithazeroQ:itvalue.

col; Filters reverse linefeeds. • .. • • 0 •
in a string. strrev: Reverses the order of characters

pointer in a/ fseek, ftell, rewind: RepoSitions a file •
creat: Creates a new file or rewrites an existing one. • • o •

directories. nn, rmdir: Removes files or
SCCSfiie. nndel:Removesadeltafroman

nndir: Deletes a directory. ., 0 •
I'Indir! Removes directories. • •

directories. rm, rmdir:Removesfilesor • � � •
from the system. nnuser. Removes a user account

chroot: Changesthe rootdirectocy. o � o o • • •
chroot:Changes rootdirectocyforcommand • •

logarithm, power, square root functions. /exponential.
/system services� bbmry routines and error numbers. •

expressioncompileandmatch routines. regexp:Regular • �
(command interpreter). rsh: Invokes a restricted shell •

priority. nice: Runs a command at a different • •
and quits. nohup: Runsacommandiramtmetobangups

editing activity. sact: Prints current SCCS file • _ .
space allocation. sbrk, brk: Changes data segment

work. uucico: Scanthespooldirectoryfor
and formats input. scanf) fscanf, sscanf: Converts

bfs: Scans big files. • o • • • •
creates bad track/ badtrk: Scansfixeddiskforfiawsand
help: Asksforhclp about SCCScommands,

thedcltacolllll:lelltaryofan SCCSdelta, cdc: Changes
comb: Combines SCCSdeltas. • • • • •

Makesadelta(change) toan SCCSfile. delta: • • • •
""'!:Prints current sees file editing activity,

prs:Prlntsan SCCSfile . • • • •
rmdel:Removesadeltafroman SCCSfile. • • • ' .

Comparestwoversionsofan SCCS.file. sccsdiff:
sccsfile: Format of an SCCS file. • • •

Undoesapreviousgetofan SCCSfile. unget: •
val: Validates an SCCSfile. • • • •

admin: Crea.tesand admiuisters SCCSfiles.

l-38

of an sees file. sccsdiff: Compares two versions
file. sccsfile: Format of an sees

curses: Performs screen and cursor functions.
clear: Clears a terminal screen. o • • .. • • • •

setcolor:Set screencolor . • • • • � •
eonvkey: Configure monitor screen mapping. /mapstr,

color, monochrome, egaj' screen: tty[Ol-n.], • • • o
vi� view, vedit: Invokes a screen-orienteddisplayedltor.
install; Installation shell script. • • • • • • • • � •

red(C)
fp_seg(DOS}
stat (F)
inp(DOS)
ungetch(DOS)
abs(S)
labs (DOS)
strlen(DOS)
false(C)
tzue(C)
coi(CT)
strrev(DOS)
fseek(S)
creat(S)
rm(C)
nndel(CP)
rmdir(DOS)
rmdir(C)
rm(C)
mtwrer{C}
cbroot(S)
chroot(C)
exp(S)
Intro(S)
regexp(S)
rsh(C)
nice(C)
nohup(C)
sact(CP)
sbrk(S)
uucico(C)
scanf(S)
bfs(C)
badtrk(M)
hclp(CP)
cdc(CP)
comb(CP)
delta(CP)
sact(CP)
prs(CP)
rmdel(CP)
scesdiff(CP)
sccslile(F)
unget(CP)
vai(CP)
admln(CP)
sccsdiff(CP)
sccslile(F)
cutses(S)
clear(C)
setcolor(C)
mapk:ey(M)
screen(HW)
vi(C)
insta!J(M)

IMAGENprinterinterface scripts. /imagen.remote:
sdb: Invokes symbolic debugger.

dates. sddate: Prints and sets backup
access to a shared datal sdenter, sdleave: Synchronizes

shared data segment. sdget, sdfree: Attaches and detaches a
detaches a shared data segment. sdget, sdfree: Attaches and

shared data access. sdgetv, sdwaitv: Synchronizes
side-by-side. sdiff: Compares files

a shared data segment. sdenter, sdleave: Synchronizes access to
data access. sdgetv, sdwaitv: Synchronizes shared

!search, Jfind: Performs linear search and update.
bsearch: Performs a binary search. • • • • • • • • •

hcreate, hdestroy: Manages hash search tables. hsearch,
tdelete, twalk: Manages binary search trees. tsearch, tfind,

grep, egrep, fgrep: Searches a file for a pattern.
accounting files. acctcom: Searchesforand prints process

patteminafile. awk: Searchesforand processesa •
sed: Invokes the stream editor.

uniformly distributed. srand48, seed48, lcong48: Generates
brkctl: Allocates data in a far segment. • • • • • • • • •

fp_seg: Retum offsetand segment. fp_off, • • • • • •
access to a shared data segment. I sdleave: Synchronizes

and detaches a shared data segment. /sdfree: Attaches
shmget: Gets a shared memory segment. • • • • • • • • •

sbrk, brk: Changes data segment space allocation.
segread: command description.

a file. cut: Cuts out selected fields of each line of •
binary files. hdr: Displays selected parts of executable
to two sorted files. comm: Selects or rejects lines common

Creates an instance of a binary semaphore. creatsem:
opensem: Opens a semaphore. • • • • •

semctl: Controls semaphore operations.
semop: Performs semaphore operations.

ipcrm: Removes a message queue, semaphore set or shared memory.
Signalsa processwaitingona semaphore. sigsem: • • • • •

to a resource governed by a semaphore. /and checks access
files. lockf: Provide semaphores and record locking on

semget: Gets set of semaphores. • • • . • • • • •
operations. semctl: Controls semaphore • •

semget: Gets set of semaphores.
operations. semop:Performs semaphore •

lineprinter. lp, Jpr, cancel: Send/cancel requests to • • •
group of processes. kill: Sends a signal to a process or a

queue for printing. lpr: Sends files to the lineprinter
mail. mail: Sends, reads or disposes of

/sys_errlist, sys_nerr, erma: Sends system error messages.
mesg: Permits or denies messages sent to a terminal.

handler. ips: Imagen serial sequence packet protocol
, tty2[A-I-IJ: Interfaceto serial ports. /, tty2[a-h]

handler. ips: Imagen serial sequence packet protocol
calendar: Invokes a reminder service. • • • • • • • • •

error/ intra: Introduces system services, library routines and
MapoftheASCllcharacter set. ascii: • • • • • •

buffering to a stream. setbuf, setvbuf: Assigns
real-time (time of day) clock. setclock: Sets the system

Permuted Index

imagen(M)
sdb(CP)
sddate(C)
sdenter(S)
sdget(S)
sdget(S)
sdgetv(S)
sdiff(C)
sdenter(S)
sdgetv(S)
lsearch(S)
bsearch(S)
hsearch(S)
tsearch(S)
grep(C)
acctcom(C)
awk(C)
sed(C)
drand48(S)
brkctl(S)
fp_seg(DOS)
sdenter(S)
sdget(S)
shmget(S)
sbrk(S)
segread(DOS)
cut(CT)
hdr(CP)
comm(C)
creatsem(S)
opensem(S)
semctl(S)
semop(S)
ipcrm(C)
sigsem(S)
waitsem(S)
lockf(S)
semget(S)
semctl(S)
semget(S)
semop(S)
Ip(C)
kill(S)
lpr(C)
mail(C)
perror(S)
mesg(C)
ips(C)
serial(I-IW)
ips(C)
calendar(C)
Intro(S)
ascii{M)
setbuf(S)
setclock{M)

I-39

Permuted Index

setcolor: Set screen color. • •
s:etuid, setgid: Sets user and group IDs.

getgrent, getgrgid� getgrnam. setgrent� endgrent: Get group/
nonlocal "'go to". setjmp, longjmp:Performsa •

keys. setkey:Assignsthefunction •
table. setmnt: Establishes !etclmnttab

setmode: Sets translation mode.
sctpgrp: Sets process group ID.

getpwent, getpwuid, getpwnam, setpwent, endpwent: Gets/
alarm: Sets a process' alarm clock.

to onecharater. strset: Sets all characters in a string
mask. um.ask: Sets and gets file creation

sddate: Prints and sets backup dates.
execution. env: Setsenvironmentforcomm8.nd

modification times. utime; Setsfileaccessand � • • � •
umask: Setsfile-creationmodemask.

setpgrp� SetsprocessgroupiD,
tset: Setsterminalmodes.

spee(L and line/ getty: Setstenninal type, modes,
base. cmos: Displays and sets the configuration data

date: Prints and sets the date.
stty: Sets the options fora terminal.

monitor. stty: Setstheoptionsfortbevideo ..
of day) clock. setclock.: Setsthesystemreal-time (time

stime: Sets the time. •
setmode: Setstranslationmode.

time. profile: Sets up an environment at login
setuid, setgid: Sets user and group IDs. • • •

ulimit: Gets and sets user limits. • • • • .. • •
modification dates of files. settime: Changes the access and

gettydefs: Speed and terminal settings used by getty. • • • •
group IDs. setuid,� setgid: Sets user and

stream. setbuf) setvbuf: Assigns buffering to a
dataina/ sputl., sgeti: Accesseslongintegec

interpreter. sh: Invokes the shell command
sdgetv, sdwaitv: Synchronizes shareddataaccess . • «< ,. .. .

Synchronizesaecesstoa shareddatasegment. /sdleave:
sdfree: Attachesanddetachesa shared data segment. sdget� �

message queue7 semaphore set or shared memory. ipcrm: Removes a
shmctl; Controls shared memory operations.
shmop: Performs shared memory operations.

shmget:Getsa sharedmemotysegment.

I-40

so pen: Opens a.file for shared reading and writing.
rsh: Iavokes arestricted shell (command interpreter).

sh: Invokes the shell command interpreter.
sh V: Invokes the shell command interpreter.

C-like syntax. csh: Invokes a shell command interpreterwith
.system: Executes a shell command.

shl: Shelllayermanager.
install: lnsta.lla1ion shell script.

sbl: Shelllayermanager.
operations. shnlctl: Controls shared memory

segment. shmget: Getsasharedmemory •
operations. shmop: Performs shared memory

nap: Suspends execution for a short interval. • � . � � - � �

setcolor(C)
setuid(S)
getgrent(S)
setjmp(S)
setkey(C)
setmnt(C)
setmode(DOS)
setpgrp(S)
getpwent(S)
alarm(S)
strset(DOS)
lllrulsk(S)
sddate(C)
env(C)
utime(S)
umask(C)
setP!!'P(S)
tset(C)
getty(M)
cmos(HW)
date(C)
stty(C)
stty(HW)
setelock(M)
stime(S)
setmodc(DOS)
profile(M)
setuid(S)
ullmit(S)
settime(C)
gett)'defs(F)
setuid(S)
setbuf(S)
sputl(S)
sh(C)
sdgetv(S)
sdenter(S)
sdget(S)
ipcrm(C)
shmetl(S)
sbmop(S)
sbmget(S)
sopen(DOS)
rsh(C)
sh(C)
shV(C)
csh(C)
systom(S)
shi(C)
instali(M)
shi(C)
shmctl(S)
shmget(S)
shmop(S)
nap(S)

haltsthe CPU. shutdn: FlushesblockiJOand •

processing. shutdown: Terminates all
Closes out the file systems and shuts down the system. /reboot:

interpreter. sh V: IDvokes the shell command
sdiff: Compares files side-by-side.

Suspends aprocessuntil a signal occurs. pause: • • •
what to do upon receipt of a signal. signal: Specifies � •

upon receipt of a signal. signal: Specifies what to do �

of processes. kill: Sends a signal to a process ora group
semaphore. sigsem: Signals a process waiting on a

gsignal: Implements software signals. ss:ignal, • • • • •
waiting on a semaphore. sigsem: Signals a process

atan2: Performs trigonometric/ sin, cos, tan, asin, acos, atan,
hyperbolic functions. sinh, cosh, tanh: Performs

cmcbk: Reports hard disk block size. • � • • • •
chsize: Changes the size ofa:file. • • *

size: Prints the sil.e of an object file.
objectfiie. size: Printsthesizeofan •

interval. sleep: Suspeudsexecutionforan
interval. sleep: Suspends execution form

current/ ttyslot: Finds the slot in the utmp file of the
spline: Interpolates smooth curve. • • • • •

nroffinpnt. soelim: Eliminates .so•sfrom
ssignal, gsignal: Implements software signals. • � � w • •

reading and writing. so pen: Opens a .fiJefor shared
qsort: Performs a quicker sort. • • " • • • • • • �

sort: Sorts and merges files.
orrejectslinescommon totwo sorted files. comm: Selects

look:Findslinesina sorted list • • � • • � •

tsort: Sorts a file topologically.
sort; Sorts and merges files.

soelim: Eliminates .so'sfromnroffinput • •
an errorme.ssagefile.from C source. mkstr� Creates

shrk, brk: Changes data segment space allocation . • • •
process. spawn], spawnvp: Createsanew
spawn I. spawnvp: Creates anew process.

movedata; Copies bytes frnma specific address. • • • •

cron: E.xecuteseommandsat specified times,
receipt of a signal. signal: Specifies what to do upon

/Sets terminal type, modes, speed, and line discipline.
bygetty. gettydefs: Spced andterminalsettingsused

hashcheck: Finds spelling/ spell, hashmake, spellin,
spelling/ :spell, hashmaket spellin, bashcheck: Finds •

speJlin, hashcheck.: Finds spelling errors. /hashmake,
curve. spline: Interpolates smooth

pieces. split: Splits a file into
split: Splits a file into pieces.

conteJrt. cspJit: Splits files accordingto
into a/ frexp, Jdexp, modf: SpUtsftoating-pointnumher

uucico: Scan the spool directoryforwork �
unclean: Clean-up the uuep spool directory.

C'..onfiguresthelineprinter spoolingsystem. lpadmin:
printf, fpf!,ptf.� sprint!: Formats output. •

integer data in a/ sput1� sgetl: Accesses long
exponenti.al,/ exp� log, pow, sqrt, log:lO: Performs

Pennuted Index

shul<ln(S)
shutdown(C)
halts)"'(C)
shV(C)
sdiff(C)
pause(S)
signal(S)
signal(S)
kill(S)
sigsem(S)
ssignai(S)
sigsem(S)
trig(S)
sinh(S)
cmchk(C)
chsize(S)
size(CP)
size(CP)
sleep(C)
sleep(S)
ttyslot(S)
spline(CP)
soelim(CI')
ssignal(S)
sopen(DOS)
qsort(S)
sort(C)
comm(C)
look(t."T)
tsort(CP)
sort(C)
soelim(CT)
mkstr{CP)
sbrk(S)
spawn(DOS)
spawn(DOS)
movedata(DOS)
cron(C)
signa!(S)
gelt)'(M)
gettydefs(F)
speii(CI')
speU(CT)
speli(CT)
spline(CP)
split(C)
split(C)
csplit(C)
frexp(S)
uucico(C}
unclean(C)
lpadmin(C)
printf(S)
sputl(S)
exp(S)

1-41

Permuted Index

exponential, logarithm� power, squarerootfu.actions. /Perlonns
nwnber. mnd-i srand: Generates a random •

Generatesunifonnly/ srand48, seed48. Icon.g48: • •

input. scanf, fsc:anf, oocanf:Converlsand fonnats
software signals. ssignal, gsignal: Implements

programs. stackuse: Determines stack requirements for C
requirementsfor C programS. stackuse: Determines stack

output. stdio:Pe.rfonns standardbuffcredinput and
ConvertsRatioualFORTRANinto standardFORTRAN. ratfor:

gets; Gets a stri.J:Jgfrom the standard input. • • � • • •

communication package. ftok: Standard interprocess 4 4 •

pr. Prints files on the standard output. • • • .. �
lpsched�lpshut, lpmove: Starts/stops the lineprinter/

system call. stat:Dataretumed by stat
stat, fstat: Gets file status.

stat; Data returned by stat system call.
prep: Prepares text for statistical processing. • •

ustat: Gets file system statistics. • • • • • • •

virtualmerooty statistics, vmstat; Reports •

fileno: Determines stream status. !error, feof, dear err,
lpstat:printslineprlnter statusinformation. • • • •

uustat: uucp statusinquity and job control.
communication/ ipcs: Reportsthe statusofinter-process

ps: Reports process status. • • • • • • •

stat, fstat: Gets file status. • • • • • • �
buffered input and output. stdio: Performs standard

stime: Sets the time.
Waits for a child process to stop ortemllnate. wait:

uextkey:/ dbminit1 fetch, store� delete,fi.rstk:ey1 •

operations. strdup:Perlorms strlng
lnvokes the streameditor.sed:

ffiush�Closesorfiushesa stream. fclose� � ,. • •

Getsacharacter froma stream. fgetc:1 fgetchar:
fopen, freopen, fdopen: Opens a stream. • • • • • • •

fputchar.Writeacharactertoa stream. fputc, • • ,. •
Repositions a file pointer in a stream. fseek, ftell, rewind:

Gets characterorword from a stream. /getchar, fgetc) �tw:
fgets:Getsastringfrom a stream. gets, �

Prlnts thefitstfewlinesofa stream. head: • • • • • • •

Puts acbaractef or word on a stream. /putchar, fputc� putw:
puts�fputs:Puts astrlngoua stream. • • • • • • • •

setvbuf: Assigns buffering to a stream. setbuf,
clearerr, fileno; Determines stream status. ferror�feof,

Pushes characterbackintoinput stream. ungetc:

I-42

fclose, fcloseall� Closes streams. • • • • ..

cgets: Gets a string. • • • • • •

gets, fgets: Gets a string: from a stream.
gets: Gets a string from the standard input.

puts1 fputs: Puts a stringona stream.
strdup; Performs string operations. • • •

yes: Prints stringrepeatedly. • • •
strlen: Return.sthelengtb of a string. • • • • • • •

the order of characters in a string. sfrrev: Reverses
strtod) at of! Converts a string: to a double-precision/

strto1, atoJ, atoi: Converts stringtointeger. • • � • •

e:xp(S)
rand(S)
drand48(S)
scanf(S)
ssigna!(S)
stackuse(CP)
stackuse(CP)
stdio(S)
ratfor(CP)
gm(CP)
stdipc(S)
pr(C)
lpscbed(C)
stat(F)
stat(S)
stat(F)
prep(CT)
ustat(S)
vmstat(C)
ferror(S)
lpstat(C)
uustat(C)
ipcs(C)
ps(C)
stat(S)
stdio(S)
stime(S)
wait(S)
dbm(S)
strlng(S)
sed(C)
fc!ose(S)
fgetc(DOS)
fopen(S)
fputc(DOS)
fseek(S)
getc(S)
gets(S)
head(C)
putc(S)
puts(S)
setbuf(S)
ferror(S)
ungetc(S)
fclose(DOS)
cgets(DOS)
gets(S)
gets(CP)
puts(S)
string(S)
yes(C)
strlen(DOS)
-.v(DOS)
strtod(S)
strtol(S)

(

strset: Setsallcha.ractersina stringtoonecharater. � •
cputs: Puts a stringtotheconsole.

strings: in an object file. strings: Finds the printable
xstr: Extracts strings from C programs.

strings:: Finds the printable strings in an object ftle.
relocation bits. strip: Remove$ symbols and

string. strlen: Returns the length of a
characters to lowercase. strlwr: Converts uppercase

characters in a string. strrev: Reverses the order of •
string to onecharater. strset: Sets all characters in a •

to a double-precision number. strtod, atof: Converts a string
string to integer. strtol, atol, atoi: Converts

mount: Mounts a file structure. • ,. • • • � •
umount:Dismountsafile structure. • • • • • • �
characters to uppercase. strupr. Converts lowercase

terminal. stty: Sets the options fora
video monitor. stly! Sets the options for the
of a document. style: Analyzes characteristics

or another user. su: Makestheuserasuper-user
counts blocks in a file. sum: Calculates checksum and

du; Summarizes disk usage.
ownership. quot: Summarizesftlesystem
sync: Updates the super-block.
sync: Updates the super-block.

su� Makes the user a super-user or another user.
terminals: List of supported terminals.

signal occurs. pause: Suspends a processuntlla •
interval. nap: Suspends execution for a short

intervaJ. sleep: Suspends execution for an
interval. sleep: Suspends execution for an

process. ungetty: Suspends/restarts a getty
swab: Swaps bytes. � • �

swapadd: Adds S�Naparea • • � • � • •
swapctl: Adds swap area • • • _ • • •

swapadd: Adds swap area
swapctJ:AddsS�Naparea •

swab: Swapsbytes . • • • • • •
sxt: Pseudo-device driver.

sdb: Invokes symbolic debugger. • • •
strip: Removes symbols and relocation bits.

sync: Updates the super-block.
sync: Updates the super-block.

data segment. sdenter� sdleave: Synchronizes access to a shared
sdgetv, :sdwW.tv: S}·nchroniz.es shared data access.

comrnandioterpreterwith C-like syntax. csh: Invokes a sheD
Checks C language usage and syntax. lint: • • • • • • • •

backups and restores files. sysadmin: Pedorms file system
administration utility, sysadmsb: Menu driven system

Sends system error/ perror, sys_errlist, sys_nerr, enno:
error/ perror, sys�errlist, sys_nerr, ermo: Sends system
Autornatica.Ilyboots the system. autoboot:

config: Configures aXENIX system. • • • � • • • • • •
cu: Calls another XENIX system. • • • • • , � • • •

file systems and shuts down the system. /reboot: aoses out the
the lineprinter spooling system. Ipadmin: Configures •

Permuted Index

strset(DOS)
cputs(DOS)
strlngs(CP)
xstr(CP)
strings(CP)
strip(CP)
strlen(DOS)
strlwr(DOS)
strrev(DOS)
strset(DOS)
strtod(S)
strtol(S)
mount(C)
umount(C)
strupr(DOS)
stty(C)
stty(HW)
style(CT)
su(C)
sum(C)
du(C)
quot(C)
")''lc(C)
sync(S)
su(C)
tenninab(M)
pause(S)
nap(S)
sleep(C)
sleep(S)
unget!y(M)
swab(S)
swapadd(S)
swapcd(C)
swapadd(S)
swapet!(C)
swab(S)
sxt(M)
sdb(CP)
strip(CP)
")''lC(C)
sync(S)
sdenter(S)
sdgetv(S)
csh(C)
lini(CP)
sysadmin(C)
sysadmsh(C)
perror(S)
perror(S)
autoboot(M)
config(C)
cu(C)
halts)'li(C)
Ipadmin(C)

I-43

Permuted Index

mkfs: Constructs a:file system. • • • • � • • •

mkuser.AddsalaginiDtothe system. • • • • • • • •

mount: Mounts a file system. • • • • • • • •

commands-on aremote XENIX &y-$tem. remote: Executes
Removesauseraecountfromthe system. rmuser:

umount: Unmountsafile system. • • • • • •
then.ameofthe curreotXENIX system. uoame: Prints

Gets nameof currentXENJX system. uname:
who:Lists whoisonthe system. • � * • • •

identification file. systemid; The Micnet system
/reboot: Closes out the file systems and shuts down the/

fsck:Checksa.ndrepairsfile systems. • • • • • • •

checklist: List of file systems processed by fsck. •

Kp: CopiesfilesacrossXENIX systems. • • • • • • • •

device. systty: System maintenance
forllaws and creates bad track table. badtrk: Scans fixed disk

aliashash: Micnet alias hash table generator.
Masterdevice infonnatiCin table. master:

Formatofmountedfile system table. mnttab: •

setmnt: Establishes /etc/innttnb table. • • • • •

tbl: Fonnats tables fornroffortroff.
term: Termin.aldrh'ing tablesfornroff.

hdestroy: Manages hash search tables. hsea:rch, hcreate�
ctags: Creates a tags file. • • • • • • • •

a file. tail: Delivers the last part of
Performs/ sin� cos.� tan. asin, acos� atan, atan2:

functions. sinh, cosh, tanh: Performs hyperbolic •
backup: Incremental dump tape format. � • • • • • •

dump: Inc.reme.ntaldwnp tapefonnat . • • • • • • •

program. tape: Magnetic tape maintenance
tape: Magnetic tape maintenance program.

tar: archive fonnat. • •
tar: Archives files.

deroff: Removes nroifJrroff� tbl, and eqn constructs. • •
troff. tbl: Formats tables for nro:ff or

search trees. tsearch, tlind1 tdelete, twalk:: Manages binary
tee: Creates a tee in a pipe. • •

tee: Createsa teein apipe . • • • � • • • •

method oftumingtenninalson/ telinit,m.k.inittab: Altemative
temporary file. tmpnnm, tempnam: Crea:tesanamefora

tmpfile: Creates a temporazy file. • .. • • • •

tempnam: Creates a name for a temporary file. tmpnam,

I-44

term: Conventional names.
fornroff. term: Terminal driving tables

terminfo/ capiufo: convert term cap descriptions into •
data base. termcap: Terminal capability

termcap: Tenninal capability data base.
tenninfo: terminal capability data base.

Generates a filenamefora terminal. ctennid: • • • • •

tenninfo: terminal description database.
nroff. term: Term.inaldrivi.ng:table.sfor •

tg_etstr: tgoto# tputs: Performs tenninalfunctions. ltgetftag,
termio:General tenuinalintedace. � • •

tty: Special terminal interface. • • •

dial: Establishes an out -going terminal line connection.

mkfs(C)
mkuser(C)
mount(S)
remote(C)
rmuser(C)
umount(S)
uruu:ne(C)
nruune(S)
who(C)
systemid(M)
haltsys(C)
fsck(C)
checktist(F)
rep(C)
symy(M)
badtrk(M)
aliashash(M)
master(F)
mnttab(F)
setmnt(C)
tbl(Cf)
term (F)
hsearch(S)
ctags(CP)
tail(C)
trig(S)
sinb(S)
backup(F)
dump(F)
tape(C)
tape(C)
tar(F)
tar(C)
deroli(Cf)
!bl(Cf)
tsearch(S)
tee(C)
tee(C)
tclinlt(C)
tmpnam(S)
tmpflle(S)
tmpnam(S)
term(CT)
term(F)
capinfo(C)
termcap(M)
termcap(M)
tenninfo(M)
ctermid(S)
terminfo(S)
tenn(Fj
termcap(S)
termio(M)
tty(M)

• diai(S)

terminal; Login terminal.
ordeniesmessages sent to a terminal. mesg: Permits

tset: Sets terminal modes.
clear: Clears a terminal screen.

gettydefs: Speed and terminal settings used by getty.
stty: Sets the options for a tenninal.

terminal: Login terminal. • � � • • • � • •
isatty: Findsthenameofa terminal. ttyname. � .. � � �
line discipline. getty: Sets terminal type. modes$ speed. and

enable: Turns on terminals and line printers.
disable: Tumsoff terminals and printers.

inittab: Alternative login terminals file. • • • • •

ttys: Login terminals file. • � • • •

terminals. terminals: List of supported
tty: Gets the terminal's name. • •

I A1temativemethod of turning tenn1na1s on and off.
terminals: List of supported terminals. • • •

fora child process to stop or terminate. wait: Waits
exit, _exit: Terminates a process.

kill; Terminatesa process.
shutdown: Temrinates all processing.

exit: Terminates the calling process.
tic: Terminfo compiler.

tput: Queries the termlnfo database. • • • • •
tenncap descriptions into terminfo descriptions. /convert

terminfo: Format of compiled termi:nfo file. • • • • • • •

tenninfo file. terminfo: Fonnatof compiled
data base. terminfo: terminal capability •

database. tenninfo: tenninaldescrlption
inte.r:face. termio: General terminal

test: Tests conditions.
test: Tests conditions.

ed: Invokes the text editor.
ex: Invokes a text editor.

newform: Changes the format of a text: file. •

di:ff: Compares two text files.
imprint: Prints textJileson an IMAGEN printer.

imprint: print text files on an IMAGEN printer.
iprinl: Converts text files to DVIformat. • • •

eqncheck: Fonnats mathematical text for nroff, troff. /checkeq,
prep: Prepares text .for statistical processing.

cwcheck: Prepares constant-width text fortroff. cw, checkcw�
nroff-: A text formatter. • • • • • •

ploclt.: Lock process, te.xt, or data in memory. • •

intro: futrodu.ces text processing commands.
troff: Typesets text. • • • � • • • • • •

bina:rysearchtrees. tsea:rch� tfind, tdelete, tv.·alk: Manages
tgetstr, tgoto, tputs; Perlonns/ tgetent, tgetnum, tgetftag,

Performs/ tgetent, tgetnum. tgetfiag. tgetstr, tgoto, tputs: •
tgoto, tputs: Peri.orms/ tgetentJ tgetnum, tgetfiag, tgetstr,

tgetent, tgetnuut, tgetfiag. 1getstr, tgoto, tputs; Performs/
/tgetnum, tgetftag, tgetstr, tgoto, tputs: Perfonnsterminall

tic: Tenninfo compiler. • • •
Ete<:utes commands at a tater time. at1 batch: • • • • • •

time, ftime: Gets time and date.

Permuted Index

ter:minal(HW)
mesg(C)
tset(C)
clear(C)
gettydefs(F)
stty(C)
terminal(HW)
ttynarne(S)
getty(M)
enable(C)
disal>le(C}
inittab(F)
ttys(M)
tenninals{M)
tty(C)
telinit(C}
terminals(M}
wait(S)
e:rlt(S)
kill(C)
shutdown(C}
exit(DOS)
tie(C)
tput(C)
capinfo(C}
termlnfo(F)
terminfo(F)
tenninfo(M)
terminfo(S)
tennio(M)
test(C)
test(C)
ed(C}
ex(C)
newfonn(C)
diff(C)
imprint(C)
imprint(CI)
!print(C)
eqn(CI')
prep(CI')
cw(CT)
nrofl'(CI')
plock(S)
Intro(CI)
trolf(CI}
tsearch(S)
termcap(S)
termcap(S)
termcap(S)
tenncap(S)
termcap(S)
tic(C)
at(C)
time(S)

I-45

Permuted Index

clock: The system real-time (time of day) clock. • • • • •
Sets the system real-time (time of day) clock. setclock:

Sets up an environment at login tinle. profile:
stime: Set& the time. • "' •

Ex:ecutescommandsatspecified times. cron: •
Getsprocessandchildprocess times, times:

file access and modification times. otime: Sets
file. tmpfile: Creates a temporary

for a temporary file. tmpnam, tempnam: Creates a name
/isascii, tolower, toupper, toascil: Classifies or converts/

conv, toupper, to lower, toascii.: Translates characters.
chJlracters. conv, to upper, to lower, toascii! Translates

/isgraph, iscntrl, is:ascli. to lower, toupper, toascii:/ � •
topology files. top, top.next:TheMicnet .. .

files. top, top.next: The Micnet topology
tsort: Sorts a file topologically. • • • • •

top1 top.next:TheM1cnet topology .files. • • • • • • •
modification times of a file. touch: Updates access and � •

Ftsentrl, isascii, tolower, toupper, toascii: Classifi.esor/
Translates characters. conv, toupper, tolower; toascij:

database. tput:Queriestbetennlnfo
/tgetfiag, tgetstr, tgoto, tput:s: Per:fonnstennina.I/

tr: Translates characters.
ptrace: Traces a process. � • •

disk for flaws and creates bad track table. /Scans fixed
conv, toupper, tolower, toascii; Translates characters.

tr: Translates characters.
setmode: Sets translation mode.

ftw: Walks a file tree. • • • • • • •
twalk:Managesblnarysearch trees. tsearch, tfind, tdelete,

acos� atan� atan2: Perfonns trigonometric functions. /asin,
Preparesconst:ant�width text for tro:ff. cw,-checkcw1 cwcheck:

mathematicaltextfornraff, troff. /eqncheck:Fonnats • �
tbl: Formats tables for nroff or tro1I. • • • • • .; • • •

itroff: Troffto an IMAGEN printer.
troff: Typesets text. • • • •

file. charmap: Generate troffwidth files and catab
Manages binary search trees. tsearch, ttlnd, tdelete, t\valk:

tset: Sets tenninal modes.
topologically. tsort: Sorts a file

mapchan:Fm:matof ttydevicemappingftles . •
mapchan: Con1igure tty deVice mapping. .. • •

tty:Getsthetenninal'sname.
tty: Special terminal interface.

monochrome, eg:a,. screen: tty[Ol-nJ,color,
lty2[a-b], tty2[A-H]:/ ttyl[a-b] , ttyl[A-H] ,

tty2{A-H]:Interface/ ttyl[a-h] ttyl[A"H], tty2[a-h] ,
tty2[A-H]:/ ttyl[a-h] , ttyl(A-H], tty2{a-b] ,

Interface/ ttyl[a·h] , ttyl[A·H] tty2[a-h] , lty2[A-H]:

I-46

to/ ttyl[a-h] , ltyl[A-H], tty2[a-h] , tty2[A-H]:Interface
ports. I, ttyl[A·HJ , tty2[a-b] tty2[A-H]: Interface to serial •

I, ttyl[A-H] , tty2(a-h] , tty2[A-H]: Interface to seciall
of a terminal. ttyname, isatty: Finds the name

ttys; Login terminals file.
utmp file ofthecurrentuser. ttyslot: Findstheslotin the • •

clock(M)
setcloci<(M)
prollle(M)
stime(S)
cron(C)
times(S) • utime(S)
tmpfile(S)
tmpnam(S)
ctype(S)
conv(S)
conv(S)
ctype(S)
top(M)
top(M)
tsort(CP)
top(M)
touch(C)
ctype(S)
oonv(S)
tput(C)
termcap(S)
tr(C)
ptrace(S)
badtrk(M)
conv(S)
tr(C)
setmode(DOS)
ftw(S)
tsearcb(S)
trig(S)
cw(CT)
eqn(Cf)
tbl(CT)
itroll(Cf)
troll(Cf)
ehan:nap(CT)
tseareh(S)
tset(C)
tsort(CP)
mapcban(f)
lllJ!pcban(M)
tty(C)
tty(M)
gcreen(HW)
seriai(HW)
seriai(HW)
seriai(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
ttyname(S)
ttys(M)
ttyslot(S)

(

/mldnittab: Alternative method of turning terminals on and off.
printers. disable: Turns off terminals and

accton: Turns on accounting. • • •
printers, enable: Turns on terminals and line

trees. tsearch, t6nd, tdelete, twalk: Manages binary search
dtype: Determines disk type. • • � • • • • • • •

file:DetenninesfUe type. • • • • • � • • • *
getty! Setstenninal type, modes, speed, and line/

types. types: Primitive system data
!J'"Pes: Primitive system data types. • • • • • • •

mmt: Typesets documents, • • •
troff: Typesets text. • • . • • •

variable. TZ: Timezoneenvironment
/local time, gmtime, asctime, tzset: Converts date and time to/

uadmin: administrative control.
limits. ulimit: Gets and sets user

characters. ultoa: Converts numbers to
eteationmask. umask: Setsand gets file • •

masl:. umask: Sets file-creation mode
structure. umount: Dismounts a file

umottnt: Unmounts: a file system.
XENIXsystem. uname:Gets nameofcurrent • •

current XENIX system. uname: Prints the name ot the
file. unget: Undoesapreviousgetofan SeeS

an sees file. unget: Undoes a previous get of
into input stream. ungetc: Pushes character back

the console buffer. ungetch: Returns a characteTto
getty process. ungetty: Suspends/restarts a �

seed48, Jcong48: Generates unifonnly distributed. srand48,
a file. uniq: Reports repeated lines in

mkternp:Makesa uniquefilename. • �
units: Converts units. • • • •

units: Convert" units. • • • • • • • • • • •

unlink: Removes directory entry.
readingm/ locking:Locl::sor unlocksafileregion for

o.mount: Unmounts a file system. � • • •
tiles. pack, peat. unpack: Compresses and expands

Perfonnslinearsearch and update.)search, l.find:
timesofafile. touch: Updates access and modification

of programs. make: Maintains, updates, and regenerates groups
sync: Updates the super-block.
sync: L'pdates the super-block.

lowercase. strlwr: Converts uppercase characteTs to
Converts lowercase characters to uppercase. strupr:

lint: ChecksClanguage us�� and syntax.
diction: Checks language usage.

du: Summarizes disk usage.
expJ.ain: Corrects language usage.

clu�ckmm> mmcheck: Checks usage ofMM macros.
clock: Reports CPL time used. • • � • • • •

user. su:Makes the userasuper-useroranother
rmuser: Removesa user account from the system.

id; Prints userandgroup iDsandnames.
setuid, setgid: Sets user and group IDs.

Oetsthelogin nameofthe user. cuserld: • • • • • � •

Pennutedirukx

telinit(C)
disable(C)
accton(C)
enable(C)
tsearcb(S)
dt:ype(C)
file(C)
getty(M)
l}pes(F)
types(F)
mmt(CT)
troff(CT)
tz(M)
ctime(S)
uadmin(S)
ulimit(S)
ultoa(DOS)
umask(S)
umask(C)
umouut(C)
umount(S)
uname(S)
uname(C)
uuget(CP)
unget(CP)
ungetc(S)
ungetch(DOS)
ungetty(M)
drand48(S)
uniq(C)
mktemp(S)
units(C)
units(C)
uulink(S)
loclting(S)
umount(S)
pack(C)
lsearch(S)
toueb(C)
make(CP)
sync(C)
sync(S)
strlwr(DOS)
strupr(DOS)
llnt(CP)
diction(CT)
du(C)
explain(CT)
checkmm(CT)
clock(S)
su(C)
nnuser(C)
id(C)
setuid(S)
cuserid(S)

I-47

Permutealndex

/getgid, getegid: Gets real user, effective user, rea.V
environ:The userenvironment.

getpw: Getspasswordfor agiven useriD . • • • � • •
newgrp: Logs userinto a oewgroup.

ulimit: Gets and sets user limits.
logxuune:Finds login nameof user. • • • • � • • • •

group/ /Gets real user, effective user,realgroup,andeffective
the user a super-user or another user. su: Makes

in theutmp file of the current user. ttyslot: Fmdsthe slot
write: Writes to another user.

finger: Fmdsinfonnation about users. • • • • • • • •
wnll: Writes to all users. • • • • • • • •

statistics. ustat:Getsfdesystem •
driven system administration utility. sysadmsh: Menu

modification times. utime: Sets .file access and
utmp� wtmp:Pormatsof ntmpandwtmp entries. •

endutent, utmpname: Accesses utmp file entry. • • • • •
ttyslot: Finds the slot in the utmp file of the current user.

�'tmp entrles. utmp, wtmp: Formats ofutmp and
entry. endutent; utmpname: Accessesutmpfile •

forwork. uucico: Scan the spool directory
directory. uuclean: Clean-uptheuucpspool

Administers UUCP control files. uuinsta!l:
uwub: Monitor uucpnetwork. • � * � � a • •

uuclean:Ciean-upthe uucp $p0oldirectory • • • � • •
controL uustat: uucp sta.tusinquiryaodjob • • •

files. uuinstall: Administers UUCP control
fileCQpy. unto, uupiclc:PublicXBNIX-to-XENIX

job control. uustat: uucp statusinquity and
uusub:Monitoruucpnetwork. • �

XBNIX-to-XENIX.filecopy. uuto, uupick: Publ:ic • • • • • •
XENlX. uux: Executescoi'.DllU.Uldon remote

val: ValidatesanSCCSfile.
val: ValidatesanSCCSllle.

assert: Helps verify validity of program. • • • •

abs: Returns an integer absolute value, • • • • • • • • • •
Returns with a nonzero exit value . .false: • • • • • .. •

ceil,fmod: Performsabsolute value, ftoor,ceilingand/ /fabs,
getenv:Gets valueforenVironmentname.

labs: Returns the absohJJe value of a long integer.
putenv: Cha.nges oradds val.ueto environment • • � •

tru.e:Retumswitb azero exit value • • • • • • � • • • •

varargs: variable argument list.
varargs: variable argument list. • • • •

TZ: Time zone environment variable. • • • • • • • • ..
Getsoption letterfromargument vector. getopt: • • � • � • �

display editor. vi, view, vedit; Invokesa screen-orientl$d
assert: He Ips verify validity of program.

red:Invokes a restricted versionof . • • • * • •
sccsdiff: Compares two vensions of an SCCSfile.

formattedoutputofa/ vprintf, vfprintf, vsprintf:Prlnts
screen-oriented display editor. vi, view, vedit: Invokesa

stty: Setsthe optionsforthe videomonitor

1·48

screen -oriented display/ vi, view, vedit: Invokes a �
vmstat. Reports virtualtnemorystatistics.

getuld(S)
environ(M)
getpw(S)
newgq>(C)
ulitult(S)
lognrune(S)
getuld(S)
su(C)
ttyslot(S)
write(C)
finger(C)
wall(C)
ustat(S)
sysadmsh(C)
utime{S)
utmp(M)
getut(S)
ttyslot(S)
ulmp(M)
getut(S)
uucico(C)
uuclean(C)
uuinstali(C)
uusub(C)
uuclean(C)
uustat(C)
ttulnstali(C)
uuto(C)
uustat(C)
uusub(C)
uuto(C)
uux(C)
val(CP)
val(CP)
assert(S)
ubs(S)
false(C)
fioor(S)
getenv(S)
lubs(DOS)
putenv(S)
true(C)
varargs(S)
Vll!1Ul!s(S)
tz(M)
getopt(S)
vi(C)
assert(S)
red(C)
sccll<liff(CP)
vprintf(S)

• vi(C)
stty(HW)
vi(C)
vmstat(C)

statistics. vmstat: Reports virtual memory
fiiesystem: Fonnatofa system '\'Olume . • � � • • • • • •

Printsfonnatted outputofa! vprintf, vfprintf, vsprintf: • •

output of a/ vprintf, vfprintf, vsprlntf: Printsformatted
background processes. wait: Awaitscomple1ionof

tostoporterminate. wait: Waits for a child process
sigsem: Signals a process waiting on a semaphore. � « •

stop or tenninate. wait: Waitsfor a child process to * �
cl!ecksaccess to a resource/ waitsemt nbwaitsem: Awaits and

ftw: Walks a file tree. • • • • •

wall: Writes to all userS. • •

characters. we: Counts lines. words and
whodo:Determineswho isdoiog what, • • • � • � • • • •

what. whodo: Determines who is doing
channap: Generate troff width files and catab file.

hyphcn: Findshyphenated words. • � • • .

Scan thespooldirectory for work. uucico; • • • •

cd: Changes wo:rkiug directory.
chdir: Changes the working directory.

Get thepathname of current working directory. getcwd:
pwd: Print& working directory name. • •

fputc, fputchar; Write a character to a stream.
write: Writes to a file.
write: Writes to another user.

outp: Writes a byte to an output port.
console. putch: Writes a characterto the • �

putpwent: Writes a pasSW'ord file entry.
write: Writes to a file. • • � �
wall: Writes to an users.

write: Writes to another user.
a file region for reading or \\'liting. /Locks or unlocks

open; Opensfilefor reading or writing. • • • • • • • •

a :file for shared reading and writing. sopen: Opens
utmp,wtmp: Formatsofutmpand wtmp entries. � • • • •

entries. utrnp, wtmp� Formats ofutmp andwtmp
commands. xlll'gS: Constructs and executes

Assembler. aS<: XENIX 8086/l.llli/286/386
masm: Invokes the XENIXa.ssembler. • •

boot: XENlXbootprogram.
intro: Introduces XENIXcommands.

commands. intra: Introduces XE't>.lXDeveJopmentSystem
netutil: Administers the XENIXnetwork.

config: Configures a XENIX system.
cu: Calls another XENIX system.

Executes commands on a remote XENIXsystem. remote:
Prints the name of the current XENIX system. mwne:
uname: Gets name of current XENIX system.

rep: Copies files across XENIXsystems. • • •

dosld: XEN1X toMS-DOS cross Jink:er.
uux: Executes command on remote XENIX. • � • • • • • • •

uuto, uupick: Public XF •• NIXAo-XENIXfiJecopy.
entriesfromiiles. xlist, fxlist; Getsnamelist �

programs. xref: Cross-references C
programs. ntr: Extracts strings from C

functions. bessel, jO, jl, jn, yO, yl, yn: Performs Bessel ..

Pem1utedindex

vmstat(C)
filesystem(F)
vprintf(S)
vprintf(S)
wait(C)
wait(S)
sigsem(S)
wait(S)
waitsem(S)
ftw(S)
waU(C)
we(C)
whodo(C)
whodo(C)
channap(cr)
hyphen(Gr)
uocico(C)
cd(C)
chdit(S)
getcwd(S)
pwd(C)
fputc(DOS)
wdte(S)
write(C)
outp(DOS)
putch(DOS)
putpwent(S)
wdte(S)
wall(C)
v>rite(C)
locking(S)
open(S)
sopen(DOS)
utmp(M)
utmp(M)
xargs(C)
asx(CP)
masm(CP)
boot(IIW)
Intra(C)
Intco(CP)
netutil(C)
config(C)
cu(C)
remote(C)
uname(C)
uname(S)
ccp(C)
dosld(CP)
uux(C)
uutu(C)
xlist(S)
xref(CP)
xstr(CP)
besse!(S)

I-49

Permuredindex

I-50

bessel, jO, jl, jn, yO, yl, yn; Pe.rfonm�Bessell
compiler�compiler. yacc: Invokesa • • • •

yes� Prints string repeatedly. •

bessel: JO�jl, jn, yO,yl,)lll: Performs Bessel functions.
true: Retums with a zero exit value. • • • • • •

TZ: Time zone environment variable.

bessei(S)
yac<;(CP)
yes(C)
bessei(S)
true(C)
tt(M)

