The XENIX®System V

Development System

Release Notes

Version 2.2

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and does
notrepresent a commitment on the part of The Santa Cruz Operation, Inc.
nor Microsoft Corporation. The software described in this document is
furnished under a license agreement or nondisclosure agreement, The
software may be used or copied only in accordance with the terms of the
agreement. Itis against the law to copythissoftware on m agnetic tape, disk,
or any other medium for any putpose other than the purchaser’s personal
use,

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY
THE GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO
RESTRICTIONS AS SET FORTH IN SUBDIVISION (b) (3) (ii) FOR
RESTRICTED RIGHTS IN COMPUTER SOFTWARE AND
SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA,BOTHASSET FORTH IN FAR 52.227-7013,

... Portions ©1980219_3_12_,198227_1_98_3"‘1984:. 198_5, 1986, 1987 Microsoft

Corporation

Allrights reserved.

Portions © 1983, 1984, 1985, 1986, 1987 The Santa CruzOperation, Inc.
Allrightsreserved,

This documentwas typesetwith an IMA GEN® 8/300LaserPrinter.

IMA GENis aregistered trademark of IMA GEN Corporation.
XENIXis aregistered trademark of Microsoft Corporation.

Document Number: X86/286/386-6-29-87-4.0/2.2

Processed Date: Sun Jun2818:43:51PDT 1987

R

3. Software Notes 4

XENIX System V 2.2
86/286/386 Development System
Release Notes

1. Preface 1
2. Installation Notes 1
2.1 PackagesInThe Development System 3
3.1 Imclude Filesand Utilities 4
3.2 crypt(C)and cryptLibraries 5
3.3 cc(CP)Notes 5
3.3.1 Large Model Code Generation 5
3.3.2 Register Variables 5
3.3.3 Huge Model Code Generation 6
3.3.4 Variable Declarakions 6
3.4 sdb(CP) 6
35 d 7
3.6 cxref(CP) 7
3.7 irand48()andkrand48() 7
3.8 asx(CP) 7
3.9 stdioh 8

310tty.h 8

X86/286/386-6-29-87-4.0/2.2 -24- The Santa Cruz Operation

3.11 types.h 9
3.12 malloc Issues 9
3.13 brketl(S) Library 9
3.14 stackuse(CP) 11
4. Operating System Spacific Software Notes 11

4.1 8086 OperatingSystem 11
4.1.1 cc(CP)Defaults 11
4.1.2 UtilitiesNot Supported 11
4.1.3 adbreswictions 12
4.1.4 Stack SizeLimitations 12
4.1.5 Floating~Point Exceptions 12

4.2 80286QperatingSystem 12
4.2.1 ¢c(CP)Defaults 12
4.2.2 LargeModel Utilities 13
423 tfind() 13
4.2.4 xdata.h 13
4.2.51d(CP) 14
4.2,6 Stack Size Limitations 14
4.2.7 Floating—~Point Exceptions 14
4.2.8sdb 14
4.2.9 adb(CP) 14

4.3 80386 Operating System. 15
4.3.1 cc(CP) Defaults 15
4.3.2 Return ValueFrommain{} 15
4.3.3 Memory Models 15
4.3.4 nm(CP) 15
4.3.5 masm386 15
4.3.6 Stack Size 16

4.4 ANSIFeaturesFor386 16
4.4.1 preprocessor names 16
4.4.2 Tokensfollowing #else and #endif 16
4.4.3 Substitution of macro formal parameterswithin quotedstrings 17
4.4.4 Stricterchecking of storage classin declarations 17

X86/286/386-6-29-87-4,0/2.2 -25- The Santa Cruz Operation

~——

X86/286/386-6-29-87-4.0/2.2 ~26-

4.5 Differences between286 and386code 18
4.5.1 Size of Integers 18
4.5.2 Size of Pointers 18
4,5.3 Assembly language interface 18
4.5.4 Zp2and Zp4 structure alignment 19
4.5.5 masm 19

. Documentation FErrata 19

5.1 cc(CP)ManualPage 19
5.2 Intro(S)ManualPage 20

5.3 DeviceDrivers 20
5.3.1 Device Driver Memory Allocation 21

- -—-5:3.2 Writing DeviceDrivers . 21

5.4 swapadd(S) Manual Page 21
5.5 curses(S) Manual Page 22
5.6 shutdn(S) ManualPage 22
5.7 temminfo(S)Manual Page 22

5.8 execseg(S) 23

The Santa Cruz Operation

Release Notes
XENIX 86/286/386 Development System
Release 2.2
June 291987

1. Preface

These notes pertain to the XENEK System V Development System
Release 2.2 for personal computers, They contain notes on the
software-and documentation, and the procedure for installing the
software.

We are always pleased to hear of a user’s experience with our
product, and recommendations of how it can be made even more.
useful. Allwritten suggestions are given serious consideration.

2. Installation Notes

Note that you must have the XENIX System V Operating System
installed on your computer in order to. use the XENIX System V
Development System.

For the 86/286 Development System, you must have installed release
2.1.3 (orlater) o f the XENIX Operating System.

For the 386 Development System you must have installed release
2.2.1(or later) of the XENIX 386 Operating System.

Before you install the Development System, make sure that you
have: '

s The Development System diskettes.

s The Operating System “N” volume diskettes. Depending
on your installation, you are prompted to insert one or more
of these diskettes as part of your Development System

installation procedure,

XB86/286/386-6-29-87-4.0/2,2 ~1- The Santa Cruz Operation

e Your Development System serial number and activation
key.

To install the XENIX Development System, you must perform the
followingoperations:

e First, log in as root (the ‘“Super-User”) and bring the
system to single-user operation.

e Enterthe command: custom and press RETURN.
e Select the Development System installation option.

¢ Install the Development System as prompted.

The XENIX System V Development System contains several
packagesthat can be installed selectively usingthe custom(C) utility.
For example, the DOS development environment (linker, libraries
and include files) is distinct package that you can either install, or
leave out of your system.

custom(C) can also display a complete list and short description of
the packages included in the Development System and the amount of
disk space needed to install each package. You can also use
custom(C) at any time to install or remove all or part of the
Development System. Refer to the custom(C) manual page for
instructions on using custom(C).

During the installation, you are asked to choose a default terminal
description library for use with the curses(S) screen handling
package. You can choose terminfo, termcap, or you can decline to
choose a default by selecting neither. The curses include file
(/usrlinclude/curses.h) will conditionally include the correct
information that will enable it to be used with terminfo or termcap
depending on whether M_TERMINFO or M_TERMCAPis defined.
The choice you make at installation time determineswhich of theseis
the default for your system. You can always override the deafult by
explicitly defining either M_TERMINFO or M_TERMCAP eitherin
your program before the statement that includes curses.h in the
source code, or by using the. -D directive on the C compiler
command line. If you do not select a default, you must #define either
M_TERMINFO or M_TERMCAP whenever you compile a source
module thatincludes curses.h.

X86/286/386-6-29-87-4.0/2.2 -2- The Santa Cruz Operation

f«
[N\

Towards the end of the installation procedure you are prompted to
insert one or more of the“N’’ volumes. These diskettes are not part
ofthe Development System distribution. (Although custom{C) may
refer to them as “Development System” diskettes.) They are
volumes from the Operating System distribution and certain
Operating System dependent files and utilities must be extracted
from them when you install the Development System.

2.1 Packages In The Development System

The Development System for the XENIX 808 Operating System
consists of thefollowing packages:

Development System Packages

ALL Entire Development System set
SOFT Basic software development tools
LEX Generates programsfor lexical analysis
YACC Yetanother compiler-compiler

CREF Crossreference programs

CFLOW Generates C flow graphs

LINT Syntax and usage check files and tools

MEDIUM Medium ModelLibraryroutines -

LARGE Largemodellibrary routines

SCCS Source code control system

DOSDEV DOS cross development libraries and utilities

The Development System for the 28NIX 80286 Operating System
consists ofthe following packages:

Development System Packages

ALL Entire Development System set

SOFT Basic software development tools
LEX Generates programs for lexical aialysis
YACC Yet another compiler-compiler

CREF Crossreference programs

CFLOW Generates Cflowgraphs

LINT Syntax and usage check files and tools

MEDIUM MediumModelLibratyroutines

X86/286/386-6-29-87-4.0/2.2 -3- The Santa Cruz Operation

LARGE Large model library routines

CCL Large model compiler passes

SCCS Sourcecode control system

DOSDEYV DQOS cross development libraries and utilities

The Development System for the XENIX 80386 Operating System
consists ofthefollowingpackages:

Development System Packages

ALL Eatire Development System set

SOFT Basic software development tools
LEX Generates programs for lexical analysis
YACC ‘Yet another compiler-compiler
CREF Crossreferenceprograms

CFLOW Generates Cflowgraphs

LINT Syntaxand usage check files and tools

SMALL SmallModel 8086 Library routines
MEDIUM Medium Model 8086 Library routines
LARGE Large model 8086 Library routines

SCCS Source code control system

DOSDEV DOS cross development libraries and utilities

3. Software Notes

This release includes the Microsoft C compiler with new passes, a
new linker, and a source code debugger for C programs (sdb).

3.1 Include Files and Utilities

The machine dependent Development System inciude files and
utilities are included on the XENIX version 2.1.3 (or later) Operating
System N Volumes. The terminfo database is part of the XENIX
Operating System extended utilities not available prior torelease 2.2.

X86/286/386-6-29-87-4.0/2.2 -4~ The Santa Cruz Operation

Development System Release Notes

3.2 crypt(C) and crypt Libraries

The crypt(C} utility and libraries are not included in this release. If
you are a United States resident, you can request a copy of crypt{C)
by calling SCO support.

3.3 cc(CP) Notes

3.3.1 Large Model Code Generation

This release supports large model 8086 or 80286 program generation
for XENIX and DOS. Large model programs developed on 8086

.machines under the XENIX 86 QOperating System will only runon___ _

80286 or 80386 machines under the XENIX 286 or XENIX 386
Operating System.

3.3.2 Reglster Variables

Attempts to compile certain complex expressi_c;ns that involve
pointer arithmetic and register variables may fail with an internal
compiler error.

Usually, removing the “register” storage class specifier from the
declarations avoids this problem, but occasionally you must simplify
the expression by splitting it into several, less complex, expressions.

Note that oaly objects of type int, short, or char and the unsigned
versions of these types are candidates for register storage class in
large model programs. Unless such an item is accessed very
frequently, making it an “auto” rather than a *“register” item
probably does not have much impact on the program’s performance.

If you do not wish to alter your source code, add this flag to your e¢
commandline to remove allregister declarations from a program:

-Dregister=auto

X86/286/386-6-29-81-4.0/2.2 -5 - The Santa Cruz Operation

XENIX for personal computers

3.3.3 Huge Model Code Generation

Expressions similzr to the following do not compile properly in huge
model:

char *p, *foo;
if (--p < foo)

Use this type of construction instead:

~=P;
if (p < foo)

3.3.4 Varlable Declaratlons

The error: Segmentation Violation: core dumped may occur if you
declare too many variables on a single line. For example, the
followingtext may cause the compiler to dump core:

char *
x1, */* comment */
x2, /* more comment */

x934; /* more comment */

Twenty five declarations on a line is a safe maximum. Break longer
declarations into two or more statements to avoid this possible
problem.

3.4 sdb(CP)

The following features of sdb that are described in the
documentation are not supportadlin this release:

» Pattern maiching for function and variable names.. For
example,
x*/

should display the values of all variables with names
beginning with “x”.

X86/286/386-6-29-87-4.0/2.2 -6~ The Santa Cruz Operation

Development System Release Notes

¢ The “.” command to redisplay the value of the last variable
typed.

e Restoring non-blocking reads. If your program is
performing 2 non-blocking read when it reaches an sdb
breakpoint, sdb does not retumn to non-blocking reads and
mustbe terminated with EOF.

¢ The e command to display current function name. The e

command does not return the current funiction name as
described.

35 1d

- The =r option of Id(CP) does not work correctly for object files that

contain the additional symbol table information used by the
symbolic debugger. I you use the ~r option of 1d to partially link
together several object modules that contain symbolic debugging
information, the code, data, and relocation information in the
resulting object module will be correct, but the symbohc debugging
information will be unuseable.

3.6 cxref(CP)
cxref(CP)isnot supported in this release.

3.7 irand48(and krand480

The functions u-and48() and Iwand48() are not supported in thls
release.

3.8 asx(CP)

The pre-cmerge assembler is included with this release for those
users who have programs that require it. Itis called /bin/asx and is
documented on the manualpage asx(CP).

Note that the manual page is incorrect in stating that asx(CP)
supports 386code. asx supports only 8086 and 80286 code.

X86/286/386-6-29-87-4.0/2.2 -7~ The Santa Cruz Operation

XENIX for personal computers

3.9 stdio.h

The buffer size used by the standard 1/O library is now 1024 bytes.
This change is reflected in the standard I/O header file
lusefinclude/stdio.h where BUFSIZis defined as 1024 bytes.

This change does not affect existing XENIX executable binaries.
However, it is important that any object modules that use standard
1/0O functions and that were compiled using the old stdio.h with a
BUFSIZ of 512 bytes should be recompiled before they are linked
with the newlibraries.

An alternative is to include the file /ib/cormpat/[SMLisetbuf.c on the
command line when you link your program. This enables the new

libraries to work correctly with object modules that assume a
BUFSIZ of 512 bytes.

You should take particular care when you install products on XENIX
that are in the form of linkable objects rather than executable

binaries. It is generally - necessatry to include
/lib/compat{/[SML]setbuf.o in thelink.

For example, if the installation procedure for a product includes a
link command such as:

cc -Mm -i-o prog proglib.a progsub.o -ltermlib
Youshould editit to read: \
cc -MOm -i -o prog proglib.a progsub.o /lib/compat/Msetbuf.o -ltesmlib

Note thatit is safe to inclnde /lib/compat/[SML}setbuf.o, even if the
application was compiled with a standard IO BUFSIZ of 1024 bytes.
The only consequence is that your buffer size is reduced to 512 and
the standard I/O package is slightly less efficient.

386 Development System users should also note that since their
default code generation modeis -M3e, they need to explicitly specify
-M0 or -M2 when they link 8086 or 80286 code.

3.10 tty.h

In thefile /usr/include/sysftty.h, t_psrocisan:

X86/286/386-6-29-87-4.0/22 -8~ The Santa Cruz Operation

Development System Release Notes

int (far *t_proc)(}

‘When including this file, be sure to enable near and far keywords by
usingthe —Me flag to cc(CP).

3.11 types.h

Some of the C language .k files require that <sys/types.h> be
included first. The following error message generally occurs when a
typeisused in an #include file butnot declared:

old fashioned initialization

Often, the problem is corrected by including <sys/types.h> earlierin
the program.

There are two versions of mallec distributed with the XENIX
Development System . The standard malloc is containéd in the file
/lib/libe.a. There is an alternate malloc in /lib/libmalloc.a. Both are
documented tinder the mallo¢{CP) manual page.

If your program uses many malloc and free calls, running the °
program under the XENIX 386 Operating System may cause an . ..

excessive page swapping problem as malloc must search the entire

- list of allocated and free blocks. If you are using malloe and free calls

extensively, it is suggested that you use the alternate malloc found in
/lib/libmalloc.a. To use/lib/libmalloc.a, compile your program with
the -lmalloc flag on your cc{CP) command line. -

The alternate malloc maintains a separate list of free blocks and is
faster, but data in any allocated block is immediately overwritten
when the block is declared free. The standard malloc preserves data
between consecutive free and malloc calls. Some programs rely on
this functionality of the standard malloc.

3.13 brketl(S) Library

brketi(S) is a XENIX specific system call that can be used by 86/286

_ processes to allocate memory in far data segments. (see brketl(S).)

X86/286/386-6-29-87-4.0/2.2 -9- The Santa Cruz Operation

3‘12 malloc tssues . . [e

XENIX for personal computers

The full functionality of brketl() is only available to 8086/80286
binaries running under the XENIX 286 or XENIX 386 Operating
Systems.

XENIX 86 does not support the allocation of additional data
segments, therefore when brketl() requests that require this are made
by an 8086 binary running under XENIX 86 they will fail. The
-compat option of the C compiler can be used to link 8086 binaries
with a special version of brketl() (in /Zb/[SMLJlibbrkcil.a) that
satisfies requests for additional data segments under XENIX 86 by
allocating shared memory segments.

XENIX 386 does not support 386 processes which have more than
one data segment. For compatibility, a special library
(/lib/386/Siibbrkctl.a) has been provided that maps brketl()
functions into calls to sbrk(S). This provides for the most common
uses of brketl(S), such asthe allocation of additionalmemory.

Programs which rely on allocating multiple data segments and
manipulating the sizes of those segments will need to be altered to
work under XENIX 386.

The following describes the functionality implemented by the 386 -
libbrkctl.a. Note in particular that the 386 brketl(S) returns a near
pointer and that the third argument is also a near pointer. If you do
not wish to alter your source code when compiling for the 386 you
should include ~Dfarsz on the ¢¢(CP) command line. This will cause
the preprocessor to remove all ““far’’ keywords from your code.

#include <sys/brk.h>
char *brkctl(cmd, inc, ptr)
int cmd;

long inc;

char *ptr;

‘When called frorn 386 processes brketl() does not cause the
allocation or de-allocation of far data segments, it can only be used
to increase or decrease the memory allocation in the single data
segmentavailable to 386 processes.

Any of the commands BR IMPSEG, BR_ARGSEG or
BR_NEWSEG can be used as they all have the same effect.

The ptrargument in the above program example isignored.

X86/286/386-6-29 -87-4.0/2.2 -16~- The Santa Cruz Operation

Development System Release Notes

It is unusual to allow the use of BR_ NEWSEG with 386 processes
since it is not possible to allocate additional data segments.
However, since BR_NEWSEG is commonly used in small and
middle model 86/286 processes to allocate additional memory it was
decided to allow BR_NEWSEG but to make its functionality the
same as BR_IMMPSEG.

In order to link a 386 binary with this version of brketl() you should
specify -1brketl on the cc(CP) comraand line,

3.14 stackuse(CP)

The stackuse(CP) utility is not included in this release. The manual
page for stackuse(CP) should be disregarded.

4. Operating System Specific Software Notes
4.1 8086 Operating System

4.1.1 c¢c{CP)} Defuults

The default code generation model is -MO0 {8086 small model). This

- default can be changed by editing /erc/default/cc. See the cc{CP)

manual page for details.
4.1,2 Utilisies Rot Supported

The XENIX 8086 Operating System does not support the execution of
large model programs. Therefore, only the small model versions of
cc{CP), adb(CP), lint(CP), and make(CP)are supported.

sdb(CP) isnotsupported on the 8086.
The =roption of 1d{CP}is not supported on the 8086.

X86/286/386-6-29-87-4.0/2.2 -11- The Santa Cruz Operation

MENIX for personal computers

4.1.3 adb restrictions

The program debugger adb(CP) works to patch binaries, runs on
processes and core files, and sets breakpoints in the XENIX 86
Operating System. It does not perform stack backtraces.
Subprocess control does not work on medium model programs.
Breakpoints cannot be set on medium model programs.

4.1.4 Stack Size Limitations

The default stack for programs run on an 8086 machine is a variable
stack, starting at the top of a full 64K byte data segment. A full 64K
of physical memory is allocated for combined stack and data. The
stack grows down until it reaches the data. While the use of a variable
stack can leave unused memory, it is useful for program
development. Use the —=F flag to specify a fixed stack size. We
recommend you use the =F flag on final versions to increase the
performance of your binaries.

4.1.5 Floating—Point Exceptions

For compatibility reasons, floating-point exceptions (like dividing
by zero) are masked within the libc libraries. Serious problems arise
when printf(S) attempts to format the result of a “divide-by-zero”.

On an unmapped machine such as the 8086, anything may happen,
froman infiniteloop toa system crash.

4.2 80286 Operating System

4.2.1 ¢e(CP) Defaults

The default code generation model is -MO0 (8086 small model). This
default can be changed by editing /etc/default/cc. See the cc(CP)
manual page for details. ’ '

X86/286/386-6-29-87-4.0/2,2 - 12 - The Santa Cruz Operation

Development System Release Notes

4.2,2 Large Model Utilities

This release includes large model passes of the C compiler. These
are invoked usingthe =LARGE flag with cc(CP). Only 286 machines
can nin the large model passes of the compiler. Refer to the cc(CP)
manual page, and the chapter “cc: A C Compiler” in the XENIX C
User’s Guide for moreinformation on using large model passes.

If you encounter segmentation violation errors while using the Iarge
model passes of the compiler, try compiling without using code
optimization (=~O). If the errors persist, use the standard compiler
passesinstead of the largemodel passes (do not specify =LARGEon
the ee(CP) coinmandline).

In addition to ec(CP), large model adb(CP), cflow(CP), Jint(CP),
make(CP}, nm(CP), and yacc(CP) are supphed w1th thxs release

4.2.3 #6nd0

The function tfind() is missing from the 8086 libraries. If tfind() is
/ i referenced in a program comiled with the -M0 or ~ M2 option it will
S be unresolved when the program islinked.

tfind(} is present in the 386 libraries and can be used in programs
compiled with the -M3 option. Note that programs compiled with
the -M3 option can only be executed under the XENIX 386 Operating
System.

4.2.4 xdata.h —

The file /usr/include/xdata.h, which is referred to in the execseg(S)
manual page, is inissing from the 286 Development System. It
contains the following type definitions and declarations:

typedef void (far *excode_t)();
typedef char far *exdata_t;
extern excode_t execseg();

"X86/286/386-6-29-87-4.0/2.2 - 13 - The Santa Cruz Operation

XENIX for personal computers

4.2.5 1d(CPF)

The =S option of 1d(CP) only accepts values up to 1016. Any
argument greater than 1016 returns the error message ““Segment limit
set too high.”

4.2.6 Stack Ske Limitations

The default stack for programs running under the XENK 286
Operating System is a fixed size stack of 1000 hexadecimal bytes. Use
the «F flag to specify a different stack size. Variable stack size is not
supported by the XENIX 286 Operating System.

4.2.7 Floating—Point Exccptions

For compaiibility reasons, floating-point exceptions (like dividing
by zero) are masked withinthe libe libraries. Serious problems arise
when prinM(S) attempts to format the result of a “divide-by-zero”.
On the 80286, thiserrorresults in a reasonable memoryfault,

4.2.8 sdb
sdb(CP) does not supporst debugging impure small model programs.
4.2.9 adb(CP)

adb(CP) disassembles the REP instruction prefix as REPNZ and
disassembles the REPNZ prefix as REP.

X86/286/386-6-29-87-4.0/2.2 -14- The Santa Cruz Operation

Development System Release Notes

4.3 80386 Operating System

4.3.1 ¢¢{CP) Defaul(s

The default code generation model for the 80386 is -M3e. (80386
with non- ANSI extensions enabled.) This default can be changed by
editing /etc/defauit/cc. See the ee¢(CP) manual page for details.

4.3.2 Return Yalue From main{

The return value from main() in a 386 binary is not passed to exit()
when a program terminates. Programs that do not call exit()

.explicitly, but rely upon returning a value from main() will in fact

exit(} with an undefined status.

4.3.3 Memory Models

The only memory model supported for 386 code is “small” model.
Small model has two 32 bit segments; one for code and one for data.
Small, middle, large, and luge models are supported for 8086/286
code.

4.3.4 om{(CP)

The «-n option of nm(CP) generates an error with long name lists. To

« sortalong namelist, use the command line:

nm |sort

instead of the -n option.
4.3.5 masm386

masm386 address and operand prefix generation is not supported in
thisrelease.

X86/286/386-6~29-87-4,0/2.2 - 15 - The Santa Cruz Operation

XENIX for persomnal computers

4.3.6 Stack Size

80386 programs have a variable sized stack that is expanded by the
kernel as needed. 8086/286 programs run under the 386 Operating
System have a fixed size stack. The default stack size, if the =F
option to the linker was not used, is 4 Kilobytes.

4.4 ANSI Features For 386

The 386 C compiler has a number of differences from the existing
80867286 compiler. Most of these differences have been caused by a
move towards conformance with the proposed ANSI standard for
the C programming language. These differences can be disabled by
giving the -Me option to cc(CP). Note that the default option set in
letc/defaulticc is M3e and that, for reasons of backward
compatibility, these new features are not normally enabled.

4.4.1 preprocessor names

Symbols which are used in #define, #ifdef and other preprocessor
commands must now conform with the same rules as those for C
identifiers. They must begin with an alphabetic character or an
underscore and may only contain alphanumeric characters and the
underscore character.

Previous versions of the C compiler allowed other non-
alphanumeric characters such as *.” in preprocessor symbols.

4.4.2 Tokens foRowing #clse and #endlf

The 386 C compiler issues a warning if it finds anything other than
blank space or comments following an #else or #endif preprocessor
directive. Thus the first example below would produce a warning but
the second would not.

#endif M_I386
#endif /* M_1386 */

These warnings are only produced if the warning level is set to 2 or
greater. The default warning level is 1 so these messages will not

X86/286/386-6-25-87-4.0/2.2 -16- The Santa Cruz Operation

Development System Release Notes

normally be seen.
4.4.3" Substitutlon of macro formal parameters within quoted strings

The proposed ANSI standard for C does not allow the substimtion

~* of macro formal parameters within quoted strings. However, many

existing C compilers, including the XENIX 86/286 C compiler, do
allow this. Considerthefollowingmacrodefinitionand use:

#defineCIRL(c) (’c’ & Ox1f)
putchar(CTRL(g));

The existing 86/286 compiler expands this to:
putchar((’g’ & Ox1f));

‘But according tothe ANSIstandard it mustbe: -

putchar((’c’ & Ox1f));

The -Me option to the 386 C compiler maintains compatibility with
the existing 86/286 compiler, but displays a warning that a non-
standard extension has been used. The ANSI standard defines a
mechanism for transforming macro formal parameters into quoted
strings (the “stringising’ operator) and a mechanism for “pastng”
strings. Neither of these have yet been implemented in the 386 C
compiler. If your code relies on substituting macro parameters within
quoted strings then you must compile with the - Me option,

4.4.4 Stricter checking of storage class In declarations

The ANSI standard requires that declarations and definitions of
functions and variables must have matching storage classes aswell as
matching types. Typically, this causes problems in code when a
function is firstused (and implicitly declares it as an “‘extern int”) and
is later defined as **static int.”” ANSIrequires thatthe first use of the
function be preceded by an explicit declaration. Thus:

XB6/286/386-6-29-87-4.0/22 ~-17- The Santa Cruz Operation

XENIX for personal computers

static int foo(); /*required by ANSI C */
Program text

foo(};
static foo()

The —Me option disables this strict checking of storage class.
4.5 Differences between 286 and 386 code

In general there will be few problems in recompiling existing C
programs to rua on the 80386. However, the following differences
between the 8086/80286 and the 80386 should be noted.

4.5.1 Size of Integers

386 integers are 32 bits whereas 86/286 integers are 16 bits. This may
cause problems in programs that exchange binary data with other
programs or programs that have to read binary data from existing
data files. Note that the signed and unsigned short data types are 16
bits on both 86/286 and 386 processors.

4.5.2 Size of Pointers

386 small model code and data pointers are 32 bits. On the 8086/286
the size of pointers depended on the memory model.

4.5.3 Assembly language Interface

The 386 assembly language interface is very similar to the 86/286
assembly language interface, but note that 386 C code may use up to3
register variables {esi, edl, ebx) whereas 86/286 code used at most 2
variables (si, di). It is essential that 386 assembly language routines
preserve the contents of ebxas well as esl and edi.

XR6/286/386-6-29~-87-4.0/2.2 - 18 - The Santa Cruz Operation

Development System Release Notes

4.5.4 ZpZ and Zpd structure alignment

There are different rules for calculating the size of structures and

. alignment of structure members on the 386 and the 86/286. These

differences aredescribed in detail in Chapter 2 of the C User’s Guide.

The #pragma pack() directive is supported by the 386 compiler.
This directive allows you to override the default structure packing
ruleswithin a Csourcefile.

You may specify pack(l), pack(2), or pack(4) after the #pragma
directive. Thishas the same effect as placing one of the -Zp1, -Zp2,
or ~Zp4 command line argurnents in your C compiler command.
pack() with no arguments returns structure packing to whatever was
explicitly specified on the cc command line or the default (4) if

nothing wasspecified.

This directive is useful for insuring that structures in a 386 program
have the same alignment asthose in 86/286 programs. Note that this
directive is only supported by the 386 C compiler.

4.5.5 masm

In addition to supporting the 386 instructionset, the versionof masm
shipped with the 386 Development System has some minor
differences in source code syntax from previous versions. For
compatibility, the 86/286 masm has been included in this
distributionas/bin/masm8s.

5. Documentation Errata

5.1 cc(CP) Manual Page

In the description of the =0 flag, it should be noted that the “I”
option s valid only for 80386 machines.

X86/286/386-6-29-87-4.0/2.2 - 19 - The Santa Cruz Operation

XENIX for personal computers

5.2 Intro(S) Manual Page

In the description of error message 12, the documentation states that
the messagedisplayedreads:

Not enough space
The actual message displayedis

Not enough core
5.3 Device Drivers

There are two functions to allow systems programmers to translate
physical ROM memory addresses to virtual memory addresses for
use in the 386 kemel. mapphys() and unmapphys() give the device
driver writer access to ROM. The syntaxis:

pp= mapphys{physaddr, len)

Where physaddr is a char * variable that contains a physical address
and len is an integer that specifies the number of bytes to map. The
function returns a char * value which is the kernel virtual address to
use to access the desired area.

unmapphys unmaps memory previously mapped with mapphys.
The parameters tounmapphys are as follows:

unmapphys(pp, len} -

Where pp is the kernel virtual address gotten from a previous
mapphys() call. Jen is an integer specifying the number of bytes to
uniap. /en should be the same within a mapphys/unmapphys
sequence. : ' :

The function physia() fragments all requests for device /O into 4
Kbyte sections for purposes of reading and writing. Some devices,
such as certain tape drives, do not function caorrectly under this
format. Thisrestriction may beeliminated in the future.

Please see the chapter “Writing Device Drivers” in thc XENIX
Programmer’s Guide, Volume 2, for more 386 device driver
information.

X86/286/386-6-29-87-4.0/2.2 - 20 - The Santa Cruz Operation

Development System Release Notes

5.3.1 Device Driver Memory Allocation

Thereis a new way to allocate memory in device drivers. These new
routines allows device driver writers to allocate large amounts of
physically contiguous physical mesnory at run time.

The db_alloc and db_free calls allocate and deallocate contiguous
pieces of memory. In addition, the db_read and db_write calls
provide circular queue management for the allocated memory. Note
that the device driver writer may choose to substitute custom read
and write rousines if they wish to manage the allocated memory
differently.

Also, note that these routines are not system calls and are useable
only from within the kernel. This limits their use to the development
of device drivers and other kernel routines. This functxonallty is

-~ identical for both the 80286 and the 80386. - ..

5.3.2 Writing Device Drivers

In the discussion of dma_alloc in Chapter 8 of the XENIX User’s -
Guide, itis stated that dma_alloc returns a valueof 0 ifthe channelis
allocated and a value of 1 if it is not allocated. This statement is
incorrect and should read that dma_alloc returns a value of 1if the
channel is allocated and Cifitisnotallocated.

Also, note that there are many references to the statement:
char far *

in the chapter “Writing Device Drivers” in the XENIX Programmer’s
Guide, Volume 2. If you are using a 386, these references should
read:

char *

This isbecause the 386 is an unsegmented processor.

5.4 swapadd(S) Manual Page

The swapadd(S) utility listed in the Contents and Indexes in the
Prograimmer’s Reference is not supported in thisrelease, and there is
no swapadd(S) manual page.

X86/286/386-6-29-87-4.0/2.2 -21- The Santa Cruz Operation

XENIX for personal computers

5.5 curses(S) Manual Page

On page 4 of the manual page, the line:
mvwgetstr(y, x, str)

shouldread:
mvwgetstr(win, Yy, x, str)

And on page 6, there is a reference to the function restty() that
should read resetty().

5.6 shutdn(S) Manual Page

On page 1 of the shutdn(S) manual page, there is a reference to the
parameter ntsblk in the function call shutdn. The function call
parameter should read nsblk.

Also, the order of the #include files for shutdnreads:

#include <filesys.h>
#include <param.h>
#include <types.h>

The order of the #includefiles should be:

#include <types.h>
#include <param.h>
#include <filesys.h>

5.7 terminfo(S) Manual Page

On page 3 of the terminfo(S) manual page, the function calls:

mvgetstr(y, X)
mvwgetstr(win, y, x)

should read:

mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

Also, on page 5 of the terminfo(S) manual page, there are references
to the pute function. Note that this function call is different from the

X86/286/386-6-29-87-4.0/2.2 -22- The Santa Cruz Operation

Development System Release Notes

standard XENIX macro pute supplied in <stdio.h>. Programmers
must supply their own pute function for internaluse with terminfo.

5.8 execseg(S) -

The execseg(S) manual page should include anote to the effect that
execseg(S) is a XENIX specific system call. Programs that use
execseg must belinked withthe -Ixoption.

X86/286/386-6-29-87-4.0/2.2 -23- The Santa Cruz Operation

