
I

(\
/

TheXENIX® System V

Development System
I � -� �� � - �- � - � --�� - -- � -- - - - � - - - - -��- - � --- - -- - - - � -- �-� � � � - - - - � � --� - ��- - - �--

Release Notes

Version2.2

The Santa Cruz Operation, Inc.

I
I
I

Information in this document is subject to change without notice and does
not represent a commitment on the part of The Santa Cruz Operationt Inc.
nor :Microsoft Corporation. The software described in this document is
furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy this software on magnetic tape. disk,
or any other' medium for any purpose other than the purchaser's personal
use.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY
THE GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO
RESTRICTIONS AS SET FORTH IN SUBDIVISION (b) (3) (ii) FOR
RESTRICTED RIGHTS IN COMPUTER SOFTWARE AND
SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA,BOTHAS SETFORTHINFARS2 .227-7013.

(_ __ __ _ _ ___ Po_rtil)nS _ ©1980, _19_1!_1,_1_9§2,_1983, __ 19!!4,__ 1!)115, 1!)8�, 1987 Microsoft
Corporation

· · -��····· .. �· · · · -� -------,

()

Allrlgllts reserved.
Portions © 1983 , 1984, 1985, 1986, 1987 The Santa Cruz Operation, Inc.
All r:igh ts reserved.

This document was typeset with an IMAGEN® 8/300 Laser Printer.

IMAGEN is a registered tradODlark ofiMAGEN Corporation.
XENIXis a registered trademark of Microsoft Corporation.

Document Number:X86/286/386-6-29-87-4.0/2.2

Processed Date: Sun Jun2818:43:51 PDT 1987

XENIX System V 2.2
86/286/386 Development System
Release Notes

1. Preface 1

2. Installation Notes 1

2.1 PackagesinTheDevelopmentSystem 3

3. SoftwareNotes 4

3.1 Include Files and Utilities 4

3.2 crypt(C) and crypt Libraries 5

3.3 cc(CP) Notes 5
3.3.1 LargeMode!CodeGeneration 5
3.3.2 Register Variables 5
3.3.3 Huge Model Code Generation 6
3.3.4 Variable Declarations 6

3.4 sdb(CP) 6

3.5 ld 7

3.6 cxref(CP) 7

3.7 irand48()andkrand48() 7

3.8 asx(CP) 7

3.9 stdio.h 8

3.10 tty.h 8

X861286/386·6·29-87-4.0/2.2 -24- The Santa Cruz Operation

3.11 types.h 9

3.12 malloc Issues 9

3.13 brkctl(S) Library 9

3.14 stackuse(CP) 11

4. Operating System Specific Software Notes 11

4.1 BOB60peratingSystem 11
4.1.1 cc(CP) Defaults 11
4.1.2 Utilities Not Supported 11
4.1.3 adb restrictions 12
4.1.4 StackSizeLimitations 12
4.1.5 Floating-PointExc<:Jptions 12

4.2 80286 Operating System 12
4.2.1 cc(CP) Defaults 12
4.2.2 Large Model Utilities 13
4.2.3 tfind() 13
4.2.4 xdata.h 13
4.2.5 ld(CP) 14
4.2.6 Stack Size Limitations 14
4.2. 7 Floating-Point Exceptions 14
4.2.8 sdb 14
4.2.9 adb(CP) 14

4.3 803B6 Operating System 15
4.3.1 cc(CP) Defaults 15
4.3.2 Return Value From main() 15
4.3.3 Memory Models 15
4.3.4 nm(CP) 15
4.3.5 masm386 15
4.3.6 Stack Size 16

4.4 ANSIFeaturesFor 386 16
4.4.1 preprocessor names 16
4.4.2 Tokens following #else and #endif 16
4.4.3 Substitution of macro formal parameters within quoted strings 17
4 .4.4 Stricter checking of storage class in declarations 17

XB6/286/386-6-29-87-4.0/2.2 -25- The Santa Cruz Operation

4.5 Differen ces between 286 and 386 c ode 18
4.5.1 Size of Integers 18

\ 4.5.2 Size ofPointers 18
) 4.5.3 Assemblylanguageinterface 18

4.5.4 Zp2andZp4st ructurealignment 19
4.5.5 p1asm 19

5. Docu men tation Errata 19

5.1 c c(CP)ManualPage 19

5.2 Int ro(S) Manual Page 20

5.3 Device Dr ivers 20
5.3 .1 Device D river Memory Allocation 21

- ��---5.3.2 Writing Dev iceDriver.s 21� ��--�- - -

5.4 swapadd(S) Manual Page 21

5.5 curses(S) Manual Page 22

5.6 shu tdn(S) Manual Page 22

5.7 tenninfo(S)ManualPage 22

5.8 execseg(S) 23

X86/286/386-6-29-87-4.0/2.2 - 26� The Santa Cruz Operation

1. Preface

Release Notes
XENIX 86/286/386 Development System

Release 2.2
June291987

These notes pertain to the XENlX System V Development System
Release 2.2 for personal computers. They contain notes on the
software and documentation, and the procedure for installing the
software.

We are always pleased to hear of a user's experience with our
product, and recmnm�J1datio11_S ()f how it Cat} be made even more
useful. All written suggestions are given serious consideration.

2. Installation Notes

Note that you must have the XENIX System V Operating System
installe(l on your computer in order to. use the XENIX System V
Development System.

For the 86/286 Development System, you must have installed release
2.1.3 (or later) o f the XENIXOperating System.

For the 386 Development System you must have installed release
2.2.1 (or later) of theXENIX386 Operating System.

Before you install the Development System, make sure that you
have: ·

• The Development System diskettes.

• The Operating System "N" volume diskettes. Depending
on your installation, you are prompted to insert one or more
of these diskettes as part of your Development System
installation procedure.

X86/286/386 -6-29-87-4. 0/2 .. 2 -1- The Santa Cruz Operation

• Your Development System serial number and activation
key.

To install the XENIX Development System, you must perform the
following operations:

• First, log in as root {the "Super-User") and bring the
system to single-user operation.

• Enter the command: custom and press RETURN.

• Select the Development System installation option.

• Install the Development System as prompted.

The XENIX System V Development System contains several
packages that can be installed selectively using the custom(C) utility.
For example, the DOS development environment {linker, libraries
and include files) is distinct package that you can either install, or
leave out of your system.

custom(C) can also display a complete list and short description of
the packages included in the Development System and the amount of
disk space needed to install each package. You can also use
custom{C) at any time to install or remove all or part of the
Development System. Refer to the custom{C) manual page for
instructions on using custom{ C).
During the installation, you are asked to choose a default terminal
description library for use with the curses(S) screen handling
package. You can choose tenninfo, tenncap, or you can decline to
choose a default by selecting neither. The curses include file
(lusr!include/curses.h) will ctmditionally include the correct
infonuation that will enable it to be used with tenninfo or tenncap
depending on whether M...TERMINFO or M...TERMCAP is defined.
The choice you make at installation time determines which of these is
the default for your system. You can always override the deafult by
explicitly defining either M...TERMINFO or M...TERMCAP either in
your program before the statement that includes curses.h in the
source code, or by using the ·D directive on the C compiler
command line. If you do not select a default, you must #define either
M...TERMINFO or M...TERMCAP whenever you compile a source
module that includes curses.h.

X86/286/386-6-29-87-4.0/2.2 - 2 - The Santa Cruz Operation

Towards the end of the installation procedure you are prompted to
insert one or more of the "N" volumes. These diskettes are not part
of the Development System distribution. (Although custom(C) may
refer to them as "Development System" diskettes.) They are
volumes from the Operating System distribution and certain
Operating System dependent files and utilities must be e:ctracted
from them when you install the Development System.

2.1 Packages In The Development System

The Development System for the XENIX 8086 Operating System
consists of the following packages:

ALL
SOFT
LEX
YACC
CREF
CFLOW
LINT
MEDIUM
LARGE
sees
DOSDEV

Development System Packages

Entire Development System set····
Basic software development too is
Generates programs for lexical analysis
Yet another compiler-compiler
Cross reference programs
Generates C fiow graphs
Syntax and usage check files and tools
MediumModelLibraryroutines.
Largemodellibrary routines
Source code control system
DOS cross development libraries and utilities

The Development System for the XENIX 80286 Operating System
consists ofthe following packages:

ALL
SOFT
LEX
YACC
CREF
CFLOW
LINT
MEDIUM

Development System Packages

Entire Development System set
Basic software development tools
Generates programs for lexical analysis
Yet another compiler-compiler
Cross reference programs
Generates C llow graphs
Syntax and usage check files and tools
Medium Model Library routines

X86/286/386-6-29-87-4.0/2.2 -3- The Santa Cruz Operation

LARGE
CCL
sees
DOSDEV

Large model libraryroutin!)s
Large model compiler passes
Sourcecode ccntrol system
DOS cross development libraries and utilities

The Development System for the XENJX 80386 Operating System
consists ofthefollowingpackages:

ALL
SOFI'
LEX
YACC
CREF
CFLOW
LINT
SMALL
MEDIUM
LARGE
sees
DOSDEV

Development System Packages

Entire Development System set
Basic software development tools
Generates programs for lexical analysis
Yet another compiler-compiler
Cross reference programs
Generates C flow graphs
Syntax and usage check files and tools
Small Model8086 Library routines
Medium Model8086 Library routines
Large model8086 Library routines
Source code control system
DOS cross development libraries and utilities

3. Software Notes

This release includes the Microsoft C compiler with new passes, a
new linker, and a source

.
code debuggerfor C programs (sdb).

3.1 Include Files and Utilities

The machine dependent Development System include Illes and
utilities are included on the XENIX version 2.1.3 (or later) Operating
System N Volumes. The tenninfo database is part of the XENIX
Operating System extended utilities not available prior to release 2.2.

X86/286/3 86-6-29-87 -4.0/2.2 - 4- The Santa Cruz Operation

!- -----

)

Development System Release Notes

3.2 crypt(C) and crypt Libraries

The crypt(C) utility and libraries are not included in this release. If
you are a United States resident, you can request a copy of crypt(C)
bycallingSCO support.

3.3 cc (CP) Notes

3.3.1 Lorge Model Code Generation

This release supports large model8086 or 80286 program generation
for XENJX and DOS. Large model programs developed on 8086

,machines llllder th!l XE.NIX 86 Operating SystemwUI only run .on
80286 or 80386 machines under the XENJX 286 or XENJX 386
Operating System.

3.3.2 Register Varlnblos

Attempts to compile certain complex expressions that involve
pointer arithmetic and register variables may fail with an internal
compiler error.

Usually, removing the "register" storage class specifier from the
declarations avoids this problem, but occasionally you must simplify
the expression hy splitting it into several, less complex, expressions.

Note that only objects of type illt, short, or char and the unsigned
versions of these types are candidates for register storage class in
rnrge model programs. Unless such au· item is accessed very
frequently, making it an "auto" rather than a "register" item
probably does not have much impact on the program's performance.

If you do not wish to alter your source code, add this fiag to your cc
command line to remove all register declarations from a program:

• Dreglster=auto

X86/286/386-6-29-87-4.0/2.2 - 5- The Santa Cruz Operation

XEI'IIX fo.- pe.-sonal computers

3.3.3 Huge Model Code Generation

Expressions similar to the following do not compile properly in huge
model:

char *p, *foo;
if(--p < foo)

Use this type of construction instead:

--p;
if (p < foo)

3.3.4 Variable Declarntlons

The error: Segmentation Violation: core dumped may occur if you
declare too many variables on a single line. For example, the
following text may cause the compiler to dump core:

char*
xl, "/* comment*/
x2, /* more comment */

x934; /* more comment */

Twenty five declarations on a line is a safe maximum. Break longer
declarations into two or more statements to avoid this possible
problem.

3.4 sdb(CP)

The following features of sdb that are described in the
documentation are not supported in this release:

• Pattern matching for function and variable names. For
example,

x*/

should display the values of all variables with names
beginning with "x".

X86/28613S6-6-29-87-4.0/2.2 - 6 - The Santa Cruz Operation

\
)

Development System Release Notes

• The"." command to redisplay the value of the last variable
typed.

• Restoring non-blocking reads. If your program is
performing a non-blocking read when it reaches an sdb
breakpoint, sdb does not return to non-blocking reads and
must be terminated with EOF.

• The e command to display current function name. The e
command does not return the current function name as
described.

3.5 ld

. _ The -.r option ofld(C.P) doe.s not work correctly for.object files that
contain the additional syJnbol table information used by the
symbolic debugger. If you use the -r option of ld to partially link
together several object modules that contain symbolic debugging
information, the code, data, and relocation informatiOJ1 in the
resulting object module will be correct, but the symbolic debugging
information will be unuseable.

3.6 cxref(CP)

c:xref(CP) is not supported in this release.

3.7 irand480 and krand480

The functions irand48() and krand48() are not supported in this
release.

3.8 asx(CP)

The pre-emerge assembler is included with this release for those
users who have programs that require it. It is called /blnlasx and is
documented on the manual page asx(CP).

Note that the manual page is incorrect in stating that asx(CP)
supports386code. asx supports only 8086 and 80286 code.

X86/2861386-6-29-87-4.0/2.2 -7- The Santa Cruz Operation

XENlX for personal computers

3.9 stdio.h

The buffer size used by the stsndard liO library is now 1024 bytes.
This change is reflected in the standard]/0 header tile
/usr/includelstdio.h whereBUFSIZ is defined as 1024 bytes.

This change does not affect existing XENIX executable binaries.
However, it is important that any object modules that use standard
liO functions and that were compiled using the old stdio.h with a
BUFSIZ of 512 bytes should be recompiled before they are linked
with the new libraries.

An alternative is to include the tile /llb!compati{SML}'ietbuf.o on the
command line when you link your program. This enables the new
libraries to work correctly with object modules that assume a
BUFSIZ of 512 bytes.

You should take particular care when you install products on XENIX
that are in the form of linkable objects rather. than executable
binaries. It is generally . necessary to include
llib/compat/[SML}setbuf.o in the link.

For example, if the installation procedure for a product includes a
link command such as:

cc -Mm -i -o prog proglib.a progsub.o -ltennlib

You should editit to read:

cc -MOm -i -o prog proglib.a progsub.o /lib/compat!Msetbuf.o -ltermlib

Note that it is safe to inclttde /llb!compati{SMLpetbuf.o, even if the
application was compiled with a standard liO BUFSIZ of1024 bytes.
The only consequence is that your buffer size is reduced to 512 and
the standard ll 0 package is slightly less efficient.

386 Development System users should also note that since their
default code generation mode is ·M3e, they need to explicitly specify
-MO or-MZwhen they link8086or80286code.

3.10 tty.h

In thefilelusrlincludelsysltty.h, Lproe is an:

X86/286/386 -6-29-87-4.0/2.2 -8 - The Santa Cruz Operation

Development System Release Notes

int (far *t_proc)Q

When including this file, be sure to enable near and far keywords by
/ usingthe-Metlag to cc(CP).
I.

3.11 types.b

Some of the C language .h files require that <sysltypes.h> be
included first. The following error message generally occurs when a
type is used in an #include file but not declared:

old fashioned initialization

Often, the problem is corrected by including <sysltypes.h> earlier in
the program.

3.12 malloc Issues

There are two versions of maHoc distributed with the XENIX
Development System. The standard malloc is contained in the file
1/iblllbc.a. There is an alternate malloc in llibllibmalloc.a. Both are
documented under the malloc(CP) manual page.

If your program uses many malloc and free calls, running the
program under the XENIX 386 Operating System may cause an
excessive page swapping problem as maHoc must search the entire
list of allocated and free blocks. If you are using malloe and free calls
extensively, it is suggested that you use the altemate malloe found in
llibllibmalloc.a. To use 1/ib//ibmalloc.a, compile your program with
the - lmaHoc flag on your cc(CP) command line.

The alternate malloe maintains a separate list of free blocks and is
faster, but <!�Ill itl :1ny allocated block is immediately overwritten
when the block is declared free. The standard malloc preserves data
between consecutive free and malloe calls. Some programs rely on
this functionality of the standard malloc.

3.13 brkctl(S) Library

brketi(S) is a XENIX specific system call that can be used by 861286
processes to allocate memory in far data segments. (see brketl(S).)

X86/286/386-6-29-87 -4.0/2.2 - 9- The Santa Cruz Operation

XENIX for personal computers

The full functionality of brkctl() is only aval!able to 8086/80286
binaries running under the XENIX 286 or XENIX 386 Operating
Systems.

XENIX 86 does not support the allocation of additional data
segments, therefore when brkctl() requests that require this are made
by an 8086 binary running under XENIX 86 they will fall. The
-compat option of the C compiler can be used to link 8086 binaries
with a special version of brkctl() ("m !libi[SML]libbrkctl.a) that
satisfies requests for additional data segments under XENIX 86 by
allocating shared memory segments.

XENIX 386 does not support 386 processes which have more than
one data segment. For compatibility, a special library
(/lib/386/SIIbbrkctl.a) has been provided that maps brkctl()
functions into calls to sbrk(S). This provides for the most common
uses of brketl(S), such as the allocation of additional memory.

Programs which rely on allocating multiple data segments and
manipulating the sizes of those segments will need to be altered to
work under XENIX386.

The following describes the functionality implemented by the 386
/ibbrkctl.a. Note in particular that the 386 brketl(S) returns a near
pointer and that the third argument is also a near pointer. If you do
not wish to alter your source code when compiling for the 386 you
should include ·Dfar= on the cc(CP) command line. This will cause
the preprocessor to remove all "far'' keywords from your code.

#include <syslbrk.h>
char *brkctl(cmd, inc, ptr)
int cmd;
long inc;
char *ptr;

When called frorn 386 processes brkctl() does not cause the
allocation or de-allocation of far data segments, it can only be used
to increase or decrease the memory allocation in the single data
segment available to386 processes.

Any of the commands BR...IMPSEG, BR..ARGSEG or
BR....NEWSEG can be used as they all have the same effect.

The plrargument in the above program example is ignored.

X86/286/386-6-29-87-4.0/2.2 -10- The Santa Cruz Operation

Development System Release Notes

It is unusual to allow the use of BJLNEWSEG with 386 processes
since it is not possible to allocate additional data segments.

/ , However, since B'R....NEWSEG is commonly used in small and
_) middle model 1!6/286 processes to allocate additional memory it was

decided to allow BILNEWSEG but to make its functionality the
same asBRJMJ>SEG.

In order to linkJ1386 !:>inflt')' with thisversion Qf l>rkctl()you should
specify ·lbrkctl on the cc(CP) command line.

3.14 stackuse(CP)

The stackuse(CP) utility is not included in this release. The manual
page for stackuse(CP) should be disregarded.

4. Operating System Speclflc Software Notes

4.1 8086 Operating System

4.1.1 cc(CP) Dduults

I_ -

The default code generation model is -MO (8086 small model). This
default can be changed by editing !etcldefaultlcc. See the cc(CP)
manual page for details.

4.1.2 Utilities Not Supported

The XENlX 80860peratiug System does not support the execution of
large model programs. Therefore, only the small model versions of
cc(CP), a db(CP), lint(CP), and make(CP) are supported.

sdb(CP) is not supported on the8086.

The -roption of ld(CP)is not supported on the 8086.

X86/286/386-6-29-87 -4.0/2.2 -11 - The Santa Cruz Operation

XENIX for personal computers

4.1.3 adb restrictions

The program debugger adb(CP) works to patch binaries, runs on
processes and core files, and sets breakpoints in the XENIX 86
Operating System. It does not perfonn stack backtraces.
Subprocess control does not work on medium model programs.
Breakpoints cannot be set on medium model programs.

4.1.4 Stack She Limitations

The default stack for programs ntn on an 8086 machine is a variable
stack, starting at the top of a full64K byte data segment. A full64K
of physical memory is allocated for combined stack and data. The
stack grows down until it reaches the data. While the use of a variable
stack can leave unused memory, it is useful for program
development. Use the -F flag to specU'y a fixed stack size. We
recommend you use the -F flag on final versions to increase the
performance of your binaries.

4.1.5 Floating-Point Exceptions

For compatibility reasons, floating-point exceptions (like dividing
by zero) are masked within the Ubc libraries. Serious problems arise
when printf(S) attempts to fonnat the result of a "divide-by-zero".
On an unmapped machine such as the 8086, anything may happen,
from an infinite loop to a system crash.

4.2 80286 Operating System

4.2.1 cc(CP) Defaults

The default code generation model is ·MO (8086 small model). This
default can be changed by editing letcldefaultlcc. See the cc.(CP)
manual page for details.

·

X86/286/386-6-29-87-4.0/2.2 - U - The Santa Cruz Operation

! I

Development System Release Notes

4.2.2 Large Model Utll!ties

This release includes large model passes of the C compiler. These
are invoked using the -LARGE llag with cc(CP). Only286machines
can run the large model passes of the compiler. Refer to the cc(CP)
manual page, and the chapter "cc: A C Compiler" in the XENIX C
User's Guide for more information on using large model passes.

If you encounter segmemalion violation errors while using the large
model passes of the compiler, try compiling without using code
optimization (-0). If the errors persist, use the standard compiler
passes instead of the large model passes (do not specify -LARGE on
thecc (CP) cmnmandllne).

In addition to c c(CP), large model adh(CP), cflow(CP), Jlnt(CP),
make(CP), nm(CP), and yacc(CP) are supplied with this release.

4.2.3 t!lndO

The function tftnd() is missing from the 8086 boraries. If tflnd() is
referenced in a program comiled with the -MO or •Ml option it will
be unresolved when the program is linked.

tfind() is present in the 386libraries and can be used in programs
compiled with the -M3 option. Note that programs compiled with
the -M3 option can only be executed under the XENIX386 Operating
System.

4.2.4 xdntn.h

The file lusrlinclude/xdata.h, which is referred to in the execseg(S)
manual page, is missing from the 286 Development System. It
contains the following type definitions and declarations:

typedef void (far *excode_t)();
typedef char far *exdata...t;
ext em excode_t execseg();

X86/286/386-6-29-87-4.0/2.2 - 13 - The Santa Cruz Operation

XENIX for personal computers

4.2.5 ld(CP)

The -s option of ld(CP) only accepts values up to 1016. Any
argument greater than 1016 returns the error message "Segment limit
set too high."

4.2.o Stack Size Limitations

The default stack for programs running under the XENIX 286
Operating System is a fixed size stack oflOOO hexadecimal bytes. Use
the -F flag to specify a different stack size, Variable stack size is not
supported by theXENIX286 Operating System.

4.2.7 Floating-Point Exceptions

For compatibility reasons, floating-point exceptions (like dividing
by zero) are masked within the Iibc libraries. Serious problems arise
when printf(S) attempts to format the result of a "divide-by-zero".
On the 80286, this error results in a reasonable memory fault.

4.2.3 sdb

sdb(CP) does not support debugging impure small model programs.

4..2.!l adb(CP)

adb(CP) disassembles the REP instruction prefix as REPNZ and
disassembles the REPNZ prefix as REP.

X86/286/386-6-29-87-4.0/2.2 -14- The Santa Cruz Operation

! 1--:- -

Development System Release Notes

4.3 80386 Operating System

4,3.1 oe(CP) Dcfoulls

The default code generation model for the 80386 is ·M3e. (80386
with non-ANSI extensions enabled.) This default can be changed by
editing/etc/default/cc. See the cc(CP) manual page for details.

4.3.1 Return Value From mnlnO

The return value from mainQ in a 386 binary is not passed to exitQ
when a program tenninates. Programs that do not call exit()

. explicitly, but rely upon retuming a value from main() will in fact.
exit() with an undeiined status.

4.3.3 Memory ll{odels

The only memory model supported for 386 code is "small" model.
Small model has two 32 bit segments; one for code and one for data.
Small, middle, large, and huge models are supported for 8086/286
code.

4.3.4 nm(CP)

The ·n option of nm(CP) generates an error with long name lists. To
sort a long name list, use the command line:

nm !sort

instead of the-n option.

4.3.5 masm386

masm386 address and operand prefix generation is not supported in
this release.

X86/286/386-6-29-87-4.0/2.2 - 15- The Santa Cruz Operation

XENIX for personal computers

4.3.6 Stock Size

&l386 programs have a variable sized stack that is expanded by the
kernel as needed. 8086/286 programs run under the 386 Operating
System have a fixed size stack. The default stack size, if the -F
option to the linker was not used, is 4 Kilobytes.

4.4 ANSI Features For 386

The 386 C compiler has a number of differences from the existing
8086/286 compiler. Most of these differences have been caused by a
move towards conformance with the proposed ANSI standard for
the C programming language. These differences can be disabled by
giving the -Me o.ption to cc(CP). t'[ote that the default option set in
/etcldefaultlcc is MJe and that, for reasons of backward
compatibllily, these new features are not normally enabled.

4.4�1 preprocessor names

Symbols which are nsed in #define, #ifdef and other preprocessor
commands must now conform with the same rules as those for C
identiliers. They must begin with an alphabetic character or an
Wlderscore and may only contain alphanumeric characters and the
underscore character.

Previous versions of the C compiler allowed other non­
alphanumeric characters such as"!' in preprocessor symbols.

4A.2 Tokens foUowlng #else and #endl.f

The 386 C compiler issues a warning if it finds anything other than
blank space or comments following an #else or #endifpreprocessor
directive. Thus the first example below would produce a warning but
the second would not.

#endif M_l386
#endif /* MJ386 */

These warnings are only produced if the warning level is set to 2 or
greater. The default warning level is 1 so these messages will not

X86/286/386-6-29-87-4.0/2.2 -16- The Santa Cruz Operation

Development System Release Notes

normally he seen.

(4.4.3' Substitution of macro fonnal parameters wlthln quoted strings

The proposed ANSI standard for C does not allow the suhstimtion
of macro formal parameters within quoted strings. However, many
existing C compilers, including the XENIX 86/286 C compiler, do
allow this. Consider the following macro definition and use:

#defineCfRL(c)

putchar(CTRL(g));

('c' & Oxlf)

The existing86/286 compiler expands this to:

putchar(('g' & Oxlf));

But according to theANSistandard it musthe:

putchar((' c' & Oxlf));

The -Me option to the 386 C compiler maintains compatibility with
the existing 86/286 compiler, but displays a warning that a non­
standard extension has been used. The ANSI standard defines a
mechanism for transforming macro formal parameters into quoted
strings (the "stringising" operator) and a mechani�m for "pasting"
strings. Neither of these have yet been implemented in the 386 C
compiler. If your code relies on substituting macro parameters within
quoted strings then you must compile with the ·Me option,

4A,4 Std�t�r checking of storage clnss In declarations

The ANSI slnndard requires that declarations and definitions of
functions and variables must have matching storage classes as well as
matching types. Typically, this causes problems in code when a
function is first used (and implicitly declares it as an "extern in t") and
is later defined as "static int." ANSI requires that the first use of the
function be preceded by an explicit declaration. Thus:

X86/286/386-6-29-87-4.012.2 -17- The Santa Cruz Operation

XENIX for personal computers

static int foo(); /*required by ANSI C *I

Program text

fooQ;

static foo()

The -Me option disables this strict checking of storage class.

4.5 Dift"erences between 286 and 386 code

In general there will be few problems in recompiling existing C
programs to run on the 80386. However, the following differences
between the 8086/80286 and the 80386 should be noted.

4.5.1 She of Integers

386 integers are 32 bits whereas 86/286 integers are 16 bits. This may
cause problems in programs that exchange binaxy data with other
programs or programs that have to read binary data from existing
data files. Note that the signed and unsigned short data types are 16
bits on both 86/286 and 386processors.

4.5.2 She of Pointers

386 small model code and data pointers are32 bits. On the 8086/286
the size of pointers depended on the memory model.

4.5.3 Assembly language Interface

The 386 assembly language lnterface is very similar to the 86/286
assembly language interface, but note that386 C code may use up to 3
register variables (esi, edl, ebx) whereas 86/286 code used at most 2
variables (si, di). It is essential that 386 assembly language routines
preserve the contents of ebxas well as esl and edl.

X86/286/386-6-29-87-4.0 /2.2 - 18 - The Santa Cruz Operation

Development System Release Notes

4.5.4 Zp2 and Zp4 structure alignment

There are different rules for calculating the size of structures and
alignment of structure members on the 386 and the 86/286. These
differences are described in deta:Uin Chapter 2 of the C User's Guide.

The #p ragma packO directive is supported by the 386 compiler.
This directive allows you to override the default structure packing
rules within a C souree file.

You may specify pack(l), pack(2), or pack(4) after the #pragma
directive. This has the same effect as placing one of the· Zpl, • Zp2,
or -Zp4 command line argmnents in your C compiler command.
packO with no arguments returns structure packing to whatever was
explicitly specified on the cc command line or the default (4) if
nothing was specified.

This directive is useful for insuring that structures in a 386 program
have the same alignment as those in 86/286 programs. Note that this
directive is only supported bythe386 C compiler.

4.5.5 mnsm

In addition to supporting the386 instruction set, the version ofmasm
shipped with the 386 Development System has some minor
differences in source code syntax from previous versions. For
compatibility, the 86/286 masm has been included in this
distribution as /bin/masm86.

5. Documentation Errata

5.1 cc(CP) Manual Page

In the description of the -o flag, it should be noted that the "I"
option is valid only for80386machines.

X86/286/386-6-29-87-4.0/2.2 - 19 - The Santa Cruz Operation

XENIX for personal computers

5.2 Intro(S) Manual Page

In the description of error message 12, the documentation states that
the message displayed reads:

Not enough space

The actual message displayed is

Not enough core

5.3 Device Drivers

There are two functions to allow systems programmers to translate
physical ROM memory addresses to virtual mel)lory addresses for
use in the 386 kernel. mapphysQ and unmapphysQ give the device
driver writer access to ROM. The syntax is:

pp= mapphys(physaddr, len)

Where physaddr is a char • variable that contains a physical address
and len is an integer that specifies the number of bytes to map. The
function returns a char • value which is the kernel virtual address to
use to access the desired area.

unnu�pphys unmaps l)lemory previously mapped with mapphys.
The parameters to unmapphys are as follows:

unmapphys(pp, len)

Where pp is the kernel virtual address gotten from a previous
mapphysO call. len is an integer specifying the number of bytes to
unmap. len should be the same within a mapphys/unmapphys
sequence.

The function physioQ fragments all requests for device I/0 into 4
Kbyte sections for purposes of reading and writing. Some devices,
such as certain tape drives, do not function correctly under this
format. This restriction may be eliminated in the future.

Please see the chapter "Writing Device Drivers" in the XEN1X
Programmer's Guide, Volume 2, for more 386 device driver
information.

X86/286/386-6-29-87-4.0/2.2 - 20 - The Santa Cruz Operation

Development System Release Notes

5.3.1 DeYice Driver Memory Allocatlon

There is a new way to allocate memory in device drivers. These new
routines allows device driver writers to allocate large amounts of
physically contiguous physical memory at run time.

The db_alloe and dbJree calls allocate and deallocate contiguous
pieces of memory. In addition, th,e .db_:read and db_write .calls
provide circular queue management for the allocated memory. Note
that the device driver writer may choose to substitute custom read
and write routines if they wish to manage the allocated memory
differently.

Also, note that these routioes are not system calls and are useable
only from within the kernel. This limits their use to the development
of device drivers and other kernel routines. This functionality is

· identical for both the80286and the80386.

5.3.2 Writing Device Drivers

In the discussion of dlno_alloc in Chapter 8 of the XENIX C User's .
Guide, itis stated that dtna_allocretums a valueofOifthe channel is
allocated and a value of 1 if it is not allocated. This statement is
incorrect and should read that dma_alloc:: returns a value of 1 if the
channel is allocated and a if it is not allocated.

Also, note that there are many references to the statement:

char far •

in the chapter "Writing Device Drivers" in the XENIX Programmer's
Guide, Volume 2. 1f you are using a 386, these references should
read:

·

char •

This is because the 386is an unsegmented processor.

5.4 swap add (S) Manual Page

The swapadd(S) utility listed in the Contents and Indexes in the
Programmer's Reference is not supported in this release, and there is
no swapadd(S) manual page.

X86/286/386-6-29-87-4.0/2.2 -21- The Santa Cruz Operation

XENIX for personal computers

5.5 curses(S) Manual Page

On page 4 of the manual page, the line:

mvwgetstr(y, x, str)

should read:

mvwgetstr(win, y, x, str)

And on page 6, there is a reference to the function restty() that
should read resetty().

5.6 shutdn(S) Manual Page

On page 1 of the shutdn{S) manual page, there is a reference to the
parameter ntsblk in the function call shutdn. The function call
parameter should read nsblk.

Also, the order of the #include files for shutdn reads:

#include <filesys.h>
#include <param.h>
#include <types.h>

The order ofthe #include files should be:

#include <types.h>
#include <param.h>
#incl ode <filesys .h>

5.7 terminfo(S) ManQal Page

On page 3 of the terminfo{S) manual page, the function calls:

mvgetstr(y, x)
mvwgetstr{win, y, x)

should read:

mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

Also, on page 5 of the terminfo{S) manual page, there are references
to the putc function. Note that this function call is different from the

X86/286/386-6-29-87-4.0/2.2 -22- The Santa Cruz Operation

Development System Release Notes

standard XEN1X macro putc supplied in <stdio.h>. Programmers
must supply their own putc function for internal use with tennlnfo.

5.8 execseg(S)

The execseg(S) manual page should include a note to the effect that
execseg(S) is a XEN1X specific system eaU. Programs that use
execseg must be linked Y.ith the ·lx option.

X86/286/386-6-29-87-4.0/2.2 -23- The Santa Cruz Operation

