

Information in this document is subject to change without notice and does not
represent a commitment on the part of The Santa Cruz Operation, Inc. nor
Microsoft Corporation. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement. It is against
the law to copy this software on magnetic tape, disk, or any other medium for
any purpose other than the purchaser’s personal use.

© 1983, 1984 Microsoft Corporation
© 1984, 1985 The Santa Cruz Operation, Inc.

This document was typeset with an IMAGEN® 8/300 Laser Printer.
XENIXis a registered trademark of Microsoft Corporation.

MS s a trademark of Microsoft Corporation.
IMAGEN is aregistered trademark of IMAGEN Corporation.

Document Number: G-2-14-85-1.3/1.0

Contents

1 Introduction

1.1 Overview 1-1

1.2 Creating C Language Programs 1-1

1.3 Creating Other Programs 1-2

1.4 Creating and Maintaining Libraries 1-2

1.5 Maintaining Program Source Files 1-2

1.6 Creating Programs With Shell Commands 1-3
1.7 Using ThisGuide 1-3

1.8 Notational Conventions 1-5

2 Ce: A C Compiler

21 Introduction 2-1

2.2 Invoking the C Compiler 2-1

23 Creating Programs From C Source File 2-2
2.4 Creating Small Middle and Large Programs 2-5
2.5 Using Object Filesand Libraries 2-7

2.6 Creating Smaller and Faster Programs 2-9
2.7 Preparing Programsfor Debugging 2-11
2.8 Controlling the C Preprocessor 2-13

2.9 Error Messages 2-15

2.10 Using Advanced Options 2-17

2.11 Compiler Summary 2-21

3 Lint: A C Program Checker

31 Introduction 3-1

3.2 Invoking lint 3-1

33 Checking for Unused Variablesand Functions 3-2
3.4 Checking Local Variables 3-3

3.5 Checking for Unreachable Statements 3-4
3.6 Checking for Infinite Loops 3-4

3.7 Checking Function Return Values 3-5

3.8 Checking for Unused Return Values 3-6

3.9 Checking Types 3-6

3.10 Checking TypeCasts 37

3.11 Checkingfor Nonportable CharacterUse 3-7
3.12 Checking for Assignment of longstoints 3-7
3.13 Checking for Strange Constructions 3-8

3.14 Checkingfor Use of Older CSyntax 3-9

3.15
3.16
3.17
3.18

4

5.1
5.2
53
54
5.5
5.6
5.7
58

5.10
5.11

Checking Pointer Alignment 3-10

Checking Expression Evaluation Order 3-10

Embedding Directives 3-11

Checking For Library Compatibility 3-12 (

Make: A Program Maintainer

Introduction 4-1

Creating aMakefile 4-1

Invoking Make 4-3

Using Pseudo-Target Names 4-4
Using Macros 4-5

Using Shell Environment Variables 4-8
Using the Built-In Rules 4-9
Changing the Built-in Rules 4-10
Using Libraries 4-12
Troubleshooting 4-13

Using Make: An Example 4-13

SCCS: A Source Code Control System

Introduction 5-1

Basic Information 5-1 ‘
Creating and Using S-files 5-5 (
Using Identification Keywords 5-13

Using S-fileFlags 5-15

Modifying S-file Information 5-16

Printing from an S-file 5-20

Editing by Several Users 5-21

Protecting S-files 5-23

Repairing SCCSFiles 5-25

Using Other Command Options 5-26

Adb: A Program Debugger

Introduction 6-1

Starting and Stopping Adb 6-1
Displaying Instructionsand Data 6-4
Debugging Program Execution 6-13
Displaying Memory Maps 6-24
MiscellaneousFeatures 6-25
Patching Binary Files 6-30

As: An Assembler (
Introduction 7-1

Command Usage 7-1
Characters, Numbers, and Names 7-1

7.4
7.5
7.6
7.7
7.8
79
7.10
7.11
7.12

8
81

83
84

8.6
8.7
88

8.10
8.11
812
8.13
8.14
8.15
8.16
817
8.18
8.19

9.1
9.2
9.3

9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

Statements and Comments 7-5
Source Files 7-6

Segments 7-7

Labels, Variables, and Symbols 7-13
Operands 7-16

Expressions 7-19

Instruction Mnemonics 7-26
Directives 7-33

Program Listing Format 7-52

Lex: A Lexical Analyzer

Introduction 8-1

Lex SourceFormat 8-2

Lex Regular Expressions 8-3

Invoking lez 8-4

Specifying Character Classes 8-5
Specifying an Arbitrary Character 8-6
Specifying Optional Expressions 8-6
Specifying Repeated Expressions 8-6
Specifying Alternation and Grouping 8-7
Specifying Context Sensitivity 87
Spectfying Expression Repetition 8-8
Specifying Definitions 8-8

Specifying Actions 8-8

Handling Ambiguous Source Rules 8-12
Specifying Left Context Sensitivity 8-15
Specifying Source Definitions 8-17
Lexand Yacc 8-18

Specifying Character Sets 8-22

Source Format 8-23

Yace: A Compiler-Compiler

Introduction 9-1
Specifications 9-4

Actions 9-6

Lexical Analysis 9-8

How the Parser Works 9-10
Ambiguity and Conflicts 9-14
Precedence 9-19
ErrorHandling 9-22

The YaccEnvironment 9-24
Preparing Specifications 9-25
Input Style 9-25

Left Recursion 9-26

Lexical Tie-ins 9-27
Handling Reserved Words 9-27

9.1
9.16
9.17
9.18
9.19
9.20
9.21

10

10.1
10.2
103
10.4
10.5
10.6
10.7
10.8

11

11.1
11.2
113
114
115
11.6

12

1211
12.2
123
12.4

Al
A2
A3
A4
A5
A6
AT
A8

Simulating Error and Accept in Actions 9-28
Accessing Valuesin Enclosing Rules 9-28
Supporting Arbitrary Value Types 9-29

A Small Desk Calculator 9-30

YaccInput Syntax 9-32

An Advanced Example 9-34

Old Features 9-40

XENIX to MS-DOS: A Cross Development System

Introduction 10-1

Creating Source Files 10-1

Compiling an MS-DOS Source File 10-2

Using Assembly Language SourceFiles 10-3
Creating Linking Object Files 10-3

Running and Debugging an MS-DOS Program 10-3
Transferring Programs Between Systems 10-4
Creating MS-DOS Libraries 10-4

Writing Device Drivers

Introduction 11-1

Kernel Environment 11-4

Kernel Support Routines 11-9

Parameter Passing to Device Drivers 11-18
Naming Conventions 11-18

Device Driversfor Character Devices 11-18

SampleDevice Drivers

Introduction 12-1

Sample Device Driver for Line Printer 12-2
Sample Device Driver for Terminal 12-8
Sample Device Driver for Disk Drive 12.25

C Language Portability

Introduction A-1

Program Portability A-2

Machine Hardware A-2

Compiler Differences A-7

Program Environment Differences A-13
Portability of Data A-13

Lint A-14

Byte Ordering Summary A-14

M4: A Macro Processor

Introduction B-1
Invoking m{ B-1

Defining Macros B-2
Quoting B-3

Using Arguments B-4
Using Arithmetic Built-ins B-5
Manipulating Files B-5
Using System Commands B-6
Using Conditionals B-6
Manipulating Strings B-7
Printing B-8

A Common Library For XENIX and MS-DOS

Introduction C-1

Common IncludeFiles C-2

Differences Between Common Routines C-3
Differences in Definitions C-9

MS-DOS Specific Routines C-10

Compiler, Assembler, and Linker Messages

Introduction D-1

Compiler Error Messages D-1

Compiler Requirementsand Limits D-16
Assembler Error Messages D-17

Linker Error Messages D-24

Chapter1

Introduction

1.1 Overview 1-1

1.2 Creating CLanguage Programs 1-1

1.3 Creating Other Programs 1-2

1.4 Creatingand Maintaining Libraries 1-2
1.5 Maintaining Program Source Files 1-2
1.6 Creating Programs With Shell Commands
1.7 Using This Guide 1-3

1.8 Notational Conventions 1-5

1-3

Introduction

1.1 Overview

This guide explains how to use the XENIX Development System to create and
maintain C language and assembly language programs. The system provides a
broad spectrum of programs and commands to help you design and develop
applications and system software. These programs and commands enable you
to create C and assembly language programs for execution on the XENIX
system. They also let you debug these programs, automate their creation, and
maintain different versions of the programs you develop.

The following sections introduce the programs and commands of the XENIX
Development System, and explain the steps you can take to develop programs
for the XENIX system. Most of the programs and commands in these
introductory sections are fully explained later in this guide. Some commands
mentioned here are part of the XENIX Operating System. These are explained
in the XENIX User’s Guide and XENIX Operations Guide.

1.2 Creating C Language Programs

All C language programs start as a collection of C program statements in a
source file. The XENIX system provides a number of text editors that let you
create source files easily and efficiently. The most convenient editor is the
screen-oriented editor vi. Vi provides many editing commands that let you
easily insert, replace, move, and search for text. All commands can be invoked
from command keys or from a command line. Vi also has a variety of options
that let you modify its operation.

Once a C language program has been written to a source file, you can create an
executable program by using the cc command. The ec command invokes the
XENIX C compiler which compiles the source file. This command also invokes
other XENIX programs to prepare the compiled program for execution.

You can debug an executable C program with the XENIX debugger adb. Adb
provides a direct interface to the machine instructions that make up an
executable program.

If you wish to check a program before compiling it, you can use lint, the XENIX
C program checker. Lint checks the content and construction of C language
programs for syntactical and logical errors. It also enforces a strict set of
guidelines for proper C programming style. Lint is normally used in the early
stages of program development to check for illegal and improper usage of the C
language.

Another way to check a program is with ¢b, the XENIX C program beautifier.

Cb improves readability of C programs, making detection of logical errors
easier.

1-1

XENIX Programmer’s Guide

1.3 Creating Other Programs

The C programming language can meet the needs of most programming
projects. In cases where finer control of execution is required, you may create
assembly language programs using the XENIX assembler as. As assembles
source files and produces relocatable object files that can be linked to your C
language programs with ld. The 1d program is the XENIX linker. It links
relocatable object files created by the C compiler or assembler to produce
executable programs. Note that the ec command automatically invokes the
linker and the assembler, so use of either as or 1d isoptional.

You can create source files for lexical analyzers and parsers using the program
generators lex and yace. Lexical analyzers are used in programs to pick
patterns out of complex input and convert these patterns into meaningful
values or tokens. Parsers are used in programs to convert meaningful sequences
of tokens and values into actions. The lex program is the XENIX lexical
analyzer generator. It generates lexical analyzers, written in C program
statements, from given specification files. The yaec program is the XENIX
parser generator. It generates parsers, written in C program statements, from
given specification files. Lex and yace are often used together to make
complete programs.

You can preprocess C and assembly language source files, or even lex and yacc
source files using the m4 macro processor. The m4 program performs several
preprocessing functions, such as converting macros to their defined values and
including the contents of files into asource file.

1.4 Creating and Maintaining Libraries

You can create libraries of useful C and assembly language functions and
programs using the ar and ranlib programs. Ar, the XENIX archiver, can be
used to create libraries of relocatable object files. Ranlib, the XENIX random
library generator, converts archive libraries to random libraries and places a
table of contents at the front of each library

The lorder command finds the ordering relation in an object library. The
tsort command topologically sorts object libraries so that dependencies are
apparent.

1.5 Maintaining Program Source Files

You can automate the creation of executable programs from C and assembly
language source files and maintain your source files using the make program
and the SCCS commands.

The make program is the XENIX program maintainer. It automates the steps

required to create executable programs, and provides a mechanism for ensuring

1-2

Introduction

up-to-date programs. It is used with medium-scale programming projects.

The Source Code Control (SCCS) commands let you maintain different versions
of asingle program. The commands compress all versions of a source file into a
single file containing a list of differences. These commands also restore
compressed files to their original size and content.

Many XENIX commands let you carefully examine a program’s source files. The
ctags command creates a tags file so that C functions can be quickly found in a
set of related C source files. The mkstr command creates an error message file
by examining a C source file.

Other commands let you examine object and executable binary files. The nm
command prints the list of symbol names in a program. The hd command
performs a hexadecimal dump of given files, printing files in a variety of
formats, one of which is hexadecimal. The size command reports the size of an
object file. The strings command finds and prints readable text (strings) in an
object or other binary file. The strip command removes symbols and
relocation bits from executable files. The sum command computesa checksum
value for a file and a count of its blocks. It is used in looking for bad spotsin a file
and for verifying transmission of data between systems. The xstr command
extracts stringsfrom C programs to implement shared strings.

1.8 Creating Programs With Shell Commands

In some cases, it is easier to write a program as a series of XENIX shell commands
than it is to create a C language program. Shell commands provide much of the
same control capability as the C language, and give direct access to all the
commands and programs normally available to the XENIX user.

The e¢sh command invokes the C-shell, a XENIX command interpreter. The C-
shell interprets and executes commands taken from the keyboard or from a
command file. It has a C-like syntax which makes programming in this

command language easy. It also has an aliasing facility, and a command history
mechanism.

1.7 Using This Guide

This guide is intended for programmers who are familiar with the C
programming language and with the XENIX system .

Chapter 1 introduces the XENIX software development programs provided with
this package.

Chapter 2 explains how to compile C language programs using the ec command.

Chapter 3 explains how to check C language programs for syntactical and

1-3

XENIX Programmer’s Guide

semantical correctness using the C program checker lint.

Chapter 4 explains how to automate the development of a program or other
project using the make program.

Chapter 5 explains how to control and maintain all versions of a project’s source
files using the SCCS commands.

Chapter 6 explains how to debug C and assembly language programs using the
XENIX debugger adb.

Chapter 7 explains how to assemble assembly language programs using the
XENIX assembler as.

Chapter 8 explains how to create lexical analyzers using the program generator
lex.

Chapter 9 explains how to create parsers using the program generator yacec.

Chapter 10 explains how to use XENIX as a cross-development environment to
create DOS programs.

Chapter 11 explains how to write device drivers.

Chapter 12 includes sample device drivers, and explains the syntax and logic
used.

Appendix A explains how to write C language programs that can be compiled on
other XENIX systems.

Appendix B explains how to use to create and process macros using the m4
IMacro processor.

Appendix C discusses library routines available for XENIX and DOS cross
development.

Appendix D exptains compiler, assembler and linker error messages.

C language programmers should read Chapters 2, 3, and 6 for an explanation of
how to compile and debug C language programs.

Assembly language programmers should read Chapter 7 for an explanation of
the XENIX assembler and Chapter 6 for an explanation of how to debug
programs.

Programmers who wish to automate the compilation process of their programs
should read Chapter 4 for an explanation of the make program. Programmers
who wish to organize and maintain multiple versions of their programs should
read Chapter 5 for an explanation of the Source Code Control System (SCCS)

1-4

commands.

Introduction

Special project programmers who need a convenient way to produce lexical
analyzers and parsers should read Chapters 8 and 9 for explanations of the lex
and yace program generators.

XENIX programmers who want to write programs executable under DOS should
read Chapter 10 and Appendix C tolearn to use ce¢, dosld, and the XENIX-DOS
common libraries for DOS compilation.

1.8 Notational Conventions

This guide uses a number of special symbols to describe the syntax of XENIX
commands. The following isa list of these symbols and their meaning.

[

SMALL

bold

stalics

Brackets indicate an optional command
argument.

Ellipses indicate that the preceding argument may
be repeated one or more times.

Small capitalsindicate a key to be pressed.

Boldface characters indicate a command or
program name.

Italic characters indicate a placeholder for a
command argument. When typing a command, a
placeholder must be replaced with an appropriate
filename, number, or option.

1-5

Chapter 2
Cc: A C Compiler

2.1

2.2

23

24

2.5

2.6

2.7

2.8

Introduction 2-1
Invoking the C Compiler 2-1

Creating ProgramsFrom C Source Files 2-2
2.3.1 Compiling a CSourceFile 2-2

2.3.2 Compiling Several Source Files 2-3
2.3.3 Naming the OutputFile 2-4

Creating Small, Middle, and Large Programs 2-5

2.4.1 Creating SmallModel Programs 2-6

2.4.2 Creating Pure-Text Small Model Programs 2-6
2.4.3 CreatingMiddle Model Programs 2-6

2.4.4 Creating LargeModel Programs 2-7

Using Object Filesand Libraries 2-7

2.5.1 CreatingObjectFiles 2-7

2.5.2 Creating ProgramsFrom ObjectFiles 2-8

2.5.3 Linking aProgram to Functions In Libraries 2-8

Creating Smaller and Faster Programs 2-9

2.6.1 Creating Optimized Object Files 2-9

2.8.2 Stripping the Symbol Table 2-10

2.6.3 Removing Stack ProbesFrom aProgram 2-11

Preparing Programs for Debugging 2-11
2.7.1 Producing an Assembly Language Listing 2-11
2.7.2 Profiling aProgram 2-12

Controlling the CPreprocessor 2-13
2.8.1 DefiningaMacro 2-13

2.8.2 Defining Include Directories 2-14
2.8.3 Ignoring the Default Include Directories 2-14
2.8.4 Saving aPreprocessed SourceFile 2-15

2.9 ErrorMessages 2-15
2.9.1 C CompilerMessages 2-16
2.9.2 Settingthe Level of Warnings 2-16

2.10 Using Advanced Options 2-17

2.10.1 Creating Programs From Assembly Language Source
Files 2-18

2.10.2 Usingthe near and far Keywords 2-18

2.10.3 Changing Word Order in Programs 2-19

2.10.4 Setting the Stack Size 2-20

2.10.5 UsingModules, Segments, and Groups 2-20

2.11 Compiler Summary 2-21
2.11.1 CcOptions 2-22
2.11.2 Memory Models 2-23
2.11.3 Pointer and Integer Sizes 2-24
2.11.4 Segmentand Module Names 2-24

Cc: A C Compiler

2.1 Introduction

This chapter explains how to use the cc command. In particular, it explains
how to

— Compile Clanguage source files

— Choose amemory model for a program

— Useobject filesand libraries with a program

— Create smaller and faster programs

— Prepare C programs for debugging

— Control the C preprocessor
It also describes the error and warning messages generated by the C compiler,
and explains how to use advanced features of the cc command to make
customized programs.
This chapter assumes that you are familiar with the C programming language,
and that you can create C program source files using a XENIX text editor. Fora
description of the C language, see the XENIX Microsoft C Reference Manual.
2.2 Invoking the C Compiler
The cc command has the form

cc| option] ... filename ...

where option is a command option, and filename is the name of a C language
source file, an assembly language source file, an object file, or an archive library.
You may give more than one option or filenanie, if desired, but must separate
each item with one or more spaces.
The ce command options let you control and mdify the tasks performed by the
command. For example, you can direct ec to perform optimization or create an
assembly listing file. The options also let you specify additional information
about the compilation, such as which progran: libraries to examine and what
the name of the executable file should be. Many options are described in the

following sections. For a complete description of all options, see ¢c{CP) in the
XENIX Reference Manual.

XENIX Programmer’s Guide

2.3 Creating Programs From C Source Files

The cc command is normally used to create executable programs from C
language source files. A file's contents are identified by the filename extension.
C source files must have the extension *“.c”.

The cc command can create executable programs only from source files that
make up a complete C program. In XENIX, a complete program must have one
(and only one) function named “main”. This function becomes the entry point
for program execution. The ‘‘main” function may call other functions aslong as
they are defined within the program or are part of the C standard library. The
standard C library is described in the XENIX Programmer’s Reference.

2.3.1 Compiling a C SourceFile
You can compile a C source file by giving the name of the file when you invoke
the cc command. The command compiles the statements in the file, then copies
the executable program to the default output file a. out.
To compile a source program, type

cc filename
where filename is the name of the file containing the program. The program
must be complete, that is, it must contain a “main’ program function. It may
also contain calls to functions explicitly defined by the program or by the
standard C library.

For example, assume that the following program is stored in the file named
main.c.

#include <stdio.h>
main()
intx,y;
scanf(” %d %d”, &x, &y);

printf("%d\n", x+y);
}

To compile thisprogram, type:
ccmain.c

The command first invokes the C preprocessor, which adds the statements in
the file /usr/include/stdio.h to the beginning of the program. It then compiles

Ce: A C Compiler

these statements and the rest of the program statements. Next, the command
links the program with the standard C library, which contains the object files
for the scanf and printf functions. Finally, it copies the program to the file
a.out.

You can execute the new program by typing
a.out

The program waits until you enter two numbers, then prints their sum. For
example, if you type ‘3 5" the program displays “8"’.

2.3.2 Compiling Several SourceFiles

Large source programs are often split into several files to make them easier to
understand, update and edit. You can compile such a program by giving the
names of all the files belonging to the program when you invoke the ce
command. The command reads and compiles each file in turn, then links all
object files together, and copies the new program to the file a. out.

To compile several source files, type
cc filename . . .

where each filename is separated from the next by at least one space. One of
these files (and only one) must contain a “main’ function. The others may
contain functions that are called by this ‘‘main’’ function or by other functions
in the program. The files must not contain calls to functions that are not
explicitly defined by the program or by the standard C library.

For example, suppose the following main program function is stored in the file
main.

#include <stdio.h>
extern int add();

main ()
intx,y,z;
scanf("%d %d”, &x, &y);

z=add(x,y);
printf("%d \n", z);

XENIX Programmer’s Guide

Assume that the following function isstored in the file add.c.

add(a,b)
inta,b;

return(a+ b);

}

You can compile these filesand create an executable program by typing:
ccmain.cadd.c

The command compiles the statements in main.c, then compiles the statements
in aedd.c. Finally, it links the two together (along with the standard C library)
and copies the program to a.out. This program, like the program in the previous
section, waitsfor two numbers, then prints their sum.

Since the cc command cannot keep track of more than one compiled file at a
time, when several source files are compiled at a time, the command creates
object files to hold the binary code generated for each source file. These object
files are then linked to create an executable program. The object files have the
same basename as the source files, but are given the *.0” file extension. For
example, when you compile the two source files above, the compiler produces
the object files main.o and add.o. These files are permanent files, i.e., the
command does not delete them after completing its operation. Note that the
command also creates an object file if only one source file is compiled.

2.3.3 Naming the OutputFile

You can give the executable program file any valid filename by using the —o (for
““output”’) option. Theoption has the form

-0 filename
where filename is a valid filename or pathname. If a filename is given, the
program file is stored in the current directory. If a full pathname is given, the
file is stored in the given directory. If that file already exists, its contents are
replaced with the new executable program.
For example, the command

cc ~oaddem main.c add.o

causes the compiler to create an executable program file addem from the source
file masn.c and object file add. 0. You can execute this program by typing:

Ce: A C Compiler

addem

Note that the —o option does not affect the existing a.out file. This means that
the cc command does not change the current contents of a.out if the —o option
hasbeen given.

2.4 Creating Small,Middle,and Large Programs

The cc command lets you create programs of a variety of sizes and purposes
using the —Ms, —-Mm, —M1, and -i options. These options define the size of a
given program by defining the number of segments in physical memory to be
allocated for your program’s use. They also determine how the system loads the
program for execution.

The cc command allows the creation of programs in four different memory
models: impure-text small model, pure-text small model, middle model, and
large model. Each model defines a different type of program structure and
storage.

Impure-text small model programs are typically C programs that are short or
have alimited purpose. These programs must not exceed 64 Kbytes.

Pure-text small model programs are typically short programs that are intended
to be invoked by many users. Pure-text programs can occupy up to 128 Kbytes,
but no more than 64 Kbytes each is permitted for either instructions or data.
Unlike small model programs, the system loads only one copy of a pure-text
program’s instructions into memory, no matter how many times it has been
invoked. As long as this copy stays in memory, the system simply loads a new
copy of the data for each new invocation of the program. It then keeps each
copy of data separate, while sharing the instructions among the different
invocations. Pure-text programs save valuable memory space that would
otherwise be wasted by small model programs.

Middle model programs are typically C programs, that have a large number of
program statements but a relatively small amount of data. Program
instructions can be any size, but program data must not exceed 64 Kbytes.

Large model programs are typically very large C programs which use a large
amount of data storage during normal processing. Program instructions and
data may have any size, except that the program must not contain arrays or
structures that exceed 64 Kbytes.

C programs in memory consist of the actual machine instructions created from
the program’s source statements, and the several bytes of binary data storage
created for the program'’s variables. The data storage also contains the stack
used by the program for temporary storage during execution. The XENIKX
system stores the instructions and data in one or more segments of physical

XENIX Programmer’s Guide

memory. Each segment is 64 Kbytes long. Thus, the maximum allowable size
for any program depends on how many segments allocated for it when
compiled.

The following sections describe how to use the ~M and —i options to create
programs with a specific number of segments. They also describe how to create
pure-text programs for execution by multiple users.
2.4.1 Creating Small Model Programs
You can create a small model program by using the —Ms option. This option
directs cc to create a program that occupies a single segment when loaded into
physicalmemory. To create a small model program, type

cc-Ms filename
where filename is the name of the program you wish to compile.
The e¢c command creates small model programs by default when you do not
otherwise specify a program model. Thus, the -Ms option isnot required.
2.4.2 Creating Pure-Text Small Model Programs
You can create a pure-text small model program by combining the —i and -Ms
options. The —i option directs ce to create separate memory segments for the

instructions and data of asmall model program. To create a pure-text program,
type

cc—Ms-i filename
where filename is the name of the file source program to be compiled. Since ce
creates small model programs by default, only the —ioption isrequired.
2.4.3 Creating Middle Model Programs
You can create amiddle model program by using the —-Mm option. Thisoption
creates one segment for the data of the program, and one or more segments for
the instructions. To create a middle model program, type

cc—Mm filename ...
where filename is the name of the source file to be compiled. When creating a

program, the compiler attempts to fit as many instructions into a segment (up
to 64 Kbytes) as possible.

Cc: A C Compiler

Middle model programs are pure in the sense that the system never loads more
than one copy of the program’s instructions into memory at one time. This
means the —i option, used with pure-text small model programs, is not required
for middle model programs.

2.4.4 Creating Large Model Programs

You can create large model programs by using the —MIl option. This option
directs cc to create multiple segments for both instructions and data. To create
alarge model program, type

cc-Ml filename

where filename is the name of asource file to be compiled. Aswith middle model
programs, the compiler attempts to fit as many instructions into a segment as
possible.

Like middle model programs, large model programs are considered to be pure.

2.5 Using Object Filesand Libraries

The c¢c command lets you save useful functions as object files, and use these
object files to create programs at a later time. Object files contain the compiled
or assembled instructions of your source file, so they save you the time and
trouble of recompiling the functions each time you need them. All object files
created by cc have the file extension ““.0"

The cec command also lets you use functions found in XENIX system libraries,
such as the standard C library or the screen processing library curses. To use
these functions, you simply supply the name of the library containing them. In
some cases, such as for the standard C library, cc accesses the library
automatically and no explicit naming isrequired.

For convenience, you can create your own libraries with the ar and ranlib
commands. These commands, described in section CP of the XENIX Reference
Manual, copy your useful object files to alibrary file, and prepare the file for use
by the ce command. You can access the library like any other library in the
system if you copy it to the /It directory.

2.5.1 Creating Object Files
You can create an object file from a given source file by using the —c (for

‘‘compile’’) option. This option directs cc to compile the source file without
creating a final program. The option has the form

XENIX Programmer’s Guide

—c filename ...

where filename is the name of the source file. You may give more than one
filename if you wish. Make sure each name is separated from the next by a
space.

To make object files for the source files add. c and mult.c, type:
cc—cadd.c mult.c

This command compiles each file and copies the compiled source files to the
object files add. o and mult.o. It does not link these files; no executable program
is created.

The —c option is typically used to save useful functions for programs to be
developed later. Once a function is in an object file it may be used asis, orsaved
in a library file and accessed like other library functions, as described in the
following sections.

Note that the ce command automatically creates object files for each source file
in the command line. Unlessthe —c option isgiven, however, it will also attempt
to link these files, even if they do not form a complete program.

2.5.2 Creating Programs From Object Files

You can use the ee command to create executable programs from one or more
object files, or from a combination of object files and C source files. The
command compiles the source files (if any), then links the compiled source files
with the object files to create an executable program.

To create a program, give the names of the object and source files you wish to
use. For example, if the source file masn. ¢ contains calls to the functions add
and mult (saved in the object files add. o and mult. o), you can create a program
by typing:

cc main.c add .omult.o
In this case, maisn. ¢ is compiled, then linked with add.oand mult.o to create the
executablefile a.out.
2.5.3 Linking a Program to FunctionsIn Libraries
You can link a program to functions in a library by using the —I (for “‘library”’)
option. The option directs cc to search the given library for the functions called

in the source file. If the functions are found, the command links them to the
program file.

2-8

Ce: A C Compiler

The option has the form
cc-Iname

where name is a shortened version of the library’s actual filename (see Intro(S)
in the XENIX Reference Manual for a list of names). Spaces between the name
and option are optional. The linker searches the /Iib directory for the library. If
not found, itsearches the /usr/lib directory.

For example, the command
cc main.c —lcurses
links the library /lib/libcurses.a tothe source file main.c.

A library is a convenient way to store a large collection of object files. The
XENIX system provides several libraries, the most common of which is the
standard C library. Functions in this library are automatically linked to your
program whenever you invoke the compiler. Other libraries, such as
libcurses.a, must be explicitly linked using the —1 option. The XENIX libraries
and their functions are described in detail in the XENIX Programmer’s
Reference.

In general, the cc command does not search a library until the ~1 option is
encountered, so the placement of the option is important. The option must
follow the names of any source files containing calls to functions in the given
library. In general, all library options should be placed at the end of the
command line, after all source and object files.

2.6 Creating Smaller and Faster Programs

You can create smaller and faster C programs by using the optimizing options
available with the ee command. These options reduce the size of a compiled
program by removing unnecessary or redundant instructions or unnecessary
symbol information. Smaller programs usually run faster and save valuable
space.

2.8.1 Creating Optimized Object Files

You can create an optimized object file or an optimized program from a given
source file by using the —~O (for “‘optimize’’) option. Thisoption reduces thesize
of the object file or program by removing unnecessary instructions. For

example, the command

cc—O main.c

XENIX Programmer’s Guide

creates an optimized program from the source file masn.c. Theresulting object
file or program is smaller (in bytes) than if the source had been compiled
without the option. A smaller object file usually means faster execution.

The —O option applies to source files only; existing object files are ignored if
included with this option. The option must appear before the names of the files
you wish tooptimize. For example, the command

cc-Oadd.cmain.c

optimizes masn.cand add.c.

You may combine the —O and —c options to compile and optimize source files
without linking the resulting object files. For example, the command

cc—-O-cmain.cadd.c
creates separate optimized object filesfrom the source files masin.cand add. c.

Although optimization is very useful for large programs, it takes more time
than regular compilation. In general, it should be used in the last stage of
program development, after the program hasbeen debugged.

2.8.2 Stripping the Symbol Table

You can reduce the size of a program'’s executable file by using the —s and —x
options. These options direct cc to remove items from the symbol table. The
symbol table contains information about code relocation and program symbols
and is used by the XENIX debugger adb to allow symbolic references to variables
and functions when debugging. The information in this table is not required for
normal execution, and should be removed when the program has been
completely debugged.

The —s option strips the entire table, leaving machine instructions only. For
example, the command

cc-smain.cadd.c

creates an executable program that contains nosymbol table. It also creates the
object files masfn.o and add. o which contain nosymbol tables.

The —x option strips all nonglobal symbols from the file including the names of
local functions and variables, but excluding externally declared items. The
command

cc—xmain.oadd.o

2-10

Ce: A C Compiler

creates an executable program with global symbols, but only if the object files
main.oand add. o havesymbol tables.

The —8 and —x options may be combined with the —O option to create an
optimized and stripped program. Note that you can also strip a program with
the XENIX command strip(CP). See the XENIX Reference Manualfor details.

2.8.3 Removing Stack ProbesFromaProgram

You can reduce the size of a program slightly by using the K option toremove
all stack probes. A stack probe is a short routine called by a function to check
the program stack for available space. The probes are not needed if the
program makesvery few function callsor has unlimited stack space.

Toremove the stack probes from the program main. c, type
cc-Kmain.c

Although this option, when combined with the —O option, makes the smallest
possible program, it should be used with great care. Removing stack probes
from a program whose stack use is not well known can cause execution errors.

2.7 Preparing Programs for Debugging

The ce command provides a variety of options to prepare a program that is
under development for debugging. These options range from creating an
assembly language listing of the program, for use with the XENIX debugger
adb, toadding routines for profiling the execution of a program.

2.7.1 Producing an Assembly LanguageListing

You can direct the compiler to generate an assembly language listing of your
compiled source file by using the —S and —L options. The —S option creates an
assembly language listing. The —L option createsa listing that shows assembled
code, as well as instructions. The file created by —S is given the file extension
t*.8"; the file created by —~L isgiven “ L

Assembly language listing files are typically used by programmers who wish to
debug their program with adb. Since adb recognizes machine instructions
instead of the actual source statements in your program, a programmer needs
an assembly language listing for accurate debugging.

To create an assembly language listing, give the name of the desired source file.
For example, the command

2-11

XENIX Programmer’s Guide

cc-Sadd.c
creates an assembly language listing file named add.s and the command
cc-Lmult.c

creates a listing file named mult.L. Note that both the —S and —LL commands
suppress subsequent compilation of the source file; they imply the —¢ option.
Thus, no program file is created and no linking is performed.

The —S and —L options apply to source files only; the compiler cannot create an
assembly language listing file from an existing object file. Furthermore, the
option in the command line must appear before the names of the files for which
the assembly listing is to be saved.

Note

The assembly language files created by the -S and -L options are not
suitable as input to the XENIX assembler as.

2.7.2 Profiling a Program

You can examine the flow of execution of a program by adding “profiling” code
to the program with the —p option. The profiling code automatically keeps a
record of the number of times program functions are called during execution of
the program. This record is written to the mon.out file and can be examined
with the prof command.

For example, the command

cc—p main.c
adds profiling code to the program created from the source file masn.c. The
profiling code automatically calls the monstor function, which creates the
mon.out file at normal termination of the program. The prof command and
monitor function are described in detail in profCP) and moniter(S) in the
XENIX Reference Manual.

The —p option must be given in any command line that references object files
that contain profiling code. For example, if the command

cc—c—pflcf2.c

Ce: A C Compiler

was used to create the object files f1.0and f2.0, then the command

cc-pfl.of2.o

must be used to create an executable program from these files.

2.8 Controlling the C Preprocessor

The cc command provides a number of options that let you control the
operation of the C preprocessor. These options let you define macros, create
new search paths for include files, and suppress subsequent compilation of the
source file.

2.8.1 Defining a Macro
You can define the value or meaning of a macro used in a source file by using the
~D (for ‘“define”) option. The option lets you assign a value to a macro when
you invoke the compiler, and is useful if you have used if, ifdef, and ifndef
directives in your source files.
The option has the form

-Dname| =string]
where name is the name of the macro and string is its value or meaning. If no
string is given, the macro is assumed to be defined and its value is set to 1. For
example, the command

cc~-DNEED=2 main.c

sets the macro “NEED” to the value “‘2”. This is the same as having the
directive

#define NEED 2

in the source file. The command compiles the source file main. ¢, replacing every
occurrence of “NEED" with *‘2”

The —D option is especially useful with the ifdef directive. You can use the
option to determine which statements in the source are to be compiled. For
example, suppose a source file, main.c, contains the directive

#ifdef NEED

but does not contain an explicit define directive for the macro “NEED” Then
all statements following the ifdef directive are compiled only if you supply an

2-13

XENIX Programmer’s Guide

explicit definition of “NEED" using the —D option. For example, the command
cc-DNEED main.c

is sufficient to compile all statements following the ifdef directive, while the
command

ccmain.c
causes all those statements to be ignored.
You may use —D to define up to 20 macros on a command line. However, you
cannot redefine a macroonce it has been defined. If a file uses a macro, you must
place the —D option before that file’s name on the command line. For example,
inthe command

cc main.c-DNEED add.c

the macro “NEED” isdefined for add.c but not defined for main.c.

2.8.2 Defining Include Directories
You can explicitly define the directories containing ‘‘include’ files by using the
—I (for *“include”) option. This option adds the given directory to a list of
directories to be searched for include files. The directories in the list are
searched whenever an include directive is encountered in the source file. The
option has the form

—ldsrectoryname

where directorynameis a valid pathname to a directory containing include files.
For example, the command

cc-I/usr/joe/include main.c

causes the compiler to search the directory /usr/joe/include for include files
requested by the source file masn.c.

The directories are searched in the order they are listed and only until the given
include file is found. The /usr/include directory is the default include directory
and is always searched after directoriesgiven with —I.

2.8.3 Ignoring the Default Include Directories

You can prevent the C preprocessor from searching the default include
directories by using the —X option. This option is generally used with the I

2-14

Cc: A C Compiler

option to define the location of include files that have the same names as those
found in the default directories, but which contain different definitions. For
example, the command

cc-X-I/usr/joe/include main.cadd.c

causes cc to look for all include filesonly in the directory /usr/joe/include.

2.8.4 Saving a Preprocessed SourceFile

You can save a copy of the preprocessed source file by using the —P and —E
options. The file is identical to the original source file except that all C
preprocesor directives have been expanded or replaced. The —P option copies
the result to the file named filename.i, where filename is the same name as the
source file without the ‘‘.c” extension. The —E option copies the result to the
standard output, and places a #line directive at the beginning and end of this
output. You can save thisoutput by redirecting it.

For example, the command
cc-P main.c

creates a preprocessed file main.sfrom the source file masn.c, and the command
cc-Eadd.c >add.i

creates a preprocessed file from the source file add.c. The output isredirected to
thefile add.s.

Note that —P and —E suppress compilation of the source file. Thus, no object
file or program is created.

2.9 Error Messages

The C compiler generates a broad range of error and warning messages to help
you locate errors and potential problems in programs. In addition to compiler
messages, the cc command also displays error messages generated by the XENIX
C preprocessor and the XENIX assembler and linker programs. The following
sections describe the form and meaning of the compiler error messages and
warning messages you can encounter while using the cc command. For a
complete list of error messages, see Appendix D, “Compiler, Assembler, and
Linker Messages”

2-15

XENIX Programmer’s Guide

2.9.1 C Compiler Messages

The C compiler displays messages about syntactical and semantic errors in a
source file, such as misplaced punctuation, lllegal use of operators, and
undeclared variables. It also displays warning messages about statements
containing potential problems caused by data conversions or the mismatch of
types. Error and warning messages have the form

filename(linenumber): message

where filename is the name of the source file being compiled, linenumber is the
number of the line in the source file containing the error, and message is a self-
explanatory description of the error or warning.

If an error is severe, the compiler displays a message and terminates the
compilation. Otherwise, the compiler continues looking for other errors, but
does not create an object file. If only warning messages are displayed, the
compiler completes compilation and creates an object file.

You can avoid many C compiler errors by using the XENIX C program checker
Iint before compiling your C source files. Lint performs detailed error checking
on a source file, and provides a list of actual errors and possible problems which
may affect execution of the program. For a description of lint, see Chapter 3,
“Lint: A CProgram Checker”

2.9.2 Setting the Level of Warnings

You can set the level of warning messages produced by the compiler by using
the —W option. This option directs the compiler to display messages about
statements which may not be compiled as the programmer intends. Warnings
indicate potential problems rather than actual errors. The option has theform

-W number

where number is a number in the range O to 3 giving the level of warnings. The
leveisare

2-16

Cc: A C Compiler

Level Warning

0 Suppresses all warning
messages. Only messages
about actual syntactical
or semantic errors are
displayed.

1 Warns about potentially
missing statements, non-
reachable statements, and
other structural problems.
Also, warns about overt

type mismatches.

2 Warns about all type
mismatches (strong
typing).

3 Warns on all automatic

data conversions.

If the option is not used, the default islevel 1.
The higher option levels are especially useful in the earlier stages of program
development when messages about potential problems are most helpful. The
lower levels are best for compiling programs whose questionable statements are
intentionally designed. For example, the command

cc-W3main.c

directs the compiler to perform the highest level of checking, and produces the
greatest number warning messages. The command

cc-WOmain.c

produces no warning messages. Note that the —w option has the same effect as
-Wo.

2.10 Using Advanced Options

The cc command provides a number of advanced programming options that
give greater control over the compilation process and the final form of the
executable program. The followingsections describe a number of these options.

2-17

XENIX Programmer’s Guide

2.10.1 Creating Programs From Assembly Language Source Files

You can use the ec command to create executable programs from a combination
of C source files and 8086/286 assembly language source files. Assembly
language source files must contain 8086/286 instructions, as described in
Chapter 7, “As: An Assembler,” and must have the extension **.s”’

When assembly language source files are given, the ce command invokes the
XENIX assembler, as, to assemble the instructions and create an object file. The
object file can then be linked with object files created by the compiler. For
example, the command

cc main.c add.s

compiles the C source file main.c, but assembles the assemble language source
file add.s. The resulting object files, matn.o and add.o, are linked to form a
single program.

When using assembly language routines with C programs, you must be sure to
provide the correct interface for calls to and from C language functions. C
functions require a specific calling and return sequence. Assembly language
functions which fail to provide this interface will cause errors. See Appendix A,
‘‘Assembly Language Interface,” in the XENIX Programmer’s Reference.

2.10.2 Using the near and far Keywords

The near and far keywords are special type modifiers that define the length
and meaning of the address of a given variable. The near keyword defines an
object with a 16 bit address. The far keyword defines an object with a full 32 bit
segmented address. Any dataitem or function can be accessed.

The near and far keywords override the normal address length generated by
the compiler for variables and functions. In small model programs, far lets you
access data and functions in segments outside of the program. In middle and
large model programs, near lets you access data with just an offset.

The examples in the following table illustrate the far and near keywords as
used in declarations in a small model program.

2-18

Ce: A C Compiler

Usesof near and far Keywords

Declaration | AddressSize | ItemSize

charc; near (16 bits) 8bits(data)

charfard; far (32 bits) 8bits(data)

char #p; near (16 bits) 16 bits (near pointer)
charfar*q; near (16 bits}) 32 bits(far pointer)

char# farr; far (32 bits) 16 bits (near pointer)[1]
charfar#fars; | far(32bits) 32 bits(far pointer)[2]

int foo(); near(16bits) | function returning 16 bits

int far foo(); far (32 bits) function returning 16 bits(3] |

Notes:

[1] This example has no meaning; it is shown for syntactic completeness
only.

[2] Thisissimilar to accessing datain along model program.

[8] This example leads to trouble in most environments. The far call
changes the CS register, and makes run time support unavailable.

The following example is from a middle model compilation:
int near foo();
This does a near callin an otherwise far (calling) program.

Since there is no type checking between items in separate source files, the near
and far keywords should be used with great care.

2.10.3 Changing Word Order in Programs

The Microsoft C compiler automatically uses the standard 8086/286 word
order for long type values (the -M2 option). This order may cause problems
when reading data files from programs created by other C compilers. You can
change the word order for a given program by using the ~Mb0 configuration
option. This option causes the compiler to generate all long values in reverse
word order, making the program compatible with programs created by other
XENIX compilers. Refer to the XENIX Development System Release Notes to
see if thisis the option to use for 8086 code generation.

Note that there are other portability issues which must be considered when

creating C programs intended for several different XENIX systems. For an
explanation of these issues, see Appendix B, “C Language Portability,” in this

2-19

XENIX Programmer’s Guide

guide.

2.10.4 Setting the Stack Size

You can set the size of the program stack by using the —F option. This option
has the form

~F num

where num is the hexadecimal size (in bytes) of the program stack. The
program stack is used for storage of function parameters and automatic
variables. If the option is not used, a default stack size is set (usually either a
fixed stack of 2K bytes or variable stack). Refer to the machine(M) page in the
XENIX Reference Manualfor the default stack used with aspecific machine.

Note that all programs created by cc have fixed stacks. This means the stack
size cannot be increased during execution of the program. Therefore, a
sufficient stack size must be given when compiling the program.

2.10.5 Using Modules, Segments, and Groups

“Module” is another name for the object file created by the C compiler. Every
module has a name, and the ¢c command uses this name in error messages if
problems are encountered during linking. The module name is usually the same
as the source file’s name (without the ‘“.c” or “.s” extension). You can change
this name using the -NM option. The option hasthe form

-NM name
where name can be any combination of letters and digits.

Changing a module’s name is useful if the source file to be compiled is actually
the output of a program preprocessor and generator, such as lex or yace.

A ‘‘'segment"’ is a contiguous block of binary code produced by the C compiler.
Every module has two segments: a text segment containing the program
instructions, and a data segment containing the program data. Each segment
in every module has a name. This name is used by cc to define the order in
which the segments of the program will appear in memory when loaded for
execution. Text segments having the same name are loaded as a contiguous
block of code. Data segments of the same name are also loaded as contiguous
blocks.

Text and data segment names are normally created by the C compiler. These
default names depend on the memory model chosen for the program. For
example, in small model programs the text segmentis named “_TEXT" and the

2-20

Ce: A C Compiler

data segment is named ‘‘_DATA"”. These names are the same for all small
model modules, so all segments from all modules of a small model program are
loaded as a contiguous block. In middle model programs, each text segment has
a different name. In large model programs, each text and data segment has a
different name. The default text and data segment names for middle and large
model programs are given in the section “Segment and Module Names' given
at the end of this chapter.

You can override the default names used by the C compiler (and override the
default loading order) by using the -N'T and —ND options. These options set
the names of the text and data segments, in each module being compiled, to a
givenname. The options have the form

~NT name
and

-ND name

where name is any combination of lettersand digits. These options are useful in
middle and large model programs where there is no specific loading order. In
these programs, you can guarantee contiguous loading for two or more
segments by giving them the same name.

All text and data segments, whether or not they are loaded as contiguous
blocks, are eventually loaded into one or more physical segments of memory
Allsegments in a physical segment are collectively called a ‘‘group”

All programs have at least two groups: a text group and a data group. Each
group has a name. The text group is named “IGROUP" and the data group is
named “DGROUP”’. The C compiler automatically applies these names to the
text and data segments in each module. Thus, when the modules are eventually
linked, all text segments belong to the same group, and all datasegments belong
to thesame group.

Since a group corresponds to one physical segment, programs having more than
64 Kbytes each of text or data must be directed to two or more groups. (The
limit per physical segment is 64 Kby tes.)

For a complete description of the —dos option and the cross development tools

available under XENIX, see Chapter 10, “XENIX to MS-DOS: A Cross
Development System”

2.11 Compiler Summary

The following sections summarize cc options and memory models.

2-21

XENIX Programmer’s Guide

2.11.1 CcOptions

The following is a complete list of cc options:
— Createsalinkable object file for each source file. (
—-C Preserves comments when preprocessing a file (only when —P or—E).

-D name [= string]
Defines name to the preprocessor. The value is stringor1.

—dos Makes DOS executable files. Uses #include files in /usr/sncludedos.
Uses libraries in /usr/lib/dos. Uses linker in /usr/bin/dosld.

-E Preprocesses each source file, copying the result to the standard
output.

-F num
Setsthesize of the program stack.

—i Creates separate instruction and data spaces for small model
programs.

-I pathname (
Adds pathname to the list of directories to be searched for #include
files.

-K Removesstack probes from a program.

—Iname
Search library name for unresolved function names.

-L. Creates an assembler listing file containing assembled code and
assembly source instructions.

-M string
Sets the program configuration. The string may be any combination
of “s” (small model), “m” (middle model), “1"” (large model), ‘‘e”
(enable far and near keywords), ‘2" (enables 286 code generation),
“b” (reverse word order), and “t” (sets data threshold for largest

item in asegment). The “‘s”’, “m”, and ““1"’ are mutually exclusive.
-nl num

Sets the maximum length of external symbols. (
~ND name

Sets the data segment name.

2-22

Cc: A C Compiler

-NM name
Setsthe module name.

-NT name
Setsthe text segment name.

—o filename
Makes filename the name of the final executable program.

-O Invokesthe object code optimizer.
-p Addscodefor program profiling.

-P Preprocesses source files and sends output to files with the extension
e

i
-S Creates an assembly source listing.

-V string
Copies string to the object file.

-w Suppresses compiler warning messages.

-W num
Setsthe output level for compiler warning messages.

-X Removes the standard directories from the list of directories to be
searched for #include files.

2.11.2 Memory Models

The following table defines the number of text and data segments for the four
different program memory models. This table also lists the segment register
values.

Model | Text Data Segment Registers
Small 1#* 1% CS=DS==SS

Middle | 1permodule 1 DS=8S

Large 1 permodule | 1permodule

% -- In impure-text small module programs, text and data occupy the same
segment. In pure-text programs, they occupy different segments.

2-23

XENIX Programmer’s Guide

2.11.3 Pointer and Integer Sizes

The following table defines the sizes (in bits) of integers (int type), and text and

data pointers, in each program memory model.

Model | Data Pointer | TextPointer | Integer
Small 16 16 16
Middle 16 32 16
Large 32 32 16

2.11.4 Segment and Module Names

The following table lists the default text and data segment names, and the

default module name, for each object file.

Mode!l | Text Data Module
Small TEXT _DATA filename
Middle | module TEXT | DATA filename
Large module TEXT | module DATA | filename

2-24

Chapter 3
Lint: A C Program Checker

3.1 Introduction 3-1

3.2 Invoking lint 3-1

3.3 Checkingfor Unused Variables and Functions 3-2
3.4 CheckinglLocal Variables 3-3

3.5 Checkingfor Unreachable Statements 3-4
3.6 Checkingfor InfiniteLoops 3-4

3.7 CheckingFunction Return Values 3-5

3.8 Checkingfor Unused Return Values 3-6

3.9 Checking Types 3-6

3.10 Checking Type Casts 3-7

3.11 Checking for Nonportable Character Use 3-7
3.12 Checking for Assignment of longstoints 3-7
3.13 Checking for Strange Constructions 3-8

3.14 Checking for Useof Older C Syntax 3-9

3.15 Checking Pointer Alignment 3-10

3.16 Checking Expression Evaluation Order 3-10

3.17 Embedding Directives 3-11

3.18 Checking For Library Compatibility 3-12

Lint: A C Program Checker

3.1 Introduction
This chapter explains how to use the C program checker lint. The program
examines C source files and warns of errorsor misconstructions that may cause
errors during compilation of the file or during execution of the compiled file.
In particular, lsnt checksfor:

Unused functions and variables

Unknown values in local variables

Unreachable statements and infinite loops

Unused and misused return values

Inconsistent types and type casts

Mismatched types in assignments

Nonportable and old fashioned syntax

Strange constructions

Inconsistent pointer alignment and expression evaluation order
The lint program and the C compiler are generally used together to check and
compile C language programs. Although the C compiler compiles C language
source files, it does not perform the sophisticated type and error checking
required by many programs, though syntax is gone over. The lint program,
provides additional checking of source files without compiling.
3.2 Invoking lint
Youcaninvoke lintprogram by typing

lint | option] ... filename ... lib ...
where optionisa command option that defines how the checker should operate,
filename is the name of the C language source file to be checked, and Isb is the
name of a library to check. You can give more than one option, filename, or
library name in the command. If you give two or more filenames, {int assumes
that the files belong to the same program and checks the files accordingly. For
example, the command

lint main.c add.c

treats main.cand add.c astwo partsof a complete program.

31

XENIX Programmer’s Guide

If lint discovers errors or inconsistencies in a source file, it produces messages
describing the problem. The message has the form

filename (num): description

where filename is the name of the source file containing the problem, numis the
number of the line in the source containing the problem, and descriptionisa
description of the problem. For example, the message

main.c (3): warning: x unused in function main

shows that the variable "x”, defined in line three of the source file mata.c, is not
used anywhere in the file.

3.3 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if each
declared variable and function is used in at least once in the source file. The
program considers a variable or function used if the name appears in at least
one statement. It is not considered used if it only appears on the left side of on
assignment. For example, in the following program fragment

main ()
int x,y,z;

x=1; y=2; z=x+y;

L1 1)

the variables “x’’ and *‘y’’ are considered used, but variable “z"

isnot.

Unused variables and functions often occur during the development of large
programs. It is not uncommon for a programmer to remove all references to a
variable or function from a source file but forget to remove its declaration.
Such unused variables and functionsrarely cause working programsto fail, but
do make programs larger, harder to understand and change. Checking for
unused variables and functions can also help you find variables or functions
that you intended to used but accidentally have left out of the program.

Note that the lint program does not report a variable or function unused if it is
explicitly declared with the extern storage class. Such a variable or function is
assumed to be used in another source file.

You can direct lint to ignore all the external declarations in a source file by
using the —x (for ‘‘external’’) option. The option causes the program checker to
skip any declaration that begins with the extern storage class.

The option is typically used to save time when checking a program, especially if
all external declarationsare known to be valid.

Lint: A C Program Checker

Some programming styles require functions that perform closely related tasks
to have the same number and type of arguments regardless of whether or not
these arguments are used. Under normal operation, lintreports any argument
not used as an unused variable, but you can direct lint to ignore unused
arguments by using the —v option. The —v option causes lint to ignore all
unused function arguments except for those declared with register storage
class. The program considers unused arguments of this class to be a
preventable waste of the register resourcesof the computer.

You candirect lint to ignore all unused variables and functions by using the —u
(for “‘unused’’) option. This option prevents lint from reporting variables and
functions it considers unused.

This option is typically used when checking a source file that contains just a
portion of a large program. Such source files usually contain declarations of
variables and functions that are intended to be used in other source filesand are
not explicitly used within the file. Since lint can only check the given file, it
assumes that such variablesor functions are unused and reports them as such.

3.4 Checking Local Variables

The lint program checks all local variables to see that they are set to a value
before being used. Since local variables have either automatic or register
storage class, their values at the start of the program or function cannot be
known. Using such a variable before assigning a value toitisanerror.

The program checks the local variables by searching for the first assignment in
which the variable receives a value and the first statement or expression in
which the variable is used. If the first assignment appears later than the first
use, lint considers the variable inappropriately used. For example, in the
program fragment

char ¢;

it (¢!=EOT)
¢ = getchar();

s
c

lint warns that the the variable is used before it is assigned.

If the variable is used in the same statement in which it is assigned for the first
time, {tnt determines the order of evaluation of the statement and displays an
appropriate message. Forexample, inthe program fragment

int i,total;

scanf(" %d", &i);
total = total + ;

lint warns that the variable *total’ is used before it is set since it appearson the

33

XENIX Programmer’'s Guide
right side of the same statement that assigns its first value.

3.5 Checking for Unreachable Statements

The Ilint program checks for unreachable statements, that is, for unlabeled
statements that immediately follow a goto, break, continue, or return
statement. During execution of a program, the unreachable statements never
receive execution control and are therefore considered wasteful. For example,
in the program fragment

int x,y;

return (x+y);
exit (1);

the function call ezst after the return statement isunreachable.

Unreachable statements are common when developing programs containing
large case constructions or loops containing break and continue statements.

During normal operation, lint reports all unreachable break statements.
Unreachable break statements are relatively common (some programs created
by the gacc and lez programs contain hundreds), so it may be desirable to
suppress these reports. You can direct lnt to suppress the reports by using the
—boption.

Note that lint assumes that all functions eventually return control, so it does
not report as unreachable any statement that follows a function that takes
control and never returnsit. For example:

exit (1);
return;

the call to ezit causes the return statement to become an unreachable
statement, but lint does not report it assuch.

3.8 Checking for Infinite Loops

The lint program checks for infinite loops and for loops which are never
executed. For example, the statement

while (1) { }

and

for () {}

are both considered infinite loops. While the statements

3-4

Lint: A C Program Checker

while (0) { }
or

for (0;0;) { }
are never executed.
It is relatively common for valid programs to have such loops, but they are
generally considered errors.
3.7 Checking Function Return Values
The Iint program checks that a function returns a meaningful value if
necessary. Some functions return values which are never used; some programs
incorrectly use function values that have never been returned. Lint addresses
these problemsin a number of ways.
Within a function definition, the appearance of both

return (expr);
and

return ;

statements is cause for alarm. In this case, lint produces the following error
message:

function name contains return(e) and return
It is difficult to detect when a function return is implied by the flow of control

reaching the end of the given function. This is demonstrated with a simple
example:

f (a)

{ .
if (a)
g ()

return (3);

Note that if the variable “a’ tests false, then fwill call the function gand then
return with no defined return value. This will trigger a report from lint. If g,
like ezit, never returns, the message will still be produced when in fact nothing
is wrong. In practice, potentially serious bugs can be discovered with this
feature. It also accounts for a some of the noise messages produced by lint.

3-5

XENIX Programmer's Guide

3.8 Checking for Unused Return Values

The lint program checks for cases where a function returns a value, but the
value is usually ignored. Lint considers functions that return unused values to
be inefficient, and functions that return rarely used values to be a result of bad
programming style.

Lint also checks for cases where a function does not return a value but the value
is used anyway. Thisisconsidered a seriouserror.

3.9 Checking Types

Lint enforces the type checking rules of C more strictly than the C compiler.
The additional checking occursinfour major areas:

1. Across certain binary operators and implied assignments
2. Atthestructureselection operators

3. Between the definition and uses of functions

4. Inthe useof enumerations

There are a number of operators that have an implied balancing between types
of operands. The assignment, conditional, and relational operators have this
property. The argument of a return statement, and expressions used in
initialization also suffer similar conversions. In these operations, char, short,
int, long, unsigned, float, and double types may be freely intermixed. The
types of pointers must agree exactly, except that arrays of x’s can be intermixed
with pointerstox’s.

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (->) be a pointer to a structure, the left
operand of a period (.) be a structure, and the right operand of these operators
be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int,
and unsigned. Pointers can also be matched with the associated arrays. Aside
from these relaxations in type checking, all actual arguments must agree in
type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations, and that the only
operations applied are assignment (=), initialization, equals (==), and not-
equals (!=). Enumerations may also be function arguments and return values.

Lint: A C Program Checker

3.10 Checking Type Casts

The ty pe cast feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment

p=1;
where “p” is a character pointer. Lént reportsthis assuspect. But consider the
assignment

p = (char #)I ;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. On the other hand, if this code is moved to another
machine, it should be looked at carefully. The —c option controls the printing
of comments about casts. When —c is in effect, casts are not checked and all
legal casts are passed without comment, no matter how strange the type mixing
seems to be.

3.11 Checking for Nonportable Character Use

Lint flags certain comparisons and assignments as illegal or nonportable. For
example, the fragment

char ¢;

if((c = getchar()) < 0) ...

works on some machines, but fails on machines where characters always take
on positive values. The solution is to declare “c” an integer, since getchar is
actually returning integer values. In any case, lintissues the message:

nonportable character comparison
A similar issue arises with bitfields. When assignments of constant values are
made to bitfields, the field may be too small to hold the value. Thisisespecially
true where on some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a 2-bit field declared of
type int cannot hold the value 3, the problem disappears if the bitfield is
declared tohave type unsigned.

3.12 Checking for Assignment of longs to ints

Bugs may arise from the assignment of a long to an int, because of a loss in

37

XENIX Programmer’s Guide

accuracy in the process. This may happen in programs that have been
incompletely converted by changing type definitions with typedef. When a
typedef variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to integer values, losing
accuracy. Since there are a number of legitimate reasons for assigning longs to
integers, you may wish to suppress detection of these assignments by using the
—aoption.
3.13 Checking for Strange Constructions
Several pérfect,ly legal, but somewhat strange, constructions are flagged by
lint. The generated messages encourage better code quality, clearer style, and
may even point out bugs. For example, in the statement

p++;
the star (*) doesnothing and lint prints:

null effect

The program fragment

unsigned x ;
if (x <0)..

is also strange since the test will never succeed. Similasly, the test
if(x >0)..

isequivalent to
if(x 1= 0)

which may not be the intended action. In these cases, lint prints the message:
degenerate unsigned comparison

If you use
if(1t=m 0) ...

then lint reports
constant in conditional context

since the comparison of 1 with 0 gives a constant result.

Another construction detected by lintinvolves operator precedence. Bugs that
arise from misunderstandings about the precedence of operators can be

38

Lint: A C Program Checker

accentuated by spacing and formatting, making such bugs extremely hard to
find. Forexample, the statements

if(x&077 == 0) ...
or
x<<2 + 40

probably do not do what isintended. The best solution is to parenthesize such
expressions. Lintencourages thisby printing an appropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal, butisconsidered bad style,
usually unnecessary, and frequently abug.

If you do not wish these heuristic checks, you can suppress them by using the ~h

option.

3.14 Checking for Use of Older C Syntax

Lint checks for older C constructions. These fall into two classes: assignment
operators and initialization.

The older forms of assignment operators (e.g., ==+, =—, ...) can cause
ambiguous expressions, such as

a =-1;
which could be taken aseither

a=- 1;
or

a = -1;
The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer, and preferred operators (e.g., + ==,
—=) have no such ambiguities. To encourage the abandonment of the older
forms, lint checks for occurrences of these old-fashioned operators.
A similar issue arises with initialization. The older language allowed

int x 1;

toinitialize ‘‘x"" to 1. This causes syntactic difficulties. For example

3-9

XENIX Programmer’s Guide

int x (-1);
looks somewhat like the beginning of a function declaration

int x (y){ ...

and the compiler must read past “x’’ to determine what the declaration really
is. The problem is even more perplexing when the initializer involves a macro.
The current C syntax places an equal sign between the variable and the
initializer:

intx = -1;

This form is free of any possible syntactic ambiguity.

3.15 Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal
on others, due to alignment restrictions. For example, on some machines it is
reasonable to assign integer pointers to double pointers, since double precision
values may begin on any integer boundary. On other machines, however,
double precision values must begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where pointers are assigned
to other pointers, and such alignment problems might arise. The message

possible pointer alignment problem

results from this situation.

3.18 Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines in which the
stack runs up, function arguments will probably be best evaluated from right
to left; on machines with a stack running down, left to right is probably best.
Function calls embedded as arguments of other functions may or may not be
treated in the same way asordinary arguments. Similar issues arise with other
operators that have side effects, such as the assignment operators and the
increment and decrement operators.

In order that the efliciency of C on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of complicated
expressions up to the compiler, and various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the resultisexplicitly undefined.

3-10

Lint: A C Program Checker

Lint checks for the important special case where a simple scalar variable is
affected. For example, the statement

afi] = bli++];
will draw the comment:

warning: i evaluation order undefined

3.17 Embedding Directives

There are occasions when the programmer is smarter than lint. There may be
valid reasons for illegal type casts, functions with a variable number of
arguments, and other constructions that lint flags. Moreover, as specified in
the above sections, the flow of control information produced by lint often has
blind spots, causing occasional spurious messages about perfectly reasonable
programs. Some way of communicating with lint, typically to turn off its
output, is desirable. Therefore, a number of words are recognized by lint when
they are embedded in comments in a C source file. These words are called
directives. Lintdirectives areinvisible to the compiler.

The first directive discussed concerns flow of control information. If a
particular place in the program cannot be reached, this can be asserted at the
appropriate spot in the program with the directive:

/+ NOTREACHED s/

Similarly, if you desire to turn off strict ty pe checking for the next expression,
use the directive:

/* NOSTRICT s/

The situation reverts to the previous default after the next expression. The —v
option can be turned on for one function with the directive:

/+ ARGSUSED +/

Comments about a variable number of arguments in calls to a function can be
turned off by preceding the function definition with the directive:

/* VARARGS ¢/
In some cases, it is desirable to check the first several arguments, and leave the
later arguments unchecked. Do this by following the VARARGS keyword

immediately with a digit giving the number of arguments that should be
checked. Thus:

311

XENIX Programmer’s Guide

/* VARARGS?2 */
causes only the first two argumentsto be checked. Finally, the directive
/* LINTLIBRARY &/

at the head of a file identifies this file as a library declaration file, discussed in
the next section.

3.18 Checking For Library Compatibility
Lintacceptscertainlibrary directives, such as

-ly

and tests the source files for compatibility with these libraries. This testing is
done by accessing library description files whose names are constructed from
the library directives. These files all begin with the directive

/* LINTLIBRARY ¢/

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to

the function. The “VARARGS” and “ARGSUSED” directives can be used to
specify features of the library functions.

Lint library files are processed like ordinary source files. The only difference is
that functions that are defined in a library file, but are not used in a source file,
draw no comments. Lint does not simulate a full library search algorithm, and
checks toseeif the source files contain redefinitionsof library routines.

By default, lint checks the programs it is given against a standard Library file,
which contains descriptions of the programs that are normally loaded whena C
program is run. When the —p option is in efect, the portable library file is
checked containing descriptions of the standard I/O library routines which are
expected to be portable across various machines. The —n option can be used to
suppress all library checking.

Lint library files are named ” fusr/lib/lls". The programmer may wish to
examine the lint libraries directly to see what lint thinks a function should
passed and return. Printed out, lint libraries also make satisfactory skeleton
quick-reference cards.

3-12

Chapter 4
Make: A Program Maintainer

4.1 Introduction 4-1

4.2 Creating a Makefile 4-1

4.3 Invoking Make 4-3

4.4 UsingPseudo-Target Names 4-4

4.5 UsingMacros 4-5

4.6 Using ShellEnvironment Variables 4-8
4.7 Usingthe Built-ln Rules 4-9

4.8 Changingthe Built-in Rules 4-10

4.9 UsingLibraries 4-12

4.10 Troubleshooting 4-13

4.11 Using Make: An Example 4-13

Make: A Program Maintainer

4.1 Introduction

The make program provides an easy way to automate the creation of large
programs. Make reads commands from a user-defined ‘“makefile” that lists
the files to be created, the commands that create them, and the files from which
they are created. When you direct make to create a program, it verifies that
each file on which the program dependsis up to date, then creates the program
by executing the given commands. If a file is not up to date, make updates it
before creating the program. Make updates a program by executing explicitly
given commands, or one of the many built-in commands.

This chapter explains how to use make to automate medium-sized
programming projects. It explains how to create makefilesfor each project, and
how to invoke make for creating programs and updating files. For more
details about the program, see make (CP)in the XENIX Reference Manuadl.

4.2 Creating a Makefile

A makefile contains one or more lines of text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has the
form

target ... : | dependent .| | ; command ...]

where target is the filename of the file to be updated, dependent is the filename
of the file on which the target depends, and command is the XENIX command
needed to create the target file. Each dependency line must have at least one
command associated with it, even if it is only the null command (;).

You may give more than one target filename or dependent filename if desired.
Each filename must be separated from the next by at least one space. The
target filenames must be separated from the dependent filenames by a colon (:).
Filenames must be spelled as defined by the XENIX system. Shell
metacharacters, such asstar (¥) and question mark (?), can also be used.

You may give a sequence of commands on the same line as the target and
dependent filenames, if you precede each command with a semicolon (;). You
can give additional commands on following lines by beginning each line with a
tab character. Commands must be given exactly as they would appear on a
shell command line. The at sign (@) may be placed in front of a command to
prevent make from displaying the command before executing it. Shell
commands, such as ¢d(C), must appear on single lines; they must not contain
the backslash (\) and newline character combination.

You may add a comment to a makefile by starting the comment with a number

sign (#) and ending it with a newline character. All characters after the
number sign are ignored. Comments may be place at the end of a dependency

41

XENIX Programmer's Guide

line if desired. If a command contains a number sign, it must be enclosed in
double quotation marks (").

If a dependency line is too long, you can continue it by typing a backslash (\)
and a newline character.

The makefile should be kept in the same directory as the given source files. For
convenience, the filenames makefile, Makefile, s.makefile, and s. Makefile
are provided as default filenames. These names are used by make if no explicit
name is given at invocation. You may use one of these names for your makefile,
or choose one of your own. If the filename begins with the . prefix, make
assumes that it is an SCCS file and invokes the appropriate SCCS command to
retrieve the lastest version of the file.

To illustrate dependency lines, consider the following example. A program
named prog is made by linking three object files, 5.0, .0, and z.0. These object
files are created by compiling the C language source files z.¢c, y.c, and z.c.
Furthermore, the files z.c and y.¢ contain the line

##include " defs”

This means that prog depends on the three object files, the object files depend
on the C source files, and two of the source files depend on the include file defe.
You canrepresent these relationshipsin a makefile with the following lines.

prog: x.0 y.o z.0
¢C X.0 y.0 3.0 —O Pprog
x.0: x.c defs

¢c —¢ Xx.c
y.o: y.c defs

cc ~¢ y.c
2.0: 3.c

cc —¢ z.c

In the first dependency line, prog is the target file and 2.0, g.0, and z.0are its
dependents. The command sequence

CC X.0 ¥.0 3.0 —O prog

on the next line tells how to create progif it isout of date. The program is out of
date if any one of its dependents hasbeen modified since prog was last created.

The second, third, and fourth dependency lines have the same form, with the
2.0, y.0, and 2.0 files as targets and z.¢c, y.c, z.¢, and defs files as dependents.
Each dependency line has one command sequence which defines how to update
the given target file.

42

Make: A Program Maintainer

4.3 Invoking Make

Once you have a makefile and wish to update and modify one or more target
files in the file, you can invoke make by typing its name and optional
arguments. The invocation has the form

make | option] ... | macdef] ... |target] ...

where option is a program option used to modify program operation, macdefis
a macro definition used to give a macro a value or meaning, and target is the
filename of the file to be updated. It must correspond toone of the target names
in the makefile. All arguments are optional. If you give more than one
argument, you must separate them with spaces.

You can direct make to update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makefile,
Makefile, s.makefile, and s.Makefile in the current directory, and uses the
first one it finds as the makefile. For example, assume that the current makefile
contains the dependency lines givenin the last section. Then the command

make

compares the current date of the prog program with the current date each of
the object files 2.0, y.0, and z.0. It recreates prog if any changes have been
made to any object file since prog was last created. It also compares the current
dates of the object files with the dates of the four source files z.¢, g.¢, z.c, or
defes, and recreates the object files if the source files have changed. It does this
before recreating prog so that the recreated object files can be used to recreate
prog. If none of the source or object files have been altered since the last time
prog was created, make announces this fact and stops. Nofiles are changed.

You can direct make to update a given target file by giving the filename of the
target. For example,

make x.0

causes make to recompile the 2.0 file, if the 2.c or defsfiles have changed since
the object file waslast created. Similarly, the command

make x.0 z.0
causes make to recompile 2.0 and z.0 if the corresponding dependents have

been modified. Make processes target names from the command linein aleft to
rightorder.

43

XENIX Programmer’s Guide

You can specify the name of the makefile you wish make to use by giving the -
optionintheinvocation. The option has the form

—f filename

where filename is the name of the makefile. You must supply afull pathname if
the fileisnotin the current directory. For example, the command

make -f makeprog

reads the dependency lines of the makefile named makeprog found in the
current directory. You can direct make to read dependency lines from the
standard input by giving ‘‘-" as the filename. Make reads the standard input
until the end-of-file character isencountered.

You may use the program options to modify the operation of the make
program. The following list describes some of the options.

-p Prints the complete set of macro definitions and dependency lines
in amakefile.

-1 Ignoreserrors returned by XENIX commands.

-k Abandons work on the current entry, but continues on other
branches that do not depend on that entry.

-3 Executes commands without displaying them.
-r Ignoresthe built-in rules.
-n Displays commands but does not execute them. Make even

displayslines beginning with the at sign (@).

—-e Ignores any macro definitions that attempt to assign new values to
the shell’senvironment variables.

-t Changes the modification date of each target file without recreating
the files.

Note that make executes each command in the makefile by passing it to a
separate invocation of a shell. Because of this, care must be taken with certain
commands (e.g., ¢cd and shell control commands) that have meaning only
within a single shell process; the results are forgotten before the next line is
executed. Ifanerror occurs, make normally stops the command.

4.4 Using Pseudo-Target Names

It is often useful to include dependency lines that have pseudo-target names,
i.e., names for which no files actually exist or are produced. Pseudo-target

44

Make: A Program Maintainer

names allow make to perform tasks not directly connected with the creation of
a program, such as deleting old files or printing copies of source files. For
example, the following dependency line removes old copies of the given object
files when the pseudo-target name ‘‘cleanup” is given in the invocation of
make.

cleanup :
rm X.0Yy.0 3.0

Since no file exists for a given pseudo-target name, the target is always assumed
to be out of date. Thus the associated command is alwaysexecuted.

Make also has built-in pseudo-target names that modify its operation. The
pseudo-target name ‘“.IGNORE” causes make to ignore errors during
execution of commands, allowing make to continue after an error. This is the
same as the —i option. (Make also ignores errors for a given command if the
command string begins with a hyphen (-).)

The pseudo-target name ‘“.DEFAULT"’ defines the commands to be executed
either when no built-in rule or user-defined dependency line exists for the given
target. You may give any number of commands with this name. If
“ DEFAULT” is not used and an undefined target is given, make prints a
message and stops.

The pseudo-target name “*.PRECIOUS” prevents dependents of the current
target from being deleted when make is terminated using the INTERRUPT or
QUIT key, and the pseudo-target name **.SILENT’’ has the same effect as the —s
option.

4.5 Using Macros

An important feature of a makefile is that it can contain macros. Amacroisa
short name that represents a filename or command option. The macros can be
defined when youinvoke make, or in the makefile itself.

A macro definition is a line containing a name, an equal sign (=), and a value.
The equal sign must not be preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading
blanks and tabs are stripped.) The following are valid macro definitions:

2 = xyz
abe == -1l -ly
LIBES =

The last definition assigns *‘LIBES” the null string. A macro that is never
explicitly defined has the null string asits value.

45

XENIX Programmer's Guide

A macro is invoked by preceding the macro name with a dollar sign; macro
names longer than one character must be placed in parentheses. The name of
the macro is either the single character after the dollar sign or a name inside
parentheses. The following are valid macro invocations. (

$(CFLAGS)
$2
$(xy)
$Z
$(2)
The last two invocations are identical.

Macros are typically used as placeholders for values that may change from time
to time. For example, the following makefile uses a2 macro for the names of
object files to be link and one for the names of the library.

OBJECTS = x.0 y.0 3.0
LIBES = -lln
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) —o prog

If this makefile is invoked with the command ’
make (

it will load the three object files with the les library specified with the —lin
option.

You may include a macro definition in a command line. A maecro definitionina
command line has the same form as a macro definition in a makefile. If spaces
are to be used in the definition, double quotation marks must be used toenclose
the definition. Macros in a command line override corresponding definitions
found in the makefile. For example, the command

make "LIBES=-lln -lm”
loads assigns the library options—lin and —1m to “LIBES”.
You can modify all or part of the value generated from a macro invoeation
without changing the macro itself by using the “substitution sequence”. The
sequence has the form

name : st1 =| st2} (
where name is the name of the macro whose value is to be modified, st1is the
character or characters to be modified, and st2is the character or characters to

replace the modified characters. If st2 is not given, st! is replaced by a null
character.

4-6

The

Make: A Program Maintainer

substitution sequence is typically used to allow user-defined

metacharacters in a makefile. For example, suppose that ““.x’’ is to be used as a
metacharacter for a prefix and suppose that a makefile contains the definition

FILES = progl.x prog2.x prog3.x

Thenthe macroinvocation

$(FILES : .x=.0)

generates the value

progl.o prog2.o prog3.o

The actual value of “FILES” remains unchanged.

Make hasfive built-in macros that can be used when writing dependency lines.
The following is a list of these macros.

$»

$@

$<

$?

$%

Contains the name of the current target with the suffix removed.
Thus if the current target is prog.o, $* contains prog. It may be
used in dependency linesthat redefine the built-in rules.

Contains the full pathname of the current target. It may be used in
dependency lines with user-defined target names.

Contains the filename of the dependent that ismore recent than the
given target. It may be used in dependency lines with built-in target
namesor the DEFAULT pseudo-target name.

Contains the filenames of the dependents that are more recent than
the given target. It may be used in dependency lines with user-
defined target names.

Contains the filename of a library member. It may be used with
target library names (see the section “Using Libraries” later in this
chapter). In this case, $@ contains the name of the library and $%%
containsthe name of the library member.

You can change the meaning of a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D iescriptor contains the
name of the directory containing the given file. If the file is in the current
directory, the macro contains ““.”. A macro with the F descriptor contains the
name of the given file with the directory name part removed. The D and F
descriptor must not be used with the $? macro.

4-7

XENIX Programmer’s Guide

4.8 Using Shell Environment Variables

Make provides access to current values of the shell’s environment variables
such as “HOME”, “PATH”’, and “LOGIN”’. Make automatically assigns the
value of each shell variable in your environment to a macro of the same name.
You can access a variable’s value in the same way that you access the value of
explicitly defined macros. For example, in the following dependency line,
“$(HOME)" has the same value as the user’s “HOME’’ variable.

pro
cc $(HOME)/x.o $(HOME)/y.o /usr/pub/z.0

Make assigns the shell variable values after it assigns values to the built-in
macros, but before it assigns values to user-specified macros. Thus, you can
override the value of a shell variable by explicitly assigning a value to the
corresponding macro. For example, the following macro definition causes
make to ignore the current value of the “HOME"’ variable and use /usr/pubd
instead.

HOME = Jusr/pub

If a makefile contains macro definitions that override the current values of the
shell variables, you can direct make to ignore these definitions by using the —e
option.

Make has two shell variables, “MAKE"” and “MAKEFLAGS"”, that
correspond to two special-purpose macros.

The “MAKE’’ macro provides 2 way to override the —n option and execute
selected commandsin a makefile. When “MAKE’’ is used in a command, make
will always execute that command, even if —n has been given in the invocation.
The variable may be set to any value or command sequence.

The “MAKEFLAGS” macro contains one or more make options, and can be
used in invocations of make from within a makefile. You may assign any
make options to “MAKEFLAGS" except —f,—p, and —d. If you do not assign a
value to the macro, make automatically assigns the current options to it, i.e.,
the options given in the current invocation.

The “MAKE” and “MAKEFLAGS” variables, together with the —n option,
are typically used to debug makefiles that generate entire software systems.
For example, in the following makefile, setting “MAKE"” to “make’’ and
invoking this file with the ~n options displays all the commands used to
generate the programs progl, prog2, and prog8 without actually executing
them.

4-8

Make: A Program Maintainer

system : progl progZ prog3
@echo System complete.

progl : progl.c
$(MAKE) $(MAKEFLAGS) progl

prog2 : prog2.c
$(MAKE) $(MAKEFLAGS) prog2

prog3 : prog3.c
$(MAKE) $(MAKEFLAGS) prog3

4.7 Using the Built-In Rules

Make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile, and create
up-to-date versionsof these files if necessary. The built-in rules are identical to
user-defined dependency lines except that they use the suffix of the filename as
the target or dependent instead of the filename itself. For example, make
automatically assumes that all files with the suffix . 0 have dependent files with
the sufflixes.c and ..

When no explicit dependency line for a given file is given in a makefile, make
automatically checks the default dependents of the file. It then forms the name
of the dependents by removing the suffix of the given file and appending the
predefined dependent suffixes. If the given file is out of date with respect to
these default dependents, make searches for a built-in rule that defines how to
create an up-to-date version of the file, then executesit. There are built-in rules
for the following files.

Object file
C source file
Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar

r Yacc-Ratfor source grammar
Lex source grammar

ek nta b

For example, if the file 2.0 is needed and there is an z.¢ in the description or
directory, it is compiled. If there is also an z.l, that grammar would be run
through lez before compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules for creating common files from typical dependents.
Reconsider the example given in the section ““Creating a Makefile”. In this
example, the program prog depended on three object files 2.0, y.0, and z.0.
These files in turn depended on the C language source files z.c, y.c, and z.c.

49

XENIX Programmer’s Guide

The files z.¢ and y.c also depended on the include file defs. In the original
example each dependency and corresponding command sequence wasexplicitly
given. Many of these dependency lines were unnecessary, since the built-in
rules could have been used instead. The following is all that is needed to show
the relationships between these files.

prog: x.0 y.o z.0
cC X.0 y.0 2.0 -0 prog

x.0 y.o: defs

In this makefile, prog depends on three object files, and an explicit command is
given showing how to update prog. However, the second line merely shows that
two objects files depend on the include file defs. No explicit command sequence
is given on how to update these filesif necessary. Instead, make uses the built-
in rules to locate the desired C source files, compile these files, and create the
necessary object files.

4.8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these linesor
by redefining the commands associated with the rules. You can display a
complete list of the built-in rules and the macros used in the rulesby typing

make ~fp - 2> fdev/null </dev/null
The rulesand macrosare displayed at the standard output.

The macros of the built-in dependency lines define the names and optionsof the
compilers, program generators, and other programs invoked by the built-in
commands. Make automatically assigns a default value to these macros when
you start the program. You can change the values by redefining the macro in
your makefile. For example, the following built-in rule contains three macros,

“CC", “CFLAGS”, and “LOADLIBES".

.C:

$(CC) $(CFLAGS) $< $(LOADLIBES) -0 $@

You can redefine any of these macros by placing the appropriate macro
definition at the beginning of the makefile.

You can redefine the action of a built-in rule by giving a new rule in your
makefile. A built-in rule hasthe form

suffiz-rule :
command

where suffiz-rule is a combination of suffixes showing the relationship of the
implied target and dependent, and command is the XENIX command required

4-10

Make: A Program Maintainer
to carry out the rule. If more than one command is needed, they are given on
separate lines.

The new rule must begin with an appropriate suffiz-rule. The available suffiz-
rules are

.c .
.sh .sh
.c.o .c.0
.c.c 5.0
5.0 .y.o
.y.o lo
d.o y.¢
y.c de
.c.a .c.a
5.3 .h.h

A tilde () indicates an SCCS file. A single suffix indicates a rule that makes an
executable file from the given file. For example, the suffix rule *‘.c” is for the
built-in rule that creates an executable file from a C source file. A pair of
suffixes indicates a rule that makes one file from the other. For example, ““.c.0”

is for the rule that creates an object file (.0} file from a corresponding Csource
file(.c).

Any commands in the rule may use the built-in macrosprovided by make. For
example, the following dependency line redefines the action of the .¢c.orule.

.c.0:
cc68 $< —c $2.0

If necessary, you can also create new suffiz-rules by adding alist of new suffixes
to a makefile with *“.SUFFIXES’'. This pseudo-target name defines the suffixes

that may be used to make suffiz-rules for the built-in rules. The line has the
form

.SUFFIXES: suffiz ...

where suffiz is usually a lowercase letter preceded by a dot (.). If more than one
suffix is given, you must use spaces to separate them.

The order of the suffixes is significant. Each suffix is a dependent of the suffixes
preceding it. For example, the suffix list

SUFFIXES: 0o .c.y .l.s

causes prog.c to be a dependent of prog.o, and prog.y to be a dependent of
prog.c.

You can create new suffiz-rulesby combining dependent suffixes with the suffix
of the intended target. The dependent suffix must appear first.

411

XENIX Programmer’'s Guide

If a “.SUFFIXES"” list appears more than once in a makefile, the suffixes are
combined into a single list. If a “.SUFFIXES” is given that has no list, all
suffixes are ignored.

4.9 Using Libraries

You can direct make to use a file contained in an archive library asa target or
dependent. To do this you must explicitly name the file you wish to access by
using alibrary name. Alibrary name has the form

lib(member-name)

where lib is the name of the library containing the file, and member-name is the
name of the file. For example, the library name

libtemp.a(print.o)
refers to the object file print. oin the archive library libtemp.a.

You can create your own built-in rules for archive libraries by adding the .a
suffix to the suffix list, and creating new suffix combinations. For example, the
combination ‘‘.c.a” may be used for a rule that defines how to create alibrary
member from a C source file. Note that the dependent suffix in the new
combination must be different than the suffix of the ultimate file. For example,
the combination ‘“.c.a” can be used for arule that creates. o files, but not for one
that creates .c files.

The most common use of the library naming convention is to create a makefile
that automatically maintains an archive library. For example, the following
dependency lines define the commands required to create a library, named Iib,
containing up to date versionsof the files file 1.0, file2.0, and file3.0.

lib:
lib(file1.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date
c.a:
$(CC) —c $(CFLAGS) $<
ar rv $@ $+.0
rm -f $*.0

The .c.arule shows how to redefine a built-in rule for alibrary. In the following
example, the built-in rule is disabled, allowing the first dependency to create
the library.

412

Make: A Program Maintainer

lib:
lib(file1.0) lib(file2.0) lib(file3.o0)
$(CC) —c $(CFLAGS) §(?:.0=.¢)
ar rv lib $?
rm $?
@echo lib is now up to date
.c.a;

In this example, asubstitution sequence is used to change the value of the “$?”’
macro from the names of the object files ‘‘filel.o”, “file2.0”, and “file3.0” to
“filel.c”, “file2.c”’, and “file3.c”’.

4.10 Troubleshooting

Most difficulties in using make arise from make's specific meaning of
dependency. If the file z.c has the line

#include " defs”
then the object file z.0 depends on defs; the source file z.c does not. (If defe is
changed, it is not necessary to do anything to the file .¢, while it is necessary to

recreate z.0.)

To determine which commands make will execute, without actually executing
them, use the —n option. For example, the command

make -n

prints out the commands make would normally execute without actually
executing them.

The debugging option —d causes make to print out a very detailed description
of what it is doing, including the file times. The output is verbose, and
recommended only as a last resort.

If a change to a file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the —t (touch) option can save a lot of time. Instead
of issuing a large number of superfluous recompilations, make updates the
modification times on the affected file. Thus, the command

make —ts

which stands for touch silently, causes the relevant files to appear up to date.

4.11 Using Make: An Example

As an example of the use of make, examine the makefile, given in Figure 4-1,
used to maintain the make itself. The code for make isspread over a number

413

XENIX Programmer's Guide

of Csource filesand a yace grammar.

Make usually printsout each command before issuing it. The following output
results from typing the simple command

make
in a directory containing only the source and makefile:

cc —c vers.c

cc -c main.c

cc —c doname.c

¢c —c¢ misc.c

cc —c files.c

cc —c dosys.c

yacc gram.y

mv y.tab.c gram.c

cc -c gram.c

cc vers.o main.o ... dosys.o gram.o -o make
1318843348+ 3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the
makefile, make found them by using its suffix rules and issued the needed
commands. The string of digits results from the size make command.

The last few targets in the makefile are useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. A zero-length file, print, is maintained to keep track of the
time of the printing; the $? macro in the command line then picks up only the
names of the files changed since print was touched. The printed output can be
sentto adifferent printer or to afile by changing the definition of the P macro.

414

Make: A Program Maintainer

Figure 4-1. Makeflle Contents
Description file for the make command

Macro definitions below

P = lpr

FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\
gram.y lex.c

OBJECTS = vers.o main.o ... dosys.o gram.o

LIBES=
LINT = lint -p
CFLAGS = -0

#targets: dependents
<TAB>actions

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) —o make

size make

$(OBJECTS): defs

gram.o: lex.c

cleanup:
-rm *.0 gram.c

—du

install:
@size make fusr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? | §P
touch print

test:
make -dp | grep -v TIME > l1zap
/usr /bin/make —dp | grep ~v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.c

arch:

ar uv /sys/source/s2/make.a $(FILES})

4-15

Chapter &
SCCS: A Source

Code Control System

5.1 Introduction 5-1

5.2 BasiclInformation 5-1
5.2.1 Filesand Directories 5-1
5.2.2 DeltasandSIDs 5-2
5.2.3 SCCSWorkingFiles 5-3
5.24 SCCSCommand Arguments 5-4
5.2.5 File Administrator 5-4

5.3 Creating and Using S-files 5-5
5.3.1 Creating anS-file 5§
5.3.2 Retrieving aFilefor Reading 5-6
5.3.3 Retrieving aFile for Editing 57
5.3.4 SavingaNew VersionofaFile 5-8
5.3.5 Retrieving a Specific Version 59
5.3.6 Changing the Release Number ofaFile 5-9
5.3.7 Creating aBranch Version 5-10
5.3.8 Retrieving aBranch Version 5-10
5.3.9 Retrieving the Most Recent Version 5-11
5.3.10 Displaying a Version 5-11
5.3.11 Saving aCopy ofa New Version 5-12
5.3.12 Displaying Helpful Information 5-12

5.4 Usingldentification Keywords 5-13
5.4.1 Inserting aKeywordintoaFile 5-13
5.4.2 Assigning ValuestoKeywords 5-14
5.4.3 ForcingKeywords 5-14

5.5 Using S-file Flags 5-15
§.5.1 Setting S-fileFlags 5-15
5.5.2 UsingtheiFlag 5-15
§.5.3 UsingthedFlag 5-16

5.6

5.7

5.8

5.9

5.5.4 UsingthevFlag 5-16
5.5.5 RemovinganS-fileFlag 5-16

Modifying S-file Information 5-16

5.6.1 Adding Comments 5-17

5.6.2 Changing Comments 5-17

5.6.3 Adding Modification Requests 5-18
5.6.4 Changing Modification Requests 5-18
5.6.5 AddingDescriptive Text 5-19

Printing from an S-file 5-20

5.7.1 UsingaDataSpecification 5-20

5.7.2 Printinga Specific Version 5-20

5.7.3 Printing Later and Earlier Versions 5-21

Editing by Several Users 5-21

5.8.1 Editing Different Versions 5-21
5.8.2 [Editing aSingle Version 5-22
5.8.3 Saving a Specific Version 5-22

Protecting S-files 5-23

5.9.1 AddingaUser totheUserList 5-23
5.9.2 Removing aUser fromaUserList 5-23
5.9.3 Setting the Floor Flag 5-24

5.9.4 Setting the CeilingFlag 5-24

5.9.5 Lockinga Version 5-24

5.10 Repairing SCCSFiles 5-25

5.10.1 Checking an S-file 5-25

5.10.2 Editing an S-file 5-25

5.10.3 Changing an S-file’s Checksum 5-26
5.10.4 Regenerating a G-file for Editing 5-26
5.10.5 RestoringaDamaged P-file 5-26

5.11 Using Other Command Options 5-26

5.11.1 Getting Help With SCCS Commands 5-26
5.11.2 Creating aFile With the Standard Input 5-27
5.11.3 Starting At a Specific Release 5-27

5.11.4 Adding a Comment to the First Version 5-27
5.11.5 Suppressing Normal Output 5-28

5.11.6 Including and Excluding Deltas 5-28

SCCS: A Source Code Control System

5.1 Introduction

The Source Code Control System (SCCS) is a collection of XENIX commands
that create, maintain, and cc .trol special files called SCCS files. The SCCS
commands let you create and store multiple versions of a program or document
in a single file, instead of one file for each version. The commands let you
retrieve any version you wish at any time, make changes to this version, and
save the changes as a new version of the file in the SCCS file.

The SCCS system is useful wherever you require a compact way to store
multiple versions of the same file. The SCCS system provides an easy way to
update any given version of a file and explicitly record the changes made. The
commands are typically used to control changes to multiple versions of source
programs, but may also be used to control multiple versions of manuals,
specifications, and other documentation.

This chapter explains how to make SCCS files, how to update the files contained
in SCCS files, and how to maintain the SCCS files once they are created. The
following sections describe the basic information you need to start using the
SCCS commands. Later sections describe the commandsin detail.

5.2 Basic Information

This section provides some basic information about the SCCS system. In
particular, it describes

— Filesanddirectories

— Deltasand SIDs

— SCCS working files

— SCCS command arguments

— File administration

5.2.1 Files and Directories

All sCCs files (also called s-files) are originally created from text files containing
documents or programs created by a user. The text files must have been created
using a XENIX text editor such as vi. Special characters in the filesare allowed
only if they are also allowed by the giveneditor.

To simplify s-file storage, all logically related files {e.g., files belonging to the
same project) should be kept in the same directory. Such directories should
contain s-files only, and should have read and examine permission for everyone,
and write permission for the user only.

51

XENIX Programmer’s Guide

Note that you must not use the XENIX link command to create multiple copies
of an s-file.

5.2.2 Deltas and SIDs

Unlike an ordinary text file, an SCCS file (or s-file for short) contains nothing
more than lists of changes. Each list corresponds to the changes needed to
construct exactly one version of the file. The lists can then be combined to
create the desired version from the original.

Each list of changes s called a “delta’. Each delta has an identification string
called an *“‘SID”. The SID is a string of at least two, and at most four, numbers
separated by periods. The numbers name the version and define how it is
related to other versions. For example, the first delta is usually numbered 1.1
andthe second 1.2.

The first number in any SID is called the “release number’”’. The release number
usually indicates a group of versions that are similar and generally compatible.
The second number in the SID is the “level number”. It indicates major
differences bet ween files in the same release.

An SID may also have two optional numbers. The “branch number”, the
optional third number, indicates changes at a particular level, and the
‘“sequence number”, the fourth number, indicates changes at a particular
branch. For example, the SIDs 1.1.1.1 and 1.1.1.2 indicate two new versions
that contain slight changes to the original delta 1.1.

An s-file may at any time contain several different releases, levels, branches,
and sequences of the same file. In general, the maximum number of releases an
s-file may contain is 8999, that is, release numbers may range from 1 to 9999.
The same limit applies to level, branch, and sequence numbers.

When you create a new version, the SCCS system usually creates a new SID by
incrementing the level number of the original version. If you wish to create a
new release, you must explicitly instruct the system to do so. A change to a
release number indicates a major new version of the file. How to create a new
version of a file and change release numbers is described later.

The SCCS system creates a branch and sequence number for the SID of a new
version, if the next higher level number already exists. For example, if you
change version 1.3 to create a version 1.4 and then change 1.3 again, the SCCS
system createsa new version named 1.3.1.1.

Version numbers can become quite complicated. In general, it is wise to keep

the numbers as simple as possible by carefully planning the creation of each
new version,

5-2

SCCS: A Source Code Control System

5.2.3 SCCS Working Files

The SCCS system uses several different kinds of files to complete its tasks. In
general, these files contain either actual text, or information about the
commands in progress. For convenience, the SCCS system names these files by
placing a prefix before the name of the original file from which all versions were
made. The followingis alist of the working files.

s-file

x-file

g-file

p-file

z-file

I-file

A permanent file that contains all versions of the given text file.
The versions are stored as deltas, that is, lists of changes to be
applied to the original file to create the given version. The name of
an s-file is formed by placing the file prefix s. at the beginning of the
original filename.

A temporary copy of the s-file. It is created by SCCS commands
which change the s-file. It is used instead of the s-file to carry out the
changes. When all changes are complete, the SCCS system removes
the original s-file and gives the x-file the name of the original s-file.
The name of the x-file is formed by placing the prefix z. at the
beginning of the original file.

An ordinary text file created by applying the deltasin a given s-file
to the original file. The g-file represents a copy of the given version
of the original file, and as such receives the same filename as the
original. When created, a g-file is placed in the current working
directory of the user who requested the file.

A special file containing information about the versions of an s-file
currently being edited. The p-file is created when a g-file is
retrieved from the s-file. The p-file exists until all currently
retrieved files have been saved in the s-file; it is then deleted. The
p-file contains one or more entries describing the SID of the
retrieved g-file, the proposed SID of the new, edited g-file, and the
login name of the user who retrieved the g-file. The p-file name is
formed by placing the prefix p. at the beginning of the original
filename.

A lock file used by SCCS commands to prevent two users from
updating a single SCCS file at the same time. Before a command
modifes an SCCS file, it creates a z-file and copies its own process ID
to it. Any other command which attempts to access the file while
the z-file is present displays an error message and stops. When the
original command has finished its tasks, it deletes the z-file before
stopping. The z-file name is formed by placing the prefix z. at the
beginning of the original filename.

A special file containing alist of the deltas required to create agiven

version of a file. The I-file name is formed by placing the prefix [. at
the beginning of the original filename.

53

XENIX Programmer’s Guide

d-file A temporary copy of the g-file used to generate a new delta.

q-file A temporary file used by the delta command when updating the p-
file. The file is not directly accessible.

In general, a user never directly accesses x-files, z-files, d-files, or g-files. If a
system crash or similar situation abnormally terminates a command, the user
may wish delete these files to ensure proper operation of subsequent SCCS
commands.

5.2.4 SCCS Command Arguments

Almost all SCCS commands accept two types of arguments: options and
filenames. These appear in the SCCS command line immediately after the
command name.

An option indicates a special action to be taken by the given SCCS command.
An option is usually a lowercase letter preceded by a minus sign (). Some
optionsrequire an additional name or value.

A filename indicates the file to be acted on. The syntax for SCCS filenamesis like
other XENIX filename syntax. Appropriate pathnames must be given if
required. Some commands also allow directory names. In this case, all files in
the directory are acted on. If the directory contains non-SCCS and unreadable
files, these areignored. A filename must not begin with a minus sign (-).

The special symbol — may be used to cause the given command to read a list of
filenames from the standard input. These filenamesare then used as names for
the files to be processed. The list must terminate with an end-of-file character.

Any options given with a command apply to all files. The SCCS commands
process the options before any filenames, so the options may appear anywhere
on the command line.

Filenames are processed left to right. If a command encounters a fatal error, it
stops processing the current file and, if any other. files have been given, begins
processing the next.

5.2.5 File Administrator

Every SCCS file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and therefore
owns it. Before other users can access the file, the administrator must ensure
that they have adequate access. Several SCCS commands let the administrator
define who hasaccess to the versionsin a given s-file. These are described later.

5-4

SCCS: A Source Code Control System

5.3 Creating and Using S-files

The s-file is the key element in the SCCS system. It provides compact storage
for all versions of a given file and automatic maintenance of the relationships
between the versions.

This section explains how to use the admin, get, and delta commands to
create and use s-files. In particular, it describes how to create the first version
of a file, how to retrieve versions for reading and editing, and how to save new
versions.

5.3.1 Creating an S-file

You can create an s-file from an existing text file using the —i (for “initialize”’)
optionof the admin command. The command has the form

admin -ifilename e.filename
where -ifilename gives the name of the text file from which the s-file is to be
created, and s.filename is the name of the new s-file. The name must begin with
. and must be unique; no other s-file in the same directory may have the same
name. For example, suppose the file named demo.c contains the short C
language program

#finclude <stdio.h>

main ()

printf(” This is version 1.1 \n");

To create an s-file, ty pe
admin -idemo.c s.demo.c

This command creates the s-file s.demo.c, and copies the first delta describing
the contents of demo.c to thisnew file. The first deltais numbered1.1.

After creating an s-file, the original text file should be removed using the rm
command, since it is no longer needed. If you wish to view the text file or make
changes to it, you can retrieve the file using the get command described in the
next section.

When first creating an s-file, the admin command may display the warning
message

No id keywords (cm7)

§-5

XENIX Programmer’s Guide

In general, this message can be ignored unless you have specifically included
keywords in your file (see the section, “Using Identification Keywords’ later in
this chapter).

Note that only a user with write permission in the directory containing the s-file
may use the admin command on that file. This protects the file from
administration by unauthorized users.

5.3.2 Retrieving a File for Reading

You canretrieve a file for reading from a given s-file by using the get command.
The command has the form

get s.filename ...

where s.fillename is the name of the s-file containing the text file. The command
retrieves the lastest version of the text file and copiesit to a regular file. The file
has the same name as the s-file but with the s. removed. It also has read-only
file permissions. For example, suppose the s-file s.demo.c contains the first
version of the short C program shown in the previous section. To retrieve this
program, type

get s.demo.c

The command retrieves the program and copies it to the file named demo.c.
You may then display the file just as you do any other text file.

The command also displays a message which describes the SID of the retrieved
file and its size in lines. For example, after retrieving the short C program from
8.demo.c, the command displays the message

1.1
6 lines

-You may also retrieve more than one file at a time by giving multiple s-file
names in the command line. For example, the command

get s.demo.c s.def.h

retrieves the contents of the s-files s.demo.¢ and .def.h and copies them to the
text files demo.c and def.A. When giving multiple s-file names in a command,
you must separate each with at least one space. When the get command
displaysinformation about the files, it places the corresponding filename before
the relevent information.

5-6

SCCS: A Source Code Control System

5.3.3 Retrieving a File for Editing

You can retrieve a file for editing from a given s-file by using the —e (for
“editing’’) option of the get command. The command has the form

get —e s.filename ...

where s. filename is the name of the s-file containing the text file. You may give
more than one filename if you wish. If you do, you must separate each nanie
withaspace.

The command retrieves the lastest version of the text file and copies it to an
ordinary text file. The file has the same name as the s-file but with the s.
removed. It hasread and write file permissions. For example, suppose the s-file
s.demo.c contains the first version of a C program. To retrieve this program,
type

get —e s.demo.c

The command retrieves the program and copies it to the file named demo.c.
Youmay edit the file just asyou do any other text file.

If you give more than one filename, the command creates files for each
corresponding s-file. Since the —e option applies to all the files, you may edit
eachone.

After retrieving a text file, the command displays a message giving the SID of
the file and its size in lines. The message also displays a proposed SID, that is,
the SID for the new version after editing. For example, after retrieving the six-
line C program in 8.demo.c, the command displays the message

1.1
new delta 1.2
6 lines

The proposed SID is 1.2. If more than one file is retrieved, the corresponding
filename precedestherelevantinformation.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must use the delta command
described in the next section. To help keep track of the current file version, the
get command creates another file, called a p-file, that contains information
about the text file. This file is used by a subsequent delta command when
saving the new version. The p-file has the same name as the s-file but begins
witha p.. The user must not access the p-file directly.

87

XENIX Programmer’s Guide

5.3.4 Saving a New Version of a File

You can save a new version of a text file by using the delta command. The
command has the form

delta s.filename
where s.filename is the name of the s-file from which the modified text file was
retrieved. For example, tosave changes made to a C program in the file demo.c
{which wasretrieved from the file s.demo.c), type

delta s.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature of the changes. It displays the prompt

comments?

You may type any text you think appropriate, up to 512 characters. The
comment must end with a newline character. If necessary, you can start a new
line by typing a backslash (\) followed by a newline character. If you do not
wish toinclude a comment, just type a newline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A
list of all the changesis copied to the s-file. Thisisthe new delta.

After a command has copied the new delta to the s-file, it displays a message
showing the new SID and the number of lines inserted, deleted, or left

unchanged in the new version. For example, if the C program hasbeen changed
to

#include <stdic.h>
main ()
int i = 2;

printf(” This is version 1.%d 0, i);

the command displays the message
1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the new version.

5-8

SCCS: A Source Code Control System

The command ignores previous versions. If you wish to retrieve a previous
version, you must use the —r option of the get command as described in the
next section.

5.3.5 Retrieving a Specific Version

You can retrieve any version you wish from an s-file by using the -r (for
“retrieve’’) of the get command. The command hasthe form

get [—e | -rSID e filename ...
where —e is the edit option, ~rS/D gives the SID of the version to be retrieved,
and s.filename is the name of the s-file containing the file to be retrieved. You
may give more thanone filename. The names must be separated with spaces.
The command retrieves the given version and copies it to the file having the
same name as s-file but with the s. removed. The file hasread-only permission
unless you also give the —e option. If multiple filenames are given, one text file
of the given version isretrieved from each. For example, the command

get -rl.1 s.demo.c
retrievesversion 1.1 from the s-file s.demo.¢, but the command

get —e —r1.1 s.demo.c s.def.h
retrieves for editing a version 1.1 from both s.demo.c and s.def.A. If you give
the number of a version that does not exist, the command displays an error
message.
You may omit the level number of a version number if you wish, that is, just
give a release number. If you do, the command automatically retrieves the
most recent version having the same release number. For example, if the most
recent version in the file s.demo.c isnumbered 1.4, the command

get -rl s.demo.c
retrieves the version 1.4. If there is no version with the given release number,
the command retrieves the most recent version in the previous release.
5.3.6 Changing the Release Number of a File
You can direct the delta command to change the release number of a new
version of a file by using the —r option of the get command. In this case, the get

command has the form

get —e —rrel-num . filename ...

59

XENIX Programmer's Guide

where —e is the required edit option, -rrel-num gives the new release number of
the file, and s.filename gives the name of the s-file containing the file to be
retrieved. The new release number must be an entirely new number, that is, no
existing version may have thisnumber. You may give more than one filename.

The command retrieves the most recent version from the s-file, then copies the
new release number to the p-file. On the subsequent delta command, the new
version is saved using the new release number and level number 1. For example,
if the most recent versionin the s-file s.demo.c is 1.4, the command

get —e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5. The new release
number applies to the new version only; the release numbers of previous
versions are not affected. Therefore, if you edit version 1.4 (from which 2.1 was
derived) and save the changes, you create a new version 1.5. Similarly, if you
edit version 2.1, you create anew version 2.2,

As before, the get command also displays a message showing the current
version number, the proposed version number, and the size of the file in lines.
Similarly, the subsequent delta command displays the new version number
and the number of linesinserted, deleted, and unchanged in the new file.
5.3.7 Creating a Branch Version
You can create a branch version of a file by editing a version that has been
previously edited. A branch version is simply a version whose SID contains a
branch and sequence number.
For example, if version 1.4 already exists, the command

get —e -r1.3 s.demo.c
retrieves version 1.3 for editing and gives 1.3.1.1 as the proposed SID.
In general, whenever get discovers that you wish to edit a version that already
has a succeeding version, it uses the first available branch and sequence
numbers for the proposed SID. For example, if you edit version 1.3 a third time,
get gives 1.3.2.1 as the proposed SID.
You can save a branch version just like any other version by using the delta
command.

5.3.8 Retrieving a Branch Version

You can retrieve a branch version of a file by using the —r option of the get
command. For example, the command

5-10

SCCS: A Source Code Control System

get -r1.3.1.1 s.demo.c
retrievesbranch version 1.3.1.1.
You may retrieve a branch version for editing by using the —e option of the get
command. When retrieving for editing, get creates the proposed SID by
incrementing the sequence number by one. For example, if you retrieve

branch version 1.3.1.1 for editing, get gives 1.3.1.2 asthe proposed SID.

As always, the command displays the version number and file size. If the given
branch version does not exist, the command displays an error message.

You may omit the sequence number if you wish. In this case, the command
retrieves the most recent branch version with the given branch number. For
example, if the most recent branch version in the s-file s.def.A is 1.3.1.4, the
command

get -rl.3.1 s.def.h

retrievesversion 1.3.1.4.

5.3.9 Retrieving the Most Recent Version

You can always retrieve the most recent version of a file by using the —t option
with the get command. For example, the command

get -t s.demo.c
retrieves the most recent version from the file s.demo.c. You may combine the
—r and —t options to retrieve the most recent version of a given releasc number.
For example, if the most recent version with release number 3 is 3.5, then the
command

get -r3 -t s.demo.c
retrieves version 3.5. If a branch version exists that is more recent than version
3.5 (e.g., 3.2.1.5), then the above command retrieves the branch version and
ignores version 3.5.

5.3.10 Displaying a Version

You can display the contents of a version at the standard output by using the
—p optionof the get command. For example, *he command

get —p s.demo.c

displays the most recent version in the s-file s.demo.c at the standard output.
Similarly, the command

511

XENIX Programmer’s Guide

get —-p -r2.1 s.demo.c
displaysversion 2.1 at the standard output.
The —p option is useful for creating g-files with user-supplied names. This
option also directs all output normally sent to the standard output, such as the
SID of the retrieved file, to the standard error file. Thus, the resulting file
containsonly the contents of the given version. For example, the command

get —p s.demo.c >version.c
copies the most recent version in the s-file 8.demo.c to the file version.c. The
SID of the file and itssize is copied to the standard error file.
5.3.11 Saving a Copy of a New Version
The delta command normally removesthe edited file after saving it in the
s-file. You can save a copy of this file by using the ~n option of the delta
command. For example, the command

delta -n s.demo.c
first saves a new version in the s-file 8.demo. c, then saves a copy of this version
in the file demo.c. You may display the file as desired, but you cannot edit the
file.
5.3.12 Displaying Helpful Information

An SCCS command displays an error message whenever it encounters an error
in afile. Anerror message hasthe form

ERROR [filename |: message (code)

where filename is the name of the file being processed, message is a short
descriptionof theerror, and codeisthe error code.

You may use the error code as an argument to the help command to display
additional information about the error. The command hasthe form

help code
where code is the error code given in an error message. The command displays
one or more lines of text that explain the error and suggest a possible remedy.
For example, the command

help col

displays the message

5-12

SCCS: A Source Code Control System

col:

"not an SCCS file”

A file that you think is an SCCS file
does not begin with the characters "s.”.

The help command can be used at any time.

5.4 Using Identification Keywords

The SCCS system provides several special symbols, called identification
keywords, which may be used in the text of a program or document to represent
a predefined value. Keywords represent a wide range of values, from the
creation date and time of a given file, to the name of the module containing the
keyword. When a user retrieves the file for reading, the SCCS system
automatically replaces any keywords it finds in a given version of a file with the
keyword’s value.

This section explains how keywords are treated by the various SCCS
commands, and how you may use the keywords in your own files. Only a few
keywords are described in this section. For a complete list of the keywords, see
the section get(CP) in the XENIX Reference Manual.

5.4.1 Inserting a Keyword into a File

You may insert a keyword into any text file. A keyword issimply an uppercase
letter enclosed in percent signs (%). No special characters are required. For
example, “%I%” is the keyword representing the SID of the current version,
and “*9%H%"’ is the key word representing the current date.

When the program is retrieved for reading using the get command, the
keywords are replaced by their current values. For example, if the “%M%”,
“%I1%", and “%H"” keywords are used in place of the module name, the SID,
and the current datain a program statement

char header(100) = (" %M% %1% %H% "};
then these keywords are expanded in the retrieved version of the program

char header(100) = {" MODNAME 2.3 07/07/77 "};
The get command does not replace key words when retrieving a version for
editing. The system assumes that you wish keep the keywords (and not their

values) when you save the new version of the file.

To indicate that a file has no keywords, the get, delta, and admin commands
display the message

513

XENIX Programmer’s Guide

No id keywords (cm7)

This message is normally treated as a warning, letting you know that no
keywords are present. However, you may change the operation of the system to
make this a fatal error, asexplained later in this chapter.

5.4.2 Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as
the value for the “%M%" keyword can be explicitly defined by the user. To
assign a value to a keyword, you must set the corresponding s-file flag to the
desired value. You can do this by using the —f option of the admin command.

For example, to set the %9M% keyword to “‘cdemo”, you must set the m flag as
I 'y
in the command

admin -fmcdemo s.demo.c

This command records “cdemo’ as the current value of the 2%M% keyword.
Note that if you do not set the m flag, the SCCS system uses the name of the
original text file for %M % by default.

The t and q flags are also associated with key words. A description of these flags
and the corresponding keywords can be found in the section get(CP) in the
XENIX Reference Manual. You can change keyword valuesat any time.

5.4.3 Forcing Keywords

If a version is found to contain no keywords, you can force a fatal error by
setting the i flag in the given s-file. The flag causes the delta and admin
commands to stop processing of the given version and report anerror. The flag
is useful for ensuring that key words are used properly in agiven file.

To set the i flag, you must use the —f option of the admin command. For
example, the command

admin -fi s.demo.c
sets the i flag in the s-file s.demo.c. If the given version does not contain
keywords, subsequent delta or admin commands that access this file print an
error message.
Note that if you attempt to set the i flag at the same time as you create an s-file,

and if the initial text file contains no keywords, the admin command displays a
fatal error message and stops without creating the s-file.

5-14

SCCS: A Source Code Control System

5.5 Using S-file Flags

An s-file flag is a special value that defines how a given SCCS command will
operate on the corresponding s-file. The s-file flags are stored in the s-file and
are read by each SCCS command before it operates on the file. S-file flags affect
operations such as keyword checking, keyword replacement values, and
default values for commands.

This section explains how to set and use s-file flags. It also describes the action
of commonly-used flags. For a complete description of all flags, see the section
admin(CP)in the XENIX Reference Manual.

5.5.1 Setting S-file Flags

You can set the flags in a given s-file by using the —f option of the admin
command. The command has the form

admin -fflag s.filename

where -fflag gives the flag to be set, and s.filename gives the name of the s-filein
which the flag is to be set. For example, the command

admin -fi s.demo.c
setstheiflagin thes-file s.demo.c.
Note that some s-file flags take values when they are set. For example, the m
flag requires that a module name be given. When a value is required, it must
immediately follow the flag name, asin the command

admin -fmdmod s.demo.c

which sets the m flag to the module name **dmod™.

5.5.2 Using the i Flag

The i flag causesthe admin and delta commandsto print a fatal error message
and stop, if no keywords are found in the given text file. The flag is used to
prevent a version of a file, which contains expanded keywords, from being
saved as anew version. (Saving an expanded version destroys the keywords for
all subsequent versions).

When the i flag is set, each new version of a file must contain at least one
keyword. Otherwise, the version cannot be saved.

515

XENIX Programmer's Guide

5.5.3 Using the d Flag

The d flag gives the default SID for versions retrieved by the get command.
The flag takes an SID asits value. For example, the command

admin -fd1.1 s.demo.c (
sets the default SID to 1.1. A subsequent get command which does not use the
—r option will retrieve version 1.1.
5.5.4 Using the v Flag
The v flag allows you to include modification requests in an s-file. Modification
requests are names or numbers that may be used as a shorthand means of
indicating the reason for each new version.
When the v flag is set, the delta command asks for the modification requests
just before asking for comments. The v flag also allows the —m option to be
used in the delta and admin commands.

5.5.5 Removing an S-file Flag

You can remove an s-file flag from an s-file by using the —d option of the admin <
command. The command has the form \

admin —dflag s.filename
where ~dflag gives the name of the flag to be removed and s.filename is the
name of the s-file from which the flag is to be removed. For example, the
command

admin -di s.demo.c

removes the i flag from the s-file 8.demo.c. When removing a flag which takesa
value, only the flag name isrequired. For example, the command

admin ~dm s.demo.c
removes the m flag from the s-file.

The ~d and —i options must not be used at the same time.

5.6 Modifying S-file Information (

Every s-file contains information about the deltas it contains. Normally, this
information is maintained by the SCCS commands and is not directly accessible

5-16

SCCS: A Source Code Control System

by the user. Some information, however, is specific to the user who creates the
s-file, and may be changed as desired to meet the user’s requirements. This
informationiskept in two special partsof the s-file called the “delta table”

and the ‘‘description field”

The delta table contains information about each delta, such as the SID and the
date and time of creation. It also contains user-supplied information, such as
comments and modification requests. The description field contains a user-
supplied description of the s-file and its contents. Both parts can be changed or
deleted at any time to reflect changes to the s-file contents.

5.6.1 Adding Comments

You can add comments to an s-file by using the —y option of the delta and
admin commands. Thisoption causes the given text to be copied to the s-file as
the comment for the new version. The comment may be any combination of
letters, digits, and punctuation symbols. No embedded newline characters are
allowed. If spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line. For example, the command

delta -y” George Wheeler” s.demo.c
saves the comment ‘‘George Wheeler” in the s-file s.demo.c.
The —y option is typically used in shell procedures as part of an automated
approach to maintaining files. When the option is used, the delta command
does not print the corresponding comment prompt, so no interaction is
required. If more than one s-file is given in the command line, the given
comment applies to them all.

5.6.2 Changing Comments

You can change the comments in a given s-file by using the cdc command. The
command has the form

cdc -rSID s.filename
where —rSID gives the SID of the version whose comment is to be changed, and
s.filename is the name of the s-file containing the version. The command asks
for a new comment by displaying the prompt

comments?
You may type any sequence of characters up to 512 characters long. The
sequence may contain embedded newline characters if they are preceded by a

backslash (\). The sequence must be terminated with a newline character. For
example, the command

5-17

XENIX Programmer's Guide

cdc -r3.4 s.demo.c
promptsfor a new comment for version 3.4.

Although the command does not delete the old comment, it isno longer directly
accessible by the user. The new comment contains the login name of the user
who invoked the cdec command and the time the comment was changed.

5.6.3 Adding Modification Requests

You can add modification requests to an s-file, when the v flag is set, by using
the —~m option of the delta and ad min commands. A modification requestisa
shorthand method of describing the reason for a particular version.
Modification requests are usually names or numbers which the user has chosen
torepresent aspecific request.

The —m option causes the given command to save the requests following the
option. A request may be any combination of letters, digits, and punctuation
symbols. If you give more than one request, you must separate them with
spaces and enclose the request in double quotes. For example, the command

delta -m”error35 optimize10” s.demo.c

copies the requests *‘error35"” and ‘‘optimizel0” to s.demo.c, while saving the
new version.

The —m option, when used with the admin command, must be combined with
the —i option. Furthermore, the v flag must be explicitly set with the —foption.
For example, the command

admin -idef.h -m"error0” -fv s.def.h
inserts the modification request “‘error0” in the new file 8. def. 4.
The delta command does not prompt for modification requests if you use the
—~m option.
5.6.4 Changing Modification Requests
You can change modification requests, when the v flag is set, by using the edc
command. The command asks for a list of modification requests by displaying
the prompt

MRs?
You may type any number of requests. Each request may have any

combination of letters, digits, or punctuation symbols. No more than 512
characters are allowed, and the last request must be terminated with a newline

5-18

SCCS: A Source Code Control System
character. If you wish to remove a request, you must precede the request with
an exclamation mark (!). For example, the command

cdc -r1.4 s.demo.c
asks for changes to the modification requests. The response
MRs? error36 lerror35

adds the request “‘error36’ and removes ‘‘error35”.

5.6.5 Adding Descriptive Text

You can add descriptive text to an s-file by using the —~t option of the admin
command. Descriptive text is any text that describes the purpose and reason
for the given s-file. Descriptive text is independent of the contents of the s-file
and canonly be displayed using the prs command.

The -t option directs the admin to copy the contents of a given file into the
description field of the s-file. The command has the form

admin -tfilename s.filename
where -t filename gives the name of the file containing the descriptive text, and
s.filename is the name of the s-file to receive the descriptive text. The file to be
inserted may contain any amount of text. For example, the command

admin -tcdemo s.demo.c

inserts the contents of the file cdemo into the description field of the s-file
s.demo.c.

The ~t option may also be used to initialize the description field when creating
the s-file. For example, the command

admin -idemo.c —-tcdemo s.demo.c

inserts the contents of the file cdemo into the new s-file s.demo.c. If —t is not
used, the description field of the new s-file isleft empty.

You can remove the current descriptive text in an s-file by using the —t option
without a filename. For example, the command

admin -t s.demo.c

removes the descriptive text from the s-file e.demo.c.

5-19

XENIX Programmer’s Guide

5.7 Printing from an S-file

This section explains how to use the prs command to display information
contained in an s-file. The pra command hasa variety of options which control
the display format and content.

5.7.1 Using a Data Specification

You can explicitly define the information to be printed from an s-file by using
the —d option of the prs command. The command copies user-specified
information to the standard output. The command has the form

prs —depec s.filename

where -dspec is the data specification, and s.filename is the name of the s-file
from which theinformation isto be taken.

The data specification is a string of data keywords and text. A data keyword is
an uppercase letter, enclosed in colons (:). It represents a value containedin the
given s-file. For example, the keyword :I: represents the SID of a given version,
:F: represent the filename of the given s-file, :C: represents the comment line
associated with a given version. Data keywords are replaced by these values
when the informationisprinted.
For example, the command

prs —d” version: :I. filename: :F:” s.demo.c
may produce the line

version: 2.1 filename: s.demo.c
A complete list of the data keywords is given in the section pre(CP) in the
XENIX Reference Manual.
5.7.2 Printing a Specific Version

You can print information about a specific version in a given s-file by using the
~r option of the prs command. The command has the form

prs —tSID s. filename

where —r SID gives the SID of the desired version, and s.filename is the name of
the s-file containing the version. For example, the command

prs -r2.1 s.demo.c

5-20

SCCS: A Source Code Control System

printsinformation about version 2.1 in the s-file 8.demo.c.

If the —r option is not specified, the command prints information about the
mostrecently created delta.

5.7.3 Printing Later and Earlier Versions

You can print information about a group of versions by using the —I and —e
options of the prs command. The -] option causes the command to print
information about all versionsimmediately succeeding the given version. The
—e option causes the command to print information about all versions
immediately preceding the given version. For example, the command

prs -rl.4 -e s.demo.c

prints all information about versions which precede version 1.4 (e.g., 1.3, 1.2,
and1.1}). The command

prs -rl.4 -l s.abe

prints information about versions which succeed version 1.4 (e.g., 1.5, 1.6, and
2.1).

If both options are given, information about all versionsis printed.

5.8 Editing by Several Users

The SCCS system allows any number users to access and edit versionsof agiven
s-file. Since users are likely to access different versions of the s-file at the same
time, the system is designed to allow concurrent editing of different versions.
Normally, the system allows only one user at a time to edit a given version, but
you can allow concurrent editing of the same version by setting the j flag in the
given s-file.

The following sections explain how to perform concurrent editing and how to
save edited versions when you have retrieved more than one version for editing.

5.8.1 Editing Different Versions

The SCCS system allows several diflerent versions of a file to be edited at the
same time. This means a user can edit version 2.1 while another user edit
version 1.1. There is no limit to the number of versions which may be edited at
any given time.

When several users edits different versions concurrently, each user must begin

work in his own directory. If users attempt to share a directory and work on
versions from the same s-file at the same time, the get command will refuse to

521

XENIX Programmer’s Guide

retrieve a version.

5.8.2 Editing a Single Version

You can let a single version of a file be edited by more than one user by setting
the j flagin the given s-file. The flag causes the get command to check the p-file
and create a new proposed SID if the given version is already being edited.

You can set the flag by using the —f option of the admin command. For
example, the command

admin -fj s.demo.c
setsthe flag for the s-file s.demo. c.
When the flag is set, the get command uses the next available branch SID for
each new proposed SID. For example, suppose a user retrieves for editing
version 1.4 in the file s.demo.c, and that the proposed version is 1.5. If another
user retrieves version 1.4 for editing before the first user has saved his changes,
the the proposed version for the new user will be 1.4.1.1, since version 1.5 is

already proposed and likely to be taken. In no case will a version edited by two
separate usersresult in a single new version.

5.8.3 Saving a Specific Version
When editing two or more versions of a file, you can direct the delta command
to save a specific version by using the —r option to give the SID of that version.
The command has the form

delta -rSID e filemame

- where —r SID gives the SID of the version being saved, and ¢.filename isthe name

of the s-file to receive the new version. The SID may be the SID of the version
you have just edited, or the proposed SID for the new version. For example, if
you have retrieved version 1.4 for editing (and no version 1.5 exists), both
commands

delta -r1.5 s.demo.c
and

delta -rl.4 s.demo.c

save version 1.5.

522

SCCS: A Source Code Control System

5.9 Protecting S-files

The SCCS system uses the normal XENIX system file permissions to protect
s-files from changes by unauthorized users. In addition to the XENIX system
protections, the SCCS system provides two ways to protect the s-files: the “user
list” and the “protection flags”. The user list is a list of login names and group
IDs of users who are allowed to access the s-file and create new versions of the
file. The protection flags are three special s-file flags that define which versions
are currently accessible to otherwise authorized users. The following sections
explain how to set and use the user list and protection flags.

5.9.1 Adding a User to the User List

You can add a user or a group of users to the user list of a given s-file by using
the —a option of the admin command. The option causes the given name to be
added to the user list. The user list defines who may accessand edit the versions
in the s-file. The command has the form

admin -aname s.filename
where —~aname gives the login name of the user or the group name of a group of
users to be added to the list, and s. filename gives the name of the s-file toreceive
. the new users. For example, the command

admin -ajohnd -asuex —amarketing s.demo.c

adds the users *johnd” and “suex’ and the group “‘marketing’ to the user list
of the s-file . demo.c.

If you create an s-file without giving the —a option, the user list is left empty,
and all users may access and edit the files. Whenyou explicitly give auser name
or names, only those users can access the files.
5.9.2 Removing a User from a User List
You can remove a user or a group of users from the user list of a given s-file by
using the —e option of the admin command. The option is similar to the —a
option but performs the opposite operation. The command has the form

admin -ename . filename
where —ename gives the login name of a user or the group name of a group of
users to be removed from the list, and s. filename is the name of the s-file from

which the names are to be removed. For example, the command

admin -ejohnd -emarketing s.demo.c

5-23

XENIX Programmer's Guide

removes the user *“johnd” and the group “marketing” from the user list of the
s-file s.demo.c.
5.9.3 Setting the Floor Flag
The floor flag, f, defines the release number of the lowest verston a user may edit
in a given s-file. You can set the flag by using the —f option of the admin
command. For example, the command
admin ~ff2 s.demo.c
sets the floor to release number 2. If you attempt to retrieve any versions witha
release number less than 2, an error will result.
5.9.4 Setting the Ceiling Flag
" The ceiling flag, c, defines the release number of the highest version a user may
edit in a given s-file. You can set the flag by using the —f option of the admin
command. For example, the command
admin —fc5 s.demo.c
setsthe ceiling to release number 5. If you attempt toretrieve any versions with
arelease number greater than 5, an error will result.
5.9.5 Locking a Version
The lock flag, I, lists by release number all versions in a given s-file which are
locked against further editing. You can set the flag by using the —f flag of the
admin command. The flag must be followed by one or more release numbers.
Multiple release numbers must be separated by commas {,). For example, the
command
admin -fi3 s.demo.c
locks all versions with release number 3 against further editing. The command
admin -f14,5,9 s.def.h

locks all versions with release numbers 4,5, and 9.

Note that the special symbol “a’ may be used to specify all release numbers.
The command

admin —fla s.demo.c

locks all versions in the file s.demo.c.

5-24

SCCS: A Source Code Control System

5.10 Repairing SCCS Files

The SCCS system carefully maintains all SCCS files, making damage to the files
very rare. However, damage can result from hardware malfunctions, which
cause incorrect information to be copied to the file. The following sections
explain how to check for damage to SCCS files, and how to repair the damage or
regenerate the file.

5.10.1 Checking an S-file

You can check a file for damage by using the —h option of the admin command.
This option causes the checksum of the given s-file to be computed and
compared with the existing sum. An s-file’s checksum is an internal value
computed from the sum of all bytes in the file. If the new and existing
checksumsare not equal, the command displays the message

corrupted file (co6)
indicating damage to the file. For example, the command
admin -h s.demo.c

checks the s-file 8.demo. ¢ for damage by generating a new checksum for the file,
and comparing the new sum with the existing sum.

You may give more than one filename. If you do, the command checks each file
in turn. Youmay also give the name of a directory, in which case, the command
checksall filesin the directory.

Since failure to repair a damaged s-file can destroy the file’s contents or make
the file inaccessible, it isa good idea to regularly check all s-files for damage.

5.10.2 Editing an S-file

When an s-file is discovered to be damaged, it is a good idea to restore a backup
copy of the file from a backup disk rather than attempting to repair the file.
(Restoring a backup copy of a file is described in the XENIX Operations Guide.)
If thisisnot possible, the file may be edited using a XENIX text editor.

To repair a damaged s-file, use the description of an s-file given in the section
sccsfile (F) in the XENIX Reference Manual, to locate the part of the file which
is damaged. Use extreme care when making changes; small errors can cause
unwanted results,

5-25

XENIX Programmer’s Guide

5.10.3 Changing an S-file's Checksum

After repairing a damaged s-file, you must change the file’s checksum by using

the —z option of the admin command. For example, to restore the checksum of ‘
the repaired file s.demo.c, type (

admin -z s.demo.c

The command computes and saves the new checksum, replacing the old sum.

5.10.4 Regenerating a G-file for Editing

You can create a g-file for editing without affecting the current contents of the
p-file by using the —k option of the get command. The option has the same
affect as the —e option, except that the current contents of the p-file remain
unchanged. The option is typically used to regenerate a g-file that has been

accidentally removed or destroyed before it has been saved vsing the delta
command.

5.10.5 Restoring a Damaged P-flle

The —g option of the get command may be used to generate a new copy of a ‘
p-file that hasbeen accidentally removed. For example, the command <
get —e -g s.demo.c

creates a new p-file entry for the most recent version in s.demo.c. If the file
demo.c already exists, it will not be changed by this command.

§5.11 Using Other Command Options
Many of the SCCS commands provide options that control their operation in

useful ways. Thissection describes these options and explains how you may use
them to perform useful work.

5.11.1 Getting Help With SCCS Commands

You can display helpful information about an SCCS command by giving the

name of the command as an argument to the help command. The help
command displays a short explanation of the command and command syntax. ‘
For example, the command (

help rmdel

displays the message

5-26

SCCS: A Source Code Control System

rmdel:
rmdel -rSID name ...
5.11.2 Creating a File With the Standard Input

You candirect admin to use the standard input as the source for a new s-file by
using the —i option without a filename. For example, the command

admin -i s.demo.c <demo.c

causes admin to create a new s-file named s.demo.c which uses the text file
demo.c asits first version.

This method of creating a new s-file is typically used to connect admin to a
pipe. Forexample, the command

cat modl.c mod2.c | admin -i s.mod.c
creates a new s-file s.mod.c which contains the first version of the concatenated
files modl.cand mod2.c.
5.11.3 Starting At a Specific Release
The admin command normally starts numbering versions with release
number 1. You can direct the command to start with any given release number
by using the —r option. The command has the form

admin -rrel-num o filename

where —rrel-num gives the value of the starting release number, and s. filename
is the name of the s-file to be created. For example, the command

admin -idemo.c -r3 s.demo.c

starts with release number 3. The first versionis3.1.

5.11.4 Adding a Comment to the Fiirst Version

You can add a comment to the first version of file by using the -y option of the
admin command when creating the s-file. Forexample, the command

admin -idemo.c -y”" George Wheeler” s.demo.c

inserts the comment “George Wheeler” in the new s-file s.demo.c.

5-27

XENIX Programmer’s Guide

The comment may be any combination of letters, digits, and punctuation
symbols. If spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line.

If the —y option is not used when creating an s-file, a comment of the form

date and time created YY/MM/DD HH:MMSS by logname

is automatically inserted.

5.11.5 Suppressing Normal Output

You can suppress the normal display of messages created by the get command
by using the —s option. The option prevents information, such as the SID of the
retrieved file, from being copied to the standard output. The option does not
SUppress error messages.

The —s option is often used with the —p option to pipe the output of the get
command to other commands. For example, the command

get —p -s s.demo.c |lpr
copies the most recent version in the s-file s.demo.c to the line printer.
You can also suppress the normal output of the delta command by using the —s
option. This option suppresses all output normally directed to the standard
output, except for the normal comment prompt.
5.11.8 Including and Excluding Deltas
You can explicitly define which deltas you wish to include and which you wish
to exclude when creating a g-file, by using the —i and —x options of the get
command.
The —i option causes the command to apply the given deltas when constructing
a version. The —x option causes the command to ignore the given deltas when
constructing a version. Both options must be followed by one or more SIDs. If
multiple SIDs are given they must be separated by commas (,). A range of SIDs
may be given by separating two SIDs with a hyphen (~). For example, the
command

get -11.2,1.3 s.demo.c
causes deltas 1.2 and 1.3 to be used to construct the g-file. The command

get —x1.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 to be ignored when constructing the file.

5-28

SCCS: A Source Code Control System

The —i option is useful if you wish to automatically apply changes to a version
while retrieving it for editing. For example, the command

get —e —i4.1 -r3.3 s.demo.c

retrieves version 3.3 for editing. When the file isretrieved, the changesin delta
4.1 are automatically applied to it, making the g-file the same as if version 3.3
had been edited by hand using the changes in delta 4.1. These changes can be
saved immediately by issuing a delta command. Noediting is required.

The —x option is useful if you wish to remove changes performed on a given
version. Forexample, the command

get —e -x1.5 -r1.6 s.demo.c

retrieves version 1.6 for editing. When the file isretrieved, the changesin delta
1.5 are automatically left out of it, making the g-file the same as if version 1.4
had been changed according to delta 1.6 (with no intervening delta 1.5). These
changes can be saved immediately by issuing a delta command. No editing is
required.

When deltas are included or excluded using the —i and -x options, get
compares them with the deltas that are normally used in constructing the given
version. If two deltas attempt to change the same line of the retrieved file, the
command displays a warning message. The message shows the range of lines in
which the problem may exist. Corrective action, if required, is the
responsibility of the user.

5.11.7 Listing the Deltas of a Version
You can create a table showing the deltas required to create a given version by
using the -1 option. This option causes the get command to create an l-file

which contains the SIDsof all deltas used to create the given version.

The option is typically used to create a history of a given version’s
development. For example, the command

get -1 s.demo.c

creates a file named l.demo.¢ containing the deltas required to create the most
recent version of demo.c.

You can display the list of deltas required to create a version by using the —Ip
option. The option performs the same function as the —1 options except it
copiesthe list to the standard output file. For example, the command

get ~lp -r2.3 s.demo.c

copies the list of deltas required to create version 2.3 of demo.c to the standard

5-29

XENIX Programmer's Guide

output.

Note that the —1 option may be combined with the —g option to create a list of
deltas without retrieving the actual version.

5.11.8 Mapping Lines to Deltas

You can map each line in a given version to its corresponding delta by using the
—m option of the get command. This option causes each line in a g-file to be
preceded by the SID of the delta that caused that line to be inserted. TheSID is
separated from the beginning of the line by a tab character. The —m option is
typically used to review the history of each linein a given version.

5.11.9 Naming Lines

You can name each line in a given version with the current module name (i.e.,
the value of the 26M % keyword) by using the —n option of the get command.
This option causes each line of the retrieved file to be preceded by the value of
the 2%9M %% keyword and a tab character.

The —n option is typically used to indicate that a given line is from the given
file. When both the —m and —n options are specified, each line begins with the
% M% keyword.

5.12.10 Displaying a List of Differences

You can display a detailed list of the differences between a new version of a file
and the previous version by using the —p option of the delta command. This
option causes the command to display the differences, in a format similar to the
output of the XENIX diff command.

5.11.11 Displaying File Information

You can display information about a given version by using the —g option of the
get command. This option suppresses the actual retrieval of a version and
causes only the information about the version, such as the SID and size, to be

displayed.

The —g option is often used with the —r option to check for the existence of a
givenversion. For example, the command

get -g -r4.3 s.demo.c

displaysinformation about version 4.3 in the s-file s.demo.c. If the version does
not exist, the command displaysan error message.

5-30

SCCS: A Source Code Control System

5.11.12 Removing a Delta

You can remove a delta from an s-file by using the rmdel command. The
command has the form

rmdel -rSID s.filename

where -rSID gives the SID of the delta to be removed, and s.filenameisthe name
of the s-file from which the delta is to be removed. The delta must be the most
recently created delta in the s-file. Furthermore, the user must have write
permission in the directory containing the s-file, and must either own the s-file
or be the user who created the delta.

For example, the command

rmdel -r2.3 s.demo.c
removes delta 2.3 from the s-file s.demo.c.
The rmdel command will refuse to remove a protected delta, that is, a delta
whose release number is below the current floor value, above the current ceiling
value, or equal to a current locked value (see the section *‘Protecting S-files”
given earlier in this chapter). The command will also refuse to remove a delta

which is currently being edited.

The rmdel command should be reserved for those cases in which incorrect,
global changes were made to an s-file.

Note that rmdel changes the type indicator of the given delta from “D” to
“R". A type indicator defines the type of delta. Type indicators are described
in fullin the section delta(CP)in the XENIX Reference Manual.
5.11.13 Searching for Strings
You can search for strings in files created from an s-file by using the what
command. This command searches for the symbol #{@) (the current value of
the %Z % key word) in the given file. It then prints, on the standard output, all
textimmediately following the symbol, up to the next double quote ("), greater
than (>), backslash (\), newline, or (non-printing) NULL character. For
example, if the s-file s.demo.c¢ contains the following line

char idf] = "%Z%%M%:%1%";
and the command

get -13.4 s.prog.c

is executed, then the command

$-31

XENIX Programmer’s Guide

what prog.c
displays

prog.c:
prog.c:3.4

You may also use what to search files that have not been created by SCCS

commands.

5.11.14 Comparing SCCS Files

You can compare two versions from a given s-file by using the sccsdiff
command. This command prints on the standard output the differences
between two versionsof the s-file. The command has the form

scesdiff -rSID1 -rSID2 s.filename
where -rSIDI and -rSID2 give the SIDs of the versions to be compared, and
s.filename is the name of the s-file containing the versions. The version SIDs
must be given in the order in which they were created. For example, the
command

sccsdiff -r3.4 -r5.6 s.demo.c

displays the differences between versions 3.4 and 5.6. The differences are
displayed in a form similar to the XENIX diff command.

5-32

Chapter 6
Adb: A Program Debugger

6.1

8.2

6.3

6.4

Introduction 6-1

Starting and Stopping Adb 6-1

6.2.1 Starting With a ProgramFile 6-1
6.2.2 Starting With a Core Image File 6-2
6.2.3 Starting Adb WithDataFiles 86-3
6.2.4 Starting With the Write Option 6-3
6.2.5 Starting With the Prompt Option 6-3
6.2.6 LeavingAdb 6-4

Displaying InstructionsandData 6-4

6.3.1 Forming Expressions 6-4

6.3.2 Choosing DataFormats 6-9

6.3.3 Usingthe=Command 6-10

6.3.4 Usingthe?and /Commands 6-11
6.3.5 AnExample: Simple Formatting 6-12

Debugging Program Execution 6-13

6.4.1 ExecutingaProgram 6-14

6.4.2 SettingBreakpoints 6-14

6.4.3 Displaying Breakpoints 6-15

6.4.4 ContinuingExecution 6-15

6.4.5 StoppingaProgram with Interrupt and Quit 6-16
6.4.6 Single-Stepping aProgram 6-16

6.4.7 KillingaProgram 6-17

6.4.8 Deleting Breakpoints 6-17

6.4.9 Displaying the C Stack Backtrace 6-17

6.4.10 Displaying CPU Registers 6-18

6.4.11 Displaying External Variables 6-18

6.4.12 AnExample: Tracing Multiple Functions 6-19

6.5 Usingthe AdbMemory Maps 6-24
8.5.1 Displaying the Memory Maps 6-24

6.6 MiscellaneousFeatures 6-25
6.6.1 Combining Commandson aSingle Line 6-25
6.6.2 Creating Adb Scripts 6-25
6.6.3 Setting Output Width 6-26
6.6.4 Settingthe Maximum Offset 6-26
6.6.5 SettingDefault Input Format 6-27
6.6.6 UsingXENIX Commands 6-27
6.6.7 Computing Numbers and Displaying Text 6-28
6.6.8 AnExample: Directory and Inode Dumps 6-29

8.7 PatchingBinaryFiles 6-30
6.7.1 LocatingValuesinaFile 6-30
6.7.2 WritingtoaFile 6-31
6.7.3 Making Changes toMemory 6-31

Adb: A Program Debugger

8.1 Introduction
Adb is a debugging tool for C and assembly language programs. It carefully
controls the execution of a program while letting you examine and modify the
program’s dataand text areas.
This chapter explains how to use adb. In particular, it explains how to

— Start the debugger

— Display program instructionsand data

— Run, breakpoint, and single-step a program

— Patch program files and memory
It also illustrates techniques for debugging C programs, and explains how to
display information in non-ASCII data files.
8.2 Starting and Stopping Adb
Adb provides a powerful set of commands to let you examine, debug, and
repair executable binary files as well as examine non-ASCII data files. To use
these commands you must invoke adb from a shell command line and specify
the file or files you wish to debug. The following sections explain how to start
adb and describe the types of files available for debugging.
8.2.1 Starting With a ProgramFile

You can debug any executable C or assembly language program file by typing a
command line of the form

adb [filename|
where filename is the name of the program file to be debugged. Adb opens the
file and preparesits text (instructions) and data for subsequent debugging. For
example, the command

adb sample
prepares the program named ‘‘sample’’ for examination and execution.
Once started, adb normally prompts with an asterisk (*) and waits for you to
type commands. If you have given the name of a file that does not exist or is in

the wrong format, adb will display an error message first, then wait for
commands. For example, if you invoke adb with the command

6-1

XENIX Programmer’s Guide

adbsample

and the file “‘sample’ does not exist, adb displays the message “‘adb: cannot
open 'sample’”’

You may also start adb without a filename. In this case, adb searches for the

default file a.out in your current working directory and prepares it for
debugging. Thus, the command

adb
isthesame as typing
adba.out

Adb displays an error message and waits for a command if the a.out file does
not exist.

6.2.2 Starting With a CoreImageFile

Adb also lets you examine the core image files of programs that caused fatal
system errors. Core image files contain the contentsof the CPU registers, stack,
and memory areas of the program at the time of the error and provide a way to
determine the cause of an error.

To examine a core image file with its corresponding program, you must give the
name of both the core and and the program file. The command line has the
form

adb programfile corefile
where programfile is the filename of the program that caused the error, and
corefile is the filename of the core image file generated by the system. Adb then
uses information from both files to provide responses to your commands.
If you do not give a core image file, adb searches for the default core file, named
core, in your current working directory. If such a file is found, adb uses it
regardless of whether or not the file belongs to the given program. You can
prevent adb from opening this file by using the hyphen (-) in place of the core
filename. For example, the command

adb sample -

prevents adb from searching your current working directory for acore file.

6-2

Adb: A Program Debugger

6.2.3 Starting Adb With DataFiles
You can use adb to examine data files by giving the name of the data file in
place of the program or core file. For example, to examine a data file named
outdata, type

adboutdata
Adb opens this file and letsyou examine its contents.
This method of examining files is very useful if the file contains non-ASCII data.
Adb provides a way to look at the contents of the file in a variety of formats and
structures. Note that adb may display a warning when you give the name of
non-ASCII data file in place of a program file. This usually happens when the
content of the data file is similar to a program file. Like core files, data files
cannot be executed.

6.2.4 Starting With the Write Option

You can make changes and corrections in a program or data file using ad b if you
open it for writing using the —w option. For example, the command

adb-wsample

opens the program file sample for writing. You may then use adb commands to
examine and modify thisfile.

Note that the —w option causes adb to create a given file if it does not already
exist. The option also lets you write directly to memory after executing the
given program. See the section ‘‘Patching Binary Files” later in thischapter.

68.2.5 Starting With the Prompt Option

You can define the prompt used by adb by using the —p option. The option has
theform

-p prompt

where prompt is any combination of characters. If you use spaces, enclose the
promptin quotes. For example, the command

adb-p "Mar 10->" sample

sets the prompt to “Mar 10->"" The new prompt takes the place of the default
prompt(*)when adb begins to prompt for commands.

6-3

XENIX Programmer’s Guide

Make sure there is at least one space between the —p and the new prompt,
otherwise adb will display an error message. Note that adb automatically
supplies aspace at the end of the new prompt, so you do not have to supply one.

6.2.8 Leaving Adb

You can stop adb and return to the system shell by using the $q or $Q
commands. You can alsostop the debugger by typing CNTRL-D.

You cannot stop adb command by pressing the INTERRUPT or QUIT keys.
These keys are caught by adb and cause it to to wait for anew command.
6.3 Displaying Instructions and Data

Adb provides several commands for displaying the instructions and data of a
given program and the dataof agiven datafile. The commands have the form

address|, count] = format

address|, count|? format

address|, count] / format
where address is a value or expression giving the location of the instruction or
data item, count is an expression giving the number of items to be displayed,
and format is an expression defining how to display the items. The equal sign
(=), question mark (?), and slash (/) tell adb from what source to take the item
to be displayed. If the question mark (?) isgiven, the programfile is examined. If
the slash(/}isgiven, the corefile isexamined.
6.3.1 Forming Expressions
Expressions may contain decimal, octal, and hexadecimal integers, symbols,
adb variables, register names, and a variety of arithmetic and logical operators.
Decimal, Octal, and Hexadecimal Integers
Decimal integers must begin with a nonzero decimal digit. Octal numbers must
begin with a zero and may have octal digits only. Hexadecimal numbers must

begin with the prefix “‘0x’’ and may contain decimal digits and the letters ‘‘a”
through “f"’(in both upper and lowercase). The following are valid numbers

6-4

Adb: A Program Debugger

Decimal Octal Hexadecimal

34 042 0x22
4090 07772 Oxfla

Although decimal numbers are displayed with trailing decimal point (.), you
must not use the decimal point when typing the number.

Symbols

Symbols are the names of globol variables and functions defined within the
program being debugged and are equal to the address of the given variable or
function. Symbols are stored in the program’s symbol table and are available if
the symbol table has not been stripped from the program file (see strip(CP)).

In expressions, you may spell the symbol exactly asitisin the source program or
as it has been stored in the symbol table. Symbols in the symbol table are no
more than eight characters long and those defined in C programs are given a
leading underscore(_). Thefollowing are examples of symbols.

main _main hex2bin __out_of

Note that if the spelling of any two symbols is the same (except for a leading
underscore), adb will ignore one of the symbols and allow references only to the
other. For example, if both ‘‘main” and *‘_main” exist in a program, then adb
accesses only the first to appear in thesource and ignores the other.

When you use the ? command, adb uses the symbols found in the symbol table
of the program file to create symbolic addresses. Thus, the command
sometimes gives a function name when displaying data. Thisdoesnothappen if
the ? command is used for text (instructions) and the / command for data.
Local variables cannot be addressed.

AdbVariables

Adb automatically creates a set of its own variables whenever you start the
debugger. These variables are set to the addresses and sizes of various parts of
the program file as defined below.

base address of datasegment
size of data

execution type

size of stack

size of text

c’(ﬂaa_c‘

6-5

XENIX Programmer’s Guide

A user can access locations by using the adb defined variables. The
$v
request prints these variables.

Adb reads the program file to find the values for these variables. If the file does
not seem to be a program file, then ad b leaves the values undefined.

You can use the current value of an variable in an expression by preceding the
variable name with an less than (<) sign. For example, the current value of the
base variable “‘b” is

<b

You can create your own variablesor change the value of an existing variable by
assigning a value to a variable name with the greater than (>) sign. The
assignment has the form

ezpression > variable-name

where expression is the value to be assigned to the variable, and variable-name
must be asingle letter. For example, the assignment

0x2000>Db
assigns the hexadecimal value *‘0x2000" to the variable “b”.

You can display the value of all currently defined adb variables by using the $v
command. The command lists the variable names followed by their values in
the current format. The command displays any variable whose value is not
zero. If a variable also has a nonzero segment value, the variable's value is
displayed as an address; otherwise it is displayed asanumber.

Current Address

Adb has two special variables that keep track of the last address tobe usedina
command and the last address to be typed with a command. The . (dot)
variable, also called the current address, contains the last address tobeused ina
command. The” (double quotation mark) variable contains the last address to
be typed with a command. The . and ” variables are usually the same except
when implied commands, such as the newline and caret (") characters, are used.
(These automatically increment and decrement ., but leave ” unchanged.)

Both the . and the” may be used in any expression. The lessthan (<)sign isnot
required. For example, the command

6-6

Adb: A Program Debugger

displays the value of the current address and

»

displays the last address to be typed.

Register Names

Adb lets you use the current value of the CPU registers in expressions. You can
give the value of the register by preceding its name with the less than (<) sign.

Adb recognizes the following register names:

ax registera

bx registerb

cx registerc

dx registerd

di dataindex

si stack index
bp base pointer

fi status flag

ip instruction pointer
cs code segment
ds datasegment
ss stack segment
es extrasegment
sp stack pointer

For example, the value of the ‘‘ax’ register can be given as

<ax

Note that register names may not be used unless adb has been started with a
corefile or the program is currently being run under adb control.

Operators

You may combine integers, symbols, variables, and register names with the
following operators:

6-7

XENIX Programmer’s Guide

Unary

- Not

- Negative

* Contents of location
Binary

+ Addition

- Subtraction

* Multiplication

% Integer division

& Bitwise AND

| Bitwise inclusive OR
* Modulo

Round up to the next multiple

Unary operators have higher precedence than binary operators. Ali binary
operators have the same precedence. Thus, the expression

2¢3+4
isequalto 10and

4+2+3
is18.

You can change the precedence of the operations in an expression by using
parentheses. For example, the expression

4+(2+3)
isequal to 10.

Note that adb uses 32 bit arithmetic. This means that values that exceed
2,147,483,647 (decimal) are displayed as negative values.

Note that the unary * operator treats the given address as a pointer. An
expression using this operator resolves to the value pointed to by that pointer.
For example, the expression

*0x1234
isequal to the value at the address *‘0x1234”’, whereas

0x1234

6-8

Adb: A Program Debugger

is just equal to “Ox1234"

6.3.2 Choosing Data Formats

A format is a letter or character that defines how data is to be displayed. The
following are the most commonly used formats:

Letter Format

1 word in octal

1 word in decimal

2 wordsin decimal

1 word in hexadecimal

2 words in hexadecimal

1 word asan unsigned integer
2wc lsinfloating point

4 wol .. in floating point

meee WX gao

o

1 byte asacharacter
anull terminated character string

7]

machine instruction
1 byte in octal

o -

the current absolute address
anewline

ablank space

ahorizontal tab

Lagiia B~ A

A format may be used by itself or combined with other formats to present a
combination of data in different forms.

The d,0,x, and u formats may be used to display int type variables; D and X to
display long variables or 32-bit values. The f and F formats may be used to
display single and double precision floating point numbers. The ¢ format
displays char type variables and s is for arrays of char that end with a null
character (null terminated strings).

The i format displays machine instructions in 8086/286 mnemonics. The b
format displays individual bytes and is useful for display data associated with
instructions or the high or low bytes of registers.

The a,r, and n formats are usually combined with other formats to make the
display more readable. Forexample, the format

ia

6-9

XENIX Programmer’s Guide

causes the current address to be displayed after each instruction.

You may precede each format with a count of the number of times you wish it to
be repeated. For example the format

4c
displays four ASCII characters.

It is possible to combine format requests to provide elaborate displays. For
example, the command

<b,~1/404°8Cn

displays four octal words followed by their ASCII interpretation from the data
space of the core image file. In this example, the display starts at the address
“<b”, the base address of the program’s data. The display continues until the
end-of-the-file since the negative count ‘“~1” cause an indefinite execution of
the command until an error condition such as the end of the file occurs. In the
format, ‘“40" displays the next four words(16-bit values) as octal numbers. The
“4*” then moves the current address back to the beginning of these four words
and “*C" redisplays them as eight ASCII characters. Finally, “n’’ sends a
newline character to the terminal. The C format causes values to be displayed
as ASCII characters if they are in the range 32 to 126. If the value is in the range
0 to 31, it is displayed as an “‘at” sign (@) followed by a lowercase letter. For
example, the value 0 is displayed as *‘@a". The “‘at’’ sign itself is displayed asa
double at sign ‘@@”

8.3.3 Using the = Command
The = command displays a given address in a given format. The command is
used primarily to display instruction and data addresses in simpler form, or to
display the results of arithmetic expressions. For example, the command
main=a
displays the absolute address of the symbol “‘main’’ and the command
< b+0x2000=D

displays (in decimal) the sum of the variable “‘b”’ and the hexadecimal value
((oxm"

If a count is given, the same value is repeated that number of times. For
example, the command

6-10

Adb: A Program Debugger

main,2=x
displays the value of “main’’ twice.

If no address is given, the current addressis used instead. This is the same as the
command

If no format is given, the previous format given for this command is used. For
example, in the following sequence of commands both ‘‘main’’ and “‘start’ are
displayed in hexadecimal.

main=x
start=—=

8.3.4 Using the? and / Commands

You can display the contents of a text or data segment with the ? and /
commands. The commandshave the form

[address]{, count]?| format]

[eddress]|, count] /[format]
where address is an address with the given segment, count is the number of
items you wish to display, and format is the format of the items you wish to
display.

The ? command is typically used to display instructions in the text segment.
For example, the command

main,5%a

displays five instructionsstarting at the address “‘main’’ and the address of each
instruction is displayed immediately before it. The command

main,5%
displays the instructions but no addresses other than the starting address.
The / command is typically used to check the values of variables in a program,

especially variables for which no name exists in the program’s symbol table.
Forexample, the command)

6-11

XENIX Programmer’s Guide

<bp-47x
displays the value (in hexadecimal) of a local variable. Local variables are ,
generally at some offset from the address pointed to by the bp register. (
6.3.5 An Example: SimpleFormatting
This example illustrates how to combine formats in ? or / commands to display

different types of values when stored together in the same program. The
program to be examined has the following source statements.

char strl]] ="Thisisacharacterstring";
int one =1;
int number =456;
long Inum =1234;
float fpt =125;
char str?[] ="Thisisthesecond characterstring” ;
main()
one=2;

}

The program is compiled and stored in a file named sample. (
Tostart the session, type
adbsample

You can display the value of each individual variable by giving its name and
corresponding formatina / command. For example, the command

strl/s
displays the contents of ““str1”’ asastring

_strl: Thisisacharacterstring

and the command
number/d

displays the contents of “ number’ as adecimal integer (
_number: 456.

6-12

Adb: A Program Debugger

You may choose to view a variable in a variety of formats. For example, you can
display the long variable *‘Inum” as a 4-byte decimal, octal, and hexadecimal
number by using the commands

Inum /D
_lnum: 1234
lnum/O
_lnum: 02322

Inum /X
_lnum: 0x4D2

You can also examine all variables as a whole. For example, if you wish to see
them all in hexadecimal, type

strl,5/8x

This command displays eight hexadecimal values on a line and continues for
five lines.

Since the data contains a combination of numeric and string values, it is
worthwhile to display each value as both anumber and a character to see where
the actual strings are located. You can do this with one command by typing

strl,5/4x4"8Cn

In this case, the command displays four values in hexadecimal, then the same
values as eight ASCII characters. The caret () is used four times just before
displaying the characters to set the current address back tothe starting address
forthat line.

To make the display easier to read, you can insert a tab between the values and
characters and give an address for each line by typing

strl,5/4x4°8t8Cna

6.4 Debugging Program Execution

Adb provides a variety of commands to control the execution of programs
being debugged. The following sections explain how to use these commands as
well ashow to display the contents of memory and registers.

Note that C does not generate statement labels for programs. This means it is
not possible to refer to individual C statements when using the debugger. In
order to use execution commands effectively, you must be familiar with the
instructions generated by the C compiler and how they relate to individual C

6-13

XENIX Programmer’s Guide

statements. One useful technique is to create an assembly language listing of
your C program before using adb, then refer to the listing as you use the
debugger. To create an assembly language listing, use the —S option of the cc
command (see Chapter 2, “Cc: a C Compiler”).

6.4.1 Executing a Program

You can execute a program by using the :r command. The command has the
form

[address]|,count]:r[arguments)
where address givesthe address at which tostart execution, count is the number
of breakpoints you wish to skip before one is taken, and arguments are the

command line arguments, such as filenames and options, you wish to pass to the
program.

If no addressis given, then the start of the program is used. Thus, to execute the
program from the beginning type

T
If a count is given, adb will ignore all breakpoints until the given number have
been encountered. Forexample, the command

,5r
causes adb toskip the first 5 breakpoints.
If arguments are given, they must be separated by at least one space each. The
arguments are passed to the program in the same way the system shell passes
command line arguments to a program. You may use the shell redirection
symbols if you wish.
The :r command removes the contents of all registers and destroys the current
stack before starting the program. This kills any previous copy of the program
you may have been running.
6.4.2 Setting Breakpoints
You can set a breakpoint in a program by using the :b command. Breakpoints

cause execution of the program to stop when it reaches the specified address.
Control then returns toadb. The command has the form

6-14

(

Adb: A Program Debugger

address|, count] :b command

where address must be a valid instruction address, count is a count of the
number of times you wish the breakpoint to be skipped before it causes the
program to stop, and command is the adb command you wish to execute when
the breakpoint is taken.

Breakpoints are typically set to stop program execution at a specific place in the
program, such as the beginning of a function, so that the contents of registers
and memory can be examined. For example, the command

main:b
sets a breakpoint at the start of the function named *“main”. The breakpoint is

taken just as control enters the function and before the function’s stack frame is
created.

A breakpoint with a count is typically used within a function which is called
several times during execution of a program, or within the instructions that
correspond to a for or while statement. Such a breakpoint allows the program
to continue to execute until the given function or instructions have been
executed the specified number of times. For example, the command

light,5:b

sets a breakpoint at the fifth invocation of the function ‘‘light”. The breakpoint
does not stop the function until it has been called at least five times.

Note that no more than 16 breakpoints at a time are allowed.

8.4.3 Displaying Breakpoints

You can display the location and count of each currently defined breakpoint by
using the $b command. The command displays a list of the breakpoints given
by address. If the breakpoint has a count and /or a command, these are given as
well.

The $b command is useful if you have creating several breakpoints in your
program.

8.4.4 Continuing Execution

You can continue the execution of a program after it has been stopped by a
breakpoint by using the :c command. The command has the form

6-15

XENIX Programmer’s Guide

[address][,count] :c [signal]

where address is the address of the instruction at which you wish to continue
execution, count is the number of breakpoints you wish to ignore, and signal is
the number of the signal to send to the program (see aigna{S) in the XENIX
Reference Manual).

If no address is given, the program starts at the next instruction after the
breakpoint. If a countisgiven, adb ignores the first count breakpoints.

6.4.5 Stopping a Program withInterrupt and Quit

You can stop execution of a program at any time by pressing the INTERRUPT
(CTRL-\) or QUIT (DEL) keys. These keys stop the current program and return
control to adb, The key are especially useful for programs that have infinite
loops or other program errors.

Note that whenever you press the INTERRUPT or QUIT key to stop a program,
adb automatically saves the signal and passes it to the program if you start it
again by using the :c command. Thisisvery usefulif you wish to test a program
that uses these signals as part of its processing.

If you wish to continue execution of the program but do not wish to send the
signals, type

c0
The command argument “0’’ prevents a pending signal from being sent to the
program.
6.4.6 Single-Stepping a Program
You can single-step a program, i.e., execute it one instruction at a time, by using
the :s command. The command executes an instruction and returns control to
adb. The command has the form

|address] [, count):s

where address must be the address of the instruction you wish to execute, and
countisthe number of times you wish torepeat the command.

If no address is given, adb uses the current address. If a count is given, adb

continues to execute each successive instruction until count instructions have
been executed. For example, the command

6-16

Adb: A Program Debugger

main,5:s

executes the first 5 instructions in the function main.

6.4.7 Killing a Program

You can kill the program you are debugging by using the :k command. The
command kills the process created for the program and returns control to adb.
The command is typically used to clear the current contents of the CPU
registers and stack and begin the program again.

68.4.8 Deleting Breakpoints

You can delete a breakpoint from a program by using the :d command. The
command has the form

address:d
where addressis the address of the breakpoint you wish to delete.
The :d command is typically used to delete breakpoints you no longer wish to
use. The following command deletes the breakpoint set at the start of the

function “main’’.

main:d

6.4.9 Displaying the C Stack Backtrace
You can trace the path of all active functions by using the $¢ command. The
command lists the names of all functions which have been called and have not
yet returned control, as well as the address from which each function was called
and the arguments passed toit.
For example, the command

$c
displays a backtrace of the C language functions called.
By default, the $c¢ command displays all calls. If you wish to display just a few,

you must supply a count of the number of calls you wish to see. For example,
the command

6-17

XENIX Programmer’s Guide

,25%¢
displays upto 25 calls in the current call path.

Note that function calls and arguments are put on the stack after the function
has been called. If you put breakpoints at the entry point to a function, the
function will not appear in the list generated by the $¢ command. You can
remedy this problem by placing breakpoints a few instructions into the
function.

8.4.10 Displaying CPU Registers

You can display the contents of all CPU registers by using the $r command.
The command displays the name and contents of each register in the CPU as
well as the current value of the program counter and the instruction at the
current address. The display has the form

ax 0x0 fi 0x0
bx 0x0 ip 0x0
cx 0x0 cs 0x0
dx 0x0 ds 0x0
di 0x0 ss 0x0
si 0x0 es 0x0
sp 0x0 sp 0x0

0:0: addb al,bl

The value of each register is given in the current default format.

8.4.11 Displaying External Variables

You can display the values of all external variables in the program by using the
$e command. External variables are the variables in your program that have
global scope or have been defined outside of any function. This may include
variables that have been defined in library routines used by your program.

The $e command is useful whenever you need a list of the names for all available
variables or to quickly summarize their values. The command displays one
name on each line with the variable’s value (if any) on the same line.

The display has the form

6-18

fac:
_errno:
end:

__sobuf: 0
_obuf:
__lastbu:
__sibuf:
__stkmax:
Iscadr:
__iob:

_edata:

Adb: A Program Debugger

(= = =]

0406

02
01664

8.4.12 An Example: Tracing Multiple Functions

The following example illustrates how to execute a program under adb control.
In particular, it shows how to set breakpoints, start the program, and examine
registers and memory. The program to be examined has the following source

statements.

6-19

XENIX Programmer’s Guide

int
h(x,y)
{

&(p,q)
{

f(a,b)

}

main()

The program is compiled and stored in the file named sample. To start the

session, type

fcnt,gent, hent;

int hi; register int hr;
hi=x+1;

hr = x-y+1;
hent++

hj:
f(hr,hi);

int gi; register int gr;
gI=qp;
gr=qp+l;
ggnt++ ;

gi:
h(gr,gi);

int fi; register int fr;
fi=a+2sb;
fr=a+b,
fent++;

fj:
g(fr.fi);

f(1,1);

adb sample

This starts adb and opens the corresponding program file. There is no core

imagefile.

The first step is to set breakpoints at the beginning of each function. You cando
this with the :b command. For example, to set a breakpoint at the start of the
function “f”’, type

6-20

Adb: A Program Debugger

f:b

You can use similar commands for the “‘g” and ‘‘h’’ functions. Once you can
created the breakpoints you can display their locations by typing

$b

This command lists the address, optional count, and optional command
associated with each breakpoint. In this case, the command displays

breakpoints
count bkpt command
1 _f
1 £
1 -h

The next step isto display the first five instructions in the “f”’ function. Type
f,5%a

This command displays five instructions, each preceded by its symbolic
address. The instructions in 8086/286 mnemonics are

_f push bp
f+1. mov bp,sp
_f+3.: push di
_f+4.: push si
_f+45.: call chkstk
f+8.:

You can display five instructions in ‘g’ without their addresses by typing
g,5%

In this case, the display is

£ push bp
mov bp,sp
push di
push si

call chkstk

Tostart program execution, type

T

6-21

XENIX Programmer’s Guide

Adb displays the message
sample: running

and begins to execute. As soon as adb encounters the first breakpoint (at the
beginning of the “f”’ function), it stops execution and displays the message

breakpoint f: push bp

Since execution to this point caused no errors, you can remove the first
breakpoint by typing

f:p

and continue the program by typing
¢

Adbdisplays the message
sample: running

and starts the program at the next instruction. Execution continues until the
next breakpoint where adb displays the message

breakpoint £ push bp

You can now trace the path of execution by typing
$c
The commandsshows that only two functions are active: “main” and “”.

4(1.,1.) from _main+6.
_main (1.,470.) from _start+114.

Although the breakpoint has been set at the start of function *g”’ it will not be
listed in the backtrace until its first few instructions have been executed. To
execute these instructions, type

,5:8

Adb single-steps the first five instructions. Now you can list the backtrace
again. Type

6-22

{

(

Adb: A Program Debugger

$c
Thistime the list shows three active functions:
_£(2.,3.) from _{+48.
_f(1.,1.) from _main+6.
_main(1.,470.) from _start+114.
You can display the contents of the integer variable ‘fcnt” by typing
fent/d

This command displays the value of “fcnt” found in memory. The number
should be “1".

You can continue execution of the program and skip the first 10 breakpoints by
typing

,10:¢
Adb starts the program and display the running message again. It does not
stop the program until exactly ten breakpoints have been encountered. It
displays the message

breakpoint _g push bp

To show that these breakpoints have been skipped, you can display the
backtrace again using $c.

f(2,11) from _h+46:
_h(10,9.) from _g+48:
—g(11,,20.) from _f+48:

_f(2.,9.) from _h+46:
_h(8.,7.)from _g+48:
—£(9.,16.) from _f+48:
_f(2.,7.) from _h+46:
_h(6.,5)from _g+48:
£(7.,12) from _{+48:
_f(2.,5.) from _h+46:
_h(4,3){rom _g+48:
_g(5.,8)from _{+48:
_f(2.,3.) from _h+46:
_h(2,1.)from _g+48:

6-23

XENIX Programmer’s Guide

6.5 Using the Adb Memory Maps

Adb prepares aset of maps for the text and datasegments in your program and
uses these maps to access items that you request for display. The following
sections describe how to view these maps and how they are used to access the
text and datasegments.

6.5.1 Displaying the Memory Maps

Adb interprets these different file formats and provides access to the different
segments through a set of maps. To print the maps type: $m command. The
command has the form

$m [segment|

In nonshared files, both text (instructions) and data are intermixed. This makes
it impossible for adb to differentiate data from instructions and some of the
printed symbolic addresses look incorrect; for example, printing data addresses
asoffsets from routines.

In shared text, the instructions are separated from data and the

%

accesses the data part of the a.out file. Thisrequest tells adb to use the second
part of the map in the a.out file. Accessing datain the core file shows the data
after it was modified by the execution of the program. Notice also that the data
segment may have grown during program execution. In shared files the
corresponding core file does not contain the program text.

If you have started adb but have not executed the program, the $m command
display has the form

map ‘a.out’

b1=0 el =03700 f1=040
b2=0 e2 =0 2=03740
/map (_)

b1=0 el =0100000000 f1=0
b2=0 e2 =0 12=0

The b, e, and { fields are used by adb to map addresses into file addresses. The
“f1” field is the length of the header at the beginning of the file (0x34 bytes for
an a.out file and 02000 bytes for a core file). The “f2” field is the displacement
from the beginning of the file to the data. For unshared files with mixed text and
data this is the same as the length of the header; for shared files this is the length
of the header plus the size of the text portion.

6-24

Adb: A Program Debugger

The “b" and “‘e” fields are the starting and ending locations for a segment.
Given an address, “‘A”’, the location in the file (either a.out or core)is calculated
as:

bl1<A<el => fileaddress = (A-b1)+f1
b2 <A <e2=> file address = (A-b2)+12

8.8 Miscellaneous Features

The following sections explain how to use a number of useful commands and
featuresof adb.

8.86.1 Combining Commandson a Single Line

You can give more than one command on a line by separating the commands
with asemicolon (;). The commands are performed one at a time, starting at the
left. Changes to the current address and format are carried to the next
command. If an error occurs, the remaining commands are ignored.

One typical combination is to place a ? command after a | command. For
example, the commands

?1'Th’; ?s

search for and display astring that begins with the characters “Th”

8.8.2 Creating Adb Scripts

You can direct adb to read commands from a text file instead of the keyboard
by redirecting adb’s standard input file at invocation. Toredirect the standard
input, use the standard redirection symbol < and supply a filename. For
example, to read commands from the file script, type

adbsample <script

The file you supply must contain valid adb commands. Such files are called
script files and can be used with any invocation of the debugger.

Reading commands from a script file is very convenient when you wish to use
the same set of commands on several different object files. Scriptsare typically
used to display the contents of core files after a program error. For example, a
file containing the following commands can be used to display most of the
relevant information about a program error:

6-25

XENIX Programmer’s Guide

120$w

4095%s

$v

=3n

$m

=3n" C Stack Backtrace”
$C

=3n" C External Variables”
$e

=3n"Registers”

$r

0%s

=3n"Data Segment”
<b,~1/8xna

8.6.3 Setting Output Width

You can set the maximum width (in characters) of each line of output created
by adb by using the $w command. The command has the form

n$w

where n is an integer number giving the width in characters of the display. You
may give any width that is convenient for your given terminal or display device.
The default width when adb is first invoked is 80 characters.

The command is typically used when redirecting output to a lineprinter or
special terminal. For example, the command

1208w

sets the display width to 120 characters, a common maximum width for
lineprinters.

8.6.4 Setting the Maximum Offset

Adb normally displays memory and file addresses as the sum of a symbol and
an offset. This helps associate the instructions and data you are viewing with a
given function or variable. When first invoked, adb sets the maximum offset to
255. This means instructions or data that are no more than 255 bytes from the
start of the function or variable are given symbolic addresses. Instructions or
data beyond this point are given numeric addresses.

In many programs, the size of a function or variable is actually larger than 255
bytes. For this reason adb lets you change the maximum offset to

6-26

Adb: A Program Debugger

accommodate larger programs. You can change the maximum offset by using
the $8 command. The command has the form

n$s
where nisan integer giving the new offset. For example, the command
4095%s

increases the maximum possible offset to 4095. All instructions and data that
are nomore than 4095 bytes away are given symbolic addresses.

Note that you can disable all symbolic addressing by setting the maximum
offset to zero. Alladdresses will be given numeric valuesinstead.

6.6.5 Setting Default Input Format

You can set the default format for numbers used in commands with the $d
(decimal), $o (octal), and $x (hexadecimal) commands. The default format
tells adb how to interpret numbers that do not begin with “0’’ or “Ox"’ and how

to display numbers when no specific format is given.

The commands are useful if you wish to work with a combination of decimal,
octal, and hexadecimal numbers. For example, if you use

$x
you may give addresses in hexadecimal without prepending each address with
“Ox". Furthermore, adb displays all numbers in hexadecimal except those
specifically requested to be in some other format.
When you first start adb, the default format is decimal. You may change this
at any time and restore it as necessary using the $d command.

6.6.6 Using XENIX Commands

You can execute XENIX commands without leaving adb by using the adb
escape command !. The escape command has the form

I command
where command is the XENIX command you wish to execute. The command
must have any required arguments. Adb passes this command to the system
shell which executes it. When finished, the shell returns control to adb.

For example, to display the date type

6-27

XENIX Programmer’s Guide

ldate

The system displays the date at your terminal and restores control adb.

8.8.7 Computing Numbers and Displaying Text
You can perform arithmetic calculations while in adb by using the =
command. The command directs adb to display the value of an expression in a
given format.
The command is often used to convert numbers in one base to another, to
double check the arithmetic performed by a program, and to display complex
addressesin easier form. For example, the command
Ox2a=d
displays the hexadecimal number ‘0x2a’ as the decimal number 42 but
Ox2a=c

displays it as the ASCII character ‘‘¢”’. Expressions in a command may have
any combination of symbols and operators. For example, the command

<d0-12*<d1+<b+5=X
computes a value using the contents of the d0 and d1 registers and the adb
variable “b’’. You may also compute the value of external symbols as in the
command

main+5=X

This is helpful if you wish to check the hexadecimal value of an external symbol
address.

Note that the = command can also be used to display literal strings at your
terminal. This is especially useful in adb scripts where you may wish to display
comments about the script as it performs its commands. For example, the
command

=3n"C Stack Backtrace”

spaces three lines, then prints the message ‘C Stack Backtrace” on the
terminal.

6-28

Adb: A Program Debugger

6.6.8 An Example: Directory and Inode Dumps

This example illustrates how to create ad b scripts to display the contents of a
directory file and the inode map of a XENIX file system. The directory file is
assumed to be named dir and contains a variety of files. The XENIX file system
is assumed to be associated with the device file /dev/src and has the necessary
permissions to be read by the user.

To display a directory file, you must create an appropriate script, then start
adb with the name of the directory, redirecting its input to the script.

First, you can create a script file named script. A directory file normally
contains one or more entries. Each entry consists of an unsigned “‘inumber”
and a 14 character filename. You can display this information by adding the
command

0,-17utl4cn
to the script file. This command displays one entry for each line, separating the
number and filename with a tab. The display continues to the end of the file. If
you place the command

="inumber” 8t" Name”

at the beginning of the script, adb will display the strings as headings for each
column of numbers.

Onceyou have the script file, type
adb dir- <script

(The hyphen (~) is used to prevent adb from attempting to open a core file.)
Adb reads the commands from the script and the resulting display has the form

inumber name

652

82 .
5971 cap.c
5323 cap
0 pp

To display the inode table of a file system, you must create a new script, then
start adb with the filename of the device associated with the file system (e.g.,
the hard disk drive).

The inode table of a file system has a very complex structure. Each entry
contains: a word value for the file's status flags; a byte value for the number
links; two byte values for the user and group IDs; a byte and word value for the

6-29

XENIX Programmer’s Guide

size; eight word values for the location on disk of the file's blocks; and two word
values for the creation and modification dates. The inode table starts at the
address ‘02000 . You can display the first entry by typing

02000,~1?0n3bnbrdn8un2Y2na (
Several newlines are inserted within the display to make it easier toread.
To use the script on the inode tableof /dev/src, type

adb /dev/src- <script

(Again, the hyphen (-) is used to prevent an unwanted core file.) Each entry in
the display hasthe form

02000: 073145
0163 0164 0141
0162 10356
287708236 25956 27766 25455 8236 25956 25206
1976 Feb 508:34:56 1975Dec 28 10:55:15

8.7 Patching Binary Files @

You can make corrections or changes to any file, including executable binary
files, by using the w and W commands and invoking adb with the —w option.
The following sections describe how to locate and change values in a file.

6.7.1 Locating Valuesin aFile

You can locate specific values within a file by using the 1 and L commands. The
commands have the form

| address]?l value

where address is the address at which to start the search, and value is the value
(given as an expression) to be located. The 1 command searches for 2 byte
values; L for 4 bytes.

The

2 (

commands starts the search at the current address and continues until the first
match or the end of the file. If the value is found, the current address is set to
that value’saddress. For example, the command

6-30

Adb: A Program Debugger

'Th’

searches for the first occurrence of the string value *““Th"’. If the value is found at
“main+210" the current addressis set to that address.

6.7.2 Writing to a File

You can write to a file by using the w and W commands. The commands have
the form

| address] tw value

where address is the address of the value you wish to change, and value is the
new value. The w command writes 2 byte values; W writes 4 bytes. For
example, the following commands change the word *“This’' to “The "

N °Th’
W “The”’

Note that W is used to change all four characters.

8.7.3 Making Changes to Memory

You can also make changes to memory whenever a program has been executed.
If you have used an :r command with a breakpoint to start program execution,
subsequent w commands cause adb to write to the program in memory rather
than the file. This is useful if you wish to make changes to a program’sdata asit
runs, for example, to temporarily change the value of program flags or
constants.

6-31

Chapter 7
As: An Assembler

7.1 Introduction 1
7.2 Command Usage 1

7.3 Characters, Numbers, and Names |
7.3.1 Character Set 1
7.3.2 Integers 2
7.3.3 Real Numbers 2
7.34 Encoded Real Number 3
7.35 Packed Decimal Numbers 3
7.3.6 Character and String Constants 4

7.3.7 Names 4

7.3.8 Reserved Names 4
7.4 Statements and Comments 5

7.4.1 Statements 5

7.4.2 Comments 6

7.5 Source Files 6

7.6 Segments 7

7.6.1 Text Segments 8
7.6.2 Data Segments — Near 9
7.6.3 Data Segments — Far 10
7.6.4 Bss Segments 11
7.6.5 Constant Segments 12

7.7 Labels, Variables, and Symbols 13
7.7.1 Labels 13
7.7.2 Simple Variables 14
7.7.3 Multiple— Value Variables 14
7.74 Symbols 15

7.7.5 Absolute Symbols 15

7.8

7.9

7.10

7.11

Operands
7.8.1
7.8.2
7.8.3
7.84
7.8.5
7.8.6

16

Immediate Operands 16
Register Operands 16
Direct Memory Operands 17
Based Operands 18

Indexed Operands 18

Based Indexed Operands 19

Expressions 19

7.9.1
7.9.2
793
7.9.4
7.9.5
7.9.6

Arithmetic Operators 20
SHR and SHL Operators 20
Relational Operators 21
Logical Operators 21
Attribute Operators 22
Expression Evaluation 26

Instruction Mnemonics 26

7.10.1
7.10.2
7.10.3
7.10.4
7.10.5
7.10.6

Directives

=
s
b
N -

——0 0NN E W
-0

NNNNNNNNNNNNNN;

8086 Instruction Mnemonics 27

8087 Instruction Mnemonics 29

186 Instruction Mnemonics 31

286 Non—Privileged Instruction Mnemonics 32
286 Privileged Instruction Mnemonics 32

287 Instruction Mpemonics 32

33

ASSUME Directive 33
COMMENT Directive 34
DB Directive 34

DW Directive 35

DD Directive 35

DQ Directive 36

DT Directive 36

END Directive 37
EQU Directive 38

= Directive 38
EVEN Directive 39
EXTRN Directive 39
GROUP Directive 40
INCLUDE Directive 41
LABEL Directive 41
NAME Directive 42

11,17 ORG Directive 42
A1.18 PROC and ENDP Directives 43
11,19 PUBLIC Directive 43
.11.20 .RADIX Directive 44
11.21 SEGMENT and ENDS Directives 44
.11.22 IF Directives (Conditionals) 47
11.23 PAGE Directive 48

11.24 TITLE Directive 49

11.25 SUBTITLE Directive 49
.11.26 %O0UT Directive 50

11.27 .LIST and .XLIST Directives 50
11.28 .SFCOND, .LFCOND, and .TFCOND Directives 51
11.29 Instruction Set Directives 51

7.12 Program Listing Format 52
7.12.1 Code Listing 52
7.12.2 Symbol Table 53

As: An Assembler

7.1 Introduction

This chapter describes the usage and input syntax of the XENIX 8086/186/286
assembler, as. The assembler produces relocatable object modules from 8086,
186, and 286 assembly language files. Object modules contain relocation
information and a complete symbol table, and can be linked to other objects
modules using the XENIX linker, Id.

As is designed to be used in those rare cases where C programs do not satisfy a
programming requirement. Thus, you can make complete programs by combining
as object modules with object modules created by the XENIX C compiler, ec.

This chapter does not teach assembly language programming, nor does it give a
detailed description of 8086, 186, and 286 instructions. For information on these
topics, you will need other references.

7.2 Command Usage

As is invoked as follows:
as [options] filename

The options are one or more assembler options, and filename is the name of an
assembly language source file. The source file name should have the *‘.s"*
extension. Source files with this filename extension can also be assembled using
the ce command. See Chapter 2, ‘‘Cc: A C Compiler."’

Although as has several options, the most commonly used are the —1 and —o
options. The —] option causes the assembler to create a program listing that
includes the source, the assembled code, and any error messages. The listing is
given the ‘““.Ist’” filename extension. The —o option directs as to place the object
module in the named file. The option has the form:

—o outfile

where outfile is the name of the file to receive the object module. If you do not use
the —o option, the object files created by as have the same name as the source file

except that the *“.s’" filename extension is replaced with a “*.0"".

For a complete list of the assembler options, sce as(CP) in the XENIX Reference
Manual .

7.3 Characters, Numbers, and Names

All assembly language programs consist of a combination of characters, numbers,
and names. Names and numbers are used to idemtify values in instruction
statements. Characters are used to form the names or numbers, or to form
character constants. The following sections describe what characters can be used
in a program and how to form numbers and names.

7.3.1 Character Set

As recognizes the following character set:

XENIX Programmer’s Guide

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

0123456789
'@ . $:.|[|O<>+-1*4

7.3.2 Integers

Syntax

digits

digitsB

digitsQ

digitsO

digitsD

digitsH
An integer represents an integer mumber. It is a combination of binary, octal,
decimal, or hexadecimal digits and an optional radix. The digits are a combination
of one or more digits of the specified radix: B, Q, O, D, or H. If no radix is given,
as uses decimal by default. The following table lists the digits that can be used
with each radix.

Radix Type Digits
B Binary 01
Q Octal 01234567
0
D Decimal 0123456789
H | Hexadecimal | 0123456789ABCDEF

Hexadecimal numbers must always start with a decimal digit (0—9). The
hexadecimal digits A through F can be given as either upper or lower case.

The maximum number of digits in an intcger depends on the instruction o
directive in which the integer is used.

Examples
01011010B 132Q SAH 90D %0
01111B 170 OFH I1sD 15

You can override the default radix by using the .RADIX directive. See section,
*“.RADIX Directive,”" given later in this chapter.

7.3.3 Real Numbers

Syntax

digits digitsE | +1— | digits
A real number represents a number having an integer, a fraction, and an exponent.
The digits can be any combination of decimal digits. Digits before the decimal
point (.) represent the integer part, and those after the point represent the fraction.

The digits after the exponent mark (E) represemt the exponent. The exponent is
optional. If an exponent is given, the plus (+) and minus (—) signs can be used to

7-2

As: An Assembler

indicate its sign.
Real numbers can only be uscd with the DD, DQ, and DT directives. The

maximum number of digits in the number and the maximum range of exponent
values depends on the directive.

Examples
25.23 2.523E1 2523.0E-2

7.3.4 Encoded Real Number

Syntax

digitsR
An encoded real number is an 8, 16, or 20—digit hexadecimal number that
represents a real number in encoded format. An encoded real number has a sign
field, a biased exponent, and a mantissa. These values are encoded as bit fields
within the number. The exact size and meaning of each bit field depends on the

number of bits in the number. The digits must be hexadecimal digits. The number
must begin with a decimal digit (0-9).

Encoded real numbers can only be used with the DD, DQ, and DT directives. The
maximum number of digits for the encoded numbers used with DD, DQ, and DT
must not exceed 8, 16, and 20 digits, respectively. (If a leading zero is supplied,
the number must nat exceed 9, 17, and 21 digits.)

Example
3F800000R ; 1.0 for DD
3FFO000000000000R ; 1.0 for DQ

7.3.5 Packed Decimal Numbers

Syntax

[+ | —]digil.s
A packed decimal number represents a decimal integer that is to be stored in
packed decimal format. Packed decimal storage has a leading sign byte and 9

value bytes. Each value byte contains two decimal digits. The high order bit of the
sign byte is O for positive values, and 1 for negative values.

Packed decimals have the same format as other decimal integers except that they
can take an optional plus (+) or minus (—) sign and can only be defined with the
DT directive. A packed decimal must not have more than 18 digits.

Examples
1234567890 , encoded as 00000000001234567890
— 1234567890 ; encoded as 80000000001234567890

XENIX Programmer’s Guide

7.3.6 Character and String Constants

Syntax

* characters * ‘
* characters *

A character constant is a constant composed of a single ASCH character. A string
constant is a constant composed of two or more ASCU characters. Constants must
be enclosed in matching single quotation or double quotation marks.

Examples

a
*ab’

a
"This is a message.”

7.3.7 Names
Syntax
characters...

A name is a combination of letters, digits, and special characters that can be used in
instruction statements to labels, variables, and symbols. Names have the following
formatting rules: {

1. A name must begin with a letter, an underscore (), a question mark (?),
adollar sign (3), or an at sign (@).

2. A name can have any combination of upper and lowercase letters.
Upper and lowercase letters are unique unless the —Mu or —Mx option
is used. (See as(CP) in the XENIX Reference Manual)

3. A name can have any number of characters, but only the first 31
characters are used. All other characters are ignored.

Examples
subrout3
Array
-main

7.3.8 Reserved Names

A reserved name is any name that has a special, predefined meaning to the

assembler. Reserved names inciude instruction and directive mnemonics, register)
names, and predefined group and segment names. These names can only be used (
as defined and must not be redefined.

The following is a list of all reserved names except instruction mnemonics. For a
complete list of instruction mnemonics, see ‘‘Instruction Mnemonics™* given later
in this chapter.

7-4

As: An Assembler

%0UT DD EQU LE SEG .286¢

AH DGROUP ES LENGTH SEGMENT .286p

AL DH EVEN LOwW SHL .287

AND Di EXTRN LT SHORT .8086
ASSUME DL FAR MOD SHR .8087

AX DQ GE NAME S1 .LFCOND
BH DS GROULP NE SIZE .LIST

BL DT GT NEAR Sp .RADIX
BP DW HIGH NOT SS .SFCOND
BX DWORD IF OFFSET SUBTTL .TRCOND
BYTE DX IF1 OR TBYTE .TYPE
CH ELSE IF2 ORG THIS XLIST
CL END IFDEF PAGE TITLE =
COMMENT ENDIF IFE PROC TYPE -BSS

Cs ENDP IFNDEF PIR WORD DATA
CX ENDS INCLUDE PUBLIC XOR -TEXT
DB EQ LABEL QWORD .186

All upper and lowercase combinations of these names are considered to be the
same name. For example, the names *‘Length’’ and ‘‘LENGTH"’ are the same
name for the LENGTH operator.

7.4 Statements and Comments

All assembly language source files consist of one or more statements. Statements
define the actions to be taken by the assembler, such as the generation of
instruction code or the declaration of a variable.

Assembly language source files can also also contain comments. Comments are
programmer — supplied text that describes the action of the program or the purpose
of declared variables or labels.

The following sections describe the format of statements and comments in detail.
7.4.1 Statements

Syntax
[name] mnemonic [aperands]

A statement is a combination of 2 name, an instruction or directive mnemonic, and
one or more operands. A statement represents an action to be taken by the
assembler. such as generating a machine instruction or generating one or more
bytes of data.

Statements have the following formatting rules:
1. A statement can begin in any column.
2. Statements with names normally start in column 1.

3. A statement must not be longer than one line (128 characters).

XENIX Programmer’s Gulde

4. A statcment must be terminated by a newline character. This includes
that last statement in the source file.
Examples

coumt ddb 0

mov ax, bx

assume cs_TEXT, ds:DGROUP
-main proc far

7.4.2 Comments

Syntax
Jext
A comment is any combination of characters preceded by a semicolon (;) and

terminated by a newline character. Comments describe the action of a program at
the given point. For this reason, the assembler completely ignores comments.

Comments can be placed anywhere in a program, including on the same line as a
statement. The comment must be placed after all names, mnemonics, and
operands have been given. A comment must not be longer than one line, that is, it
must not contain any embedded newline characters. For very long comments, the
COMMENT directive can be used.

Examples

. This comment is alonc on a line.
mov ax, bx ; This commem follows a statemem.
» Comments can contain reserved words like _TEXT.

Although comments are not a required part of a program, they arc strongly
recommended.

7.5 Source Files

Syntax

statement

END
An assembly language source file is any combination of statements and comments
that ends with an END directive. All source files to be assembled by as must have
this form.
in general, as imposes no restriction on the content of a source file. This means a

source file can represent a complete program, a part of a program, or just symbols
to be used by a program.

In XENIX. source files that define a complete or partial program should contain one
or more of the XENIX predefined segments: TEXT, DATA, BSS, and CONST.
Object files created from assembly language source files that use the predefined

7-6

As: An Assembler

segments are guaranteed to be compatible with object files created from C language
source files and with all XENIX libraries. The formats of the TEXT, DATA, BSS,
and CONST segments are defined in the following sections. The segments can
appear in any order.

Note that, like all other statements in a source file, the statement containing the
END directive must terminate with a ncwline character. As ignores any text it
finds on lines after this statememt. Example

name Sample
DGROUP group _DATA
assume cs._ TEXT, ds:DGROUP, ss:DGROUP, es:DGROUP

public _main
extrn _printf:near

DATA segment word public 'DATA’
string db ‘Hello.", Oah, 0

DATA ends
-TEXT segment word public ‘CODE’
Jmain proc near
push
mov sp, bp
push si
push di
mov ax, offset DGROUP:string
push ax
call _printf
add sp, 2
pop di
pop si
mov bp,
pop bp
et
Jmain endp
-TEXT ends
end

In this example, the module named ‘‘Sample’’ contains two segments: *‘ TEXT"’
and *“_DATA."" _TEXT is the program code segment. It contains a procedure
named ‘‘_main’’. _DATA is the program data segment. It contains the definition
for the variable ‘‘string. ** This module represents a small model program.

7.6 Segments

A segment is a named collection of statements that define a program’s code, data,
or uninitialized data space. All assembly language source files consist of zero or
more segments.

XENIX Programmer’s Guide

In XENIX, there are four segment types:

TEXT
DATA
BSS
CONST

A TEXT scgment defines program code, a DATA scgment defines data, a BSS
segment defines uninitialized data space, and a CONST segment defines constant
data. [Each scgment type has a unique naming convention and content
requirement. These conventions are based on the memory model chosen for the
program.

XENIX has four different memory models:

Small (impure text)
Small (pure text)
Middle

Large

A memory model defines the number of actual memory segments a program can
occupy when loaded into memory. You sclect a memory model for an assembly
language by choosing the appropriate segment names in your source file and by
linking with the appropriate XENIX object modules and librarics when you create
the executable program.

The following sections define the formatting rules for TEXT, DATA, BSS, and
CONST segment in small, middle, and large assembly language programs.

7.6.1 Text Segments

Syntex

name _TEXT SEGMENT WORD PUBLIC *CODE’
statements
name TEXT ENDS

A text segment deGines a module's program code. It contains statements that define
instructions and data within the segment. A text segment must have the name
name TEXT, where name can be any valid name. For middle and large module
programs, the module’s own name is recommended. For small model programs,
*‘_TEXT"’ only should be used.

A segment can contain any combination of instructions and data statements. These
statements must appear in an order that creates a valid program. All instructions
and data addresses in a text segment are relative to the CS segment register.
Therefore, the statement

assume cs. name _TEXT

must appear at the beginning of the segment. This statement ensures that each label
and variable declared in the segment will be associated with the CS scgment
register (see the section, ‘‘ASSUME Directive’” given later in this chapter).

Text segments should have *“‘PUBLIC’’ combination type, and must have the class
name ‘‘CODE."" These define loading instructions that are passed to the linker.
Ahhough other segmemt attributes are available, they should not be used. For a

7-8

As: An Assembler

complete description of the attributes, see the section, ‘‘SEGMENT and ENDS
Directives,"* given later in this chapter.

Small Model Programs. Only one text segment is allowed. The segment raust not
exceed 64 Kbytes. If the segment’s complete definition is distributed among
several modules, the statement

IGROUP group .TEXT

should be used at the beginning of each module to ensure that the segment is placed
in a single 64 Kbyte physical segment. All procedure and statement labels should
have the NEAR type.

Example

IGROUP group _TEXT
assume c8 _TEXT

-TEXT segment word public ‘'CODE’
-main proc near

-main endp
_TEXT ends

Middle and Large Model Programs. Muliiple text segments are allowed,
however, no segment can be greater than 64 Kbytes. To distinguish one segment
from another, each should have its own name. Since most modules contain only
one text segment, the module’s name is often used as part of the text segment’s
name. All procedure and statement labels should have the FAR type, unless they
will only be accessed from within the same segment.

Example
assume c¢s:SAMPLE_TEXT

SAMPLE_TEXT segment word public ‘CODE’
Jmain proc far

_main ;:ndp
SAMPLE_TEXT ends

7.6.2 Data Segments — Near

Syntax

-DATA SEGMENT WORD PUBLIC '‘DATA’
statements
-DATA ENDS

A ncar data segment defines initialized data that is in the segment pointed to by the
DS segment register when the program starts execution. The segment is ‘‘near’’
because all data in the segment is accessible without giving an explicit segment

7-9

XENIX Programmer’s Guide

value. All programs have exactly onc necar data scgment. Only large model
programs can have additional data segments (sce the next section).

A ncar data scgment’s name must be ‘‘DATA.”" The scgment can contain any
combination of data statements defining variables to be used by the program. The
segment must not exceed 64 Kbytes of data. All data addresses in the scgment are
relative to the predefined group ‘‘DGROUP*’. Therefore, the tatemems

DGROUP group DATA
assume ds: DGROUP

must appear at the beginning of the scgment. These siatements ensure that each
variable declared in the data segment will be associated with the DS segment
register and DGROUP (see the sections, **ASSUME Directive™ and ‘‘GROUP
Directive’’ given later in thig chapter).

Near data scgments must be ““WORD®' aligned, must have ‘‘PUBLIC"
combination type, and must have the class name ‘DATA."* These define loading
instructions that are passed to the linker. Ahthough other segmem auributes are
available, they must not be used. For 2 complete description of the attributes, see
the section, *‘SEGMENT and ENDS Directives,’” given later in this chapter.

Example

DGROUP group DATA
assume ds: DGROUP

DATA scgment word public ‘DATA’

count dw 0

array dw 10 dup())

string db “Type CANCEL then press RETURN®, Oah, 0
DATA ends

7.6.3 Data Segments — Far

Syntax

name DATA SEGMENT WORD PUBLIC "FAR.DATA’
statements
name _DATA ENDS

A far data segment defines data or data space that can only be accessed by

specifying an explicit segment value. Only large model programs can have far
data segments.

A far data segment’s name must be name_DATA, where rame can be any valid
name. The name of the first variable declared in the segment is recommended.
The segment can contain any combination of data statements defining variables to
be used by the program. The segment must not exceed 64 Kbytes of data. All data
addresses in the segment are relative to the ES segment register. When accessing a
variable in a far data segment, the ES register must be set to the appropriate
segment value. Also, the segment override operator must be used with the
variable’s name (sce the section, ‘‘Attribute Operators,’’ given later in this
chapter).

7-10

As: An Assembler

Far data segments must be ‘“WORD® aligned, must have “PUBLIC®

combination type, and should have the class name “‘FAR_DATA."* These define

loading instructions that are passed to the linker. Although other segment attributes
are available, they must not be used. For a complete description of the attributes,
see the section, ‘‘SEGMENT and ENDS Directives,’® given later in this chapter.

Example
ARRAYDATA segment word public ‘FAR_ DATA’

array dw 0
dw 1
dw 2
dw 4

table dw 1600 dup(?)
ARRAY DATA ends

7.6.4 Bss Segments

Syntax
BSS SEGMENT WORD PUBLIC 'BSS’
statements
_BSS ENDS

A bss segment defines uninitialized data space. A bss segment’s name must be
‘_BSS." The segment can contain any combination of data staremenss defining
variables to be used by the program. The sepment must not exceed 64 Kbytes. All
data addresses in the segment are relative to the predefined group *‘DGROUP*’
Therefore, the statements

DGROUP group _BSS
assume ds: DGROUP

must appear at the beginning of the segment. These statements ensure that each
variable declared in the bss segment will be associated with the DS segment
register and DGROUP (see the sections, ‘“ASSUME Directive’” and ‘‘GROUP
Directive,’” given later in this chapter).

Note
The group name DGROUP must not be defined in more than one

GROUP directive in a source file. If your source file contains both a
DATA and BSS segment, the directive

DGROUP group .DATA, _BSS

should be used.

A bss segment must be ““WORD"" aligned. must have “‘PUBLIC** combination
type. and must have the class name ‘‘BSS.’’ These define loading instructions that
are passed to the linker. Although other segment attributes are available, they must

7-11

XENIX Programmer’s Guide

not be used. For a complete description of the attributes, sce the section,
““SEGMENT and ENDS Directives, "’ given later in this chapter.

Example

DGROUP group _BSS (
assume ds: DGROUP

-BSS segment word public 'BSS’®
count dw ?

array dw 10 dup(?)

string db 30 dup(M)

_BSS ends

7.6.5 Constant Segments

Syntax

CONST SEGMENT WORD PUBLIC "CONST’
statements
CONST ENDS

A constant scgment defines constant data that will not change during program
execution. Constant segments are typically used in large model programs to hold
the segment values of far data scgments.

The constant segment’s name must be ‘““CONST."" The segment can contain any @
combination of data starements defining constamts to be used by the program. The

segment must not exceed 64 Kbytes. All data addresses in the segment are relative

to the predefined group ‘‘DGROUP'’. Therefore, the statements

DGROUP group CONST
assume ds; DGROUP

must appear at the beginning of the scgment. These statements ensure that each
variable declared in the constant segment will be associated with the DS segmemt
register and DGROUP (sec the sections, ‘‘ASSUME Directive’” and ‘““GROUP
Directive, '’ given later in this chapter).

Note

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If your source file comtains DATA,
BSS, and CONST segments, the directive

DGROUP group DATA, _BSS, CONST

should be used. @

A constant segment must be ‘‘WORD™ aligned, must have ‘“PUBLIC"
combination type, and must have the class name ‘‘CONST."" These define loading
instructions that are passed to the linker. Although other scgment attributes are

7-12

As: An Assembler

available, they must nat be used. For a complete description of the attributes, sce
the section, *‘'SEGMENT and ENDS Directives,”” given later in this chapter.

Example

DGROUP group CONST
assume ds;: DGROUP

CONST segmemt word public '"CONST’
segl dw ARRAY_DATA
seg2 dw MESSAGE DATA
CONST ends

in this example, the constant segment receives the segment values of two far data
segments: ARRAY_DATA and MESSAGE_DATA. These data segments must be
defined elsewhere in the module.

7.7 Labels, Variables, and Symbols

Labels, variables. and symbols are named items that represent instruction
addresses, data addresses, and other values. Labels, variables, and symbols that
are used in a program must be explicitly defined. Defining an item mecans
associating a type, offset, and value to it. The following sections describe how to
define labels, variables, and symbols.

7.7.1 Labels

Syntax
name LABEL | NEAR|FAR |

A label definition creates a label name and sets its type to NEAR or FAR. The
label then represents the address of the following instruction and can be used in
jmp, call, and loop instructions to direct execution cortrol to the given instruction.

When a label definition is encountered, the assembler sets the label’s value to the
value of the current location counter and sets its type to NEAR or FAR. If the label
has FAR type. the assembler also sets its segment value to that of the enclosing
segment.

NEAR labels can be used with jmp, call, and loop instruction in the enclosing
segment only. FAR labels can be used in any segment of the program.

A NEAR label can also be defined using a colon (:). The definition has the form
name:

The definition can appear on a line by itself or on a line with an instruction.

Examples

again label near
stant label far
clear.screen: mov al,20H
subroutine3:

7-13

XENIX Programmer’s Guide

7.7.2 Simple Variables

Syntax
rame DB init—value {
name DW init—value
name bD init—value

name DQ init—value

rame DT init—value
A simple variable represents a single value stored at a single address. The mame
must be the name of the new variable, and inir—walue is the variable’s initial value.
1f the question mark (?) is given, the initial value is undefined.
When a simple variable definition is encountered, the assembler sets mame 10 the
current offset of the enclosing segment. It sets the variable’s type to BYTE,
WORD, DWORD, QWORD, or TBYTE, fer DB, DW, DD, DQ, and DT,
respectively.

Examples

count DB 0 '

start move bW 1

diameter DQ 35

temp DB ?
7.7.3 Multiple— Value Variables (
Symtax

name DB coum DUP(init—value)
name DW cout DUP(init—value)
name DD count DUP(init—value)
name DQ count DUP(init—value)
name DT courd DUP(init—value)

A multiplc— value variable is a collection of one or more values all known by the
same name. The coums defines the number of clements in the variabie, and
DUP(init—value) defines the initial value of each clement. Each elememt has the
size detined by the given directive.

Mubhiple dimensional arrays can be defined by giving a lit of initial values, or
inchuding another DUP directive in the initial vatue list. If more than one initial
value is given, the values must be separated by commas.

Muhiple— value variables can also be created using a list of initial values. The
definition has the form

name DB init—valuel, init—value2,.... init—valuen »
where each init— value must be separated from the preceding by a comma. (

As: An Assembler

Examples
1. Amay DB 100 DUP(1)
2. table DW 20 DUP(1,234)
3 threeD DB S DUP(S DUP(S DUP (1))
4. temp DD 14 DUP(?)
S. Sat DB 1,2,3

Example 1 creates the variable ‘‘Array’’. The array has 100 clements. Each
element, a byte, is initialized to 1.

Example 2 creates a two—dimensional array ‘‘table’’. The array has 80 clements,
each a word in length. The initial values of the first four clements are 1, 2, 3, and
4, respectively. This pattern is repeated to the end of the array.

Example 3 creates a three—dimensional array ‘‘threeD’’. The amray has 125
elements, each one byte in length. The initial value for all elements is 1.

Example 4 creates a variable ‘‘temp’’ that has 14 elements and undefined initial
values.

Example 5 creates a 3 element variable whose initial values are 1, 2, and 3.
7.7.4 Symbals

Syntax

name EQU expression
A symbol is a name that represents a number, a string, a variable, or an instruction.
A symbol definition sets name to the value or meaning given by expression. The
name must be a unique name, and expression must be a number, string, symbol,
an instruction mnemonic, a valid expression, or any other entry such as labels,
variables, or memory operands.

Examples

seven equ Th
movb equ mov

arrayl equ amray
sum equ +
frame equ bp

71.7.5 Absolute Symbals

Syntax
name = expri ession

An absolute symbol is a name that represents an integer number. The name is the
name of the symbol, and expression can be any valid expression that resolves to a
number.

Absolute symbols can be redefined at any time.

7-15

XENEX Programmer’s Guide

Examples
fifteen = OFH
base = $+2
skipls = base+15

7.8 Operznds

An operand is a constant, label, variable, or symbol that is used in an instruction or
directive to represent a value or locationto be acted on.
There are the following operand types:

Immediate
Register

Direct Memory
Based

Indexed

Based Indexed

7.8.1 Immediate Operands

Syntax
number!\string\symbol

An immediate operand is a constant value that does not change during execution of
the program. An immediate operand can be a mumber, string constant, absolute
symbol, or expression.

Examples

mov ax, 9

mov al, 'c’

mov bx, local

mov bx, offset DGROUP:table

7.8.2 Register Operands

Syntax
reg—name

A register operand is the name of a CPU register. Register operands direct
instructions to carry out their actions on the contents of the given registers. The
reg—name can be any one of the following:

ax ah al bx bh bl
cxX ch cl dx ¢h dl
cs ds 8s es p bp
di si

The ax, bx, cx, and dx registers are 16—bit general purpose registers. They canbe
used for any data or numeric manipulation. The ah, bb, ch, dh registers represent
the high 8—bits of the comresponding general purposc registers. Similarly, al, bi,

7-16

As: Ap Assembler

1, and dl represent the low—order 8—bits of the general purpose registers.

The cs, ds, ss, and es registers are the segment registers. They contain the current
segment address of the code, data, stack, and cxtra segments, respectively. All
instruction and data addresses are relative to the segmem address in one of these
registers.

The sp register is the 16—bit stack pointer register. The stack pointer contains the
current top of stack address. This address is relative to the segment address in the
ss register and is automatically modified by instructions that access the stack.

The bx, bp, di, and si registers are 16—bit base and index registers. These are
general purpose registers that are typically used for pointers to program data.

The 16—bit flag register contains nine 1—bit flags whose positions and meaning
are defined below:

3
&
=

Meaning

carry flag

parity flag

auxiliary flag

trap flag

zero flag

sign flag
interrupt—enable flag
direction flag
overflow flag

oD SN]SR NO

-0

Although no name exists for the 16—bit flag register, the contents of the register
can be accessed using the LAHF, SAHF, PUSHF, and POPF instructions.

7.8.3 Direct Memory Operands

Syntax
name
or
segment : number

A direct memory operand represents the address of one or more bytes of memory.
The name must be the name of a variable. The segment can be a segment register
name (CS, DS, SS, or ES), a scgment name, or a group name. The number must
be a integer.

Examples

mov ax, fred

mov dx, ss:0031H

mov cx, -DATA:0100H
mov al, DGROUP:2

-17

XENIX Programmer’s Guide

7.8.4 Based Operands

Syntax

disp| bp

disp| bx
A based operand represents a memory address relative to one of the base registers:
bp or bx. The disp can be any immediate or direct memory operand. It must
resolve to an absolute number or memory address. If no disp is given, 0 is
assumed.

The effective address of a based operand is the sum of the disp value and the
contents of the given register. 1f bp is used, the operand’s address is relative to the
segment pointed to by the ss register. If bx is used, the address is relative to the
segment pointed to by the ds register.

Based operands have a varicty of alternatc forms. The following illustrate a few of
these forms.

ld{spllbpl
disp +bp|
disp.[bp
[bp| +disp
Examples

mov ax.| bp
mov bx
mov ax, 12 bx]

mov ax, fred| bp]

7.8.5 Indexed Operands

Syntax
disp)| si ‘
disp| di

An indexed operand represerts a memory address that is relative to one of the

index registers: si or di. The disp can be any immediate or direct memory operand.

It must resolve to an absolute number or memory address. 1f no disp is given, O is

assumed.

The effective address of an indexed operand is the sum of the disp value and the
contents of the given register. The address is always relative to the segmemt
pointed to by the ds register.

Indexed operands have a varicty of alternate forms. The following illustrate a few
of these forms.

displ|dil

disp +di

disp [di]

[di|+disp

As: An Assembier

Examples

mov ax, f si H
mov ax, | di
mov ax, 12 di]
mov ax, fred si]

7.8.6 Based Indexed Operands

Syntax
disp| bp | si
disp| bp | di
disp| bx | si
disp| bx § di

A based indexed operand represents a memory address that is relative 10 a
combination of base and index registers. The disp can be any immediate or direct
memory operand. It must resolve to an absolute number or memory address. If
nodisp is given, O is assumed.

The effective address of a based indexed operand is the sum of the disp value and
the contents of the given registers. If the bp register is used, the address is relative
to the segment pointed to by the ss register. Otherwise, the address is relative to
the segment pointed to by the ds register.

Based indexed operands have a variety of alternate forms. The following illustrate
a few of these forms.

[displ{ bpldil

disp +bp + dil

disp.[bp [di‘
[diﬁ'disp +|bp]

Examples
mov ax, bp‘ sik
mov ax, | bx || di
mov ax, 12/ bp | di]
mov ax, fred| bx | si

7.9 Expressions

An expression is a combination of operands and operators that resolves to a single
value. Operands in expressions can be absolute values, memory operands, and
labels. The result of an expression is also an absolute value, memory operand, or
label, depending on the types of operands and operators used.

As provides a variety of operators. Arithmetic, shift, relational, and logical
operators manipulate and compare the values of operands. Attribute operators
manipulate the attributes of operands, such as their type, address, and size.

The tollowing sections describe the operators in detail.

7-19

XENIX Programmer’s Guide

7.9.1 Arithmetic Gperators

Syntax

expl * exp2
expl | exp2
exp] MOD exp2
expl + exp2
expl — exp2
+ exp

— exp

Arithmetic operators provide the common mathematical operations. The operators
have the following meanings:

Operator Meaning

¥ Multiplication.

/ Integer division.

MOD Remainder after division (modulus).
+ Addition.

- Subtraction.

+ Positive (unary).

- Negative (unary).

For most operators, the expressions expl and exp2 must be imeger numbers.
Labels and variable names can be given with the + and — (subtraction) operalars
only. With +, at least one must be an imteger number. With —, expl can be an
integer number, label, or variable name; exp2 can only be a label or variabie name
if expl is also one and in the same scgment.

Exampies
14 * 4 ; equals 56
14/ 4 ; equals 3
14 MOD 4 ; equals 2
14 + 4 ; equals 18
14 — 4 ; equals 10
14 — +4 ; equals 10
14 — -4 ; equals 18

7.9.2 SHR and SHL Operators

Syntax

expression SHR count
expression SHL count

The SHR and SHL operators shift the given expression right or left by couns
number of bits. Bits shifted off the end of the expression arc lost.

Examples

01110111B SHL 3 ; equals 10111000B
01110111B SHR 3 . equals 00001110B

7.9.3

Syntax

expl
expl
expl
expl
expl
expl

As: An Assembler

Relational Operators

EQ exp2
NE exp2
LT exp2
LE exp2
GT exp2
GE exp2

The relational operators compare the expressions expl and exp2 and return true

(OFFFFH) if the given condition is satisfied or false (O0O00H) if it is not. The
expressions must resolve to absolute values. The operators have the following
meanings:
Operator Condition is satisfied when:
EQ Operands are equal.
NE Operands are not equal.
LT Left operand is less than right.
LE Left operand is fess than or equal to right.
GT Left operand is greater than right.
GE Left operand is greater than or equal to right.
Relational operators are typically used with conditional directives and conditional
instructions to direct program controi.
Exampies
1 EQ © ; false
1 NE O ; true
1 LT O ; false
1 LE © ; false
1 GT 0 ; true
1 GE O ; true
7.9.4 Logical Operators
Syntax
NOT exp
exp] AND exp2
expl OR exp2
exp] XOR exp2

The logical operators perform bitwise operations on the given expressions. In a
bitwise operation, the operation is performed on cach bit in an expression rather

than on th
values.

e expression as a whole. The cxpressions must resolve to absolute

7-21

XENIX Programmer’s Guide

The operators have the following meanings:
Operator Meaning

NOT Inverse.

AND Boolean AND.

OR Boolean OR.

XOR Boolean exclusive OR.

Examples

NOT 11110000B ; equals CO001111B
01010101B AND 11110000B ; equals 01010000B
01010101B OR 11110000B ; equals 11110101B

01010101B XOR 111100008 ; equals 101001018
7.9.5 Attribute Operators

The attribute operators modify or return the values and types associated with
labels, variables, and symbols.

PTR Operator Syntax
tvpe PTR expression

The PTR operator assigns a new fype to the variable or label given by the
expression. The type must be one of the following size or distance values:

BYTE
WORD
DWORD
QWORD
TBYTE
NEAR
FAR

The operand can be any memory operand or label. The BYTE, WORD, and
DWORD types can be used with memory operands only. The NEAR and FAR
types can be used with labels only.

The PTR operator is typically used with forward references to explicitly define
what size or distance a reference has. If not used, as assumes a default size or
distance for the reference. The PTR operator is also used to give instructions access
to variables in ways that would otherwise generate errors. For example, accessing
the high—order byte of a WORD size variable.

Examples

call far ptr sybrout3
mov byte ptr Tarr yl].]
add al, byte pir rfuleord]

Segment Override Operator Syntax

segment—register . expression
segment—name . expression
group—name . expression

As: An Assembler

The segment override operator (:) forces the address of a given variable or label to
be computed using the beginning of the given segmens—register, segment—name ,
or group—name. If a segment—name o1 group—name is given, the name must
have been assigned to a segment register with a previous ASSUME directive and
defined using a SEGMENT or GROUP directive. The expression can be an
absolute address or any memory operand. The segmens—register must be one of
CS, DS, SS, or ES.

By default, the effective address of a memory operand is computed relative to the
DS or ES register, depending on the instruction and operand type. Similarly, all
labels are assumed to be NEAR. These default types can be overridden using the
segment override operator.

Examples

mov ax, es:[bx]si]

mov _TEXT:far_label, ax
mov ax, DGROUP:variable
mov al, cs:0001H

SHORT Operator Syntax
SHORT label

The SHORT operator sets the type of the given label to SHORT. Short labels can
be used in ‘‘jump’’ instructions whenever the distance from the label to the
instruction is not more than 127 bytes. Instructions using short labels are one byte
smaller than identical instructions using near labels.

Example

1. jymp short repeat
THIS Operator Syntax

THIS rvpe

The THIS operator creates an operand whose offset and segment vatue are equal to
the current location counter value and whose type is given by tvpe. The rype can
be any one of the following:

BYTE

WORD

DWORD

QWORD

TBYTE

NEAR

FAR
The THIS operator is typically used with the EQU or = directive. It is similar to
creating operands with the LABEL directive.

Examples
tag equ this byte
spot_check = this near

Example 1 is equivalert to the statement ““TAG LABEL BYTE™.
Example 2 is equivalent to the statement ‘‘SPOT_CHECK LABEL NEAR'.

7-23

XENEX Programmer’s Guide

HIGH and LOW Operators Syntax

HIGH expression
LOW expression

The HIGH and LOW operators return the high and low 8—bits of the given
expression. The HIGH operator returns the high 8 bits of the expression; the LOW
operator returns the low—order 8—bits. The expression canbe any absolute value.

Examples

mov ah, high word_value
mov al, low OFFFFH

SEG Operator Syntax
SEG expression

The SEG operator retumns the segmem value of the given expression. The
expression can be any label, variable, or symbol.

Example

1. mov ax, seg variable_name
2. mov ax, seg label_name

OFFSET QOperator Syntax
OFFSET expression

The OFFSET operator returns the offset of the given expression. The expression
can be any label, variable, or symbol. The returned value is the number of bytes
between item and the beginning of the segment in which it is defined.

The segment override operator (:) can be used to force OFFSET to return the
number of bytes between the item in the expression and beginning of a named
segment or group. This is method used to generate valid offsets for items in a
group. Sec example 2.

Examples

mov bx, offset array
mov bx. offset DGROUP:global

The returned value is always a relative value that is subject to change by the linker
when the program is actually linked.

TYPE Operator Syntax
TYPE expression

The TYPE operator returns a number representing the the type of the given
expression. 1f the expression is a label, variable, or symbol, the operator returns
the size of the operand in bytes. If the expression is a label, the operator returns
OFFFFH if the label is NEAR, and OFFFEH if the label is FAR.

Examples

mov ax, type amray
jmp (type getloc) ptr destiny

As: An Assembler

.TYPE Operator Syntax
.TYPE variable

The .TYPE operator returns a byte that defines the mode and scope of the given
variable. The variable can be any label, variable, or symbol. If the expression is
not valid, .TYPE returns zero.

The variable’s attributes are returned in bits 0, 1, S, and 7 as follows:

Bit Position IfBit=0 K Bit=1

0 Absolute value Program related
1 - Data Related

S Not defined Locally defined
7 Local scope External scope

If both the scope bit and defined bit are 0, the expression is not valid.

The .TYPE operator is typically used with conditional directives, where an
argument may need to be tested to male a decision regarding program flow.

Example

X db 12

z = .type x
This example sets zto 34.

LENGTH Operator Syntax
LENGTH variable

The LENGTH operator returns the size of the given variable in units of BYTE,
WORD, DWORD, QWORD, or TBYTE. The units selected depends on the
variable s defined type.

Only variables that have been defined using the DUP operator return values greater
than 1. The return valiue is always the number that precedes the first DUP
operator.

In the following examples, assume the definitions:

array dw 100 dup(l)
table dw 100 dup(1.10 dup(?))

Examples
mov cx, length array
mov cx, length table

In example 1, LENGTH returns 100.

In example 2, LENGTH returns 100. The return value does not depend on any
nested DUP operators.

SIZE Operator Syntax
SIZE variable

The SIZE operator returns the total number of bytes allocated for the given
variable. The return value is equal to return value of LENGTH times the return
value of TYPE.

7-25

XENIX Programmer’s Guide

In the following example, assume the definition:
array dw 100 dup(l)
Example .
mov bx, size amay (
In this example, SIZE returns 200.

7.9.6 Expression Evaluation

Expressions are evaluated according to the rules of operator precedence and order.
Operations of highest precedence are performed first. Operations of equal
precedence are performed from icft to right. This default order of evaluation can
be overridden using enclosing parentheses. Operations in parentheses are always
performed before any other operations. The following table list the precedence of
all operators. Operators on the same line have equal precedence.

Precedence Operators

Highest
1 LENGTH, SIZE
2
; [
4 :
h PTR, OFFSET, SEG, TYPE, THIS /
6 HIGH, LOW @
7 *,/,MOD, SHL, SHR
8 +, -
9 EQ. NE, LT, LE, GT,GE
10 NOT
11 AND
12 OR, XOR
13 SHORT, .TYPE
Lowest
Examples
8/4*2 ; equals 4
8/(4*2) ; equals 1
8+4%*2 . equals 16
B +4)*2 ; equals 24
8EQ4 AND 2LT3 . equals 0000H (false)
8EQ4OR2LT3 . equals OFFFFH (true)

7.10 Instruction Mnemonics

As supports the complete instruction sets of the 8086 family of microprocessors. (
This includes the instruction sets for the 8086, 8087, 186, 286, and 287
microprocessors. The following sections list the instruction mnemonics of all
instructions supported by the assembler. Instructions are listed by microprocessos.

As: An Assembler

The 8086 instructions apply to all microprocessors.

Note

The .8086, .186, .286c, .286p, .8087, and .287 directives define which
instruction sets are recognized by the assembler. By default, as
recognizes and assembles all 286 non—privileged and 287 instructions.
This set can be limited to 8086 and 8087 instructions by using the .8086
and .8087 directives in the source file. It can be expanded to include
286 privileged instructions by using .286p. For a complete description of
these directives, see the section, *‘Instruction Set Directives,’’ given later
in this chapter.

7.10.1 8086 Instruction M nemonics

The following is a complete list of the 8086 instructions. As assembles all 8086
instructions by default. It also assembles 286 non—privileged instructions. The
.8086 directive can be used to limit assembly to 8086 instructions only.

8086 Mnemonic Full Name
AAA ASCIll adjust for addition
AAD ASCII adjust for division
AAM ASCII adjust for multiplication
AAS ASCl adjust for subtraction
ADC Add with carry

ADD Add
AND And
CALL Gl

CBW Convent byte to word
CLC Clear carry flag
CLD Clear direction flag
CLI Clear interrupt flag
CMC Complement carry flag
CMP Compare
CMPS Compare byte or word (of string)
CMPSB Compare byte string
CMPSW Compare word string
CWD Convert word to double word
DAA Decimal adjust for addition
DAS Decimal adjust for subtraction
DEC Decrement

DIV Divide
ESC Escape
HLT Hah

IDIV Integer divide
IMUL Integer multiply
IN Input byte or word
INC Increment

7-27

XENIX Programmer’s Guide

3686 Mnemonic
INT
INTO
IRET
JA
JAE
JB
JBE
JC
JICXZ
JE

JPE

LODS
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MOV
MOVS
MOVSB

Full Name

Interrupt

Interrupt on overflow
Interrupt return

Jump on above

Jump on above or equal
Jump on below

Jump on below or equal
Jump on carry

Jump on CX zero

Jump on equal

Jump on greater

Jump on greater or equal
Jump on less than

Jump on less than or equal
Jump

Jump on not above

Jump on not above or equal
Jump on not below

Jump on not below or equal
Jump on no carry

Jump on not equal

Jump on not greater

Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow
Jump on not parity

Jump on not sign

Jump on not zero

Jump on overflow

Jump on parity

Jump on parity even

Jump on parity odd

Jump onsign

Jump on zero

Load AH with flags

Load pointer into DS

Load effective address
Load pointer into ES

Lock bus

Load byte or word (of string)
Load byte (string)

Load word (string)

Loop

Loop while equal

Loop while not equal

Loop while not zero

Loop while zero

Move

Move byte or word (of string)
Move byte (string)

As: An Assembler

8086 Mnemonic Full Name
MOVSW Move word (string)
MUL Multiply
NEG Negate
NOP Nooperation
NOT Not
OR Or
OUT Output byte or word
POP Pop
POPF Pop flags
PUSH Push
PUSHF Push flags
RCL Rotate through carry left
RCR Rotate through carry right
REP Repeat
RET Return
ROL Rotate left
ROR Rotate right
SAHF Store AH into flags
SAL Shift arithmetic left
SAR Shift arithmetic right
SBB Subtract with borrow
SCAS Scan byte or word (of string)
SCASB Scan byte (string)
SCASW Scan word (string)
SHL Shift left
SHR Shift right
STC Set camry flag
STD Set direction flag
STI Setinterrupt flag
STOS Store byte or word (of string)
STOSB Store byte (string)
STOSW Store word (string)
SUB Subtract
TEST Test
WAIT Wait
XCHG Exchange
XLAT Translate
XOR Exclusive OR
7.10.2 8087 Instruction Mnemonics

The 8087 is a coprocessor that operates in conjunction with the 8086
microprocessor. As assembles all 8087 instructions by default. It also assembles
287 instructions. The .8087 directive can be used to limit assembly to 8087
instructions only.

The following is a list of the 8087 instructions.

8087 Mnemonic
F2XM]

Full Name
Calculate 2X—1

7-29

XENIX Programmer’s Guide

8087 M nemonic
FABS
FADD
FADDP
FBLD
FBSTP
FCHS
FCLEX
FCOM
FCOMP
FCOMPP
FDECSTP
FDISI
FDI1V
FDIVP
FDIVR
FDIVRP
FENI
FFREE
FIADD
FICOM
FICOMP
FID1V
FIDIVR
FILD
FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FISUBR
FLD
FLDI
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLLDLN2
FLDPIL
FLDZ
FMUL
FMULP
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV

7-30

Full Name

Take absolute value of top of stack
Addreal

Add real and pop stack

Load packed decimal onto top of stack (
Store packed decimal and pop stack
Change sign on the top stack element
Clear exceptions after WAIT

Compare real

Compare real and pop stack

Compare reat and pop stack twice
Decrement stack pointer

Disable interrupts after WAIT

Divide real

Divide real and pop stack

Reversed real divide

Reversed real divide and pop stack twice
Enable interrupts after WAIT

Free stack element

Add integer

Integer compare

Integer compare and pop stack

Integer divide

Reversed integer divide

Load integer onto top of stack

Integer muhiply (i
Increment stack pointer S
Initialize processor after WAIT

Store integer

Store integer and pop stack

Integer subtract

Reversed integer subtract

Load real onto top of stack

Load +1.0onto top of stack

Load control word

Load 8087 environment

Load log2 e onto top of stack

Load log2 10 onto top of stack

Load log] 2 onto top of stack

Load logg 2 onto top of stack

Load pi onto top of stack

Load +0.0 orto top of stack

Mukhiply real

Muhiply real and pop stack

Clear exceptions with no WAIT

Disable interrupts with no WAIT
Enable interrupts with no WAIT 4
Initialize processor, with no WAIT @
No operation

Save 8087 state with no WAIT

Store control word without WAIT

Store 8087 environment with no WAIT

8087 Mnemonic
FNSTSW
FPATAN

FPREM
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSQRT
FST
FSTCW
FSTENV
FSTP
FSTSW
FSUB
FSUBP
FSUBR
FSUBRP
FTST
FWAIT
FXAM
FXCH
FXTRACT
FYL2X
FYL2PI

As: An Assembier

Full Name

Store 8087 status word with on WAIT
Partial arctangent function

Partial remainder

Partial tangent function

Round 1o integer

Restore state

Save 8087 state after WAIT

Scale

Square root

Store real

Store control word with WAIT

Store 8087 environment after WAIT
Store real and pop stack

Store 8087 status word after WAIT
Subtract real

Subtract real and pop stack

Reversed real subtract

Reversed real subtract and pop stack
Test top of stack

Wait for last 8087 operation to complete
Examine top of stack element

Exchange contents of stack element and stack top
Extract exponent and significand from number in top of stack
Calculate Y logpx

Calculate Y log2(x+1)

The 8087 instructions can be freely combined with 8086 and 286 instructions.
During normal operation, the 8086 or 286 passes all 8087 instructions to the 8087

coprocessor.

7.10.3

186 Instruction Mnemonics

The 186 instruction set consists of all 8086 instructions plus the following

instructions.

186 Mpemonic
BOUND
ENTER

INS

LEAVE

OUTS

PUSHA

POPA

Full Name

Detect value out of range

Enter Procedure

Input byte/word/string from port DX
Leave Procedure

Output byte/word/string to port DX
Push all registers

Pop all registers

As assembles these instructions by default. The .186 directive can be used to
enable instructions if they have been disabled by the . 8086 directive.

7-31

XENIX Programmer’s Guide

7.10.4 286 Non—Privileged Instruction Mpemonics

The 286 non—privileged instruction set consists of all 8086 instructions plus the
following instructions. (

286 Moemonk Full Name
BOUND Detect value out of range
ENTER Enter Procedure
INS Input byte/word/string from port DX

LEAVE Leave Procedure

OUTS Output byte/word/string to port DX
PUSHA Push all registers

POPA Pop all registers

As assembles these instructions by defauk. The .286¢ directive can be used to
enable instructions if they have becn disabled by the . 8086 directive.

7.10.5 286 Privileged Instruction Mpemonics

The 286 privileged instruction set consists of all 8086 and 286 non—privileged
instructions plus the following.

286p Mpemonic Full Name
ARPL Adjust requested privilege level ¢
CLTS Clear task switched flag {
LAR Loadaccess rights
LGDT Load global descriptor table
LIDT Load interrupt descriptor table
LLDT Load local descriptor table
LMSW Load machine status word
LSL Load segment limit
LTR Loadtask register
SGDT Store global descriptor table
SIDT Store interrupt descriptor table
SLDT Store local descriptor table
SMSW Store machine status word
STR Store task register
VERR Verify read access
VERW Verify write access

As assembles these instructions only if the .286p directive has been given in the
source file.

7.10.6 287 instroction Mnemonics <
{

The 287 instruction set consists of all 8087 instructions plus the following
additional instructions.

As: An Assembler

287 Mnemonic Full Name
FSETPM Set Protected Mode
FSTSW AX Store Status Word in AX (wait)
FNSTSW AX Store Status Word in AX (no— wait)

As assembles these instructions by default. The .287 directive can be used to
enable the instructions if they have been disabled by the . 8087 directive.

7.11 Directives

Directives give the assembler directions and information about input and output,
memory organization, conditional assembly, listing and cross—reference control,
and definitions. There are the following directives:

186 DT 1F1 %OUT
.286¢ DW IF2 PAGE
.286p ELSE IFDEF PROC
287 END IFE PUBLIC
8086 ENDIF IFNDEF .RADIX
8087 ENDP INCLUDE SEGMENT
= ENDS LABEL .SFCOND
ASSUME EQU .LFCOND SUBTTL
COMMENT EVEN .LIST .TFCOND
DB EXTRN NAME TITLE
DD GROUP ORG XLIST
DQ IF

Any combination of upper and lowercase letters can be used when giving
directives names in a source file.

7.11.1 ASSUME Directive

Syntax

ASSUME seg—reg : seg—name ,,,
ASSUME NOTHING

The ASSUME directive selects the given segment register seg—reg o be the
default segment register for all labels and variables defined in the segment or group
given by seg—name. Subsequent references to the label or variable will
automatically assume the selected register when the effective address is computed.
The segment override operator (:) can be used to override the default segment
register.

The ASSUME directive can define up to 4 selections: one selection for each of the
four segment registers. The seg—reg can be any one of the segment register
names: CS, DS, ES. or §S. The seg—name must be the one of the following:

— The name of a segment defined with the SEGMENT directive.
— The name of a group defined with the GROUP directive.

7-33

XENIX Programmer’s Guide

— The keyword NOTHING.

The keyword NOTHING cancels the curremt segment selection. The directive
““ASSUME NOTHING'® cancels all register selections made by a previous
ASSUME statement.

Examples

ASSUME cs: _.TEXT
ASSUME ds:DGROUP,ss:DGROUP,cs:1IGROUP,es:NOTHING
ASSUME NOTHING

7.11.2 COMMENT Directive

Syntax
COMMENT delim text delim

The COMMENT directive causcs &s to treat all rexsr between the given pair of
delimiters delim as a comment. The delimiter character must be the first non—
blank character afier the COMMENT keyword. The texr is all remaining
characters up to the next occurrence of the delimiter. The fext must not contain the
delimiter.

The COMMENT directive is typically used for multiple line comments.
Example

COMMENT *
This comment continues until the

next asterisk.
=

7.11.3 DB Directive

Syntax
name DB expression ...

The DB directive allocates and initializes a byte (8 bits) of starage for each given
expression. An expression can be an integer, a character string constant, a DUP
operation, or a constant expression. 1f two or more expressions are given, they
must be separated by commas (.).

The name is optional. If a name is given, the directive creates a variable of type
BYTE whose offset value is the current location counter value.

Examples

As: Ap Assembler

integer DB 16

string DB ‘ab’

message DB "Enter your name: ”
constantexp DB 4+*3

empty DB ?

multiple DB 1,2,3,°'%

duplicate DB 10 dup(?)
high_byte DB 255

7.11.4 DW Directive

Syntax

name DW expression ,,,
The DW directive allocates and initializes a word (2 bytes) of storage for each
given expression. An expression can be an integer, a 1 or 2 character string
constant, a DUP operation, a constant expression, or an address expression. 1f two
or more expressions are given, they must be separated by commas (,).

The name is optional. If a name is given, the directive creates a variable of type
WORD whose offset value is the current location counter value.

Examples
integer bW 16728
string DW ‘ab’
constantexp DW 4+3
addressexp DW string
empty DW ?
multiple DW 1,2,3,'%
duplicate DW 10 dup(?)
high_word DW 65535
arrayptr DW offset array

array2pr DW offset DGROUP:array
7.10.5 DD Directive

Syntax

name DD expression ,,,
The DD directive allocates and initializes a doubleword (4 bytes) of storage for
each given expression. An expression can be an integer, a real number, a 1 or 2
character string constant, an encoded real number, a DUP operation, a constant
expression, or an address expression. 1f two or more expressions are given, they
must be separated by commas (,).

The name is optional. If a name is given, the directive creates a variable of type
DWORD whose offset value is the current Jocation counter value.

7-35

Examples
integer DD 16728
string DD ‘ab’
real DD 1.5
encodedreal DD 3f000000R
constantexp DD 4+*3
addressptr DD real
empty DD ?
multiple DD 1,2,3°%
duplicate DD 10 dup(?)
high_double DD 4294967295

7.11.6 DQ Directive

Syntax
name DQ expression .,,

The DQ directive allocates and initializes a quadword (8 bytes) of storage for each
given expression. An expression can be an integer, a real number, a | or 2
character string constant, an encoded real number, a DUP operation, or a constant
expression. 1f two or more expressions are given, they must be separated by
commas (,).

The name is optional. If a name is given, the directive creates a variable of type
QWORD whose offset value is the current location counter value.

Examples
integer DQ 16728
string DQ ‘ab’
real DQ 1.5
encodedreal DQ 3f00000000000000R
constantexp DQ 4*3
empty DQ ?
multiple DQ 1,2,3°'%
duplicate DQ 10 dup(?)
high_quad DQ 18446744073709551615

7.11.7 DT Directive

Syntax

name DT expression ,,,
The DT directive allocates and initializes 10 bytes of storage for each given
expression. An expression can be an integer expression, a packed decimal, a2 or

2 character string constant, an encoded real number, or a DUP operation. If two or
more expressions are given, they must be separated by commas (,).

The name is optional. if a name is given, the directive creates a variable of type
TBYTE whose offset value is the current location counter value.

As: An Assembier

Note

The DT directive assumes that constants with decimal digits are packed
decimals, not integers.

Examples
packeddecimal DT 1234567890
integer DT 16728D
string DT ‘ab’
real DT 1.5
encodedreal DT 3£000000000000000000R
emply DT ?
multiple DT 1,2,3,'¢%
duplicate DT 10 dup(?)
high_tbyte DT 1208925819614629174706175D

7.11.8 END Directive

Syntax
END expression

The END directive marks the end of the module. The assembler ignores amy
statements following this directive.

The optional expression defines the program entry point. The entry point defines
the address at which program execution is to start. 1f the program has more than
one module, only one of these modules can define an entry point. This must be the
main module, i.e., the module containing the starting instruction. If no entry point
is given, none is assumed.

Note

If the XENIX ce command is used to link assembly language programs,
the command automatically determines its own entry point. In this case,
an explicit entry point should not be given.

7-37

XENIX Programmer’s Guide

Example
public table

_DATA segment word public "DATA’
table db 100 dup(i.2,3,4.5)
DATA ends

END
7.11.9 EQU Directive

Syntax
name EQU expression

The EQU directive assigns the expression to the given mame. The asscmbler
replaces each occurrence of the narte with cither the text of the expression, or with
the value of the expression . depending on the type of expression given.

The name must be a unique name, not previously defined. The expression can be
an integer, a string constant, a real mumber., an encoded real mumber, an instruction
mnemonic, a constant expression, or an address expression. Expressions that
resolve to integer values in the range 0to 65,535 cause the assembler to replace the
name with a value. All other expressions cause the assembler the replace the name
with text.

The EQU directive is typically used as a simple macro facility. Note that the
assembler replaces text names befare attempling to assemble the statements
containing them.

Examples
integer EQU 16728 . replace with value
real EQU 3.14159 ; replace with text
constantexp EQU *4 ; replace with value
memoryop EQU bp] : replace with text
mnemonic EQU mov ; replace with text
addressexp EQU real ; replace with text
string EQU *Press Returm’ ; replace with text

7.11.10 = Directive

Syntax

name = expression
The = directive creates an azbsolute symbol by assigning the mumeric value of
expressionto name. No storage is allocated. Instead, the assembler replaces cach
occurrence of the name with the value of the given expression.

The expression can be an integer, a 1 or 2 character string constart, a constant
expression, or an address expression. Its value must not exceed 65536. The name
must be either a unique name, or a name that was previously defined using the =
directive.

7-38

As: An Assembler

Examples
integer = 16728
stl’ing - i&.
constantexp = 34
addressexp = string

Unlike the EQU directive, the = directive can be used to redefine symbols that
have been previously defined.

7.11.11 EVEN Directive

Syntax
EVEN

The EVEN directive increments the location counter to an even value and
generates one NOP instruction (90h). If the location counter is already even, the
directive is ignored.

The EVEN directive must not be used in byte—aligned segments.
Example

org 0
testl db 1
EVEN
test2 dw 513

In this example, EVEN increments the location counter and generates a NOP
instruction (90h). This means the offset of ‘‘test2’’ is 2, not 1.

7.11.12 EXTRN Directive

Syntax
EXTRN name:tvpe ..,

The EXTRN directive defines an external variable, label, or symbol named name
and whose type is rype. Anexternal item is any variable, label, or symbol that has
been publicly declared in another module of the program.

The name must be the name of a variable, label, or symbol defined in another
module of the program and listed in a PUBLIC directive of that module. The rype
must match the type given to the item in its actual definition. It can be any one of
the tollowing:

BYTE
WORD
DWORD
QWORD
TBYTE
NEAR
FAR
ABS

The ABS type is reserved for symbols that represent absolute numbers.

7-39

XENIX Programmer’s Guide

Although the actual address is not determined until link time, the assembler
assumes a default segment register for the external item based on where the
EXTRN directive is placed in the module. If it is outside all segments, the default
segment register is DS or CS, depending on whether or not the item is a variable or
label. If placed inside a segmen, the default register is the same as for other
variables defined in that segmemnt. The scgment override operator (:) can be used to
override an external variable’s or label’s defauk segment register.

Example

EXTRN tagn:near
EXTRN varl:word, var2:dword

7.11.13 GROUP Directive

Syntax
name GROUP seg—name,,,

The GROUP directive associates a group name name with one or more segments,
and directs the linker to load the named segments imo the same physical scgment.
This means all addresses in the named segments are relative to a single segment
value.

The order in which segments of a group are named does not influence the order in
which they are loaded. Loading order depends on cach segment’s class, or on the
order the object modules are given to the linker.

All segments in a group must fit within one 64 Kbyte block of memory. This
means the total size of a group made up of contiguous segments must not exceed
64 Kbytes.

The seg—name must be the name of a segment defined using the SEGMENT
directive, or a SEG expression. The name must be unique.

Group names can be used with the ASSUME directive and as an operand prefix
with the segment override operator (:).

Note

A group name must not be used in more than one GROUP directive in
any source file. If several segments within the source file belong to the
same group, all segment names must be given in the same GROUP
directive.

As: Ap Assembler

Example
DGROUP GROUP _DATA, _BSS
assume ds:DGROUP

DATA segment word public 'DATA’

_DATA ends
_BSS segment word public *BSS’

BSS ends
end

7.11.14 INCLUDE Directive

Syntax
INCLUDE filename

The INCLUDE directive inserts source code from the source file given by filename
into the current source file during assembly. The filename must name an existing
file. A pathname must be given if the file is not in the current working directory. If
the named file is not found, as displays an error message and stops.

When as encounters an INCLUDE directive, it opens the named file and begins to
assemble its source statements immediately. When all statements have been read,
as resumes with the next statement following the directive.

Nested INCLUDE directives are allowed. This means a file named by an
INCLUDE directive can contain its own INCLUDE directives.

When a program listing is created, as marks included statements with the letter C.
Examples

INCLUDE entry
INCLUDE include/record
INCLUDE /usr/include/as/stdio

7.11.15 LABEL Directive

Syntax
name LABEL 1ype

The LABEL directive creates a new variable or label by assigning the current
location counter value and the given type to name.

The name must be unique and not previously defined. The type can be any one of
the following:

7-41

XENIX Programmer’s Guide

BYTE
WORD
DWORD
QWORD
TBYTE
NEAR
FAR

The rype can also be the name of a valid structure type.
Examples

subroutine LABEL far
barray LABEL byte

7.11.16 NAME Directive

Syntax
NAME module —name

The NAME directive sets the name of the current module to module—name. A
module name is used by the linker when displaying error messages.

The module—name can be any combination of letters and digits. Although the
name can be any length, only the first six characters are used. The name must be
unique and must not be a reserved word.

Example
NAME main

1f the NAME directive is not used, as creates a defauh module name using the first
six characters of a TITLE directive. If no TITLE directive is found, the default
name “‘A’" is used.

7.11.17 ORG Directive

Syntax
ORG expression

The ORG directive sets the location counter to expression. Subsequent instruction
and data addresses begin at the new value.

The expression must resolve to an absolute number, i.c., all symbols used in the
expression must be known on the first pass of the assembler. The location counter
symbol ($) can also be used.

Examples
ORG 120H
ORG $+2

7-42

As: An Assembler

7.11.18 PROC and ENDP Directives

Syntax

name PROC type
statements
name ENDP

The PROC and ENDP mark the beginning and end of a procedure. A procedure is
a block of instructions that forms a program subroutine. Every proccdure has a
name with which it can be called.

The name must be a unique name, not previously defined in the program. The
optional rvpe can be either NEAR or FAR. NEAR is assumed if no rype is given.
The name has the same attributes as a label and can be used as an operand in a
jump, call, or loop instruction.

Any number of statements can appear between the PROC and ENDP statements.
The procedure should contain at least one ret statement to return control to the
point of call. Nested procedures are allowed.

Example

-main PROC NEAR
push bp
mov bp. sp
push si
push di
mov ax, offset string
push ax
call _printf
add sp, 2
pop di
pop si
mov sp. bp
pop bp

ret
smain ENDP

7.11.19 PUBLIC Directive

Syntax
PUBLIC narme,..

The PUBLIC directive makes the variable, label, or absolute symbol given by
name available to all other modules in the program. The name must be the name of
a variable, label, or absolute symbol defined within the current module. Absolute
symbols, if given, can only represent 1 or 2 byte integer or string values.

If the —Mu or —Mx option is used. as convents all lowercase letters in the given
names to uppercase before passing the name to the object file. Ctherwise, as
copies the names exactly as spelled.

7-43

XENIX Programmer’s Guide

Example
PUBLIC true, test, stan
true = OFFFFH
test db 1

start label far
7.11.20 -RADIX Directive

Syntax

.RADIX expression
The .RADIX directive sets the default input radix for numbers in the source file.
The expression defines whether the numbers are binary, octal, decimal,

hexadecimal, or numbers of some other base. It must be within the range 2 to 16.
The following lists some common values:

2 — binary

8 — octal

10 — decimal

16 ~ hexadecimal

The expression is always considered a decimal number regardless of the current
default radix.

Examples

.RADIX 16
-RADIX 2

The .RADIX directive does not affect the DD, DQ, or DT directives. Numbers
entered in the expression of these directives are always evaluated as decimal unless
a numeric suffix is appended to the value.

7.11.21 SEGMENT and ENDS Directives

Syntax

name SEGMENT align combine ‘class’
name ENDS

The SEGMENT and ENDS directives mark the beginning and end of a program
segment. A program segment is a collection of instructions and/or data whose
addresses are all relative to the same segment register.

The name detines the name of the segment. This name can be unique or can be the
same name given to other segments in the program. Segments with identical
names are treated as the same segment.

The optional align, combine , and class define program loading instructions that are
to be used by the linker when forming the executable program. These options are
described later.

Segments can be nested. When as encounters a nested scgment, it temporarily
suspends assembly of the enclosing segment, and begins assembly of the nested
segment. When the nested segment has been assembled, as continues assembly of

7-44

As: An Assembler

the enclosing segment. Overlapping segments are not permitted.
Example

SAMPLE TEXT SEGMENT WORD PUBLIC 'CODE’
-main proc far

CONST SEGMENT WORD PUBLIC "CONST" ; nested scgment
segl dw ARRAY_DATA
CONST ENDS ; end nesting

mov es, segl

push es

mov ax, es:pointer

push ax

call _printf

add sp, 4

ret
main endp
SAMPLE TEXT ENDS

This example contains two segments: *‘SAMPLE_ TEXT'* and ‘““CONST"’. The
““CONST’® segment is nested within the *‘SAMPLE TEXT"* segment.

Note

Although a given segment name can be used more than once in a source
file, each segment definition using that name must have cither exactly the
same attributes, or atiributes that do not conflict with previously defined
attributes.

Program Loading Options

The optional align defines where to place the start of the segment when loading into
memory. It can be any one of the following:

BYTE segment starts on a byte boundary.

WORD segment starts on a word boundary.

PARA segment starts on a paragraph boundary (16 bytes/paragraph)
PAGE segment starts on a page boundary (256 bytes/page)

If no align is given, PARA is used by default. The actual start address is computed
when the program is loaded. The linker, however, guarantees that the address will
be on the given boundary. A BYTE boundary address will be any address in
memory. A WORD boundary address will be a multiple of 2; a PARAGRAPH
boundary a multiple of 16 (10 hexadecimal); and a PAGE boundary a mukiple of
256 (100 hexadecimal).

7-45

XENIX Programmer’s Guide

The optional combine defines how to combine segments having the same name. It
can be any one of the following:

PUBLIC
Concatenates all segments having the same name and forms a (
single, contiguous scgment. All instruction and data addresses in '
the new segment are relative to a single scgment register, and all
offsets are adjusted 1o represent the distance from the beginning of
the new segment.

STACK
Concatenates all segments as with PUBLIC segmems. All
addresses in the new scgmemt are relative to the SS segmem
register. The Stack Pointer (SP) register is set to the first address of
the first stack segment.

COMMON
Creates overlapping segments by placing the start of all segments
having the same name at the same address. The length of the
resulting area is the length of the longest segmem. All addresses in
the scgments are relative to the same base address.

MEMORY
Places all scgments having the same mame in the highest physical
segment in memory. If more than one MEMORY scgment is
given, the segments are overlap as with COMMON segments. (

AT address

Causes all label and variable addresses defined in the segment 1o be
relative to the given address. The address can be any valid
expression, but must not contain a forward reference. AT segments
typically comain no code or initialized data. Instead, they represent
address templates that can be placed over code or data already in
memory, such code and data as found in ROM devices. The labels
and variables in the AT segments can then be used to access the
fixed instructions and data.

If no combine is given, the segment is not combined. Instead, it receives its own
physical segment when iocaded into memory.

Note

The linker requires at least one stack segment in a program. This
segment is typically provided by the C program startup module linked
with all programs.

The optional class defines which scgments are to be loaded in contiguous memory.
Segments having the same class name are loaded into memory one after another.
All segments of a given class are loaded before segments of any other class. The
class name must be enclosed in single quotation marks.

7-46

As: An Assembler

Example

assume cs:.TEXT
_TEXT segment word public ‘CODE’

_-TEXT c;.nds

This example illustrates the general form of a text segment for a small module
program. The segment name is ‘_TEXT'". The segment alignment and combine
type are ‘“‘word’’ and ‘‘public,”’ respectively. The class is ““CODE."* These
segment attributes are the required attributes for assembly language programs to be

run under XENIX.
7.11.22 IF Directives (Conditionals)

The IF directives, or conditional directives, allow conditional assembly of blocks
of statements. There are the following conditional directives:

IF

IFE

IF1

IF2
IFDEF
IFNDEF
ELSE
ENDIF

The six IF directives and the ENDIF and ELSE directives can be used to enclose
the statements to be considered for conditional assembly. The conditional block
takes the form:

IF

Statemenis
ELSE

Statements
ENDIF

where the statements can be any valid statements, including other conditional
blocks. The ELSE directive is optional.

As assembles the statements in the conditional block only if the condition that
satisfies the corresponding IF directive is met. 1f the conditional block contains an
ELSE directive, however, as will assemble only the statements up to the ELSE
directive. The statements following the ELSE directive are assembled only if the
IF condition is not met. An ENDIF directive must mark the end of the conditional
block. No more than onc ELSE for each IF directive is allowed.

IF directives can be nested up to 255 levels. To avoid ambiguity, a nested ELSE
directive always belongs to the nearest, preceding IF directive.

IF and IFE Directives Syntax

7-47

XENIX Programmer’s Guide

IF expression
IFE expression

The IF and IFE directives test the value of an expression. The IF direqgiwe grans
assembly if the expression is non—zero (true). The IFE directive grants assembly
if the expression is O (false). The expression must resolve to an absolute value and
must not contain forward references.

Example

IF debug
extrn dump:far
extrn trace: far
extrn breakpoint:far
ENDIF

IF1 and IF2 Directives Syntax

IF1
1F2

The IF1 and IF2 directives test the current assembly pass. The IF] directive grams
assembly on pass | only. IF2 grants assembly on pass 2. The directives take no
arguments.

Example

IF1
%out Pass 1 Starting
ENDIF

IFDEF and IFNDEF Directives Syntax

IFDEF name
IFNDEF name

The IFDEF and IFNDEF directives test whether or not the given »ame has been
defined. The IFDEF directive grants assembly if name is a label, variable, or
symbol. The IFNDEF directive grants assembly if name has not yet been defined.

The name can be any valid name. Note that if name is a forward reference, it is
considered undefined on pass 1, but defined on pass 2. This is a frequent cause of
phase errors.

Example
IFNDEF buffer
buffer db 10 dup(?)
ENDIF

7.11.23 PAGE Directive

Syntax

PAGE length, width
PAGE +
PAGE

The PAGE directive sets the line length and character width of the program listing,

7-48

As: An Assembler

increments section page numbering, or gencrates a page break in the listing.

If a length and width are given, PAGE sets the maximum number of lines per page
to length, and the maximum number of characters per line to width. The length
must be in the range 10 to 255. The default is S0. The widrh must be in the range
6010 132. The defauk is 80.

If a plus sign (+) is given, PAGE increments the section number and resets the
page number to]. Program listing page numbers have the fonn:

section—minor
By default, page numbers start at 1—1.

If no argument is given, PAGE starts a ncw output page in the program listing. It
copies a form feed character to the file and generates a title and subtitle line.

Examples

PAGE
PAGE 58,60
PAGE ,132
PAGE +

Example 1 creates a page break.

Example 2 sets the maximum linc length to 58, and the maximum width to 60
characters.

Example 3 sets the maximum width to 132 characters. The current line length
remains unchanged.

Example 4 increments the current section number and sets the page number to 1.
7.11.24 TITLE Directive

Syntax
TITLE texs

The TITLE directive defines the program listing title. It directs as to copy text to
the first line of each new page in the program listing. The fext can be any
combination of characters up to 60 characters long.

No more than one TITLE directive per module is allowed.
Example
TITLE progl —— lst Program
Note that the first six non—blank characters of the title will be used as the module

name if the module does not contain a NAME directive.

7.11.28 SUBTITLE Directive

Syntax
SUBTTL text
The SUBTTL directive defines the listing subtitle. It directs as to copy fext to the

7-49

XENIX Programmer’s Guide

line immediately after the title on each new page in the program listing. The text
can be any combination of characters. Only the first 60 characters arc used. If no
characters are given, the subtitle line is left blank.

Any number of SUBTTL directives can be given in a program. Each new directive (
replaces the current subtitle with the new rexz. '

Examples

i SUBTTL Special VO Routine
2. SUBTTL

Example 1 creates the subtitle ‘‘Special VO Routine. "’
Example 2 creates a blank subtitle.

7.11.26 %OUT Directive

Syntax
%OUT text

The %OUT directive directs as to display the fext at the user’s terminal. The
directive is useful for displaying messages during specific points of a long
assembly.

The %OUT directive generates output for both assembly passes. The IF1 and IF2

directives can be used to control when the directive is processed. (
Example
ifl
%OUT First Pass —— Okay
endif

7.11.27 .LIST and . XLIST Directives

Syntax

.LIST
XLIST

The .LIST and . XLIST directives control which source program lines are copied to
the program listing. The .XLIST directive suppresses copying of subsequent
source lines to the program listing. The .LIST directive restores copying. The
directives are typically used in pairs to prevent a section of a given source file from
being copied to the program listing.

The . XLIST directive overrides all other listing directives.
Exampie

XLIST @
Jlisting suspended here

.LIST
:listing resumes here

As: An Assembler

7.11.28 .SFCOND, .LFCOND, and .TFCOND Directives

Syntax

.SFCOND
.LFCOND
.TFCOND

The .SFCOND and .LFCOND directives determine whether or not conditional
blocks should be listed. The .SFCOND directive suppresses the listing of any
subsequent conditional blocks whose LF condition is false. The .LFCOND
directive restores the listing of these blocks. The directives can be used like .LIST
and . XLIST to suppress listing of the conditional blocks in sections of a program.

The .TFCOND directive sets the defaukt mode for listing of conditional biocks.
This directive works in conjunction with the —X option of the assembler. If —X is
not given in the as command line, TFCOND causes faise conditional blocks to be
listed by default. ff —X is given, .TFCOND causes false conditional blocks to be
suppressed.

Examples

.SFCOND
IFO

;This block will not be listed.
ENDIF
.LFCOND
IFO

.This block will be listed.
ENDIF

7.11.29 Instruction Set Directives

Syntax

.8086
.8087
.186
.286¢
.286p
.287

The instruction set directives enable/disable the instruction sets for the given
microprocessors. When a directive is given, as will recognize and assemble any
instruction mnemonics belonging to the given microprocessor.

The .8086 directive disables the . 186 and .286 instruction sets. Any attempt to use
these instructions results in an error.

The .8087 directive enables the 8087 instruction set; .287 enables the 287 set. If
the —r option has been selected in the as command line, the assembler generates
the actual instruction code for these instructions. If the option is not given, &s
replaces the code with the code for a software interrupt to the floating emulator.

The .186 directive enables the 186 instructions. The .286¢ directive enables both
the 186 instructions and the 286 non—protected instructions. The .286p directive

7--51

XENIX Programmer’s Guide

enables the 286 protected instructions.
7.12 Program Listing Format

As creates a program listing whenever the —1 option is given in the command line.
The program listing has two parts: the listing of the actual statements and code, and
tables detailing the names and attributes of ali labels, variables, and symbols in the
module.

7.12.1 Code Listing

Lines in the cede listing part of the program listing have the form:
offset code source—statement

The offset is from the start of the current segment. The code is the instruction code
or data generated by the assembler for the given source—statement. The
Source—statement is as it appears in the original source file. As displays offsets,
code, and data in a hexadecimal radix. [t displays line numbers in decimal. if
desired, you can change the ocutput radix to the octal radix by using the —O option
in the as command line. Error messages, if any, are printed directly below the
statement containing the ezror.

A number of special characters are used in the code listing to indicate specific
attributes of the given statement or gencrated code.

C Appears between the code and source statement in lines that have been
included as part of an INCLUDE directive.

E Appears beside code that contains an address to an externally defined label
or variable.

R Appears beside code comtaining an address that must be resolved by the
linker.

= Appears before the offset on lines containing the = or EQU directive.

nn: Appears before instruction code in which the segmemn override operator have
been used. The na is the instruction code for the segment register named in
the source statement.

nn/ Appears before instruction code in which a rep or leck instruction has been
used. The nnis the instruction code for the given prefix instruction.

Appears in instruction code that contains a segment reference to a named
segment or group. The actual value is resolved by the linker.

nn [XX]
Appears in place of generated data whenever a DUP operator is used. The
nn is the number of duplicated elemerts, and xx is the initial value(s) givento
each element.

7-52

As: Apr Assembler

As generates code listings for both assembly passes whenever you give the —d
option along with the —I option. Code generated for pass | usually contains error
messages that do not appear in the pass 2 listing. Typically, these messages are
caused by forward references that are resolved by the time the second listing is
generated. Since phase errors during assembly are caused by the assembler
misunderstanding the actual size or type of forward references, the different
messages generated for pass 1 and pass 2 can be very useful in tracking down the
actual cause of these phase errors.

7.12.2 Symbol Table

The second parnt contains tables that define the names and attributes of all labels,
variables, symbols, segments, and groups. It also lists the number of wamnings
and severe error messages generated.

The program listing contains two symbof tables: a table for segments and groups,
and a table for labels, variables, and symbols. If a program does not generate
entries for a giventable, that table is left out of the program listing.

Segment and Group Tables A segment and group table defines the name, size,
alignment, combine type, and class of a segment, and the name of a group. The
size of a segment is the number of bytes of instruction code and data it contains.

Lines that define segments have the form:
name..... size alignment combine—type class

The alignment is a segment alignment name: BYTE, WORD, PARA, or PAGE.
The combine—type is a segment combine type: PUBLIC, STACK, COMMON,
MEMORY, or AT. The keyword NONE is given if the segment has no combine
type. The class is the class name given to the segment.

Lines that define groups have the form:
name...... GROUP

Segments that belong to the named group appear indented immediately under the
group line.

Example
Name Size align combine class
TEXT 0044 WORD PUBLIC 'CODE’
DGROUP GROUP
DATA 0200 WORD PUBLIC 'DATA’
BSS ... 0031 WORD PUBLIC °"BSS®

Symboi Tables A symbol table defines the name, type, value, and other attributes
of a label, variable, or symbol. Each line in the table has the form:

name..... type value antribute

The rype defines what the symbol is or what it represents. It usually consists of one
or more of the following:

7-53

XENIX Programmer’s Guide

L - a label or variable
F — a far label
N — a near label

PROC - a procedure label
Number — an absolute number

Alias — another symbol
Opcode — an instruction mnemonic
Text — any item not covered by Number, Alias, or Opcode

The types BYTE, WORD, DWORD, QWORD, TBYTE, NEAR, and FAR may
also appear. The value is either the actual value of the symbol or its offset in
hexadecimal. The attribute names the segment to which the symbol belongs. It
can also show whether the symbol is external or global. External symbols are
declared using the EXTRN directive; global symbols with PUBLIC. The length of
each procedure is also given.

Exampie
Name Type Value Attr
CLS......... N PROC 0036 _TEXT Length =0C0E
MAXCHAR. . . . Number 0019
MESSG. L BYTE 00IC _BSS
PARMS. L 001C 0000 BSS
RECEIVR. L FAR 0000 External
START........ F PROC 0000 -TEXT Length =0036

Symbols that have Number, Opcode, Alias, or Text type have been created using
an EQU directive or an = directive. All information thai follows one of these
entries is considered its value, even if the value is simple text.

Chapter 8
Lex: A Lexical Analyzer

8.1 Introduction 8-1

8.2 LexSourceFormat 8-2

8.3 LexRegular Expressions 8-3

8.4 Invokinglez 8-4

8.5 Stgecifying Character Classes 8-5

8.6 Specifying an Arbitrary Character 8-6
8.7 Specifying Optional Expressions 8-6
8.8 Specifying Repeated Expressions 8-6
8.9 Specifying Alternation and Grouping 8-7
8.10 Specifying Context Sensitivity 8-7

8.11 Specifying Expression Repetition 8-8
8.12 Specifying Definitions 8-8

8.13 Specifying Actions 8-8

8.14 Handling Ambiguous Source Rules 8-12
8.15 Specifying Left Context Sensitivity 8-15
8.16 Specifying Source Definitions 8-17

8.17 Lexand Yace 8-18

8.18 Specifying Character Sets 8-22

8.19 Source Format 8-23

Lex: A Lexical Analyzer

8.1 Introduction

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem-oriented specification for character
string matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the user in the source
specifications given to lex. The lex code recognizes these expressions in an
input stream and partitions the input stream into strings matching the
expressions. At the boundaries between strings, program sections provided by
the user are executed. The lex source file associates the regular expressions and
the program fragments. As each expression appears in the input to the
program written by lex, the corresponding fragment is executed.

The user supplies the additional code needed to complete his tasks, including
code written by other generators. The program thatrecognizes the expressions
is generated in the from the user's C program fragments. Lex isnot a complete
language, but rather a generator representing a new language feature added on
top of the C programming language.

Lex turns the user’s expressions and actions (called source in this chapter)into
a C program named yylez. The yylez program recognizes expressions in a
stream (called input in this chapter) and performs the specified actions for each
expression as it is detected.

Consider a program to delete from the input all blanks or tabs at the ends of
lines. The following lines

%%
[\tI+$;

are all that is required. The program contains a %% delimiter to mark the
beginning of the rules, and one rule. This rule contains a regular expression
that matches one or more instances of the characters blank or tab (written \t
for visibility, in accordance with the C language convention) just prior to the
end of a line. The brackets indicate the character class made of blank and tab;
the + indicates one or more of the previous item; and the dollar sign {$)
indicates the end of the line. No action is specified, so the program generated by
lex will ignore these characters. Everything else will be copied. To change any
remaining string of blanks or tabs to asingle blank, add another rule:

%%
[\t]+$
[\t]l+ printf(" ");

The finite automaton generated for this source scans for both rules at once,
observes at the termination of the string of blanks or tabs whether or not there
isa newline character, and then executesthe desired rule’s action. The first rule
matches all strings of blanks or tabs at the end of lines, and the second rule
matches all remaining strings of blanks or tabs.

XENIX Programmer's Guide

Lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. Lex can also be used with a parser generator to
perform the lexical analysis phase; it is especially easy to interface lex and
yacc. Lex programs recognize only regular expressions; yacc writes parsers
that accept a large class of context-free grammars, but that require a lower
level analyzer to recognize input tokens. Thus, a combination of lex and yacc
is often appropriate. When used as a preprocessor for a later parser generator,
lex is used to partition the input stream, and the parser generator assigns
structure to the resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs written by lex. Yacc
users will realize that the name yidezis what yacc expectsitslexical analyzer to
be named, so that the use of thisname by lex simplifies interfacing.

Lex generates a deterministic finite automaton from the regular expressionsin
the source. The automaton is interpreted, rather than compiled, in order to
save space. The result is still a fast analyzer. In particular, the time taken by a
lex program to recognize and partition an input stream is proportional to the
length of the input. The number of lex rulesor the complexity of the rules is not
important in determining speed, unless rules which include forward context
require a significant amount of rescanning. What does increase with the
number and complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by lex.

In the program written by lex, the user's fragments{representing the actions to
be performed as each regular expression is found) are gathered as cases of a
switch. The automaton interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations or additional statements in
the routine containing the actions, or to add subroutines outside this action
routine.

Lex is not limited to source that can be interpreted on the basis of one
character lookahead. For example, if there are two rules, one looking for ab and
another for abedefg, and the input stream is ebedefh, lex will recognize e¢b and
leave the input pointer just before ¢d. Such backup is more costly than the
processing of simpler languages.

8.2 Lex Source Format
The general format of lex source is:

{definitions}
%%

{rules}

%%

{user subroutines}
where the definitions and the user subroutines are often omitted. The second

%% is optional, but the first isrequired to mark the beginning of the rules. The
absolute minimum lex program is thus

82

Lex: A Lexical Analyzer

%%

(no definitions, no rules) which translates into a program that copies the input
totheoutput unchanged.

In the lex program format shown above, the rules represent the user’s control
decisions. They make up a table in which the left column contains regular
expressions and the right column contains actions, program fragments to be
executed when the expressions are recognized. Thus the following individual
rule might appear:

integer printf("found keyword INT");
This looks for the string integerin theinput stream and prints the message
found keyword INT

whenever it appears in the input text. In this example the C library function
printf{) is used to print the string. The end of the lex regular expression is
indicated by the first blank or tab character. If the action is merely a single C
expression, it canbe given on the right side of the line; if it is compound, or takes
more than a line, it should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words from British to
American spelling. Lex rulessuch as

colour printf(” color”);
mechanise printf(" mechanize”);
petrol printf(" gas”);

would be a start. These rules are not quite enough, since the word pétroleum
would become gaseum; a way of dealing with such problems is described in a
later section.
8.3 Lex Regular Expressions
A regular expression specifies a set of strings to be matched. It contains text
characters (that match the corresponding characters in the strings being
compared) and operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text
characters. Thus, the regular expression

integer
matches the string integer wherever it appears and the expression

ad7D

looks for the string a57D.

83

XENIX Programmer’'s Guide

The operator charactersare

"N -te+]()8/{} B <>

If any of these characters are to be used literally, they needed to be quoted
individually with a backslash (\) or as a group within quotation marks (").
The quotation mark operator (") indicates that whatever is contained between
a pair of quotation marksis to be taken astext characters. Thus

xyz" ++"

matches the string zyz++ when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"xyz++"

is the same as the one above. Thus by quoting every nonalphanumeric
character being used as a text character, you need not memorize the above list
of current operator characters.

An operator character may also be turned into a text character by preceding it
with a backslash (\) asin

xyz\+\+

which is another, less readable, equivalent of the above expressions. The
quoting mechanism can also be used to get a blank into an expression; normally,
as explained above, blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted. Several normal C escapes with the
backslash (\) are recognized:

\n newline

\t tab

\b backspace

\\ backslash

Since newline is illegal in an expression, a \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

8.4 Invoking lez

There are two steps in compiling a lex source program. First, the lex source

must be turned into a generated program in the host general purpose language.
Then this program must be compiled and loaded, usually with a library of lex

8-4

Lex: A Lexical Analyzer

subroutines. The generated program is in a file named lex.yy.c. The 1/O
library is definedin terms of the C standard library.

The library is accessed by the loader flag —{. So an appropriate set of
commandsis

lex source
cc lex.yy.c -1l

The resulting program is placed on the usual file a.out for later execution. To
use lex withyacc see thesection “Lex and Yacc” in this chapter and Chapter 9,
“Yacc: A Compiler-Compiler”’’. Although the default lex I/O routines use the
C standard library, the lex automata themselves do not do so. If private
versionsof input, output, and unput are given, the library can be avoided.

8.6 Specifying Character Classes
Classesof characters can be specified using brackets: [and]. The construction
[abe]

matches a single character, which may be a, b, or ¢. Within square brackets,
most operator meanings are ignored. Only three characters are special: these
are the backslash (\), the dash (-}, and the caret (*). The dash character
indicates ranges. For example

[2-20-9<>_]

indicates the character class containing all the lowercase letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using the
dash between any pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and causes a
warning message. If it is desired to include the dash in a character class, it
should be first or last; thus

[-+0-9]
matches all the digits and the plusand minussigns.
In character classes, the caret (") operator must appear as the first character
after the left bracket; it indicates that the resulting string is to be
complemented with respect to the computer character set. Thus

["abe]

matches all characters except a, b, or ¢, including all special or control
characters; or

XENIX Programmer’s Guide

|"a-zA-Z]
is any character which is not a letter. The backslash (\) provides an escape
mechanism within character class brackets, so that characters can be entered
literally by preceding them with thischaracter.
8.8 Specifying an Arbitrary Character
To match almost any character, the period (.) designates the class of all
characters except a newline. Escaping into octal is possible although
nonportable. For example

[\40-\176}
matches all printable characters in the ASCII character set, from octal 40
(blank) to octal 176 (tilde).
8.7 Specifying Optional Expressions

The question mark (?) operator indicates an optional element of an expression.
Thus

ab?c
matches either ac or abe. Note that the meaning of the question mark here
differs from its meaning in the shell.
8.8 Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (¢) and plus (+) operators.
For example

as

matches any number of consecutive a characters, including zero; while a+
matches one or more instancesof ¢. For example,

[a-z]+
matches all strings of lowercase letters, and
[A-Za-3]|A-Za-20-9)¢

matches all alphanumeric strings with a leading alphabetic character; thisisa
typical expression for recognizing identifiers in computer languages.

Lex: A Lexical Analyzer

8.9 Specifying Alternation and Grouping

The vertical bar (|) operator indicatesalternation. For example
(abed)

matches either abor cd. Note that parentheses are used for grouping, although
they are not necessary at the outside level. For example

abjed

would have sufficed in the preceding example. Parentheses should be used for
more complex expressions, such as

(abjcd+)?(ef)*

which matches such strings as abefef, efefef, cdef, and cddd, but not abc, abed,
or abedef.

8.10 Specifying Context Sensitivity

Lex recognizes a small amount of surrounding context. The two simplest
operators for this are the caret (") and the dollar sign ($). If the first character
of an expression is a caret, then the expression isonly matched at the beginning
of a line (after a newline character, or at the beginning of the input stream).
This can never conflict with the other meaning of the caret, complementation
of character classes, since complementation only applies within brackets. If the
very last character is dollar sign, the expression only matched at the end of a
line (when immediately followed by newline). The latter operator is a special
case of the slash (/) operator, whichindicates trailing context. The expression

ab/ed
matches the string ab, but only if followed by ¢d. Thus

ab$
is the same as

ab/\n
Left context is handled in lex by specifying start conditions as explained in the
section ‘‘Specifying Left Context Sensitivity”. If a rule is only to be executed
when the lex automaton interpreter is in start condition z, the rule should be

enclosedin angle brackets:

<x>

8-7

XENIX Programmer’s Guide

If we considered being at the beginning of a line to be start condition ONE, then
the caret (")operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

8.11 Specifying Expression Repetition

The curly braces({ and }) specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digst and inserts it at that point in the
expression.

8.12 Specifying Definitions

The definitions are given in the first part of the lex input, before the rules. In
contrast,

a{l,5}
looks for 1 to 5 occurrencesof the character a.

Finally, an initial percent sign (%) is special, since it is the separator for lex
source segments.

8.13 Specifying Actions

When an expression is matched by a pattern of text in the input, lex executes
the corresponding action. This section describes some features of lex which aid
in writing actions. Note that there is a default action, which consists of copying
the input to the output. Thisis performed on all strings not otherwise matched.
Thus the Iex user who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacg, this is the normal situation. You may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted.

One of the simplest things that can be done is to ignore the input. Specifyinga C
null statement ; as an action causesthis result. A frequent rule is

[\t\n} ;

which causes the three spacing characters (blank, tab, and newline) to be

8-8

=

Lex: A Lexical Analyzer

ignored.

Another easy way to avoid writing actions is to use the repeat action character,
}, which indicates that the action for thisrule is the action for the next rule. The
previousexample could also have been written

n " I
"\ I
n\nn ;

with the same result, although in a different style. The quotesaround \nand\¢
arenot required.

In more complex actions, you often want to know the actual text that matched
some expression like:

[a-z}]+

Lex leaves this text in an external character array named gyytest. Thus, to
print the name found, arule like

fa-z]+ printf(” %s", yytext);

prints the string in yytezt. The C function printf accepts a format argument
and data to be printed; in this case, the format is print string where the percent
sign (%) indicates data conversion, and the sindicate string type, and the data
are the characters in yytezt. So this just places the matched string on the
output. This action is so common that it may be written as ECHO. For example

[a-z]+ ECHO;
is the same as the preceding example. Since the default action is just to print
the characters found, one might ask why give a rule, like thisone, which merely
specifies the default action? Such rules are often required to avoid matching
some other rule that is not desired. For example, if there is a rule that matches

readit will normally match the instancesof read containedin breador readjust;
to avoid this, arule of the form

fa-z)+
isneeded. Thisisexplained further below.
Sometimes it is more convenient to know the end of what has been found; hence
lex also provides a count of the number of characters matched in the varialle,
yyleng. To count both the number of words and the number of characters in
wordsin the input, you might write

[a-zA-Z]+ {words++; chars +== yyleng;}

which accumulates in the variables ¢ hars the number of charactersin the words

8.9

XENIX Programmer's Guide

recognized. The last character in the string matched can be accessed with:

yytext{yyleng-1]

Occasionally, a lex action may decide that a rule has not recognised the correct
span of characters. Two routines are provided to aid with thissituation. First,
yymore() can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Normally, the next input string will
overwrite the current entry in yytezt. Second, yyless(n) may be called to
indicate that not all the characters' matched by the currently successful
expression are wanted right now. The argument n indicates the number of
charactersin yytezt to be retained. Further characters previously matched are
returned to the input. This provides the same sort of lookahead offered by the
slash (/) operator, butin a different form.

For example, consider a language that defines a string as a set of characters
between quotation marks ("), and provides that to include a quotation mark in
a string, it must be preceded by a backslash (\). The regular expression that
matches this is somewhat confusing, so that it might be preferable to write

\"[""]e
if (yytextlyyleng-1} == "\\')
yymore();
else
... normal user processing
}

which, when faced with astringsuch as
"abe\" def”
will first match the five characters
"abc\
and then the call to yymore() will cause the next part of the string,

"def

to be tacked on the end. Note that the final quotation mark terminating the
string should be picked up in the code labeled normal processing.

The function ygyless() might be used to reprocess text in various circumstances.
Consider the problem in the older C syntax of distinguishing the ambiguity of
==-a. Suppose it is desired to treat this as =~ sand to print a message. A rule
might be

8-10

Lex: A Lexical Analyzer

=-[a-2A-Z]
printf(” Operator (=-) ambiguous\n”};

yyless(yyleng-1);
.. action for =- ...

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as =-.

Alternatively it might be desired to treat this as = —a. To do this, just return
the minus sign as well as the letter to the input. The following performs the
interpretation:

=-[a-3A-Z)

printf(" Operator (=-) amblguous\n)i
yylem(yylens@),

. action for == ...
Note that the expressions for the two cases might more easily be written
=-/[|A-Za-3]
in the first case and
=/-|A-Za-3]
in the second: no backup would be required in the rule action. It is not

necessary to recognize the whole identifier to observe the ambiguity. The
possibility of =8, however, makes

=-/[" \t\n]
astill better rule.
In addition to these routines, lex also permits access to the I/0 routines it uses.
They include:

1. snput() which returnsthe nextinput character;

2. output(c) which writesthe character c on the output; and

3. unput{c) which pushes the character ¢ back onto the input stream to
beread later by input().

By default these routines are provided as macro definitions, but the user can
override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained or modified consistently. They may be redefined, to cause input or

811

XENIX Programmer's Guide

output to be transmitted to or from strange places, including other programs
or internal memory; but the character set used must be consistent in all
routines; a value of zero returned by ¢nput must mean end-of-file; and the
relationship between unput and input must be retained or the lookahead will
not work. Lex does not look ahead at all if it does not have to, but every rule
containing a slash (/) or ending in one of the following characters implies
lookahead:

+*?s

Lookahead is also necessary to match an expression that is a prefix of another
expression. See below for a discussion of the character set used by lex. The
standard lex library imposesa 100 character limit on backup.

Another lex library routine that you sometimes want to redefine is yywrap()
which is called whenever lex reaches an end-of-file. If yywrapreturnsa 1, lex
continues with the normal wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive from a new source. In this case,
the user should provide a yywrap that arranges for new input and returns 0.
Thisinstructs lex to continue processing. The default yywrap alwaysreturns 1.
This routine is also a convenient place to print tables, summaries, etc. at the
end of a program. Note that it is not possible to write a normal rule that
recognizes end-of-file; the only access to this condition is through yywrap(). In
fact, unless a private version of input() is supplied a file containing nulls cannot
be handled, since a value of O returned by snputistaken to be end-of-file.

8.14 Handling Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one expression can
match the currentinput, lex chooses as follows:

o Thelongest matchis preferred.

e« Among rules that match the same number of characters, the first
givenruleispreferred.

For example, suppose the following rules are given:

integer keyword action ...;
[a-z]+ identifier action ...;

If the input is integers, it is taken as an identifier, because
[a-z]+

matches 8 characters while

8-12

Lex: A Lexical Analyzer

integer

matches only 7. If the input is integer, both rules match 7 characters, and the
keyword rule is selected because it was given first. Anything shorter (e.g., int)
does not match the expression integer, so the identifier inter pretation is used.

The principle of preferring the longest match makes certain constructions
dangerous, such as the following:

RJ

For example

l."

might seem a good way of recognizing a string in single quotes. But it is an
invitation for the program to read far ahead, looking for a distant single quote.
Presented with the input

‘first " quoted string here, second’ here
the above expression matches
first " quoted string here, second’

whichisprobably not what waswanted. A better ruleisof the form
" \n]®’

which, on the above input, stops after first’. The consequences of errors like
this are mitigated by the fact that the dot (.) operator does not match a
newline. Therefore, no more than one line isever matched by such expressions.
Don’t try to defeat this with expressionslike

[\nl+

or their equivalents: the lex generated program will try to read the entire input
file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all
possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some lex rules to do this might
be

she s++;
he h++;
\n I

.
1

813

XENIX Programmer’'s Guide

where the last two rules ignore everything besides Ae and ske. Remember that
the period (.) does not include the newline. Since she includes Ae, lex will
normally not recognize the instances of he included in she, since once it has
passed a she those characters are gone.

Sometimes the user would like to override this choice. The action REJECT
means go do the next alternative. It causes whatever rule was second choice
after the current rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to count the included
instancesof he:

she {s++; REJECT;}
he {h++; REJECT;}
\n |

These rules are one way of changing the previousexample to do just that. After
counting each expression, it is rejected; whenever appropriate, the other
expression will then be counted. In this example, of course, the user could note
that she includes Ae, but not vice versa, and omit the REJECT action on Ae; in
other cases, however, it would not be possible to tell which input characters
were in both classes.

Consider the two rules

be
cd

+ {..;REJECT;
+ {..;REJECT;

If the input is ab, only the first rule matches, and on adonly the second matches.
The input string accb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input aced agrees with the
second rule for four characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of lex isnot to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the digrams overlap, that is the word the
is considered to contain both th and Ae. Assuming a two-dimensional array
named digram to be incremented, the appropriate source is

%%
[a-2][a-2] {digram]yytext[0]]fyytext[1]]++; REJECT;}

\n ;

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather thanat every other character.

Remember that REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with trailing context is

8-14

Lex: A Lexical Analyzer

found, and REJECT executed, you must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction to
ability to manipulate the not-yet-processed input.

8.15 Specifying Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied at
different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior context, and there are
several ways of handling such problems. The caret (") operator, for example, is
a prior context operator, recognizing immediately preceding left context just as
the dollar sign ($) recognizes immediately following right context. Adjacent
left context could be extended, to produce a facility similar to that for adjacent
right context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of a line.

Thissection describes three meansof dealing with different environments:

1. The use of flags, when only a few rules change from one environment
to another

2. Theuseofstart conditions with rules
3. The use multiple lexical analyzers running together.

In each case, there are rules that recognize the need to change the environment
in which the following input text is analyzed, and set some parameter to reflect
the change. This may be a flag explicitly tested by the user’s action code; such a
flag is the simplest way of dealing with the problem, since lex is not involved at
all. It may be more convenient, however, to have lex remember the flags as
initial conditions on the rules. Any rule may be associated with a start
condition. It will only be recognized when lex is in that start condition. The
current start condition may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity may be best achieved
by writing several distinct lexical analyzers, and switching from one to another
as desired.

Consider the following problem: copy the input to the output, changing the
word magic to firstonevery line that began with the letter a, changing magiec to
second on every line that began with the letter b, and changing magic to third
onevery line that began with the letter ¢. All other wordsand allother lines are
left unchanged.

These rulesare so simple that the easiest way to do this job is with a flag:

815

XENIX Programmer’s Guide

int flag;
%%
“a {flag = a"; ECHO;}
“b {flag = b"; ECHO;}
"¢ flag = c; ECHO;}
\n {ﬂag = 0; ECHO;}
magic
switch (flag)
case ‘a”: printf(”first”}; break;
case b printf("second”); break;

case ‘c* printf(”third"); break;
default: ECHO; break;

should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced tolex in the definitions section with aline reading

%Start namel name?2 ...
where the conditions may be named in any order. The word Start may be
abbreviated to sor S. The conditions may be referenced at the head of a rule
with angle brackets. For example

<namel >expression

is a rule that is only recognized when lex is in the start condition name!. To
enter astart condition, execute the action statement

BEGIN namel;
which changesthe start condition to name . To return to the initial state
BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may be
active in several start conditions; for example:

<namel,name2,name3 >

is a legal prefix. Any rule not beginning with the <> prefix operator is always
active.

The same example as before can be written:

8-16

Lex: A Lexical Analyzer

%START AA BB CC

%%

a
“b

c

\n

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN 0;}

<AA>magic printf(” first”);
<BB>magic printf("second”);
< CC>magic printf(”third");

where the logic is exactly the same as in the previous method of handling the

problem,

but lex doesthe work rather than the user’s code.

8.18 Specifying Source Definitions

Remember the format of the lex source:

{definitions}

%%

{rules}

%%

{user routines}

So far only the rules have been described. You will need additional options,
though, to define variables for use in your program and for use by lex. These
can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. There are three classes
of such things:

Any line that is not part of a lex rule or action which begins with a
blank or tab is copied into the lex generated program. Such source
input prior to the first %% delimiter will be external to any function
in the code; if it appearsimmediately after the first %%, it appearsin
an appropriate place for declarations in the function written by lex
which contains the actions. This material must look like program
fragments, and should precede the first lex rule.

As a side effect of the above, lines that begin with a blank or tab, and
which contain a comment, are passed through to the generated
program. This can be used to include comments in either the lex
source or the generated code. The comments should follow the
conventionsof the C language.

Anythingincluded between lines containing only %{ and %} is copied

out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column

8-17

XENIX Programmer's Guide

1, or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of formats, is
copied out after the lex output.

Definitions intended for lex are given before the first % delimiter. Any line in
this section not contained between %{ and %}, and beginning in column 1, is
assumed to define lex substitution strings. The format of such linesis

name translation

and it causes the string given as a translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and
the name must begin with aletter. The translation can then be called out by the
{name} syntax in a rule. Using {D} for the digits and {E} for an exponent field,
for example, might abbreviate rules to recognize numbers:

D 0-9]

E Ede|[-+]*{D}+
%%

{D}+ printf("integer”);
(D}+"»D)e((E) |

(D} DY+(ET | _
{D}+{E} printf("real”);

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field, but the first requires at least one digit before
the decimal point and the second requires at least one digit after the decimal
point. To correctly handle the problem posed by a FORTRAN expression such
as 85.EQ.I, which does not contain a real number, a context-sensitive rule such
as

[0-9]+/""EQ printf("integer”);
could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default size
of arrays within lex itself for larger source programs. These possibilities are
discussed in the section “Source Format”.

8.17 Lex and Yacc

If you want to use lex with yacc, note that what lex writes isa program named
yylez(), the name required by yacc for itsanalyzer. Normally, the default main
program on the lex library calls thisroutine, but if yacc is loaded, and its main
program is used, yacc will call yylez{). In this case, each lex rule should end
with

8-18

Lex: A Lexical Analyzer

return(token);

where the appropriate token value is returned. An easy way to get access to
yacc's names for tokens is to compile the lex output file as part of the yace
output file by placing the line

include "lex.yy.c”

in the last section of yacc input. Supposing the grammar to be named goodand
the lexical rules to be named betterthe XENIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -1l

The yacc library (-ly) should be loaded before the lex library, to obtain a main
program which invokes the yacc parser. The generation of lex and yacc
programs can be done in either order.

As a trivial problem, consider copying an input file while adding 3 to every
positive number divisible by 7. Here is a suitable lex source program to do just
that:

%%
int k;
[0-9]+ {
k = atoi(yytext);
if (k%7 ==
printf(" %d”, k+3};
else

printf(” %d” k);

The rule [0-9]+ recognizes strings of digits; ates{) converts the digits to binary
and stores the result in k. The remainder operator (%) isused to check whether
k is divisible by 7; if it is, it is incremented by 3 as it is written out. It may be
objected that this program will alter such input items as 49.63 or X7.
Furthermore, it increments the absolute value of all negative numbers divisible
by 7. To avoid this, just add a few more rules after the active one, as here:

%%
int k;
-?l0-9]+ {
k = atoi(yytext);
printf("%d", k%7 == 07 k+3 : k);

}
200-9.]+ ECHO;
[A-Za-2}[A-Za-20-9)+ ECHO;

Numerical strings containing a decimal point or preceded by a letter will be

8-19

XENIX Programmer’s Guide

picked up by one of the last two rules, and not changed. The if—else has been
replaced by a C conditional expression to save space; the form a?b:c means: if a
then belse c.

For an example of statistics gathering, here is a program which makes
histogramsof word lengths, where a word is defined as a string of letters.

int lengs{100];
%%
[a-z]+ lengslyyleng]++;
I

o o
%%
){rywrap()

int i;
printf("Length No. words\n");
for(i=0; i< 109; i+ +)
if (lengsli] > 0)
printf(” %5d%10d\n" i, lengsli]);

return(l);

This program accumulates the histogram, while producing no output. At the
end of the input it prints the table. The final statement retura(1); indicates
that lex is to perform wrapup. If yywrap() returns sero (false) it implies that
further input is available and the program is to continue reading and
processing. To provide a yywrap() that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written to convert
double precision FORTRAN to single precision FORTRAN. Because FORTRAN
does not distinguish between upper- and lowercase letters, this routine begins
by defining a set of classes including both cases of each letter:

a aA
b [bB
c [cC]
2 iz Z]

An additional class recognizes white space:
w [\t]e

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL.

8-20

Lex: A Lexical Analyzer

{d}{O}{U}{b}{l}{e}{W}{p}{r}{e}{c}{ }{5}§ i}{o}{n} {

printf(yytext{0
}

Care is taken throughout this program to preserve the case of the original
program. The conditional operator is used to select the proper form of the
keyword. The next rule copies continuation card indications to avoid confusing
them with constants:

] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
beginning of line, then five blanks, then anything but blank or zero.” Note the
two different meanings of the caret (") here. There follow some rules to change
double precision constants to ordinary floating constants.

[l+{w}j‘1}{w}l+ -J1{W}[0-9]+ l
BRI T
forfpmyytens =5 1=, p+4)

it (op == 'd' || #p == "D
tp+__ e’-] ’
ECHO;
)

After the floating point constant is recognized, it is scanned by the for loop to
find the letter ““d” or **D”. The program then adds‘“’ e’ -/ d' ”” which convertsit
to the next letter of the alphabet. The modified constant, now single precision,
is written out again. There follow a series of names which must be respelled to
remove their initial “d”. By using the array yytezt the same action suffices for
all the names (only asample of arather long listisgiven here).

|
{o}{s} |
{a}{r}{t) |
{ |
{dHB o} {2t} printf(” %s” yy text+1);

Another list of names must have initial dchanged to initial a:

8-21

XENIX Programmer’s Guide

yytext[0] +==a’- d%
ECHO;
}
And one routine must haveinitial dchanged to initial r:

{d}1{m}{a}{c}{h} {
yytext[0] += T’ - d5
\ ECHO;

To avoid such names as deinz being detected as instances of dsin, some final
rules pick up longer words as identifiers and copy some surviving characters:

[A-Za-2][A-Za-20-9]s]
[\0—9]+

ECHO;

Note that this program is not complete; it does not deal with the spacing
problemsin FORTRAN or with the use of key words asidentifiers.

8.18 Specifying Character Sets

The programs generated by lex handle character 1/O only through the
routines input, output, and unput. Thusthe character representation provided
in these routines is accepted by lex and employed to return values in yytezt.
For internal use a character is represented as a small integer which, if the
standard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter ais
represented as the same form as the character constant:

o’

a
If this interpretation is changed, by providing1/O routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by lines containing
only %T. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. For example:

8-22

Lex: A Lexical Analyzer

%T

1 Aa

2 Bb
26 Z3
27 \n
28 +
29 -
30 0
31 1
39 9
%T

This table maps the lowercase and uppercase letterstogether into the integers 1
through 26, newline into 27, plus (+) and minus (-) into 28 and 29, and the digits
into 30 through 39. Note the escape for newline. If a table is supplied, every
character that is to appear either in the rules or in any valid input must be
included in the table. No character may be assigned the number 0, and no
character may be assigned a larger number than the size of the hardware
character set.

8.19 Source Format

The general form of a lex source file is:
{definitions}
%%
{rules}
%%

{user subroutines}

The definitions section contains a combination of

1. Definitions, in the form ‘““name space translation”

2. Included code, in the form **space code”

3. Included code, in the form

%{
code
%}

4. Start conditions, givenin the form

%S namel name?2 ...

8-23

XENIX Programmer’s Guide

5. Character set tables, in the form

%T
number space character-string

%T
6. Changestointernal array sizes, in the form
%x nnn

where nnnisa decimal integer representing an array size and zselects
the parameter as follows:

Letter Parameter

positions

states

tree nodes

transitions

packed character classes
output array size

o ®w o Do

Linesin the rulessection have the form:
ezpression action

where the action may be continued on succeeding lines by using braces to
delimit it.

Regular expressions in lex use the following operators:

X The character "x”
"x" An"x", evenifxisan operator.
\x An"x", evenif x isan operator.

[xy] The characterxory.
[x-z] The charactersx,y ors.
["x] Any character butx.
Any character but newline.
x Anx at the beginning of a line.
<y>x Anxwhenlexisinstart conditiony.

x$ Anxat the endof aline.

8-24

Lex: A Lexical Analyzer

x? Anoptional x.

x* 0,1,2, ... instancesof x.
x+ 1,2,3, ... instancesof x.
x|y Anxoray.

(x) Anx.

x[y Anxbutonly if followed by y.
{xx} The translation of xx from the definitions section.

x{m,n} mthrough noccurrencesofx.

8-25

Chapter 9
Yacc: A Compiler-Compiler

9.1 Introduction 9-1

9.2 Specifications 94

9.3 Actions 9-6

9.4 Lexical Analysis 9-8

9.5 HowtheParser Works 9-10

9.6 Ambiguity and Conflicts 9-14

9.7 Precedence 919

9.8 Error Handling 9-22

9.9 TheYaccEnvironment 9-24

9.10 Preparing Specifications 9-25

9.11 Imput Style 9-25

9.12 Left Recursion 9-26

9.13 Lexical Tie-ins 9-27

9.14 Handling Reserved Words 9-27

9.15 Simulating Error and Accept in Actions 9-28
9.16 Accessing Values in Enclosing Rules 9-28

9.17 Supporting Arbitrary Value Types 9-29

9.18 A Small Desk Calculator 9-30
9.19 Yacc Input Syntax 9-32
9.20 An Advanced Example 9-34

9.21 Old Features 9-40

Yacc: A Compiler-Compiler

8.1 Introduction

Computer program input generally has some structure; every computer
program that does input can be thought of as defining an input language which
it accepts. An input language may be as complex as a programming language,
or as simple as a sequence of numbers. Unfortunately, usual input facilities are
limited, difficult to use, and often lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program.
The name yacc itself stands for ‘‘yet another compiler-compiler”. The yacc
user specifies the structures of his input, together with code to be invoked as
each such structure is recognized. Yacec turns such a specification into =
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of controlin the user’s application handled
by thissubroutine.

The input subroutine produced by yace calls a user-supplied routine to return
the next basic input item. Thus, the user can specify his input in terms of
individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification. The class of specifications accepted is a very
generalone: LALR grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., yace hasalso been
used for less conventional languages, including a phototypesetter language,

several desk calculator languages, a document retrieval system, and a
FORTRAN debugging system.

Yacc provides a general tool for imposing structure on the input to a computer
program. The yacc user prepares a specification of the input process; this
includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. Yacc then
generates a function to control the input process. This function, called a
parser, calls the user-supplied low-level input routine (called the lexical
analyzer) to pick up the basic items (called tokens) from the input stream.
These tokens are organized according to the input structure rules, called
grammar rules; when one of these rules has been recognized, then user code
supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C and the actions, and output
subroutine, are in C as well. Moreover, many of the syntactic conventions of
yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule

describes an allowable structure and gives it a name. For example, one
grammar rule might be:

9-1

XENIX Programmer’s Guide

date : month_name day ', year ;

Here, date, month_name, day, and gear represent structures of interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma (,) is enclosed in single quotation marks; this implies that the
comma is to appear literally in the input. The colon and semicolon merely serve
as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input:

July 4, 1776
might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizing the lower level
structures, and communicates these tokens to the parser. A structure
recognized by the lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is called a nonterminal symbol. To avoid
confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month_name : 'J’ ’a’ 'n’ ;

month_name : 'F’ e’ 'b’ ;

month_name : 'D’ ’¢’ ’¢’ ;
might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yace's ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a
month_name wasseen; in this case, month_name would be a token.

Literal characters, such as the comma, must also be passed through the lexical
analyzer and are considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example therule

date : month ’/’ day '/’ year ;
allowing
7/4/1716

asasynonym for

9-2

Yacc: A Compiler-Compiler

July 4, 1776

In most cases, this new rule could be slipped in to a working system with
minimal effort, and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors
are detected as early as is theoretically possible with a left-to-right scan; thus,
not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits the reentry of
bad data, or the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self contradictory, or they may require
a more powerful recognition mechanism than that available to yacc. The
former cases represent design errors; the latter cases can often be corrected by
making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. While yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the constructions which
are difficult for yacc to handle are also frequently difficult for human beings to
handle. Some usershave reported that the discipline of formulating valid yacc
specifications for their input revealed errors of conception or design early in the
program development.

The next several sections describe:
e The preparationof grammar rules

e The preparation of the user supplied actions associated with the
grammar rules

o The preparationof lexical analyzers
o The operation of the parser

e Various reasons why yace may be unable to produce a parser from a
specification, and what to do about it.

e Asimple mechanism for handling operator precedences in arithmetic
expressions.

o Error detection and recovery.

o The operating environment and special features of the parsers yacc
produces.

e Some suggestions which should improve the style and efficiency of the
specifications.

9-3

XENIX Programmer’s Guide

2.2 Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed later, it is often
desirable to include the lexical analyzer as part of the specification file. It may
be useful to include other programs as well. Thus, every specification file
consists of three sections: the declarations, (grammar) rules, and programs.
The sections are separated by double percent %% marks. (The percent sign
(%) is generally used iny acc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%

rules

%%

programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second 9%6% mark may be omitted also; thus, the smallest legal
yace specification is

%%

rules

Blanks, tabs, and newlines are ignored except that they may not appear in
namesor multicharacter reserved symbols. Comments may appear wherever a
name is legal; they are enclosedin /¢ ... ¢/, asinC.

The rulessection ismade up of one or more grammar rules. A grammar rule has
the form:

A : BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot (.), the
underscore (_), and noninitial digits. Uppercase and lowercase letters are
distinct. The names used in the body of a grammar rule may represent tokens
or nonterminal symbols.

A literal consists of a character enclosed in single quotation marks(’). Asin C,

the backslash (\) is an escape character within literals, and all the Cescapesare
recognized. Thus

9-4

Yacc: A Compiler-Compiler

\n’ Newline

\r’ Return

N’ Single quotation mark
AV Backslash

\t’ Tab

\b’ Backspace

AP Form feed

A\xxx’ "xxx” in octal

For a number of technical reasons, the ASCII NUL character (40 or 0) should
never be used in grammar rules.

If there are several grammar rules with the same left hand side, then the
vertical bar (|) can be used to avoid rewriting the left hand side. In addition,
the semicolon at the end of a rule can be dropped before avertical bar. Thusthe
grammar rules

A:B C D;
A:EF;
A:G ;

can begiventoyaccas

A:BCD
|E F

|G

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input much more
readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty : ;

Names representing tokens must be declared; this is most simply done by
writing

C%token namel name?2 ...

in the declarations section. (See Sections 3, 5, and 6 for much more discussion).
Every nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this
'symbol represents the largest, most general structure described by the
grammar rules. By default, the start symbol is taken to be the left hand side of
the first grammar rule in the rulessection. It is possible, and in fact desirable, to

9-5

XENIX Programmer’s Guide

declare the start symbol explicitly in the declarations section using the %start
keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the
endmarker. If the tokens up to, but not including, the endmarker form a
structure which matches the start symbol, the parser function returns to its
caller after the endmarker is seen; it accepts the input. If the endmarker is seen
in any other context, it isan error.

It is the job of the user-supplied lexical analyzer to return the endmarker when
appropriate; see section 3, below. Usually the endmarker represents some
reasonably obviousI/O status, such as the end of the file or end of the record.

9.3 Actions

With each grammar rule, the user may associate actions to be performed each
time the rule is recognized in the input process. These actions may return
values, and may obtain the valuesreturned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and assuch cando input and output, call
subprograms, and alter external vectors and variables. An action is specified
by one or more statements, enclosed in curly braces { and }. For example
A . l(! B ’)’
{ hello(1, "abe”); }

and

XXX :YYY 22Z
{ printf("2 message\n");
flag = 25;}

are grammar rules with actions.
To facilitate easy communication between the actions and the parser, the
action statements are altered slightly. The dollar sign (8) is used as a signal to

yacc in this context.

To return a value, the action normally sets the pseudo-variable $$ to some
value. For example, an action that doesnothing but return the value 1is

(88 =1;)
To obtain the values returned by previous actions and the lexical analyzer, the

action may use the pseudo-variables $1, $2, ..., which refer to the values
returned by the components of the right side of a rule, reading from left to

9-6

Yacc: A Compiler-Compiler

right. Thus, if the rule is
A:BCD;

for example, then $2 has the value returned by C, and $3 the value returned by
D.

Asamore concrete example, consider the rule
expr : ’(’ expr ')’ ;

The value returned by this rule is usually the value of the ezprin parentheses.
Thiscan beindicated by

expr:’(Cexpr’) { 3¢ =82}

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rulesof the form

A:B;
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes,
it 1s desirable to get control before a rule is fully parsed. Yacc permits an
action to be written in the middle of a rule as well as at the end. This rule is
assumed to return a value, accessible through the usual mechanism by the
actions to the right of it. In turn, it may access the values returned by the
symbolsto itsleft. Thus, inthe rule

A:B
$$=1;)

x=82, y=2$3; }

"fﬁ\o*

the effect is toset zto 1, and yto the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name, and a new rule matching this
name to the empty string. The interior action is the action triggered off by
recognizing this added rule. Yacc actually treats the above example asifit had
been written:

XENIX Programmer’s Guide

$ACT : /= empty ¢/
$ =1 }

A :B $ACT C
{ x=82; y=283; }

In many applications, cutput is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transformations
are applied to it before output is generated. Parse trees are particularly easy to
construct, given routines to build and maintain the tree structure desired. For
example, suppose there isa C function node, written so that the call

node(L, nl, n2)

creates a node with label L, and descendantsnl and n2, and returnsthe index of
the newly created node. Then parse tree can be built by supplying actions such
as:

expr : expr '+’ expr

{ 8% = node('+’, 81,83); }
in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarationssection, enclosed in the marks %{ and
%}. These declarations and definitions have global scope, so they are known to
the action statementsand the lexical analyzer. For example,

2{ int variable = 0; %)}

could be placed in the declarations section, making variable accessible to all of
the actions. The yacc parser uses only names beginning in gy; the user should
avoid suchnames.

In these examples, all the values are integers: a discussion of values of other
types will be found in a later section.

9.4 Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens {with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called yylez. The function returns an integer,
called the token number, representing the kind of token read. If thereisavalue
associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbersinorder
for communication between them to take place. The numbers may be chosen

9-8

Yace: A Compiler-Compiler

by yacc, or chosen by the user. In either case, the # define mechanism of Cis
used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical analyzer might look like:

yylex(){
extern int yylval;
int c;

¢ = getchar();
.s.w;vitch(c){

case '0’:
case '1’:

case g’
yylval = ¢-'0%;
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed in
the programs section of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token namesin the grammar that are reserved or
significant in C or the parser; for example, the use of token names tf or whsle will
almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name error is reserved for error handling, and should not be used
naively.

As mentioned above, the token numbers may be chosen by yacc or by the user.
In the default situation, the numbers are chosen by yacc. The default token
number for a literal character is the numerical value of the character in the
local character set. Other namesare assigned token numbersstarting at 257.

To assign a token number to a token (including literals), the first appearance of
the token name or literal in the declarations section can be immediately
followed by anonnegative integer. Thisinteger is taken to be the token number
of the name or literal. Names and literals not defined by this mechanism retain
their default definition. It isimportant that all token numbersbe distinct.

For historical reasons, the endmarker must have token number 0 or negative.

This token number cannot be redefined by the user. Hence, alllexical analyzers
should be prepared to return O or negative as a token number upon reaching the

9-9

XENIX Programmer's Guide

end of their input.

A very useful tool for constructing lexical analyzers is lex, discussed in a
previous section. These lexical analyzersare designed to work in close harmony
with yacc parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce quite
complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

9.5 How the Parser Works

Yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the lookahead token). The current state is always the one on the top of
the stack. The states of the finite state machine are given small integer labels;
initially, the machine is in state 0, the stack contains only state 0, and no
lookahead token hasbeen read.

The machine has only four actions available to it, called shsft, reduce, accept,
and error. A move of the parser is done asfollows:

1. Based on its current state, the parser decides whether it needs a
lookahead token to decide what action should be done; if it needs one,
and does not haveone, it calls ygdez to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser
decides on its next action, and carries it out. This may result in states
being pushed onto the stack, or popped off of the stack, and in the
lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56
there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of
the stack). Thelookahead token is cleared.

9-10

Yace: A Compiler-Compiler

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right hand side of a
grammar rule, and is prepared to announce that it has seen an instance of the
rule, replacing the right hand side by the left hand side. It may be necessary to
consult the lockahead token to decide whether to reduce, but usually it isnot; in
fact, the default action (represented by a.)is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, leading to some confusion. The action

reduce 18
refers to grammar rule 18, while the action
IF shift 34
refers to state 34.
Suppose the rule being reduced is
A:xys;

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing z, y, and z, and no
longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser wasin before beginning to processthe
rule. Using this uncovered state, and the symbol on the left side of the rule,
perform what is in effect a shift of A. A new state is obtained, pushed onto the
stack, and parsing continues. There are significant differences between the
processing of the left hand symbol and an ordinary shift of a token, however, so
this action is called a goto action. In particular, the lookahead token is cleared
by a shift, and is not affected by a goto. In any case, the uncovered state
contains an entry such as:

A goto 20
causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action turns back the clock in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the
right hand side of the rule is empty, no states are popped off of the stack: the
uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions

and values. When a rule is reduced, the code supplied with the rule is executed
before the stack is adjusted. In addition to the stack holding the states, another

9-11

XENIX Programmer's Guide

stack, running in parallel with it, holds the values returned from the lexical
analyzer and the actions. When a shift takes place, the external variable yylval
is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable
yyval is copied onto the value stack. The pseudo-variables $1, $2, etc., refer to
the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has
seen, together with the lookahead token, cannot be followed by anything that
would result in a legal input. The parser reports an error, and attempts to
recover the situation and resume parsing: the error recovery (asopposed to the
detection of error) will be in a later section.

Consider the following example:

%token DING DONG DELL
%%
rhyme : sound place

sound : DING DONG

pla.cé : DELL

When yacc is invoked with the —v option, a file called y.output is produced,
with a human-readable description of the parser. The g.output file
corresponding to the above grammar (with some statistics stripped off the end)
is:

9-12

Yacc: A Compiler-Compiler
state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5

. error
place goto 4
state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1)

. reduce 1

state
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2
Notice that, in addition to the actions for each state, there isa descriptionof the
parsing rules being processed in each state. The underscore character (_)is used

to indicate what has been seen, and what is yet to come, in each rule. Suppose
the input is

9-13

XENIX Programmer’s Guide

DING DONG DELL
It isinstructive to follow the steps of the parser while processing thisinput.

Initially, the current state is state 0. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first token,
DING, isread, becoming the lookahead token. The actioninstate 0on DINGis
ehift 3, so state 3 is pushed onto the stack, and the lookahead token is cleared.
State 3 becomes the current state. The next token, DONG, is read, becoming
the lookahead token. The action in state 3 on the token DONG is shkift 6, so
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the
parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off of the stack, uncovering state 0. Consulting the description of state
0, looking for a goto on sound,

sound goto 2
is obtained; thusstate 2 is pushed onto the stack, becoming the current state.

Instate 2, the nexttoken, DELL, must beread. The action is ekift 5, sostate 5 is
pushed onto the stack, which now has0, 2, and 5on it, and the lookahead token
is cleared. In state 5, the only action is to reduce by rule 3. This has one symbol
on the right hand side, so one state, 5, is popped off, and state 2 is uncovered.
The goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two states are popped off, uncovering state
0 again. In state 0, there is a goto on rhyme causing the parser to enter state 1.
Instate 1, the input isread; the endmarker isobtained, indicated by $endinthe
y.output file. The action in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG
DELL DELL, etc. A few minutes spend with this and other simple examples
will probably be repaid when problemsarise in more complicated contexts.

9.6 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr : expr -’ expr

is a natural way of expressing the fact that one way of forming an arithmetic

9-14

Yacc: A Compiler-Compiler

expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not completely specify the way
that all complex inputsshould be structured. For example, if the input is
expr - expr - expr
the rule allows thisinput to be structured aseither
(expr - expr) - expr
or as
expr - (expr - expr)
{The first is called left association, the second right association).
Yacc detects such ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that confronts the parser when it is given
an input such as
eXpr - expr - expr
When the parser hasread the second expr, the input that it has seen:
expr - expr
matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input isreduced to ezpr
(the left side of the rule). The parser would then read the final part of the input:
- expr
and againreduce. Theeflect of thisis to take the left associative interpretation.
Alternatively, when the parser hasseen

expr - expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

exXpr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to
ezprand leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, havingread

9-15

XENIX Programmer’s Guide

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shift/reduce conflict. It may also
happen that the parser has a choice of two legal reductions; this is called a
reduce/reduce conflict. Note that there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a
disambiguating rule.

Yaccinvokestwo disambiguating rules by default:

1. Inashift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1implies that reductions are deferred whenever there is a choice, in favor
of shifts. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is inappropriate, and leads
to an incorrect parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflictsresolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammear rules so that the same
inputs are read but there are no conflicts. For thisreason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has
suggested that this rewriting is somewhat unnatural, and produces slower
parsers; thus, yacc will produce parserseven in the presence of conflicts.

Asan example of the power of disambiguating rules, consider a fragment from a
programming language involving anif-then-else construction:

stat : IF (" cond ')’ stat
| IF '(* cond ') stat ELSE stat

Inthese rules, /FFand ELSE are tokens, condis anonterminal symbol describing
conditional {logical) expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if rule, and the second the

9-16

Yace: A Compiler-Compiler

if-else rule.

These two rules form an ambiguous construction, since input of the form
IF (C1)IF (C2) S1 ELSE S2

can be structured according to these rulesin two ways:

IF (C1) {
IF (C2)S1

ELSE S2
or
IF(C1){
IF (C2)S1

ELSE S2
}

The second interpretation is the one given in most programming languages
having this construct. Each ELSE is associated with the last /F immediately
preceding the ELSE. In this example, consider the situation where the parser
hasseen

IF (C1)IF (C2)SI

and is looking at the ELSE. It can immediately reduce by the simple-if rule to
get

IF (C1) stat
and then read the remaining input,
ELSE S2
andreduce
IF { C1) stat ELSE S2
by theif-else rule. Thisleads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2read, and then the right hand
portion of

IF (C1) IF (C2) S1 ELSE S2

can bereduced by the if-else rule to get

8-17

XENIX Programmer’s Guide

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupings of the input, which isusually desired.

Once again the parser can do two valid things — there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputs already seen, such as

IF (C1)IF (C2)S1

In general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs
are characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose
{—v) option output file. For example, the output corresponding to the above
conflict state might be:

23: shift /reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The
ordinary state description follows, giving the grammar rulesactive in the state,
and the parser actions. Recall that the underline marks the portion of the
grammar rules which hasbeen seen. Thusin the example, in state 23 the parser
hasseeninput corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into state
45. State 45 willhave, aspart of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the
alternative action, described by *“.” , is to be done if the input symbol is not

mentioned explicitly in the above actions; thus, in this case, if the input symbol

9-18

Yacc: A Compiler-Compiler

isnot ELSE, the parser reduces by grammar rule 18:
stat : IF '(’ cond ')’ stat

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there will be at most reduce action
possible in the state, and this will be the default command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really
tough cases, the user might need to know more about the behavior and
construction of the parser than can be covered here. In this case, one of the
theoretical references might be consulted; the services of a local guru might also
be appropriate.

9.7 Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with
information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notionisto write grammar rulesof the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. As disambiguating rules, the user
specifies the precedence, or binding strength, of all the operators, and the
associativity of the binary operators. This information is sufficient to allow
yacc to resolve the parsing conflicts in accordance with these rules, and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword: S5left,
%right, or %nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
lines are listed in order of increasing precedence or binding strength. Thus,

Toleft '+ -’
%left, :‘, v/r

9-19

'XENIX Programmer’s Guide

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative, and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to describe
right associative operators, and the keyword %nonassoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves; thus,

ALT.B.LT.C

is illegal in FORTRAN, and such an operator would be described with the
keyword %5nonassoc in yacc. As an example of the behavior of these
declarations, the description

Coright '=’
Toleft '+’ -*
%left |‘s !/!

expr :expr '='expr
| expr '+’ expr
| expr ’-' expr
expr '*’ expr
expr '/ expr
NAME

might be used to structure the input
a=Db=1cesd-e-fog
as follows:

a=(b={(((ced)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same
symbolic representation, but different precedences. An example is unary and
binary -’ unary minus may be given the same strength as multiplication, or
even higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular
grammar rule. The %prec appearsimmediately after the body of the grammar
rule, before the action or closing semicolon, and is followed by a token name or
literal. It causes the precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary minus have the
same precedence asmultiplication the rules might resemble:

9-20

Yacc: A Compiler-Compiler

%len, v+1 LR
%left. 1g?)/7

%%

expr :expr '+’ expr
| expr -’ expr
expr ¢’ expr
expr '/’ expr
| ’-> expr Toprec s’

| NAME

3

A token declared by %left, %right, and %nonassoc need not be, but may be,
declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens and
literals that have them.

2. A precedence and associativity is associated with each grammar rule;
it is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

4. If thereis a shift /reduce conflict, and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the number of shift /freduce
and reduce/reduce conflicts reported by yacc. Thismeans that mistakesinthe
specification of precedences may disguise errors in the input grammar; it is a
good idea to be sparing with precedences, and use them in an essentially
cookbook fashion, until some experience has been gained. The y.output file is
very usefulin deciding whether the parser isactually doing what was intended.

9-21

XENIX. Programmer's Guide

9.8 Error Handling

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser restarted after an error. A general class of
algorithms to perform this involves discarding a number of tokens from the
input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple, but
reasonably general feature. The token name error is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser popsits
stack until it enters a state where the token errorislegal. It then behaves as if
the token error were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the
error. If nospecial error rules have been specified, the processing halts when an
error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shlfbed If an error is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

Asan example, arule of the form

stat : error
would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement,

and end up reporting a second error where thereisin fact noerror.

Actions may be used with these special error rules. These actions might
attempt toreinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control.
Somewhat easier are rulessuch as

stat : error '}’

Here, when there is an error, the parser attempts to skip over the statement,
but will do so by skipping to the next %" All tokens after the error and before

9-22

Yacc: A Compiler-Compiler

the next %’ cannot be shifted, and are discarded. When the *’is seen, this rule
will be reduced, and any cleanup action associated with it performed.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

input : error '\n’ { printf("Reenter line: ”); } input

{88 = 84;}

There is one potential difficulty with this approach; the parser must correctly
process three input tokens before it admits that it has correctly resynchronized
after the error. If the reentered line contains an error in the first two tokens,
the parser deletes the offending tokens, and gives no message; this is clearly
unacceptable. For this reason, there is a mechanism that can be used to force
the parser to believe that an error has been fully recovered from. The
statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better
written

input : error "\n’
{ yyerrok;
printf("Reenter last line: "); }
input

{38 =84;}

As mentioned above, the token seen immediately after the error symbol is the
input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the user,
that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex
would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. This could be done by a rule like

9-23

XENIX Programmer's Guide

stat : error
{ resynch();
yyerrok ;
yyclearin ; }

1

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the
program.

8.9 The Yacc Environment

When the user inputs a specification to yacc, the output is a file of C programs,
called y.tab.c on most systems. The function produced by yacc is called
yyparse ;itis an integer valued function. When it is called, it in turn repcatedly
calls yylez, the lexical analyzer supplied by the user to obtain input tokens.
Eventually, either an error is detected, in which case (if no error recovery is
possible) yyparse returns the value 1, or the lexical analyzer returns the
endmarker token and the parser accepts. Inthis case, yyparese returns the value
0.

The user must provide a certain amount of environment for this parser inorder
to obtain a working program. For example, as with every C program, a
program called main must be defined, that eventually calls yyparse. In
addition, a routine called yyerror prints a message when a syntax error is
detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc, a library has been provided with default
versions of main and yyerror. The name of thislibrary is system dependent; on
many systems the library is accessed by a —ly argument to the loader. To show
the triviality of these default programs, the sourceisgiven below:

main(){
return(yyparse());
and
include <stdio.h>
yyerror(s) char #*s; {

fprintf(stderr, "%s\n", s);

The argument to yyerror is a string containing an error message, usually the
string eyntaz error. The average application will want to do better than this.
Ordinarily, the program should keep track of the input line number, and print

9-24

Yace: A Compiler-Compiler

it along with the message when a syntax error is detected. The external integer
variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the
main program is probably supplied by the user (to read arguments, etc.) the
yacc library is useful only in small projects, or in the earliest stages of larger
ones.

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of which input symbols have been read, and what the
parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.

9.10 Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications. The individual subsections are more or less
independent.

9.11 Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file.

1. Use uppercase letters for token names, lowercase letters for
nonterminal names. This rule helps you to know who to blame when
things go wrong.

2. Put grammar rules and actions on separate lines. This allows either
to be changed without an automatic need to change the other.

3. Putallrules with the same left hand side together. Put the left hand
side in only once, and let all following rules begin with a vertical bar.

4. Putasemicolon only after the last rule with a given left hand side, and
put the semicolon on a separate line. This allows new rulesto be easily

added.

5. Indent rule bodies by two tab stops, and action bodies by three tab
stops.

The examples in the text of this section follow this style (where space permits).
The user must make up his own mind about these stylistic questions; the central
problem, however, is to make the rules visible through the morass of action
code.

9-25

XENIX Programmer’s Guide

8.12 Left Recursion

The algorithm used by the yacc parser encourages so-called left recursive
grammar rules: rulesof the form

name : name rest_of_rule ; (
These rulesfrequently arise when writing specifications of sequences and lists:

list : item
j list *,’ item

and

seq : item
| seq item

’

In each of these cases, the first rule will be reduced for the first item only, and
the second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item @
| item seq ‘

3

the parser would be a bit bigger, and the items would be seen, and reduced,
from right to left. More seriously, an internal stack in the parser would be in
danger of overflowing if a very long sequence were read. Thus, the user should
use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning,
andif so, consider writing the sequence specification with an empty rule:

seq : [+ empty */
| seq item

Once again, the first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality.
However, conflicts might arise if yacc is asked to decide which empty sequence)
it hasseen, when it hasn't seen enough to know! (

9-26

Yacc: A Compiler-Compiler

9.13 Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings. Or names
might be entered into asymbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program
consists of 0 or more declarations, followed by 0 or more statements. Consider:

%{
int dflag;
%}

. other declarations ...
%%

prog : decls stats

?

decls : /+ empty s/
dflag = 1; }
| decls declaration

’

stats : [+ empty */
{ dfag=0; }
| stats statement

)
. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. This token must
be seen by the parser before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single token exception does
not affect the lexical scan.

Thiskind of back door approach can be over done. Nevertheless, it representsa
way of doing some things that are difficult to do otherwise.

9.14 Handling Reserved Words

Some programming languages permit the user to use words like if, which are
normally reserved, as label or variable names, provided that such use does not
conflict with the legal use of these namesin the programming language. This is
extremely hard to do in the framework of yacec; it is difficult to pass
information to the lexical analyzer telling it ‘‘this instance of ‘if” is a keyword,

9-27

XENIX Programmer's Guide

and that instance is a variable’”. The user can make a stab at it, but it is
difficult. It is best that keywords be reserved; that is, be forbidden for use as
variable names.

9.16 Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT causes yyparee to return
the value 0; YYERROR causes the parser to behave as if the current input
symbol had been a syntax error; yyerror is called, and error recovery takes
place. These mechanisms can be used to sumulate parsers with multiple
endmarkersor context-sensitive syntax checking.

8.16 Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the currentrule.
The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit, but in this case the digit may be 0 or negative. Consider

sent :adj noun verb adj noun
{ look at the sentence ... }

adj :THE { $% = THE;}
] YOUNG { $¢ = YOUNG; }

1

noun :DOG {$$=DOG;}
| CRONE { if($0 == YOUNG){
printf(" what?\n");

$$ = CRONE;

In the action following the word CRONE, acheckismade preceding token
shifted was not YOUNG. Obviously, this is only possible when a great deal is
known about what might precede the symbol nounin the input. Thereisalsoa
distinctly unstructured flavor about this. Nevertheless, at times this
mechanism will save a great deal of trouble, especially when a few combinations
are to be excluded from an other wise regular structure.

9-28

Yacc: A Compiler-Compiler

9.17 Supporting Arbitrary Value Types

By default, the vzlues returned by actions and the lexical analyzer are integers.
Yacc can also support values of other ty pes, including structures. In addition,
yacc keeps track of the types, and inserts appropriate union member names so
that the resulting parser will be strictly type checked. The yacc value stack is
declared to be a union of the various types of values desired. The user declares
the union, and associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a $8 or $n
construction, yacc will automatically insert the appropriate union name, so
that no unwanted conversions will take place. In addition, type checking
commandssuch aslint(C) will be far moresilent.

There are three mechanisms used to provide for this typing. First, thereisa
way of defining the union; this must be done by the user since other programs,
notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the type of those
few values where yacc cannoteasily determine the ty pe.

To declare the union, the user includes in the declaration section:
Counion {
body of union ...

This declares the yacc value stack, and the external variables yylval and yyval,
to have type equal to this union. If yacc was invoked with the —d option, the
union declaration is copied onto the y.tab.h file. Alternatively, the union may
be declared in a header file, and a typedef used to define the variable YYSTYPE
to represent this union. Thus, the header file might also have said:

typedefl union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
e}

Once YYSTYPE is defined, the union member names must be associated with
the various terminal and nonterminal names. The construction

< name >
is used to indicate a union member name. If this follows one of the keywords

%%token, %left, %oright, and SGnonassoc, the union member name is associated
with the tokens listed. Thus, saying

9-29

XENIX Programmer's Guide

Pleft <optype> '+ -

will cause any reference to values returned by these two tokens to be tagged
with the union member name optype. Another keyword, %type, is used
similarly to associate union member names with nonterminals. Thus, one
might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no
predefined type. Similarly, reference to left context values (such as $0 - see the
previous subsection }leaves yacc with no easy way of knowing the type. In this
case, a type can beimposed onthe reference by inserting a union member name,
between < and >, iinmediately after the first §. Anexampleof thisusage is

rule : aaa { $<intval>$ = 3; } bbb
{ fun{ $<intval>2, $<other>0 }; }

H
Thissyntax haslittle torecommend it, but the situation arises rarely.

Asample specification is given in a later section. The facilities in thissubsection
are not triggered until they are used: in particular, the use of %type will turnon
these mechanisms. When they are used, thereis a fairly strict level of checking.
For example, use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is used to
hold int's, as was true historically.

8.18 A Small Desk Calculator

This example gives the complete yacc specification for a small desk calculator:
the desk calculator has 26 registers, labeled athrough z, and accepts arithmetic
expressions made up of the operators +, —, *, /, % (mod operator), & (bitwise
and), | (bitwise or}, and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. Asin C, an integer that
begins with O (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does a reasonable job
of showing how precedences and ambiguities are used, and demonstrating
simple error recovery. The major oversimplifications are that the lexical
analysis phase is much simpler than for most applications, and the output is
produced immediately, line by line. Note the way that decimal and octal
integers are read in by the grammar rules; This job is probably better done by
the lexical analyzer.

9-30

Yacc: A Compiler-Compiler

%{
include <stdio.h>
include <ctype.h>

int regs[26);
int base;

%}
%%start list
%token DIGIT LETTER

%oleft 1

Toleft &’

%oleft “+° *-*

%left =’ %’

%left UMINUS /¢ precedence for unary minus */

%% [+ beginning of rules section */

list : /* empty s/
| ist stat \n’

| list error \n’

{ yyerrok; }

]

stat :expr
{ printf("%d\n", $1); }
| LETTER ‘=" expr
{ regs{$1] = $3; }

expr : (“expr)’

{ 88 = $2; }
| expr +° expr

{88 =81+ 83; }
| expr =" expr

{38 =91-83;)
| expr ‘*’expr

{83 =81+83;}
| expr °/* expr

{8 =81/83}
| expr %" expr

{88 =¢81%%3;}
| expr ‘&’ expr

{8 =914193}
| expr]’ expr

{$%=81]893;}

9-31

XENIX Programmer's Guide

|~ expr %prec UMINUS
{$$=-92;)

| LETTER
{ 88 = rcgs[81];)

| number (

'

number : DIGIT
{ $8 = $1; base = ($1==0)?8: 10; }
| number DIGIT
{ $8 = base » $1 + $2; }

0% /* start of programs s/

yylex() { /t lexical analysis routine */
returns LETTER for a lowercase letter, #/
/' yylval = 0 through 25 */
/¢ return DIGIT for a digit, */
/* yylval = 0 through 9 s/
/* all other characters #/
[+ are returned immediately +/

mnt c;
while((c=getchar()) == " ") { /* skip blanks */ } @
/* ¢ is now nonblank */

if(islower(¢)) {
yylval =c - a%

return (LETTER);

}

if{ isdigit(¢)) {
yylval=1¢- 0%
return(DIGIT);

return(¢);

9.19 Yacc Input Syntax

Context dependencies, etc., are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar; the
sticky part comes when an identifier is seen in a rule, immediately following an
action. If this identifier is followed by a colon, it is the start of the next rule;
otherwise it is a continuation of the current rule, which just happensto have an

Thissection has a description of the yacc input syntax, asa yacc specification. @

9-32

Yacc: A Compiler-Compiler

action embedded in it. Asimplemented, the lexical analyzer looks ahead after
seeing an identifier, and decide whether the next token (skipping blanks,
newlines, comments, etc.) is a colon. If co, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
strings) are also returned as [DENTIFIER, but never as part of
C_IDENTIFIER.

/* grammar for the input to Yacc #/
+ basic entities */
%token IDENTIFIER /* includes identifiers and literals =/
%token C_IDENTIFIER /+ identifier followed by colon +/
%token NUMBER [+ o8]+ +/

/¢ reserved words: Z%type => TYPE, %left => LEFT, etc. */
%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%token MARK /# the $5% mark */

%%token LCURL /# the %{ mark ¢/
%token RCURL [+ the %} mark 2/
/* ascii character literals stand for themselves */

Tostart spec

%

R

spec :defs MARK rules tail

¥

tail : MARK { Eat up the rest of the file }
| /¢ empty: the second MARK is optional #/

defs : [+ empty */
| defs def

def : START IDENTIFIER

UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

¥

rword : TOKEN
LEFT
RIGHT
NONASSOC

9-33

XENIX Programmer’s Guide

| TYPE

’

tag : /* empty: union tag is optional */
| ‘<’ IDENTIFIER "> (

nlist : nmno
nlist nmno
nlist ,” nmno

nmno : IDENTIFIER /* Literal illegal with %type /
| IDENTIFIER NUMBER /* Hlegal with %type */

1
/* rules section */

rules : C_IDENTIFIER rbody prec
| rules rule

]

rule : C_IDENTIFIER rbody prec
|’ rbody prec

rbody : /% empty #/
| rbody IDENTIFIER
| rbody act

1]

act : {* { Copy action, translate $8, etc. } }°

’

prec : /* empty */
| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec 37

’

2.20 An Advanced Example

features discussed in earlier sections. The desk calculator example is modified
to provide a desk calculator that does floating point interval arithmetic. The
calculator understands floating point constants, the arithmetic operations +,
-, *, /, unary -, and = (assignment), and has 26 floating point variables, a
through z. Moreover, it also understands intervals, written

This section gives an example of a grammar using some of the advanced @

9-34

Yacc: A Compiler-Compiler

(x,y)

where z is less than or equal to y. There are 26 interval valued variables A
through Z that may also be used. Assignments return no value, and print
nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of yacec and C.
Intervals are represented by a structure, consisting of the left and right
endpoint values, stored as a double precision values. This structure is given a
type name, INTERVAL, by using typedef. The yacc value stack can also
contain floating point scalars, and integers (used to index into the arrays
holding the variable values). Notice that this entire strategy depends strongly
on being able to assign structures and unions in C. In fact, many of the actions
call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions:
division by an interval containing 0, and an interval presented in the wrong
order. In effect, the error recovery mechanism of yacc is used to throw away
the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting ase of syntax to keep track of the type (e.g., scalar
or interval) of intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be
seen by looking at the two input lines:

25+ (35-4.)
and
25+(35,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second
example, but this fact is not known until the comma (,) isread; by this time, 2.5
is finished, and the parser cannot go back and change its mind. More generally,
it might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is circumvented by
having two rules for each binary interval valued operator: one when the left
operand is a scalar, and one when the left operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be applied
automatically. However, there are still many cases where the conversion may
be applied or not, leading to the above conflicts. They are resolved by listing
the rules that yield scalars first in the specification file; in this way, the conflicts
will be resolved in the direction of keeping scalar valued expressions scalar
valued until they are forced to become intervals.

This way of handling multiple typesisvery instructive, but not very general. If
there were many kinds of expression types, instead of just two, the number of

9-35

XENIX Programmer’s Guide

rules needed would increase dramatically, and the conflicts even more
dramatically. Thus, while this example is instructive, it is better practice in a
more normal programming language environment to keep the type
information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C library routine atof is used to do
the actual conversion from a character string to a double precision value. Ifthe
lexical analyzer detects an error, it responds by returning a token that isillegal
in the grammar, provoking a syntax error in the parser, and thence error
recovery.

%

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul(), vdiv();
double atof();

double dreg| 26 };
INTERVAL vreg| 26 |;

o}

Tostart lines

Céunion {
int ival;

double dval;
INTERVAL vval;

}
%token <ival> DREG VREG /s indices into dreg, vreg arrays */

Cotoken <dval> CONST /* floating point constant »/
%type <dval> dexp /° expression ¢/
Cotype <vval> vexp /* interval expression */

/* precedence information about the operators #*/

%left l+| ’-Y

9-36

Yacc: A Compiler-Compiler

Toleft s °p
Zleft UMINUS [+ precedence for unary minus s/

%%

lines : /+ empty ¢/
| lines line

¥

line : dexp *\n'
{ printf(" %15.8f\n", $1 }); }
| vexp \n’
{ printf(" (%615.81, %15.8f \n", $1.lo, $1.hi); }
| DREG '="'dexp ’\n’
{ dreg[$1] = $3; }
| VREG =’ vexp ’\n’
{ vreg|$1] = $3; }
| error "\n’
{ yyerrok; }

1]

dexp : CONST

| DREG

{ 8¢ = dregf$1]; }
| dexp '+ dexp

{38 =81+83;)
| dexp *-* dexp

{88 =281-83;}
| dexp ’¢* dexp

{88 =91+83;}
| dexp */’ dexp

{88 =281/83;)
| '-* dexp Soprec UMINUS

{88=-82,}
| °C dexp)’
{98 =82}

’

vexp :dexp
{ $8.hi = $8.lo = $1; }
| (' dexp *," dexp’)’

$3.1o = $2;

$3.hi = $4;

if($8.lo > $8.hi){

printf(”interval out of order\n");
YYERROR;
} }
| VREG

9-37

XENIX Programmer's Guide

{ 88 = vregl$l); }
| vexp '+’ vexp
{ $8.hi = $1.hi + $3.hi;
$8.1o = $1.1o + $3.1o; }
| dexp '+’ vexp
{ $8.hi = 81 + $3.hj;
$3.1o = $1 + $3.1o; }
| vexp *-* vexp
{ $8.hi = $1.hi - $3.1o;
$8.1o = $L.lo - $3.hi; }
| dexp -’ vexp
{ $8.hi = $1 - $3.1o;
$3.1o = $1 - $3.hi;)
| vexp '#’ vex
{ 8¢ = vmul($1.lo, $1.hi, $3); }
| dexp '¢’ vexp
{88 = vmul($1, 81, 83); }
| vexp '/’ vexp
(it (deheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3); }
| dexp /> vexp
{ if (dcheck($3)) YYERROR;
$$ = vdiv($1, 81, 83); }
| -’ vexp %prec UMINUS
{ $8.hi = -$2.1o; $8.10 = -$2.hi; }
| y(y vexp 1)|
{ 83 = 82, }

%%
define BSZ 50 /¢ buffer size for fp numbers s/

/* lexical analysis ¢/

yylex(){

register c;
{ /* skip over blanks ¢/ }
while((¢ = getchar()) =="")

if (isupper(c) }{
yylvalival = ¢ - 'A’;
return(VREG);

if (islower(c)){

yylvalival = ¢ - 'a’;
return(DREG);

if(isdigit{ ¢) || e==""){

9-38

Yacc: A Compiler-Compiler

/* gobble up digits, points, exponents */

char buf[BSZ+1], *cp = buf;
int dot =0, exp = 0;

for(; (cp-buf)<BSZ ; ++cp,c=getchar()){

‘cp = C,
if (isdigit(c)) continue;
if(c==""

if (dot++ || exp) return(.’);
/* above causes syntax error */
continue;

}

if (c =="e"){
if (exp++) return(e’);
/* above causes syntax error s/
continue;

}

/* end of number */
break;

*cp ="\0}
if((cp-buf) >= BSZ)
printf(" constant too long: truncated\n”);
else ungete(¢, stdin);
/* above pushes back last char read */
yylval.dval = atof (buf);
return(CONST);

return(¢);

INTERVAL hilo(a, b, ¢, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, ¢, and d */
/* used by *, / routines */
INTERVAL v;

if{a>b){vhi=a;vilo=0b;}

else { v.hi = b; v.lo = a; }

i e>d) {
if (¢>v.hi) v.hi=¢;
if(d<v.lo)v.le =d;

else {

if (d>v.hi} v.hi = d;
if(c<v.lo) vlo =¢;

9-39

XENIX Programmer’s Guide

return(v);

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a#v.hi, a*v.lo, bsv.hi, bsv.lo) };

dcheck(v) INTERVAL v; {
if(v.hi >=0. && v.lo <= 0.){
printf("divisor interval contains 0.\n");
return(1);
return(0);

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo{ a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

9.21 Old Features

This section mentions synonyms and features which are supported for
historical continuity, but, for various reasons, are notencouraged.

1. Literalsmay also be dclimited by double quotation marks(”).

o

Literalsmay be more than one character long. If all the characters are
alphabetic, numeric, or underscore, the type number of the literal is
defined, just as if the literal did not have the quotation marks around
it. Otherwise, it is difficult to find the value for such literals. The use
of multicharacter literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing a job that must be actually
done by the lexical analyzer.

3. Most places where ‘%' is legal, backslash (\) may be used. In
particular, the double backslash {\\) is the same as %%, \left the
same as %left, etc.

4. Thereareanumberof other synonyms:

% < is the same as %left

%> is the same as %right

%binary and %2 are the same as %nonassoc
250 and Pterm are the same as %token
%= is the same as %prec

9-40

Yacc: A Compiler-Compiler

Actions may also have the form

={..}

and the curly braces can be dropped if the action is a single C
statement.

C code between %{ and %} used to be permitted at the head of the
rulessection, as well as in the declaration section.

9-41

Chapter 10
XENIX to MS—DOS: A Cross
Development System

10.1 Introduction 1

10.2 Creating Source Files 1

10.3 Compiling an MS —DOS Source File 2

10.;1 Using Assembly Language Source Files 3

10.5 Creating Linking Object Files 3

106 Running and Debugging an MS —DOS Program 3
10.7 Transferring Programs Between Systems 4

10.8 Creating MS—DOS Libraries 4

XENIX to MS-DOS: A Cross Development System

10.1 Introduction

The XENIX system provides a variety of tools to create programs that can be
executed under control of the MS—~DOS operating system. The MS—DOS cross
development system lets you create, compile, and link MS—DOS programs on the
XENIX system and transfer these programs to an MS—DOS system for execution
and debugging.

The complete development system consists of
— The C program compiler cc
— The 8086 assembler as
— The MS—DOS linker dosld
— The MS—DOS libraries (in /usr/lib/dos)
— The MS—DOS include files (in/usr/include/dos)

— The dos(C) commands

The heant of the cross development system is the cc command. The command
provides a special —dos option which directs the compiler to create code for
execution under MS—DOS. When —dos is given, cc uses the special MS—DOS
include files and libraries to create a program. The resulting program file has the
correct format for execution on any MS—DOS system.

The c¢c command uses the dosid commands to carry out the last part of the
compilation process, the creation of the executable program file. Cc invokes the as
command only when 8086 assembly language source files are given in the
command line. In most cases, cc invokes as and dosld automatically. You can also
invoke them directly when you need to perform special tasks.

The last important step in the cross development process is to transfer the
executable program files to an MS—-DOS system. Since MS—DOS programs
cannot be executed or debugged on the XENIX system, you must copy the resulting
programs to MS—DOS file systems before attempting execution. You can do this
using the XENIX dos(C) commands. For example, the doscp command lets you
copy files back and forth between XENIX and MS—DOS disks. This means you
can transfer program files from the XENIX system to an MS—DOS system, or copy
source files from an MS —DOS system to XENIX.

10.2 Creating Source Files

You can create program source files using either XENIX or MS—DOS text editors.
The most convenient way is to use a XENIX editor, such as vi, since this means you
do not have to transfer the source files from the MS—DOS system to XENIX each
time you make changes to the files.

When creating source files, you should follow these simple rules:

10-1

XENIX Programmer’s Guide

— Use the standard C language format for your source files. MS—DOS
source files have the same format as XENIX source files. In fact, many
MS-DOS programs, if compiled without the —dos option, can be
executed on the XENIX system.

— Use the MS—DOS naming conventions when giving file and directory
names within a program, e.g., use “‘\"’ instead of *‘/** for the pathname
separator. Since the compiler does not check names, failure to follow
the conventions will causc errors when the program is executed.

— Use only the MS—DOS include files and library functions. Most MS—
DOS include files and functions are identical to their XENIX
counterparts. Others have only slight differences. For a complete list of
the available MS—DOS include files and functions, and a description of
the differences between them and the cormresponding XENIX files and
functions, see Appendix C of the XENIX Programmer’s Reference .

If you use a function that does not exist, dosld displays an error message and
leaves the linked output file incomplete.

19.3 Compiling an MS—DOS Source File

You can compile an MS—DOS source file by using the —dos option of the XENIX
oc command. The command line has the form

cc —dos options filerame ...

where oprions are other cc command options (as described in Chapter 2), and
filename is the name of the source file you wish to compile. You can give more
than one source file if desired. Each source filename must end with the “‘.c™’
extension.

The cc command compiles each source file separately, creating an object file for
each file, then links all object files together with the appropriate C libraries. The
object files created by the cc command have the same base name as the
corresponding source file, but end with the ‘“.0"" extension instead of the *‘.c”’
extension. The resulting program file also has the name a.0w if no name is
explicitly given.

For example, the command
cc —dos test.c

compiles the source file tesr.c and creates the object file resr.o. it then calls dosld
which links the object file with functions from the MS—DOS libraries. The
resulting program file is named, a.ous.

You can use any number of ec options in the command line. The options work as
described in the Chapter 2 of this guide. For cxampie, you can use the —o option
to explicitly name the resulting program file, or the —c option to create object files
without creating a program file. In some cases, the default values for an option are
different than when compiling for XENIX. In particular, the default directory for
library files given with the —! option is /usr/lib/dos. Note that the —p (for
“‘protiling’") option cannot be used.

10-2

XEN!X to MS-DOS: A Cross Devdopment System

10.4 Using Assembly Language Source Files

You can direct cc to assemble 8086 assembly language source files by including
the files in the cc command line. Like C source files, assembly language source
files may contain only calls to functions in the MS—DOS libraries. Furthermore,
the source files must follow the C calling conventions described in Appendix A of
the XENIX Programmer’s Reference. The filename of an assembly language

source file must end with the ‘“.s"* extension.

When an assembly language source file is given, cc automatically invokes as, the
8086 assembler. The assembler creates an object file that can be linked with any
other object file created by ce.

You can invoke the assembler directly by using the as command. The command
creates an object file just as the cc command, but does not create an executable file.
For a description of the command and its options, sec as(CP) in the XENIX
Reference Manual .

10.5 Creating Linking Object Files

You can link MS—DOS object files previously created by cc or as by giving the
names of the files in the cc command line. The object files must have been created
using as or with cc using the —dos option. Object files created without using the
—das option cannot be linked to MS—DOS programs. The object filenames must
end with the **.0"’ extension.

When an object file is given, ¢ automatically invokes dosld the MS—DOS linker,
which links the given object files with the appropriate C librarics. If there are no
errors, dosld creates an executable program file named a.ous.

You can invoke the linker directly by using the dosld command. The command
creates an MS—DOS program file just as the cc command, but does not accept
source files. For a description of the command and its options, sce dasld(CP) is the
XENIX Reference Marual .

Note

MS—DOS programs created by ¢c and dosld are completely compatible with
the MS—DOS system and can be executed on any such system. MS—DOS
programs cannot be executed on the XENIX system.

10.6 Running and Debugging an MS—DOS Program

You can debug an MS—DOS program by transferring the program file to an
MS—DOS system and using the MS—DOS debugger, Debug, to load and execute
the program. The following section explains how to transfer program files between
systems. For a description of the Debug program, sce the appropriate MS—DOS
manual.

10-3

XENIX Programmer’s Guide

10.7 Transferring Programs Between Systems

You can transfer programs between XENIX and MS—DOS systems by using
MS—DOS floppy disks and the XENIX doscp command. The doscp command lets
you copy files to an MS—DOS floppy disk. The command has the form

doscp —r file—1 devifile~2

where —r is the required ‘“‘raw’" option, file—] is the name of the MS—DOS
program file you wish to transfer, dev is the full pathname of a XENIX system
fioppy disk drive, and file—2 is the full pathname of the new program file on the
MS—-DOS disk. The new filename must have the *‘.exe”* extension. The —r
option ensures that the program file is copied byte for byte.

To transfer a program file to a MS—DOS system, follow these steps:

1. Insert a formatted MS—DOS diskette into a XENIX system floppy disk
drive.

2. Use the doscp command to copy the program file to the disk. For
example, to copy the program file a.ous to the file rest.exe on the MS—
DOS disk in the floppy drive /dev/fdD, type

doscp —r a.out /dev/fd0:Ntest.exe

3. Remove the floppy disk from the drive.

You can now insert the floppy disk into the floppy disk drive of the MS—DOS
system and invoke the program just as you would any other MS—DOS program.

Note

MS—-DOS program files that do not end with the ‘“‘.exe’” or ‘‘.com’
extension cannot be loaded for cxecution under MS—DOS. When
transferring program files from XENIX to MS—DOS, you must make sure
you rename a.out files to an appropriate ‘‘.cxe’” or *‘.com’’ file.

On some XENIX systems, you may be able to create an MS—DOS partition on the
system hard disk and copy MS—DOS program files to this partition instead of to
floppy disks. To exccute the program, you must reboot the system, loading the
MS—DOS operating system from the MS—DOS partition.

10.8 Creating MS—DOS Libraries

You can create a library of your own MS—DOS object files by using the XENIX ar
command. The command copics object files created by the compiler to a given
archive file. The command has the form

ar archive filename ...
where archive is the name of an archive file, and filename is the name of the

10-4

XENIX to MS—-DOS: A Cross Development System

MS-DOS object file you wish to add to the library.

Note

MS—-DOS libraries created on the XENIX system are not compatible with
libraries created on the MS—DOS system. This means you cannot copy the
libraries to the MS—DOS system and expect them to work with the MS—

DOS Link command.

10-5

Chapter 11

Writing Device Drivers

11.1 Introduction 11-1
11.1.1 What is a XENIX Device Driver? 11-1
11.1.2 Relationship to XENIX Operating System 11-1
11.1.3 Device Models Supported by XENIX 11-1
11.1.4 Using Sample Device Drivers 11-2
11.1.5 Special Device Files 11-3

11.2 Kernel Environment 11-4
11.2.1 Modes of Operation 11-4
11.2.2 Context Switching 11-5
11.2.3 System Mode Stack 11-5
11.2.4 Task Time Processing 11-68
11.2.5 Interrupt Time Processing 11-7
11.2.6 Interrupt Routine Rules 11-8

11.3 Kernel Support Routines 11-9
11.3.1 in(), out(), inb(), and outb() 11-9
11.3.2 spl5() and spix() 11-10
11.3.3 sleep() and wakeup() 11-11
11.3.4 timeout() 11-12
11.3.5 copyio () 11-14
11.3.6 Version 7/System 5 Compatibility Issues 11-16

11.4 Parameter Passing to Device Drivers 11-17
11.5 Naming Conventions 11-18

11.6 Device Drivers for Character Devices 11-18

11.6.1 Character Device Driver Routines 11-19

11.6.2 Interrupt Routines for Character Device Drivers 11-
25

11.6.3 Character List Architecture 11-25

11.6.4 Terminal Device Drivers 11-26
11.6.5 Other Character Devices 11-29

11.7 Device Drivers for Block Devices 11-29
11.7.1 Character Interface to Block Devices 11-30
11.7.2 Block Device Driver Routines 11-31

11.8 Sharing Interrupt Vectors 11-35

11.9 Warnings 11-36

Writing Device Drivers

11.1 Introduction

This chapter, along with Chapter 12, “Sample Device Drivers,” explains how to
write and install device drivers in a XENIX environment. It describes the role of
device drivers in a XENIX-based system, and discusses- other special
considerations involved in writing a device driver. It describes the XENIX model
of devices in terms of files, tasks to be performed, and interrupts to be
processed.

11.1.1 WhatisaXENIXDevice Driver?

For each peripheral device in a XENIX system, there must be a ‘“‘device driver”
to provide the software interface between the device and the system. A XENIX
device driver is a set of routines that communicates with a hardware device, and
provides a uniform interface to the kernel. This interface allows the kernel to
interpret user I/O requests into operating system tasks to be performed.

11.1.2 Relationship to XENIX Operating System
The XENIX device driver manages the flow of data and control between the user

program and the peripheral devices. The path of anI/O request isshown below,
starting with a system call from a user program, and ending at the device driver:

Hoceereeniin +
| User Program |
R EE R P +

i

| User Space
............... l-..----------.-.--..---...

| Kernel Space

I
LR EEE T Heeemne +
| I ! |
| R R D > Peripheral
| Kernel |Device | Devices
| |Drivers|
i +

User Program Requesting I/O

11.1.3 Device Models Supported by XENIX

The XENIX operating system supports two device models: character
devices and block devices. This chapter describes how to write device
drivers for both device models.

Programmer’s Guide

In general, any device that appears to be a randomly addressable set of
fixed-size records is a block device; any other type of device is a character
device. For example, disk drives and tape drives are block devices, while
terminals and line printers are character devices. The XENIX operating
system presents a uniform interface to user programs by providing blocking
and unblocking in the kernel. Thus, character and block devices look alike
to the user program.

Character device drivers communicate directly with the user program. The
process begins when a user program requests a data transfer of some
number of bytes between a section of its memory and a specific device.
The operating system transfers control to the appropriate device driver.
The user program supplies the parameters for the request to the device
driver, which, in turn, performs the work. Thus, the operating system has
minimal involvement in the request; the data transfer is a private
transaction between the user process and the device driver.

Block device drivers require more involvement from the operating system
to perform their tasks. Block devices transfer data in fixed-size blocks, and
are usually capable of random access. (The device does not need to be
capable of random access; magnetic tapes are often read or written using
block I/0.) The two factors that distinguish block I/O from character 1/O
are:

— The size of data transfer requests from the kernel to the device is
always a multiple of the system block size (called BSIZE)
regardless of the size of the user process’ original request. A single
user process request can generate many system requests to the
driver. BSIZE is 1024 bytes in the 286 version of XENIX. The
device’s physical block size may be smaller than BSIZE, in which
case the device driver initiates multiple physical transfers to
transfer a single logical block.

— Transfers are never done directly into a user process’ memory
area. They are always staged through a pool of BSIZE buffers.
Program I/O requests are satisfied directly from the buffers.
XENIX commands the device driver to read and write from the
buffers as necessary. It manages these buffers to perform services
such as blocking and unblocking of data and disk caching.

11.1.4 Using Sample Device Drivers

Chapter 12, “Sample Device Drivers,” discusses sample device driver source
code for a line printer, a terminal, a hard disk drive, and a memory-
mapped screen. These source code samples are intended as prototypes
from which the experienced programmer can begin writing a device driver
for a particular device.

Writing Device Drivers

11.1.5 Special Device Files

To a XENIX user, a device will usually appear to act like a “file.” A file
consists of an ordered sequence of bytes. Files that contain data are called
“regular files,”” and files that represent devices are called “special device
files.’’ Each file has at least one name; the names of special device files are,
by convention, placed in the directory named /dev.

Each special device file has a “device number,” that uniquely identifies the
device. The device number consists of two parts, the ‘‘major number” and
the ‘“‘minor number.” The major number tells the kernel which device
driver will handle requests for this special file. The minor number can be
used by the driver to provide more information about a particular unit of
the devices that it controls (such as the unit number}.

Before the user process can request 1/O, it must first have opened a
‘“‘special device file.” A special device file looks like an ordinary disk file
except that it was created by a utility program called mknod(C) described
in the XENIX Reference Manual. The file appears in a directory and has
owner and permission fields, as does any disk file, but it contains no data.
Instead, it has a pair of 8bit numbers, called the “major” and “minor”
numbers, associated with it. The command /s -/ displays these numbers:

crw--w--w- 1 davewo 4, 3 Sep 21 09:49 /dev/tty03
brw------- 1 sysinfo 3, 2 Sep 21 09:49 /dev/hdO1

Here the file /dev/tty08 has a major device number of 4 and a minor device
number of 3. The /dev/hd01 file has a major device number of 3 and a
minor device number of 2.

When a user process opens the special device file, XENIX recognizes that it
is a special device file and uses the major number to index a table of entry
points. If the special device file designates a character device, the table
used is cdevsw, if it designates a block device, the table used is bdevsw.
These two tables are defined in the /usr/sys/conf/c.c file generated by the
make program when the kernel is built. XENIX calls the device driver’s
open entry-point through this table, supplying as an argument the minor
device number. The minor device number usually encodes the unit number,
although often a device driver dedicates some of the bits in the minor
number to indicating special options, such as ‘‘use double density’’ in the
case of a floppy disk.

The convention is for these special device files to have meaningful names
and reside in the /dev directory For example,

/dev /tty03

would normally be associated with the major device number of the serial

11-3

Programmer’s Guide

device driver; its minor number would indicate the fourth port. It is
important to note that this is just a convention; the system administrator
could just as well assign the same major/minor numbers to either of the
files

/Jusr/ellen/magtape
/usr/ellen/tty91

with identical results. The name is for user convenience; XENIX keys solely
on the major and minor device numbers.

11.2 Kernel Environment

This section briefly discusses a few functional aspects of the XENIX
operating system: modes of operation, context switching, system mode
stack use, task time processing, and interrupt time processing. It also
describes the services provided to device drivers by the XENIX kernel, and
the rules that device drivers are required to obey.

11.2.1 Modes of Operation

When a process is executing instructions in the user program, it is said to
be in ‘““‘user mode.” When it is executing instructions in the XENIX kernel,
it is said to be in ‘“‘system mode.” When the kernel receives an interrupt
from an external device, it switches to system mode if it was in user mode,
and control is passed to the interrupt routine of the appropriate device
driver. When the driver is done, it returns, and the processing that was
interrupted is resumed. The processing that was interrupted is referred to
as ‘‘task time processing’ and the processing that took place as a result of
the interrupt is called ‘‘interrupt time processing.”

Although all processes originate as user programs, a given process may run
in either user or system mode. In system mode, it executes XENIX kernel
code and has privileged access to I/O devices and other services. In user
mode, it executes the user’s program code, and has no special privileges. In
fact, XENIX provides a high level of protection around processes in user
mode to prevent a user program from inadvertently damaging the system
or other user programs. A process voluntarily enters system mode when it
makes a system call. When an interrupt or trap is received while a process
is executing in user mode, the process will switch into system mode to
handle the interrupt. At this time it may lose the CPU and the kernel
may decide to switch control or “context’” to a different process.

| —

Writing Device Drivers

11.2.2 Context Switching

Context switching occurs when the kernel decides to transfer control of the
CPU from the currently executing process to a different process.

In user mode, the kernel switches context whenever:
— The process’ time slice has expired.

— The process makes a system call that cannot be completed
immediately; for example, a read from a slow input device.

— An interrupt is received that allows a blocked process to proceed.
This case will occur when the.process has been sleeping at high
priority, waiting for the interrupt handler to call wakeup() to
indicate a completed I/O request. If the priority at which the
process is sleeping is higher than that of the currently running
process, a context switch will occur.

In system mode, switching contexts is always voluntary. A process
voluntarily gives up the processor when the routine sleep{) is called.
Interrupts can still arrive (they can be locked out for short periods of time,
if necessary) but when the interrupt service routine returns, control always
passes back to the interrupted process.

11.2.3 Systern Mode Stack

Each process has a special area of memory -associated with it, called the
“u" area. The u area is not directly accessible to the user (that is, it is not
in the process’ normal address space). It contains the information the
kernel needs to manage the process, and contains space for a system mode
stack. When any process makes a system call, its registers are preserved in
its u area, and the stack pointer is moved to the beginning of its system
mode stack area. When the system call has completed, the registers are
restored from the u area, the stack pointer is restored to the process’ stack,
and control is returned to the process. Since each process in the system has
its own u area, a system running N processes has N user stacks and N
system stacks.

The XENIX operating system, and therefore the task time portions of the
device drivers, uses a fixed-size system mode stack in the u area. In XENIX,
the size of this per-process stack is 1024 bytes. It is critical, then, that
device driver procedures not create local (frame) buffers of any significant
size. The following declaration will cause trouble, since as soon as the
routine is called it requires at least 1024 bytes of stack space:

11-5

Programmer’s Guide

open()

char buf [512];
char buf2[512];

Further, interrupt service routines make use of whatever system stack was
set up at the time of the interrupt. If the interrupt occurs while the
currently running process is in user mode, the interrupt service routine will
have the entire u stack area for its use. However, if the interrupt takes
place while the process is in system mode, the interrupt routine will be
sharing the u stack area. For this reason, interrupt service routines must
minimize their {frame variable declarations, keeping their frame
requirements below 512 bytes.

11.2.4 Task Time Processing

The operating system manages a number of processes, each corresponding
to a user program. Any particular process may be running in system mode
or user mode at any given time. When a process makes a system call to
request kernel service, the process switches to system mode, and starts
running kernel code. When the kernel is executing code at the request of a
user program, it is doing ‘“‘task time processing.”

If there are 50 processes running, there may be as many as 50 simultaneous
processes in system mode, each with its own local variables. This requires
that all kernel code be re-entrant, but it otherwise greatly simplifies things.
Each system process instance has to deal only with servicing the specific
system call that the user program requested. The active process’ u area is
always mapped into the kernel’s address space, so when kernel code is
executing it has information about the request and process it is serving.

Often the kernel cannot service a request immediately. The request may
require doing some I/O, or it could even be a request to wait awhile. When
a process in system mode blocks, awaiting some event, the system
scheduler schedules some other process, which may be in either user or
system mode.

1/0 requests from the user process are passed via system calls to the device
driver. Some parameters of the request, such as byte count and transfer
address, are kept in the u area; these task time portions of the driver can
reference and perhaps modify the u area cells, since we know that the
currently running process’ u area is always mapped into the kernel address
space.

Writing Device Drivers

11.2.5 Interrupt Time Processing

When a device interrupt is received, the tasks performed as a result of the
interrupt are referred to as ‘‘interrupt time processing.” When an interrupt
arrives, any of the active processes on the system may be executing. Even
if this interrupt signals the completion of a user process’ request, the
interrupt service routine can take no direct action: the process that was
interrupted is almost certainly not the process that initiated the request.
Instead, all interrupt time portions of device driver routines must store, in
static memory locations, information for the task time portion of the device
driver routines to figure out the result of the interrupt service. Any data or
status that the interrupt service routine wants to return to the task time
portion of the driver (and hence, perhaps to the requesting user program)
must also be passed via static memory.

The local (frame) variables of the task portion of the device driver are kept
in its system mode stack, which is in the u area. This u area is not mapped
into the kernel address space at interrupt time; the u area there belongs to
some other process. The correct u area might even be out on the swap disk.
Thus, the interrupt service routine must never attempt to store data in the
u area or in user memory; and the I/O device itself, via DMA or whatever,
must not attempt to transfer directly into the user’s memory area.

Usually, this is not a problem. Character devices typically make use of
small system supplied buffers called character lists (clists). Block devices
use BSIZE buffers in the system buffer pool. The task time portion of the
driver transfers the data from the buffers into the user’s memory. It may
be important that the transfer take place directly into user memory. In

such cases, it is necessary to lock the user program into physical memory so
that it is not swapped.

Typically, the task time portion of the device driver issues a sleep() call
when it makes the initial I/O request. The interrupt service routine decides
what to do and, if it needs to notify the task time portion (as opposed to
issuing another 1/O command), it puts any status information and data
into static cells and issues a wakeup() call to the task portion. The
interrupt service routine then exits to the operating system, and the
operating system exits the interrupt. The system scheduler soon reschedules
the running process so that the one that has just been awakened is
executed. The task time portion of the device driver finds that it has
returned from the sleep() call, and that there are status and data bytes
waiting in static memory locations.

Access to static variables that can be modified at interrupt time is
interlocked with the spl) routine. The spl¥) routine raises the interrupt
priority of the CPU so that interrupts that might cause a value change are
locked out until the splx() routine is called. This period must be kept as
short as possible. Refer to Section 11.3, “Kernel Support Routines,” for a
more detailed description of the routines mentioned here.

Programmer’s Guide

Device drivers that use the standard interfaces to the kernel are provided
with a method for passing information between the interrupt time portion
of a driver and the task time portion. Standard buffered I/O device drivers
note the outcome of the data transfer in the buffer headers associated with
the transfer. The header for the list of transfers the driver is working on is
defined in /usr/sys/h/iobuf.h;, the header for the buffer associated with the
current transfer is defined in /usr/sys/h/buf.h. Standard character I/O
device drivers use the per device ‘tty” structure (defined in
[usr/sys/h/tty.h) to pass information about the I/O request.

11.2.8 Interrupt Routine Rules

An interrupt routine operates in a more restricted environment than a task
time routine, since it cannot make any assumptions about the state of the
system or about the presence of particular user processes or user data in
system memory. The relationship between the scope of task time and
interrupt time routines is illustrated in the figure below:

TASK | INTERRUPT
TIME | TIME
Fomocceiaat + j
| User Program | |
R R + |
|
!
I
R T + | Focemiene +
| u ares I |
R L EE R LT PR | [| Driver |
| Kernel |Drivers| | | Interrupt|
| | | | |Routines |
R R R + | R +
|
|

Task and Interrupt Time

The key things to remember are that the user process is mapped into
memory, and its u space is mapped into the kernel’s address space only at
task time. Task time processing occurs whenever the user program code
itself is executing (user mode) or the operating system is executing and
performing services for the program (system mode).

It cannot be assumed that the u area is mapped into memory during the
execution of an interrupt routine. No interrupt routine, nor any routine
that may be called at interrupt time, may make any reference to user
memory, the u area, or nonstatic memory locations. This means that the
task time portion of the driver must not try to pass addresses of its frame

11-8

(

Writing Device Drivers

variables and buffers to devices and interrupt service routines. Those
locations are valid only when that individual user process is executing.

11.3 Kernel Support Routines

This section describes the routines that the kernel provides for device
driver use.

11.3.1 in(), out(), inb(), and outb()

This section describes the routines used to interface to the registers that
access and control a particular device. - These registers may reside either in
main memory (memory mapped) or in I/O space. There are four routines
that provide a portable interface to the registers. These routines are
described as follows:

in (port) word

Purpose: This routine returns the value of the word
specified by the given port or register address.

Parameters: port is an integer value that specifies the
address of the desired word.

word is an integer specifying the value of the returned
word.

Result: The value of word is returned.

Example: To read the status of a word register at
address 20 (hex), you may use the following lines of code:

int val;
val = in(0x20);

11-9

Programmer’s Guide

inb (port) byte

Purpose: This routine returns the value of the byte
specified by the given port or register address. (

Parameters: port is an integer value that specifies the
address of the desired byte.

byte is a byte specifying the value of the returned byte.

Result: The value of dyte is returned.

out (port, value)

Purpose: This routine sets the word at the specified
address to the specified value.

Parameters: port is an integer value that specifies the
address of the word.

value is the integer value that the word will be set to. (
Result: The word at the specified address is set to the
specified value.

outb (port, value)

Purpose: This routine sets the byte at the specified
address to the specified value.

Parameters: port is an integer value that specifies the
address of the byte.

value is the byte value that the byte will be set to.

Result: The byte at the specified address is set to the
specified value.

11.3.2 spl5() and splx() (

This section describes the routines used to enable and disable interrupts
during task time processing.

11-10

Writing Device Drivers

spls () level

Purpose: This routine may be called if interrupts should
not be acknowledged during task time processing. It
disables all disk and character 1/O interrupts, and
returns the pre-empted interrupted level. This value is
used when restoring interrupts with the splz() routine.

Parameters: level is an integer value that specifies the
interrupt level pre-empted by this routine.

Result: The value of the pre-empted interrupt level is
returned.

splx (oldspl)

Purpose: This routine takes the return value of the
spl5() routine and enables the interrupt levels that were
accepted before the call to spl5(). Calls to spl5() and
splz() nest correctly.

Parameters: oldspl is an integer value specifying the
level of interrupts that were disabled by spla.

Example: To restrict interrupts during critical device
driver processing, you may use the following lines of
code:

int x;

x = spl5();

/# do uninterruptable work »/
spix(x);

11.3.3 sleep() and wakeup()

This section describes the routines used to suspend and reawaken requests
that cannot be serviced immediately. For example, a device driver may
receive a write request when the output buffer is full. In this case, the
requesting process can suspend itself by calling sleep(). When the
condition is alleviated, the suspended process is awakened in either of two
ways: some other process may awaken the suspended process by calling
wakeup() or it can be awakened by a signal.

11-11

Programmer’s Guide

sleep (chan, pri)

Purpose: This routine suspends a requesting process
when one of the conditions required to execute the
process cannot be met. This routine should never be
called at interrupt time.

Parameters: chan is a unique number that identifies the
sleeping process. The convention for generating this
unique number is to use the address of some data
structure the device drivers uses. Since no data
structures will have the same address, uniqueness is
guaranteed.

pri is an integer value that determines the priority of the
process when it awakens. If a process goes to sleep at a
priority lower than manifest constant PZERO, the sleep
will not be broken by a signal. Typically, the priority is
below PZERO if the condition is likely to disappear
almost immediately, and it is above PZERO otherwise.

wakeup (chan)

Purpose: This routine wakes up a process(es) that has
(have) been suspended by the sleep() routine. All the
processes that have called sleep() with the unique
number specified are awakened. When a process is
awakened, the call to sleep() returns, and the process
should check that the reason for going to sleep has
disappeared.

Parameters: chan i$ a unique number that identifies the
sleeping process to be awakened. The convention for
generating this unique number i3 to use the address of
some data structure the device drivers uses. Since no
data structures will have the same address, uniqueness is
guaranteed.

11.3.4 timeout()

This section describes the rqutine used to schedule a call to a routine at
some later time.

11-12

Writing Device Drivers

timeout (function, arg, tim)

Purpose: This routine allows a function to be called at
a scheduled time in the future.

Parameters: function is an integer value specifying the
function to be called.

arg is the argument to the function being called.

tim is an integer value specifying the number of clock
ticks that should elapse before the call.

Example: This routine can he used, along with sleep()
and wakeup() to provide ‘‘busy waiting.” The following
code sample illustrates this:

#define PERIOD HZ/10 /* 1/10 second */

#define BUSYPRI (PZERO -1) /# somewhat arbitrary */
int stopwait{);

int status;

int busywait{) /* wait until status is non-zero */
while (status == 0) {

timeout{stopwait, 0, PERIOD);
sleep(&status, BUSYPRI);

}
int stopwait{)

wakeup(&status);

WARNING

A driver should never loop while waiting for a status change unless the
delay involved is shorter than 160 microseconds.

11-13

Programmer’s Guide

11.3.5 copylo ()

This section describes the routine used to copy bytes to and from specific
locations in the kernel. (

11-14

Writing Device Drivers

copyio (addr, faddr, cnt, mapping) error

Purpose: This routine can be used to copy bytes
to/from a physical address (i.e., buffer address) in the
kernel or to/from a long address (i.e., user data pointer)
in the kernel.

Parameters: addr is a long value that specifies the
physical kernel address to which or from which the data
is to be transferred.

Jaddr is a character value that specifies the segment and
offset of the user address to which or from which the
data is to be transferred.

cnt is an integer value that specifies the number of bytes
of data to transfer.

mapping is an integer that designates the direction of the
transfer. The possible mapping values are defined in
user.h and listed below:

U_WUD transfer from user data to a kernel data (buffer)

U_RUD transfer from kernel data (buffer) to user data
U_wWul transfer from user text to a kernel data (buffer)
U_RUI transfer from kernel data (buffer) to user text
U_WKD transfer from kernel data to file (buffer)

U_RKD transfer from file (buffer) to kernel data
U_READ means copy from addr to faddr

U_WRITE means copy from faddr to addr

Result: If successful, this routine performs the specified
data transfer; otherwise, it returns -1.

Example: The soctl interface to a driver actually has
two calling sequences:

1) ioctl (fd, cmd, arg)
int fd, cmd, arg;

2) ioctl (fd, cmd, arg)
int fd, cmd,;
int *arg;

In the kernel, the soctl interface is translated into the
device specific call shown below:

xxioct! (dev, cmd, arg)

11-15

Programmer’s Guide

int dev, cmd;

faddr_t arg;

If “arg” is a pointer to a data structure, you may copy

your data in/out using the copyfo routine as shown

below: @

struct foo dst;

/* copy from arg to dst */

if (copyio ((caddr_t) &dst, arg, sizeof(foo), UWUD) = =-1) {
u.uerror = EFAULT;
return;

}

Note: The file named /usr/sys/h/param.h defines several
macros that are useful for converting addresses from one
type to another. These macros include:

ftoseg(x) - converts x from an faddr_t to a segment (selector number
ftoof(x) - converts x from an faddr_t to an offset

sotofar(seg,off) - converts a segment, offset pair into an faddr_t

ptok(x) - converts a physical address to a kernel logical address
ktop(x) - converts a kernel logical address to a physical address

11.3.8 Version 7/System 5§ Compatibility Issues

This section describes some of the changes between Version 7 UNIX and
System 5 of UNIX that affect the device driver interface.

Device Numbers

In Version 7 of UNIX, the dev parameter passed to the open(), close(),
read(), write(), and soctl() driver routines included the major and minor
device numbers. In System 3 and System 5, only the minor device number
is passed in the dev parameter. This means it is no longer necessary for all
device drivers to mask out the major device number before checking the
minor device number.

iomove () (

Some Version 7 device drivers used a routine called fomove() to copy to or
from user space. The fomove() routine does not exist in System 3 and
System 5; however, adding the code shown below will provide most of the
same capability:

11-16

Writing DeviceDrivers

#include ”../h/param.h”
#include ”../h/dir.h”
#tinclude "../h/user.h”

*
/* iomove - equivalent to the V7 version except we don’t provide
% any of the standard segflg machinations for writing
* to instruction space
* NOTE: u.ubase is an faddr_t
*
iomove(cp, cnt, flag)
caddr_t cp;
register int cnt;
int flag;

register int ret_val;

if (cnt == 0)
return; /* Nothing to do! */

if(flag == B_WRITE)
ret_val = copyio{{caddr_t)cp, u.ubase, cnt, U_WUD);

else

ret_val = copyio((caddr_t)cp, u.ubase, cnt, U_RUD);
if(ret_val == -1

u.uerror = EFAULT;

return;
}

u.ubase +== cnt;
u.ucount -== cnt;
u.uoffset += cnt;

11.4 Parameter Passing to Device Drivers

The task time portion of the device driver has access to the user’s u area,
since this is mapped into kernel address space. The kernel routines that
process the user process’ I/O request place information describing the
request into the process’ u area. The parameters passed in the u area are:

u.ubase - address in user data to read/write data for transfer
u.ucount - the number of bytes to transfer

u.uoffset - the start address within the file for transfer
u.usegflg - indicates the direction of the transfer

11-17

Programmer’s Guide

Refer to the /usr/sys/h/user.h file for the values to use for u.usegflg. In
addition to the parameters passed in the u area, the kernel 1/O routines
pass the major and minor device numbers as a parameter to the driver
when it is called. Thus the driver has all the information it needs to
perform the request: the target device, the size of the data transfer, the
starting address on the device, and the address in the process’ data.

Only device drivers that do not use standard character and block 1/0
interfaces in the kernel need examine the parameters in the u area. Kernel
routines that provide these standard interfaces have done the work of
converting the values passed in the u area into values that the driver
expects. In the case of the standard block 1/O interface, these parameters
are set in the buffer header describing the data transfer. Refer to Section
11.7, “Device Drivers for Block Devices,” for more information on using the
buffer header information to set up a block data transfer.

Device drivers using the standard character I/O interface use the clist
buffering scheme and the routines that manipulate the clist to effect the
data transfers. Refer to Section 11.6, “Device Drivers for Character
Devices,” for more information on using clists and the character 1/O
interface routines.

11.5 Naming Conventions

There is a naming convention for all driver routines called by the kernel,
and for some driver variables. Each driver uses a unique two-to-four
character prefix to identify its routines. For example, a hard disk driver
might use the prefix “hd” In the following sections, the prefix used is
((XX)I

11.8 Device Drivers for Character Devices

This section describes XENIX character device drivers. Character devices
conform to the XENIX file model; their data consists of a stream of bytes
delimited only by the beginning and end of file. The XENIX system
provides programs with direct access to devices through the special device
files described in Section 5.1.5, “‘Special Device Files.”

Most character device drivers in XENIX should be designed around the
special requirements of terminal devices. There are facilities provided for
programming functions on input and output (character erase, line kill, tab
functions, etc.), and for setting line options such as speed. Other
character-oriented devices such as lineprinters use the same program
interface as terminals, but with a different driver.

The character device drivers for slow devices use a data buffering
mechanism known as a character list or “clist.” Clists are used for

11-18

WritingDevice Drivers

transferring relatively small amounts of data between the driver and the
user program, and are described in more detail in Section 5.6.3, “‘Character
List Architecture.”

11.8.1 Character Device Driver Routines

The task time portion of the character device driver is called when a user
process requests a data transfer to or from a device under the control of the
driver. The system determines this from the major device number of the
device with which the user wishes to do I/O. The driver’s job is to take
the user process’ requests, check the parameters supplied, and set up the
necessary information for the device interrupt routine to perform the I/0.

In the case of a write to a slow device (that is, one using clists), the driver
copies the data from user space into the output clist for the device. In the
case of direct I/O between the device and user memory (for example,
magnetic tapes), the driver simply sets up the I/O request. The routines
that provide the interface between the kernel and character device drivers
are described as follows (xx is a mnemonic that refers to the device type).

xxinit ()

Purpose: This routine is called to initialize the device
when XENIX is first booted. If present, it is called
indirectly through the dinitsw table defined in the kernel
configuration file (/usr/sys/conf/c.c).

xxopen (dev, flag)
Purpose: This routine is called each time the device is
opened. It is the responsibility of this routine to prepare
the device for the 1/O transfers, and perform any error

or protection checking.

Parameters: dev is an integer that specifies the minor
number of the device.

flag is the oflag argument that was passed to the open
system call.

11-19

Programmer’s Guide

xxclose (dev, flag)

Purpose: This routine is called on the last close on a
device. It is responsible for any cleanup that may be
required, such as disabling interrupts, clearing device
registers, and so on.

Parameters: dev is an integer that specifies the minor
number of the device.

flag is the oflag argument passed to the last open system
call.

xxstart ()

Purpose: If the task time portion of the driver detects
that the device is idle, this routine may be called to start
it. This routine is often called by both task time and
interrupt time parts of the driver. It checks whether the
device is ready to accept another transfer request, and if
so, starts it up, usually by sending it a control word.
zzstart() is not used by device drivers that control tty
devices.

xxintr (vec_num)

11-20

Purpose: This routine is called by the kernel when the
device issues an interrupt. Since the interrupt typically
signals completion of 2 data transfer, the interrupt
routine must determine the appropriate action; perhaps
taking the received character and placing it in the input
buffer, or removing the next character from the output
buffer and starting the transmission.

Parameters: vec_num is an integer that specifies the
interrupt vector number.

Writing Device Drivers

xxread (dev)

Purpose: This routine is called when a program makes a
read system call. Its responsibility is to transfer data to
the user’s address space. A subroutine is available to
transfer one character at a time to the user: cpass ().
This subroutine returns a -1 when there are no more
characters to be transferred.

Parameters: dev is an integer that specifies the minor
number of the device.

xxwrite (dev)

Purpose: This routine is called when a program makes a
write system call. Its responsibility is to transfer data
from the user’s address space. A subroutine is available
to transfer one character at a time from the wuser:
passc(). This subroutine returns a -1 when there are no
more characters to be transferred.

Parameters: dev is an integer that specifies the minor
number of the device.

xxproc (tp, cmd)

Purpose: This routine is called to perform output
character expansion, output characters, halt or restart
character output and, in general, effect the desired
change in the output.

Parameters: tp specifies the tty value of the device.
cmd specifies the process to be performed. The sample
tty driver in Chapter 12, ‘“‘Sample Device Drivers,”

documents the list of ‘“‘cmd” argument values that
zzproc() can expect.

11-21

Programmer’s Guide

xxioctl (dev, emd, arg, mode)

Purpose: This routine is called by the kernel when a
user process makes an soctl() system call for the specified
device. It performs hardware dependent functions such
as setting the data rate on a character device.

Parameters: dev is an integer that speifies the minor
device number of the device.

cmd is an integer that specifies the command passed to
the system call.

arg specifies the argument passed to the system call.

mode specifies the flags passed on the open system call
for the device.

Character List Routines

There is a pool of small buffers called character lists, “‘clists'’ in the kernel.
A clist structure is the head of a linked list queue of characters. The
elements in the linked list are called ‘“‘cblocks”; each cblock can hold a
small number of characters. These are used for buffering low-speed
character devices. The primary use of the clist buffers is for terminal
devices that must interface with the common terminal interface. Refer to
Section 11.6.3, '"Character List Architecture,” for further information on

clists.

A driver that wishes to use the clist buffer mechanism must declare a queue
header of type clist. If both input and output are buffered, the driver will
need two headers. There are six routines that the driver can use to

manipulate clist buffers. These routines are described below:

gete (cp)

11-22

Purpose: This routine moves one character from the
clist buffer for each call.

Parameters: cp specifies the clist buffer from which
characters are moved.

Result: This routine returns the next character in the
buffer, or -1 if the buffer is empty.

Writing Device Drivers

pute (¢, cp)

Purpose: This routine moves one character to the clist
buffer for each call.

Parameters: ¢ is an integer that specifies the character
to be moved.

cp specifies the clist buffer to which the character is
moved.

Result: This routine places the specified character in the
buffer, or returns -1 if there is no free space.
getcb {(cp) cbp

Purpose: This routine moves one cblock from the clist
buffer for each call.

Parameters: cp specifies the clist buffer from which the
cblocks are moved.

cbp is a pointer to a cblock.

Result: This routine returns the next cblock in the
buffer, or -1 if the buffer is empty.

putch (cbp, cp)

Purpose: This routine moves one cblock to the clist
buffer for each call.

Parameters: cbp is a pointer that specifies the cblock to
be moved.

cp is a pointer that specifies the clist buffer to which the
cblock is moved.

Result: This routine places the specified cblock in the
buffer, or returns -1 if there is no free space.

11-23

Programmer’s Guide

getef () cbp

Purpose: This routine takes a cblock from the freelist,
and returns a pointer to it.

Parameters: cbp is a pointer to a cblock.

putef cbp

Purpose: This routine puts the specified cblock onto the
freelist.

Parameters: cbp is a pointer to a cblock.

Notes: All the cblocks not currently used are kept on a
list of free memory blocks. Since there are a limited
number of cblocks in the system, each driver must be
judicious in determining how many cblocks are used for
buffering input and output.

For output buffering, the driver usually follows a “high
and low water mark” convention. The driver accepts
and queues requests from the user process until the buffer
has reached its high water mark. At that point, the
requesting processes are suspended via sleep(). When the
buffer has drained below the low-water mark, the
suspended processes are awakened, and can fill the buffer

again.

For input buffering, the driver usually buffers the data
up to some limit. When this limit is reached, data is
discarded to make room for the more recent data.

putchar (c)

11-24

Purpose: This routine is used for printing error and
system crash messages when the device driver is used to
handle the console. It puts one character on the console,
doing a “busy wait” rather than depending on
interrupts.

Parameters: ¢ is the character to be printed on the
console.

Writing Device Drivers

Line Discipline Routines

If a serial device is to be used as an interactive terminal, it must support
various functions such as character and line erase, echoing, and buffered
input. The code needed to perform each of these functions has been
abstracted into a set of routines that roughly corresponds to the character
device function. Each of these sets is called a “line discipline”. One
standard line discipline is provided by default. Each of the routines is
called through the linesw table initialized in /usr/sys/conf/c.c; each entry
in this table represents one line discipline, and has entries for eight
functions.

The |_open() routine should be called on the first open of a device. The
I_close() routine should be called on the last close of the device. The
I_read() and |_write() routines are called by the drivers read and write
routines, to pass characters to and from the calling process. The I_inpuf()
routine is called to buffer an incoming character. The I_outpui(), Lioctl(),
and !_mdmin#() routines are currently unused.

11.6.2 Interrupt Routines for Character Device Drivers

The device interrupt routine is entered whenever one of its devices raises
an interrupt. Note that in general one driver may control several devices,
but that all interrupts are vectored through a single function entry point,
usually called zzintr(), where 2z is a mnemonic that refers to the device
type (see Section 5.5, ‘“Naming Conventions”). It is the driver’s
responsibility to decide which device caused the interrupt.

When a device raises an interrupt, it generally makes available some status
information to indicate the reason for the interrupt. The driver interrupt
routine decodes this information. If it indicates a transfer just completed,
the wakeup() routine will alert any process waiting for the transfer to
complete. It then makes a check to see if the device is idle, and if so looks
for more work to start up. Thus in the case of output to a terminal, the
interrupt routine looks for more work in the clists each time a transfer
completes.

11.6.3 Character List Architecture

The character lists (clists) provide a general character buffering system for
use by character device drivers. The mechanism is designed for buffering
small amounts of data from relatively slow devices, particularly terminals.

The XENIX kernel has a pool of character lists. Each driver that wishes to
use the clist mechanism declares a static buffer header that points to the
first clist buffer. Each buffer contains a pointer to the next buffer, forming a
singly linked list.

11-25

Programmer’s Guide

The kernel provides the getc() and putc() routines (described above) for
putting characters into a clist, and removing characters from a clist. These
routines should be used by all drivers using clists. Note that the routines
are not the same as the Standard 1/O Library routines of the same name.

The static buffer header for each clist contains three fields: a count of the
number of characters in the list, a pointer to the first character in the list,
and a pointer to the last character. The clist buffers form a single linked
list as shown below:

N . + FUR +
struct { | next |--->| next |---->] 0 |
int c_cc; Foe-e-- + L EEEE R + Fee--- +
char sc_cf; ---->| | | | | |
char ec_cl; --+ | | | | | |
} eliste; | |chars | |chars | |chars|

[| | | []
[| | Po+->| |
{1 I f [|
| +------ + REREEEE +] A +
I I
o +

Character List Buffers

There is a protocol defined for use of the clists to prevent a particular
process or driver from consuming all available resources. Two constants
for the clist high and low water marks are defined in the file named tty.h.
A process is allowed to issue write requests until the corresponding clist hits
the high water mark. The process is then suspended and 1/O performed.
When the list reaches the low water mark, the process is awakened. A
similar protocol is used for read requests.

11.8.4 Terminal Device Drivers

The terminal device drivers use clists extensively. For each terminal line
(each minor device number), the driver declares static clist headers for
three clists. These clists are the ‘“‘raw queue,” the ‘‘canonical queue,” and
the “output queue.”

When a process writes data to a terminal device, the task time part of the
driver puts the data into the output queue, and the interrupt routine
transfers it from the qucue to the device.

When a process requests a read of data from the terminal, the situation is

slightly more complicated. This is because XENIX provides for some
processing of characters on input, at the option of the requesting process.

11-26

Writing Device Drivers

For example, in normal input the backspace key is interpreted as ‘‘delete
the last character input,” and the line kill character means ‘‘forget the
whole current line.” Certain special characters (such as backspace) have to
be treated in context; that is, they depend upon surrounding characters. To
handle this, XENIX drivers use two queues for incoming data.

The two queues are the raw queue and the canonical queue. Data received
by the interrupt routine is placed in the raw queue with no data processing.
At task time, the driver decides how much processing. to do. The user
process has the option of requesting raw input, where it receives data
directly from the raw queue. Cooked (the opposite of raw) input refers to
the input after processing for erase, line kill, delete, and other special
treatment. In this case, a task time routine, canon(), is used to transfer
data from the raw queue to the canonical queue. This performs backspace
and line kill functions, according to the options set by the process using the
foctl(2) system call.

11-27

Programmer’s Guide

The basic flow of data through the system during terminal I/O is shown in
the diagram below:

XENIX | DRIVER | TASK TIME #INTERRUPT
KERNEL | | # TIME
I I #
<---|-<-- < |eerneenns < ttread() #*
Read() | xxread() | | #
system | | R R R SRR #*
eall | I I | #

| | 4ee--- + Foeee- + #

I I ! | I #

| | Jecanon| | raw | #

| | lqueue|<- canon() <-|queue|<-ftreceive

| | 1 | | | +#troutine

I I I I | #

| | +----- + Fee--- + #

I I #
Write()]] #
system | | [P + #
call | I I | #

e e>-- ->-|---> ttwrite() -->|output{--->fftransmit
| xxwrite()] | queue | #routine

I I I .

| | I I #

| [Heoeoe- + #

Data Flow For Terminal Device Drivers

There are two slight complications to the scheme presented in the diagram
above. These are output character expansion, and input character echo.
Output expansion occurs for a few special characters. In cooked mode, tabs
may be expanded into spaces, and the newline character is mapped into
carriage return plus line feed. There is a facility for producing escape
sequences for uppercase terminals, and delay periods for certain characters
on slow terminals. Note that all these are simple expansions, or mapping
single characters, and so do not require a second list, as is the case for
input. Instead all the expansion is performed by the zzproc() routine before
placing the characters in the output clist.

Character echo is a user process option required by most processes. With
this, all input characters are immediately echoed to the output stream,
without waiting for the user process to be scheduled. Character expansion
is performed for echoed characters, as for regular output. Character echo
takes place at interrupt time, so that a user typing at a terminal gets fast

11-28

Writing Device Drivers

echo, regardless of whether his program is in memory and running, or
swapped out on disk.

11.6.5 Other Character Devices

There are three character devices commonly found on XENIX systems:
terminals, lineprinters, and magnetic tape drivers. Terminals receive a lot
of special attention in the XENIX system. Lineprinters and magnetic tape
tend to use existing kernel facilities, with little special handling.

Lineprinters

These are usually relatively slow character-oriented devices. The drivers
use the clist mechanism for buffering data. However a lineprinter driver is
generally simpler than a terminal driver because there is less processing of
output characters to do, and no input.

Magnetic Tape Drivers

Magnetic tape is a special case. The data is arranged on the physical
medium in blocks, as on a disk. However, it is almost always accessed
serially. Furthermore, there is generally only one program accessing a tape
drive at a time. Thus, the elaborate kernel buffer management scheme in
XENIX (which is designed to optimize disk access when several processes
are making simultaneous requests to different parts of the same disk) is not
applicable to tapes. Neither is the clist mechanism appropriate, because of
the large amount of data involved.

Usually tape drivers provide two interfaces, a block and a character
interface. The character interface is used for raw, or physical, 1/O directly
between the device and the user process’ address space. The block interface
makes use of the XENIX kernel buffer pool and buffer manipulation routines
to store data in transit between device and process. Refer to Section
11.7.1, “Character Interface to Block Devices,” for information on
providing the facility for raw 1/0.

11.7 Device Drivers for Block Devices

Block devices are those that must be addressed in terms of large blocks of
data, rather than individual bytes. Disks fall into this category, as do some
magnetic tape systems. XENIX file systems always reside on block devices.
However, block devices do not have to be used in this way.

Unlike the case with character devices, a block 1/O transfer request is not a

private transaction between a driver and a user process. The XENIX kernel

11-29

Programmer’s Guide

provides a comprehensive buffer management scheme which is used by
block device drivers.

The XENIX kernel maintains a pool of buffers, and keeps track of what
data is in them, and whether the block is dirty (i.e., has been modified and
therefore needs to be written out to disk). When a user process issues a
transfer request to a block device, the kernel buffer routines check the
buffer pool to see if the data is already in memory. If not, a request is
passed to the driver to get the data. All the driver ever sees are fixed size
requests (BSIZE bytes long) coming in from one source. This is regardless
of the size of the process’' I/O request. Large requests are broken down into
BSIZE blocks, and handled individually, since some may be in memory,
and some not.

When a process issues a read request, this generally translates into one or
more disk blocks. The kernel checks which of these is already in memory,
and requests that the driver get the rest. The data from each buffer filled
by the driver is copied into the process’ memory by the kernel. In the case
of a write request, the kermel copies the data from the user process’
memory into the buffer pool. If there are insufficient free buffers, the kernel
will have the driver write some out to disk, using a selection algorithm
designed to reduce disk traffic. When all the data is copied out of user
space, the kernel can reschedule the process. Note that all the data may
not yet be out on disk; some may be in memory buffers and marked as
needing to be written out at some later time.

11.7.1 Character Interface to Block Devices

Sometimes block device drivers provide a character I/O interface as well as
one for block 1/0. In this case, a separate special device file can be created
to access the device through the character interface. To construct a
character 1/O interface to a block device, use the utility mknod(C)
described in the XENIX Reference Manual to create a character special
device file that has the same major and minor number as the block special
file for this device. The block device driver must provide the routines
zzread() and zzwrite() described below to implement character I/O.

When a block device is accessed through a character interface, data
transfer takes place directly between the device and the process’ memory
space. There is no intermediate buffering in the kernel buffer pool or the
clists. The driver receives the request exactly as the process sent it, for
whatever size was specified. There is no kernel support to break the job
into BSIZE blocks. This type of data transfer is referred to as physical (or
raw) I/O. It has some advantages for certain types of programs.

Programs that need to read or write an entire device can usually do this

more efficiently through the character interface since the device can be
accessed sequentially, and large transfers can be used. There is also less

11-30

Writing Device Drivers

copying of data between buffers than is used in the block interface. Thus
disk backup programs, or utilities that copy entire volumes, typically
operate through this interface.

The cost of this extra efficiency is that the process has to be locked in
memory during the transfer, since the driver has to know where to buffer
the data. The routine physio() called by the zzread and zzwrite driver
routines handles locking the process in core for the duration of the data
transfer.

11.7.2 Block Device Driver Routines

A block device appears to the kernel as a randomly addressable set of
records of size BSIZE, where BSIZE is a manifest constant defined in the
param.h file. The XENIX kernel inserts a layer of buffering software
between user requests for block devices and the device driver. This
buffering improves system performance by acting as a cache, allowing read
ahead and write behind on block devices.

Each buffer in the cache contains an area for BSIZE bytes of data and has
associated with it a header of type struct buf which contains information
about the data in the buffer. When an 1/O request is passed to the task
time portion of the block device driver, all of the information needed to
handle the data transfer request has been stored in the buffer header. This
information includes the disk address, and whether a read or a write is to
be done. The file /usr/sys/h/buf.h describes the fields in the buffer header.
The fields most relevant to the device driver are:

b_dev - the major and minor numbers of the device
b_bcount - the number of bytes to transfer

b_paddr - the physical address of the buffer

b_blkno - the block number on the device

b_error - set if an error occurred during the transfer

The driver validates the transfer parameters in the buffer header, and then
queues the buffer on a doubly linked list of pending requests. In each block
device driver, this chain of requests is pointed to by a header of type struct
fobuf named zztab. The file /usr/sys/h/iobuf.h describes the fields in the
request queue header. The requests in the list are kept sorted using the
disksort() routine. The device interrupt routine takes its work from this
list.

When a transfer request is placed in the list, the process making the
request sleeps until the transfer is completed. When the process is
awakened, the driver checks the status information from the device
interrupt routine, and if the transfer completed successfully, returns a
success code to the kernel. The kernel buffer routines are responsible for

11-31

Programmer’s Guide

correlating the completion of an individual buffer transfer with particuiar
user process requests.

The interface between the kernel and the block device driver consists of the
routines described in the following paragraphs.

xxinit ()

Purpose: This routine is called to initalize the device
when XENIX is first booted. If present, it is called
indirectly through the dinstsw table defined in the kernel
configuration file (/usr/sys/conf/c.c).

xxopen (dev, flag)

Purpose: This routine is called each time the device is
opened. It is the responsibility of this routine to intialize
the device, and perform any error or protection checking.

Parametera: dev is an integer that specifies the device
number.

flag is the oflag argument that was passed to the open
system call.

xxclose (dev, flag)

Purpose: This routine is called on the last close on a
device. It is responsible for any cleanup that may be
required, such as disabling interrupts, clearing device
registers, ejecting media, and so on.

Parameters: dev is specifies the device number of the
device being closed.

flag is the oflag argument that was passed to the last
open system call.

11-32

Writing Device Drivers

xxstrategy (bp)

Purpose: This routine is called by the kernel to queue
an I/O request. It must make sure the request is for a
valid block, and then insert the request into the queue.
Usually the driver will call disksory() to insert the request
into the queue. The disksor() routine takes two
arguments: a pointer to the head of the queue, and a
pointer to the buffer header to be inserted.

Parameters: bp is a pointer to a buffer header.

xxstart ()

Purpose: If the task time portion of the driver detects
that the device is idle, this routine may start it. It is
often called by both task time and interrupt time parts
of the driver. It checks whether the device is ready to
accept another transfer request, and if so, starts it up,
usually by sending it a control word.

xxintr (vec_num)

Purpose: This routine is called whenever the device
issues an interrupt. Depending on the meaning of the
interrupt, it may mark the current request as complete,
start the next request, continue the current request, or
retry a failed operation. The routine examines the device
status information, and determines whether the request
was successful. The block buffer header is updated to
reflect this. The interrupt routine checks to see if the
device is idle, and if so, starts it up before exiting.

Parameters: vec_num is an integer that specifies the
interrupt vector number.

11-33

Programmer’s Guide

xxread (dev)

Purpose: The only action taken by this routine is to call
the physio() routine with the appropriate arguments.

Parameters: dev specifies the device number of the
device.

Note: Often a block device driver will provide a
character device driver interface so that the device can
be accessed without going through the structuring and
buffering imposed by the kernel's block device interface.
For example, a program might wish to read magnetic
tape records of arbitrary size, or read large portions of a
disk directly. When a block device is referenced through
the character device interface, it is called raw [/O to
emphasize the unstructured nature of the action. Adding
the character device interface to a block device requires
the zzread() and zzwrite() routines.

xxwrite (dev)

11-34

Purpose: The only action taken by this routine is to call
the physio() routine with appropriate arguments.

Parameters: dev specifies the device number of the
device.

Note: See Note for zzread() routine.

Writing Device Drivers

physio (bs, bp, dev, flag)

Purpose: This routine provides the raw I/O interface
for block device drivers. It validates the request, builds a
buffer header, locks the process in core, and calls the
strategy routine to queue the request.

Parameters: bs is a pointer to the strategy routine for
the block device.

bp is a pointer to the buffer header describing the request
to be filled.

dev is the device number of the device.

flag specifies the call is a read or write operation.

xxioctl (dev, cmd, arg, mode)

Purpose: This routine is called by the kernel when a
user process makes an foctf) system call for the specified
device. It performs hardware dependent functions such
as parking the heads of a hard disk, setting a variable to
indicate that the driver is to format the disk, or telling
the driver to eject the media when the close routine is
called.

Parameters: dev specifies the minor number of the
device.

emd specifies the command that was passed to the foct!()
system call.

arg specifies the argument that was passed to the focti()
system call.

mode specifies the flags that were set on the open()
system call for the specified device.

11.8 Sharing Interrupt Vectors

I/O devices may only share interrupt vectors if there is a way to poll each
device using the shared vector to determine whether that device has posted
an interrupt.

If there are two devices ‘‘aa” and ‘‘bb” that share interrupt level 3, the

11-35

Programmer’s Guide

code in the c.c file should be as follows:

vector3(level)
int level;

aaintr{level);
bbintr{level);

int (*vecintsw(]}) =
{

clock,
consintr,
novec,
vector3,
novec,
etc

}

The interrupt routines aasntr() and bbintr() should have the following
format:

xxintr{level)
int level;
IF NOT MY INTERRUPT

return;

NORMAL INTERRUPT PROCESSING

11.9 Warnings

The following warnings will help you avoid problems when writing a device
driver:

— Don't defer interrupts with spl5) calls any longer than necessary.

— Don’t change the per process data in the u structure at interrupt
time.

11-36

Writing Device Drivers

Don’t call seterror() or sleep() at interrupt time.
Don'’t call spl¥) at interrupt time.

Make interrupt time processing as short as possible.
Protect buffer and clist processing with spl¥) calls.
Avoid “‘busy waiting” whenever possible.

Never use floating point arithmetic operations in device driver
code.

If any assembly language device driver sets the direction flag
(using std), it must clear it (using cld) before returning.

Keep the local (stack) data requirements for your driver very
small.

11-37

Chapter 12

Sample Device Drivers

12.1 Introduction 12-1
12.2 Sample Device Driver for Line Printer 12-2
12.3 Sample Device Driver for Terminal 12-8

12.4 Sample Device Driver for Disk Drive 12-25

SampleDevice Drivers

12.1 Introduction

This chapter provides sample device driver code for line printer, terminal, and
hard disk drives. Each 50-line segment of code is followed by some general
comments, which describe the routines used and explain key lines in the
program. These key lines are identified by line number.

12-1

Programmer’s Guide

12.2 Sample Device Driver for Line Printer

1 /e (
2 s* |p- prototype line printer driver X
3 s/
4 #include "../h/param.h”
6 #include "../h/dir.h”
6 #include "../h/a.out.h”
7 #include "../h/user.h”
8 #include "../h/file.h”
9 #include *../h/tty.h”
10
11 fidefine LPPRI PZERO+6
12 f#define LOWNAT 50
13 #define HIWAT 160
14
16 /* register definitions s/
16
17 ftdefine RBASE 0x00 /* base address of registers s/
18 #define RDATA (RBASE + 0) /* place character here /
19 #define RSTATUS (RBASE + 1) /* non sero means busy ¢/
20 #define RONTRL (RBASE + 2) /* write control here */
21 @
22 /¢ control definitions ¢/ \
23 #define CRESET 0x01 /* initialize the interface */

24 fdefine CIENABL 0x02 /* +Interrupt enable ¢/

26 /* flags definitions */

27 ftdefine FIRST 0x01
28 f#define ASLEEP 0x02
29 fidefine ACTIVE 0x04
30

31 struct clist lp_queue;
32 unsigned lp_fiags = 0;
33

34 lpopen(dev)
36 int dev;

36 {

37 if ((lp_flags & FIRST) ==0) {

38 lp_fiags |= FIRST;

39 outb (RCNTRL, CRESET);

40 }

41 outb (RCNTRL, CIENABL); @
42)

43

44 lpclose(dev)
45 int dev;
46 {

47 }

SampleDeviceDrivers

Description of Device Driver for Line Printer

The device driver presented here is for a single parallel interface to a
printer. It transfers characters one at a time, buffering the output from the
user process through the use of character blocks (cblocks).

11:

12:

13:

17-20:

27-29:

31:

32:

LPPRI is the priority at which a process sleeps when it needs
to stop. Since the priority is greater than PZERO, a signal
sent to the suspended process will awaken it.

LOWAT is the minimum number of characters in the buffer.
If there are fewer than LOWAT characters in the buffer, a
process that was suspended (because the buffer was full) can
be restarted.

HIWAT is the maximum number of characters in the queue.
If a process fills the buffer up to this point, it will be
suspended via sleep() until the buffer has drained below
LOWAT.

The device registers in this interface occupy a contiguous
block of address, starting at RBASE, and running through
RBASE+2. The data to be printed is placed in RDATA, one
character at a time. Printer status can be read from
RSTATUS, and the interface can be configured by writing
into RCNTRL.

The flags defined in these lines are kept in the variable
Ip_flags. FIRST is set if the interface has been initialized.
ASLEEP is set if a process is asleep waiting for the buffer to
drain below LOWAT. ACTIVE is set if the printer is active.

Ip_queue is the head of the linked list of cblocks that forms
the output buffer.

Ip_flags is the variable in which the flags mentioned above
are kept.

lpopen() - lines 34 to 42

The Ilpopen() routine is called when some process makes an open() system
call on the special file that represents this driver. Its single argument, dev
represents the minor number of the device. Since this driver supports only
one device, the minor number is ignored.

12-3

Programmer’s Guide

37-39: If this is the first time (since XENIX was booted) that the
device has been touched, the interface is initialized by setting
the CRESET bit in the control register.

41: Interrupts from this device are enabled by setting the
IENABL bit in the control register.
Ipclose() - lines 44 to 47
The Ipclose() routine is called on the last close of the device; that is, when

the current close() system call results in zero processes referencing the
device. No action is taken.

12-4

i

SampleDevice Drivers

49 Ipwrite(dev)

50 int dev;

51 {

52 register int c;

53 int x;

54

56 while ((¢ = cpass()) >=0) {

56 x = splb6();

67 while (lp_queue.c_cc > HIWAT) {
58 lpatart();

59 lp_flags |== ASLEEP;
80 sleep(&lp_queve, LPPRI);
81 }

62 splx(x);

63 putc(c, &Zlp_queue);

64 }

(13 x = splb();

68 lpstart();

67 splx(x);

68}

6e

70 lpstart()

71 {

72 if (lp_flags & ACTIVE)

73 return; /¢ interrupt chain is keeping printer going ¢/
74 lp_flags |= ACTIVE;

76 Ipintr(0);

76}

77

78

78 Ipintr(vec)

80 int vec;

81 {

82 int tmp;

83

84 if ((1p_flags & ACTIVE) == 0)

85 return; /® ignore spurious interrupt =/
86

87 /* pass chars until busy ¢/

88 while (inb(RSTATUS) == 0 & (tmp = getc(&lp_queune)) >= 0)
1] outb (RDATA, tmp);

80

81 /¢ wakeup the writer if necessary ¢/

92 if (lp.queue.c_cc < LONAT &% lp_flags & ASLEEP) {

93 lp_flags &= ~ASLEEP;

94 wakeup (21p_queue);

95 }

96

97 /* wakeup writer if waiting for drain =/

12-5

Programmer’s Guide

98 if (lp_quene.c_cc <= 0)
99 1p_flags &= ~“ACTIVE;
100}

Ipwrite() - lines 49 to 86

The lpwrite() routine is called to move the data from the user process to
the output buffer. Code is defined as follows:

55: While there are still characters to be transferred, do what
follows.

56-63. Raise the processor priority so the interrupt routine can't
change the buffer. If the buffer is full, make sure the printer
is running, note that the process is waiting, and put it to
sleep. When the process wakes up, check to make sure the
buffer has enough space, then go back to the old priority and
put the character in the buffer.

65-66. Make sure the printer is running, by locking out interrupts
and calling Ipstart().

Ipstart() - lines 70 to 78

The Ipstarf) routine ensures that the printer is running. It's called twice
from Ipwrite(), and serves simply to avoid duplicate code. Code is defined
as follows:

72-75: If the printer is running, just return; otherwise, mark it
ACTIVE, and call Ipintr() to start the transfer of characters.

Ipintr() - lines 79 to 100

The Ipintr() routine is called from two places: Ipstart(), and from the kernel
interrupt handling sequence when a device interrupt occurs. Code is
defined as follows:

84-85: If Ipints() is called unexpectedly, or the driver doesn’t have
anything to do, it just returns.

88-89: While the printer indicates it can take more characters and
the driver has characters to give it, the characters come from
the buffer through getc(), and pass to the interface by writing
to the data register.

12-6

SampleDevice Drivers

92-94: If the buffer has fewer than LOWAT characters in it, and
some process is asleep waiting for room, wake it up.

98-99: If the queue is empty, turn off the ACTIVE flag. Note that
the interrupt that completes the transfer and empties the
buffer is in some sense ‘“‘spurious’, since it will occur with the
ACTIVE flag reset.

12-7

Programmer’s Guide

12.3 Sample Device Driver for Terminal

W N @O0 N -

/o
ee td-

*/

terminal device driver

#include ”../h/param.h”
#include *../h/dir.h"
#include "../h/user.h”
#tinclude "../h/file.bh"
#include "../h/tty.h"
#include ®../h/conf.h”

/* registers ¢/

#define
#define
#define
f##define
##define
#define
#define

/* status register bits */

#define
f##define
#define
#define
#idefine
fidefine
#define

RRDATA
RTDATA
RSTATUS
RCNTRL
RIENABL
RSPEED
RIIR

SRRDY
STRDY
SOERR
SPERR
SFERR
SDSR

SCTS

0x01
0x02
0x03
0x04
0x06
0x06
0x07

0x01
0x02
0x04
0x08
0x10
0x20
0x40

/® control register

ffdefine
#define
#define
#define
##define
fidefine
#define
#define
#define
##define

CBITS6
CBITSé
CBITS7
CBITSS8
CDTR
CRTS
CSTOP2
CPARITY
CEVEN
CBREAK

0x00
0x01
0x02
0x03
0x04
0x08
0x10
0x20
0x40
0x80

/* interrupt enable

fidefine
#define
f#define

EXMIT
ERECV
EMS

0x01
0x02
0x04

o/

*/

/* interrupt ident =/

/o
/o
/t
/c
/e
/o
/o

/®
/a
/t
/o
/e
/o
/*

/0
./e
/o
/o
/*
/c
/o
/a
/c
/e

/o
/o
/o

received data »/
transmitted data ¢/

status 2/

control */

interrupt enable */

data rate ¢/

interrupt identification #/

received data ready s/
transmitter ready °/

received data overrun ¢/
received data parity error ¢/
received data framing error ¢/
status of dsr (cd)s/

status of clear to send »/

five bit chars »/

gix bit chars ¢/

seven bit chars o/

eight bit chars */

data terminal ready =/
request to send »/

two stop bits o/

parity on ¢/

even parity otherwise odd #/
set xmitter to space */

transmitter ready ¢/
receiver ready */
modem status change 3/

47
48
49
50
60A
50B
50C

SampleDevice Drivers

#define IRECV 0x01
f#tdefine IXMIT 0x02
#tdefine IMS 0x04

f#define NIDEVS 2
f#define VECTO 3
#define VECTI1 b

Description of Device Driver for Terminal

This driver supports two serial terminals on a hypothetical UART type
interface.

12-18:

30-39:

42-44:

47-49:

The interface for each line consists of seven registers. The
values that would be defined here represent offsets from the
base address, which is defined in line 72. The base address
differs for each line. The data to be transmitted is placed one
character at a time into the RTDATA register. Likewise, the
received data is read one character at a time from the
RRDATA register. The status of the UART can be
determined by examining the contents of the RSTATUS
register. The UART configuration is adjusted by changing
the contents of the RCNTRL register. Interrupts are enabled
or disabled by setting the bits in the RIENABL register. The
data rate is set by changing the contents of the RSPEED
register. Interrupts are identified by reading the bits in the
RIIR register.

The two low order bits of the ‘“‘control register’’ determine
the length of the character sent. The next two bits control
the data-terminal-ready and request-to-send lines of the
interface. The next bit controls the number of stop bits, the
next controls whether parity is generated, and the next
controls whether generated parity is even or odd. Finally, the
most significant bit forces the transmitter to continuous
spacing if it is set.

The three low order bits of the ‘interrupt enable’ register
control whether the device generates interrupts under certain
conditions. If bit O is set, an interrupt is generated every
time the transmitter becomes ready for another character. If
bit 1 is set, an interrupt is generated every time a character is
received. If bit 2 is set, an interrupt is generated every time
the data-set-ready line changes state.

After an interrupt, the value in the interrupt identification

12-9

Programmer’s Guide

register will contain one of three values, indicating the reason
for the interrupt.

12-10

51
52
53
54
55
6586
57
58
bg
60
61
62
63
64
66
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
86
86
87
88
89
80
81
82
93
94
86
g8
87
98
89

SampleDevice Drivers

/* data rates /

int td_speeds|] = {
/+ BO ./ o,
/* B0 / 2304,
/* B16 o/ 15386,
/* B110 ¢/ 1047,
/* B134 s/ 8567,
/* B160 s/ 768,
/* B200 s/ 0,
/* B300 s/ 384,
/* B600 s/ 192,
/* B1200 s/ 98,
/* B1800 s/ 64,
/* B2400 =/ 48,
/* B4800 o/ 24,
/* B86OO s/ 12,
/* EXTA s/ 6, /* 18.2k bps =/
/* EXTB +/ 68 /¢ 2000 bps =/
}s

struct tty td_tty[NIDEVS|;
int td_addr [NIDEVS] = { 0x00, 0x10 };

tdopen(dev, flag)

int dev,

{

flag;

regieter struct tty *tp;
int addr;
extern tdproc();

int

X3

if (dev >= NTDEVS) ({

}

seterror (ENX10);
return;

tp = &td_tty|dev};

add

if((sp->t_1flag & XCLUDE) &% !suser()) {

returp;
}
if ((sp->t_stateZ(ISOPEN|WOPEN)) = = 0) {
ttinit(tp);
tp->t_proc = tdproc;
tdparam(dev);
}
x = 8plb();

r =t

d_sddr{dev];

seterror(EBUSY);

if (sp->t_cflag & CLOCAL || tdmodem(dev, TURNON))

12-11

Programmer’s Guide

100 tp->t_state |= CARR_ON;
101 elge
102 tp->t_state &= ~CARR_ON;

52-69: The values to be loaded into the RSPEED register to get
various data rates are defined here.

71: Each line must have a tty structure allocated for it.
72: Here, the base addresses of the registers are defined for each
line.

tdopen() - lines 75 to 110

The tdopen() routine is called whenever a process makes an open() system
call on the special file corresponding to this driver. Code is defined as
follows:

83-85: If the minor number indicates a device that doesn’t exist,
indicate the error, and return.

89-91: If the line is already open for exclusive use, and the current
user is not the super-user, indicate the error and return.

93-96: If the line is not already open, initialize the tty structure via
a call to ttinif), set the value of the proc field in the tty
structure, and configure the line by calling tdparam().

98: Defer interrupts so the interrupt routines cannot change the
state while it is being examined.

99-102: If the line is not using modem control, or if it is not turning
on the data-terminal-ready and request-to-send signals (which
results in carrier-detect being asserted by the remote device),
indicate that the carrier signal is present on this line.
Otherwise, indicate that there is no carrier signal.

12-12

103
104
106
106
107
108
109
110
111
112
113
114
1186
1186
117
118
119
120
121
122
123
124
1256
126
127
128
129
130
131
132
133
134
136
138
137
138
139
140
141
142
143
144
145
1486
147
148
149
150

}

Sample Device Drivers

if (!(8ag&FNDELAY))
while ((tp->t_state®CARR_ON)= =0) {
tp->t_state |= WOPEN;
sleep((caddr_t)&tp->t_canq, TTIPRI);
}
(«linesw{tp->t_line| .l _open)(tp);
splx(x);

tdclose(dev)

{

}

register struct tty stp;

tp = &td_tty[dev];
(slinesw[tp->t_line].l_close)(tp);
if (¢p->t_cflag & HUPCL)
tdmodem(dev, TURNOFF);
tp->t_lflag & “XCLUDE; /¢ turn off exclusive use bit =/
/* turn off interrupts ¢/
outb(td_addr|[dev] + RIENABL, 0);

tdread(dev)

}

(*linesw[tp->t_line].l_read) (&td_tty[dev]);

tdwrite(dev)

{

}

(*linesw([tp->t_line].l_write)(&td_tty|dev]);

tdparam(dev)

{

register int cflag;
register int addr;
register int temp, speed, x;

addr = td_addr{dev];
cllag td_ttyfdev].t_cflag;

/* if speed is BO, turn line off s/
if ((cAag & CBAUD) = = B0){

outb(addr + RONTRL, inb{addr+RCNTRL) & ~CDTR & ~CRTS);

return;

12-13

Programmer’s Guide

103-106: If open() is supposed to wait for the carrier, wait until the
carrier is present.

108: Call the [_open routine indirectly through the linesw table. <
This completes the work required for the current line
discipline to open a line.

109: Allow further interrupts.

tdclose() - lines 112 to 123
The tdclose() routine is called on the last close on a line.

117: Call the close() routine through the linesw table to do the
work required by the current line discipline.

118-119: If the “hang up on last close” bit is set, drop the data-
terminal-ready and request-to-send signals.

120: Reset the exclusive use bit.
122: To prevent spurious interrupts, disable all interrupts for this ,
line. (

tdread() and tdwrite() - lines 125 to 134

Both of these routines simply call the relevant routine via the linesw table;
the called routine performs the action appropriate for the current line
discipline.

tdparam() - lines 136 to 171

The tdparam() routine configures the line to the mode specified in the
appropriate tty structure.

142-143: Get the base address and flags for the referenced line.

146-148: The speed BO means *“hang up the line.”

12-14

SampleDevice Drivers

161 /* set up speed 3/

162 outb(addr + RSPEED, td_speeds| cflag & CBAUD |);
163

164 /* set up linme control =/

166 temp = (cflag & CSIZE) >> 4; /% length =/
1686 if (cAag & CSTOPB)

167 temp |= CSTOP2;

168 ir (cAag & PARENB) {

169 temp |= CPARITY;

160 if ((cAag & PARODD) == 0)

161 temp |= CEVEN;

162 }

163 temp |= CDITR | CRTS;

164 out(addr + RCNTRL, temp);

166

166 /® setup interrupts s/

167 temp = EXMIT;

168 if (clag & CREAD)

169 temp |[= ERECV;

170 outb(addr + RIENABL, inb(RIENABL) | temp);
171}

172

173 tdmodem(dev, cmd)
174 int dev, ecmd;

176 {

176 register int addr;

177

178 addr = td_addr|dev];

179 switch(emd){

180 case TURNON: /¢ enable modem interrupts, set DTR & RTS true »*/
181 outb(addr + RIENABL, inb(addr+RIENABL) | BMS);

182 outb(addr + RCNTRL, inb(addr+RCNTRL) | CDTR | CRTS);
183 break;

184 case TURNOFF: /¢ disable modem interrupts, reset DTR, RTS »/
186 outb(addr + RIENABL, inb(addr+RIENABL) & "EMS);

186 outb(addr + RONTRL, inb(addr+RCNTRL) " (CDTR | CRTS));
187 break;

188 }

189 return (inb(addr + RSTATUS) & SDSR);

190 }

191 #endifl

192

183 tdintr(vec)
194 int vec;

1906 {

186 register int iir, dev, inter;
197

108 switch(vec) {

198 case VECTO:

12-15

Programmer’s Guide

200 dev = 0;

152: The remainder of the tdparam() routine simply loads the
device registers with the correct values.

tdmodem() - lines 173 to 190

The tdmodem({) routine controls the data-terminal-ready and request-to-
send line signals. Its return value indicates whether data-set-ready signal
(carrier detect) is present for the line.

180-183: If emd was TURNON, turn on modem interrupts, and assert
data-terminal-ready and request-to-send.

184-187: If ¢emd was TURNOFF, disable modem interrupts, and drop
data-terminal-ready and request-to-send.

189: Return a zero value if there is no data-set-ready on this line,
otherwise return a non-zero value.

tdintr() - lines 193 to 217

The tdintr() routine determines which line caused the interrupt and the

reason for the interrupt, and calls the appropriate routine to handle the
interrupt.

198-207: Different lines will result in different interrupt vectors being
passed as the tdintr() routine’s argument. Here, the minor
number is determined from the interrupt vector that was
passed to tdintr().

12-16

201
202
203
204
205
20¢
207
208
209
210
211

212
213
214
218
216
217
218
219
220
221

222
223
224
228
220
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
24¢
245
240
247
248
249

SampleDevice Drivers

break;
c¢sse VECTL:
dev = |;
break;
defanlt:
priasf(*sdint: wrong level iaterrupt (Bx)\n",vec);
retura;

while((iir = iab(sd_addr|dev]+RIIR)) = 0) {
Pr((iir & IXMIT) 1= 0)
tdxint(dev);
if{ (1ir & IREGY) 1= 0)
tdrint(dev);
ir((lir & IMS) 1= 0)
tdmiat(dev);

)

tdxint{dev)

{
register struct tiy stp;
register int addr;

\p = Rtd_tvy[dev];
addr = 1d_addr(dev];
if (inb(addr + RSTATUS) & STRDY')

tp-D>t_state &= ~BUSY;

If (sp-Dt_state & TIXDN) (
owib(addr + RTDATA, CSTART);.
tp-Dt_state &= " TIXON;

} else if (tp->t_state & TIXOFF) {
outb(addr + RTDATA, CSTOP);
tp-D>t_state &= “TDXOFF;

} elee
tdproc(sp, T_OUTPUT);

}

tdriat(dev)

{

register int ¢, status;
regioter int addr;
register struct tty *tip;

tp = ltd_lty'devl;
addr = td_addr|dev]:

/° get char and statns o/

12-17

Programmer’s Guide

250 ¢ = inb(addr + RRDATA);

209-215: While the interrupt identification register indicates that there
are more interrupts, call the appropriate routine. When the
condition that caused the interrupt is resolved, the UART
will reset the bit in the register by itself.

tdxint() - lines 218 to 238

The tdzinf{) routine is called when a transmitter ready interrupt is
received. It may issue a CSTOP character to indicate that the device on
the other end must stop sending characters, — it may issue a CSTART
character to indicate that the device on the other end may resume sending
characters, or it may call tdproc() to send the next character in the queue.

226: If the transmitter is ready, reset the busy indicator.

229-231: If the line is to be restarted, send a CSTART, and reset the
indicator.

232-234: If the line is to be stopped, send a CSTOP, and reset the
character.

235-236: Otherwise, call tdproc() and ask it to send the next character
in the queue.
tdrint() - lines 240 to 263
The tdrint() routine is called when a receiver interrupt is received. All it
has to do i1s pass the character, along with any errors, to the appropriate

routine via the linesw table.

250-251: Get the character and status.

12-18

261
2562
2563
254
2656
266
267
258
269
260
261
262
263
264
265
2686
287
268
269
270
271
272
273
274
276
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
2956
296
297
298
289

SampleDevice Drivers

status = inb(addr + RSTATUS);

/*

* Were there any errors on input?

s/

if(status & SOERR) /* overrun error ¢/
¢ |= OVERRUN;

if(status & SPERR) /* parity error »/
¢ |= PERROR;

if(status & SFERR) /¢ framing error »/
¢ |= FRERROR;

(¢linesw|{tp->t_line}.l_input)(tp, ¢, 0);

}
tdmint(dev)
{
register struct tty ®tp;
register int addr,c;
tp = &td_tty|dev];
if (tp->t_cflag & CLOCAL) (
return;
}
addr = td_addr|dev};
if (inb(addr + RSTATUS) & SDSR) {
if ((tp->t_state & CARR_ON)= =0) {
tp->t_state |= CARR_ON;
wakeup (&tp->t_canq);
}
} else {
it (tp->t_state & CARR_ON} ({
if (¢p->t_state & ISOPEN) (
signsl(tp->t_pgrp, SIGHUP);
tdmodem(dev, TURNOFF);
ttyflush(tp, (FREAD|FWRITE));
}
tp->t_state &= ~CARR_ON;
}
}
}
tdioct1(dev, cmd, arg, mode)
int dev;
int emd;

faddr_t arg;
int mode;

{

if (vtiocom(&td_tty|dev], cmd, arg, mode})

12-19

Programmer’s Guide

300 tdparam(dev);
301 }

256-261: If any errors were detected, set the appropriate bit in ¢.

262: And finally, pass the character and errors to the I_inpuf)
routine for the current line discipline.

tdmint() - lines 285 to 291
The tdminf() routine is called whenever a modem interrupt is caught.
271-272: If there is no modem support for this line, just return.

276-279: If a data-set-ready is present for this line, and it wasn’t
before, mark the line as having carrier, and wake up any
processes that are waiting for the carrier before their tdopen()
call can be completed.

281-290: If no data-set-ready is present for this line, and one existed
before, send a hangup signal to all of the processes associated
with this line, call tdmodem{) to hang up the line, flush the
output queue for this line by calling ttyflusk(), and finally,
mark the line as having no carrier.

tdioctl() - lines 293 to 301
The tdioctl) routine is called when some process makes an ioctl system

call on a device associated with the driver. It just calls ttiocom() which
returns a non-zero value if the hardware must be reconfigured.

12-20

302
303
304
306
306
307
308
309
310
811
312
313
314
316
316
317
318
319
320
321
322
323
324
326
326
327
328
329
330
331
332
333
334
336
3386
337
338
339
340
341
342
343
344
3456
346
347
348
348A
349

SampleDeviceDrivers

tdproc(tp, cmd)
register struct tty stp;

register c;
register int addr;

extern ttrstri();

addr = td_addr|tp - td_tty];
switch (emd) {

case T_TIME:
tp->t_state &= ~TIMEOUT;
outb(addr + RCNTRL, inb(addr + RCNIRL) & ~CBREAK);
goto start;

case T_WFLUSH:

case T_RESUME:
tp->t_state &= ~TISTOP;
goto start;

case T_OUTPUT:
start:
if (tp->t_state&(TIMEOUT|TTSTOP|BUSY))
break;
if ((tp->t_stateXTTION) && tp->t_outq.c_cc==0) {
tp->t_state &= “TTIOW;
wakeup((caddr_t)&tp->t_oflag);

}
while ((c=getec(&tp->t_outq)) >= 0) {
if (tp->t_oRagkOPOST && ¢ = = 0200) {
it ((¢ = getc(&tp->t_outq)) < 0)
break;
if (¢ > 0200) {
tp->t_state |= TIMEOUT;
timeout(ttrstrt, (caddr_t)tp,
(c&0177)); break;
}
}
tp->t_state |= BUSY;
outb(addr + RTDATA, c);
break;
}

it ((tp->t_stateROASLP) && tp->t_outq.c_cc<=
ttlowat|tp->t_cflag&CBAUD|) (
tp->t_state &= " OASLP;
wakeup ({(caddr_t)&tp->t_outq);

12-21

Programmer’s Guide

350

break;

tdproc() - lines 303 to 382

The tdproc() routine is called to effect some change on the output, such as
emitting the next character in the queue, or halting or restarting the

output.

312:

314-317:

321-322:

326-327:

328-330:

332:

333-340:

342-344:

346-348:

12-22

The ¢md argument determines the action taken.

The time delay for outputting a break has finished. Reset
the flag that indicates there is a delay in progress, and stop
sending a continuous space. Then restart output by jumping
to start.

Either a line on which output was stopped is restarting, or
someone is waiting for the output queue to drain. Reset the
flag indicating that output on this line is stopped, and start
the output again by jumping to starf() (line 325).

Try to put out another character. If some delay is in
progress (TIMEOUT) or the line output has stopped
(TTSTOP) or a character is in the process of being output
(BUSY), just return.

If some process was waiting for the output queue to drain,
reset the indicator, and wake the process.

While characters still exist in the output buffer do the
following:

If output postprocessing is occurring on this line, and the
current character is a delay marker (octal 200), get the next
character, which specifies the delay in clock ticks, mark the
line as waiting for a delay to expire, and schedule the line to
be restarted via the timeoul() routine.

Otherwise, output a character; mark the line BUSY, and pass
the character to the controller.

If some process is waiting because the buffer went over the
high water mark, and it is now below the low water mark,
wake it up.

361
3562
363
364
366
3566
367
368
369
360
361
362
363
364
366
366
367
368
369
370
37N
372
373
374
376
376
377
378
379
380
381
382

SampleDeviceDrivers

case T_SUSPEND:
tp->t_state |= TTSTOP;
break;

case T_BLOCK:
tp->t_state &= " TIXON;
tp->t_state |= TBLOCK;
if (tp->t_state&BUSY)
tp->t_state |= TTXOFF;
else)
outb(addr + RTDATA, CSTOP);
break;

case T_RFLUSH:
if (1(tp->t_state&TBLOCK))
break;
case T_UNBLOCK:
tp->t_state & ~ (TIXOFF|TBLOCK);
if (tp->t_statelBUSY)
tp->t_state |= TTXON;
else
outb(addr + RTDATA, CSTART);
break;

case T_BREAK:
outb{ addr + RCNIRL, inb{ addr + RCNIRL)
tp->t_state |= TIMEOUT;
timeout(ttrstrt, tp, HZ/4);
break;

| CBREAK);

12-23

Programmer’s Guide

352-354:

356-363:

365-367:

368-374:

376-380:

12-24

To stop the output on this line, since there is no way to stop
the character we have already passed to the controller, just
flag the line stopped, and drop through.

To tell the device on the other end to stop sending
characters, reset the flag asking to stop the line, and mark
the line stopped. If the line is already busy, set the flag;
otherwise, output a CSTOP character.

A process is waiting to flush the input queue. If the device
hasn’t been blocked, just return. Otherwise, drop through
and unblock the device.

To tell the device on the other end to resume sending
characters, adjust the flags. If the controller is sending a
character, set the flag to send a CSTART later; otherwise,
send the CSTART now.

To send a break, set the transmitter to continuous space,
mark the line as waiting for a delay, and schedule output to
be restarted later.

SampleDevice Drivers

12.4 Sample Device Driver for Disk Drive

1 /*
2 *s hd- prototype hard disk driver
3 ef
4
6 #include *../h/param.h”
6 #include *../h/buf.h”
7 #include "../h/iobuf.h”
8 #include "../h/dir.h”
9 #include "../h/conf.h”
10 #include ”../h/user.h”
11
12 /+ disk parameters s/
13 #define NHD 4 /* number of drives */
14 #define NCPD 600 /* # cylinders/disk */
15 #define NTPC 4 /* # tracks/cylinder »/
16 #define NSPT 10 /¢ # sectors/track */
17 #define NBPS 512 /* # bytes/sector s/
"17A #define NSPB (BSIZE/NBPS) /s sectors/block =/
18 #define NBPC (NTPC*NSPT+NSPB) /* blocks/cylinder »/
19
20 /+ addresses of controller registers s/
21 #define RBASE 0x00 /* base of all registers s/
22 fdefine ROMD (RBASE+0) /* command register s/
23 #define RSTAT (RBASE+1) /* status - nonzero means error */
24 #define RCYL (RBASE+2) /* target cylinder */
25 #define RTRK (RBASE+3) /* target track s/
268 fidefine RSEC (RBASE+4) /* target sector s/
27 #define RADDRL (RBASE+5) /* target memory address lo 168 bitss/
28 idefine RADDRH ({RBASE+6) /* target memory address hi 8 bitse/
28 #define RCNT (RBASE+7) /* number of sectors to xfer */
30
31 /* bits in ROMD register =/
32 #tdefine CREAD 0x01 /% start a read »/
33 #define OMRITE 0x02 /* start a write s/
34 #define CRESET 0x03 /% reset the controller s/
36
36 /s
37 ** minor number layout is 000ddppp
38 @+ where d is the drive number and ppp is the partition
39 s/
40 fdefine drive(d) (minor(d) >> 3)
41 idefine part(d) (minor(d) & 0x07)
42
43 [/ partition table */
44 struct partab {
46 daddr_t len; /% # of blocks in partition »/

12-25

Programmer’s Guide

46 int
47 };
48

cyloff; /¢ starting cylinder of partition ¢/

Description of Device Driver for Disk Drive

The device driver presented here is for an intelligent controller that is
attached to one or more disk drives. The controller can handle multiple
sector transfers that cross track and cylinder boundaries.

13:

14-18:

21-29:

32-34:

40-41:

44-46:

12-26

NHD defines the number of drives the controller can be
attached to.

Each disk drive attached to the controller has NCPD
cylinders; each cylinder has NTPC tracks, and each track has
NSPT sectors. The sectors are NBPS bytes long and each
cylinder has NBPC blocks.

The controller registers occupy a region of contiguous address
space starting at RBASE and running through RBASE+7.

To make the controller perform some action, the registers
that describe the transfer (RCYL, RTRK, RSEC, RADDRL,
RADDRH, RCNT) are set to the appropriate values, and
then the bit representing the desired action is written into the
RCMD register.

The drive() and parf) macros split out the two parts of the
minor number. Bits 0 through 2 represent the partition on
the disk, and the remaining bits specify the drive number.
Thus, the minor number for drive 1, partition 2 would be 10
decimal.

Large disks are typically broken into several partitions of a
more manageable size. The structure that specifies the size of
the partitions specifies the length of the partition in blocks,
and the starting cylinder of the partition.

SampleDevice Drivers

49 struct partab hd_sizes|[8] = {

50 NCPD*NBPC, 0, /* whole disk ¢/
61 ROOTSZ +NBPC, 0, /° root area s/
52 SWAPSZsNBPC, ROOTSZ, /* swap area =/
63 USERSZ*NBPC, USROFS, /* usr area =/
654 0, 0, /* epare */

66 0, 0, /* spare ®/

56 0, 0, /* spare ¢/

67 o, 0, /* spare s/

68 }:

59

60 struct iobuf hdtab; /* start of request queue */
61 struct buf rhdbuf; /* header for raw ifo =/
63 /=

64 s Strategy Routine:

66 ©os» Arguments:

66 o= Pointer to buffer structure

67 s Function:

68 e Check validity of request

69 so Queue the request

70 =ss Start up the device if idle

71 »/

72 int hdstrategy(bp)
73 register struct buf ebp;

74 |

76 register int dr, pa; /® drive and partition numbers s/
76 daddr_t ss, bn;

77 int x;

79 dr = drive(bp->b_dev);

80 pa = part(bp->b_dev);

80A bn = bp->b_blkno * NSPB;

81 ss = (bp->b_bcount + BMASK) >> BSHIFT;

82 if (dr<NHD && pa<NPARTS &% bn>=0 &% bn<hd_sises[pa].len &%
83 ((bn + 3 < hd_sises[pa].len) || (bp->b_flags & B_READ)))
84 {

86 if (bo + ss > hd_sises{pa).len) {

886 63 = (bd_sises|[pa].len - bn) » NBPS;

87 bp->b_resid = bp->b_beount - (unsigned) s3;

88 bp->b_bcount = (unsigned) ss;

89 }

90 } else {

91 bp->b_fags |= B_ERROR;

92 iodone(bp);

93 return;

94 }

96 bp->b_cylin = (b_blkno / NBPC) + hd_siszes|pa].cyloff;

96 x = splb();

87 disksort(&hdtab, bp);

98 if (hdtab.b_active == NULL)

12-27

Programmer’s Guide

99
100
10t}

49-53:

61:

hdstart();

splx(x);

This driver splits a disk into up to eight pieces, but at
present, only four are used. The first partition covers the
whole disk. The remaining three split the disk three ways,
one partition for each of root, swap, and usr.

The buffer headers representing requests for this driver are
linked into a queue, with hAdtab forming the head of the
queue. In addition, information regarding the state of the
driver is kept in hdtab.

Each block driver that wants to allow raw I/O allocates one
buffer header for this purpose.

hdstrategy() - lines 72 to 101

The hdstrategy() routine is called by the kernel to queue a request for I/O.
The single argument is a pointer to the buffer header which contains all of
the data relevant to the request. The strategy routine is responsible for
validating the request, and linking it into the queue of outstanding

requests.

79-81:

82-94:

95:

96:

12-28

First, compute various useful numbers that will be used
repeatedly during the validation process.

If the request is for a non-existent drive or a non-existent
partition, if it lies completely outside the specified partition,
or is a write, and ends outside the partition, the B_ERROR
bit in the b_flags field of the header is set to indicate that the
request has failed. The request is then marked as complete
by calling fodone() with the pointer to the header as an
argument. If the request is a read, and ends outside the
partition, it is truncated to lie completely within the
partition.

Compute the target cylinder of the request for the benefit of
the disksory) routine.

Block interrupts, to prevent the interrupt routine from
changing the queue of outstanding requests.

Sort the request into the queue by passing it and the head of
the queue to disksory().

102
103
104
106
108
107
108
109
110
111
112
113
114
116
116
117
118
119
120
121
122
123
124
126
128
127
128
129
130
131
132
133
134
136
136
137
138
139
140
141
142
143
144
1456
148

98:

99:

b
{

b
{

SampleDevice Drivers

If the controller is not already active, start it up.

Re-enable interrupts and return to the user process.

Startup Routine:
Arguments:
None
Function:
Compute device-dependent parameters
Start up device
. Indicate request to 1/O monitor routines
.
/

dstart()

*. & & & @

register struct buf *bp; /* BUFFER POINTER &/
register unsigned sec;

if ((bp = hdtab.b_actf) == NULL) {
hdtab.b_active = NULL;
return;

}

hdtab.b_active = 1;

sec = (unsigned)bp->blkno * NSPB);
out (RCYL, sec / NSPC); /* cylinder #/
sec %= NSPC;
out (RTRK, sec / NSPT); /* track */
out (RSEC, sec % NSPT); /% sector */
out (RCNT, bp->b_count / NBPS); /% count #/
out (RDRV, drive(bp->b_dev)); /* drive s/
out (RADDRL, bp->b_paddr & Oxff); /¢ memory address lo =/
out (RADDRH, bp->b_paddr >> 16); /* memory address hi */
if (bp->b_flags & B_READ)
out(ROGMD, CREAD);
else
out (RGMD, OMRITE);

. Interrupt routine:

* Check completion status

. Indicate completion to i/o monitor routines
b Log errors

d Restart (on error) or start next request

«/

dintr()

12-29

Programmer’s Guide

147 register struct buf ebp;
148

149 if (hdtab.b_active = = 0)
1560 return;

hdstart() - lines to 112 to 138

The hdstart() routine performs the calculation of the physical address on
the disk, and starts the transfer.

117-119: If there are no active requests, mark the state of the driver as
idle, and return.

121: Mark the state of the driver as active.

123-127: Calculate the starting cylinder, track, and sector of the
request, and load the controller registers with these values.

129-131: Load the controller with the drive number, and the memory
address of the data to be transferred.

132-135: If the request is a read request, issue a read command;
otherwise, issue a write command.
hdintr() - lines 145 to 171

The hdintr() routine is called by the kernel through the vecintsw table
whenever the controller issues an interrupt.

149-150: If an unexpected call occurs, just return.

12-30

161
162
163
164
166
166
167
168
169
160
181
162
163
164
166
186
167
188
169
170
171
172
173
174
176
176
177
178
179
180
181
182
183
184
1856
186
187
188
189
190
191
192
183
194
196
196
187
198
199

°/

SampleDeviceDrivers

bp = hdtab.b_actl;

if (in(RSTAT) =10)
out (RQGMD, CRESET);
if (++hdtab.b_errent <= ERRLIM) {
hdstars();
return;
}
bp->b_flags |= B_ERROR;
deverr(&hdtab, bp, in(RSTAT), 0);
}
/c
s Flag current request complete, start next one
s/
hdtah.b_errcat = 0;
hdtab.b_actf = bp->av_forw;
hp->h_resid = 0;
iodone(bp);
hdstart();

raw read routine:

This routine calls "physio® which computes and validates

a physical address from the current logical address.

Arguments
Full device numher
Functions:

Call physio which does the actual raw (physical) 1/0

The arguments to physio are:
pointer to the strategy routine
buffer for raw I/O
device
read/write flag

hdread(dev)

{

physio(hdstrategy, &rhdbuf, dev, B_READ);

Raw write routine:
Arguments{to hdwrite):
Full device number
Functions:
Call physio which does actual raw (physical) I/0

12-31

Programmer’s Guide

200 */

152: Get a pointer to the first buffer header in the chain; this is
the request that is currently being serviced. {

154-162: If the controller indicates an error, and the operation hasn’t
been retried ERRLIM times, try it again. If it has been
retried ERRLIM times, assume it is a hard error, mark the
request as failed, and call deverror{) to print a console
message about the failure.

166-171: Mark this request complete, take it out of the request queue,
and call hdstart() to start on the next request.

hdread() - lines 188 to 192

The hdread() routine is called by the kernel when a process requests raw
read on the device. All it has to do is call physio(), passing the name of the
strategy routine, a pointer to the raw buffer header, the device number,
and a flag indicating a read request. The physio{) routine does all the
preliminary work, and queues the request by calling the device strategy
routine. (

Last Five Lines of Sample Driver

201 hdwrite(dev)

202 {

203

204 physio(hdstrategy, &rhdbuf, dev, B WRITE);
206 }

hdwrite() - lines 201 to 205
The hdwrite() routine is called by the kernel when a process requests a raw

write on the device. Its responsibilities and actions are the same as
hdread(), except that it passes a flag indicating a write request.

12-32

Appendix A
C Language Portability

A.1 Introduction A-1
A.2 Program Portability A-2

A.3 Machine Hardware A-2
A.3.1 ByteLength A-2
A3.2 WordLength A-2
A.3.3 Storage Alignment A-3
A.3.4 ByteOrderinaWord A-4
A.3.5 Bitfields A-5
A.3.6 Pointers A-5
A.3.7 AddressSpace A-6
A.3.8 CharacterSet A-6

A.4 CompilerDifferences A-7
A.4.1 Signed/Unsigned char, Sign Extension A-7
A.4.2 Shift Operations A-7
A4.3 IdentifierLength A-8
A.4.4 Register Variables A-8
A.4.5 TypeConversion A-9
A.4.6 Functions With a Variable Number of Arguments A-10
A 4.7 SideEffects,Evaluation Order A-12

A.5 ProgramEnvironment Differences A-13
A.6 Portability of Data A-13
A7 Lint A-14

A.8 ByteOrdering Summary A-14

C Language Portability

A.l Introduction

The standard definition of the C programming language leaves many details to
be decided by individual implementations of the language. These unspecified
features of the language detract from its portability and must be studied when
attempting to write portable C code.

Most of the issues affecting C portability arise from differences in either target
machine hardware or compilers. C was designed to compile to efficient code for
the target machine (initially a PDP-11) and so many of the language features
not precisely defined are those that reflect a particular machine’s hardware
characteristics.

This appendix highlights the various aspects of C that may not be portable
across different machines and compilers. It also briefly discusses the portability
of a C program in terms of its environment, which is determined by the system
calls and library routines it uses during execution, file pathnames it requires,
and other itemsnot guaranteed to be constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small 8 bit microprocessors to
large mainframes. This appendix is concerned with the portability of C code in
the XENIX programming environment. This is a more restricted problem to
consider since all XENIX systems to date run on hardware with the following
basic characteristics:

— ASCII character set

— 8Dbitbytes

— 2-byteor 4-byteintegers

— Two'scomplement arithmetic
These features are not formally defined for the language and may not be found
in of all implementations of C. However, the remainder of this appendix is
devoted to those systems where these basic assumptionshold.
The C language definition contains no specification of how input and output is
performed. This is left to system calls and library routines on individual
systems. Within XENIX systems there are system callsand library routines that
can be considered portable. These are described briefly in a later section.
This appendix is not intended as a C language primer. It is assumed that the

reader is familiar with C, and with the basic architecture of common
IMICrOpProcessors.

XENIX Programmer’s Guide

A.2 Program Portability

A program is portable if it can be compiled and run successfully on different
machines without alteration. There are many ways to write portable programs.
The first is to avoid using inherently nonportable language features. The
second is to isolate any nonportable interactions with the environment, such as
I/0O to nonstandard devices. For example programs should avoid hard-coding
pathnames unless a pathname is common toall systems(e.g.,

Files required at compiletime (i.e., include files) may also introduce
nonportability if the pathnames are not the same on all machines. Insome cases
include files containing machine parameters can be used to make the source
code itself portable.

A.3 MachineHardware

Differences in the hardware of the various target machines and differences in the
corresponding C compilers cause the greatest number of portability problems.
This section lists problems commonly encountered on XENIX systems.

A.3.1 ByteLength

By definition, the char data type in C must be large enough to hold as positive
integers all members of a machine’s character set. For the machines described
in this appendix, the char size is exactly an 8 bit byte.

A.3.2 Word Length

In C, the size of the basic data typesforagiven implementation are not formally
defined. Thus they often follow the most natural size for the underlying
machine. It is safe to assume that short is no longer than Beyond that no
assumptions are portable. For example on some machines short is the same
length as whereas on others long is the same length as

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such information can usually be written
in a fairly portable way. For example the maximum positive integer (on a two’s
complement machine) can be obtained with:

#define MAXPOS ((int)(((unsigned)-1) > > 1))

This is preferable to something like:

A-2

C Language Portability

#ifdef PDP11
#define MAXPOS 32767
Felse

#endif

To find the number of bytesin an int use ‘“‘sizeof (int)” rather than 2, 4, or some
other nonportable constant.

A.3.3 Storage Alignment

The C language defines no particular layout for storage of dataitemsrelative to
each other, or for storage of elements of structures or unions within the
structure or union.

Some CPU's, such as the PDP-11 and M68000 require that data types longer
than one byte be aligned on even byte address boundaries. Others, such as the
8086 and VAX-11 have no such hardware restriction. However, even with these
machines, most compilers generate code that aligns words, structures, arrays,
and long words on even addresses, or even long word addresses. Thus, on the
VAX-11, the following code sequence gives ‘8", even though the VAX
hardware can accessan int (a 4-byte word) on any physical starting address:

structs_tag {
charc;
int i;

}§
print{(” %d\n" sizeof(struct s_tag));

The principal implications of this variation in data storage are that data
accessed as nonprimitive data typesis not portable, and code that makes use of
knowledge of the layout on a particular machine is not portable.

Thus unions containing structures are nonportable if the union is used to access
the same data in different ways. Unions are only likely to be portable if they are
used simply to have different data in the same space at different times. For
example, if the following union were used to obtain 4 bytes from a long word,
the code would not be portable: ’

union {
charc[4];
long lw;

by
The sizeofoperator should always be used when reading and writing structures:

A-3

XENIX Programmer’s Guide

struct s_tag st;

write(fd, &st, sizeof(st));

This ensures portability of the source code. It does not produce a portable data
file. Portability of datais discussed in a later section.

Note that the sizeof operator returns the number of bytes an object would
occupy in an array. Thus on machines where structures are always aligned to
begin on a word boundary in memory, the sizeof operator will include any
necessary padding for this in the return value, even if the padding occurs after
all useful data in the structure. This occurs whether or not the argument is
actually an array element.

A.3.4 ByteOrderina Word

The variation in byte order in a word affects the portability of data more than
the portability of source code. However any program that makes use of
knowledge of the internal byte order in a word is not portable. For example, on
some systems there is an include file misc.k that contains the following
structure declaration:

/ *

* structure to accessan

* integer in bytes

*/

struct {
char lobyte;
char hibyte;

|3

With certain less restrictive compilers this could be used to access the high and
low order bytes of an integer separately, and in a completely nonportable way.
The correct way to do this is to use mask and shift operations to extract the
required byte:

#define LOBYTE(i) (i & Oxff)
#define HIBYTE(1)((i > > 8) & 0xfl)

Note that even this operation is only applicable to machines with two bytes in
anint.

A-4

C Language Portability

One result of the byte ordering problem is that the following code sequence will
not always perform as intended:

intc=0;

read(fd, &c, 1);

On machines where the low order byte isstored first, the value of “‘c” will be the
byte value read. On other machines the byte is read into some byte other than
the low order one, and the value of ‘¢’ isdifferent.

A.3.5 Bitfields

Bitfields are not implemented in all C compilers. When they are, no field may be
larger than an and no field can overlap an int boundary. If necessary the
compiler will leave gaps and move to the next int boundary.

The C language makes no guarantees about whether fields are assigned left to
right, or right to left in an Thus, while bitfields may be useful for storing flags
and other small data items, their use in unions to dissect bits from other data is
definitely nonportable.

To ensure portability no individual field should exceed 16 bits.

A.3.8 Pointers

The C language is fairly generous in allowing manipulation of pointers, to the
extent that most compilers will not object to nonportable pointer operations.
The lint program is particularly useful for detecting questionable pointer
assignmentsand comparisons.

The common nonportable use of pointers is the use of casts to assign one pointer
to another pointer of a different data type. This almost always makes some
assumption about the internal byte ordering and layout of the data type, and is
therefore nonportable. In the following code, the byte orderin the given array is
not portable:

charc[4};
long #Ip;

Ip = (long *#)&¢[0];
slp = 0x12345678L;

The lint program will issue warning messages about such uses of pointers. Code

A-5

XENIX Programmer’s Guide

like this is very rarely necessary or valid. It is acceptable, however, when using
the malloc function to allocate space for variables that do not have type. The
routine is declared as type char * and the return value is cast to the type to be
stored in the allocated memory. If this type is not then lint will issue a warning
concerning illegal type conversion. In addition, the malloc function is written to
always return a starting address suitable for storing all types of data. Lint does
not know this, soit gives a warning about possible data alignment problems too.
In the following example, malloc is used to obtain memory for an array of 50
integers.

extern char *malloc();
int *ip;
ip = (int *)malloc(50);
This example will attract a warning message from Iint.

The C Reference manual states that a pointer can be assigned (or cast) to an
integer large enough to hold it. Note that the size of theint type dependson the
given machine and implementation. This type is a long on some machines and
short on others. In general, do not assume that “sizeof(char *) ==
sizeof(int)”

In most implementations, the null pointer value, “NULL" is defined to be the
integer value 0. This can lead to problems for functions that expect pointer
argumentslarger than integers. For portable code, always use

fune((char #)NULL),

to passa ‘“NULL” value of the correct size.

A.3.7 AddressSpace

The address space available to a program running under XENIX varies
considerably from system to system. On a small PDP-11 there may be only 64K
bytes available for program and data combined. Larger PDP-11’s, and some 16
bit microprocessors allow 64K bytes of data, and 64K bytes of program text.
Other machines may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas may have portability
problems on small machines.

A.3.8 Character Set

The C language does not require the use of the ASCII character set. In fact, the
only character set requirements are that all characters must fit in the char data

A-6

C Language Portability

type, and all characters must have positive values.

In the ASCII character set, all characters have values between zero and 127.
Thus they can all be represented in 7 bits, and on an 8 bits-per-byte machine
are that all positive, whether char is treated assigned or unsigned.

There is a set of macros defined under XENIX in the header file
Jusr/include/ctype.h that should be used for most tests on character
quantities. They provide insulation from the internal structure of the character
set and in most cases their names are more meaningful than the equivalent line
of code. Compare

if(isupper(c))
to

if((c >="A") && (c <="2"))

With some of the other macros, such as fsdigit to test for a hex digit, the
advantage is even greater. Also, the internal implementation of the macros
makes them more efficient than an explicit test with an 'if' statement.

A.4 Compiler Differences

There are a number of C compilers running under XENIX. On PDP-11 systems
there is the so-called ‘‘Ritchie’” compiler. Also on the 11, and on most other
systems, there is the Portable C Compiler.

A.4.1 Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem is best described
as unsatisfactory.

The sign extension problem is a serious barrier to writing portable C, and the
best solution at present is to write defensive code that does not rely on
particular implementation features.

A.4.2 Shift Operations

The left shift operator, ‘< <’ shifts its operand a number of bits left, filling
vacated bits with zero. This is a so-called logical shift. The right shift operator,
“>>" when applied to an unsigned quantity, performs a logical shift
operation. When applied to a signed quantity, the vacated bits may be filled
with zero (logical shift) or with sign bits (arithmetic shift). The decision is
implementation dependent, and code that uses knowledge of a particular

A-T

XENIX Programmer’s Guide

implementation is nonportable.

The PDP-11 compilers use arithmetic right shift. To avoid sign extension it is
necessary to shift and mask out the appropriate number of high order bits:

charc;
c=(c>> 3)&0xlf;

You can also avoid sign extension by using using the divide operator:
charg;

c=c/8;

A.4.3 Identifier Length

The use of long symbols and identifier names will cause portability problems
with some compilers. To avoid these problems, a program should keep the
following symbols as short as possible:

— CPreprocessor Symbols
— CLocal Symbols
— CExternal Symbols

The linker used may also place a restriction on the number of unique characters
in C external symbols.

Symbols unique in the first six characters are unique to most C language
Processors.

On some non-XENIX C implementations, uppercase and lowercase letters are
not distinct in identifiers.

A.4.4 Register Variables

The number and type of register variables in a function depends on the machine
hardware and the compiler. Excess and invalid register declarations are treated
as nonregister declarations and should not cause a portability problem. On a
PDP-11, up to three register declarations are significant, and they must be of
type or pointer. While other machines and compilers may support declarations
such as

C Language Portability

register unsigned short
thisshould not be relied upon.
Since the compiler ignores excess variables of register type, the most important
register type variables should be declared first. Thus, if any are ignored, they
will be the least important ones.
A.4.5 TypeConversion
The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is a
potential problem whenever something of type char iscompared with an int.
For example

charg;

if(c == 0x80)

will never evaluate true on a machine which sign extends since ‘‘c” is sign
extended before the comparison with 0x80, an int.

The only safe comparison between char type and an int is the following:
charg;

if(c =="x")

This is reliable because C guarantees all characters to be positive. The use of
hard-coded octal constants is subject to sign extension. For example the
following program prints‘‘fi80" on aPDP-11:

main()

printf(” %x\n”,’\200);

Type conversion also takes place when arguments are passed to functions.
Types char and short become Machines that sign extend char can give
surprises. For example the following program gives ~128 on some machines:

XENIX Programmer’s Guide

charc =128,
printf(*%d\n" c);

This is because ‘‘c” is converted to int before passing to the function. The
function itself has no knowledge of the original type of the argument, and is
expecting an The correct way to handle this is to code defensively and allow for
the possibility of sign extension:

charc=128;
printf("%d\n", ¢ & Oxff);

A.4.8 Functions With a Variable Number of Arguments

Functions with a variable number of arguments present a particular portability
problem if the type of the arguments is variable too. In such cases the code is
dependent upon the size of various data types.

In XENIX there is an include file, /usr/include/varargs.h, that contains macros
for use in variable argument functions to access the arguments in a portable
way:

typedef char #va_list;

#tdefine va_dcl int va_alist;

#define va_start(list) list = (char *) &va_alist

#define va_end(list)

#define va_arg(list,mode) ((mode *)list += sizeof(mode)))[-1]

The va_end() macro is not currently required. Use of the other macros will be
demonstrated by an example of the fprintf library routine. This has a first
argument of type FILE *, and a second argument of type Subsequent
arguments are of unknown type and number at compilation time. They are
determined at run time by the contentsof the control string, argument, 2.

The first few lines of fprintfto declare the arguments and find the output file
and control string address could be:

A-10

C Language Portability

#include <varargs.h>
#include <stdio.h>
int
fprintf(va_alist)
va_dcl
{ . . .
va_list ap; /* pointer to arg list */
char *format;
FILE #fp;
va_start{ap); /#* initialize arg pointer */

fp == va_arg(ap, FILE ¢);
format = va_arg(ap, char #);

Note that there is just one argument declared to fprintf. This argument is
declared by the va_dcl macro to be type int, although its actual type is
unknown at compile time. The argument pointer ‘“‘ap” isinitialized by va_start
to the address of the first argument. Successive arguments can be picked from
the stack so long as their type is known using the va_arg macro. Thishasatype
as its second argument, and this controls what data is removed from the stack,
and how far the argument pointer ‘‘ap” is incremented. In fprintf, once the
control string is found, the type of subsequent arguments isknown and they can
be accessed sequentially by repeated calls to va_arg(). For example, arguments
of type and could beretrieved asfollows:

double dint;
int *ip;
short s;

dint =va_arg(ap, double),
ip ==va_arg(ap, int *);
s=va_arg(ap, short);

The use of these macros makes the code more portable, although it does assume
a certain standard method of passing arguments on the stack. In particular no
holes must be left by the compiler, and types smaller than int (e.g., and short
on long word machines) must be declared as

A-11

XENIX Programmer’s Guide

A.4.7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression, or arguments to a function call. Thus

func(i++, i++);
isextremely nonportable, and even
fune(i++);

isunwise if func is ever likely to be replaced by a macro, since the macro may use
‘i’ more than once. There are certain XENIX macros commonly used in user
programs; these are all guaranteed to use their argument once, and so can safely
be called with a side-effect argument. The most common examples are getc,

putc, getchar,and putchar.

Operands to the following operators are guaranteed to be evaluated left to
right:

, && Il ?

Note that the comma operator here is a separator for two C statements. A list of
items separated by commas in a declaration list is not guaranteed to be
processed left to right. Thus the declaration

registerinta, b,c, d;

on a PDP-11 where only three register variables may be declared could make
any three of the four variables register type, depending on the compiler. The
correct declaration is to decide the order of importance of the variables being
register type, and then use separate declaration statements, since the order of
processing of individual declaration statements is guaranteed to be sequential:

registerint a;
registerint b;
registerint c;
registerintd;

A-12

C Language Portability

A.5 Program Environment Differences

Most programs make system calls and use library routines for various services.
This section indicates some of those routines that are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the XENIX operating
system. Many of the XENIX system calls are specific to that particular operating
system environment and are not present on all other operating system
implementations of C. Examples of this are getpwent for accessing entries in the
XENIX password file, and getenv which is specific to the XENIX concept of a
process’ environment.

Any program containing hard-coded pathnames to files or directories, or user
IDs, login names, terminal lines or other system dependent parameters is
nonportable. These types of constant should be in header files, passed as
command line arguments, obtained from the environment, or obtained by using
the XENIX default parameter library routines dfopen, and dfread.

Within XENIX, most system calls and library routines are portable across
different implementations and XENIX releases. However, a few routines have
changed in their user interface. The XENIX library routinesare usually portable
among XENIX systems.

Note that the members of the printf family, and have changed in several ways
during the evolution of XENIX, and some features are not completely portable.
The return values of these routines cannot be relied upon to have the same
meaning on all systems. Some of the format conversion characters have
changed their meanings, in particular those relating to uppercase and lowercase
in the output of hexadecimal numbers, and the specification of long integers on
16-bit word machines. The reference manual page for contains the correct
specification for these routines.

A.8 Portability of Data

Data files are almost always nonportable across different machine CPU
architectures. As mentioned above, structures, unions, and arrays have varying
internal layout and padding requirements on different machines. In addition,
byte ordering within words and actual word iength may differ.

The only way achieve data file portability is to write and read data files as one
dimensional character arrays. This avoids alignment and padding problems if
the data is written and read as characters, and interpreted that way. Thus
ASCII text files can usually be moved between different machine types without
too many problems.

A-13

XENIX Programmer’s Guide

A.7 Lint

Lintis a C program checker which attempts to detect features of a collection of
C source files that are nonportable or even incorrect C. One particular
advantage of lint over any compiler checking is that lint checks function
declaration and usage acrosssource files. Neither compiler nor linker do this.

Lint will generate warning messages about nonportable pointer arithmetic,
assignments, and type conversions. Passage unscathed through lint is not a
guarantee that a program is completely portable.

A.8 Byte Ordering Summary

The following conventions are used in the tables below:

a0 The lowest physically addressed byte of the data item.a0 + 1, and so
on.

b0 The least significant byte of the data item, 'b1’ being the next least
significant, and soon.

Note that any program that actually makes use of the following information is
guaranteed to be nonportable!

Byte Ordering for Short Types

CPU Byte Order
! a0 | al |

PDP-11 bo bl
VAX-11 bo bl
8086 b0 bl
286 b0 bl
M68000 bl b0
Z8000 bl b0

A-14

Byte Ordering for Long Types

C Language Portability

CPU Byte Order

a0 al 22 ad
PDP-11 b2 b3 b0 bl
VAX-11 b0 bl b2 b3
8086 * b0 bl b2 b3
8086 *=* b2 b3 bo bl
286 b0 bl b2 b3
M68000 b3 b2 bl bO
Z8000 b3 b2 bl b0

Note that byte ordering for long types is compiler dependent (not CPU
dependent) on PDP-11 and 8086 based machines. This table is based on a PDP-
11 using the Ritchie compiler. 8086 * shows byte ordering for compilers using
little-endian word order. 8086 ** shows byte ordering for big-endian compilers.
8086 users can refer to the XENIX Development System Release Notes for the
type of word order used of the compiler.

A-15

Appendix B
Md4: A Macro Processor

B.1 Introduction 1

B.2 fnvokingmd 1

B.3 DefiningMacros 2

B4 Quoting 3

B.S Using Arguments 4

B6 Using Arithmetic Built—ins S
B.7 ManipulatingFiles 5

B.8 UsingSystemCommands 6
B9 UsingConditionals 6

B.10 Manipulating Strings 7

B.11 Printing 8

M4: A Macro Processor

B.1 Introduction

The :m4 macro processor defines and processes specially defined strings of characters
called macros. By defining a set of macros to be processed by m4, a programming
language canbeenhancedtomake it:

— Morestructured
— Morereadable

— Moreappropriate foraparticular application

The #define statement in C and the analogous define in Ratfor are examples of the
basic facility provided by any macroprocessor—replacement of text by other text.

Besidesthe straightforward replacement of one string of text by another, m4 provides:
— Mauxcros witharguments
— Conditional macroexpansions
— Arithmetic expressions
— Filemanipulationfacilities

— Stringprocessing functions

The basic operation of m4 is copying its input to its output. As the input is read, each
alphanumeric token (that is, string of letters and digits) is checked. 1fthe token is the
name of a macro, then the name of the macro is replaced by its defining text. The
resulting string is reread by m4. Macros may also be called with arguments, in which
case the arguments are collected and substituted in the right places in the defining text
beforem4rescansthetext.

M4 provides a collection of about twenty built—in macros. In addition, the user can
define new macros. Built—ins and user—defined macros work in exactly the same
way, except that some of the built—~in macros have side effects on the state of the
process.

B.2 Invoking m4

Theinvocationsyntax for m4 is:
m4 [fites]

Each tile name argument is processed in order. If there are no arguments, or if an
argument is a dash (—), thenthe standard isread. The processed text is wriitentothe
standardoutput, andcanberedirectedasinthe followingexample:

m4 filel file2 — > outputfile

Note the use of the dash in the above example to indicate processing of the standard
input, afterthefiles filel and file2 have beenprocessedby m4.

XENIX Programmer’s Guide

B.3 Defining Macros

The primary built—in function of m4 is define, which is used to define new macros.
The input
define(rame, stuff)

causes the string name to be defined as stuff. All subsequent occurrences of name will
be replaced by stuff. Name must be alphanumeric and must begin with a letter (the
underscore (_)countsasa letter). Sruffis any text, including text that contains balanced
parentheses; itmay stretch over multiple lines.

Thus, asatypical example
define(N, 100)

if (i > N)
defines ‘N’ tobe 100, and usesthis symbolic constantina later ¥ statement.

The left parenthesis must immediately follow the word define, to signal that definehas
arguments. If a macro or built—in name is not followed immediately by a left
parenthesis, *‘(*’, it is assumed to have no arguments. This is the situation for ‘‘N"*
above; it is actually a macro with no arguments. Thus, whenitisused, noparentheses
are needed following its name.

You should also notice that a macro name is only recognized as such if it appears
surrounded by nonalphanumerics. Forexample, in

define(N, 100)

if (NNN > 100)

the variable ‘ ‘NNN"* is absolutely unrelated to the defined macro *“N*°, eventhough it
containsthreeN’s.

Thingsmay be definedintermsof other things. Forexample

define(N, 100)

define(M, N)
definesbothM andNtobe 100.
What happensif ‘N’ is redefined? Or, tosay it another way, is ‘“‘M"" definedas “N*°
oras 100? inm4 , the latteristrue, *‘M"* is 100, soevenif *‘N°’ subsequently changes,
‘‘M’*doesnot.

This behavior arises because m4 expands macro names into their defining text as soon
as it possibly can. Here, that meansthat whenthe string “‘N°’ isscen asthe arguments
of defime are being collected, it is immediately replaced by 100; it’s just as if you had
said

define(M, 100)
inthe firstplace.

1f this isn't what you really want, there are two ways out of . The first, which is
specific tothis situation, istointerchange theorderofthe definitions:

B-2

M4 A Macro Processor

define(M, N)
define(N, 100)

Now ‘“M"* is defined to be the string *‘N"*, so when you ask for *‘M"’ later, you will
always get the value of ‘N’ at that time (because the ‘‘M** will be replaced by “*N**
which, intumn, will bereplacedby 100).

B.4 Quoting

The more general solution is to delay the expansion of the arguments of define by
quoting them. Any text surrounded by single quotation marks ‘ and * is not expanded
immediately, but hasthe quotation marks stripped off. Ifyou say

define(N, 100)

define(M, ‘N°)

the quotation marks around the *““N*’ are stripped off as the argument is being
collected, but they have served their purpose, and ‘‘M"’ is defined as the string *N*°,
not 100. The general rule is that m4 always strips off one leve! of single quotation
marks whenever it evaluates samething. This is true even outside of macros. if you
want the word *‘define’* toappear intheoutput, youhave toquote it inthe input, as in

‘define’ = 1;
As another instance of the same thing, which is a bit more surprising, consider
redefining ““N*":

define(N, 100)

define(N, 200)
Perhaps regrettably, the ‘‘N’’ inthe second definitionis evaluated as soonasit’s seen;
thatis, itisreplacedby 100, soit’sasif you had written

define(100, 200)

This statement is ignored by m4 , since youcan only define thingsthat look like names,
butitobviously doesn'thave the effect you wanted. Toreally redefine ‘‘N°’, you must
delay theevaluationby quoting:

define(N, 100)
define(‘N’, 200)
Inm4, itis often wise toquote the first argument of amacro.

If the forward and backward quotation marks (* and *) are not convenient for some
reason, the quotation marks can be changed with the built—in changequote. For
example:

changcquo(ed ,])

makes the new quotation marksthe left and right brackets. Youcanrestorethe original
characters withjust

changequote

There are two additional built—ins related to define. The buik —in undefine removes
the definition of some macro orbuilt—in:

XENIX Programmer’s Guide

undefine(‘N’)

removesthe definitionof ‘‘N”°. Builk—inscanberemoved withondefine, asin
undefine(‘definc’)

but once you remove one, you can never get it back.

The buil—in ifdef provides a way to deiermine if a macro is currently defined. For
instance. pretend that either the word *‘xenix’* or “‘unix"* is defined according to a
particular implementation of a program. To perform operations according to which
systemyouhave youmight say:

ifdef(*xenix’, ‘define(system,1)’)
ifdef(‘unix’, ‘define(system,2)")
Don't forget the quotationmarks intheabove cxample.

Ifdef actuzally permits three arguments: if the name is undefined, the vatuc of ¥def is
thenthe thirdargument, asin

ifdef(‘xenix’, on XENIX, not on XENIX)
B.S Using Arguments

So far we have discussed the simplest form of macro processing — replacing one
string by another (fixed) string. User—defined macros may also have arguments, so
different invocations can have different results. Within the replacement text for a
macro (the second argument of its define) any occurrence of $n will be replaced by the
nthargument whenthe macro isactually used. Thus, themacrobump, defincdas

define(bump, $1 = 31 + 1)
generatescodetoincrementits argument by §:
bump(x)

x=x+1

A macro can have as many arguments as you wani, but only the first nine are
accessible, through $1 t0 $9. (The macro name itself is $0.) Arguments that are not
supplied are replaced by null strings, so we can define a macro cat which simply
concatenatesitsarguments, like this:

define(cat, $1$233343536373839)
Thus

caux, y, 2)
isequivalentto

ryz

The arguments $4 through $9 arc mll, since no comesponding arguments were
provided.

Leading unquoted blanks, tabs, or newlines that occur during argument collectionare
discarded. All other white spaceisretained. Thus:

M4: A Macro Processor

define(a, b ¢)
defines‘‘a’’tobe‘‘db ¢’

Arguments are separated by commas, but parentheses are counted properly, so a
comma protectedby parenthesesdocs not terminate anargument. That is, in

detine(a, (b,c))

there are only two arguments; the second is literally ‘‘(b,c)"*. And of course a bare
comma or parenthesiscanbe insertedby quotingit.

B.6 Using Arithmetic Built—ins

M4 provides two buik—in functions for doing arithmetic on integers. The simplest is
incr, which increments its numeric argument by 1. Thus, to handle the common
programming situation where you want a variable to be defined as one more than N,
write

define(N, 100)

define(N1, ‘incr(N)’)

Then ‘N1’ isdefinedas one more thanthe current valueof *‘N’°.

The more general mechanism for arithmetic is a buik—in called eval, which is capable
of arbitrary arithmetic on integers. it provides the following operators (in decreasing
order of precedence):

unary + and —
**or ° (exponentiation)
* / % (modulus)

=1= < <= > >=
(not)

& or && (logical and)

for il (logical or)

T+

Parentheses may be used to group operations where needed. All the operands of an
expression given to eval must ultimately be numeric. The numeric value of a true
relation (like 1>0) is 1, and false is 0. The precision in eval is implementation
dependent.

Asa simple example, suppose we want ‘‘M**tobe ‘‘2**N+1"". Then

define(N, 3)
define(M, ‘eval(2**N+1)")

Asamatter of principle, it is advisable to quote the defining text foramacrounlessit is
very simple indeed (say just a number); it usually gives the result you want, and is a
goodhabittogetinto.

B.7 Manipulating Files

You caninclude anew fileinthe input at any time by the buiit — infunctioninclude:
include(filename)

XENIX Programmer’s Gulde

inserts the contents of fifename in place of the indiude command. The comtents of the
file is oftena set of definitions. The value of inciude (that is, tsreplacement text) isthe
contents of the file; thiscanbe captured indefinitions, etc.

It is a fatal exvor if the file named in inclede cannot be accessed. To get some control
over this situation, the alternate form sinclude can be used; sindede (for ‘silent
include’ ") saysnothing and continues if it can’t accessthe file.

It is also possibie to divert the cutput of m4 to temporary files during processing, and
output the collected material upon command. /4 maintains ninc of these diversions,
numbered I through 9. if you say

divert(n)

all subsequent cutput is put onto the end of a temporary file referved to as “‘n’’.
Diverting to this file is stopped by another divers command; in particular, divert or
divert(0)resumesthe normal cutput process.

Divertedtext is normaily output alt at once at the end of processing, with the diversions
output in numeric order. It is possible, however, to bring back diversions at any time,
thatis, to appendthemtothe current diversion.

undivert
brings back all diversions in numeric order, and undivert with arguments brings back
the selected diversions in the order given. The act of undiverting discards the diverted
stuff, as does dii verting into adiversion whose number isnot betweenQand Qinclusive.

The value of undivert is not the diverted stuff. Furthermore, the diveried material is
not rescanned for macros.

Thebuilt—indivaoum returns the number of the currently active diversion. Thisiszero
during nommal processing.

B.8 Using System Commands

You canrun any program inthe local operating system with the sysemd buikt—in. For
example,
syscmd(date)

runs the date command. Nommally, sysemd would be used to create a file for a
subsequent include.

To facilitate making unique file names, the built—in maketemp is provided, with
specifications identical to the system function mktemp: a string of * XX XXX " inthe
argument isreplaced by the process id ofthe current process.

B.9 Using Conditionals

There is a built—in called Heise which enables you to perfonm arbitrary conditional
testing. Inthe simplest form,

ifelse(a, b, ¢, d)

compares the two strings a@ and b. If these are idemtical, Helse returns the string c;
otherwise it returns 4. Thus, we might define 2 macro called compare which

B-6

M4: A Mecro Processor

comparestwostringsandretums *‘yes'’ or ‘‘no"”’ if they arethe same oz differemt.
define(compare, ‘ifelse($1, $2, yes, no)’)

Notethe quotationmarks, which prevent too—ecarly evaluationofifeise.

Ifthe fourth argument ismissing, itistreatedasempy.

ifelse can actually have any number of arguments, and thus provides & limited form of
multi—way decisioncapability. intheinput

ifelse(a, b, ¢, d, ¢, f, 8)

if the string a matches the string b, the resultis c. Otherwise, ifdisthesamecase, the
resultisf. Otherwisetheresultisg. Ifthefinal argument is omitted, theresult is null, so

ifelse(a, b, c)
iscifamatches b, and null otherwise.

B.1¢ Mzanipulating Strings

The built—inlenreturnsthe length of the string that makes up itsargument. Thus
len(abedef)

is6,and
len((a,b))

isS.

Thebuilt—insubstr canbe usedtoproduce substringsof strings. Forexample
substr(s,i,n)

returnsthe substring of sthat startsat positioni (origin zero), andis ncharactersfong. 1f
nisomitted, therest ofthe string isreturned, 50

substr{‘now is the time’, 1)
is

ow is the time
Ifior nare out ofrange, various sensible thingshappen.
The command

index(s/,s2)

returns the index (position) in s/ where the string s2 occurs, or — 1 if it doesn’t occur.
Aswithsubstr, theoriginforstringsis0.

The built — intranslit performs character transliteration.
translit(s, £, ?)

modifies s by replacing any character found inf by the corresponding character of z.
Thatis

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If# is shorter than £, characters that
don’thave anentry inzare deleted; as a limiting case, if is not present atall, characters

B-7

XENIX Programmer’s Guide

fromfaredeleted froms. So
translit(s, aciou)
deletes vowels from *‘s"".

There is also a built—in called dnd which deletes all characters that follow it up to and (
including the next newline. It is useful mainly for throwing away empty lines that {
otherwisetendtoclutterupm4 output. Forexample, ifyou say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied into the
output, where it may not be wanted. Ifyou adddaltocach of these lines, the newlines
willdisappear.
Another waytoachievethis, is
divert(—1)
define(...)

divert
B.11 Printing

The built—in errprint writes its arguments out on the standard error file. Thus, you (
cansay
errprint(‘fatal error’)

Dumpdef is a debugging aid that dumps the current definitions of defined terms. 1f
there are no arguments, you get everything; otherwise you get the ones you name as
arguments. Don't forget the quotation marks.

Appendix C
A Commeon Library
For XENIX and MS—DOS

C.1 introduction 1
C.2 CommonlincludeFiles 2

CJ3 Differences BetweenCommonRoutines 3
C.3.1 Abort 3
C3.2 Access 3
C33 Chdir 3
C.34 Chmod 4
C.35 Chsize 4
C.3.6 Creat 4
C.3.7 Ctime, Localtime, Gmtime, and Asctime 4
C.38 Exec 4
C.3.9 Exit 5
C.3.10 Fopen,Fdopen,Freopen 5
C.3.11 Fseek 6
C.3.12 Getpid 6
C.3.13 Isatty 6
C.3.14 Lseek 6
C.3.15 Mktemp 6
C.3.16 Open 7
C.3.17 Read 7
C.3.18 Sbrk 7
C.3.19 Signal 7
C.3.20 Stat,Fstat 7
C.3.21 System 9
C.3.22 Umask 9
C.3.23 Unlink 9
C3.4 Write 9

C4 DifferencesinDefinitions 9

C.S

MS —DOS SpecificRoutines 10

Cs.1
Cs5.2
Cs5.3
Cs54
Cs.5
C5.6
C.5.7
Cs.8
Cs59
C.s5.10
C.s.11
Cs5.12
C.5.13
Cs5.14
CS5.15

Eof 10

Fcloseall 10
Fgetchar 10
Filelength 11
Flushall i1
Fputchar 11
ltoa,Ltoa,andUltoa 11
Labs 12

Mkdir 12

Rmdir 12

Spawn 13
StrlwrandStrupr 15
StrsetandStraset 1S
Strrev 15

Tell 16

A Common Library For XENIX and MS-DOS

C.1 Introduction

Thisappendix lists the XENIX library routines that form the Common C Library forthe
XENIX and MS—DOS versions of the Microsoft C compiler. These routines can be
used by programmers who wish to develop C programs for both the XENIX and

MS—DOS environmems. The routines provide an identical interface to a set of
operationsthat are useful onboth XENLX and MS —DOS.

The following isa list of the common routines:

abort* ecvt free islower putw stmcmp
abs execl* freopen * isprinmt rand strcpy
access* execle* frexp ispunct read® strpbrk
acos execlp* fscanf isspace realloc - strrchr
asctime * execv* fscek * isupper rewind strspn
asin execve* fstat* isxdigit sbrk* strtok
assert execvp® fiell j scanf swab
atan exit* ftime i setbuf system *
atan2 exp fwrite jn setjmp tan

atof fabs gevt Idexp signal ® tanh
atoi fclose getc localtime * sin time
atol fovt getchar log sinh toascii
cabs fdopen* getcwd logl0 sprintf tolower
calloc feof getenv longjmp sqrt toupper
ceil ferror getpid* Iseek * srand Jolower
chdir*® filush gets malloc sscanf toupper
chmod * fgetc getw mktemp * stat* tzset
chsize* fgets gmtime * modf strcat umask *
clearerr fileno hypot open* strchr ungetc
close fioor isalnum perror strcmp unlink *
cos fmod isalpha pow strepy utime
cosh fopen* isascii printf strespn write *
creat* fprintf isatty * putc strdup Yo
ctime* fputc iscntrl putchar strlen yl

dup fputs isdigit puts stmcat yn
dup2 fread isgraph

The following is a list of the variables used by the common routines and available in
bothenvironments:

daylight timezone tzname

Routinesmarked by anasterisk (*) have a slightly different operation ormeaning inthe
MS—DOS environment than they do under XENIX. These differences are fully
described inthe following sections. Routines which are not marked function exactly
the same inMS—DOS asthey doinXENIX. Completedescriptionsare giveninsection
Softhe XENIX ReferenceManual .

In addition to common routines, this appendix describes the following MS—DOS
specitic routines:

Programmner’s Golde

eof fioa spawnle stmnset
fcloscall labs spawnlp strev
fgetchar ltoa spawnv strset

filelength mkdir spawnve strupr
flushall mdir spawnvp tell
fputchar spawnl strley uitoa

Cc.2 Common Include Fiies

Structure definitions, retum value types, and manifest constants used in the
descriptions of some of the common routines may vary from envirorment to
environment and arc therefore fully defined in a set of include files for cach
environment. There are the following inciude files:

assert.h
ctype.h
ermo.h
fcmlh
math.h
setymp.h
signal.h
stdio.h
time. h
sys/timeb.h
sys/types.h
sys/stat.h
sys/utime.h

Theassert. Afile definesthe statememsused to implement the asser function.

The ctvpe. hfile defines the values and macros used to support the character translation
andtesting functions.

The errno.hfile contains definitions of the emror values returned in the global variable,
errme. Whenever a library routine or system call detects an error, a general error
indicator is returned from the catll. The indicator is definedto be some otherwise illegal
return value, usuaily — 1. This methcd is used to avoid possibie conflicts between an
error return and a fegitimate return value. When an error return is detected, the actual
error value can be determined by looking at the value of errno. The value of exraois
undefined ifthe functionreturned a non—emorresult.

Thefcnil. hfile definesthe values and macros used with the openandcrear functions.

The marh. file defines some of the floating point math routine interfaces and some
standard constants.

The setjmp.h function defines the structure used with the setjmp and longjmp
functions.

The signal.hfile defines the values and macros used with the signal function.

The stdio. A file containsthe definitions of the basic system file structure, FILE, someof
the basic operations available for files, such as the putc, getc, putchar, and getchar
macros, as well asthe standard pointer constant NULL .

A Common Library For XENIX and MS-DOS

The time.h file defines the structure tip returned with the localtime and gmtime
functions, and usedby the asctime function.

The sys/timeb. hfile definesthe structure timebused withthe frime function.

The svs/types.hfile defines some of the types used in defining system structures, such
asthetime, date, and file status structures.

The sys/stas. h tile defines the format, fields, and constant values for the file status
structure returned by the star and fszat routines. It also defines the file permission
modesthatmay beusedinthe open, chmaod , and creat functions.

The sys/utime. hfile definesthe structure used with the time routines.
C.3 Differences Between Common Routines

The following sections explain how the MS—DOS routines of the common library
differ from their XENIX counterparts. These descriptions are intended to be used in
conjunction with the more detailed descriptions of XENIX functions provided in
section Sof the XENIX Reference Manual .

C.3.1 Abort

The abort routine terminates the process and returns control to the operating system
without creating a core file. It also copies the message ‘‘Abnormal program
termination’ " tothe stderr file.

C.3.2 Access

The access routine checlss the access 1o a given file. Access does not depend on real
and effective IDs as it does inthe XENIX environment. Under MS—DOS, the real and
effective IDsareignored. Amode canbe any combination of the values:

04 Read

02 Write

00 Check for existence

The *‘Execute’ " accessmode (01) is not allowed.
The EROFSand ETXTBSY ervor values are not used.

C.3.3 Chdir

The chdir routine causes the named directory to become the cusrent working directory
just as it does in the XENIX environment. The only difference is that the directory
pathname under MS—DOS should have a backslash separator (\) instcad of a slash
separator (/).

Programmer’s Guide

C.3.4 Chmod

The chmod routine can set the ‘‘owner”* access permissions for a given file, but all
otherpermissions settingsare ignored. Mode canbe:

SIREAD Read by owner
SIWRITE Write by owner
SIREADIS_IWRITE Read and write by owner

The SLIREAD and S IWRITE constants are defined inthe sys/star. hinclude file. Note
that the OR operator (1) is used to combine these constants to form read and write
permission.

If write permission is not given, the file is treated as a read—only file. If read
permission is not given, the file is assumedtobereadable. MS—DOS does not support
non-readable files.

Thechmodroutineunder MS — DOS is not affected by real or effective IDs.
The EPERM and ETXTBSY error values are notused.

C.3.5 Chsize

The chsize routine changes the size of the given file just as it does in the XENIX
environment. However, the maximum size of a file is not affected by the limit defined
bytheulimit(S)routine. There is noulimitroutine forthe MS—DOS environment.

C.3.6 Creat

The creat routine creates a new file or prepares an existing file for writing. Ifthe file is
created, the access permissions are sct as defined by mode. Only ‘‘owner”’

permissions are allowed (see “Chmod’ above). Ownership of the file is not affected
bythereal and effectiveuserand groupIDs. (ThescareignoredunderMS—DOS).

The EROFS andETXTBSY error values are notused by crearunder MS —DOS.

As in the XENIX environment, use of the open routine is preferred over crear when
creating or opening files inthe MS — DOS environment.

C.3.7 Ctime, Localtime, Gmtime, and Asctime

Althoughthe ctime , localtime , gmtime , and asctime routines, which return adate and
time, carry out the same time conversions as in the XENIX environment, the carliest
possible date returned by these routines in the MS—DOS environment is January §,
1980. The XENIX routines can returndates asearly asJanuary 1, 1970. ifthe routines
arepassed valuesrepresenting datesearlier thanJanuary 1, 1980, they returnthis date.

C.J3.8 Exec

The execl, execle, execlp, execv, execve, and execvp routines overlay the calling
process as in the XENIX environment. If there is not enocugh memory for the new

C-4

A Common Library For XENIX and MS-DOS

process, the exec routine will fail and returntothecalling process. Otherwise, the new
process beginsexecution.

UnderMS—DOS, the exec routinesdonor:
— Usetheclose—on—execflagto determine open files forthe new process.

— Use the set user and group ID access permissions of the new process file to
determine effective userand group IDs.

— Setupsignal processing forthe new process.

— Disable profiling for the new precess (profiling is not allowed under MS—
DOS).

— Givethenewprocess attributesinherited fromthe calling process.

— UsetheETXTBSY error value.

The combined size of all argumenis in an exec routine under MS—DOS must not
exceed 128 bytes.

C.3.9 Exit

The exit function terminates the current process and makesthe low order byte of starus
availableto the parent process. Whenthe process isterminated, all buffers are flushed
andreleased. Also, all openfilesinthe calling process are closed.

C.3.18 Fopen, Fdopen, Freopen

The fopen . fdopen, and freopenroutines open stream files just asthey dointhe XENIX
environment. However, there are the following additional values forthe rype string:

t Opens the file in text mode. Opening a file in this mode causes the low—
level /O routines to translate carriage return/linefeed (CR—LF) character
combinations into a single linefeed (LF) on input. Similarly on output,
linefeeds aretranslatedintoCR—LF combinations.

b Opensthe file in binary mode. This mode suppresses translation.
Forexample, the call

fopen(“test.dat”, "n");
opensa file forreading intext mode.

If ““t”* or *‘b’" is not given in the type string, then the mode is defined by the default
mode variable fmode . 1f_fmode is0, the default mode is text. 1fthehigherorderbit of
Jmodeis 1, thedefault mode is binary. The linker initially setsthe fmode variableto0
unless you link your program with the object file /lib/dos/rmvmode.o. This file sets
JSmodetol.

Programmer’s Guide

C.3.11 Fseek

The fseek routine moves the file pointer to the given position just as in the XENIX
environment. However, since MS —DOS uses the carriage returnvlinefeed (CR—LF)
character combinations for newline characters (XENIX uses only anLF), anfseek call
which movesthe file pointera specific number of bytes past newline characters will not
move the pointer to same place in the MS—DOS file as it does in the XENIX file. For
example, ifafile containsthe characters

abcdef\n09123

(where\nisthe newline character) andthe file pointer iscurrently at the letter **a’", then
thecall

fseek(stream, 8, 1);

moves the pointer tothe digit ‘0"", if the file isan MS — DS file, or to the digit 9", if
the fileisa XENIX file.

Note that somefseek calls treat MS — DOS and XENIX filesidentically. Forexample,
fseek(stream, 0, 2)
alwaysmovesthe filepointertotheendofthefile.

C.3.12 Getpld

The getpid routine returns a2 unique number. Although the number may be used to
uniquely identify the process, it does not have the same meaning as the process ID
returned by getpidinthe XENIX environment.

C.3.13 Isatty

The isarry routine indicates whether or not the given file descriptor is associated with
any character device, not just aterminal. A character device canbe aconsole, printer,
orserial port.

C.3.14 Lseek

The Iseek routine is similar to the fseek routine under MS—DOS whenever the given
file descriptor has been opened in texxt mode. In other words, [seek must move the file
pointer one additional byte for each newline character inthe MS —DOS file in order to
move the file pointer to the same position in the XENIX file. See *‘Fseek"" for more
details.

C.3.18 Miktemp

The mktemp routine creates a temporary filename, using a unique number instead of a
process ID. The numberisthe same asreturned by gespid (see ‘ ‘Getpid®’ above).

A Common Librery For XENIX and MS-DOS

C.3.16 Open

The open routine opens a file descriptor for a named file, just as in the XENIX
environment. However, there is one additional oflag value, O_.BINARY, and two
values, ONDELA Y and O_SYNCW, have beerremoved.

The O_BINARY flag causes the file to be opened inthe opposite mode specified by the
Jmode variable (see ‘‘Fopen’™ above). For example, if the default mode is texs
(fmode is 0), then using O_BINARY opens the file in binary mode, but if the default
modeis binary (fmode is 1), thenusing O_BINARY opensthe file intex¢mode.

TheEISDIR, EROFS ,ETXTBSY, and ENXIC efror valuesarenot used.
C.3.17 Read

The read routine reads characters from the file given by a file descriptor just as in the
XENIX environment. However, ifthe filehas beenopenedin text mode (see ‘Open’’
above), read will replace each CR—LF pair read from the file with a single LF
character. The number of bytes returned is the number of bytes remaining afterthe the
CR~LF pairs have beenreplaced. Thus, the return value may not always correspond
with the actual number of bytes read. This is considered normal and has no
implicationsas farasdetecting the endofthe file.

C.3.18 Sbrk

The sbrk routine performs the same task as inthe XENIX environment. Howevez, sbrk
is not affected by the limits imposed by ulimir(S), since no ulimit routine exists for
MS-DOS.

C.3.19 Signal

The signalroutine can only handle the SIGINT signal. inMS—DOS, SIGINT isdefined
tobeINT 23H (the CNTRL—Csignal).

C.3.20 Stag, Fstat

The star andfstarroutines return a structure defining the current status of the given file.
The structure members returned by starhave the following names andmeaning:

sLmode User read/write/execute bits are set or cleared to reflect the file's
permissions. The execute bit is inferred from the filename extension.
These are copied into the group and other bits. The SIFREGbit is set if
the file is a regular file; SIFDIR is set if it is a directory. See stai.hin
‘Common Inciude Files' above.

st.ino Notused.

Programmer’s Guide

st.dev Drive number ofthedisk containing the file.
st.rdev Drive numberof the disk containingthe file.
st nlink Always|.

stuid Notused.

st_gid Notused.

st_size Sizeofthefileinbytes.

st_atime Time of last modificationof file.

st.mtime Time of lastmoditicationoffile.

st.ctime Time oflast modificationof file.

Fsrat returns less useful information since MS—DOS does not make as much

information available for file descriptors as it does full pathnames. Fstar can detect
device files, but it must not be used with directories. The structurereturned by fszarhas
the following members:

st_.mode User read and write bits are set or cleared 1o reflect the file's
permissions. The SIFCHR flag is set if this is adevice. Otherwise, the
S_IFREGbitisset. Seestrat.hin' ‘Commoninclude Files'” above.

stiino Notused.

st.dev Either drive mumber of the disk comtaining the file, or file descripior if
thisfile isadevice.

st.rdev Either drive number of the disk comaining the file, or file descriptor if
thisfileisadevice.

stnlink Alwaysl.

stuid Notused.

st.gid Notused.

st_size Sizeofthe fileinbytes.

statime Time oflastmodificationof file.

st_mtime Time of lastmodificationof Gile.

st.ctime Time oflast modificationoffile.

A Common Library For XENIX and MS-DOS

C.3.21 System

The system routine passes the given string the the operating system for execution. In
order to execute this string, the full pathname of the directory containing the MS—
DOS “COMMAND.COM'’ program must be assigned to the COMSPC environmemnt
variable, or assigned tothe PATH environment variable. The call will return an error if
““COMMAND.COM"’ cannot be found using these variables.

C.3.22 Umask

The umask routine can set a mask for ‘‘owner”’ read and write access permissions
only. Allother permissions are ignored.

C.l.23 Unlink

The unlink routine always deletes the given file. Since MS—DOS does not allow
multiple ‘‘links’’ tothe samefile, unlinking a file isthe same asdeletingit.

The EBUSY, ETXTBSY, and EROFS error valuesare not used.
C.3.24 Write

Thewrite routine writesa specified number of characters tothe file named by the given
file descriptor just asin the XENIX environment. However, if the file has beenopened
in text mode (see ‘‘Open’’ above), every LF character in the output is replaced by a
CR—LF pairbefore being written. Thisdoes not affect the returnvalue.

C.4 Differences in Definitions

Many of the special definitions given in intro(S) in the XENIX Reference Marual do
not apply to the common routines when used in the MS—DOS environment. The
followingisalistof the differences.

The process ID is still a unique integer, but does not have the same meaning asinthe
XENIX environment.

The parent process , process group , tty group , real user , real group, effective user
and effective group 1Ds are not used by the common routines when run under MS—
DOS. Furthermore, there is no super—user of special processes in the MS—DOS
environment.

Filenames in MS—DOS have two parts: a filename and a filename extension
Filenamesmay be any combination ofuptoeight letters or digits. Filename extensions
may be any combinationof uptothree lettersor digits, preceded by aperiod(.).

Pathnames in MS —DOS may be any combination of directory names separated by a
backslash (\). The slash (/) used in the XENIX environment is not allowed unless the
user has redefined the leading character used with options in MS—DOS command
lines (this character is initially the slash). Directory names may be any combination of
up to eight letters or digits. The special names ‘“."" and *‘.."" refer to the current

c-9

Programmer’s Guide

directory andthe parent directory, respectively.

Drive names may be used at the begin of a pathname to specify a specific disk drive or
device. Drives names are generally a letter or combination of letters and digits
followedby acolon(:).

Access permissions in MS—DOS are restricted to read and write by the ownez of the
file. Since all users own ali files in MS—DOS, access permissions do little more than
detine whether oz not the file is a read—only file or can be modified. Execution

permission and other permisstons defined for files in the XENIX environmem do not

apply the files inthe MS — DOS environmerz.

C.5 MS-—DOS Specific Routines

The MS—DOS specific routines are intended for programs being compiled in the
XENIX environment, but which aretobe executed inthe MS — DOS environment only.
These routines are not available for use in the XENIX envirommen. The following
sectionsdescribe the routinesindetail.

C.5.1 Eof

int eof(fildes)
int fildes;

The eof function returns the vajue 1 if the current position of ihe file associated with
Sfildes is at the end—of—file, otherwise the function returns 0. The return value —}
indicates anesror.

C.5.2 Fcloseall

int fcloseall()

The fcloseall function closes ali currently open streams, except stdim, stdownt, and
stderr. The function flushes ail file buffers before closing, and although it relcases
system—allocated buffers, it does not release buffersallocatedusing serbuf.

Fcloseall returns the total number of streams closed. The return value — | indicatesan
error.

C.5.3 Fgetchar

#include <stdio.h>

int fgetchar()

The fgetchar function reads a single character from the standard input stream stdlin.
Fgetcharisthe function versionofthe macrogetchar.

Fgeitcharreturnsthe characterread, or EOF whenend — of —fileisreached.

A Common Library For XENIX amnd MS-DOS

C.5.4 Fielength

long filelength(fildes)
int fildes;

The filelength function returns the length, in bytes, of the file associated with fildes.
Thereturn value — § indicates an ervos.

C.8.5 Flushail

int flushall()

The flushall function flushes the buffers of all currently open output streams. All
streams remainopenafterthe call.

Flushall returns the total number of open streams (both input and output streams).
Thereisnoerrorreturn.

Note that buffers are automatically flushed when they are full, when the associated
files are closed, or when aprogramterminates without closing the files.

C.5.6 Fpuichar

#inchude <stdio.h>

int fputchar(c)
char c;

The fputchar function writes the single character ¢ to the cutput siream stdout.
Fputcharisthe function versionof the macro putchar .

Fputcharreturns the character written. The return value EOF indicates an esror.

C.5.7 Etes, Lics, and Ultes

char *itoa(value, string, radix)
int value;

char *string;

int radix;

char *ltoa(value, string, radix)
long value;

char *string;

int radix;

char *ultoa(value, string, radix)
unsigned long value;

char *string;

int radix;

C-11

Programmer’s Guide

The itaa, ltoa, and ultoa functions convert the given value to a character string that
represents that value. The resulting string is stored in string, and consists of one or
more digits from the numeric base givenby radix.

Itoa converts type int values into strings, {toa converts type long values, and ulfoa
convertstype unsigned long values. The radix canbe any inthe range 2—36. if radix
equals 10 and value is negative, the first character of the stored string is the minus sign

().
All functions return a pointer to the new string. There is no emror return, and no
overflow checkingisperformed.

C.5.8 Labs

long labs(value)
long value;

The labs function returns the absolute value of the type long number given by value .
Thereisnoerrorreturn.

C.5.9 Mkdir

int mkdir(pathname)
char *pathname;

The mkdir function creates a new directory with the specified pathname. The last
component of pathname names the new directory; the preceding components must
identify anexistingdirectory.

Mkdir returns the value O if the rew directory was created. The return value —1
indicatesanerror.

C.5.1¢ Rmdir

int rmdir(pathname)
char *pathname;

The rmdir function deletesthe directory specified by pathname . The directory must be
empty, and it must not be the current working directory or the root directory.

Rmdir returns the value O if the directory is successfully deleted. The return value —1
indicatesanerror.

C-12

A Common Librery For XENIX aend MS-DOS
C.5.11 Spawn

#include <spawn.h>
#include <stdio.h>

int spawnl(modeflag, pathname, arg9, ..., argn, NULL)
int modeflag;
char *pathname, *arg0, ..., *argn;

int spawnle(modeflag, pathname, arg0, ..., argn, NULL, envp)
int modeflag;
char *pathname, *argO, ..., *argn, *envp| |;

int spawnlp(modeflag, filename, arg0, ..., argn, NULL)
int modeflag;
char *filename, *arg0, ..., *argn;

int spawnv(modefiag, pathname, argv)
int modeflag;
char *pathname, *argv{];

int spawnve(modeflag, pathname, argv, envp)
int modeflag;
char *pathname, *argy]. *envpl |;

int spawnvp(modeflag, filename, argv)
int modeflag;
char *filename, *arv];

The spawn functions load and execute new child processes. The pathname oz filename
argument names the executable file tobe loaded. Theargnorargvarguments contain
pointers to character strings to be passed to the new process. The modeflag argument
definesthe executionof the parent process after placing a callto a spawnfunction. The
envp argument allows the userto alter the environment for the child process by passing
a list of environment settings. The spawnl, spawnle and spawnlp functions are
typically used in cases where the number of arguments isknown inadvance. Spawnv,
spawnve, and spawnvp are useful whenthe number of argumentstothe new processis
variable. Pointerstothe argumentsare passedasanarray, argv, which accommodates
any mumberofelements.

The modeflag values are defined in the include file spawn.%. The following lists the
meaning of each value:

c-13

Programmer’s Guide

Modeflag Meaning
P.WAIT Suspend parent process until execution of
child processiscomplete.

P.NOWAIT Continue to execute paremt process
concurrently withchildprecess.

P.OVERLAY Overlay parent process with child
process.

When P.WAIT or P.NOWAIT is specified, therc must be sufficient memory available
for loading and executing the child process. If P.OVERLAY is specified, the parent
process is destroyed and control cannotbe returned to it. This is similar iothe effect of
the exec routines. Only P.WAIT and P.OVERLAY may be used under MS—DOS 2.0.
P_NOWAIT is reserved for future implementations, and use of this flag with MS—DOS
2.0willproduce anerror.

The pathname argument must be the full directory pathname for the file to be loaded.
The filename argument (in the spawnlp and spawmp functions) may be just the
filename or a partial pathname for the file; the current value of theenvironment variable
PATH isused todetermine whichdirectories are searched forthisfile.

The arg narguments inthe spawnl, spawnle , and spawnlip functions must be pointess
1o null—terminated character strings. These strings form the argument list for the child
process. Their combined length must not exceed 128 bytes. (Terminating mull
characters (\0) are not counted.) Thus, any number of argn arguments may be given,

as long as the character count of the corresponding strings does not exceed 128. The

NULL pointer value mustmark the end of the argnargument list.

The argvargumentsinthe spawnv , spawnve , and spawnvp functions must be pointers
to a single array of pointersto the character strings. The combired lkength of the strings
must not exceed 128 bytes. The NULL pointer value must be placed in the ammay
element immediately following the element containing the last character string.

By convention, the arg0 and argv|0] arguments should be a copy of the pathrame or
filename argument. A different value will not produce an esror.

The enmvpargument inthe spawnle and spawnve functions must be an array of chazacter
pointers, each element of which points to 2 mull—tenmninated string defimng an
environment variable. Anenvironmen setting hasthe following form:

name = value

where name is the name of an environment variable and value is the string value to
which that variable is set. Notice that value is not enclosed in double quotes. When
envpis NULL, the child processinheritsthe enviromment settings of the paremt process.

Files that are open when a call to a spawn function is made remain open in the new
process. Inthe spawnl, spawnlp , spawnv, and spawnvp functions, the child process
inhernits the environment of the parent.

Return Values

1f the P_.WAIT is specified, the return value is the exit status of the child process. The
exit status is O if the process terminated normally. A positive exit status indicates an
abnormal exit through anabort functioncall or aninterrupt. The exit statusmay alsobe
set to a non—zero value if the child process specifically calls the exit function with a
non—zeroargument.

A Common Library For XENIX anéd MS-DOS

If P.OVERLAY is specified and the child is successfully loaded, the routine never
returnsa value.

The return value — 1 indicates anerror (the child processis not staried). The value —1
isalsoreturned whenP_NOWAIT is specifiedunder MS — DOS 2.0.

C.5.12 Striwr and Strupr

char *strlwr(string)
char *string,

char *strupr(string)

char *string;
The striwr function converts any uppercase letters in the given string to lowercase.
The strupr functionconvertsany lowercase lettersinthe given string touppercase.

Striwrand struprretuma pointertothe converted string . There is noerrorreturn.

C.5.13 Strset and Stroset

char *strset(string, c)
char *string, c;

char *stmset(string, ¢, n)
char *string, c;
unsigned int n;

The strset function sets all characters inthe given string (except the tenminating nuil
character)to the character c andreturns apointertothe altered string.

The strnser function sets the first n characters of string tothe character ¢ and returns &
pointer to the altered string . 1f n is greater than the length of a given string, the string
lengthisusedinstead.

C.5.14 Strrev

char *strrev(string)
char *string;

The strrev function reverses the order of the characters in the given string. The
terminating null character (\0) remains inplace.

Strrevretumsapointertothe aliered string . There is noerror return.

C-15

Programmer’s Guide

C.5.18 Tell

long tell(fildes)
int fildes;
The rell function returns the current position of the file associated with filedes. The

position is the number of bytes from the beginning of the file. The return value of — 1
indicatesanerror.

C-16

Appendix D
Compiler, Assembler,
and Linker Messages

D.1

D.2

D3
D.4

D5

introduction 1
CompilerErrorMessages 1

D.2.1 Warning Messages 1
D.2.2 ProgramErmorMessages S
D.2.3 FatalEmrorMessages 14
CompilerRequirementsand Limits 16
Assembler ErrorMessages 17

Linker ErrorMessages 24

Compiler, Assembler, and Linker Messages

D.1 Introduction

This appendix lists the messages displayed by the cc, as, and }d commands when
errors are encountered during compilation of a program. It also lists the restrictions
imposed by the C compiler on the size and complexity of program source files and
statements withinsourcefiles.

D.2 Compiler Error Messages

The error messages produced by the C compiler fall into three categories: warnings,
program errors, and fatal errors. Warnings alert you to problemsthat may cause errors
during execution of the program, but do not prevent compilation of your program.
Program errors identify problems that make successful compilation of your program
impossible. Fatal errors identify problems that prevent cc from continuing execution.
Whenever the compiler encounters program or fatal errors, it terminates operation
before producing anobject file.

The following sections explain the meaning of the compiler error messages, and
provide cluesonhow to solve the problem indicated by these messages.

D.2.1 Warning Messages

The followipg isacomplete list of compiler warnings messages. The mumberin square
brackets(| |)attheend of each message gives the minirum warning le velthat must be
set for the message toappear. You can set the warning level by using the — W option
described earlierinthischapter.

warning : Address of frame variabletaken, DS != SS[1]
Taking the address of a frame variable in a small model program with
separate data and stack segments results in an incorrect address. The
address does not refertothe correct segment.

warning : ‘identifier’ : bad type (not integral) [1]
Thegivenbitfieldis convertedtoanunsigned integral type.

warning: ‘identifier’ : badtype (notunsigned) [1]
The givenbitfieldis convertedtoan unsigned integral type.

warning : castofint expressionto far pointer [1]
A far pointer represents a full segmented address. Casting an integer
value to a far pointer produces an address with a meaningless segment
value.

waming: Constanttoobig [1]
Information is lost because a constant value istoo large to be represented
inthetypetowhichitis assigned.

warning : conversion lost segment [1]

The conversion of a far pointer (a full segmented address) to a near
pointer (asegment offset)resultsinthe loss of the segment address.

D-1

XENIX Programmer’s Guide

warning : Dataconversion [3]
Two data items had differem types, causing the type of onc tem to be
converted.

warning : ‘operator’ :differenttypes [1]
The values specified inthe operation have &fferent types.

warning : Float constant ina crosscompilation []
Floating ponm constants are not poriablc because the represeniation of
floating poim valuesdiffers across machines.

warning : ‘identifier': formalsignored (1]
Formal arguments appeared in a function declaration (for examplc,
“‘externint *f(a,b.c);’’). The formal argumertsarcignored.

warning : ‘identifier’ : functionasanargument [1]
A formal parameter to a function is declared to be a function, which is
illegal. The formal parameter isconvertedtoa functionpointer.

warning : Functionmust returna value [2]
A functionisexpectedtoreturna value unlessitisdeclaredas vold.

warning : functionidentifier toolarge for post —optimizer [0]
The named function was not optimized because insufficient program
space was available. To correct this problem, reduce the size of the
functionby breaking it down intot woor more simaller funciions.

warning : ‘identifier’ : hasbadclass [1]
The specified storage class cannot be used in this context (for example,
function parameters cannot be given extern class). The default storage
classforthat context isused inplacc ofthe illegalclass.

warning : —Shas precedenceover—L [1]
You cannot create both a disassembled listing (—S) and an assembled
listing (—L) with the same command. The —L opticn is ignored and a
disassembled listing iscreated.

warning : 1d truncatedto ‘idensifier’ [1]
Only the first 31 charactersof anidentifierare significant.

warning : —Cignored (must also specify —Por —E or —EP) [l]
The —C option preserves comments in a preprocessed listing and takes
effect only when you create such a listing with the —P, —E or —EP
option.

waming : ignoring unknown flag oprion [i]
The compiler does not recognize the givenoptionandignoresit.

warning :11legal nullchar []]
The single quotes delimiting a character constant must contain one
character. Forexample, the declaration ‘‘chara=""""isillegal.

Compiler, Assembier, and Linker Moessages

warning : ‘operator’ : illegal pointercombination [1]
A pointer to a given type is forced to poiri to an object with a different
type.

warning: ‘operator’ : illegal withenums [l]
You may not use the given operator with enum values. The enpm values
areconvertedio inttype.

warning : missingclose parenafter ‘defined(id’ [1]
The closing parenthesis ismissing from an # ¥ defined directive.

warning : Mixed near/far pointers [1]
A pointer is assigned to a pointer with adifferent size, resulting inthe loss
of a segment address from a far pointer or the addition of a segment

addresstoanearpointer.

warning : Newline in string constant [1]
A newline character is not preceded by an escape character (\) in a string
constant.

warning : ‘idensifier’ : nofunctionretumtype [2]

A functiondeclaredtohave veid typereturnsavalue.

warning : Noreturnvalue [2]
A functiondeclared toreturna value doesnotdoso.

warning : Not enough parameters [!]
The number of actual arguments specified with an identifier is less than
the number of formal parameters given in the macro definition of the
identifier.

warning : ‘& ' onfunction/array, ignored [!]
The address of (&) operatoris used incorrectly on a function orarray.

warning: Only one of —P/— E/— EPallowed, —Pselected [1]
Each of the —P, —E and —EP options produces a different kind of
preprocessed listing; only one optioncanbe usedat atime.

warning : overflow in constant arithmetic [1]
Theresult of anoperationexceeds Ox7fIfHfT.

warning : overflow in constant multiplication [1
Theresult of anoperationexceeds Ox7fITTEfY.

warning : ‘idensifier’ : overflowsarray bounds [1]
Too many initializers are present for the given array. The excess
initializersare ignored.

warning : Pointermismatch [1]

Pointerstodifferenttypesof vanables are usedimerchangeably.

XENIX Programmer’s Guide

warning : Prochure too large, loop inversion optimization missed but contiming [

Some optimizations for a function are skipped because insufficient
program space is available for optimization. To correct this problem,
reduce the size of the function by breaking it down into two or more
smaller functions.

warning : Procedure too large, skipping branch sequence optimization and
continuing 0
Some optimizations are skipped because insufficient program space is
available for optimization. To correct this problem, reduce the size of the
functionby breaking it downintotwo or more smaller functions.

wamning : Procedure too e, skipping cross jump optimization and
continuing 0
Some optimizations for a function are skipped because insufficient
program space is available for optimization. To correct this problem,
reduce the size of the function by breaking it down into two or more
smaller functions.

warning: Recoverable [KT) overflow inpost optimizer — some optimizations may be
missed
Some optimizations are skipped because insufficient program space is
available foroptimization. Tocorrectthis program, reduce the size ofthe
functionby breaking it downintot woor more smaller functions.

warning: ‘identifier’ : redeclaration ignored [1]
The named formal parameter was previously defined.

warning : identifier: redefinition
The givenidentifieris redcﬁncd

warning : ‘register’ on ‘identifier’ ignored [1}]
Only integral and pointer type variables may be given register storage
class.

warning : ‘‘—i"" required on the command line,changing name se; or group
requires separateiandd. Setting/—iandcontinuing. gmrn]
The text segment of a small mode! program can be renamed (using —NT)
only ifaseparatetext segment iscreatedusingthe —ioption.

warning : requires parameters [|]
Formal parameters are given in the macro definition of an identifier, but
noargument list is given with the identifier.

warning : Storage classclasson ‘identifier’ changedtoextern [!]
Items declared outside of functions must have static or extern storage
class.

warning : Stringtoobig, leading charstruncated [1]
Stringsmay notexceed 512 bytes.

Compiler, Assembler, and Linker Messages

warning : Strongtype mis—match [2]
Two different but compatible types arcused: forexample, atypedeftype
with a non—typedef type, ortwo different but equivalent structorenion

types.

warning : Too many parameters [1]
The number of actual arguments specified with an identifier is greater
than the number of formal parameters given inthe macro definition of the
identifier.

warning : Type following ‘keyword’ isillegal, ignored [1]
Anillegal combination occurs (forexample, snsigned floas.)

warning : identifier: undefined [1]
The givenidentifier isnot defined.

warning: ‘identifier’ :unknownarray suz[1}]
The sizeof the named array is not specified.

warning : ‘identifier’ :unknownsize [1]
The size of the named variableis not specified.

warning : unmatchedclosecomment ‘*/° [I]
A comment was started (with ‘/**) but wasnot closed (with ‘*/°).

wamning : ‘identifier : voidtypechangedtoint [1]
Only functions may be declaredtohave vaidtype.

D.2.2 Program Error Messages

The following is a complete list of program error messages. After printing a program
error message, the compiler typically continues to look for more errars, but will not
createanobject file.

‘+':2pointers
Twopointersmay notbeadded.

‘identifier’ : aggregate initsrequire curly braces
Aninitializer foranaggregate type has asyntax error.

Array of functions
Arraysof functionsare not allowed.

autoallocationexceeds 32K
The space allocated for the local variables of a function exceeds the limit
of 32K bytes.

‘identifier’ : automatic struct/arrays
Structures, amrays, and unions with awto storage class cannot be
initialized.

XENIX Programmer’s Guide

Badcall
The expression before the parentheses ina function call does not evatuate
to afunction pointer. Forexample,

int *p;

P

‘class’ :badclass
Thegivenstorage class cannot beused inthiscontext.

operator : bad left operand
The left—hand operand of the given operatorisaniilegal value.

Bad octal mumber ‘n’.
The character nisnot a valid octaldigit.

operator : bad right operand
The right —hand operand of the givenoperaror isanillegal value.

‘identifier’ : basetype with near/farnot allowed
Declarations of structure and union members may not use the near and
farkeywords to override the addressing convention for amember.

can’tcast objects as ‘far’
The near and far keywords may not be used intype casts. Forexample,
*‘(int far)foo™" isillegal.

can’tcast objectsas ‘near’
The near and far keywords may not be used intype casis. Forexample,
“‘(intnear)foo’” isillegal.

Case expression not constant
Case expressionsmust be integral constants.

Case expression notintegral
Caseexpressionsmust be integral constants.

Case value ‘n’ already used
Thecase value shasalrcady beenusedinthisswiich statement.

castof ‘void’ termtonon— void
The void type may notbe casttoany othertype.

casttoarray typeisillegal
Anobject cannot be castto anarray type.

casttofunctionreturning . . . isillegal
Anobject cannot be cast to afunctiontype.

Compller, Assembler, and Linker Mesasages

Compiler exror (assertion): file filename,

linen source=filename
The compiler consistency check failed. Try rearranging your code. In
this message, the first filename identifies the compiler file producing the
error; the line number nrefers to that file. The second filename gives the
nameofthe source filebeing compiled.

Compiler error (code gencration)
The compiler could not generate code for this expression. Try
rearrangingthe expression.

Compiler error (internal): ...
The compilerconsistency check failed. Try rearranging your code.

Compiler limit : macro’sactual parameteristoobig
Argumentstopreprocessor macrosmay not exceed 256bytes.

Compiler limii : truct/unionnesting
Nesting of structure and union definitions may not exceed Slevels.

Compiler limit : Toomany actual parameters formacro
Amacrodefinitionmay nottake more than 8 actual arguments.

compiler limitation: Initializerstoodeeply nested
The compiler limit on nesting of initializers hasbeen exceeded. The limit
ranges from 10to 15 levels, depending onthe combinationoftypesbeing
initialized. To correct this problem, simplify the data type being
initialized to reduce the levels of nesting, or assign initial values in
separaie statemeni s after the declaration.

Constant expression is not integral
Theconiextrequiresan integral constant expression.

#define syntax
A #definedirectivehasa syntax emor.

‘identifier’ : definitiontoobig
Macrodefinitions may not exceed 256 bytes.

‘operator’ : different aggregatetypes
Pointers to different structure or union types are not aliowed with the
givenoperator.

Divideby0
The second operandinadivision (/) operation evaluatesto zerc (0).
‘identifier’ : enum/struct/uniontype redefinition

The givenidensifier has alrcady been used for an enumeration, structure,
oruniontag inthe same scope.

XENIX Programmer’s Guide

expected ‘(" tofollow ‘identifier’
The context requires parentheses after the functionidentifier.

Expected constantexpression
The context requiresa constant e xpression. (

expected ‘defined(id)’
An #if defined directive has asyntaxerror.

Expectedexponent value, not *n’
The exponent ofa floating point constant is not a valid number.

Expected preprocessor command, found ‘c”
The character following a number sign (#) is not the first letter of a
preprocessordirective.

‘identifier’ : field isan array/ptr
Bitfieldmembersmust have unsigned integraltype.

‘identifier’ : fieldtypetoo smali for rumber ofbits
The number of bits specified in the bitficld declaration exceeds the
number ofbitsin anunsigned integer of the givensize.

‘identifier’ : ficldsonly instructs
Only structure types may containbitfickds.

Functionreturns array @
A functionmay not returnanarray. (Itmay returnapointertoanarray.)

Functionreturns function
A function may not return a function. (It may return a pointer to a
function.)

‘identifier’ : Functionsare illegalmembers
A function cannot be a member of a structure; use a pointer to a function
instead.

‘string’ :ignored
The giventext appeared out of context and wasignored.

Illegaiallocationof segment > 64K
The space allocated for a single data item exceeds the limit of one segment

(64K bytes).

llegalbreak
A break statement is legalonly when it appears withinado, for, while, or
switch statcment. <

Hlegalcase
The casekeywordmay only appear withinaswitch stasement.

Compller, Assembler, and Linker Messages

illegal cast
Atypeusedinacastoperationisnot alegaltype.

lllegalcontinue
A continue statement is legal only when it appears within a do, for, or
while statement.

llegaldefault
The defanltkeywordmay only appear withinaswitchstatement.

lllegalescape sequence
The character(s) after the escape character (\) do not form a valid escape
sequence.

1llegalexpression
An expression is illegal because of a previous error. (The previous error
may nothave produced anerror message.)

‘operator’: illegal for struct/union
Structure anduniontype values are notallowed withthe givenoperator.

1llegalindex, indirection not allowed
A subscript was applied to an expression that does not evaluate to a
pointer.

Illegalindirection.
The indirectionoperator (‘**) was appliedtoa non—pointer value.

lllegalinitialization
Aninitialization isillegal because of a previouserror. (The previouserror
may nothaveproduced anerror message).

‘operator’ : illegal pointer combination
Pointers that point to different types cannot be used with the given
operator.

lllegalpointer subtraction.
Only pointersthat pointtothe sametypemay be subtracted.

#includeexpectedafile name
An #ipciude directive lacks the mandatory filename specification.

‘identifier’ : init of afunction
Functions may not be initialized.

‘identifier’ is anundefined struct/union
The structure oruniontype of the givenidentifier isnotdefined.

keyword ‘erum illegal
The enum keyword appears in a structure or union declaration, or an
enumtype definition is not formed correctly.

XENIX Programmer’s Guoide

Label ‘identifier’ wasundefined.
The function does not contain a statement labeled with the given
identifier.

left of ‘ — > idensifier’ musthave astruct/uniontype
The expression before the member selection operator ‘—>' does not
pointtoa structure oruniontype.

leftof‘.identifier’ must have a struct/uniontype
The expression before the member selection operator *.* does not have a
structure oruniontype.

left of * — > specifies undefined struct/union ‘identifier’
The expression before the member selection operator ‘—>° poimts to a
structure oruniontypethat is not defined.

leftof *.” specificsundefined struct/union ‘identifier’
The expression before the member selection operator *.* has a structure
oruniontypethatis notdefined.

operator: Left operandmust be lval.
Theleft operand of the given operatormustbe anlivalue.

#line expected aline number
A #linedirective lacksthemandatory line number specification.

‘identifier’ : member of enum redefinition
The given identifier has already been used for an emuneration constan,
cither within the same enumeration type or within another enumeration
type inthe same scope.

Missing ">’
The closing angle bracket (‘> ") ismissing from an #includedirective.

Missing name following ‘<’
An #include directi ve lacksthe mandatory filename specification.

missing openparenafterkeyword ‘defined’
Parentheses must surround the identifier to be checked in an #if defined
directive.

‘identifier’ : Missing subscript
To reference an element of an array you must use a subscript (for

example, ““Al6]").
Modby 0
The second operand inaremainder (%) operationevaluatesto zero (0).
Morethanone defauh
A switch statement contains toco many defamlg labels (only one is
allowed).

XENIX Programmer’s Guide

‘operator’ needslvalue.
The givenoperatormust have anlvalue operand.

negative subscript
A valuedefining anarray size wasnegative.

Newlineinconstant

A newline character ina character or string constant must be preceded by
the backslash escape character(\).

Noclosingsingle quote
A newline character in a character constant must be preceded by the
backslash escape character (\).

Nostruct definition
A structure oruniontype isused in a declaration without being defined.

Non—addressexpression
An attempt was made to initialize an item that is not an lvalue. Foz
example, the declaration ‘‘int i, j = 1,"° in the following example is
illegal.
imi,j=i
main()

{

J

The declarationoccurs cutside of all functions, so it cannot be determined
until link time (too late for initialization) whether { is a reference to a
global variable defined and initialized eisewhere, or a definition of a
global variable (with a default initial value of0) .

Non-— constant offset
An initializer uses a non—constant offset. For example, the declaration
“‘inti.j, *p= &i + j;""inthe following example isillegal.
ini,j, *p=2&i+j
main()

l

)

The declaration occurs cutside of all functions, so it cannot be determined
until link time (too late for initialization) whethez i and j are referencesto
global variables defined andinitialized eisewhere, ordefinitions of gicbal
variables (with default initial values of 0).

Non—integer switchexpression
Switch expressionsmust be integral.

XENIX Programmer’s Guide

Non—integralindex
Only integralexpressions are allowed inarray subscripts.

‘identifier’ : nota function ,
The given identifier was not declared as a function but an attempt was (
madetouseit asa function. Forexample,

int i;

i(i:

‘identifier’ : notalabel
The identifier specified in a goto statement does not correspond to a
statement label.

‘identifier’ : notstruct/unionmember
The given identifier is used in a context that requires a structure or union
member.

‘&’ onbit field ignored
Bitfieldscannothavetheiraddresstaken.

‘&’ onconstant
Only variablesand functionscanhave theiraddresstaken. @

‘&’ onregister variable
Register variables cannothave their addresstaken.

parameter hastype void
Only functions have vold type, and formal parameters may not be
functions.

pointer + non—integer
Only integral values may be addedto pointers.

‘operator’ : pointeron left. Needsintegral right.

The left operand of the given operator is apointer; the right operand must
beanintegral value.

‘+*:2pointers
Twopointersmay notbe added.

Preprocessor command must start as first non—white
Non—whitespace characters appear before the number sign (#) of a
preprocessordirective onthe same line. {

‘identifier’ : redefinition
The givenidentifier wasdefined more than once inthe same scope.

*." requires struct/union name
The expression before the member selection operator “." is not the name

Compfler, Assembler, and Linker Messages

of astructure orunion.

‘=>"requires struct/union pointer
The expression before the member selection operator ‘~>" is not a
pointertoa structureor union.

‘—":right operand pointer
If the left—hand operand in a subtraction (—) operation is not a pointer,
theright —hand operandis not permitted tobe a pointer.

Static procedure identifier’ not found.
A forward reference wasmade to amissing static procedure.

Structure/Union comparisonillegal
You cannot compare a structure type to a union type. (You can,
however, compareindividual members of structure and unions).

Subscriptonnon—array.
A subscript wasusedona variable that is not an array.

syntax error
This statement or the preceding statement is not formed correctly.

‘n’ : 100 big for char
The number nistoo large tobe represented as acharacter.

Toomanycharsinconstant
A character constant is limited to a single character. (Multi—character
characterconstantsare not supported).

Toomany initializers.
The number of initializers exceedsthe mumber of objectstobe initialized.

Typedefspecifies differentenum
Twoenumeration types defined with typedef are used todeclare anitem,
butthe enumerationtypesare different.

Typedefspecifiesdifferent struct
Two structure types defined with typedef are usedto declare anitem, but
the structuretypes are different.

Typedefspecifies differentunion
Twouniontypes defined with typedef are usedto declare anitem, but the
uniontypesaredifferent.

‘typedefs’ both define indirection
Two typedef types are used to declare an item and both typedef types
have indirection. For example, the declaration of p in the following
exampleisillegal.

D-13

XENIX Programmer’s Guide

typedef int *P_INT;
typedef short *P_SHORT;
P_SHORT PJINT p; r* this declaration is illegal */

‘identifier’ : undefined (
Thegivenidentifier isnot defincd.

‘c’: unexpected in formal list
The character ¢ is misused in a macro definition’s list of formal
parameters.

‘c’: unexpected inmacrodcfinition
Thecharacter c ismisused in amacrodefinition.

unknowncharacter ‘Oxn’
The given hexadecimal number does not correspond to to a character in
the Ccharacterset.

‘identifier’ : unknownsize
Amember of a structure crunionhas anundefined size.

‘void’ illegal with alitypes
The voidtype cannct be used inoperations with othertypes.

‘expression’ wastheuse ofthe struct/union
An undefined structure or union type variable is used in the given @
expression.

D.2.3 Fatal Error Messages

The following is a complete list of fatal ervor messages. After printing a fatal enor
message, the compiler terminates processing and returns control o the system.

fatal: Bad flag = option
The given oprion is illegal or inconsistent with another option appearing
onthe sameline.

fatal: Bad parenthesisnesting
The parentheses ina preprocessordirective are not matched.

fatal : Bad preprocessorcommand ‘string”.
The characters following the rumber sign{#) ¢onot form a preprocessor
directive.

fatal: Cannot open ‘filename’
The compiler ran cut of disk space, or the disk is protected against @
writing. d

fatal : Compiler limit : Macroexpansiontoo big
Theexpansion ofamacroexceedsthe spaceavailableforit.

Compiler, Assembler, and Linker Moessages

fatal : Compiler limit : possibly arecursively defined macro
The expansion of amacro exceeds the space available forit. Checkto sce
whetherthe macroisrecursively defined.

fatal: DGROUP dataallocation exceeds64K
Longmodelallocationof variablestothe default segment exceeds 64 K.

fatal: #ifln]defexpectedanidentifier
You must specify anidentifier with the #ifdefand #ifndef directives.

fatal: expected ‘ #endif”
An #i, #ifdef, #ifndef, or#if defined directive was not terminated
with an #endif directive.

fatal: only one memory modelallowed
Conflictingmemory modeloptionsappear onthe commandline.

fatal : Parser stack overflow, please simplify your program
Your program cannot be processed because the space required to parse
the program exceeds a compiler limit. To solve this problem, try to
simplify your program.

fatal: Toomany include files
Nesting of #include directives exceedsthe limitof 10levels.

fatal : unexpected ‘#clif”
The #elif directive is legal only when it appears within an #if, #if
defined, #ifdef, or #ifndef directive.

fatal: unexpected ‘#else”
The #else directive is legal only when it appears within an #if, #if
defined, #ifdef, or #ifndefdirective.

fatal: unexpected ‘ #endif”
An #endif directive appears without a matching #if, #if defined,
#ifdef, or #ifndefdirective.

fatal: Unexpected EOF
The end of a file was encountered. This message appears when you have
insufficient space on the default disk drive for the compiler to create the
temporary files it needs. The space required is approximately three times
the sizeofthe source file.

fatal : Unknownconfigurationstring ‘string*
The configuration string given with the —M option contains an
unrecognized character.

fatal : Unknownmodeltype

The configuration string given with the —M option contains an
unrecognized character.

D-15

XENIX Progreammer’s Guide

D.3 Compiler Reguirements and Limits

The following list summarizes the limits imposed by the C compiler. if your program
exceedsany of these limits, an errormessage will inform you of the problem.

1. Disk Space {
Minimum disk space for compilation 3 times source file size

2. Declarations

Maximum number of dimensions

in an array 5 dimensions
Maximum ievel of nesting for

structure/union definitions S kevels
Maximum level of indirection 5 levels

Maximum level of nesting for aggregate
initializers (depends on the combination
of aggregate types; higher levels of
nesting are possible with array
initialization than with structure
and union initialization) 10—135 levels

3. Constants

Maximum length of a string, including the
terminating null character (\0) 512 bytes Q(

4. ldentifiers
Maximum length of an identifier 31 characters
(characters in excess of this limit
do not cause an error, but they are
not significant)

5. Preprocessor Directives

Maximum size of a macro definition 512 bytes
Maximum number of actual arguments to

a macro definition 8 arguments
Maximum length of an actual preprocessor

argument 256 bytes

Maximum level of nesting for #if,

#ifdef, #ifndef, and

#if defined directives 32 levels
Maximum level of nesting for include files 10 levels

The compiler does not set e xplicit limits on the number and complexity of declarations,

definitions, and statements in an individual function or in a program. if the compiler @
encounters a function or program that is tco large or too complex to be processed, it
producesanerrormessagetothat effect.

Compiler, Assemblier, and Linker Messages

D.4 Assembler Error Messages

This section lists and explains the messages displayed by the XENIX assembler. As
displays a message whenever it encounters an error during processing. It displays a
warning message whenever it encountersquestionable statement syntax.

Anend—of—assembly message is displayed at the end of processing, evenif no errors
occurred. The message contains a count of errors and warning messages it displayed
duringtheassembly. The messagehasthe form:

Warning Fatal
Emors Ermrors
n n

Thismessage is alsocopied tothe source listing.

Error messages are listed in alphabetical order with a short explanation where
necessary.
Assembler Errors

Already defined locally (Code 23)
Tried to define a symbol as EXTERNAL that had already been defined
locally.

Alreadyhad ELSE clause (Code 7)
Auempt to define an ELSE clause within an existing ELSE clause (you
cannotnest ELSE without nesting IF...ENDIF).

Already havebase register (Code 46)
Tryingtodouble baseregister.

Already have indexregister (Code47)
Trying todoubleindex address.

Block nestingemor (Code0)
Nested procedures, segments, structures, macros, IRC, IRP, or REPT
are not properly terminated. An example of this error is close of an outer
level of nesting with inner level(s) stillopen.

Byteregisterisillegal (Code S8)
Use ofone of thebyteregistersincontext where it isillegal. Forexample,
PUSHAL.

Can'toverride ES segment (Code 67)
Trying to override the ES scgment in aninstruction where this override is
notlegal. Forexample, store string.

Can'treach with segmentreg (Code 68)
Thereisno ASSUME that makesthe variable reachable.

Can’tuse EVEN on BYTE segment (Code 70)

Segment was declared to be byte scgment and attempt touse EVEN was
made.

D-17

XENIX Programmer’s Guide

Circularchainof EQU aliases (Code 83)
AnaliasEQU eventually pointstoitself.

Constant wasexpected (Code42)
Expecting aconstant and reccived something clse.

CSregisterillegalusage (Code 59)
Tryingtousethe CSregisterillegally. Forexample, XCHGCS,AX.

DirectiveillegalinSTRUC (Code 78)
All statements within STRUC blocks must cither be comments preceded
by a semicolon (:), orone of the Define directives.

Division by Ocroverflow (Code 29)
Anexpressionis giventhatresuhsinadivide by 0.

DUP istoolarge for linker (Code 74)
Nesting of DUP's was such that too large a record was created for the
linker.

8087 opcode can't beemulated (Code 84)
Either the 8087 opcode or the operands you used with it produce an
instruction that the emulator cannot support.

Extracharactersonline (Codel)
This occurs when sufficient information to define the instruction directive
has been reccived on a line and superfluous characters beyond are
received.

Ficld cannotbe overridden (Code 80)
Ina STRUC initialization statement, you tricdtogive a valuctoa field that
cannotbe overridden.

Forwardneedsoverride (Code 71)
Thismessage is not currently used.

Forwardreferenceisillegal (Code 17)
Attempt to forwardreference something that must bedefinedinpass 1.

Illegalregister value (Code 55)
The register value specified docs not fit into the “reg” ficld (the reg ficld is
greaterthan7).

Illegalsize foritem (Code 57)
Size of referenceditem isillegal. Forexample, shift of adouble word.

1llegaluse of external (Code 32)
Use of an external in some illegal manner. For example, DB M DUP(?)
where Misdeclared external.

1llegaluse of register (Code 49)
Use of a register with an instruction where there is no 8086 or 8088

Compiler, Assembler, and Linker Messages

instructionpossible.

1llegal vakue for DUP count (Code 72)
DUPcountsmustbea constantthatis not Oornegative.

Improperoperandtype (Code 52)
Use of anoperand suchthat the opcode cannot be generated.

Improperuseof segmen reg (Code61)
Specification of a segment register where this is illegal. For example, an
immediatemovetoa segment registes.

Index displ. must be constant (Code 54)
Hlegaluseofindexdisplay.

Labelcan’thave seg. override (Code 65)
1llegaluse of segment override.

Lefi operandmust have segment(Code 38)
Used something in right cperand that required a segment in the left
operand. (Forexample, ”:.")

More values than defined with (Code 76)
Toomany fields giveninREC or STRUC allocation.

Must be associated with code (Code 45)
Use of datarelated item where code item was expected.

Must be associated with data (Code 44)
Use of code related item where data related item was expected. For
example, MOV AX, <code—label>.

Must be AX or AL (Code 60)
Specification of some register other than AX or AL where only these are
acceptable. Forexample, the LN instruction.

Must be index or base register (Code 48)
Instruction requires a base or index register and some other register was
specified in square brackets, .

Mustbedeclaredinpass | (Code 13)
Assembler expecting a constant value but got something else. An
example ofthis mightbe a vector size being aforward reference.

Must be in segment block (Code 69)
Attempttogenerate code whennotina segment.

Must be record field name (Code 33)
Expectingarecordficld name but got samething lse.

Must be record or ficld name (Code 34)
Expectingarecord name oz field name andreceived something else.

D-19

XENIX Programmer’s Guide

Mustberegister (Code 18)
Register expected as operand but you furnished a symbol — — wasmot a
register.

Must be segmert or group (Code 20) (
Expecting segmert or group and scmething else was specified.

Must be structure field name (Code 37)
Expecting a structure field namebut received something else.

Must be symboltype (Code 22)
Mustbe WORD, DW,QW, BYTE, or TB but received somcthing else.

Must be var, labelor constant (Code 36)
Expectinga variable, label, or constant but received something eise.

Must have opcode after prefix (Code 65)
Use of one of the prefixn instructions without specifying any opocde after
it.

NearJMP/CALL todifferent CS (Code 64)
Attempt to do a NEAR jump or call to a location in a differert CS
ASSUME.

Noimmediate mode (Code 56) v
Ilmmediate mode specified or an cpcode that cannot accept the (
immediate. For example, PUSH. \

Noorunreachable CS (Code 62)
Trying tojumptoalabel that isunreachsble.

Normal type operandexpected (Code41)
Received STRUCT, FIELDS, NAMES, BYTE, WORD, or DW when
expecting a variable label.

Notinconditional block (Code 8)
AnENDIF or ELSE is specified without a previous conditional assembly
directive active.

Not proper align/combinetype (Code 25)
SEGMENT parametcrsare incorrect.

One operand must be const (Code 39)
Thisisanillegal use ofthec additionoperator.

Only initialize listlegal (Code 77)
Attempt touse STRUC name without angle brackezs, < >. <

Operand combinationillegal (Code 63)
Specification of a two—operand instruction where the combination
specifiedisillegal.

Compller, Assembler, and Linker Messages

Operands must be same or 1 abs (Code40)
1llegaluse ofthe subtractionoperator.

Operand musthave segment (Code 43)
1llegaluse of SEG divective.

Operand must have size (Code 35)
Expected operandtohaveasize, butitdidnot.

Operand not in 1P segment (Code 51)
Access of operand is impossible because it is not in the current 1P
segment.

Operand typesmust match (Code31)
Assembler gets different kinds or sizes of argumems in acase where they
mustmatch. Forexample, MOV.

Operand wasexpected (Code27)
Assembler is expecting anoperand but anoperator wasreceived.

Operator wasexpected (Code 28)
Assembler was expecting anoperator but anoperand wasreceived.

Overrideisof wrongtype (Code 81)
In a STRUC initialization statement, you tried to use the wrong size on
override. Forexample, ' HELLO’ for DW fieid.

Override withDUP isillegal (Code 79)
Ina STRUC initialization statement, youtried touse DUP in anovesride.

Phaseermrorbetweenpasses(Code 6)

The program has ambigucus instruction directives such that the location
of alabel inthe program changed in value between pass | and pass2 ofthe
assembler. An example of this is a forward reference coded without a
segment override where one is required. There would be an additional
byte (the code segment override) generated in pass 2 causing the next
label to change. You canuse the —D optionto produce a listing to aid in
resolving phase errors between passes. See as(CP) in the XENIX
Reference Manual .

Redefinitionof symbol (Code 4)
Thiserror occurson pass 2and succeeding definitions of a symbol.

Referencetomultdefined (Code 26)
The instructionreferences something thathasbeenmuiti— defined.

Register already defined (Code 2)
This will only occurifthe assemblerhas internal logic errors.

Register can’tbe forwardref (Code 82)

D-21

XENIX Programmer’s Guide

Relative jumpout ofrange (Code 53)
Relative jumps must be within the range — 128 to +127 of the currem
instruction, andthe specific jump is beyondthisrange.

Segment parametersarc changed (Code 24) (
List of arguments to SEGMENT were nat identical 1o the first time this
segment was used.

Shift count is negative (Code 30)
A shift expression is generatedthat resultsinanegative shift count.

Shouldhave beengroup name (Code 12)
Expecting a group name but something other than this was given.

Symbol already different kind (Code 15)
Attempt todefine a symboi differently froma previous definition.

Symbol already external(Code 73)
Attempttodefine asymbol aslocal that is already external.

Symbolhasnosegment (Code 21)
Trying to use a variable with SEG, and the variable has po known
segment.

Symbol ismulti—defined (Code 5)
This error occurson asymbol that is later redefined. {

Symbolisreserved word (Code 16)
Attempt to use an assembler reserved word illegally. For example, to
declare MOY asa variable.

Symbol notdefined (Code 9)
A symbolisusedthat hasnodefinition.

Symbol type usage illegal (Code 14)
1llegaluse ofa PUBLIC symbol.

Syntax error (Code 10)
The syntax of the statement docs not match any recognizable syrtax.

Typeillegalincontext(Code11)
Thetype specified is of an unacceptable size.

Unexpected endof file (Code 85)
You forgotanend statement or there isa nesting esror.

Unknownsymboltype (Code 3) 1
Symbol statement has something inthetypefieidthatisunrecognizabie. G

Usageof ? (indeterminate)bad (Code 75)
Improperuseofthe"?". Forexample,?+5.

Compiler, Assembler, and Linker Messages

Value isout of range (Code 5S0)
Valueistoolarge forexpecteduse. Forexample, MOV AL, S5000.

Wrongtypeofregister (Code 19)
Directive or instruction expected one type of register, but another was
specified. Forexample, INCCS.

Numerical Listof Messages

Code Message

(1] Block nesting error

1 Extracharactersonline
2 Registeralready defined
3 Unknown symbol type

4 Redefinitionof symbol

5 Symbol is multi—defined
6 Phascerrorbetweenpasses
7 Already had ELSE clause
8 Not inconditional block

9 Symbolnotdefined

10 Syntaxerror

11 Typeillegalincontext

12 Shouldhavebeengroupname
13 Must bedeclared inpass |

14 Symboltypeusage illegal

15 Symbol already different kind
16 Symbol isreserved word

17 Forwardreferenceisillegal
18 Must beregister

19 Wrongtype ofregister

20 Must be segment or group

21 Symbolhasnosegment

2 Must be symbol type

p) Already defincdlocally

4 Segment parametersare changed
23 Not properalign/combinetype
26 Referencetomuh defined

27 Operand wasexpected

28 Operator wascxpected

29 Divisionby Ocroverflow

30 Shift count is negative

3 Operandtypes must match
32 llegaluseofexternal
3 Must berecord field name

34 Must berecordor ficld name
35 Operand musthave size

36 Must be var, label orconstant
37 Must be structure field name

38 Left operandmust have segment
39 Onc operand mustbe const

40 Operands must be sameor 1 abs
41 Normaltype operand cxpected
42 Constant wasexpected

D-23

XENIX Programmer’s Guide

43 Operandmust have segment
44 Must be associated withdata
45 Must be asscciated withcode
46 Already have base register

47 Already have indexregister
48 Mustbeindexorbaseregister
49 llegaluseofregister

50 Valueisoutofrange

s1 Operand not in 1P segmem

52 Improper operandtype

53 Relative jump out of range
34 Indexdispl. mustbe constam
ss 1llegalregister value

56 Noimmediate mode

57 tllegal size for item

58 Byteregisterisillegal

59 CSregisterillegalusage

60 Mustbe AXor AL

61 Improper use of segmentreg
62 Noorunreachable CS
Operand combinationiliegal
Near!MP/CALLtodifferentCS
Labelcan’thave seg. override
Must have opcodeafterprefix
Can’toverride ES segment
Can'treach with scgmentreg
Must be insegmentblock
Can’tusce EVENon BYTE segment
Forward needsoverride
Illegal value for DUP coum
Symbol already external
DUPistoo largefor lirker
Usage of ? (indeterminate) bad
More valuesthandefined with
Only initialize list legal
Directiveillegal inSTRUC
Override with DUPisillegal
Field cannot be overridden
Override is of wrongtype
Registercan’tbe forwardref
Circular chainof EQU alizses
8087 opcode can’t beemulated
Unexpectedendoffile

RRUI2BIIIFAIINIZT2I8a2

D.5 Linker Error Messages

This section lists and explains the messages displayed by the XENIX linker. L&
displays amessage whenever it encounters anerror during processing.

Array element sizemismatch
A far communal array has been declared with two or more different ammay

Complier, Assembler, end Linker Messages

clement sizes (e.g. declared once as anarray of charactersand once as an
array of reals). Matchdefinitions andrecreate objectmodule.

Attempttoaccessdata outside segment bounds
One of the object modules is invalid. Try recompiling the invalid
module. 1fthe link still fails, note exactly how the module was compiled
andreportthebugtoMicrosoft.

Attempt toput segment name inmore thanone group infile filename
A segment was declaredto be amember of two different groups. Correct
the source andrecreate the object files.

Cannot findfile filename

Specified file cannot be found. Try again after lkocating the file in
question.

Cannot openlist file
The directory ordiskisfull. Make space onthedisk orinthe direciory.

Cannot openrunfile
Thedirectory ordisk is full. Make space on the disk orinthe directory.

Cannot opentemporary file
Thedirectory ordiskis full. Make space onthe diskorinthe directory.

Commonarea longerthan65536bytes
User’s program has more than 64K of communai variables. At the
present time, only C language programs can possibly causc thismessage
to be displayed. Rewrite your program: using fewer communal variables
or making some of your communal variables far; or recompile your
program largemodel.

Datarecordtoolarge
LEDATA record contains more than 1024 bytes of data. This is a
translatorerror.

Duprecordtoolarge
LIDATA record contains more than 512 bytes of data. Most likely, an
assembly module contains a struc definition that is very complex, or a
series of deeply nested DUP staicments (e.g. table db 10 dup{i § dup (22
dup(13dup(...))))). Simplify and reassemble.

Error accessing library
File inquestion isaninvalid library. Use avalidlibrary.

Fixup overflow near num insegment name in filename(name)offset num
A fixup overflow can be caused by: 1) a group larger than 64K bytes, 2)
the user’s program contains an intersegment short jump or intersegment
short call, 3) the user has a data item whose name conflicts with that of a
subroutine in a library included in the link, and 4) an assembly language
source file has an EXTRN declaration for a far procedure inside the body
ofasegment.

D-25

XENIX Programmer’s Guide

Group name larger than64 Kbytes
Userhas defined a group containing more than 64Kbytes of code or data.
Make the offending group smaller andrelink.

Invalidobject module
One of the objectmodulesisinvalid. Try recompiling.

List file namemissing
Name missing after —moption. Try again with correct command line.

Multiple code segments— — should be medium model
User’s program contains more than one code segment, and the user has
not informed the linker that the program is middle or large model. Unless
the program ishybridmodel, relink using — Mm option.

Multiple datasegments— —should be large model
User’s program contains more than one data segment, and the user has
not informed the linker that the program is large model. Unless the
program ishybrid model, relink using — Ml option.

Name lengthmissing
Number missing after the —ni option. Try again with cofrect command
line.

NEAR/HUGE conflict
Conflicting near and huge definitions for a communal variable. Revise
definitions to be consistent (Note: a communal variable is "huge” if it is
larger than 65536bytes).

Noobject files specified
Noobject files were specified on the command line andthe —uoption was
notused. Try again with correct command line.

Noobject modules specified
User failedto supply the linker with any object file names. Tryagain.

Outof spaceonlistfile
Disk on which list file is being writtenis full. Free more space onthe disk
andtryagain.

Out of space onrunfile
Disk on which executable isbeing written is full. Free more space onthe
disk andtry again.

Outof space onscratchfile
Disk indefauh drive is full. Delete some filesonthat disk, o7 replace with
anotherdiskette, andrestart thelinker.

Relocationtableoverflow
More than 16384 long calls or long jumps or other long poirgers inthe
user's program. Rewrite program replacing long references with short
references where possible and recreate objectmodule.

Compiler, Assembler, and Linker Messages

Runfile namemissing
Name missing after the —ooption. Try again with comrect command line.

Segment limit settoohigh
The limit on the number of scgments allowed was set higher than 1024
usingthe — S option. Try link again with a smaller number.

Segment limittoohigh
There is insufficient memory for the linker to allocate tables to describe
the number of segments requested (cither the value specified with —S or
the default: 128). Try the link again using —$ to select a smaller number
of segments (e.g. 64, if the default was usedpreviously).

Segment size exceeds 64K
User has a small model program with more than 64Kbytes of code, or
user has a middle model program with more than 64Kbytes of data. Try
compiling andlinking middle or large model.

Stack sizeexceeds 65536 bytes
The valuesspecifiedusing the — F optionexceedsOx10000. Try again.

Stack sizemissing
Number missing after — F option. Try again with correct command line.

Symbol missing
Symbol missing after the —u option. Try again with correct command
line.

Symboltable overflow
The user’s program has greater than 256K of symbolic information
(Publics, externs, segments, groups, classes, files, eic). Combine
modulesand/or scgments and recreate the object files. Eliminate asmany
public symbolsaspossible.

Terminatedby user
Theuserpressedthedeletekey.

Toomany external symbolsinonemodule
User’s object module specified more thanthe allowed number of external
symbols. Break upthe mogule.

Toomany group—, segment—, andclass—namesinonemodule
User's program contains too many group, scgmemnt, and class names.
Reduce the number of groups, segments, or classes and recreate the
object files.

Toomany groups
User’s program defines more than nine groups. Reduce the number of
groups.

Toomany GRPDEFsinonc module
Linker encountered more than 9 GRPDEFs in a single module. Reduce

D-27

XENIX Progreammer’s Guide

the number of GRPDEFs or split upthe module.

Toomany libraries
User tried to link with more than 32 libraries. Combine libraries or link
modulesthatrequire fewer libraries.

Toomany segmentsinone module
The user’s object module has more than 255 segments. Split themodules
orcombine segments.

Toomany segments
The user's program hastoomany segments. Relink using the —S option
with anappropriate number of segments specified.

Toomany TYPDEFs
TYPDEF:s are records emitted by the compiler to describe communal
variables. Create two sources from the old source, dividing the
communal variable definitions betweenthem; recompile andrelink.

Unexpected end— of —file on library
Thediskette containing the library has probably beenremoved. Try again
after replacing the diskette with the library.

Unexpected end—of - fileon scratch file
The Diskette containing the VM. TMP file wasremoved. Try again after
replacingthe diskette withthe VM. TMP file.

Unknownmodel specifier *—Mx*
x was none of the following: s, m, oz1. Try again with cogrect command
line.

Unknownoption’—x*
Specified option is not recognized by the linker. Try again with correct
commandline.

Unrecognized Xenix version number
Number after —v option was neither 2 nor 3. Try again with correct
commandline.

Use —ioption
User's program is not small model impure (i.e., it consists of more than
one segment). Relink usingthe —ioption.

Versionnumbermissing
Number missing after — voption. Try again with correct command line.

Wamning: Groups name and name overlap
User’s program contains overlapping groups. Uniess one group is
completely contained by the other, fix the source code, recompile, and
relink.

D-28

Compiler, Assembler, and Linker Messages

Warning: model mismatch
One or more object modules were not compiledusing the memory model
specified by the —M option. Recompile the offending module and
relink.

Warning: nostack segment
User’s program contains no segment of combine—typestack.

Warning: toomany public symbols
The userhas asked for a sorted listing of public symbols inthe list file, but
there are too many symbols to sort. The linker will produce an unsorted
listing of the public symbols.

—useenbefore —nl
User has specified a symbol to look for (using the —u option) before
specifying the maximum symbol length with the —ni option. Try again
placing the —nl option and its argument before all —u options and their
arguments.

)

Index

A

-a option
lint 3-8
Accessing Registers 11-9
Adb 8-1
basic¢ tool 1-1
description 1-2
As 7-1
assembler 7-1
basic tool 1-1
assembler
Assembler See As
Assembler See As
error messages 2-15
Awaking Processing 11-11

B

-b option

lint 34
Block Devices
Device Drivers 11-29
-¢ option
C compiler 2-8
lint 37

C

C compiler 2-1
-1 option, include file search 2-14
-] option
library linking 2-9
-0 option
aout file naming 2-5
output optimization 2-
10
-P option, preprocessor invocation
2-15
-p option, profiling code 2-12
-S option
-8 option, output stripping 2-11
assembly language output 2-
12
-x option, external symbol entry
2-10

C compiler {continued)
-X option, symbol saving

2-8

a.out file
default output file 2-3
naming 2-4
assembly language output
creating
object files
D option

macro definition 2-13

error messages

2-16

evaluation order 311

function calls
counting 2-12

2-10

2-13

search 2-14
label discard
library

linking 2-9
linking

library 29
lint directives, effect
macro

definition

preprocessor

2-15

mon.out file write out
multiple source files

object file

creation 2-4
optimization
output

2-10

output file See a.out file
output file See a.out file

assembly language output

12
stripping 2-11
preprocessing
preprocessing
profiling code
source file
linking 2-4
multiple 2-4
single 2-2

2-13
2-16
2-12

2-10

2-12

311

2-12
2-3

2-

strip command, output stripping

2-10
symbol table
.8 file 2-12

C language

compiler See cc
compiler See cc
usage check
yace 9-1
string extraction

2-11

2-1

1-1

1-3

Index

C programming language 1-1
C programs 2-1
creating 1-1
C source file
compilation See C compiler 2-2
cc command

error messages 2-15
source file
compiling 2-3

Character Devices

Device Drivers 11-18
Character Lists 11-19
Character Lists 11-25

clists
See Character Lists
Command 1-3
execution 1-3
interpretation 1-3

SCCS commands See SCCS
SCCS See SCCS

Compatibility Issues 11-16
Context Switching 11-5
Controlling Registers 11-9

copyio 11-14

D

-D option
C compiler 2-13
C compiler 2-16

Debugger See Adb

Debugger See Adb

Defining Registers 12-9

Delta See SCCS

Desk calculator
specifications 9-31

Device Driver Routines
Block Devices 11-31
Character Devices 11-19
Naming Conventions 11-18
Line Printer Routines 12-3

Device Drivers
Block Devices 11-29
Character Devices 11-18
Character Devices 11-26
Character Devices 11-29
Character Interface 11-30
Definition 11-1
Disk Drives 12-25
1/O Control 12-20

Device Drivers (continued)
Interrupt Routines 11-20
Interrupt Routines 12-16
Interrupt Routines 12-18
Interrupt Routines 12-30
Interrupt Routines for Character

Devices 11-25
Line Discipline Routines 11-25
Line Printer 12-2
Lineprinters 11-29
Magnetic Tape 11-29
Modem Routines 12-16

Overview 11-1
Sample Code 12-1
Scheduling 11-12
Terminal 12-8

Terminals 11-26
Warnings 11-36
Writing 11-2

Block Devices 11-1

Character Devices 11-1
Disk Drives

Device Drivers 12-25

creation 1-2

prof 2-12

F

File 1-2
archives 1-2
block counting 1-3
check sum computation 1-3
error message file See Error
message file
error message flle See Error
message file
octal dump 1-2
relocation bits removal 1-3
removal
SCCS use See SCCS
Source Code Control System See
SCCS
symbol removal 1-3
text search, print 1-3
FORTRAN

conversion program 8-20

Index

FORTRAN (confinued)

G

gete 11-22
getc 11-26
geteb 11-23
getef 11-23

H

-h option
lint 39
C compiler 2-14
Hard Disk Routines
hdintr 12-30
hdread 12-32
hdstart 12-30
hdstrategy 12-28
hdwrite 12-32
hdintr 12-30
hdread 12-32
hdstart 12-30
hdstrategy 12-28
hdwrite 12-32
Hexadecimal dump 1-2

I

in 11-9
inb 11-9
Interrupt Routines
Interrupt Routines 11-20
Interrupt Routines 11-8

Character Device Drivers 11-25
Interrupt Service Routines 11-8
Interrupt Time Processing 11-7
Interrupt Vectors 11-35
Interrupts

Acknowledgement 11-10

No Acknowledgement 11-10
ioctl 11-14

iomove 11-16

K

Kernel Functions 11-4
Kernel Routines
Data transfer 11-14

L

-1 option
lint 312
1d 2-1
basic tool 1-1
link editor used with as 7-1
Lex 8-1
-1l flag
library access 8-5
0, end of file notation 8-12
a.out file
contents 85
action
default 88
description 83
repetition 8-9
specification 8-8
alternation 87
ambiguous source rules 812

angle brackets (<>)
operator character 8-24
operator character 8-4
start condition referencing 8

16
arbitrary character match 8-6
array size change 8-24
asterisk ()

operator character 8-25
operator character 8-4
repeated expression specification
8-6

automaton interpreter

initial condition resetting 8
16

backslash ()
C escapes 8-4
operator character 8-24
operator character 8-4
operator character escape 84
operator character escape 8-6

Index

Lex (continued)
BEGIN
start condition entry
16
blank character
quoting 84
rule ending 8-4

blank, tab line beginning 8-17

braces ({})
expression repetition
operator character 8-25
operator character 8-4
brackets ([])
character class specification
character class use 8-1
operator character 8-24
operator character 8-4
operator character escape
buffer overflow 8-13

C escapes 8-4
caret 5 ")
caret (*) operator
left context recognizing
15

character class inclusion
context sensitivity 8-7
operator character 8-24
operator character 8-4
string complement 8-5
character
character class

notation 81
specification 8-5
specification 8-22
internal use 8-22

get table 8-22
set table 8-24
translation table See set table

context sensitivity 8-7
copy classes 8-17
dash (-)
character class inclusion
operator character 8-24
operator character 8-4
range indicator 8-5
definition

expansion 88
format 8-18
placement 8-8
character set table 8-22
contents 8-18

8-8

85

85

85

8-5

Lex (continued) /
definition (continued) {
contents 8-23
format 8-23
location 8-18
specification 817
delimiter
discard 8-18
rule beginning marking 81
source format 8-2
third delimiter, copy 8-
18
description 81
description 1-2

dollar sign ($)
dollar sign ($) operator

right context recognizing 8-
16

context sensitivity 8-7

end of line notation 8-1

operator character 8-24
operator character 8-4

dot (.) operator See period (.) {
double precision constant change
8-21

ECHO

format argument, data printing

8-9

end-of-file

0 handling 812

yywrap routine 812
environment
change 815
expression
new line illegal 8-4
repetition 8-8
external character array 8-9
environment change
15
FORTRAN conversion program
8-20
grouping 8-7
I1/O library See library
1/O routine
access 811 (
consistency 811 V
input
input () routine 8-11
character I/O handling 8
22
description 81

)

Index

Lex (continued)
input () routine (continued)
end-of-file, 0 notation
12
ignoring &8
manipulation restriction

15
invocation 84
left context
left context 87
caret (") operator 815
sensitivity 815
lex.yy.c file 85

lexical analyzer
environment change
15
library
access 85
avoidance 85
backup limitation 812
loading 819
line beginning match
line end match 87
loader fiag See -1l fiag
lookahead characteristic
lookahead characteristic
match count 89
matching
occurrence counting
13
preferences
new line
illegality 8-4
newline
escape 823
matching 813
octal escape 86
operator character
escape 84
operator characters
designated
escape 85
escape 86
listing 84
literal meaning 84
quoting 84
See also Specific Operator
Character
optional expression
specification 86
output (¢) routine 8-11
character I/O handling
22

812

824

Lex (continued)

output (¢) routine (confinued)

8 parentheses ({))
grouping 8-7
operator character

8 operator character

parser generator
analysis phase
percentage sign (%)

84
8-25

8-2

delimiter notation (%%) 8-1
operator character 8-4
remainder operator 8
19
source segment separator 88
8 period (.)
designted 824
arbitrary character match 8-6
newline no match 813
operator character 8-4
plus sign (+)
operator character 8-25
87 operator character 8-4
repeated expression specification
812 preprocessor statement entry 8-18
810 question mark (?)
operator character 825
operator character 8-4
8- optional expression specification
86
quotation marks, double (
quotation marks, double (
real numbers rule 8-18
regular expression
description 83
end indication 83
operators See operator characters
rule component 83
REJECT 814
repeated expression
specification 86
right context
dollar sign (8) operator &
15
rule
active 816
real number 818
rules
components 83
format 824
8 semicolon (;)

Index

Lex (continued)
semicolon (;) (continued)
null statement 8-8
slash (/)
operator character 8-25
operator character 8-4

trailing text 87
source
source definitions
gpecification 8-17
format 8-23
source program
compilation 84
copy into generated program 8-
17
description 8-1
format 817
format 82

interception failure 8-17
segment separator 8-8
spacing character ignoring 89
start
start condition
start condition 87
entry 8-16
environment change 8-
156
format 823
location 8-23
abbreviation 816
statistics gathering 8-20
string
printing 8-3
substitution string
definition See definition
tab line beginning See blank, tab
line beginning
text.character

quoting 8-4
trailing text 8-7
unput
unput (¢) routine 8-11
character I/O handling 8
22
REJECT noncompatible 8
15
unreachable statement 34

vertical bar ()
action repetition 8-9
alternation 87
operator character 8-25
operator character 8-4

Lex (continued)
wrapup See yywrap routine

Yace
Yacc interface
tokens 819

yylex ()} 818
interface 8-2

library loading 819
yyleng variable 89
yyless ()

text reprocessing 8-10
yyless Sn) 8-10
yylex () program

Yacc interface 8-18
yylex program

contents 8-1
yymore () 8-10
yytext

external character array 8-9
Yywrap 8-20
yywrap 8 routine 8-12

Library 1-2
conversion 1-2
maintenance 1-2
ordering relation 1-2
sort 1-2

Line Discipline Routines

Device Driver 11-25
Line Printer Routines

Interrupt Routines 12-6

Ipclose 12-4

Ipintr 12-6

Ipopen 12-3

Ipstart 12-6

Ipwrite 12-6

Device Driver 12-2
Lineprinters 11-29
linker

error messages 2-15
Lint 3-1

-a option 3-8

-b option 3-4

-c option 3-7

-h option 3-9

-ly directive 312

-n option 3-12

-p option 3-12

-u option 3-3

turnon 311
unused variable report
suppression 33
-X option 3-2

Index

Lint (continued)
ARGSUSED directive 3-11
ARGSUSED directive 3-12
argument number comments
turnoff 3-11
check 3-8
new form 3-10
old form, check 3-9
operand type balancing 3-6
assignment, implied See implied
assignment
binary operator, type check 3-6
unreachable See unreachable
break statement
C language check 1-1
C program check 3-1
C syntax, old form, check 3-9
cast See type cast
conditional operator, operand type
balancing 3-6
constant in conditional context
3-9
construction check 3-1
construction check 3-8
control information flow 311
degenerate unsigned comparison

description 31

defined 3-11

embedding 311
enumeration, type check 3-6

error message, function name

expression, order 3-10
extern statement 3-2
external declaration, report
suppression 3-2
library declaration file
identification 3-12

error message 3-5
return value check 3-5
type check 3-6

unused See unused function
implied assignment, type check
3-6
initialization, old style check 3-10
compatibility check 3-12
compatibility check suppression
3-12
directive acceptance 3
12
file processing 312

Lint (continued)
LINTLIBRARY directive 3-12
loop check 3-4
nonportable character check 3-7
nonportable expression evaluation
order check 3-10
NOSTRICT directive 3-11
NOTREACHED directive 311
operand types balancing 3-6
precedence 3-9
output turnofl 311
agreement 3-6
alignment check 3-10
control 3-4
relational operator, operand type
balancing 3-6
scalar variable check 311
source file, library compatibility
check 3-12
statement, unlabeled report 3-4
structure selection operator, type
check 3-6
syntax 31
check 3-7
comment printing control 3-7
description 3-6
turnoff 3-11
unreachable break statement,
report suppression 3-4
report suppresgion 3-3

unused function, check 3-2
unused variable, check 3-2
VARARGS directive 312
external variable initialization
3-4
inner/outer block confiict 39
set/used information 33

static variable initialization 3-4
unused See unused variable
Loader See Id
Loader See Id
Loop
lint use See Lint
description 1-2
lpclose 12-4
lpintr 12-6
lpopen 12-3
Ipstart 12-6
Ipwrite 12-6
l_close 11-25
I_jnput 11-25
1_joctl 11-25

Index

I_mdmint 11-25

lopen 11-25

l_output 11-25

|_read 11-256

I_write 11-26
description 1-2
preprocessing 1-2

Magretic Tape 11-29
Maintainer See Make
Maintainer See Make
Make 4-1
arguments 4-4
syntax 4-4
-d option 4-13
-n option 4-13
-t option 4-13
argument quoting 4-6
description file continuation 4-2
basie tool 1-2
macro definition 4-6
command string substitution 4-5
hyphen (-) start 45

form 4-1

location 4-1

print without execution 4-
13

dependency line substitution 4-5
form 4-1

comment convention 4-1
macro definition 4-6
argument 4-4

dollar sign ($)
macro invocation 4-6
macro definition 4-5

file

file generation 4-5

file update 41
time, date printing 4-13
updating 4-13
command string start 4-5

macro 4-6
macro definition

analysis 4-6

argument 4-4
description 4-5
definition 4-6

definition override 4-6

Make (continued)

macro definition (continued) 6
invoeation 4-6 !
substitution 4-5
value assignment 4-6

medium sized projects 41

metatharacter expansion 4-1
description flle comment 4-1

object file
suffix 4-9
use 4-4

parentheses (())
macro enclosure 4-6

program maintenance 4-1
command introduction 4-1
source file
suffixes 4-9
source grammar
suffixes 4-9
suffixes
list 49
table 49
target file
pseudo-target flles 4-5 (
update 4-13
argument 4-4
target name omission 4-3

touch option See -t option
transformation rules

table 4-9
troubleshooting 4-13
.csuffix 49
.DEFAULT 4-5
fsuffix 4-9
IGNORE 4-5
1suffix 4-9
.o sufix 4-9
PRECIOUS 4-5
rsufix 4-9
ssuffix 4-9
SILENT 4-5
.ysuffix 49
Jyr suffix 4-9

Modem Interrupts 12-20
Modem Routines 12-16

Modes of Operation 11-4

Index

N

Naming Conventions
Device Driver Routines
Notational conventions

0

-0 option

C compiler 2-10

C compiler 2-5
Object files

creating 2-8
Operation Modes

System Mode 11-

User Mode 11-
out 11-9
outb 11-9

P

-p option

C compiler 2-12
C compiler 2-15

lint 3-12
physio 11-34
Pipe 528
SCCS use See SCCS
Printing error messages
Processes
System 11-4
u Area 11-5
User 11-4
prof command 2-12
Program 4-1
Program development
maintainer See Make
maintainer See Make

pute 11-23
pute 11-26
puteb 11-23

putchar 11-24

description 1-2

[

putchar (continued)

R

11-18
1-4
Registers
Accessing 11-9
Controlling 11-9
Defining 12-9
SCCS use See SCCS
S
-8 option
C compiler 2-11
SCCs 51
SCCS, source code control 1-2
%M % keyword
g-file line precedence 5
30
-8 option
login name addition use 5
23
flags deletion 516
data specification provision 5
20
flag removal 516
-e option
delta range printing 5
21
11-25 file editing use 5-7
login name removal 5
24
flag initialization, modification
515
flag, value setting 5-16
output suppression 5-30
1-1 p-file regeneration 5-26
file audit use 525
keyword message, error
treatment 515
delta inclusion list use 5
28
g-file regeneration 526
delta range printing 5
21
l-file creation 5-29
-m option
eflective when 518

Index

SCCS, source code control (continued)

-m option (continued)
file change identification
30
new file creation 527
-n option
9%9M % keyword value use
30

g-file preservation 5-12

pipeline use 5-30

delta printing 530

output effect 511
-r option

delta creation use 522
delta printing use 521

file retrieval 59
release number specification
27
output suppression 5-28
-t option
delta retrieval 511

file initialization 5-19
file modification 519
delta exclusion list use
28
-y option
comments prompt response
17
new file creation 527
file audit use 5-26
@ (#) string
file information, search
31
admin command
file administration 5-256
file checking use 5-25

file creation 5-5

use authorization 56
administrator

description 5-4
argument

minus sign(-}) >use 54
types designated 5-4
retrieval 6-10
branch number
description 52
cde command
commentary change
17
ceiling flag
protection 5-24
checksum

10

5

SCCS, source code control {continued)
checksum (continued)
file corruption determination 5-
25
command
argument See argument
execution control 54

explanation 526
comments
change procedure 517
omission, effect 5-28
corrupted file
determination 525
processing restrictions 5
25
restoration 5-26
d flag
default specification 5
16
d-file

temporary g-file 54
data keyword
data specification component &

20
replacement 520
data specification
description 5-20
delta
comments prompt 58
file change procedure 58
g-file removal 512
p-file reading 57
p-file reading 58
delta table
delta removal, effect 5
31
description 517
branch delta See branch delta
defined 5-1
defined 52
exclusion 528
inclusion 5-28
interference 529
latest release retrieval 5
11

level number See level number

name See SID

printing 521

printing 5-30

range printing 521

)

Tndex

SCCS, source code control (continued)

delta table (continued)

release number See release
number

removal 5-31

descriptive text
initialization 519
modification 5-19
removal 5-19

diagnostic output
-p option effect 512

diagnostics
code as help argument 5-
12
form 512
directory
directory use 51
file argument application 54
x-file location 5-3

error message

code use 5-12

form 512
exclamation point (!)

MR deletion use 5-19
file

description 5-4

processing 5-4

comment line generation 5
28

commentary 527

comments omission, effect 5
28

levei number 5-27

release number 5-27

file protection 5-23

administration 525

change identification 5
30

change procedure 5-8

change, major 59

changes See delta

checking procedure 5-
25

comparison 532

composition 516

composition 52

corrupted file See corrupted file

creation 55
data keyword See data keyword

descriptive text description 5
17

SCCS, source code control (continued)

file protection (continued)
descriptive text See descriptive

text

editing, -e option use 57

grouping 5-1

identifying information 5
31

link See link

multipie concurrent edits 5
22

name arbitrary 512

name See link

name, 8 use 55

parameter initialization,
modification 519
printing 5-20

protection methods 5-
23
removal 55

retrieval See get command
x-file See x-file

flags
deletion 5-16
initialization 515
modiflcation 515
setting, value setting 5

16

use 516

floor flag
protection 5-24

g-flle

creation 53
creation date, time recordation
5-13
description 53
line identification 5-30
line, %M % keyword value 5-
30

ownership 53

regeneration 5-26

removal, delta command use 5-
12

temporary See d-file
get command

-e option ur2 57

concurrent editing, directory use
5-21

delta inclusion, exclusion check
529

file retrieval 5-6

filename creation 5-6

11

Index

SCCS, source code control (continued)
get command (continued)
g-file creation 5-3
message 5-6
release number change 5-9
help command
argument 512
code use 5-12
use 5-26
i flag
file creation, effect 5-14
ID keyword See keyword
identification string See SID
jflag
multiple concurrent edits
specification 5-22

keyword
data See data keyword
format 513
lack, error treatment 5
15
use 513
I-flle
contents 63

creation 5-29
level number
delta component 52

new file 5-27
omission, file retrieval, effect 5-9
link

number restriction 52
lock flle See z-file
lock flag
minus sign (-)
option argument use 5-4
argument use 54
mode
g-file 53
MR
commentary supply 5
17
deletion 5-18
new flle creation 527
multiple users 5-4
option argument
description 54
processing order 54
output
data specification See data
specification
piping 5-28
suppression, -g option 5-
30

12

SCCS, source code control (continued)
output (continued) @
suppression, -8 option 5
write to standard output 5
11
p-file
contents 5-3
contents §5-7
creation 53
delta command reading 5-8
naming 63
ownership 53
permissions 5-3
regeneration 5-26
update 5-3
updating 54
keyword enclosure 513
piping
piping 5-28
-n option use 5-30
prs command
file printing 5-20 ,
purpose 5-1 @
use 5-4
R
delta removal check 5-
31
release number
-r option, specification 5-

change 52
change procedure 59
delta component 5-2

new file 527
protection 5-24
rm command
file removal 5-6
rmdel command
delta removal 531
scesdiff command
file comparison 532
sequence number
description 52
SID
components 52 (
delta printing use 5-21 \
tab character
-n option, designation 5
30
user list

empty by default 5-23

e

)

{adex

SCCS, source code control (continued)

user list (continued)

login name addition 5
23

login name removal 5
24

protection feature 5-23
user name

list 523
v flag
new file uge 516

what command
file information 5-31
delta removal 531
x-file
directory, location 5-3
naming procedure 53

permissions 53
temporary file copy 53
use 53
XENIX command
use precaution 525
z-file
lock file use 53
ownership 53
permissions 53
Sharing Interrupt Vectors 11-36
sleep 11-11
described 1-1

Source Code Control System See
SCCS
Source files 1-1
spl routines 11-10
Stack
u Area 11-5
description 1-3
sum 1-3
description 1-3
Suspending Processing 11-11
Symbol 1-3
name list 1-2
removal 1-3

sync 1-3

description 1-3
System Calls

ioctl routine 11-14
System Mode Stack 11-5

System Processes 11-4

T

Tags file 1-2
creation 1-2
Task Time Processing
tdclose 12-14
tdintr 12-16
tdioctd 12-20
tdmint 12-20
tdmodem 12-16
tdopen 12-12
tdparam 12-12
tdparam 12-14
tdproc 12-22
tdread 12-14
tdrint 12-18
tdwrite 12-14
tdxint 12-18
Terminal
tdmint 12-20
tdxint 12-18
tdioctl 12-20
tdclose 12-14
tdintr 12-16
tdmodem 12-18
tdopen 12-12
tdparam 12-14
tdproc 12-22
tdread 12-14
tdrint 12-18
tdwrite 12-14

Device Driver Sample 12-8
Text editor 1-1

creating programs
timeout 11-12
description
ttinit 12-12

U

-u option
lint 3-3
u Area 11-6

User Processes 11-4

11-6

13

Index

-v option

lint
lint

\%

311
33

vi, the screen-oriented text editor

1-1

\\4

wakeup 11-11

X

-Xx option
C compiler 2-10
lint 32
XENIX file
identifying information 531
XENIX Operating system 1-1
xxclose 11-19
xxclose 11-32
xxinit 11-19
xxinit 11-32
xxintr 11-20
xxintr 11-33
xxioetl 11-21
xxioctl 11-35
xxopen 11-19
xxopen 11-32
xxproc 11-21
xxread 11-20
xxread 11-33
xxstart 11-20
xxstart 11-33
xxstrategy 11-32
xxwrite 11-21
xxwrite 11-34

14

Y

Yacc 9-1

% token keyword
union member name association
9-30
Qeft keyword
Peft keyword 9-20
union member name association
9-30
%eft token
synonym 9-42
Y%monassoc keyword

%nonassoc keyword 9-21
union member name association
9-30
%nonassoc token
synonyms 9-42
Pprec

%prec keyword 9-21
synonym 9-42
%right keyword
%xight keyword 9-21
union member name association
8-30
%right token
synonym 9-42
%oken
synonym 9-42
Ttype keyword 8-31
)0 key
endmarker token marker 8-
10
-ly argument, library access 9-25
-v option

y-output file 9-13
0 character
grammar rules, avoidance 9-5

accept action See parser
accept simulation 9-29

action
0, negative number 9-
29
conflict source 9-17
defined 9-7
error rules 9-23
form 9-42
global flag setting 9-28
input style 9-26

Index

Yace (continued)
action [confinued)
invocation g-1
location ¢-8
nonterminating 9-8
parser See parser
return value 8-30
statement 9-7
statement 9-8
value in enclosing rules, access
9-29
ampersand (&)
bitwise AND operator 9-
31
desk calculator operator 9-
31
arithmetic expression
desk calculator 9-31

parsing 9-20
precedence See precedence
associativity
arithmetic expression parsing 9-
grammar rule association 9-
22
recordation 9-22
token attachment 9-20
asterisk (*)
desk calculator operator 8-
31
backslash ()

escape character 9-6
percentage sign (%) substitution
9-41
binary operator
precedence g-21
blank character
restrictions 8-5
braces ({})
action 9-8
action statement enclosure 9-7
action, dropping 9-42

header flle enclosure 9-
30
colon (:)
identifler, effect 9-33
punctuation 9-5
comments
location 9-5
conflict

associativity See associativity

Yace [continued)

conflict {continued)

disambiguating rules 0-
17
message 9-19

precedence See precedence
reduce/reduce conflict 9-
17
reduce/reduce conflict 9-
22
resolution, not counted 9-
22
shift/reduce conflict 9-
17
shift/reduce conflict 9-
19
shift/reduce conflict 9-
22
source 9-17
declaration
declaration section
header file 9-30
specification flle component 9-4
description 1-2
desk calculator specifications 9-31
advanced features 9-35

eITOT recovery 9-36
floating point interval 9-
36
scalar conversion 9-36
dflag 9-28
disambiguating rule 9-17
disambiguating rules 0-17

dollar sign (8)
action significance 9-7

empty rule 9-27
enclosing rules, access 9-29
endmarker

lookahead token 9-12
parser input end 9-6

representation 9-6

token number 8-10
environment 9-26
error
error action See parser
error token

parser restart 9-23

handling 9-23
nonassociating implication 9-

22
parser restart 9-23
simulation 9-29

15

Index

Yace (continued)
error token (continued)
yyerrok statement 9-24
escape characters 9-5
external interger variable 9-26
global fiag See global flag
floating point intervals See desk

calculator
global fiag
lexical analysis 9-28
grammar rules
grammar rules 9-1
0 character avoidance 9-5
advanced features 9-35
ambiguity 9-15
associativity association 9-
22
C code location 9-42
empty rule 9-27
error token 9-23
format 9-5
input style 9-26
left recursion 9-27

left side repetition 9-5
names 9-6

numbers 9-20
precedence association 9-
22
reduce action 9-11
reduction 9-12
rewrite 9-17
right recursion 9-27
specification flle component 9-4
value 9-7
header file, union declaration
9-30
historical features 9-41
identifler
input syntax 9-33
if-else rule 9-18
if-then-else construction 9-17
input error detection 9-3
input language 91
style 9-26
syntax 9-33
keyword 9-20
reservation 9-29
union member name association
9-30
left 25t ociation 9-16

left associative
reduce implication 9-22

16

Yacc (continued)
left recursion
left recursion 9-27
value type 9-31
lex
interface 82
lexical analyzer construction 9-
10
lexical analyzer
context dependency 9-
28

defined 91
defined 9-9
endmarker return 9-6
floating point constants 9-
37
function 9-2
global fiag examination 9-
28
identifier analysis
lex 9-10
return value 9-30
scope -8
specification file component 9-4
terminal symbol See terminal
symbol
token number agreement 9-9
lexical tie-in 9-28
library 9-25
library 9-26
literal
defined 9-5
delimiting 9-41
length 9-41
lookshead token
lookahead token 9-10
clearing 9-24
error rules 9-23
LR(2) grammar 9-33
main program
minus sign (-)

desk calculator operator 9-
31
names
com position 9-5
length 9-5
reference 9-4

token name See token name

newline character
restrictions 9-6
nonassociating

Index

Yacc (continued)

nonassociating (continued)
error implication 9-22

nonterminal name

input style 9-26
representation 9-5
nonterminal symbol
nonterminal symbol 9-2
empty string match 9-6
location 9-6

name See nonterminal name
start symbol See start symbol

union member name association

9-31
octal interger
0 beginning 9-31
parser
accept action 912

accept simulation 9-29
actions 911

arithmetic expression 9
20

conflict See confiict

creation 9-20

defined @1

description 8-10

error action 812

error handling See error

goto action 912

initial state 915

input end 9-6

lookahead token 911

movement 911

names, yy prefix 9-9

nonterminal symbol See
nonterminal

production failure 9-3

reduce action 8-11

restart 9-23

shift action 811

start symbol recognition 9-6

token number agreement 9-9

percentage sign (%)

action 9-8

desk calculator mod operator 9-
31

header flle enclosure 9-
30

precedence keyword 9

Yacc (continued)

percentage sign (%) (continued)
specification file section separator
9-4
substitution 9-41
plus sign (+)
desk calculator operator 9-
31
precedence
binary operator 9-21
change 9-21
grammar rule association 9
22
keyword 9-20
parsing function 9-20
recordation 9-22
token attachment 9-20
unary operator 9-21

program
specification flle component 9-4
punctuation 9-5

quotation marks, double ()"
literal enclosure 9-5
reduce action See parser
reduce command
number reference 9-20
reduce /reduce conflict 8-17
reduce /reduce conflict 9-22
reduction conflict See
reduce /reduce conflict
reduction conflict See shift/reduce
conflict
reserved words 9-28
right association 9-16
right associative
shift implication 9-22

right recursion 9-27
semicolon (;)
input style 9-26
punctuation 8-5

shift action See parser
shift command

number reference 9-20
shift/reduce conflict ¢-17
shift/reduce conflict 9-19
shift/reduce conflict 9-22
simple-if rule 9-18
slash (/)

desk calculator operator 9

31

specification file

contents 9-4

17

Index

Yacc (continued)
specification file (continued)
lexical analyzer inclusion 9-4
sections separator 9-4
specification files 9-2

start symbol
description 9-6
location 9-8
symbol synonyms 9-41
tab character
restrictions 9-5
terminal symbol 9-2
token
token name
declaration 9-6
input style 9-26
token names 9-10
token number 9-9
agreement 9-9
assignment 9-10
endmarker 9-10
associativity 9-20
defined 9-1

error token See error token
names 9-4

organization 91
precedence 9-20
unary operator
precedence 9-21
underscore sign (_)
parser 9-14
union
copy 9-30
declaration 9-30
header file 9-30
name association 9-30
unreachable statement 34
value
value stack
value stack 9-30
declaration 9-30

floating point scalars, intergers
9-36

typing 9-30
union See union
vertical bar ()

bitwise OR operator 9-
31

desk calculator operator 9
31

grammar rule repetition 9-6

input style 9-26

18

Yacc (continued)

y.output file

y.output file 9-13
parser checkup 9-22

y.tab.c file 9-25

y.tab.h file 9-30

YYACCEPT 9-29

yychar 0-26

yyclearin statement 9-24

yydebug 9-26

yyerrok statement 9-24

yyerror 9-25

YYERROR 9-36

yylex 9-25

yyparse

Yyparse 9-25
YYACCEPT effect 9-29

YYSTYPE 9-30

Contents

Programming Commands (CP)

intro Introduces XENIX Development commands.

adb Invokes ageneral-purpose debugger.

admin Creates and administers SCCS files.

ar Maintains archives and libraries.

as Invokes the XENIX assembler.

cb Beautifies C programs.

ce Invokes the C compiler.

cde Changes the delta commentary of an SCCS delta.

comb Combines SCCS deltas.

config Configures a XENIX system.

cpp The CLanguage preprocessor.

cref Makes a cross-reference listing.

ctags Creates atagsfile.

delta Makes a delta(change) to an SCCS file.

dosld XENIX to MS-DOS cross linker.

get Getsaversion of an SCCS file.

gets Gets astring from the standard input.

hdr Displaysselected partsof object files.

help Asks for help about SCCS commands.

1d Invokes the link editor.

lex Generates programs for lexical analysis.

lint Checks C language usage and syntax.

lorder Findsordering relation for an object library.

m4 Invokes a macro processor.

make Maintains, updates, and regenerates groups of
programs.

mkstr Creates an error message file from C source.

nm Printsname list.

prof Displays profile data.

prs Printsan SCCS file.

ranlib Convertsarchivesto random libraries.

ratfor Converts Rational FORTRAN into standard
FORTRAN.

regcmp Compilesregular expressions.

rmdel Removesadeltafrom an SCCS file.

sact Prints current SCCS file editing activity.

scesdiff Compares two versions of an SCCS file.

size Prints the size of an object file.

spline Interpolates smooth curve.

strings
strip
time
tsort
unget
val
xref
xstr
yacc

Finds the printable strings in an object file.
Removessymbolsand relocation bits.
Timesacommand.

Sorts a file topologically.

Undoesa previousget of an SCCS file.
Validates an SCCS file.

Cross-references C programs.
Extractsstrings from C programs.

Invokes a compiler-compiler.

INTRO (CP) INTRO (CP)

Name
intro — Introduces XENIX Development System commands.

Description

This section describes use of the individual commands available in
the XENIX Development System. Each individual command is
labeled with the letters CP to distinguish it from commands avail—
able in the XENIX Operating and Text Processing Systems. These
letters are used for easy reference from other documentation. For
example, the reference cc(CP) indicates a reference to a discussion
of the cc command in this section, where the letter *‘C’’* stands for
“‘Command’’ and the letter ‘‘P** stands for ‘‘Programming’’.

Syntax
Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [options] [cmdarg]
where:
name The filename or pathname of an executable file

option A single leiter representing a command option. By
convention, most options are preceded with a dash.
Option letters can sometimes be grouped together
as in —abed or alternatively they are specified
individually as in —a —b —c —d . The method of
specifying options depends on the syntax of the
individual command. In the latter method of
specifying options, arguments can be given to the
options. For example, the —f option for many
commands often takes a following filename argu—
ment.

cmdarg A pathname or other command argument not
beginning with a dash. It may also be a dash alone
by itself indicating the standard input.

See Also
getopt(C), getopt(S)

Diagnostics
Upon termination, each command returns 2 bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of ‘‘normal’’ termination) one supplied by the program
(see wait(S) and exit(S)). The former byte is O for normal termi—
nation; the latter is customarily O for successful execution and
nonzero to indicate troubles such as erroneous parameters, or bad

Page 1

INTRO (CP) INTRO (CP)

or inaccessible data. It is called variously ‘“‘exit code'’, ‘‘exit
status’’, or “‘return code’, and is described only where special
conventions are involved.

Notes
Not all commands adhere to the above syntax.

Page 2

ADB (CP) ADB(CP)

Name

adb — debugger

Syntax

adb [— w] [objfil | corfil | |

Description

Adb is a general purpose debugging program. It may be used
to examine files and to provide a controlled environment for
the execution of XENIX programs.

Objfil is normally an executable program file, preferably con-
taining a symbol table; if not then the symbolic features of
adb cannot be used although the file can still be examined.
The default for 0bjfil is a.out. Corfil is assumed to be a core
image file produced after executing objfi; the default for corfd
is core.

Requests to adb are read from the standard input and
responses are to the standard output. If the — w flag is
present then both objfd and corfil are created if necessary and
opened for reading and writing so that files can be modified
using adb. Adb ignores QUIT (CTRL-\); INTERRUPT
(DEL) causes return to the next adb command.

In general requests to adb are of the form
[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dotis
set to 0. For most commands count specifies how many times
the command will be executed. The default count is 1.
Address and count are expressions.

The interpretation of an address depends on the context it is
used in. If a subprocess is being debugged then addresses are
interpreted in the usual way in the address space of the sub-
process. For further details of address mapping see Addresses.

Page 1

ADB (CP)

ADB (CP)

Expressions

The value of dot.

+ The value of dot incremented by the current incre-
ment.

" The value of dot decremented by the current incre-
ment.

» The last address typed.

integer An octal number if tnteger begins with a 0; a hexade-
cimal number if preceded by # or Ox; otherwise a
decimal number.

integer.fraction
A 32 bit floating point number.

‘cccc” The ASCII value of up to 4 characters. \ may be used
to escape a

< name
The value of name, which is either a variable name or
a register name. Adb maintains a number of variables
(see Variables) named by single letters or digits. If
name is a register name then the value of the register
is obtained from the system header in corfil.

symbol A symbol is a sequence of upper or lower case letters,
underscores or digits, not starting with a digit. The
value of the symbol is taken from the symbol table in
objfil. An initial _ or ~ will be prepended to symbol if
needed.

_ symbol
In C, the ‘true name’ of an external symbol begins
with _. It may be necessary to use this name to dis-
tinguish it from internal or hidden variables of a pro-
gram.

(ezp) The value of the expression ezp.

Monadic operators

Page 2

ADB (CP) ADB (CP)

xezp The contents of the location addressed by ezp in corfil.
@ exp The contents of the location addressed by ezp in obgfil.
— ezp Integer negation.

“ezp Bitwise complement.

Dyadic operators are left associative and are less binding than
monadic operators.

el+ e¢2 Integer addition.

el— e2 Integer subtraction.
elxe2 Integer multiplication.
¢1%e2 Integer division.
el1&e2 Bitwise conjunction.
elle2 Bitwise disjunction.

el#e2 EIrounded up to the next multiple of e2.

Commands

Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. (The
commands ‘?’ and ¢/’ may be followed by ‘x’; see Addresses
for further details.)

tf Locations starting at address in objfil are printed
according to the format f.

/f Locations starting at address in corfil are printed
according to the format f.

=f The value of address itself is printed in the styles indi-
cated by the format f. (For i format ‘?’ is printed for
the parts of the instruction that reference subsequent
words.)

A format consists of one or more characters that specify a style
of printing. Each format character may be preceded by a

Page 3

ADB(CP) ADB (CP)

decimal integer that is a repeat count for the format character.
While stepping through a format dot is incremented tem-
porarily by the amount given for each format letter. If no for-
mat is given then the last format is used. The format letters
available are as follows.

o 2
Print 2 bytes in octal. All octal numbers output by
adb are preceded by 0.
04
Print 4 bytes in octal.
q 2
Print in signed octal.
Q14
Print long signed octal.
d 2
Print in decimal.
D4
Print long decimal.
x 2
Print 2 bytes in hexadecimal.
X 4
Print 4 bytes in hexadecimal.
u 2
Print as an unsigned decimal number.
U4
Print long unsigned decimal.
f 4
Print the 32 bit value as a floating point number.
F 8
Print double floating point.
b1
Print the addressed byte in octal.
c 1
Print the addressed character.
Cl1
Print the addressed character using the following
escape convention. Character values 000 to 040 are
printed as @ followed by the corresponding character
in the range 0100 to 0140. The character @ is printed
as @@.
s n
Print the addressed characters until a zero character is

Page 4

ADB (CP) ADB (CP)

reached.

Sn
Print a string using the @ escape convention. nis the
length of the string including its zero terminator.

Y 4
Print 4 bytes in date format (see ctime(3)).

in
Print as PDP11 instructions. n is the number of bytes
occupied by the instruction. This style of printing
causes variables 1 and 2 to be set to the ofset parts of
the source and destination respectively.

a 0
Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type
as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

P 2
Print the addressed value in symbolic form using the
same rules for symbol lookup as a.

t 0
When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to the
next 8-space tab stop.

r 0
Print a space.

n O
Print a newline.

?..70

Print the enclosed string.

Dot is decremented by the current increment. Noth-

ing is printed.

+ Dotis incremented by 1. Nothing is printed.

— Dotis decremented by 1. Nothing is printed.

a

newline
If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
command with a countof 1.

Page 5

ADB (CP) ADB (CP)

[2 /11 value mask
Words starting at dot are masked with maesk and compared
with value until a match is found. If L is used then the
match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the
matched location. If mask is omitted then — 1 is used.

(?/]w value ...
Write the 2-byte value into the addressed location. If the
command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[?/]m b1 et f1[2 /]
New values for (b1, el, f1) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the ‘?’ or ‘/’ is followed
by ‘4’ then the second segment (b2, €2, f2) of the map-
ping is changed. If the list is terminated by ‘?’ or ¢/’ then
the file (objfil or corfil respectively) is used for subsequent
requests. (So that, for example, ‘/m?’ will cause ‘/’ to
refer to objfil.)

>name
Dot is assigned to the variable or register named.

I A shell is called to read the rest of the line following ‘1’.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file fand return.

>f Send output to the file f which is created if it does
not exist.

r Print the general registers and the instruction
addressed by pe. Dotis set to pe.

f Print the floating registers in single or double length.
If the floating point status of ps is set to double (0200
bit) then double length is used anyway.

b Print all breakpoints and their associated counts and
commands.

¢ C stack backtrace. If address is given then it is taken
as the address of the current frame (instead of). If
C is used then the names and (16 bit) values of all
automatic and static variables are printed for each

Page 6

ADB(CP)

ADB (CP)

active function. If count is given then only the first
count frames are printed.

e The names and values of external variables are
printed.

w Set the page width for output to address (default 80).

8 Set the limit for symbol matches to address (default
255).

o All integers input are regarded as octal.

d Reset integer input as described in Expressions.

q Exit from adb.

v Print all non zero variables in octal.

m Print the address map.

smodtfier

Manage a subprocess. Available modifiers are:

be

88

Set breakpoint at address. The breakpoint is executed
count— 1 times before causing a stop. Each time the
breakpoint is encountered the command ¢ is executed.
If this command sets dot to zero then the breakpoint
causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given expli-
citly then the program is entered at this point; other-
wise the program is entered at its standard entry point.
count specifies how many breakpoints are to be
ignored before stopping. Arguments to the subpro-
cess may be supplied on the same line as the com-
mand. An argument starting with < or > causes the
standard input or output to be established for the
command. All signals are turned on on entry to the
subprocess.

The subprocess is continued with signal s ¢ s, see sig-
nal(2). If address is given then the subprocess is con-
tinued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent.
Breakpoint skipping is the same as for r.

As for ¢ except that the subprocess is single stepped
count times. If there is no current subprocess then
objfil is run as a subprocess as for r. In this case no

Page 7

ADB (CP) ADB (CP)

signal can be sent; the remainder of the line is treated
as arguments to the subprocess.

k The current subprocess, if any, is terminated.

Variables

Adb provides a number of variables. Named variables are set
initially by edd but are not used subsequently. Numbered
variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the
corfil. If corfil does not appear to be a core file then these
values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
s The stack segment size.
t The text segment size.
Addresses

The address in a file associated with a written address is deter-
mined by a mapping associated with that file. Each mapping is
represented by two triples (b1, el, f1) and (b2, €2, f2) and the
file address corresponding to a written address is calculated as
follows.

bl <address<el => file
address=—=address+ f1- b1, otherwise,

b2<address<e? => file
address=address+ f2- b2,

otherwise, the requested eddress is not legal. In some cases
(e.g. for programs with separated I and D space) the two seg-
ments for a file may overlap. If a ? or / is followed by an «
then only the second triple is used.

Page 8

ADB(CP) ADB(CP)

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expected then, for
that file, b1 is setto 0, el is set to the maximum file size and f1 is
set to 0; in this way the whole file can be examined with no address
translation.

So that adb may be used on large files all appropriate values are
keptassigned 32 bitintegers.
Files
/dev/mem
/dev/swap
a.out
core

See Also
a.out(F), core(F)

Diagnostics

‘Adb’ when there is no current command or format. Com-
ments about inaccessible files, syntax errors, abnormal termi-
nation of commands, etc. Exit status is 0, unless last com-
mand failed or returned nonzero status.

Page 9

ADMIN (CP) ADMIN (CP)

Name

admin — Creates and administers SCCS files.

Syntax

admin [- n] [~ i[name}] [- rrel] [~ t[name]] [- fMag[Aag-val
— dflag[flag-val]] [- alogin] {- elogin [~ m|mrlist
- y[comment]] [~ h] [~ z] files

Description

Admin is used to create new SCCS files and to change parameters of
existing ones. Arguments to adminmay appear in any order. They
consist of options, which begin with — , and named files (note that
SCCS filenames must begin with the characters 8.). If a named file
doesn’t exist, it is created, and its parameters are initialized accord-
ing to the specified options. Parameters not initialized by a option
are assigned a default value. If a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonSCCS files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If the dash — is given, the
standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed. Again, nonSCCS files and
unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This option indicates that a new SCCS file is to be
created.
~ i[name] The name of a file from which the text for a new

SCCS file is to be taken. The text constitutes the
first delta of the file (see — r below for delta
numbering scheme). If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun-
tered. If this option is omitted, then the SCCs file is
created empty. Only one SCCS file may be created
by an admin command on which the i option is sup-
plied. Using a single admsn to create two or more
SCCS files require.that they be created empty (no
— i option). Note that the — i option implies the
— n option.

Page 1

ADMIN (CP)

-~ rrel

~ t|name}

- fflag

ADMIN (CP)

The release into which the initial delta is inserted.
This option may be used only if the — i option is
also used. If the — r option is not used, the initial
delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial deltas are
named 1.1).

The name of a file from which descriptive text for
the SCCS file is to be taken. If the — t option is
used and admin is creating a new SCCS file (the — n
andfor — i options also used), the descriptive text
filename must also be supplied. In the case of exist-
ing SCCS files: a — t option without a filename
causes removal of descriptive text (if any) currently
in the SCCS file, and a - t option with a filename
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This option specifies a flag, and possibly a value for
the flag, to be placed in the SCCS file. Several f
options may be supplied on a single edmin com-
mand line. The allowable flags and their values are:

Allows use of the — b option on a get(CP)
command to create branch deltas.

cced The highest release (i.e., ‘‘ceiling’’), a number

less than or equal to 9999, which may be
retrieved by a get(CP) command for editing.
The default value for an unspecified ¢ flag is
9999.

ffloor The lowest release (i.e., ‘““floor’’), a number

greater than 0 but less than 9999, which may
be retrieved by a get(CP) command for edit-
ing. The default value for an unspecified f flag
is 1,

dsiD The default delta number (SID) to be used by

a get(CP) command.

Causes the ‘“No id keywords (ge6)’’ message
issued by get(CP) or delta(CP) to be treated as
a fatal error. In the absence of this flag, the
message is only a warning. The message is
issued if no SCCS identification keywords (see
get(CP)) are found in the text retrieved or
stored in the SCCS file.

Allows concurrent get(CP) commands for edit-
ing on the same SID of an SCCS file. This
allows multiple concurrent updates to the same
version of the SCCS file.

Page 2

ADMIN (CP)

- d[flag]

1list

qtest

mmod

tiype

v[pgm)

ADMIN (CP)

A list of releases to which deltas can no longer
be made (get — e against one of these
“locked” releases fails). The list has the fol-
lowing syntax:

<list> = <range> | <list> , <range>
<range> = RELEASE NUMBER | a

The character a in the list is equivalent to
specifying all releases for the named SCCS file.

Causes delta(CP) to create a ‘‘null”’ delta in
each of those releases (if any) being skipped
when a delta is made in a new release (e.g., in
making delta 5.1 after delta 2.7, releases 3 and
4 are skipped). These null deltas serve as
‘‘anchor points’’ so that branch deltas may
later be created from them. The absence of
this flag causes skipped releases to be nonex-
istent in the SCCS file preventing branch deltas
from being created from them in the future.

User-definable text substituted for all
occurrences of the keyword in SCCS file text
retrieved by get(CP).

Module name of the SCCS file substituted for
all occurrences of the admin.CP keyword in
SCCS file text retrieved by get{CP). If the m
flag is not specified, the value assigned is the
name of the SCCS file with the leading s.
removed.

Type of module in the SCCS file substituted for
all occurrences of

keyword in SCCS file text retrieved by
get(CP).

Causes delta(CP) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR number validity checking
program (see delta(CP)). (If this flag is set
when creating an SCCS file, the m option must
also be used even if its value is null).

Causes removal (deletion) of the specified flag from
an SCCS file. The — d option may be specified only
when processing existing SCCS files. Several - d
options may be supplied on a single admin com-
mand. See the — f option for allowable flag names.

Page 3

ADMIN (CP)

~ alogin

— elogin

- y|commendg

— m|mriieq

ADMIN (CP)

list A liet of releases to be ‘‘unlocked’’. See the
— f option for a description of the 1 flag and
the syntax of a list.

A login name, or numerical XENIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a options may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane-
ously. If the list of users is’ empty, then anyone
may add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admin command line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a nranner identical
to that of delta(CP). Omission of the — y option
results in a default comment line being inserted in
the form:

YY/MM/DD HH:MM:SS by login

The - y option is valid only if the — i andfor — n
options are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(CP).
The v flag must be set and the MR numbers are
validated if the v flag has a value (the name of an
MR number validation program). Diagnostics will
occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see sccsfile(F)), and to compare a newly computed
checksum (the sum of all the characters in the SCCS
file except those in the first line) with the checksum
that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, nullifying
the effect of any other options supplied, and is
therefore only meaningful when processing existing
files.

Page 4

ADMIN (CP) ADMIN (CP)

-2 The SCCS file checksum is recomputed and stored in
the first line of the SCCS file (see — h, above).

Note that use of this option on a truly corrupted file
may prevent future detection of the corruption.

Files

The last component of all SCCS filenames must be of the form
8.file-name. New SCCS files are created read-only (444 modified by
umask) (see chmod(C)). Write permission in the pertinent directory
is, of course, required to create a file. All writing done by admin is
to a temporary x-file, called x.fillename, (see get(CP)), created with
read-only permission if the admin command is creating a new SCCS
file, or with the same mode as the SCCS file if it exists. After suc-
cessful execution of admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors
occurred.

It is recommended that directories containing SCCS files be mode
755 and that SCCS files themselves be read-only. The mode of the
directories allows only the owner to modify SCCS files contained in
the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor. Care must be taken! The edited file should always be pro-
cessed by an admin - h to check for corruption followed by an
admin - z to generate a proper checksum. Another admin - h is
recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.filename),
which is used to prevent simultaneous updates to the SCCS file by
different users. See get(CP) for further information.

See Also

delta(CP), ed(C), get{CP), help(CP), prs(CP), what{C), secsfile(F)

Diagnostics

Use help(CP) for explanations.

Page 5

AR (CP) AR (CP)

Name
ar — Maintains archives and libraries.

Syntax
ar key | posname | afile name ...

Description
Ar maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the link
editor though it can be used for any similar purpose.

Key is one character from the set drqtpmx, optionally con—
catenated with one or more of vuaibcln. Afile is the archive file.
The names are constituent files in the archive file. The posname is
the name of a constituent file, and is required when certain keys
are used. The meanings of the key characters are:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the
optional character u is used with r, then only those files
with modified dates later than the archive files are
replaced. If an optional positioning character from the set
abl is used, then the posname argument must be present
and specifies that new files are to be placed after (a) or
before (b or 1) posname. Otherwise new files are placed
at the end.

q Quickly appends the named files to the end of the archive
file. Optional positioning characters are invalid. The
command does not check whether the added members are
already in the archive. Useful only to avoid quadratic
behavior when creating a large archive piece by piece.

t Prints a table of contents of the archive file. 1If no names
are given, all files in the archive are tabled. If names are
given, only those files are tabled.

p Prints the named files in the archive.

Moves the named files to the end of the archive. If a
positioning character is present, then the posname argu—
ment must be present and, as in r, specifies where the
files are to be moved.

X Extracts the named files. If ro names are given, all files
in the archive are extracted. Unless the optional character
n is used with x, an extracted file's modification date will
be set to the date stored in that file's archive header. In

Page 1

AR(CP)

AR(CP)

neither case does x alter the archive file.

Verbose. Under the verbose option, ar gives a file—
by—file description of the making of a new archive file
from the old archive and the constituent files. When used
with t, it gives a long listing of all information about the
files. When used with x, it precedes each file with a
name.

Create. Normally ar will create afile when it needs to.
The create option suppresses the normal message that is
produced when dfile is created.

Local. Normally ar places its temporary files in the
directory /tmp. This option causes them to be placed in
the local directory.

New. When used with the key character x it sets the
extracted file’s modification date to the current date.

When ar creates an archive, it always creates the header in the
format of the local system (see ar(P)).

Files

/tmp/v* Temporary files

See Also

1d(CP), lorder(CP), ar(F)

Notes

If the same file is mentioned twice in an argument list, it may be
put in the archive twice.

Page 2

AS (CP) AS (CP)

Name

as — Xenix 8086/186 /286 Assembler.

Syntax

as [options | source-file

Description

As assembles 8086/186/286 assembly language source files
and produces linkable object modules. The command accepts
one source-file. The source file name must have the ‘‘s”
extension. The resulting file containing the object module is
given the same base name as the source, with the ‘‘.0’’ exten-
sion replacing the ‘‘.s’’ extension.

There are the following options:

-a Assembled segments are output in alphabetic order,
instead of in order of occurrence in the source file.

-d Creates program listings for both passes of the assem-
bler. This listing can be used to resolve phase errors
between assembler passes. The -d option is ignored if
the -1 option is not in effect.

-1 Produces a listing file. The listing file has the same base
name as the source file, but has the ‘‘.Ist’’ extension.

-Mu Disables case sensitivity for all names and symbols. This
option makes upper and lowercase letters in names and
symbols indistinguishable to the assembler. This option
also causes the symbols defined by the EXTRN and
PUBLIC directives to be output in uppercase regardless
of their original spelling.

-Mx Disables case sensitivity for all names and symbols
except those names defined by the EXTRN and PUBLIC
directives. This option is similar to the -Mu option
except that public and external names copied to the
object file retain their original spelling.

Page 1

AS(CP) AS(CP)

-n Suppresses the generation of the symbol table in the pro-
gram listing. This option is ignored if the -1 option is
not in effect.

-0 filename
Directs the generated object module to the file named
flename. No default extension is assumed.

-O Causes values in the program listing to be displayed in
octal. The default radix is hexadecimal.

-r Causes generation of actual 8087/287 instructions
instead of software interrupts for the floating point emu-
lation package. Object modules created using this option
can only be executed on machines with an 8087 or 287.

-X Directs the assembler to list any conditional block whose
IF condition resolves to false. This option can be over-
ridden in the source file by using the .TFCOND direc-
tive. This option is ignored if the -1 option is not in
effect.

By default, as recognizes 8086 instruction mnemonics only.
To assemble 186, 286, 8087, or 287 instructions, the
corresponding .186, .286¢, .286p, .8087, or .287 directive must
be given in the source file.

Files

/bin/as

See Also
cc(C), 14(CP), XENIX Programmer’s Guide

Note

Unless the -r is given, as assumes all 8087/287 instructions
are to be carried out using floating point emulation. The -r
option should only be used on machines with an 8087 or 287
COProcessor.

Page 2

CB (CP) CB (CP)

Name

¢b - Beautifies C programs.

Syntax
cb [file}

Description

Cb places a copy of the C program in file (standard input if file is
not given) on the standard output with spacing and indentation that
displays the structure of the program.

Page 1

cC (CP) cc (CP)

Name

cc — Invokes the C compiler.

Syntax

cc | options | fiename ...

Description

Cc is the XENIX C compiler command. It creates executable
programs by compiling and linking the files named by the
filename arguments. Cc copies the resulting program to the
file a.out .

The filename can name any C or assembly language source file
or any object or library file. C source files must have a ‘‘.¢”’
filename extension. Assembly language source files must
‘“s”’, object files ‘“.0’’, and library files ‘‘.a’’ extensions. Cc
invokes the C compiler for each C source file and copies the
result to an object file whose basename is the same as the
source file but whose extension is ‘‘.0’’. Ce invokes the
XENIX assembler, es , for each assembly source file and
copies the result to an object file with extension ‘‘.0”’. Cc
ignores object and library files until all source files have been
compiled or assembled. It then invokes the XENIX link editor,
ld , and combines all the object files it has created together
with object files and libraries given in the command line to
form a single program.

Files are processed in the order they are encountered in the
command line, so the order of files is important. Library files
are examined only if functions referenced in previous files
have not yet been defined. Library files must be in
ranlib(CP) format, that is, the first member must be named
__SYMDEF, which is a dictionary for the library. The library
is searched repeatedly to satisfy as many references as possi-
ble. Only those functions that define unresolved references
are concatenated. A number of ‘‘standard’ libraries are
searched automatically. These libraries support the standard C
library functions and program startup routines. Which
libraries are used depends on the program’s memory model

Page 1

CC(CP) CC(CP)

(see ““Memory Models”’ below). The entry point of the
resulting program is set to the beginning of the ‘““main’’ pro-
gram function.

There are the following options:

-P
Preprocesses each source file and copies the result to a file
whose basename is the same as the source but whose
extension is ‘‘.i”’. Preprocessing performs the actions

specified by the preprocessing directives.

Preprocesses each source file as described for — P, but
copies the result to the standard output. The option also
places a #line directive with the current input line number
and source file name at the beginning of output for each
file.

- EP
Preprocesses each source file as described for — E , but
does not place a #line directive at the beginning of the
file.

- C
Preserves comments when preprocessing a file with — E or
— P. That is, comments are not removed from the
preprocessed source. This option may only be used in
conjunction with — Eor-P.

— D name [= string |
Defines name to the preprocessor as if defined by #define
in each source file. The form ‘‘— D name’’ sets name to
1. The form ‘‘— D name = string’’ sets name to the given
string.

— 1 pathname
Adds pathname to the list of directories to be searched
when an #include file is not found in the directory con-
taining the current source file or whenever angle brackets
(< >) enclose the filename. If the file cannot be found
in directories in this list, directories in a standard list are
searched.

Page 2

CC(CP) cc(CP)

-X

Removes the standard directories from the list of direc-
tories to be searched for #include files.

) — V string

Copies string to the object file created from the given
source file. This option is often used for version control.

— Wanum

Sets the output level for compiler warning messages. If
num is 0, no warning messages are issued. If 1, only
warnings about program structure and overt type
mismatches are issued. If 2, warnings about strong typing
mismatches are issued. If 3, warnings for all automatic
conversions are issued. This option does not affect com-
piler error message output.

- W

) wF

Prevents compiler warning messages from being issued.
Same as ‘-~ W 0.

Adds code for program profiling. Profiling code counts
the number of calls to each routine in the program and
copies this information to the mon.out file. This file can
be examined using the prof(CP) command.

Creates separate instruction and data spaces for sinall
model programs. When the output file is executed, the
program text and data areas are allocated separate physical
segments. The text portion will be read-only and may be
shared by all users executing the file. The option is
implied when creating middle or large model program.
(Not implemented on all machines.)

— F num

Sets the size of the program stack to num bytes. Default
stack size if not given, is 2 Kbytes.

-K
) Removes stack probes from a program. Stack probes are

used to detect stack overflow on entry to program rou-
tines.

Page 3

CC (CP) CC(CP)

- nl num
Sets the maximum length of external symbols to num.
Names longer than num are truncated before being copied
to the external symbol table.

— M string
Sets the program configuration. This configuration defines
the program’s memory model, word order, data threshold.
It also enables C language enhancments such as advanced
instruction set and keywords. The string may be any com-
bination of the following (the ‘s, “m’’, and ‘1" are
mutually exclusive):

s Creates a small model program (default).

m Creates a middle model program.

1 Creates a large model program.

e Enables the far and near keywords.

2 Enables 286 code generation for compiled C
source files.

b Reverses the word order for long types. High

order word is first. Default is low order word first.
t num Sets the size of the largest data item in the
data group to num. Default is 32,767

— c Creates a linkable object file for each source file but does
not link these files. No executable program is created.

— o filename
Defines filename to be the name of the final executable
program. This option overrides the default name a.out.

— dos
Directs ec to create an executable program for MS-DQOS
systems.

— Nibrary
Searches library for unresolved references to functions.
The library must be an object file archive library in ranlib
format.

-0
Invokes the object code optimizer.

-8
Creates an assembly source listing of the compiled C

Page 4

CC (CP) cc(Cp)

source file and copies this listing to the file whose
basename is the same as the source but whose extension
is **.s”7. It should be noted that this file is not suitable for
assembly. This option provides code for reading only.

-L
Creates an assembler listing file containing assembled code
and assembly source instructions. The listing is copied to
the file whose basename is the same as the source but
whose extension is ‘“‘.L’’. This option suppresses the
“— §” option.

— NM name
Sets the module name for each compiled or assembled
source file to name. If not given, the filename of each
source file is used.

— NT name
Sets the text segment name for each compiled or assem-
bled source file to mname. If not given, the name
“module_TEXT" is used for middle model, and ‘‘_TEXT”
for small model.

— ND name
Sets the data segment name for each compiled or assem-

bled source file to name. If not given, the name
“ DATA?” is used.

Many options (or equivalent forms of these options) are
passed to the link editor as the last phase of compilation. The
“s”, “m’’, and “‘1”’ configuration options are passed to specify
memory requirements. The - i, — F, and - p are passed to
specify other characteristics of the final program.

The ~ D and - I options may be used several times on the
command line. The — D option must not define the same
name twice. These options affect subsequent source files only.

Memory Models
Cec can create programs for three different memory models:

small, middle, and large. In addition, small model programs
can be pure or impure.

Page 5

CC (CP) CC (CP)

Impure-Text Small Model
These programs occupy one 64 Kbyte physical segment in
which both text and data are combined. Ce¢ creates
impure small model programs by default. They can also
be created using the ‘‘-Ms’’ option.

Pure-Text Small Model
These programs occupy two 64 Kbyte physical segments.
Text and data are in separate segments. The text is read-
only and may be shared by several processes at once.
The maximum program size is 128 Kbytes. Pure small
model programs are created using the ‘“‘-i’’ and ‘‘-Ms”
options.

Middle Model

These programs occupy several physical segments, but
only one segment contains data. Text is divided among as
many segments as required. Special call and returns are
used to access functions in other segments. Text can be
any size. Data must not exceed 64 Kbytes. Middle
models programs are created using the ‘“-Mm”’ option.
These programs are always pure.

Large Model

These programs occupy several physical segments with
both text and data in as many segments as required. Spe-
cial calls and returns are used to access functions in other
segments. Special addresses are used to access data in
other segments. Text and data may be any size, but no
data item may be larger than 64 Kbytes. Large model
programs are created using the ‘‘-MI’’ option. These pro-
grams are always pure.

Small, middle, and large model object files can only be linked
with object and library files of the same model. It is not possi-
ble to combine small, medium, and large model object files in
one executable program. C¢ automatically selects the correct
small, middle, or large versions of the standard libraries based
on the configuration option. It is up to the user to make sure
that all of his own object files and private libraries are properly
compiled in the appropriate model.

The special calls and returns used in middle and large model
programs may affect execution time. In particular, the

Page 6

cc(CP) CC(CP)

execution time of a program which makes heavy use of func-
tions and function pointers may differ noticably from small
model programs.

In both middle and large model programs, function pointers
are 32 bits long. In large model programs, data pointers are
32 bits long. Programs making use of such pointers must be
written carefully to avoid incorrect declaration and use of
these variables. Linf(CP) will help to check for correct use.

The — NM, - NT, and - ND options may be used with mid-
dle and large model programs to direct the text and data of
specific object files to named physical segments. All text hav-
ing the same text segment name is placed in a single physical
segment. Similarly, all data having the same data segment
name is placed in a single physical segment.

Files

/bin/ce

See Also
as(CP), ar(CP), 1d(CP), lint{ CP), ranlib(CP)

Notes

Error messages are produced by the program that detects the
error. These messages are usually produced by the C com-
piler, but may occasionally be produced by the assembler or
the link loader.

All object module libraries must have a current ranlth direc-
tory.

Page 7

o=

CDC (CP) CDC (CP)

Name

cdc - Changes the delta commentary of an SCCS delta,

Syntax

edc - rSID [~ m[mrlist]] [~ y]comment]] files

Description

Cdec changes the delta commentary for the SID specified by the — r
option, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR)
and comment information normally specified via the delta(CP) com-
mand (- m and — y options).

If a directory is named, cdc behaves as though each file in the direc-
tory were specified as a named file, except that nonSCCS files (last
component of the pathname does not begin with 8.) and unreadable
files are silently ignored. If a name of — is given, the standard input
is read (see Warning); each line of the standard input is taken to be
the name of an SCCS file to be processed.

Arguments to cde, which may appear in any order, consist of options
and file names.

All the described options apply independently to each named file:

~ rSID Used to specify the SCCS [Dentification (SID)
string of a delta for which the delta commen-
tary is to be changed.

— m|mrlist] If the sccs file has the v flag set (see
admin(CP)) then a list of MR numbers to be
added and/for deleted in the delta commentary
of the SID specified by the — r option may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the
same manner as that of delta(CP). In order to
delete an MR, precede the MR number with
the character ! (see Examples). If the MR to
be deleted is currently in the list of MRs, it is
removed and changed into a ‘““comment’’ line.
A list of all deleted MRs is placed in the com-
ment section of the delta commentary and pre-
ceded by a comment line stating that they were
deleted.

Page 1

CDC (CP)

— y[comment]

CDC (CP)

If — m is not used and the standard input is a
terminal, the prompt MRs? is issued on the
standard output before the standard input is
read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y
option).

MRs in a list are separated by blanks and/or
tab characters. An unescaped newline charac-
ter terminates the MR list.

Note that if the v flag has a value (see
admin(CP)}), it is taken to be the name of a
program (of shell procedure) which validates
the correctness of the MR numbers. If a
nonzero exit status is returned from the MR
number validation program, ede terminates
and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s)
already existing for the delta specified by the
— r option. The previous comments are kept
and preceded by a comment line stating that
they were changed. A null comment has no
effect.

If — y is not specified and the standard input is
a terminal, the prompt ““comments?’’ is issued
on the standard output before the standard
input is read; if the standard input is not a ter-
minal, no prompt is issued. An unescaped
newline character terminates the comment text.

In general, if you made the delta, you can change its delta
commentary; or if you own the file and directory you can
modify the delta commentary.

Examples

The following:

cde - r1.6 - m"bl78-12345 !bl77-54321 bl79-00001" - ytrouble

s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321
from the MR list, and adds the comment trouble to delta 1.6 of

s.file.

Page 2

CDC (CP) CDC(CP)

The following interactive sequence does the same thing.
cde - rl.6 s.file
MRs? !bl77-54321 b178-12345 bi79-00001
comments? trouble
Warning
If SCCs file names are supplied to the ¢dc command via the standard
input (~ on the command line), then the - m and - y options must
also be used.
Files
x-file See deita(CP)

z-file See delta(CP)

See Also
admin(CP), delta(CP), get{CP), help(CP), prs(CP), scesfile(F)

Diagnostics

Use help(CP) for explanations.

Page 3

COMB (CP) COMB (CP)

Name

comb - Combines SCCS deltas.

Syntax

comb |- o] [~ 8] [~ psid] [~ clist] files

Description

Comb provides the means to combine one or more deltas in an SCCS
file and make a single new delta. The new delta replaces the previous
deltas, making the SCCS file smaller than the original.

Comb does not perform the combination itself. Instead, it generates
a shell procedure that you must save and execute to reconstruct the
given SCCS files. Comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the out-
put to a file. The saved file can then be executed like any other shell
procedure (see sh(C)).

When invoking comb, arguments may be specified in any order. All
options apply to all named SCCS files. If a directory is named, comb
behaves as though each file in the directory were specified as a
named file, except that nonSCCS files (last component of the path-
name does not begin with 8.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file to
be processed; nonSCCS files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file.

— pSID The SCCS [Dentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon-
structed file.

— clist A list (see get(CP) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get — e generated, this argument causes the recon-
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the —~ o option may
decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

Page 1

COMB (CP) COMB (CP)

-8 This argument causes comb to generate a shell procedure
that will produce areport for each file giving the filename,
size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 © (original - combined) / original

Before any SCCS files are actually combined, you should use this

option to determine exactly how much space is saved by the combin-

ing process.

If no options are specified, comb will preserve only leafl deltas and
the minimal number of ancestors needed to preserve the tree.

Files

comb????? Temporary files

See Also

admin(CP), delta(CP), get{ CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Notes
Comb may rearrange the shape of the tree of deltas. It may not save

any space; in fact, it is possible for the reconstructed file to be larger
than the original.

Page 2

CONFIG (CP) CONFIG (CP)

Name

config - Configures a XENIX system.

Syntax

/etc/config [— t] [cfile] [— m file] dfile

Description

Config is a program that takes a description of a XENIX system
and generates a file which is a C program defining the confi-
guration tables for the various devices on the system.

The — ¢ option specifies the name of the configuration table
file; c.cis the default name.

The — m option specifies the name of the file that contains all
the information regarding supported devices; /etc/master is
the default name. This file is supplied with the XENIX system
and should not¢ be modified unless the user fully understands
its construction.

The —~ t option requests a short table of major device numbers
for character and block type devices. This can facilitate the
creation of special files.

The user must supply dfide; it must contain device information
for the user’s system. This file is divided into two parts. The
first part contains physical device specifications. The second
part contains system-dependent information. Any line with an
asterisk (*) in column 1 is a comment.

All configurations are assumed to have a set of required dev-
ices, such as the system clock, which must be present to run
XENIX . These devices must not be specified in dfde.

First Part of dfie

Each line contains two fields, delimited by blanks and/or tabs
in the following format:

. Page 1

CONFIG (CP) CONFIG (CP)

devname number

where devname is the name of the device, and number is the
number (decimal) of devices associated with the correspond-
ing controller. The device name can be any name given in
part 1 of the /etc/master file, or any alias given in part 3 of
the same file; number is optional, and if omitted, a default
value which is the maximum value for that controller is used.

There are certain drivers that may be provided with the sys-
tem, that are actually pseudo-device drivers; that is, there is no
real hardware associated with the driver. If the system has
such drivers, they are described in section M of the XENIX
Reference Manual.

Second Part of dfide

The second part contains three different types of lines. Note
that all specifications of this part are requéred, although their
order is arbitrary.

1. Root/pipe device specification
Two lines, each having three fields:

root devname minor
pipe devname minor

where devname is the name of the device, and minor is the
minor device number (in octal). The device name can be any
name given in part 1 of the /etc/master file, or any alias
given in part 3 of the same file.

2. Swap device specification
One line that contains five fields as follows:
swap devname minor swplo nswap

where devname is the name of the device, mimor is the minor
device number (in octal), swplo is the lowest disk block
(decimal) in the swap area, and nswap is the number of disk
blocks (decimal) in the swap area. The device name can be
any name given in part 1 of the /etc/master file, or any alias

Page 2

CONFIG (CP) CONFIG (CP)

given in part 3 of the same file.
3. Parameter specification
One or more lines, each having two fields as follows:
name number

where name is a tunable parameter name, and number is the
desired value (in decimal) for the given parameter. Only
names that have been defined in part 4 of the /etc/master file
can be used; number overrides the default value for the given
parameter. The following is a list of the available parameters:

buffers Maximum number of external (mapped-
out) buffers available to the kernel. If set
to 0, config computes the optimum
number for the system.

sabufs Maximum number of internal (non-
mapped) buffers available.

hashbuf Maximum number of hash buffers.

inodes Maximum number of inodes per file sys-
tem.

files Maximum number of files per file sys-
tem.

mounts Maximum number of mounted file sys-
tems.

coremap Maximum number of core map elements.

swapmap Maximum number of swap map ele-
ments.

pages Number of memory pages. On seg-

mented systems such as the 286, this
value should be 0.

calls Maximum number of entries in the sys-
tem timeout table.

procs Maximum number of processes per sys-
tem.

maxproc Maximum number of processes per user.

texts Maximum number of text segments per
system.

Page 3

CONFIG (CP) CONFIG (CP)

clists Maximum number of clists per system.

locks Maximum number of file locks per sys-
tem.

shdata Maximum number of shared data seg-
ments per system.

timegone Number of minutes difference between
the local timezone and Greenwich Mean
Time.

daylight D aylight savings time in effect (1), or not
in effect (0).

cmask Default file creation mask for process 0.

maxprocmem Maximum amount of memory available
per process. This value cannot be greater
than 75% of total user memory. If set to
0, config computes the optimum value.

Example

Suppose we wish to configure a system with the following dev-
ices:

one HD disk drive controller with 1 drive
one FD floppy disk drive controller with 1 driver

must also specify the following parameter information:

root device is an HD (pseudo disk 3)
pipe device is an HD (pseudo disk 3)
swap device is an HD (pseudo disk 2)
with a swplo of 1 and an nswap of 2300
number of buffers is 50
number of processes is 50
maximum number of processes per user ID is 15
number of mounts is 8
number of inodes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of swapmap entries is 50
number of memory pages is 512

Page 4

CONFIG (CP) CONFIG (CP)

number of file locks is 100
timezone is pacific time
daylight time is in effect

The actual system configuration would be specified as follows:

hd 1
fd 1
root hd 3
pipe hd 3
swap hd 2 0 2300
* Comments may be inserted in this manner
buffers 50
procs 150
maxproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150
swapmap 50
pages (1024/2);
locks 100
timezone (8+60)
daylight1
Files
/etc/master default input master device table
c.C default output configuration table file
See Also
master(F)
Diagnostics

Diagnostics are routed to the standard output and are self-

Page 5

CONFIG (CP) CONFIG (CP)
explanatory.
Notes (
{

The — t option does not know about devices that have aliases.
However, the major device numbers are always correct.

Page 6

CPP(CP) CFP (CP)

Name

cpp — The C language preprocessor.

Syntax

/lib/epp [option ...] [ifile [ofile]]

Description

Cpp is the C language preprocessor which is invoked as the
first pass of any C compilation using the ce¢(CP) command.
Thus the output of ¢pp is designed to be in a form acceptable
as input to the next pass of the C compiler. As the C
language evolves, therefore, the use of ¢pp other than in this
framework is not suggested. The preferred way to invoke cpp
is through the ¢c(CP) command. See m4{CP) for a general

macro processor.

Cpp optionally accepts two file names as arguments. Ifde and
oflle are respectively the input and output for the preproces-
sor. They default to standard input and standard output if not
supplied.

The following options to cpp are recognized:

-P
Preprocess the input without producing the line control
information used by the next pass of the C compiler.

-C
By default, cpp strips C-style comments. If the — C option
is specified, all comments {except those found on cpp
directive lines) are passed along.

— Uname
Remove any initial definition of neme, where name is a
reserved symbol that is predefined by the particular

preprocessor.
~ Dname
— Dname=def

Define name as if by a #fdefine directive. If no =def is

Page 1

CPP(CP) CPP(CP)

given, name is defined as 1.

- Idsr

Change the algorithm for searching for #finclude files
whose names do not begin with / to look in di# before
looking in the directories on the standard list. Thus,
#include files whose names are enclosed in ”” will be
searched for first in the directory of the file argument,
then in directories named in — I options, and last in direc-
tories on a standard list. For #include files whose names
are enclosed in <>, the directory of the tfile argument is
not searched.

Two special names are understood by ecpp. The name
__LINE__ is defined as the current line number (as a decimal
integer) as known by c¢pp, and __FILE__ is defined as the
current file name (as a C string) as known by ¢pp. They can
be used anywhere (including in macros) just as any other
defined name.

All ¢pp directives start with lines begun by #. The directives
are:

#fdefine name token-string
Replace subsequent instances of name with token-string.

#tdefine name(arg, ..., arg) token-string
Notice that there can be no space between name and the (.
Replace subsequent instances of name followed by a (, a
list of comma separated tokens, and a) by token-string
where each occurrence of an arg in the token-string is
replaced by the corresponding token in the comma
separated list.

#fundef name
Cause the definition of name (if any) to be forgotten from
now on.

#include "filename”

ffinclude < filename>
Include at this point the contents of filename (which will
then be run through cpp). When the < filename> nota-
tion is used, filename is only searched for in the standard
places. See the — I option above for more detail.

Page 2

CPP(CP) CPP (CP)

#line mteger-constant "filename”
Causes cpp to generate line control information for the
next pass of the C compiler. Integer-constant is the line
number of the next line and filename is the file where it
comes from. If "filename” is not given, the current file
name is unchanged.

Fendif
Ends a section of lines begun by a test directive (#fif,
ftifdef, or #fifndef). Each test directive must have a
matching #endif.

FFifdef name
The lines following will appear in the output if and only if
name has been the subject of a previous Ftdefine without
being the subject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if and
only if name has been the subject of a previous #define
without being the subject of an intervening ffundef.

#fif defined identifier
May be used in place of the ##if directive. If the sdentifier
is defined the directive has a value of 1, otherwise 0. This
is frequently used for conditional environment-specific
text.

Ftelif constant-expression
Allows for the conditional compilation of portions of the
text. The constant-ezpression is evaluated and if it is not
zero the text immediately following (until the next elif,
else, endif) is passed to the compiler.

#Hif constant-expression
Lines following will appear in the output if and only if the
constant-ezpression evaluates to non-zero. All binary non-
assignment C operators, the ?: operator, the unary —, !,
and ~ operators are all legal in constant-ezpression. The
precedence of the operators is the same as defined by the
C language. There is also a unary operator defined, which
can be used in constant-expression in these two forms:
defined (name) or defined name. This allows the utility
of #ifdef and #Fifndef in a FHf directive. Only these

Page 3

CPP(CP) CPP{(CP)

operators, integer constants, and names which are known
by ¢pp should be used in constant-expression. In particular,
the sigeof operator is not available.

#else
Reverses the notion of the test directive which matches
this directive. So if lines previous to this directive are
ignored, the following lines will appear in the output.
And vice versa.

The test directives and the possible f#else directives can be
nested.

Files

/usr/include standard directory for #include files

See Also

cc(CP), m4(CP).

Diagnostics

The error messages produced by cpp are intended to be self-
explanatory. The line number and filename where the error
occurred are printed along with the diagnostic.

Notes

When newline characters were found in argument lists for
macros to be expanded, previous versions of cpp put out the
newlines as they were found and expanded. The current ver-
sion of cpp replaces these newlines with blanks to alleviate
problems that the previous versions had when this occurred.

Page 4

CREF (CP) CREF (CP)

Name

cref - Makes a cross-reference listing.

Syntax

cref | — acilnostux123 | files

Description

Cref makes a cross-reference listing of assembler or C programs. The
program searches the given files for symbols in the appropriate C or
assembly language syntax.

The output report is in four columns:

1. Symbol

2. Filename

3. Current symbol or line number
4. Text as it appears in the file \
Cref uses either an ignore file or an only file. If the ~ i option is
given, the next argument is taken to be an ignore file; if the — o
option is given, the next argument is taken to be an only file. Ignore
and only files are lists of symbols separated by newlines. All sym-
bols in an sgnore file are ignored in columns 1 and 3 of the output.
If an only file is given, only symbols in that file will appear in
column 1. Only one of these options may be given; the default set-
ting is — i using the default ignore file (see FILES below). Assem-
bler predefined symbols or C keywords are ignored.

The ~ s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C,
the current function name. The — | option causes the line number
within the file to be put in column 3.

The — t option causes the next available argument to be used as the
name of the intermediate file (instead of the temporary file
Jtmp/ert??). This file is created and is not removed at the end of
the process.

The cref options are:

a Uses assembler format (default)

¢ Uses C format

i Uses an ignore file {see above)

1 Puts line number in column 3 (instead of current symbol)

Page 1

CREF (CP) CREF (CP)

n Omits column 4 (no context)

o Uses an only file (see above)

s Current symbol in eolumn 3 (default)

t User-supplied temporary file

u Prints only symbols that occur exactly once
x Prints only C external symbols

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3 Sorts output on column 3

Files

Just/lib/cref/s Assembler specific files

See Also
as(CP), ¢c(CP), sort{ C), xref(CP)

Notes
Cref inserts an ASCII DEL character into the intermediate file after

the eighth character of each name that is eight or more characters
long in the source file.

Page 2

CTAGS (CP) CTAGS (CP)

Name
ctags — Creates a tags file.

tax
ctags | —u || —w]| —~x | name ...

Description
Ctags makes a tags file for vi(C) from the specified C sources. A
tags file gives the locations of specified objects (in this case func—
tions) in a group of files. Each line of the tags file contains the
function name, the file in which it is defined, and a scanning pat—
tern used to find the function definition. These are given in separate
fields on the line, separated by blanks or tabs. Using the tags file,
vi can quickly find these function definitions.

If the —x flag is given, ctags produces a list of function names, the
line number and file name on which each is defined, as well as the
text of that line and prints this on the standard output. With the —x
option no tags file is created. This is 2 simple index which can be
printed out as an off—line readable function index.

Files whose name ends in .c or .h are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:
—w Suppresses warning diagnostics.

—u Causes the specified files to be updated in tags; that is, all
references to them are deleted, and the new values are
appended to the file. (Beware: this option is implemented in
a way which is rather slow; it is usually faster to simply
rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed.
This makes use of ctags practical in directories with more than one
program.

Files
tags Output tags file

Page 1

CTAGS (CP) CTAGS (CP)

See Also
ex{0), vi(C)
Credit
This utility was developed at the University of California at
Berkeley and is used with permission. (

Page 2

DELTA (CP) DELTA (CP)

Name

delta - Makes a delta (change) to an SCCS file.

Syntax

delta [~ rSID] [- s3] [~ n] |- gist] [~ m|mrlist]] [- y[comment]]

- p] files

Description

Delta is used to permanently introduce into the named SCCS file
changes that were made to the file retrieved by get(CP) (called the
g-file, or generated file).

Delta makes a delta to each SCCS file named by files. If a directory
is named, delta behaves as though each file in the directory were
specified as a named file, except that nonSCCS files (last component
of the pathname does not begin with s.) and unreadable files are
silently ignored. If a name of — is given, the standard input is read
(see Warning); each line of the standard input is taken to be the
name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon
certain options specified and flags (see admin(CP)) that may be
present in the SCCS file (see — m and — y options below).

Options apply independently to each named file.

- rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary
only if two or more versions of the same SCCS file
have been retrieved for editing (get — e} by the
same person (login name). The SID value specified
with the — r keyletter can be either the SID specified
on the get command line or the SID to be made as
reported by the get command (see get(CP)). A
diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command
line.

-8 Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

Page 1

DELTA (CP)

~ glist

— m|mriief

— y|commend

Files

DELTA (CP)

Specifies a list (see get(CP) for the definition of list)
of deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

If the SCCS file has the v flag set (see admin(CP))
then a Modification Request (MR) number muet be
supplied as the reason for creating the new delta

If — mis not used and the standard input is a termi-
nal, the prompt MRs? is issued on the standard out-
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see — y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter-
minates the MR list.

Note that if the v flag has a value (see admin(CP)},
it is taken to be the name of a program (or shell
procedure} which will validate the correctness of the
MR numbers. If a nonzero exit status is returned

from MR number validation program, delta ter-

minates (it is assumed that the MR numbers were
not all valid).

Arbitrary text used to describe the reason for mak-
ing the delta. A null string is considered a valid
comment.

If — y is not specified and the standard input is a
terminal, the prompt comments? is issued on the
standard output before the standar? input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates
the comment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied. Differences are displayed in a diff{C) for-
mat.

All files of the form f-file are explained in Chapter 5, ‘‘SCCS: A
Source Code Control System” in the XENIX Programmer’s Guide. The
naming convention for these files is also described there.

g-file

Existed before the execution of delta; removed after
completion of delta.

Page 2

M

DELTA (CP)

p-file

g-file

x-file

z-file

d-file

Jusr /bin /bdiff

Warning

DELTA (CP)

Existed before the execution of delta; may exist
after completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created during the exccution of delta; renamed to
SCCS file after completion of delta.

Created during the execution of delta; removed dur-
ing the execution of delta.

Created during the execution of delta; removed after
completion of delta.

Program to compute differences between the
“retrieved’’ file and the g-file.

Lines beginning with an SOO ASCIH character {binary 001) cannot be
placed in the SCCS file unless the SOH is escaped. This character has
special meaning to SCCS (see sccefile(F)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should
be avoided when the get generates a large amount of data. Instead,
multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the
~ m (if necessary) and ~ y options must also be present. Omission
of these options causes an error to occur.

See Also

admin(CP), bdifl{C), get{ CP}, help(CP), prs{CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Page 3

DOSLD (CP) DOSLD(CTP)

Name
dosld — XENIX to MS—DOS cross linker

Syntax
dosld [options | file ...

Description
Dosld links the object files(s) given by file to create a program for
execution under. MS—DOS. Although similar to Id(CP), dosid has
many options that differ significantly from /d. The options are
described below:

-D DS Allocate. This instructs dosld to perform DS alloca—
tion. It is generally used inconjunction with the —H
option,

—~H Load high. This option instructs dosid to set a field in the
header of the executable file to tell MS—DOS to load the
program at the highesi available position in memory. It is
most often used with programs in which data precedes
code in the memory imsage.

-L Include line numbers. This option instrucis dosld to
include line numbers in the listing file (if any). Note that
dosld cannot put line numbers in the listing file if the
source translaior hasn't put them in the objest file.

—M Include public symbols. This option instructs dosld to
include public symbols in the list file. The symdols are
sorted twice, lexicographically and by address.

—C Ignore case. This option instructs dosld to treat upper and
lower case characters in symbol names as identical.

—F num
Set stack size. This option should be followed by a hexa—
decimal number. Dosld will use this oumbes for the size
in bytes of the stack segment in the ocutput file.

—8 num
Set segment limit. This option should be followed by a
decinal nbumber between 1 and 1024. The number scts
the limit on the number of differens segments that may be
linked together. The default is 128. Note that the higher
the value given, the slower the link will be.

~m filename
Create map file. This option should be followed by &
filename. Dosld will create a file with the given name in
which i wiil put information about the segments and
goups in the executable. Additionally, public symbols and
iine nuinbers wili be listed in this file if the —M and ~L

GPLOIS AN given.

—al ruen

DOSLD (CP) DOSLD (CP)

Set name length. This optinb should be followed by a
decimal number. The option instructs dosid to truncate all
public and external symbols longer than num characters.

—o filename
Name output file. This option should be followed by a
filename which dosl/d will use as the name of the execut—
able file it creates. The default name is a.out.

—u name
Name undefined symbol. This option should be followed
by a symbol name. Dosld will enter the given name into
its symbol table as an undefined symbol. The —u option
may appear more than once on the command line.

-G ignore group associations. This option instructs dosld to
ignore any group definitions it may find in the input files.
This option is provided for compatibility with old versions
of MS—LINK; generally, it should never be used.

As with I/d, the files passes to dosld may be either XENIX—style
libraries (objects collected using ar(CP) and indexed using
ranlib(CP)) or ordinary 8086 object files. Unless the —u option
appears, at least one of the files passed to dosid must be an ordinary
object file. Libraries are searched only after all the ordinary object
files have been processed.

Files
/usr/bin/dosld

See Also
ar(CP), as(CP), cc(CP), 1d(CP), ranlib{CP)

GET(CP) GET(CP)

Name

get ~ Gets a version of an SCCS file.

Syntax

get |- rSID] |- ccutoff] [- ilist] [- xlist] [- ?e(} no] [- k] [- €]

(= 1pl} [- p) |- m] [- o] [-8] |-} |- g |-

Description

Get generates an ASCII text file from each named SCCS file according
to the specifications given by its options, which begin with — . The
arguments may be specified in any order, but all options apply to all
named SCCS files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that
nonSCCS files (last component of the pathname does not begin with
s.) and unreadable files are silently ignored. If a name of — is
given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again,
nonSCCS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file
whose name is derived from the SCCS filename by simply removing
the leading s.; (see also FILES, below).

Each of the options is explained below as though only one SCCS file
is to be processed, but the effects of any option apply independently
to each named file.

- rSID The SCCS IDentification string (SID) of the version
(delta) of an SCCS file to be retrieved.

— ceutaff Cutoff date-time, in the form:
YY[MM[DD[HH[MM]sS]]]]]

No changes (deltas) to the SCCS file that were created
after the specified cutoff date-time are included in the
generated ASCH text file. Units omitted from the date-
time default to their maximum possible values; that is,
~ ¢7502 is equivalent to — ¢750228235959. Any number
of nonnumeric characters may separate the various 2
digit pieces of the cutoff date-time. This feature allows

you to specify a cutoff date in the form: ‘- ¢77/2/2
9:22:25".
-e Indicates that the get is for the purpose of editing or

making a change (delta) to the SCCS file via a subsequent
use of delta(CP). The — e option used in a get for a par-
ticular version (SID) of the SCCS file prevents further

Page 1

GET(CP)

—-ilist

- xliet

GET(CP)

gets for editing on the same SID until delts is executed or
the j (joint edit) flag is set in the SCCS file (see
admin(CP)). Concurrent use of get — e for different
SIDs is always allowed.

If the g-file generated by get with an — e option is
accidentally ruined in the editing process, it may be
regenerated by reexecuting the get command with the
— k option in place of the — e option.

SCCS file protection specified via the ceiling, floor, and
authorized user list stored in the SCCS file (see
admin(CP)) are enforced when the - e option is used.

Used with the — e option to indicate that the new delta
should have an SID in a new branch. This option is
ignored if the b flag is not present in the file (see
admin(CP)) or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no successors on the SCCS
file tree.)

Note: A branch delts may always be created from a non-
leafl delta.

A list of deltas to be included (forced to be applied) in
the creation of the generated file. The list has the follow-
ing syntax:

<list> == <range> | <list> , <range>
<range> == SID |SID -~ SID

SID, the SCCS Identification of a delta, may be in any
form described in Chapter §, ‘‘SCCS: A Source Code
Control System,’’ in the XENIX Programmer’s Guide.

A list of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the — i option
for the list format.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The - k
option is implied by the — e option.

Causes a delta summary to be written into an [-file. If
— lp is used then an I-file is not created; the delta sum-
mary is written on the standard output instead. See
FILES for the format of the [-file.

Causes the text retrieved from the SCCS file to be written
on the standard output. No g-file is created. All output
that normally goes to the standard output goes to file
descriptor 2 instead, unless the — s option is used, in
which case it disappears.

Page 2

GET (CP) GET (CP)

-8 Suppresses all output normally written on the standard
output. However, fatal error messages (which always go
to file descriptor 2) remain unaffected.

- m Causes each text line retrieved from the SCCS file to be
preceded by the SID of the delta that inserted the text
line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the
90 % identification keyword value (see below). The for-
mat is: 99M% value, followed by a horizontal tab, fol-
lowed by the text line. When both the — m and — n
options are used, the format is: %M % value, followed by
a horizontal tab, followed by the — m option generated
format.

-g Suppresses the actual retrieval of text from the SCCS file.
It is primarily used to generate an {-file, or to verify the
existence of a particular SID.

-t Used to access the most recently created (top) delta in 2
given release (e.g., — rl), or release and level (e.g.,
- rl.2).

aseg-no. The delta sequence number of the SCCS file delta (ver-
sion) to be retrieved (see sccefile(F)). This option is
used by the comb(CP) command; it is not particularly
useful should be avoided. If both the —r and ~ a
options are specified, the — a option is used. Care
should be taken when using the — a option in conjunc-
tion with the — e option, as the SID of the delta to be
created may not be what you expect. The — r option can
be used with the ~ a and — e options to control the nam-
ing of the SID of the delta to be created.

i

For each file processed, get responds (on the standard output) with
the SID being accessed and with the number of lines retrieved from
the SCCS file.

If the — e option is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated. If
there is more than one named file or if a directory or standard input
is named, each filename is printed (preceded by a newline) before it
is processed. If the — i option is used included deltas are listed fol-
lowing the notation ‘‘Included”’; if the — x option is used, excluded
deltas are listed following the notation ‘‘Excluded’.

Identification Keywords

Identifying information is inserted into the text retrieved from the
SCcCS file by replacing tdentification keywords with their value

Page 3

GET(CP) GET (CP)

wherever they occur. The following keywords may be used in the
text stored in an SCCS file:

Keyword Value

2M% Module name: either the value of the m flag in the file
(see admin(CP}), or if absent, the name of the SCCS file
with the leading 8. removed.

A% SCCS identification (SID) (%R % % % %B% %S%) of the
retrieved text.

R% Release.

A.% Level

9B% Branch.

3% Sequence.

D% Current date (YY/MM/DD).

A% Current date (MM/DD/YY).

%% Current time (HH:MM:SS).

xE% Date newest applied delta was created (YY/MM/DD).

G% Date newest applied delta was created (MM/DD/YY]).

A% Time newest applied delta was created (HH:MM:SS).

X% Module type: value of the t flag in the SCCS file (see
admin(CP}).

%% SCCS filename.

®P% Fully qualified SCCs filename.

Q% The value of the q flag in the file (see admin(CP)).

% Current line number. This keyword is intended for iden-
tifying messages output by the program such as ‘‘this
shouldn’t have happened’’ type errors. It is not intended
to be used on every line to provide sequence numbers.

9L % The 4-character string @ (#) recognizable by what(C).

N A shorthand notation for constructing what(C) strings for
XENIX program files. %W% = %Z %%M %< horizontal-

tab> 74 %
A% Another shorthand notation for constructing what(C)
strings for nonXENIX program files.

YA % = TL%7eY %o TaM % 78 %% %

Files

Several auxiliary files may be created by get. These files are known
generically as the g-file, I-file, p-file, and 2-file. The letter before the
hyphen is called the tag. An auxiliary filename is formed from the
SCCs filename: the last component of all SCCS filenames must be of
the form s.module-name, the auxiliary files are named by replacing
the leading s with the tag. The g-file is an exception to this scheme:
the g-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary filenames would be xyz.c, l.xyz.¢, p.xyz.c, and z.xyz.c,
respectively.

The g-file, which contains the generated text, is created in the
current directory (unless the — p option is used). A g-file is created
in all cases, whether or not any lines of text were generated by the
get. It is owned by the real user. If the — k option is used or

Page 4

GET(CP) GET (CP)

implied, the g-file’s mode is 644; otherwise the mode is 444. Only
the real user need have write permission in the current directory.

The [-file contains a table showing which deltas were applied in gen-
erating the retrieved text. The l-file is created in the current direc-
tory if the — | option is used; its mode is 444 and it is owned by the
real user. Only the real user need have write permission in the
current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
® otherwise
b. A blank character if the delta was applied or wasn’t applied
and ignored;
¢ if the delta wasn’t applied and wasn’t ignored
¢. A code indicating a ‘‘special’’ reason why the delta was or
was not applied:
“I"': Included
“X*': Excluded
“C”: Cut off (by a — ¢ option)

d. Blank

e. SCCS identification (SID)

f. Tab character

g. Date and time (in the form YY/MM/DD HH:MM:SS) of crea-
tion

h. Blank

i

Login name of person who created delta

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an
— e option along to delta. Its contents are also used to prevent a
subsequent execution of get with an — e option for the same SID
until delte is executed or the joint edit flag, j, (see admin(CP)) is set
in the SCCS file. The p-file is created in the directory containing the
SCCS file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed
by the SID that the new delta will have when it is made, followed by
a blank, followed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed by a
blank and the - i option if it was present, followed by a blank and
the — x option if it was present, followed by a newline. There can
be an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The 2 file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the com-
mand (i.e., get) that created it. The z-file is created in the directory
containing the SCCS file for the duration of get. The same protection
restrictions as those for the p-file apply for the z-file. The z-file is

Page 5

GET(CP) GET (CP)

created mode 444.

See Also

admin(CP), delta(CP), help(CP), prs(CP), what{C), sccsfile(F) @

Diagnostics

Use hkelp(CP) for explanations.

Notes

If the effective user has write permission (either explicitly or impli-
citly) in the directory containing the SCCS files, but the real user
doesn’t, then only one file may be named when the — e option is
used.

Page 6

GETS (CP) GETS (CP)

Name

gets — Gets a string from the standard input.

Syntax
gets | string |
Description

Gets can be used with csh(CP) to read a string from the standard
input. If etring is given it is used as a default value if an error
occurs. The resulting string (either string or as read from the stan-
dard input) is written to the standard output. If no etring is given
and an error occurs, gets exits with exit status 1.

See Also
line(C), csh(CP)

Page 1

HDR (CP) HDR (CP)

Name

hdr - Displays selected parts of object files.

Syntax
hdr | - dhprsSt | file ...

Description

Hdr displays object file headers, symbol tables, and text or data relo-
cation records in human-readable formats. It also prints out seek
positions for the various segments in the object file.

A.out, x.out, and x.out segmented formats and archives are under-
stood.

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol’s index or position
in the symbol table, printed in decimal. The index of the first entry
is zero. The second field is the type, printed in hexadecimal. The
third field is the s_seg field, printed in hexadecimal. The fourth
field is the symbol's value in hexadecimal. The fifth field is a single
character which represents the symbol’s type as in nm(CP), except C
common is not recognized as a special case of undefined. The last
field is the symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. This field is used for external relo-
cations as an index into the symbol table. It should reference an
undefined symbol table entry. The third field is the position, or
offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment referenced in the relocation: text, data, bss or EXT for
external. The fifth field is the size of relocation: byte, word (2
bytes), or long. The last field will indicate, if present, that the relo-
cation is relative.

If short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. the second
field contains the name of the segment referenced; text or data. The
last field indicates the size of relocation: word or long.

Options and their meanings are:
-~ h Causes the object file header and extended header to be printed

out. Each field in the header or extended header is labeled.
This is the default option.

Page 1

HDR (CP) HDR (CP)

d Causes the data relocation records to be printed out.

— t Causes the text relocation records to be printed out.

r Causes both text and data relocation to be printed.

— p Causes seek positions to be printed out as defined by macros in
the include file, <a.out.h>.

— 8 Prints the symbol table.

— S Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.)

See Also
a.out{F), nm(CP)

Page 2

HELP(CP) HELP(CP)

Name

help - Asks for help about SCCS commands.

Syntax

help [args]

Description

Help finds information to explain a message from an SCCS command

or explain the use of a command. Zero or more arguments may be

supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally

appear in parentheses following messages) or command names.

There are the following types of arguments:

type 1 Begins with nonnumerics, ends in numerics. The non-
numeric prefix is usually an abbreviation for the program
or set of routines which produced the message (e.g., ge8,
for message 6 from the get command).

type 2 Does not contain numerics (as a command, such as get)

type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argument, if there is any.

When all else fails, try ‘“*help stuck”.

Files

Jusr/lib/help Directory containing files of message text

Page 1

LD (CP) LD (CP)

Name

Id — Invokes the link editor.

Syntax

Id [options | filename...

Description

Ld is the XENIX link editor. It creates an executable program
by combining one or more object files and copying the execut-
able result to the file a.out. The filename must name an
object or library file. These names must have the ‘‘.0”’ (for
object) or ¢‘.a” (for archive library) extensions. If more than
one name is given, the names must be separated by one or
more spaces. If errors occur while linking, /d displays an error
message; the resulting a.out file is unexecutable.

Ld concatenates the contents of the given object files in the
order given in the command line. Library files in the com-
mand line are examined only if there are unresolved external
references encountered from previous object files. Library
files must be in ranlib(CP) format, that is, the first member
must be named __.SYMDEF, which is a dictionary for the
library. Ld ignores the modification dates of the library and
the __SYMDEF entry, so if object files have been added to
the library since _ __.SYMDEF was created, the link may result
in an ‘‘invalid object module.”

The library is searched iteratively to satisfy as many references
as possible and only those routines that define unresolved
external references are concatenated. Object and library files
are processed at the point they are encountered in the argu-
ment list, so the order of files in the command line is impor-
tant. In general, all object files should be given before library
files. Ld sets the entry point of the resulting program to the
beginning of the first routine.

There are the following options:

— Anum
Creates a standalone program whose expected load address

Page 1

LD (CP) LD (CP)

(in hexadecimal) is num. This option sets the absolute
flag in the header of the a.out file. Such program files can
only be executed as standalone programs.

— Bnum
Sets the text selector bias to the specified hexadecimal
number.

-C
Causes the editor to ignore the case of symbols.

— Dnum
Sets the data selector bias to the specified hexadecimal
number.

— Fnum
Sets the size of the program stack to num bytes. Default
stack size if not given, is 4086 bytes.

— 1 Creates separate instruction and data spaces for small
model programs. When the output file is executed, the
program text and data areas are allocated separate physical
segments. The text portion will be read-only and shared
by all users executing the file.

— m name
Creates a link map file named name that includes public
symbols.

-~ Ms
Creates small model program and checks for error, such
as fixup overflow. This option is reserved for object files
compiled or assembled wusing the small model
configuration. This is the default model if no — M option
is given.

— Mm
Creates middle model program and checks for errors. This
option is reserved for object files compiled or assembled
using the middle model configuration. This option implies

—-i.

- Ml

Creates a large model program and checks for errors. The

Page 2

LD (CP) LD (CP)
option is reserved for object files compiled using the large
model configuration. This option implies — i .

ninum
Truncates symbols to the length specified by num.

O name

Sets the executable program filename to name instead of
a.out.

8 Strips the symbol table.

— Snum
Sets the maximum number of data segments to num. If
no argument is given, the default is 128.

usymbol
Designates the specified symbol as undefined.

— vaum
specifies the Xenix version number. Acceptable values
for num are 2 or 3; 3 is the default.

Ld should be invoked using the ¢¢(CP) instead of invoking it
directly. Ce invokes Id as the last step of compilation, provid-
ing all the necessary C-language support routines. Invoking /d

directly is not recommended since failure to give command
line arguments in the correct order can result in errors.

Files

/bin/1d
See Also

as(CP), ar(CP), cc(CP), ranlib{ CP)

Notes
The — Anum, — Bnum, and — Dnum options to {d should not

be used when creating a binary for an 8086/88 or 80186/88
system.

Page 3

LD (CP) LD (CP)

The user must make sure that the most recent library versions
have been processed with ranlib(CP) before linking. If this is

not done, Id cannot create executable programs using these
libraries.

Page 4

LEX(CP) LEX(CP)

Name

lex - Generates programs for lexical analysis.

Syntax

lex [— ctvn] { file | ...

Description
Lez generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expres-
sions to be searched for, and C text to be executed when strings are
found.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in the
file is found; then the corresponding program text is executed. The
actual string matched is left in yytezt, an external character array.
Matching is done in order of the strings in the file. The strings may
contain square brackets to indicate character classes, as in [abx— 2]
to indicate a, b, x, y, and z; and the operators ¢, 4+, and ¥ mean
respectively any nonnegative number of, any positive number of,
and either zero or one occurrences of, the previous character or
character class. The character . is the class of all ASCII characters
except newline. Parentheses for grouping and vertical bar for alter-
nation are also supported. The notation r{d,c} in a rule indicates
between d and ¢ instances of regular expression ¢. It has higher pre-
cedence than | but lower than *, #, +, and concatenation. The
character * at the beginning of an expression permits a successful
match only immediately after a newline, and the character $§ at the
end of an expression requires a trailing newline. The character / in
an expression indicates trailing context; only the part of the expres-
sion up to the slash is returned in yptezt, but the remainder of the
expression must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within ® symbols or pre-
ceded by \. Thus {a- zA~ Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input(} to read a
character; unput{¢) to replace a character read; and output{c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is
named yylex(), and the library contains a main() which calls it. The
action REJECT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same yytezt; and
the function yyless(p) pushes back the portion of the string matched
beginning at p, which should be between yytezt and yytezt+ yyleng.
The macros input and output use files yyin and yyout to read from

Page 1

LEX(CP) LEX(CP)

and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes ¥%it is copied into the external defini-
tion area of the lex.yy.c file. All rules should follow a 983 as in
YACC. Lines preceding %2 which begin with a nonblank character
define the string on the left to be the remainder of the line; it can be
called out later by surrounding it with {}. Note that curly brackets
do not imply parentheses; only string substitution is done.

Example
D [0- 9]
%%
if printf("IF statement\n”);

[a- z]+ printf("tag, value %s\n” yytext);
O{DH printf("octal number %s\n",yytext);
{DH printf("decimal number %s\n",yytext);
"+ +" printf("unary op\n");
"4 " printf("binary op\n”);
A { loop:

while (input{) !=='¥);

switch (input{))

case '/': break;
case '¥: unput{'¥);
default: go to loop;

}

The external names generated by lez all begin with the prefix yy or,
YY.

The options must appear before any files. The option - ¢ indicates
C actions and is the default, — t causes the lex.yy.c program to be
written instead to standard output, — v provides a one-line summary
of statistics of the machine generated, — n will not print out the —
summary. Multiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in
the definitions section:

% n
number of positions is n (default 2000)

T n
number of states is n (500)

%

number of parse tree nodes is n (1000)

Page 2

LEX(CP) LEX(CP)

%

number of transitions is s (3000)
The use of one or more of the above automatically implies the — v
option, unless the — n option is used.
See Also

yace(CP)
Xenix Software Development Guide

Page 3

LINT(CP) LINT(CP)

Name

lint - Checks C language usage and syntax.

Syntax

lint [~ abchlnpuvx] file ...

Description

Lint attempts™to detect features of the C program file that are likely
to be bugs, nonportable, or wasteful. It also checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical expressions
whose value is constant. Moreover, the usage of functions is
checked to find functions which return values in some places and
not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

If more than one file is given, it is assumed that all the files are to be
loaded together; they are checked for mutual compatibility. If rou-
tines from the standard library are called from file, lint checks the
function definitions using the standard lint library Ilibc.In. If lint is
invoked with the — p option, it checks function definitions from the
portable lint library Ilibport.In.

Any number of lint options may be used, in any order. The follow-
ing options are used to suppress certain kinds of complaints:

— a Suppresses complaints about assignments of long values to vari-
ables that are not long.

— b Suppresses complaints about break statements that cannot be
reached. (Programs produced by lez or gacc will often result in
a large number of such complaints.)

— ¢ Suppresses complaints about casts that have questionable porta-
bility.

~ h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

— u Suppresses complaints about functions and external variables
used and not defined, or defined and not used. (This option is
suitable for running lint on a subset of files of a larger program.)

~ v Suppresses complaints about unused arguments in functions.

- x Does not report variables referred to by external declarations
but never used.

Page 1

LINT (CP) LINT (CP)

The following arguments alter lint’s behavior:

— n Does not check compatibility against either the standard or the
portable lint library.

— p Attempts to check portability to other dialects of C.

— llibname
Checks functions definitions in the specified lint library. For
example, — Im causes the library llibm.In to be checked.

The — D, - U, and - I options of cc(CP) are also recognized as
separate arguments.

Certain conventional comments in the C source will change the
behavior of lint:

/*NOTREACHED®*/
At appropriate points stops comments about unreachable
code.

/*VARARGSn*/
Suppresses the usual checking for variable numbers of argu-
ments in the following function declaration. The data types
of the first n arguments are checked; a missing n is taken to
be 0.

/*ARGSUSED*/
Turns on the — v option for the next function.

/'LlNTLlBRARY'/
Shuts off complaints about unused functions in this file.

Lint produces its first output on a per source file basis. Complaints
regarding included files are collected and printed after all source files
have been processed. Finally, information gathered from all input
files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from
one of its included files, the source filename will be printed followed
by a question mark.

Files

Jusr/lib/lint| 12] Program files
Jusr/lib/llibe.In, Jusr/lib/llibport.n, Jusr/lib/llibm.In,

Just/lib/llibdbm.In, /usr/lib/llibtermlib.In
Standard lint libraries (binary format)

Page 2

LINT (CP) LINT (CP)

Jusr/lib/llibe, /usrflib/llibport, fusr/lib/llibm, /usr/lib/llibdbm,
[usr/lib/llibtermlib
Standard lint libraries (source format)

Jusr/tmp/*lint* Temporaries

See Also
cc(CP)

Notes

Ezit(S), and other functions which do not return, are not under-
stood. This can cause improper error messages.

Page 3

LORDER (CP) LORDER (CP)

Name

lorder - Finds ordering relation for an object library.

Syntax

lorder file ...

Description
Lorder creates an ordered listing of object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see ar(CP)). The standard out-
put is a list of pairs of object filenames. The first file of the pair
refers to external identifiers defined in the second. The output may
be processed by teort(CP) to find an ordering of a library suitable for
one-pass access by {d(CP).

Example

The following command builds a new library from existing .o files:

ar cr library “lorder *.0 |tsort®

Files

*symref, *symdef Temp files

See Also
ar(CP), 1d(CP), tsort{ CP)

Notes
Object files whose names do not end with .0, even when contained

in library archives, are overlooked. Their global symbols and refer-
ences are attributed to some other file.

Page 1

M{ (CP) M4 (CP)

Name

m4 - Invokes a maero processor.

Syntax

m4 | options | | files]

Description

M/{ is a macro processor intended as a front end for Ratfor, C, and
other languages. Each of the argument files is processed in order; if
there are no files, or if a filename is — , the standard input is read.
The processed text is written on the standard output.

The options and their effects are as follows:

—~ e Operates interactively. Interrupts are ignored and the output is
unbuffered.

— s Enables line sync output for the C preprocessor (#line ...)

— Bint
Changes the size of the push-back and argument collection
buffers from the default of 4,086.

- Hint
Changes the size of the symbol table hash array from the
default of 199. The size should be prime.

— Sint
Changes the size of the call stack from the default of 100 slots.
Macros take three slots, and nonmacro arguments take one.

— Tint
Changes the size of the token buffer from the default of 512
bytes.

To be effective, these flags must appear before any filenames and
before any — D or — U flags;

— Dname|==ral]
Defines name to val or to null in val’s absence.

— Uname
Undefines name.

Page 1

M4 (CP) M4 (CP)

Macro Calls
Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If a defined
macro name is not followed by a (, it is deemed to have no argu-
ments. Leading unquoted blanks, tabs, and newlines are ignored
while collecting arguments. Potential macro names consist of alpha-
betic letters, digits, and underscore _, where the first character is not
a digit.

Left and right single quotation marks are used to quote strings. The
value of a quoted string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. Macro evaluation
proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the
value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed
back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define The second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $a in the replacement text, where n is a
digit, is replaced by the n-th argument. Argument 0 is
the name of the macro; missing arguments are replaced
by the null string; $# is replaced by the number of
arguments; $* is replaced by a list of all the arguments
separated by commas; $@ is like $*, but each argument
is quoted (with the current quotation marks).

undefine Removes the definition of the macro named in its argu-
ment.

defn Returns the quoted definition of its argument(s). It is
useful for renaming macros, especially built-ins.

pushdef Like define, but saves any previous definition.

popdef Removes current definition of its argument(s), expos-

ing the previous one if any.

ifdef If the first argument is defined, the value is the second
argument, otherwise the third. If there is no third
argument, the value is null. The word XENIX is
predefined in Mj4.

Page 2

M4 (CP)

shift

changequote

changecom

divert

undivert

divhum

dnl

ifelse

iner

decr

eval

M4 (CP)

Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect of the extra scan that
will subsequently be performed.

Changes quotation marks to the first and second argu-
ments. The symbols may be up to five characters long.
Changequote without arguments restores the original
values (i.e., * 9.

Changes left and right comment markers from the
default # and newline. With no arguments, the com-
ment mechanism is effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu-
ments, both markers are affected. Comment markers
may be up to five characters long.

M4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in
numerical order; initially stream O is the current
stream. The divert macro changes the current output
stream to its (digit-string) argument. Output diverted
to a stream other than 0 through 9 is discarded.

Causes immediate output of text from diversions
named as arguments, or all diversions if no argument.
Text may be undiverted into another diversion.
Undiverting discards the diverted text.

Returns the value of the current output stream.

Reads and discards characters up to and including the
next newline.

Has three or more arguments. If the first argument is
the same string as the second, then the value is the
third argument. If not, and if there are more than four
arguments, the process is repeated with arguments 4, 5,
6 and 7. Otherwise, the value is either the fourth
string, or if it is not present, null.

Returns the value of its argument incremented by 1.
The value of the argument is calculated by interpreting
an initial digit-string as a decimal number.

Returns the value of its argument decremented by 1.

Evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include 4, — , %, /,
% ° (exponentiation), bitwise &, |, °, and ~; relation-
als; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the

Page 3

M4 (CP)

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4éexit

m4wrap

errprint

dumpdef

traceon

traceoff

M4 (CP)

radix for the result; the default is 10. The third argu-
ment may be used to specify the minimum number of
digits in the result.

Returns the number of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or — 1 if the
second argument does not occur.

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of
the substring. A missing third argument is taken to be
large enough to extend to the end of the first string.

Transliterates the characters in its first argument from
the set given by the second argument to the set given
by the third. No abbreviations are permitted.

Returns the contents of the file named in the argu-
ment.

Identical to include, except that it says nothing if the
file is inaccessible.

Executes the XENIX command given in the first argu-
ment. No value is returned.

Is the return code from the last call to sysemd.

Fills in a string of XXXXX in its argument with the
current process ID.

Causes immediate exit from m{. Argument 1, if given,
is the exit code; the default is 0.

Argument 1 will be pushed back at final EOF; example:
m4wrap(‘cleanup() 9

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named
items, or for all if no arguments are given.

With no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

Turns off trace globally and for any macros specified.

Macros specifically traced by traceon can be untraced
only by specific calls to traceoff.

Page 4

MAKE (CP) MAKE (CP)

Name

make ~ Maintains, updates, and regenerates groups of programs.

Syntax

make [~ f makefile] [~ p] [~ i] [~ k] [~ 8] [~ o] [~ o] [~ & [e]
L[~ o [~] [names]

Description

The following is a brief description of all options and some special
names:

— f makefile Description filename. Makefile is assumed to be the
name of a description file. A filename of — denotes
the standard input. The contents of makefile override
the built-in rules if they are present.

-p Prints out the complete set of macro definitions and
target descriptions.

o | Ignores error codes returned by invoked commands.
This mode is entered if the fake target name .IGNORE
appears in the deseription file.

-k Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

-8 Silent mode. Does not print command lines before
executing. This mode is also entered if the fake target
name .SILENT appears in the description file.

-r Does not use the built-in rules.

-n No execute mode. Prints commands, but does not
execute them. Even lines beginning with an @ are
printed.

- b Compatibility mode for old makefiles.

-e Environment variables override assignments within
makefiles.

-t Touches the target files (causing them to be up-to-

date) rather than issues the usual commands.

-d Debug mode. Prints out detailed information on files
and times examined.

Page 1

MAKE (CP) MAKE (CP)

-q Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up-to-date.

.DEFAULT If a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands associ-
atcd with the name .DEFAULT are used if it exists.

.PRECIOUS Dependents of this target will not be removed when
quit or interrupt are hit.

SILENT Same effect as the — s option.
JGNORE Same effect as the — i option.

Make executes commands in makefile to update one or more target
names. Name is typically a program. If no — f option is present,
makefile, Makeflle, s.makefile, and s.Makeflle are tried in order.
If makefile is — , the standard input is taken. More than one -
makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than
the target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, nonnull list of targets,
then a :, then a (possibly null) list of prerequisite files or dependen-
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first
line that does not begin with a tab or # begins a new dependency or
macro definition. Shell commands may be continued across lines
with the <backslash> <newline> sequence. (#) and newline sur-
round comments.

The following makefile says that pgm depends on two files a.o and
b.o, and that they in turn depend on their corresponding source files
(a.c and b.c) and a common file incLh:

pgm: a.o b.o
cc a.0 b.o - o pgm
a.0: incl.h ac

€c - ¢ a.c
b.o: incl.h b.c
cc - ¢ b.e

Command lines are executed one at a time, each by its own shell. A
line is printed when it is executed unless the — 8 option is present,
or the entry .SILENT: is in makefile, or unless the first character of
the command is @. The — n option specifies printing without execu-
tion; however, if the command line has the string $(MAKE) in it, the

Page 2

MAKE (CP) MAKE (CP)

line is always executed (see discussion of the MAKEFLAGS macro
under Environment). The — t (touch) option updates the modified
date of a file without executing any commands.

Commands returning nonzero status normally terminate make. If
the — i option is present, or the entry .IGNORE: appears in makefile,
or if the line specifying the command begins with
<tab> <hyphen>, the error is ignored. If the — k option is
present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The — b option allows old makefiles (those written for the old ver-
sion of make) to run without errors. The difference between the old
version of make and this version is that this version requires all
dependency lines to have a (possibly null} command associated with
them. The previous version of make assumed if no command was
specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target
depends on the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such. The environment variables
are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables.
The — e option causes the environment to override the macro
assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except — f, — p, and — d) defined
for the command line. Further, upon invocation, make ‘‘invents’’
the variable if it is not in the environment, puts the current options
into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves
very useful for ‘‘super-makes’’. In fact, as noted above, when the
— n option is used, the command ${MAKE) is executed anyway;
hence, one can perform a make — n recursively on a whole software
system to see what would have been executed. This is because the
- n is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a
software project without actually doing anything.

Macroe

Entries of the form stnng! = etnng2 are macro definitions. Subse-
quent appearances of ${stnngl[:subst!=|subst2]]} are replaced by
stnng?2. The parentheses are optional if a single character macro
name is used and there is no substitute sequence. The optional
:eubstl =subst?2 is a substitute sequence. If it is specified, all nono-
verlapping occurrences of subst! in the named macro are replaced by

Page 3

MAKE (CP) MAKE (CP)

eubet?. Strings (for the purposes of this type of substitution) are
delimited by blanks, tabs, newline characters, and beginnings of
lines. An example of the use of the substitute sequence is shown
under Libraries.

Internal Macroe

There are five internally maintained macros which are useful for
writing rules for building targets:

$° The macro $° stands for the filename part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@ The $€ macro stands for the full target name of the current
target. It is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the ‘‘manufactured’ dependent
filename). Thus, in the .c.o rule, the $< macro would evalu-
ate to the .c file. An example for making optimized .o files
from .c files is:

.c.o:
cc —c- 0 $%¢

or:

.c.o:
cc—-c-0 8<

$? The $? macro is evaluated when explicit rules from the
makefile are evaluated. Bt is the list of prerequisites that are
out of date with respect to the target; essentially, those
modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive
library member of the form lib{file.o). In this case, $& evalu-
ates to lib and $%evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper
case D or F is appended o any of the four macros the meaning is
changed to ‘‘directory part” for D and ‘‘file part’’ for F. Thus,
$(@ D) refers to the directory part of the string $@. If there is no
directory part ./ is generated. The only macro excluded from this
alternative form is $?.

Suffizes

Certain names (for instance, those ending with .0) have default

Page 4

MAKE (CP) MAKE (CP)

dependents such as .c, .s, etc. If no update commands for such a
file appear in makefile, and if a default dependent exists, that prere-
quisite is compiled to make the target. In this case, make has infer-
ence rules which allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use.
The current default inference rules are:

.¢ .¢” .sh .sh™ .c.o .¢".0 .€".¢ 8.0 .8".0 .y.0 .y .0 .lo .10
.y.€.y.c lc .ca.c".a .s".a.h"h

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To print
out the rules compiled into the make on any machine in a form suit-
able for recompilation, the following command is used:

make - fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which pnintf(S)
prints when handed a null string.

A tilde in the above rules refers to an SCCS file (see sceefile(F)).
Thus, the rule .c”.0 would transform an SCCS C source file into an
object file (.0). Because the s. of the SCCS files is a prefix it is
incompatible with make’s suffix point-of-view. Hence, the tilde is a
way of changing any file reference into an SCCS file reference.

A rule with only one suffix (i.e. .c:) is the definition of how to build
z from z.c. In effect, the other suffix is null. This is useful for
building targets from only one source file (e.g., shell procedures,
simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file and
a rule exist is inferred as a prerequisite.
The default list is:

SUFFIXES: 0 .c.y s
Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine.
Multiple suffix lists accumulate; .SUFFIXES: with no dependencies
clears the list of suffixes.
Inference Rules
The first example can be done more briefly:

pgm: a.0 b.o

cc a0 b.o - o pgm
a.0 b.o: inclh

Page 5

MAKE (CP) MAKE (CP)

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
make file.

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For exam-
ple, CFLAGS, LFLAGS, and YFLAGS are used for compiler optlons to
ce(CP), lez(CP), and gace(CP) respectavely Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create
a file with suffix .o from a file with suffix .c is specified as an entry
with .c.o: as the target and no dependents. Shell commands associ-
ated with the target define the rule for making a .o file from a .c file.
Any target that has no slashes in it and starts with a dot is identified
as a rule and not as a true target.

Libranes

If a target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus lib(file.o) and $(LIB)(file.o) both
refer to an archive library which contains file.o. (This assumes the
LIB macro has been previously defined) The expression
$(LIB)(filel.o file2.0) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix from which
the archive member is to be made. An unfortunate byproduct of the
current implementation requires the XX to be different from the
suffix of the archive member. Thus, one cannot have lib{file.o)
depend upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
@ echo lib is now up to date
c.a
$(CC) - ¢ $(CFLAGS) $<
ar rv $8 $*o
rm -f $*%0

In fact, the .c.a rule listed above is built into make and is unneces-
sary in this example. A more interesting, but more limited example
of an archive library maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) - ¢ $(CFLAGS) $(1:0=.c)
ar rv lib $?
rm $7 @echo lib is now up to date
c.a;

Here the substitution mode of the macro expansions is used. The
$? list is defined to be the set of object filenames (inside lib) whose

Page 6

MAKE (CP) MAKE (CP)

C source files are out of date. The substitution mode translates the
.0 to .c. (Unflortunately, one cannot as yet transform to .c”) Note
also, the disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly
programs and C programs.

+Files

[Mm]akefile
s.[Mm]akefile

See Also
sh(C)

Notes

Some commands return nonzero status inappropriately; use — i to
overcome the difficulty. Commands that are directly executed by the
shell, notably ¢d(C), are ineflectual across newlines in make. The
syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build
lib(file.o) from file.o. The macro $(a:.0o==.c") is not available.

Page 7

MKSTR (CP) MKSTR (CP)

Name

mkstr - Creates an error message file from C source.

Syntax

mkstr |-] messagefile prefix file ...

Description

Mketr is used to create files of error messages. Its use can make pro-
grams with large numbers of error diagnostics much smaller, and
reduce system overhead in running the program as the error mes-
sages do not have to be constantly swapped in and out.

Mkstr will process each specified file, placing a massaged version of
the input file in a file whose name consists of the specified prefiz and
the original name. The optional dash (-) causes the error messages
to be placed at the end of the specified message file for recompiling
part of a large mketred program.

A typical mkstr command line is
mkstr pistrings xx *.c

This command causes all the error messages from the C source files
in the current directory to be placed in the file pistringe and processed
copies of the source for these files to be placed in files whose names
are prefixed with zz.

To process the error messages in the source to the message file,
mkstr keys on the string ‘error(™ in the input stream. Each time it
occurs, the C string starting at the ‘™ is placed in the message file
followed by a null character and a newline character; the null charac-
ter terminates the message so it can be easily used when retrieved,
the newline character makes it possible to sensibly eat the error mes-
sage file to see its contents. The massaged copy of the input file
then contains a lecek pointer into the file which can be used to
retrieve the message. For example, the command changes

error("Error on reading”, a2, a3, a4);
into

error(m, a2, a3, a4);
where m is the seek position of the string in the resulting error mes-
sage file. The programmer must ereate a routine error which opens

the message file, reads the string, and prints it out. The following
example illustrates such a routine.

Page 1

MKSTR (CP) MKSTR (CP)

Example
char efilname[] = "/usr/lib/pi_strings™;
int efil = -1;
error(al, a2, a3, ad) (

char buf{256};
if (efil € 0) {
efil = open(efilname, 0);
if (efil < 0) {
perror(efilname);

exit{ C);

if (Iseek(efil, (long) al, 0) [jread(efil, buf, 256) <= 0)
goto oops;
printf(buf, a2, a3, ad);
}

See Also

Iseek(S), xstr(CP)

Credit (

This utility was developed at the University of Californis at Berkeley
and is used with permission.

Notes

All the arguments except the name of the file to be processed are
unnecessary.

Page 2

NM(CP) NM(CP)

Name
nm — Prints name list.

Syntax
nm[—acgnoOprsuv][+offset” file ... |

Description
Nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each
object file in the archive will be produced. If no file is given, the
symbols in a.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined), A (absolute), T

(text segment symbol), D (data segment symbol), B (bss segment
symbol), S (segment name), C (common symbol), or K (8086
common segment). If the symbol table is in segmented format,
symbol values are displayed as segment:offset. If the symbol is
local (non—external) the type letter is in lowercase. The output is
sorted alphabetically.

Options are:

-8 Print only absolute symbols.

—¢ Print only C program symbols (symbols which begin with
‘") as they appeared in the C program.

-8 Print only global (external) symbols.

- Sort numerically rather than alphabetically.

-0 Prepend file or archive clement name to each output line
rather than only once.

-0 Pring symbol values in octal.
-p Don’t sort; print in symbol—table order.
-r Sort in reverse order.

-8 Switch the display format. If the symbol table is in seg—
mented format, print values in non—segmented format. If
not segmented, prin¢ values in segmented format.

—u Print only undefined symbols.
-v Also describe the object file and symbol table format.

Page 1

NM (CP)

Files

a.cut Default input file
See Also

ar(CP), ar(F), a.ocut(F)

N (CP)

Page 2

PROF (CP) PROF (CP)

Name

prof — Displays profile data.

Syntax

prof [—a] [1] [file]

Description

Prof interprets the file mon.out produced by the monittor sub-
routine. Under default modes, the symbol table in the named
object file (a.out default) is read and correlated with the
mon.out profile file. For each external symbol, the percentage
of time spent executing between that symbol and the next is
printed (in decreasing order), together with the number of
times that routine was called and the number of milliseconds
per call.

If the — a option is used, all symbols are reported rather than
just external symbols. If the — 1 option is used, the output is
listed by symbol value rather than decreasing percentage.

To cause calls to a routine to be tallied, the — p option of ce
must have been given when the file containing the routine

was compiled. This option also arranges for the mon.out file
to be produced automatically.

Files
mon.out For profile

a.out For namelist

See Also

monitor(S), profil(S), cc(CP)

Notes

Beware of quantization errors.

Page 1

PROF (CP) PROF (CP)

If you use an explicit call to monitor(S) you will need to make
sure that the buffer size is equal to or smaller than the pro-
gram size.

Page 2

PRS (CP) PRS (CP)

Name

prs — Prints an SCCS file.

Syntax

prs |- ddataspec]] |- r[SID]] {- €] [- 1} |- a] files

Description

Prs prints, on the standard output, all or part of an SCCS file (see
sccafile(F)) in a user supplied format. If a directory is named, pre
behaves as though each file in the directory were specified as a
named file, except that nonSCCS files (last component of the path-
name does not begin with s8.), and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file or
directory to be processed; nonSCCS files and unreadable files are
silently ignored.

Arguments to pre, which may appear in any order, consist of
options, and filenames.

All the described options apply independently to each named file:

— d|dataspec] Used to specify the output data specification. The
dataepec is a string consisting of SCCS file data key-
words (see Dats Keywords) interspersed with optional
user-supplied text

r[SID}] Used to specify the SCCS IDentification (SID) string
of a delta for which information is desired. If no
SID is specified, the SID of the most recently created
delta is assumed.

-e Requests information for all deltas created earfier
than and including the delta designated via the — r
option.

-1 Requests information for all deltas created later than
and including the delta designated via the —r
option.

-a Requests printing of information for both removed,

i.e., delta type == R, (see rmdel(CP)) and existing,
i.e., delta type = D, deltas. If the — a option is not
specified, information for existing deltas only is pro-
vided.

Page 1

PRS (CP) PRS (CP)

Data Keywords

D ata keywords epecify which parts of an SCCS file are to be retrieved
and output. All parts of an SCCS file (see sccafile(F)) have an asso-
ciated data keyword. There is no limit on the number of times a
data keyword may appear in a dataspec.

The information printed by prs consists of the user-supplied text and
appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec.
The format of a data keyword value is either simple, in which key-
word substitution is direct, or multiline, in which keyword substitu-
tion is followed by a carriage return.

User-supplied text is any text other than reccgnized data keywords.
A tab is specified by \t and carriage return/newline is specified by \n.

Page 2

PRS (CP)

PRS (CP)

TABLE 1. SCCS Files Data Keywords

KeywordData Item

:Dt:
:DL:
sLi:
:Ld:
:Lu:
:DT:
HH
:R:
:L:
:B:
:S:
:D:
:Dy:

:Dm:

:Dd:
:T:
:Th:
:Tm:
:Ts:
:P:
:DS:
:DP:
:DI:
:Dn:

:Dx:

:Dg:

tMR:

:C:

:UN:

.:FL:
aY.

MF:
:MP:
:KF: Keyword error/waming flag

:BF:

iLK:

:FB:

:CB:

:Ds:

:ND:
:FD:
:BD:
:GB:

W:

:Z:

Delta information

Delta line statistics

Lines inserted by Deita
Lines deleted by Delta
Lines unchanged by Delta
Delta type

SCCS ID string (SID)
Release number

Level number

Branch number
Sequence number

Date Delta created

Year Delta created
Month Delta created

Day Delta created

Time Delta created

Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl., excl., ignored
Deltas included (seq #)
Deltzs excluded {seq #)
Deltas ignored (2eq #)
MR numbers for delta
Comments for delta
User names

Flag list

Module type flag

MR validation flag

MR validation pgm name

Branch flag

Joint edit flag

Locked releases

User defined keyword
Module name

Floor boundary

Ceiling boundary

Default SID

Null delta flag

File descriptive text
Body

Gotten body

A form of what(C) string
A form of wha{{(C) string
what(C) string delimiter
SCCS filename

: SCCS file pathname
¢:Dt: = :DT: :l: :D: :T: :P: :DS: :DP:

Fde Section
Deita Table

User Names
Flags

" ¥ ¥ 4 W w W W I VYD

Comments
Body

N/A
N/A
N/A
N/A
N/A

Value Forma

See belowe
:Liz/:Ld:/:Lu:
115139
LT Y
nnonnn
DorR
:R:.:L::B:.:S:
nnnn
nnnn
nnnn
npon
:Dy:/:Dm:/:Dd:
nn
nn
111
«Th::: Tms::Ts:
Db
nn
nn
logname
nnnn
nnnn
:Dn:/:Dx:/:Dg:
:DS: :DS:...
:DS: :DS:...
:DS: :DS:...
text
text
text
text
text
yes Or no
text
yes oF no
yes Or RO
yes or no
:R:...
text
text
:R:

:R:

HH
yes or no
text
text
text
12 M\l
AR 638 ' B Y 2
e (#)
text
text

Page 3

nnnnnZBEZunununnunnununnnnITTZvnnnnnnnnnnnuunnnnnnnnnnn

PRS (CP) PRS (CP)

Examples
The following:
prs — d"Users andfor user IDs for :F: are:\n:UN:" s.file
may produce on the standard output:
Users and/or user IDs for s.file are:
xys
131
abe

prs — d"Newest delta for pgm :M:: :I: Created :D: By :P:" - r
s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:

prs s.file
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 600000/00300/00000

MRs:

bl78-12345

bl79-54321

COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry of the ‘D’ type. The only option allowed
to be used with the special ease is the — a option.

Files

See Also
admin(CP), delta(CP), get{CP), help(CP), sccsfile(F)

Diagnostics

Use Aelp(CP) for explanations.

Page 4

RANLIB (CP) RANLIB (CP)

Name

ranlib - Converts archives to random libraries.

Syntax

ranlib archive

Description

Ranld converts each archive to a form which can be loaded more
rapidly by the loader, by adding a table of contents named __.SYM-
DEF to the beginning of the archive. It uses ar{CP) to reconstruct
the archive, so sufficient temporary file space must be available in
the file system containing the current directory.

See Also
1d(CP), ar(CP), copy(C), settime(C)

Notes

Failure to process a library with ranlih, or failure to reprocess a
library with ranlib, will cause Id to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader Id warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

Page 1

RATFOR (CP) RATFOR (CP)

Name

ratfor - Converts Rational FORTRAN into standard FORTRAN.

Syntax

ratfor | option ...] | filename ...]

Description

Ratfor converts a rational dialect of FORTRAN into ordinary irra-
tional FORTRAN. Ratfor provides control flow constructs essentially
identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-m aking:
if (condition) statement [else statement |
switch (integer value) {
case integer: statement

[default: | statement

}

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement | until (condition)]
break [n}
next [n]

and some additional syntax to make programs easier to read and write:

Free form input:
multiple statements/line; automatic continuation

Comments:
this is a comment

Translation of relationals:
>, >=, ete., become .GT., .GE,, ete.

Return (expression)
returns expression to caller from function

Define:
define name replacement

Page 1

RATFOR (CP) RATFOR (CP)

Include:
include filename

The option — h causes quoted strings to be turned into 27H con-
structs. ~ C copies comments to the output, and attempts to format
it neatly. Normally, continuation lines are marked with an & in
column 1; the option — 8x makes the continuation character x and
places it in column 6.

Page 2

REGCMP (CP) REGCMP (CP)

Name

regemp - Compiles regular expressions.

Syntax

regemp |- | files

Description

Regemp, in most cases, precludes the need for calling regemp (see
regez(S)) from C programs. This saves on both execution time and
program size. The command regemp compiles the regular expres-
sions in file and places the output in file .i. If the — option is used,
the output will be placed in file .c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotation marks. The output
of regemp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included
into C programs, or fde.c files may be compiled and later loaded. In
the C program which uses the regemp output, regez(abe,line) applies
the regular expression named abe to line. Diagnostics are self-
explanatory.

Examples
name "(|A- Za- z][A- Za- 50- 9_]*)%0"
telno "\({0,1)([2- 9)[01][1- 9])$0\){0,1) *

"([2- 9}[0- 8]{2})$1] - [{0,1)"
"(|o- 8] {4))82"

In the C program that uses the regemp output,
regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

See Also

regex(S)

Page 1

RMDEL (CP) : RMDEL (CP)

Name

rmdel - Removes a delta from an SCCS file.

Syntax
rmdel — rSID files

Description

Rmdel removes the delta specified by the SID from each named SCCS
file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named SCCS file. In
addition, the SID specified must not be that of a version being edited
for the purpose of making a delta. That is, if a p-file exists for the
named SCCS file, the SID specified must not appear in any entry of
the p-file(see get(CP)).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that nonSCCS files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of ~ is given, the
standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed; nonSCCS files and unread-
able files are silently ignored.
Files
x-file See delta(CP)

z-file See delta(CP)

See Also
delta{ CP), get{CP), help(CP), prs(CP), scesfile(F)

Diagnostics

Use help(CP) for explanations.

Page 1

SACT(CP)

Name

SACT (CP)

sact — Prints current SCCS file editing activity.

Syntax

sact files

Description

Sact informs the user of any impending deltas to 8 named SCCS file.
This situation occurs when get(CP) with the — e option has been
previously executed without a subsequent execution of delta(CP). If
a directory is named on the command line, sact behaves as though
each file in the directory were specified as a named file, except that
nonSCCS files and unreadable files are silently ignored. If a name of
— is given, the standard input is read with each line being taken as
the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by

spaces.

Field 1

Field 2

Field 3

Field 4
Field 6

See Also

Specifies the SID of a delta that currently exists in the
SCCS file to which changes will be made to make the
new delta

Specifies the SID for the new delta to be created

Contains the logname of the user who will make the
delta i.e., executed a get for editing

Contains the date that get — e was executed

Contains the time that get - e was executed

delta(CP), get{CP), ungey(CP)

Diagnostics

Use help(CP) for explanations.

Page 1

SCCSDIFF (CP) SCCSDIFF (CP)

Name

scesdiff - Compares two versions of an SCCS file.

Syntax
scesdiff — rSID1 — rSID2 |- p] [~ sn] files

Description

Sccediff compares two versions of an SCCS file and generates the

differences between the two versions. Any number of SCCS files

may be specified, but arguments apply to all files.

— rSID? SID1 and SID2 specify the deltas of an SCCS file that are
to be compared. Versions are passed to bdiff{C) in the
order given.

-p Pipe output for each file through pr(C).

- 8n n is the file segment size that bdiff will pass to diff{ C).

This is useful when diff fails due to a high system load.

Files

See Also
bAiff(C), get(GP), help(CP), pr(C)

Diagnostics
file: No differencee If the two versions are the same.

Use Aelp(CP) for explanations.

Page 1

Namg

SIZE (CP) SIZE (CP)

Name

size — Prints the size of an object file.

Syntax

size | object ... |

Description
Size prints the (decimal) number of bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, of each
object-file argument. If no file is specified, a.out is used.

See Also

a.ou(F)

Page 1

SPLINE (CP) SPLINE (CP)

Name

spline - Interpolates smooth curve.

Syntax

spline | option | ...

Description
Spline takes pairs of numbers from the standard input as abcissas and
ordinates of a function. It produces a similar set, which is approxi-
mately equally spaced and includes the input set, on the standard
output. The cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.
The following options are recognized, each as a separate argument.
~ a Supplies abscissas automatically (they are missing from the
input); spacing is given by the next argument, or is assumed to
be 1 if next argument is not a number.
— k The constant k used in the boundary value computation
L4 ! L 4 ’
Yo =kyr, ..., yn =kta-
is set by the next argument. By default k¥ == 0.

- n Spaces output points so that approximately s intervals occur
between the lower and upper z limits. (Default n = 100.)

—~ p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should normally agree.

—~ x Next 1 (or 2) arguments are lower (and upper) z limits. Nor-
mally these limits are calculated from the data. Automatic
abcissas start at lower limit (default 0).
Diagnostics
When data is not strictly monotone in 2z, spline reproduces the input
without interpolating extra points.
Notes

A limit of 1000 input points is silently enforced.

Page 1

STRINGS (CP) STRINGS (CP)

Name

strings — Finds the printable strings in an object file.

D Syntax
strings {- | [~ o] [- number] file ...

Description

Stringe looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline
or a null character. Unless the — flag is given, strings only looks in
the initialized data space of object files. If the — o flag is given, then
each string is preceded by its decimal offset in the file. If the
— number flag is given then number is used as the minimum string
length rather than 4.

Strings is useful for identifying random object files and many other
things.

See Also

@ hd(C), 0d(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Page 1

STRIP (CP) STRIP (CP)

Name

strip - Removes symbols and relocation bits.

Syntax

strip name ...

Description
Stnp removes the symbol table and relocation bits ordinarily attached
to the output of the assembler and link editor. This is useful for
saving space after a program has been debugged.
The effect of strip is the same as use of the — s option of ld.
If name is an archive file, stmp will remove the local symbols from
any a.out format files it finds in the archive. Certain libraries, such
as those residing in /lib, have no need for local symbols. By delet-
ing them, the size of the archive is decreased and link editing perfor-
mance is increased.

Files

Jtmp/stm* Temporary file

See Also
1d(CP)

Page 1

TIME (CP) TIME (CP)

Name

time — Times a command.

Syntax

time command

Description
The given command is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system, and
the time spent in execution of the command. Times are reported in
seconds.

The times are printed on the standard error.

See Also

times(S)

Page 1

TSORT(CP) TSORT(CP)

Name

tsort — Sorts a file topologically.

Syntax

tsort | file |

Description

Teort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input
file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by

blanks. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also
lorder(CP)

Diagnostics
Odd data: There is an odd number of fields in the input file.

Notes

The eort algorithm is quadratic, which can be slow if you have a large
input list.

Page 1

UNGET (CP) UNGET (CP)

Name

unget -~ Undoes a previous get of an SCCS file.

Syntax

unget [rSID] |- 8] {- n] files

Description

Unget undoes the effect of a get — e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that nonSCCS files and unreadable files are silently ignored.
If a name of — is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed.

Options apply independently to each named file.

- rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the “‘new
delta’’.) The use of this option is necessary only if two
or more versions of the same SCCS file have been
retrieved for editing by the same person (login name).
A diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

-8 Suppresses the printout, on the standard output, of the
intended delta’s SID.

-n Causes the retention of the file which would normally
be removed from the current directory.

See Also

delta(CP}, get{ CP), sact{ CP)

Diagnostics

Use kelp(CP) for explanations.

Page 1

VAL (CP) VAL (CP)

Name

val - Validates an SCCS file.

Syntax
val —

val {- 8] |- 1SID] [- mname] [- ytype] files

Description

Val determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to
val may appear in any order. The arguments consist of options,
which begin with a — ; and named files.

Val has a special argument, — , which causes reading of the standard
input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects of any option apply
independently to each named file on the command line:

-8 The presence of this argument silences the diagnos-
tic message normally generated on the standard out-
put for any error that is detected while processing
each named file on 2 given command line.

- rSID The argument value SID (SCCS [Dentification
String) is an SCCS delta number. A check is made
to detetmine if the SID is ambiguous (e. g., rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or invalid (e.
g, rl.0 or r1.1.0 are invalid because neither case
can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to deter-
mine if it actually exists.

— mname The argument value name is compared with the
SCCS %M % keyword in file.

- Ytype The argument value type is compared with the SCCS
%Y % keyword in file.

Page 1

VAL (CP) VAL (CP)

The 8-bit code returned by val is a disjunction of the possible errors,
i. e., can be interpreted as a bit string where (moving from left to
right) set bits are interpreted as follows:

bit 0 = Missing file argument

bit 1 = Unknown or duplicate option

bit 2 == Corrupted SCCS file

bit 3 == Can’t open file or file not SCCS

bit 4 == SID is invalid or ambiguous

bit 5 == SID does not exist

bit 6 = %Y %, — y mismatch

bit 7 = 92 % — m mismatch

Note that val can process two or more files on a given command line
and in turn can process multiple command line (when reading the
standard input). In these cases an aggregate code is returned; a logi-

cal OR of the codes generated for each command line and file pro-
cessed.

See Also
admin(CP), delta(CP), get{CP), prs(CP)

Diagneatics

Use help(CP) for explanations.

Notes

Val can process up to 50 files on a single command line.

Page 2

XREF (CP) XREF (CP)

Name

xref — Cross-references C programs.

Syntax

xref | file ... |

Description

Xref reads the named files or the standard input if no file is specified
and prints a cross reference consisting of lines of the form

identifier filename line numbers ...
Function definition is indicated by a plus sign (4} preceding the line
number.
See Also
cref(CP)

Page 1

XSTR (CP) XSTR (CP)

Name

xstr - Extracts strings from C programs.

Syntax
xstr |- ¢] [-] [file]

Description

Xetr maintains a file stnnge into which strings in component parts of
a large program are hashed. These strings are replaced with refer-
ences to this common area. This serves to implement shared con-
stant strings, most useful if they are also read-only.

The command
Xxstr - ¢ name

will extract the strings from the C source in name, replacing string
references by expressions of the form (&xstr[number]) for some
number. An appropriate declaration of zetr is prepended to the file.
The resulting C text is placed in the file z.¢, to then be compiled.
The strings from this file are placed in the stnnge data base if they
are not there already. Repeated strings and strings which are suffices
of existing strings do not cause changes to the data base.

After all components of a large program have been compiled, a file
zs.c declaring the common zetr space can be created by a command
of the form

xstr -c namel name2 name3 ...
This ze.c file should then be compiled and loaded with the rest of the
program. If possible, the array can be made read-only (shared) sav-
ing space and swap overhead.
Xetr can also be used on a single file. A command

Xstr name

creates files z.¢ and ze.c as before, without using or affecting any
stringe file in the same directory.

It may be useful to run zstr after the C preprocessor if any macro
definitions yield strings or if there is conditional code which contains
strings which may not, in fact, be needed. Xetr reads from its stan-
dard input when the argument - is given. An appropriate command
sequence for running zstr after the C preprocessor is:

Page 1

XSTR (CP) XSTR (CP)

¢c - E name.c |xstr - ¢ -
cc - ¢ x.c
mv X.0 name.o

Xstr does not touch the file stnnge unless new items are added, thus
make can avoid remaking zs.0 unless truly necessary. ((

Files
strings Data base of strings
X.C Massaged C source
x8.¢ C source for definition of array “‘xstr”’

Jtmp/xs® Temp file when *““xstr name’’ doesn’t touch stringe

See Also

mkstr(CP)

Credit

This utility was developed at the University of California at Berkeley (
and is used with permission.

Notes
If a string is a suffix of another string in the data base, but the

shorter string is seen first by zetr , both strings will be placed in the
data base when just placing the longer one there will do.

Page 2

YACC(CP) YACC (CP)

Name

yacc — Invokes a compiler-compiler.

Syntax

yacc [- vd] grammar

Description
Yace converts a context-free grammar into a set of tables for a sim-
ple automaton which executes an LR(1) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.
The output file, y.tab.c, must be compiled by the C compiler to pro-
duce a program yyparse. This program must be loaded with the lexi-
cal analyzer program, yyez, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user;
lez(CP) is useful for creating lexical analyzers usable by gace.
If the ~ v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report on conflicts generated
by ambiguities in the grammar.
If the — d flag is used, the file y.tab.h is generated with the #define
statements that associate the yacc-assigned ‘‘token codes’ with the

user-declared ‘‘token names’’. This allows source files other than
y.tab.c to access the token codes.

Files
y.output
y.tab.c
y.tab.h Defines for token names
yacc.tmp, yacc.acts Temporary files

Jusr/lib/yaccpar Parser prototype for C programs

See Also
lex(CP)

Page 1

YACC (CP) YACC (CP)

Diagnostics
The number of reduce-reduce and shift-reduce conflicts is reported
on the standard output; a more detailed report is found in the
y.output file. Similarly, if some rules are not reachable from the
start symbol, this is also reported.

Notes

Because filenames are fixed, at most one yacc process can be active
in a given directory at a time.

Page 2

Index

Programming Commands (CP)

ComPIler ..o e
C language usage and syntax "
C language PreproCeSSOTc.oovocvverccvereiriieererieeeeeriraeans
C program, formattingococcoeiiiiiiiieii e
Compiler compiler
Debuggercoooiiii e
Errormessagefile ...
Execution, time

Graphics, interpolating curves .

Lexicalanalyzers lex
Linkeditor ld
Macro processor M4
Object file, printablestrings strings
Objectfile,sizecooovviiiii e size
Object file, displayingcoccoovieviiiiiiiiiiiee e, hdr
Object file, symbolsand relocation strip
Orderingrelationscccoveviviiiieieiiiie e lorder
Program listing, cross-referencexref
Program listing, cross-referencecref
Program maintenance make
Rational FORTRANratfor
Regular expressions regemp
SCCS files, combiningcomb
SCCS files, commentscde
SCCS files, cOMPATINgccovvvveeeiiiieeaeeennn. ... scesdiff
SCCS files, creating new VErsionscceeoeeeeeneiionnnn. delta
SCCSfiles, editingcccooviiiiiiii sact
SCCS files, printingprs

SCCS files, removing rmdel
SCCS files, restoring unget
SCCS files, retrieving versionsget

SCCS files, creating and maintainingadmin
SCCS files, validatingval
SCCS, command helphelp
Sorting topologicallyc....oooiiiii tsort
Standard input, reading stringsoc gets
Strings, extracting xstr
System, XENIX configurationconfig
Tagsfilecooooiii ctags

XENIX toMS-DOS crosslinker.cccooevvvimmmnncnncnnenn. dosld

