


) 

) 

Information in this document is subject to change without notice and does not 
represent a commitment on the part of The Santa Cruz Operation, Inc. nor 
Microsoft Corporation. The software described in this document is furnished 
under a license agreement or nondisclosure agreement. The software may be 
used or copied only in accordance with the terms of the agreement. It is against 
the Jaw to copy this software on magnetic tape, disk, or any other medium for 
any purpose other than the purchaser's personal use. 

© 1983, 1984 Microsoft Corporation 
@ 1984, 1985 The Santa Cruz Operation, Inc. 

This document was typeset with an IMAGEN® 8 /300 Laser Printer. 

XENIX is a trademark ofMicrosoft Corporation. 
IMAGEN is a registered trademark of IMAGEN Corporation. 

Document Number: G-2-14-85-1.3/1.0 



() 

( 



) 

) 

Contents 

1 Text Processing Overview 

1.1 Introduction 1-1 
1.2 Basic Concepts 1-3 
1.3 FormattingDocuments 1-7 
1.4 ASampleProject 1-9 
1.5 Managing Writing Projects 1-12 
1.6 Summary 1-15 

2 ToolsForWritingandEditing 

2.1 Introduction 2-1 
2.2 XENIX Commands for Text Processing 2-2 
2.3 Writing Tools 2-9 
2.4 Using Spell 2-9 
2.5 UsingStyleandDiction 2-10 

3 Using the MM Macros 

3.1 Getting Started with MM 3-1 
3.2 BasicFormattingMacros 3-3 
3.3 UsingNroff/TroffCommands 3-9 
3.4 CheckingMMinputwithmmcheck 3-9 

4 MM Reference 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.10 
4.11 
4.12 
4.13 
4.14 
4.15 

Introduction 4-1 
Invoking the Macros 4-4 
Formatting Concepts 4-8 
Paragraphs and Headings 4-13 
Lists 4-22 
Displays 4-31 
Footnotes 4-38 
Page Headers and Footers 4-41 
Table of Contents 4-46 
References 4-48 
MiscellaneousFeatures 4-50 
Memorandum and Released Paper Styles 4-56 
Reserved Names 4-65 
Errors 4-68 
Summary of Macros, Strings, and Number Registers 4-75 



ii 

5 Using Nroff/Troff 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
5.10 
5.11 
5.12 
5.13 
5.14 
5.15 

Introduction 5-1 
Inserting Commands 5-2 
Point Sizes and Line Spacing 5-3 
Fonts and Special Characters 5-5 
Indents and Line Lengths 5-7 
Tabs 5-9 
Drawing Lines and Characters 5-10 
Strings 5-13 
Macros 5-14 
Titles, Pages and Numbering 5-16 
N um her Registers and Arithmetic 5-18 
Macros with Arguments 5-20 
Conditionals 5-22 
Environments 5-24 
Diversions 5-24 

6 Nroff/Troff Reference 

6.1 
6.2 
6.3 
6.4 
6.5 
6.6 

Introduction 6-1 
Basic Formatting Requests 6-4 
Character Translations, Overstrike, and Local Motions 6-13 
Processing Control Facilities 6-17 
Output and Error Messages 6-25 
Summary of Escape Sequences and Number Registers 6-25 

7 Formatting Tables 

7.1 Introduction 7-1 
7.2 lnputFormat 7-2 
7.3 InvokingTbl 7-10 
7.4 Examples 7-11 
7 .5 Summary of tbl Commands 7-18 

8 Formatting Mathematics 

8.1 
8.2 
8.3 
8.4 
8.5 
8.6 
8.7 
8.8 
8.9 
8.10 

Introduction 8-1 
DisplayedEquations 8-2 
Basic Mathematical Constructions 8-3 
Complex Mathematical Constructions 8-7 
Layout and Design of Mathematical Text 8-10 
In-lineEquations 8-15 
Definitions 8-16 
lnvokingeqn 8-17 
Sample Equation 8-18 
Error Messages 8-19 

( 

( 

( 



) 

) 

8.11 Summary of Keywords and Precedences 8-19 

Appendix A Editing With Sed and Awk 

A.I 
A.2 
A.3 

Introduction A-1 
Editing With sed A-1 
PatternMatchingWithawk A-13 

iii 



C> 

(! 

() 



) 

) 

Chapter 1 
Text Processing Overview 

1.1 Introduction 1 
1.1.1 Before You Begin 2 
1.1.2 OverviewofThisManual 3 

1.2 Basic Concepts 3 
1.2.l Writing Tasks 4 
1.2.2 AnatomyofaDocument 4 
1.2.3 Formatting Characteristics 5 
1.2.4 An Inventory of Tools 6 

1.3 FormattingDocuments 7 
1.3.1 The MM Macros 7 
1.3.2 Supporting Tools 8 
1.3 .3 Order oflnvoking Programs 8 

1.4 A Sample Project 9 
1.4.l EnteringTextandFormattingCommands 9 
1.4.2 FormattingText 10 
1.4.3 Printing the Document 11 

1.5 Managing Writing Projects 11 
1.5.1 The Life Cycle of aDocument 12 
1.5.2 Organizing Your Project 12 
1.5.3 Shortcuts: The Boilerplates Concept 14 

1.6 Summary 14 



() 



) 

) 

) 

1.1 Introduction 

The XENIX Text Processing System is a collection of powerful tools for 
enhancing writing productivity and making the process or document 
preparation more efficient. To create documents with the XENIX system, you 
will be using special XENIX text processing programs, including text editors and 
text formatters. You will a.Isa be relying on XENIX system features and utilities 
with which you may already be familiar. Whether you have used other text 
processing programs or not, this manual provides you with a. practical 
orientation toward text processing and describes the XENIX tools in detail, 
a.long with examples that illustrate their applications to your writing tasks. 
Where possible, strategies a.re offered for using the XENIX system to best 
advantage in your own environment. 

This manual emphasizes the interrelationship of tools and techniques into a. 
"text processing system". Understanding the relationship between these 
programs discussed here is as important as learning to use ea.ch individual 
program. Think of the XENIX system as a. "writing environment". How you 
organize this environment is up to you. Once you learn to use your XENIX tools 
selectively, and make the right decisions in planning your writing projects 
before you begin them, the XENIX system is ultimately more powerful and 
flexible than any or the "word processing packages" with which you may be 
familiar. 

This introduction provides you with an overview of text processing with the 
XENIX System, including: 

The text processing concepts and terms you will need to understand 

• The editing and formatting tools you will be using 

The steps in the process of creating a finished document 

The strategies for managing writing projects 

As you read the XENIX Text Processing Guide remember that the XENIX 
system has been evolving over a number of years and that it offers an enormous 
range of programs and utilities. Many of the tools introduced here were not 
originally designed for text processing-they are general-purpose utilities upon 
which a.II XENIX users depend heavily. Programmers, for example, use the 
same text editors and file comparison utilities discussed here to write and revise 
programs. Those programs intended solely for text processing applications, 
including the formatters and style analysis programs, have developed 
independently of ea.ch other. You will often find that their capabilities overlap. 
A large part of lea.ming to use your XENIX system successfully is deciding how 
to make the various programs and utilities work together. 

Do not expect to sit down and learn the XENIX Text Processing System in a 
single afternoon. This manual is designed to help you approach a wide range of 

1-1 



XENIX Text Processing 

editing and formatting tools gradually. There are many programs described 
here for which you may not have an immediate application, and some you may 
never need at all. You need not learn all the material introduced here to 
produce professional-quality manuscripts. Choose the tools that will work best 
for your projects. ( 

1.1.1 Berore You Begin 

Before you can begin to use your XENIX system effectively a.s a. text processing 
environment, you should already be familiar with the material covered in the 
XENIX Ueer'e Guide, particularly: 

• The most common XENIX commands 

• The XENIX hierarchical file structure 

• The XENIX shell programming language 

• At least one of the XENIX text editors 

Equally important, however, is making use of the power of XENIX as a.n 
operating system by using its features to your advantage. In particular, as you 
begin working with XENIX Text Processing, consider how your work can be ( 
made easier by utilizing the XENIX hierarchical file structure to organize files 
efficiently. Make use of the XENIX shell to "pipe" one process to another and 
run several processes concurrently. Use the XENIX shell programming 
language to create "scripts" for automating your text processing work. 
Develop strategies for managing your writing projects beyond merely learning 
a collection of commands. 

Most importantly, before you begin working with the XENIX Text Processing 
System, learn one of the XENIX text editors well enough to feel comfortable 
entering and revising document text. 

Because there is so much to learn about text processing with the XENIX system, 
the best approach is to read through this volume first and decide which editors, 
utilities, and formatters best suit your needs. Then learn selectively, but 
thoroughly, those tools which are most a.ppropria.te. As you become more 
experienced, you will develop a. reel for which functions work best in which 
situations, and you will find new ways to ma.ke the writing process more 
efficient. You will be continually a.ma.zed at how powerful the editors and 
related tools can be. 

1.1.2 Reading This Manual 

This manual contains the following chapters: 

1-2 

( 



) 

Text Processing Overview 

1. Text Processing Overview 
The chapter you are now reading provides you with a general 
overview or XENIX text processing: how it works and what kinds or 
tasks it can do. The XENIX tools and how they fit into each phase or 
document production are described. 

2. Writing and Editing Tools 
This chapter introduces several XENIX programs which can help 
you search ror recurring patterns, compare files, and make global 
revisions to large files and groups or files. It also introduces three 
special writing tools ror locating spelling errors and awkward 
diction, as well as assessing the readability or a document. 

3. Using mm 
This chapter introduces mm, a package or document formatting 
requests which simplifies the task orrormatting documents. 

4. Mm Rererence 
This chapter is a comprehensive guide to mm. 

5. Nroff/TroffTutorial 
This chapter introduces the two XENIX text formatters, nroff and 
troff. 

6. Nroff/TroffRererence 
This chapter is a comprehensive guide to the nroff and troff 
rormatting programs. 

7. Formatting Tables 
This chapter describes the specialized formatter, tbl, which 
produces effective tables in documents. 

8. Formatting Mathematical Equations 
This chapter describes the eqn program which formats 
mathematical symbols and equations. 

Appendix A: Editing With sed and awk 
This appendix describes how to use the two batch editing programs 
sed andawk. 

1.2 Basic Concepts 

This section reviews some general text processing terms and concepts, 
including the: 

Types or writing tasks which can be done with XENIX text processing 

Parts or a do cu men t 

1-3 



XENIX Text Processing 

Design characteristics or a formatted document 

Types of XENIX tools which you will be using 

1.2.1 Writing Tasks 

You can write, edit, and typeset any manuscript on the XENIX system­
whether a memo, business letter, novel, academic dissertation, feature article 
or manual. In some respects this manual relies more heavily on examples 
relevant to technical documentation, because these projects require the 
application of the greatest number or XENIX tools, and demand the most 
careful planning and strategy in their construction. 

1.2.2 Anatomy or a Document 

To fully determine the scope of your formatting needs, let's look at the parts of 
a. typical document. Unless you a.re using your XENIX text processing system to 
write memos and letters, you may have some or all of the following in your 
documents: 

Front Matter 

Title page 

Copyright notice or document number 

Table of contents 

List of tables or illustrations 

Foreword 

Preface 

Acknowledgements 

Body of Text 

Chapters or sections 

Figures and display 

Tables and equations 

Footnotes 

Running headers and footers 

1-4 

( 

( 



) 

) 

) 

Text Processing Overview 

Back Matter 

Appendices 

Notes 

Glossary 

Bibliography 

Index 

Your XENIX tools will help you automatically generate ma.ny parts oC your 
document. For example, you will be able to create lists or figures and tables, 
and a. table or contents a.s part or the Cormatting process. You can create and 
store in advance a. standard copyright notice page (oCten ca.lied a "boilerplate") 
and change only that inCormation specific to the document. 

Even in those sections oCyour document that must be written Crom scratch you 
can do much to standardize the "look" or a. preCace page, the pagination or a.n 
appendix, or the section numbering and Cormat or a chapter. Once you have 
developed specifications, you can achieve consistency in the production or a 
long and complex document, and even produce many documents with the same 
specifications, without going through the definition process again. A Curther 
advantage is that you can change your specifications at any time, oCten without 
re-editing the text and Cormatting commands themselves. Then, you need only 
reformat your document and print it. 

1.2.3 Formatting Characteristics 

There a.re many characteristics of your finished text that can be controlled with 
XENIX Corma.tting tools. Keep in mind, however, that the a.ppea.ra.nce oC your 
finished document depends largely on the capabilities or your output device. 
To determine the format oC your text you will insert commands in your text file 
as you write and edit. These commands will be identical, whether you a.re 
planning to produce your document on a. lineprinter using the XENIX formatter 
nroff, or whether you a.re sending your document directly to a. phototypesetter 
using troff. Because a. lineprinter cannot do variable spacing, or change the 
point size or font or your text, nroff will ignore commands to change point size, 
round the parameters or spacing commands to the nearest line unit, and replace 
italics with underlining. 

You will also notice qualitative differences in the output. For example, the 
justification or text-the spacing or text a.cross the line to preserve a margin-is 
considerably less subtle in lineprinter output. Some or the cha.ra.cteristics you 
can control with the nroff/ troff programs a.re: 

Text filling, centering, a.nd justification 

1-5 



XENIX Text Processing 

Multicolumn output, margin, and gutter width 

Vertical spacing, line length, page length, and indentation 

Font type and point size 

Style or page headers and rooters 

Page and section numbering 

Layout or mathematical equations and tables 

1.2.4 An Inventory of Tools 

When you approach any writing project, you should examine the whole range 
of XENIX tools to find those that will work best, just as you might look inside a. 
toolbox. Although you can often do a. job in several ways, there is frequently a. 
tool, or a. combination or tools, designed especially for that job. 

Feel free to experiment in using the various editors, utilities, a.nd formatters. If 
you a.re cautious about making copies of your files and backing up your XENIX 
system regularly, you ca.n do little irreversible damage. As you work, you will 
gain more confidence and find new solutions. 

While it is a good idea. to learn to use a. few of the XENIX tools skilirully, you 
should also work consciously to learn new tools and methods, rather than 
depending on a. rew procedures which you reel you know well. Some XENIX 
tools, like the screen editor vi, offer many more commands and functions than 
you can comfortably learn at one sitting. You may find yourself relying on a 
limited number of commands quite heavily. To prevent this, periodically 
review the documentation and rorce yourself to try new commands. 

In this manual we will be looking at XENIX "tools" which fa.II into a few basic 
categories: 

System features 

Utilities 

Aspects of the XENIX opera.ting system that can be used to enhance 
the text processing environment, such as multitasking and the 
hierarchical file structure. 

( 

( 

These include the XENIX text editors (such as vi) and other utilities ( 
that a.re used for both software development and text processing 
(such assort, diff, grep,or awk). 

1-6 



) 

) 

) 

Text Processing Overview 

Text Processing Tools 

These include specialized programs designed solely ror text 
Cormatting tasks, including mm, eqn, and tbl and the formatters 
nroff and troff. Also included are the special writing tools, spell, 
style, and diction, which help you edit what you write. 

1.3 Formatting Documents 

In this section you will be introduced to nroff and troff, the two XENIX 
formatting programs. By inserting a series or commands in your text files you 
will be able to produce text with justified right margins, automatic page 
numbering and titling, automatic hyphenation, and many other special 
reatures. Nroff (pronounced "en-roff'') is designed to produce output on 
terminals and lineprinters. Troff (pronounced "tee-roll'') uses identical 
commands to drive a phototypesetter. The two programs are completely 
compatible, but because or the limitations or ordinary lineprinters, troff 
output can be made considerably more sophisticated. With troff, for example, 
you can speciry italic font, variable spacing, and point size. Ir you format the 
text using the same macros with nroff, italicized text will be underlined, the 
spacing will be approximated, and the text will be printed in whatever size type 
the lineprinter offers. 

1.3.l The mm Macros 

To use nroff and troff, you must insert a Cairly complicated series or 
commands directly into your text. These "formatting commands" speciry in 
detail how the final output will look. Because nroff and troff are relatively 
hard to learn to use effectively, XENIX also offers a package o( canned 
formatting requests called the mm macros. With mm you can speciry the style 
or paragraphs, titles, rootnotes, multicolumn output, lists and so on, with less 
effort and without learning nroff and troff themselves. The mm program 
reads the commands Crom the text, and translates them into nroff/troff 
specifications. Mm is described in detail in the next two chapters. It is 
recommended that you learn mm first, and use it Cor most or your formatting 
needs. Ir you need to fine-tune your output, you can add nroff/troff requests 
to the text as necessary. 

To produce a document with mm, use the command 

nroff -mm filename 

to view the output on your terminal screen. To store the output or nroff in a 
file, use the command line: 

nroff -mm filename>outfile 

where outfile is the name or the file you wish to designate ror the stored output. 

1-7 



XENIX Text Processing 

It is suggested that you give consistent extensions to your input and output 
filenames. You might use ".s" for "source" a.s the extension ror all input 
filenames, and ".mm" a.s the extension ror the names or files which are the 
output of mm. For example, 

nroff -mm l.intro.s>intro.mm& 

Note that the ampersand is used to process the file in the background. 

1.3.2 Supporting Tools 

In addition to the nroff and troff formatting programs, and the mm 
formatting package, there are also formatting programs to meet some 
specialized needs. The eqn program, for example, formats complicated 
mathematical symbols and equations. A version of eqn called neqn outputs the 
same mathematical text for the more limited capabilities or lineprinter. Eqn is 
a preprocessor. That is, you run eqn first, before nroff/troff, to translate the 
commands of the eqn ''language" into ordinary nroff/ troff requests. The eqn 
commands resemble English words (e.g., over, lineup, bold, union}, and the 
format is specified much as you might try to describe an equation in 
conversation. It is recommended that you delay learning about eqn in detail 
until you actually need to use it. 

( 

The ,!/bl p~gram is adlso a preprocessor: 1tbl cobml maTnbds1 a~e translated hi?tho ( 
nrou trou comman s to prepare comp ex ta es. gives a you a 1g 
degree of control over material which must appear in tabular Corm, by doing all 
the computations necessary to align complicated columns with elements of 
varying widths. Like eqn, it requires that you learn another group of 
commands, and process your files through another program before using 
nroff/troff. 

1.3.3 Order of Invoking Programs 

After you have inserted a.II your formatting commands into the text, you are 
ready to process your files, using the XENIX formatting programs. Please note 
that it is extremely important to use the various macro packages and 
formatters in the correct order. However, you may invoke all these programs 
with a single command line, using the XENIX pipe facility. As noted above, you 
can invoke the mm macro package along with nroff/ troff using a command 
such as: 

nroff -mm intro.s>intro.mm 

However, if you are using several specialized formatters along with 
nroff/troff, the command becomes more complex. You must invoke eqn 
before nroff/troff and mm, in order to translate the eqn commands into 
nroff /troff specifications before the files are formatted, as in the following: 

1-8 

( 



) 

) 

Text Processing Overview 

neqn intro.s I nroff -mm>intro.mm 

If you are using both eqn and tbl, the tbl program should be called first: 

tbl intro.s I neqnlnroff -mm>intro.mm 

Ir you are formatting multicolumn material or tables with nroff you must use 
the col (for "column") program. Col processes your text into the necessary 
columns, after formatting, as in: 

nroff -mm intro.s I col> intro.mm 

1.4: A Sample Project 

The preparation of every document has several phases: entering and editing 
text, checking your draft for spelling errors and style quality, formatting the 
finished version, and printing it on a printer or typesetter. To illustrate the 
process of producing a finished document with the XENIX Text Processing 
System, let's look at the steps for creating a simple document one by one. 

1.4.ll Entering Text and Formatting Commands 

First you must write the text of the document. To do this, you will invoke one 
of the XENIX text editors and type the text on the screen. For example, to 
produce a memo informing the members of your department that you will be 
holding a seminar on the XENIX Text Processing System, you might begin by 
typing the following command line: 

v1 memo.s 

You will probably use your editor's special functions to correct errors and make 
revisions as you write, such as deleting words or lines, globally substituting one 
word for another, or moving whole paragraphs and sections around in the 
document. 

Ir you have used a dedicated word processing system or a microcomputer word 
processing program before, note that the XENIX Text Processing System works 
somewhat differently. Formatting of text takes place in a "batch" rather than 
an "interactive" mode. That is, instead of using special function keys to format 
your text on the screen as you work, you will be interspersing commands with 
ordinary text in your file. Most of these are two-letter commands preceded by a 
dot (.), that appear at the beginning of text lines. These will be lowercase 
letters, if you are using either of the XENIX text formatters, nroff, or troff. 

In addition to these two programs, there is another program called mm which 
we recommend you use, especially if you are new to text processing. Mm 
commands are called "macros". These macros, which are generally two upper 

1-9 



XENIX Text Processing 

or lowerca.se letters preceded by a dot(.), replace whole sequences of nroff and 
troff commands, and allow you to reduce the number and complexity or the 
commands necessary to format a document. You can use the mm macros 
wherever possible and add extra nroff or troff commands, as necessary, for I 
fine-tuning the format of your document. I\ 

Let's look at the beginning or a file called memo.1: 

.ce 

.BMEMO 

.sp 2 

.P 
A seminar has been scheduled ror Thursday, September 15, 
to introduce users to the XENIX Text Processing System. 
It is is intended for all department members 
planning to use XENIX ror writing or preparing documentation . 
. P 
The seminar will include the rollowing topics: 
.AL 1 
.LI 
Reviewing the XENIX file structure and basic commands . 
. LI 
Using the vi text editor. 
.LI 
Formatting documents with mm . 
. LE 
.P 
The seminar will begin at 9 AM. and will la.st approximately 
two hours ... 

In the input file above, each paragraph of text begins with the mm paragraph 
macro, .P. In the final document, the word "MEMO" will appear centered on 
the page and in boldface. The nroff/troff command .ce means "center" and 
the mm macro .B means "boldface". The nroff/troff command .sp 2 below 
MEMO mea.ns"2"spaces 

Note the three mm macros .AL, .LI, and .LE. These will turn the text following 
the words "following topics" into an automatically numbered list. 

1.4.2 Formatting Text 

Now, let's format the finished memo into the file ca.lied memo.mm using the 
following command line: 

nroff -mm memo.s>memo.mm& 

1-10 

( 

( 



) 

) 

Text Processing Overview 

This command invokes the nroff formatter using the mm macro package to 
format the file memo.s. When rormatted, the memo will be stored in an output 
file called memo. mm. Ir you do not specify an output file, the rormatted text 
will simply roll across your screen and be lost. Note that the command line ends 
with an am per sand ( & ), an instruction to put the formatting or this file "in the 
background". It is generally a good idea. to put formatting jobs in the 
background because they will often take several minutes, especially if the file is 
long and the formatting relatively complex. Ir you put the rorma.tting job in the 
background, your terminal will remain free ror you to do other work on the 
system. 

1.4.3 Printing the Document 

When you are ready to print the memo, use the command 

lpr text.memo.mm 

The finished memo looks like this: 

MEMO 

A seminar has been scheduled for Thursday, September 15, 
to introduce users to the XENIX Text Processing System. 
It is intended for all department members planning 
to use XENIX for writing or preparing documentation. 

The seminar will include the rollowing topics: 

I. Reviewing the XENIX file structure and 
basic commands. 

2. Using the vi text editor. 

3. Formatting documents with mm. 

The seminar will begin at 9 A.M and will last 
approximately two hours ... 

1.5 Managing Writing Projects 

Once you have mastered one or more or your text editors, a.nd a.re ready to do 

1-11 



XENIX Text Processing 

extensive writing, revision, and text processing with the XENIX system, it is 
time to consider the overall organization of your writing projects. This section 
offers some common-sense suggestions for managing and standardizing your 
text files to make processing more efficient. Not a.II or the suggestions and 
writing a.ids discussed here will be equally appropriate in a.II situations. The { 
larger and more complex the writing project, however, the more time and 
confusion can be saved by their implementation. 

1.5.1 The Lire Cycle of a Document 

Berore you can begin to work successtully with XENIX text processing tools, you 
need to determine which tools a.re appropriate tor each phase or a project. This 
section discusses the application of XENIX tools to each step in the life cycle of a 
document from the first notes you take and outlines you develop, to the 
archiving and management of multiple versions and updates. 

Every document goes through several phases before it is complete. First, you 
must enter the body of the text, using one of the XENIX text editors. A13 you 
write, you will insert formatting commands, or "macros," which specify in 
detail to the formatting programs how the final output should look. In addition 
to checking your work for mistakes and spelling errors, you may need to go 
through an extensive revision procel!ls-the global substitution or one name or 
term ror another, for instance, or the reorganization of your manuscript using a '.· 
"cut and paste" technique. ~ 

Depending on the size and scope of your project, you may need to compare text 
variants and maintain several versions of your documents. Finally, you will be 
producing formatted output, whether it is a one-page business letter produced 
on an ordinary lineprinter or a book-length manuscript communicated directly 
to a phototypesetter. XENIX provides all the necessary tools for every phase of 
document preparation, and in many cases offers several approaches to ea.ch 
task. 

1.5.2 Organizing Your Project 

Organization is a. key element of writing projects, especially if you a.re working 
on a large document, or attempting to control many short ones. Text 
processing can greatly simplify any writing project ir you use common sense in 
adapting the wide range or XENIX tools to your work. H you work with many 
short memos, letters, and documents that are similar in content but require 
constant revision, or if you a.re involved with the production of book-length 
manuscripts, you can easily find yourself swamped by huge files containing (. 
innumerable text variations and fragments. These can become difficult to 
control and process. Time you spend defining the scope of your project in 
advance is be well rewarded. Decide which files and versions you need to 
maintain, and which formatting and error-checking programs you need to use. 
Determine in advance, if possible, the style and rormatofyour text. 

l-12 



) 

) 

Text Processing Overview 

Since most documents go through several revisions before they a.re finished, a 
few simple measures make the work of repeated revision considerably easier. Ir 
you a.re like most people, you rewrite phrases and add, delete, or rearrange 
sentences. Subsequent editing of your text will be easier if every sentence starts 
on a new line, and if ea.ch line is short and breaks at a natural place, such as after 
a semicolon or comma.. 

As you a.re editing, you can insert markers in your text, so that you can return 
to them later; use an unlikely string as a marker that you can search for easily 
using the grep command or your text editor to do a global search. Ir, for 
example, you a.re unsure of which term to use, or how you want the final text to 
look, use a given word, or text formatting macro provisionally, but 
conBiBtently. In this way, a.glob al substitution can be ma.de easily. 

You may find that certain global definitions, like the choice of a font for a given 
header level, or a commonly used string, may be created at the last minute and 
placed at the beginning or your text file. When you are experienced in the use or 
macros, you may want to create "template" definitions which you use 
repeatedly. You can even place your definitions in a separate file to be called 
every time you invoke a script you have prewritten for processing your 
documents. This will facilitate consistency in your documents and allow 
greater flexibility if changes a.re required. In many cases, you will find that you 
can delay your formatting decisions until the document is to be printed or 
typeset. 

Long documents should be broken down into individual files or reasonable 
length, perhaps ten to fifteen thousand characters. Operations on larger files 
are considerably slower, and the accidental loss of a small file is less 
catastrophic. Ir possible, each file should represent a natural boundary in a 
document, such as a chapter or section. Develop naming conventions to make 
your filenames consistent and self-explanatory, such as: 

l.intro.s 2.basic.s 3.a.dv.s 

This allows files to be processed in groups with global commands, editing and 
shell scripts. You will also be able to see the contents of files and directories at a 
glance, and if someone else needs to access your files, they will not be confronted 
with files named "aardvark", "ka.tma.ndu", or "fred". 

You should also use the XENIX hierarchical file structure to your advantage in 
organizing your work, by creating different directories for special purposes. 
For example, you may wish to have your source text files in a different directory 
Crom your formatted output files, or you may find it handy to have "rough" and 
"final" draft directories. Ir your projects grow and change over time, you may 
need to maintain several versions of a document at once. 

Unless your project is truly unwieldy, the creation of parallel directories should 
provide sufficient organization for storing multiple versions of a document: 

1-13 



XENIX Text Processing 

/usr /docwriter 
I 

I 
version 1 version2 version3 

I I 

I I 
rough final 

I 
l.intro.s 
2.ba.sic.s 
3.a.dv.s 

I 
nroff 
I 
l.intro.n 
2.ba.sic.n 
3.a.dv.n 

Ir you have created definition files and scripts, such as shell programs ror 
processing text or sed scripts for ma.king uniform changes (see Appendix A), 
place them in yet another directory. This might also be a. good place to add 
some "help" files, which explain which versions or a. document a.re contained in 
the directory or explain formatting procedures. 

( 

There a.re no rules to a.pply in deciding which procedures will produce 
documentation with the lea.st effort a.nd the rewest errors. How elaborate you 
ma.ke your procedures depends on the quantity and complexity or the text you 
need to process and maintain. The essential point here is the theme or this 
entire volume: select the XENIX tools which seem most appropriate and adapt ( 
them to your own specific needs. The more organized and consistent your work 
is, the more powerrulyour use or these tools will become. 

1.5.3 Shortcuts: Boilerplates and Cut and Paste 

You will a.lmost a.lwa.ys find several approaches to any writing or revision you 
do with the XENIX system. Begin ea.ch writing project by reviewing these 
alternatives, and determine which solution requires the lea.st repetitive human 
effort and leaves the lea.st room for error. You ca.n increase your productivity, 
whether you are writing technical papers, documentation, or many memos 
with similar content, by focusing on writing clearly and concisely, rather than 
wasting time on needless duplication of effort. Ir you proceed in an organized, 
consistent way, as outlined in the previous section, you will quickly find that 
XENIX offers you many shortcuts. One of these is the concept of the "editing 
script". Either or the line editors, ed or ex, can be used to perform a 
complicated sequence or editing operations on a large group or files 
simultaneously. These can often be a substitute ror the use or a batch editing 
facility like sed, or awk. 

For example, to change every "Xenix" to "XENIX" in all your files, create a 
script file with the following lines: 

1-14 

( 



) 

) 

Text Processing Overview 

gfXenix/s/ /XENTX/g 
w 
q 

Now, you can use the command 

ed filename <script 

to make this change to any given file. The editor will take its commands from 
the prepared script. You can further automate procedures by using the XENIX 
shell language to write a shell procedure. For example, you can write a script 
which asks XENIX to make the above changes, reformat the entire text, and 
print the results. It is even possible to put this procedure in a file to be read by 
the at command to do your processing at some other time. 

Ir you must produce many similar documents, or long documents which contain 
repeated material, the concept or the "boilerplate" may already be familiar to 
you. Often, information which must be presented in a standardized way can be 
stored in a separate file which can be reused as necessary. Not only is this a 
valuable shortcut to rewriting, it may be the preferred approach if a complex 
display or an example or program text must be reproduced. Using boilerplates 
assures consistency and makes subsequent changes to all recurrences of the 
copied material much simpler. 

1.6 Summary 

Here are some hints for making your XENIX Text Processing System work for 
you: 

Make your filenames easy to understand, and use a naming 
convention that allows you to take advantage or wildcard characters. 

Create text files or manageable length which represent chapters or 
logical divisions in the document; arrange files into directories which 
represent major documents or versions so that they can be easily 
identified. 

Create "help" or "README" files in each directory which explain 
your text-what version you are writing, what scripts, processors,· 
and files are needed to successfully produce the document. Use 
comment lines in your text to explain organizational details or your 
project or any special macros you have created. 

Control parallel versions and updates carefully, especially if you are 
working on a large project. Use conditional processing in your text 
files, copies or text in different directories, and file linking where 
appropriate. Ir you are in doubt about versions or text in different files 
use diffto compare text. 

1-15 



XENIX Text Processing 

1-16 

When using vi or another text editor to write text, start each sentence 
or clause on a new line. 

Identify text and formats which recur in a document or several 
documents, and create boilerplates or templates to save work. ( 

Make full use of "cut and paste" techniques to rearrange material in a 
file, move text between files, or use the same text repeatedly in several 
places. 

Use batch processes like sed, awk, or an ed script to make consistent 
changes to a large number of files. 

Use spell, style, and diction regularly to reduce the number or 
editorial corrections. 

Try to define your production specifications and style conventions in 
advance; prepare editing scripts to reduce the number or changes you 
need to make individually. 

Always use the simplest possible technique to achieve your results. 
Use the mm macros where po55ible, reserving nroff/troff 
commands for "fine-tuning" or creating an effect impossible with 
mm. Ir you define a new macro, explain it in a comment line so it can ( 
be readily understood. 

Avoid running too many formatting processes simultaneously. Ir 
necessary, use the at command to process files at a time when the 
system is not busy. 

Protect yourself by backing up your system and user files regularly. 
Make copies of files if you are in doubt about whether your procedures 
will damage them. 

( 



) 

) 

) 

Chapter2 

Tools For Writing and Editing 

2.1 Introduction 2-1 

2.2 XENIXCommandsforTextProcessing 2-2 
2.2.1 Pattern Recognition: The Grep Commands 2-2 
2.2.2 File Comparison: diff, dift3, and comm 2-3 
2.2.3 Other Useful Commands 2-6 

2.3 Writing Tools 2-9 

2.4 Using Spell 2-9 

2.5 Using Style and Diction 2-10 
2.5.1 Style 2-11 
2.5.2 Diction 2-19 



(> 

() 



) 

) 

Tools For Writing and Editing 

2.1 Introduction 

This chapter introduces you to some XENIX system utilities that can simplify 
document editing and revision. It also discusses three special XENIX writing 
tools for improving writing style and locating typographical errors in 
documents. 

This chapter focuses on how the XENIX tools are used to accomplish some 
common text processing tasks. These tools are XENIX utilities which are also 
used by programmers for searching and editing data and program text. The 
emphasis here is on XENIX commands and utilities that can help you simplify 
complicated editing procedures, and allow you to work with many files at once. 
As you read, it will become apparent that several of the programs introduced 
here can be used interchangeably, and that many of these tasks can also be 
performed with your text editor. You may also find the two XENIX programs, 
sed and awk, helpful for making complex changes to text files. (See Appendix 
A, "EditingWithsed and awk".) 

There are several revision tasks common to all text processing projects. The 
larger your project, the more complex these tasks become. For example, you 
may need to change a key term, name, or phrase everywhere it appears, or 
locate references to items you need to change or delete. You may need to 
compare and contrast multiple versions of your text in order to locate 
variations. You may also need to alter some aspect of the text format to suit 
production requirements. To do any of these tasks, you must locate a stringa 
word, a phrase, a text formatting macro or any repeated set of charactersand, if 
necessary, change it everywhere it appears. Using the XENIX system tools 
discussed in this chapter, these changes can be made rapidly and consistently. 

The first half of this chapter discusses several easy ways to learn XENIX 
commands. If you have read the XENIX User's Guide, you may already be 
familiar with some of them. More detailed information about these commands 
is provided in the XENIX Reference Manual. The commands include: 

Grep commands print lines that match a single specified pattern. 
When combined with other commands in a shell procedure and used 
to process many files at once, the grep commands become extremely 
powerful for locating text in large files. Two variants of grep are also 
introduced in this chapter: egrep and fgrep. 

The XENIX file comparison utilities, dill', dift'3, and comm. These 
utilities compare two or more files and output those lines which do not 
match. In text processing applications these programs can be 
extremely useful for quickly locating variations between several 
versions of documents. 

Additional XENIX commands, including sort, which alphabetizes 
lines in your text files; we, which counts lines, words, and characters 

2-1 



XENIX Text Processing 

in your text; and cut and paste, which duplicates "cut and paste" 
editing operations. 

2.2 XENIX Commands for Text Processing 

2 .2 .1 Pattern Recognition: The Grep Commands 

Because of its power to search for patterns in many files at once, grep and its 
variants are among the most useful XENIX commands. The members of the 
grep family, like the awk program and the batch editor, sed, have as their 
basis the same principle of pattern recognition as the text editors, ed and vi. 
Each of these programs searches for the occurrence of a given patterna 
character or group of characters, a word or word stringand generates a list of 
those lines containing the pattern. Finding all occurrences of a word or pattern 
in a group of files is a common text processing task. You can easily write a shell 
script using the grep command or one of its variants, egrep and fgrep, and 
quickly search multiple files. Grep searches for the same regular expressions 
recognized by ed. The word "grep" stands for 

g/re/p 

( 

that is, "globally" locate a pattern and then print it. Grep searches every line ( 
in a set of files for all occurrences of the specified regular expression. Thus, 

grep thing filel file2 file3 

finds the pattern "thing" wherever it occurs in any of the files you name (e.g. 
file1, filee, file8). If you use the -n-option with grep, it will indicate not only 
the file in which the line was found but also the line number, so that you can 
locate and edit it later. By combining the use of grep with other commands to 
generate a shell program that reads and transforms input, )81"ge quantities of 
text can be processed through multiple searching or editing procedures quickly. 

The commands grep, egrep, and fgrep all search files for a specified pattern. 
They appear on the command line in the following form: 

grep [option) expression filename 

Commands of the grep family search the files you specify (or the standard 
input if you do not specify any files) for lines matching a pattern. Each line is 
copied to the standard output (your terminal screen), but if you are processing 
great quantities of text you should specify a filename in which to store the ( 
results of the grep search. 

For example, the command 

2-2 



) 

) 

Tools For Writing and Editing 

grep-n 'system utility' chap• .s> util 

requests that grep command search for the phrase ''system utility'' in every file 
that begins with "chap" and ends with ".s", and store the resulting list, with 
line numbers, in a file called util. Unless the -h option is used, the filename is 
given if there is more than one input file. 

The difference between the three grep variants is the type of expression you are 
allowed to search for. Grep searches for every regular expression and allows 
you to use the special characters to define special patterns. Egrep looks for the 
same regular expression as grep, but also has an extra set of characters that 
allows you to search for more than one occurrence of an expression, or more 
than one expreS5ion at a time. Fgrep can only look for strings; no special 
characters are allowed, and thus fgrep is faster than grep or egrep. For more 
information about grep, egrep, and fgrep, see grep(C) in the XENIX 
Reference Manual. 

2.2.2 File Comparison: diff, dift'3, and comm 

In addition to locating occurrences of particular strings or regular expressions in 
your text, you will find it useful to compare and contrast two or more similar 
text files. 

The diff command compares two files and outputs a list of differences. You can 
use diff to store file versions more compactly. This is accomplished by storing 
the output of diff, which would be the differences in that file version, rather 
than the file itself. The -e option collects a script of those ed commands (such 
as append, change, and delete) which would be necessary to recreate the revised 
file from the original. 

Dift' 3 is similar to di ff, but is used to compare three files. 

Another comparison tool, comm, is discuS5ed in this section. Comm is useful 
primarily for comparing the output of two sorted lists. 

Diff 

To use the di ff command to compare two files, use the form: 

diff-optionfilel file2 

Diff reports which lines must be changed in two files to bring them into 
agreement. If you use a dash(-) instead of the first filename, diffwill read from 
the "standard input". The normal output contains lines in this format, where n 
is the linen umber of the text file: 

2-3 



XENIX Text Processing 

17a18 
> line affected in file e 
23,25d26 
< line affected in file 1 
<line affected in file 1 
30c31 
< linefromfile 1 

> line from file e 

These lines resemble the ed commands which would be necessary to convert 
filel into file!!. The letters a, d, and care ed commands forappending, deleting, 
and changing, respectively. The line numbers after the letters refer to file!!. 
Following each of these lines are printed all the lines that are affected in the first 
file, flagged by a less-than sign ( <), then all the lines that are affected in the 
second file, flagged by agreater-thansign(> ). 

For example, you might want to compare two text files, fruit and vegies. The 
contents of the file called fruit are the lines: 

apples 
bananas 
cherries 
tomatoes 

The contents of the file called vegies are the lines: 

asparagus 
beans 
cauliflower 
tomatoes 

The command line 

difffruit vegies> diffile& 

produces the file diffile that contains a list of differences between fruit and 
vegieswhich are the output of the dift'program: 

2-4 

( 

( 

( 



) 

) 

Tools For Writing and Editing 

1,3cl,3 
<apples 
<bananas 
<cherries 

>asparagus 
>beans 
>cauliflower 

In this case, lines 1through3 in the file vegies are different from lines 1through3 
in the file fruit. See diff( C) for options. 

Using Dift'3 

Dift'3 works like diff, except that it compares three files. It has the form: 

difl3--option filel file2 files 

Dift'3 reports disagreeing ranges of text flagged with the following codes: 

=====All three files differ 

=====l Filel is different 

=====2 File2 is different 

=====3 File3 is different 

The change which has occurred in converting a given range of lines in a given file 
to some other is reported. 

For example, the message 

filel: nl a 

means text is to be appended after line number nl in file filel. The message: 

filel:nl,n2c 

means that the text to be changed is in the range of lines nl to line n2. If nl = 
n2, the range may be abbreviated to nl. 

The original contents of the range follow immediately after a "c" indication. 
When the contents of two files are identical, the contents of the lower-numbered 
file is suppressed. 

As in the case of diff, dift'3 used with the-eoption prints a script fored that will 

2-5 



XENIX Text Processing 

incorporate into file 1 all changes between file 2 files. In other words, it records 
the changes that normally would be flagged the changes that normally would be 
flagged==== and ====3. 

Comm 

The comm program selects or rejects lines common to two sorted files. It has 
the form: 

comm [-option] filel file2 

Comm reads filel and file!!, and produces a three-column output: Jines only in 
filel, lines only in file 2, and lines in both files. Ordinarily, both files should be 
sorted in ASCII collating sequence by using the sort program before using 
comm. As in diff and its variants, if you type a dash(-) instead of a filename, 
comm will read either filel or file!!from the standard input. 

The possible options with comm are the flags 1, 2, or 3, which suppress printing 
of the corresponding column. Thus comm with-12 suppresses printing of the 
first two columns and prints only the lines common to the two files; comm -23 
prints only lines in the first file but not in the second. The command comm 
with the options-123 would print no lines. 

2.2.3 Other Useful Comma.nclls 

In this section a group of XENIX commands that are helpful in text 
manipulations are summarized. In each case you may find it helpful to refer to 
the XENIX Reference Manualfor more information. 

Sol!'t 

If you have been using your XENIX system for a while, you may have already 
learned the sort command. Because of its capacity to alphabetize a list of 
items, it can be extremely useful in a variety of text processing situations (e.g., 
alphabetizing the names on a mailing list or the entries in an index). To use sort, 
simply type the command 

sort filename> list.out 

The output file list. out will contain the sorted list. 

( 

( 

Like some other XENIX commands, if you use"-" instead of a filename, soli't ( 
will read from the standard input, and unless you direct the output to another 
file, the sorted list will appear on your screen. Sort will, by default, sort an 
entire line in ascending ASCII collating sequence, including letters, numbers, 

2-6 



) 

Tools For Writing and Editing 

and special characters. See sort(C) in the XENIX Reference Manual for a list of 
available options. 

If you need to do repeated sorts by field, you may find it easier to prepare a 
simple a.wk script, as described in "Appendix A". 

Note that if you invoke one or more of the sort options, or use position names, 
you must use the following syntax: 

sort [-options] [posl] [pos.e] [-o output] [filenames] 

We 

The XENIX command we counts words, characters, or lines in your files. If, for 
example, you are submitting a manuscript to a publisher, an exact word count 
may be necessary, or you may want to estimate the number of lines in your file 
before you make some critical formatting decision. To use we, type 

wcfilename 

If you give no options, we automatically counts lines, words, and characters in 
the named files, or in the standard input if you do not specify any filenames. It 
keeps a total count for all named files, and the filenames will also be printed 
along with the counts. The option -1 for "lines," option -w for "words" and 
option-c for "characters" can be also be used in any combination, if you do not 
want all three statistics printed. Remember, when doing a word count, that we 
will automatically treat as a word any string of characters delimited by spaces, 
tabs, or newlines. 

Cut and Paste 

If you work with large text files, you will find the two XENIX commands, cut 
and paste, extremely useful forrearranging text blocks within a document. 

Cut is a shortcut for extracting columns or fields of information from a file, or 
for rearranging columns in lines. To invoke cut in its simplest form, type: 

cut [options] file 

The cut command will cut out columns from each line of a file. The columns can 
be specified as fields separated by a named delimiter or by character positions. 
The following options are available: 

-clist A list of numbers following -c specifies character positions or 
ranges. 

2-7 



XENIX Text Processing 

-flist 

-dchar 

A list of numbers following -f is a list of fields, delimited by a 
character specified after the -d option. 

A character following the -d option is read as the field 
delimiter. The default is the tab character. Spaces or other 
characters with special meanings must be surrounded with 
single quotation marks('). 

-s This option suppresses lines which do not contain the delimiter 
character, if the -f option is invoked. 

Either the-cor-f option must be invoked when using cut. 

The paste command performs the reverse operation: it can be used to merge 
lines in one or several files. To use paste in its simplest form, type 

paste filel file2 

Paste will concatenate filel and file2, treating each file as a column or columns 
of a table and pasting them together horizontally. As with the cut command, 
you can also specify a delimiter character to replace the default tab. You can 
even use paste to merge material in columns into lines in a single file. 

The following options are available: 

-d The -d option suppresses the tab which automatically 
replaces the newline character in the old file. It can be followed 
by one or more characters which act as delimiters. 

list The list of characters which follow the-d option. 

-s The -s option merges subsequent lines, rather than one from 
each input file. The tab is the default character, unless a list is 
specified with the-d option. 

The dash can be used in place of any filename, to read a line 
from the standard input. 

There are, of course, several other ways to approach "cut and paste" operations 
with the XENIX system. By now you should feel fairly confident using one of the 
XENIX text editors to move blocks of text, write parts of files to new files, and 
rearrange lines. Using sort to alphabetically sort fields within lines, or the a.wk 
program to change the order of fields in a text file, are two special cases of cut 
and paste operations. 

2-8 

( 

( 



) 

Tools For Writing and Editing 

2.3 Writing Tools 

In the previous sections you were introduced to some common XENIX utilities 
that are used both by programmers and text processing users: programs that 
can be used to search for patterns, do batch editing, or compare two or more 
files. This section introduces three XENIX programs which have been designed 
solely for writing and editing documents: 

spell, a program that checks for spelling and typographical errors in 
your text files. 

style, a program that analyzes the readability of your writing style, 
based on statistical measures of sentence length and type. 

diction, a program that searches for awkward, ambiguous, and 
redundant phrases, and suggests alternatives. 

Think of these programs as "tools" in the same way as the system utilities 
discussed earlier in the chapter. The XENIX system will not do your writing for 
you, but it will help you rewrite and polish your work efficiently. As you read 
about these programs, keep in mind that they are not intended to substitute for 
careful reviewing, editing, and proofreading on your part. Use spell, style, and 
diction early in the editing process as a preliminary check on your work. You 
will get some interesting feedback on your writing and uncover recurrent 
patterns in your word usage and sentence construction. Your common spelling 
errors will be pointed out. As you are preparing your final draft, you may wish 
to use spell again to locate any last-minute typographical errors. 

2.4 Using Spell 

You can save a lot of time and grief in proofreading your documents by using 
spell. Although not totally infallible, the spell program will find most of your 
spelling and typographical errors with a minimum of effort and processing time. 
Spell compares all the words in the text files you specify with the correctly 
spelled words in a pre-existing XENIX dictionary file. Words which neither 
appear in this dictionary, nor can be derived by the application of ordinary 
English prefixes, suffixes, or inflections are printed out as spelling errors. You 
can either specify an output file in which to store the list of misspelled words, or 
allow them to appear on your screen. For example, to find the spelling errors in a 
file named 1. intro.a, type 

spell I. intro .s 

and a list of possible misspelled words will appear on your screen. You can also 
use a command line like 

2-9 



XENIX Text Processing 

spell •.s>errors& 

to check all your files with names ending in" .s" at once and output the possible 
misspellings into a single file named errors. 

Spell ignores the common formatting macros from nroff, troff, tbl, and eqn. { 
It automatically invokes a program called deroff to remove all formatting 
commands from the text file being examined for spelling errors. 

Several options are available. With "spell -v", words not literally in the 
dictionary are also printed, along with plausible derivations from dictionary 
words. The -b option checks British spelling. This option prefers British 
spelling variants such as: centre, colour, speciality, and travelled, and insists on 
the use of "-ise" in words like "standardise". 

The XENIX dictionary is derived from many sources, and while it recognizes 
many proper names and popular technical terms, it does not include an 
extensive specialized vocabulary in biology, medicine, or chemistry. The XENIX 
dictionary will not recognize your friends' names, your company's acronyms, 
and many esoteric words, and will list them as spelling "errors". It is difficult to 
predict in advance which technical terms, names, and acronyms spell will 
uncover in your documents. 

2.5 Using Style and Diction 

This section describes two programs, style and diction. Although these two 
programs attempt to critique your writing style, keep in mind that the qualities 
which distinguish good writing from bad are not entirely quantifiable. Taste in 
writing remains subjective, and different stylistic qualities may be appropriate 
to different writing situations. XENIX is neither a literary critic nor your 
sophomore English teacher. These tools are best used to eliminate errors and 
give you preliminary assessment of a document's readability. They are not 
intended to substitute for human editing. 

Both style and diction are based on statistical measures of writing 
characteristicscharacteristics that can be counted and summarized on your 
computer. With a large number of documents stored on computers, it has 
become feasible to study the recurrent features of writing style in a great many 
documents. The programs described here use the results of such studies to help 
you write in a more readable style. They produce a stylistic profile of writing, 
including: 

2-10 

A measurement of readability, determined on the basis of sentence 
and word length, sentence type, word usage, and sentence openers. 

A listing of awkward, ambiguous, redundant and ungrammatical 
phrases found in the document. 

( 

( 



) 

) 

) 

Tools For Writing and Editing 

This will help you evaluate overall document style, and correct or eliminate 
poor word choices or awkward sentences. AB you work with these programs, you 
can accumulate data to provide you with a profile of your writing style based on 
all your documents. 

Because the style and diction programs can only produce a statistical 
evaluation of words and sentences, the term "style" is defined here in a rather 
narrow way: the results of a writer's particular word and sentence choices. 
Although many stylistic judgements are subjective, particularly those 
involving word choice, these programs make use of some relatively objective 
measures developed by experts. 

These programs have been written to measure some of the objectively definable 
characteristics of writing style and to identify some commonly misused or 
unnecessary phrases. Although a document that conforms to these stylistic 
rules is not guaranteed to be coherent and readable, one that violates all of the 
rules will almost certainly be difficult or tedious to read. These programs are: 

1. Style, which calculates readability, sentence length variability, 
sentence type, word usage and sentence openers. It assumes that the 
sentences are well formed, i.e., that each sentence has a verb and that 
the subject and verb agree in number. 

2. Diction, which identifies phrases that reflect dubious usage or seem 
unnecessarily awkward. 

These programs are described in detail in the following sections. 

2.5.l Style 

Style reads a document and prints a summary of sentence length and type, 
word usage, sentence openers and "readability indices." The readability indices 
are traditional school grade levels assigned to a document, based on four 
different studies of what makes one style more readable than another. You can 
also use the style program to locate all sentences in a document longer than a 
given length; those containing passive verb forms; those beginning with 
explet.ives; or those with readability indices higher than a specified number. 

Style is based on a system called "parts", which determines parts of speech in 
the English language. Parts is a set of programs which uses a small dictionary 
and experimentally derived rules of word order to assign word classes to all 
words in your text. It can be used for any text with an accuracy rate of 
approximately 95%. Style measures have been built into the output phase of 
the programs that make up parts. 

The style program is invoked with the following syn tax: 

2-11 



XENIX Text Processing 

Style [options] file 

What is a Sentence? 

A human reader has little trouble deciding where a sentence begins and ends. 
Computers, however, are confused by different uses of the period character (.)in 
constructions like 1.25, A. J. Jones, Ph.d., i.e., or etc. Before attempting to 
count the words in a sentence, the text is stripped of potentially misleading 
formatting macros. Then sty le defines a sentence as a string of words ending in 
one of the punctuation marks: 

The end marker "/." may be used to indicate an imperative sentence. 
Imperative sentences not marked in this way a.re not identified. Style 
recognizes numbers with embedded decimal points and commas, strings of 
letters and num hers with embedded decimal points used in computer filenames, 
and a 1 ist of commonly used abbreviations. Numbers that end sentences cause a 
sentence break if the next word begins with a capital letter. Initials followed by 
periods are only assumed to be at the end of the sentence if the next word begins 
with a capital and is found in the dictionary of function words used by p&li"ts. 
As a result, the periods in the string 

J. D. Jones 

are not read as the ends of sentences, but the period after the Hin the following 
string is assumed to end a sentence: 

... systemH. The ... 

Using these rules, most sentences are correctly identified, although occasionally 
two sentences are counted as one or a fragment is identified as a sentence. 

The results of running style are reported in five parts. A typical output might 
have values that look like this: 

readability grades 
(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 
( 46.3) 

sentence info 

( 

( 

no. sent 335 no. wds 7419 av sent. Ieng 22.l av word Ieng 4.91 
no. quest.ions 0 no. imperatives 0 no. nonfunc wds 4362 58.8% (-
av Ieng 6.38 short sent. ( < 17) 35% (118) long sent. (>32) 16% 
(55) longest.sent.82wdsatsent.174; shortest sent. I wdsat.sent 
117 

2-12 



) 

) 

) 

Tools For Writing and Editing 

sentence types 

word usage 

simple 34% (114) complex 32% (108) compound 12% (41) 
compound-complex 21 % (72) 

verb types as% of t.otal verbs t.obe 45% (373) aux 16% ( 133) 
inf 14% (114) passives as% of non-inf verbs 20% (144) types 
as% of t.otal prep 10.8% (804) conj 3.5% (262) adv 4.8% (354) 
noun 26.7% (1983) adj 18.7% (1388} pron 5.3% (393) 
nominalizations 2 % ( 155} 

sentence beginnings 
subject opener: noun (63) pron ( 43) pos (0) adj (58) art (62) tot 
67% prep 12% (39} adv 9% (31} verb 0% (1) sub_conj 6% 
(20} conj 1% (5) expletives 4% (13) 

Readability Grades 

The style program uses four separate readability indices. Generally, a 
readability index is used to estimate the grade level of the reading skills needed 
by the reader to understand a document. The readability indices reported by 
sty le are based on measures of sentence a.nd word lengths. Although the indices 
themselves do not measure whether the document is coherent a.nd well 
organized, high indices correlate with stylistic difficulty. Documents with short 
sentences and short words have low scores; those with long sentences and many 
polysyllabic words have high scores. Four sets of results computed by four 
commonly used readability formulae are reported: the Kincaid Formula, the 
Automated Readability Index, the Coleman-Liau Formula, and a version of the 
Flesch Reading Ease Score. Because each of these indices was experimentally 
derived from different text a.nd subject results, the results may vary. They are 
summarized here. 

Kincaid Formula 

The formula is: Reading Grade=ll.8 *syllables per word+ 
.39 *words per sentence- 15.59 

The Kincaid formula is based on Navy training manuals 
ranging in difficulty from 5.5 to 16.3 in grade level. The score 
reported by this formula tends t.o be in the mid-range of the 
four scores. Because it is based on adult training manuals 
rather than schoolbook text, this formula is probably the best 
one to apply to technical documents. 

Automated Readability Index (ARI} 

The formula is: Reading Grade=4.71 •letters per word +.5 * 

2-13 



XENIX Text Processing 

wordspersentence-21.43 

The Automated Readability Index is based on text from grades 
0 to 7, and intended for easy automation. ARI tends to ( 
produce scores that are higher than Kincaid and Coleman-
Liau but are usually slightly lower than Flesch. 

If you invoke style with the -r option followed by a number, 
all sentences with an Automated Readability Index equal to or 
greater than the number specified will be printed. 

Coleman-Liau Formula 

The formula is: Reading Grade= 5.89 • letters per word - .3 • 
sentences per lOOwords-15.8 

This is based on text ranging in difficulty from .4 to 16.3. This 
formula usually yields the lowest grade when applied to 
technical documents. 

Flesch Reading Ease Score 

The formula is: Reading Score = 206.835- 84.6 • syllables per 
word-1.015 •words per sentence. ( 

This formula is based on grade school text covering grades 3 to 
12. The first number report.ed is the grade level of the 
document. The second number, in parentheses, is the 
difficulty score. It is usually reported in the range 0 (very 
difficult) to lOO(veryeasy). 

The score reported by style is scaled to be comparable t.o the other formulas, 
except that the maximum grade level reported is n7. On the whole, the Kincaid 
formula is the best predictor for technical documents. Both ARI and Flesch 
tend to overestimate text difficulty; Coleman-Liao tends to underestimate. On 
text in the range of grades 7 to 9 the four formulas tend to be about the same. 
For easy text, use the Coleman-Liau formula since it is reasonably accurate at 
the lower grades. 

It is generally safer to present text that is too easy than too hard. If a document 
has particularly difficult technical content, especially if it includes a lot of 
mathematics, it is probably best to make the text very easy to read. You can 
lower the readability index by shortening sentences and words, so that the ( 
reader can easily concentrate on the technical content. 

Remember that these indices produce only rough estimates; the results should 
not be taken as absolute. 

2-14 



) 

) 

Tools For Writing and Editing 

Sentence Length and Structure 

The output sections labeled "sentence info" and "sentence types" give both 
length and structure measures. Style reports on the number and average 
length of both sentences and words. It also reports the number of questions and 
imperative sentences. "Nonfunction words" refer to all the nouns, adjectives, 
adverbs, and nonauxiliary verbs. Function words are prepositions, 
conjunctions, articles, and auxiliary verbs. 

Since most function words are short, they tend to lower the average word 
length. The average length of nonfunction words, therefore, is a more useful 
measure for comparing word choice of different writers than the total average 
word length. The percentages of short and long sentences measure sentence 
length variability. Short sentences are those at least five words less than the 
average. Long sentences are those at least ten words longer than the average. 
Finally, the length and location of the longest and shortest sentences is reported 
in the "sentence information" section. If the flag-lnumber is used, style will 
print all sentences longer than the specified number. 

Style applies the following rules to the definition of sentence types: 

1. A simple sentence has one verb and no dependent clause. 

2. A complex sentence has one independent clause and one dependent 
clause, each with one verb. Complex sentences are found by 
identifying sentences that contain either a subordinate conjunction or 
a clause beginning with a word like "that" or "who". The preceding 
sentence has such a clause. 

3. A compound sentence has more than one verb and no dependent 
clause. Sentences joined by a semi-colon (;) are also counted as 
compound. 

4. A compound-complex sentence has either several dependent clauses 
or one dependent clause and a compound verb in either the dependent 
or independent clause. 

Moot authorities on effective writing style emphasize variety in sentence length, 
as well as overall sentence structure. Three simple rules for writing sentences 
are: 

1. Avoid the overuse of short simple sentences. 

2. Avoid the overuse of long compound sentences. 

3. Use various sentence structures to avoid monotony and increase 
effectiveness. 

2-15 



XENIX Text Processing 

Word Usage 

The word usage measurements used by style attempt to identify other features 
of writing constructions. In English, there are many ways to say the same thing. ( 
For example, the following sentences all convey approximately the same 
meaning but differ in word usage: 

The cxio program is used to perform all communication between the 
systems. 

The cxio program performs all communications between the systems. 

The cxio program is used to communicate between the systems. 

The cxio program communicates between the systems. 

All communication between the systems is performed by the cxio 
program. 

The distribution of the parts of speech and verb constructions in a document 
helps the writer identify the overuse of particular construction. For each 
category, style reports a percentage and a raw count of the parts of speech 
used. Although these measures are somewhat crude, they demonstrate 
excessive repetition of sentence constructions. In addition to looking at ( 
percentages, it is useful to compare the raw count with the number of sentences. 
If, for example, the number of infinitives is almost equal to the number of 
sentences, then an unusual number of sentences in the document must contain 
infinitives, like the first and third sentences in the example above. You may 
want to change some of these sentences for greater variety. 

Verlbs 

To determine the predominant verb constructions in a document, Verb 
frequency is measured in several ways. Technical writing, for example, tends 
toward passive verb constructions and other usages of the verb "to be". The 
category of verbs labeled "tobe" measures both passives and sentences of the 
form: 

subject tobe predicate 

Whole verb phrases are counted as a single verb. Verb phrases containing 
auxiliary verbs are counted in an "aux" category, including verb phrases whose 
tense is not simple present or simple past. Infinitives are listed as "inf." The ( 
percentages reported for these three categories are based on the total number of 
verb phrases found. These categories are not mutually exclusive; some 
constructions may be in more than one category. For example, "to be going" 
counts as both "tobe" and "inf". Use of these three types of verb constructions 

2-16 



) 

) 

) 

Tools For Writing and Editing 

varies significantly among different writers. 

Style reports passive verbs as a percentage of the finite verbs in the document. 
Because sentences with active verbs are easier to comprehend than those with 
passive verbs, you should avoid the overuse of passive verbs. Although the 
inverted object-subject order of the passive voice seems to emphasize the 
object, studies show that comprehension is not significantly affected by word 
position. Furthermore, a reader will retain the direct object of an active verb 
better than thesubjectof a passive verb. The-p option causes style to print all 
sentences containing passive verbs. 

Conjunctions 

Conjunctions provide logical parallelism between ideas by connecting two or 
more equal units. These units may be whole sentences, verb phrases, nouns, 
adjectives, or prepositional phrases. The compound and compound-complex 
sentences reported under sentence type are parallel structures. Other uses of 
parallel structures are indicated by the degree that the num her of conj unctions 
reported under word usage exceeds the com pound sentence measures. 

Adverbs 

Adverbs provide transitions between sentences and order in time and space. 
Like pronouns, adverbs provide connectivity and cohesiveness. 

Nouns and Adjectives 

Some writers qualify almost every noun with one or more adjectives. If the ratio 
of nouns to adjectives in your text approaches one, it is probable that you are 
using too many adjectives. Multiple qualifiers in phrases like "simple linear 
single-link network model" lend more obscurity than precision to a text. 

Pronouns 

Pronouns can add cohesiveness to a document by acting as a shorthand 
notation for something previously mentioned. Documents with no pronouns 
tend to be verbose and to have little connectivity. 

Nominalizations 

Nominalizations are verbs transformed into nouns by the addition of a suffix 
like: "ment", "ance", "ence", or "ion". Examples are accomplishment, 
admittance, adherence, and abbreviation. When a writer transforms a 

2-17 



XENIX Text Processing 

nominalized sentence to anon-nominalized sentence, it becomes more effective. 
The noun becomes an active verb and frequently one complicated clause 
becomes two shorter clauses. For example 

Their inclusion of this provision is admission of the 
importance of the system. 

could be changed to: 

When they included this provision, they admitted the ... 

The transformed sentences are easier to comprehend, even if they are slightly 
longer, provided that the transformation breaks one clause into two. If your 
document contains many nominalizations, you may want to transform some of 
the sentences to use active verbs. 

Sentence Openem 

Another principle of style is the desirability of varied sentence openers. Because 
sty le determines the type of sentence opener by looking at the part of speech of 
the first word in the sentence, the sentences counted under the heading "subject 
opener" may not all really begin with the subject. However, a large total 
percentage in this category suggests a lack of variety in sentence openers. Other 
sentence opener measurements help determine if there are transitions between 
sentences and where subordination occurs. Adverbs and conjunctions at the 
beginning of sentences are mechanisms for the transition between sentences. A 
pronoun at the beginning of a sentence shows a link to something previously 
mentioned and indicates connectivity. 

The location of subordination can be determined by comparing the number of 
sentences that begin with a subordinate conjunction with the number of 
sentences with complex clauses. If few sentences start with subordinate 
conjunctions then the subordination is embedded or at the end of the complex 
sentences. For greater variety, transform some sentences so that they have 
leading subordination. 

The last category of openers, expletives, is commonly overworked in technical 
writing. Expletives are the words "it" and "there", generally used with the 
verb "to be" in constructions where the subject follows the verb. For example, 

There are three streets used by the traffic. 
There are too many users on this system. 

This construction tends to emphasize the object rather than the subject of the 
sentence. The -e option will cause style to print all sentences that begin with 
an expletive. 

2-18 

( 

( 



) 

) 

) 

Tools For Writing and Editing 

2.5.2 Diction 

The diction program prints all sentences in a document containing phrases 
that are either frequently misused or indicate wordiness. Diction uses fgrep to 
match a file of phrases or patterns to a file containing the text of the document 
to be searched. A data base of about 450 phrases has been compiled as a default 
pattern file for diction. To facilitate the matching process, diction changes 
uppercase letters to lowercase and substitutes blanks for punctuation before 
beginning the search for matching patterns. Since sentence boundaries are less 
critical in diction than in style, abbreviations and other uses of the period 
character (.) are not treated specially. Diction marks all pattern matches in a 
sentence with brackets ([ ]). Although many of the phrases in the default data 
base may be correct in some contexts, they generally indicate an awkward or 
verbose construction. Some examples of the phrases and suggested alternatives 
are: 

Phrase: 

a large number of 
arrive at a decision 
collect together 
for this reason 
pertaining to 
through the use of 
utilize 
with the exceotion of 

Alternative: 

many 
decide 
collect 
so 
about 
by or with 
use 
exceot 

All of the following examples contain the repetitious and awkward phrase "the 
fact"· 

Phrase: 

accounted for by the fact that 
an example of this is the fact that 
based on the fact that 
despite the fact that 
due to the fact that 
in light of the fact that 
in view of the fact that 
notwithstanding the fact that 

Alternative: 

caused by 
thus 
because 
although 
because 
because 
since 
although 

If you have some phrases that you particularly dislike, or feel you use too often, 
you may create your own file of patterns. Then, you can invoke the diction 

2-19 



XENIX Text Processing 

program with the-foption: 

diction -f patternfile 

The default pattern file for the diction program will be loaded first, followed by ( 
your pattern file. In this way, you can either suppress patterns contained in the 
default file or include your own favorites in addition to those in the default file. 
You can also use the-n option to exclude the default file altogether: 

diction -n patternfile 

In constructing a pattern file, spaces should be used before and after each phrase 
to avoid matching substrings in words. For example, to find all occurrences of 
the word "the", use leading and trailing spaces, so that only the word "the" is 
matched and not the string "the" in words like there, other, and therefore. 
Note however, that one side effect of surrounding the words with spaces is that 
if two instances occur without intervening words, e.g., "the the", only the first 
will be matched because the intervening space will be counted as part of the first 
pattern. 

2-20 

( 



Chapter3 

Using the MM Macros 

) 

3.1 Getting Started with MM 3-1 
3.1.1 Inserting MM Macros 3-1 
3.1.2 Invoking MM 3-2 

3.2 Basic Formatting Macros 3-3 
3.2.1 Paragraphs and Headings 3-3 
3.2.2 Lists 3-5 
3.2.3 Font Changes and Underlining 3-6 
3.2.4 Footnotes 3-7 
3.2.5 Displays and Tables 3-7 
3.2.6 Memos 3-8 
3.2.7 Multicolumn Formats 3-9 

) 3.3 Using Nroff/TroffCommands 3-9 

3.4 Checking MM Input with mmcheck 3-9 



c 

( 

( 



) 

) 

) 

Using the MM Macros 

3.1 Getting Started with MM 

This chapter provides a simple introduction to MM, the "Memorandum 
Macros", a macro package which you can use on your XENIX System with either 
of the two XENIX formatting programs, nroff or troff, to produce formatted 
text for the lineprinter or typesetter, respectively. The features of MM are 
described comprehensively in the next chapter, "MM Reference". You can 
learn to use the MM macros quickly and format text immediately, without 
learning the more complicated nroff or troff formatting commands. 

The MM program reads the commands you have inserted in your text and 
"translates" them into nroff or troff commands when your text file is 
processed. With MM you can specify the style of paragraphs, section headers, 
lists, page numbering, titles, and footnotes. You can also produce cover pages, 
abstracts, and tables of contents, as well as control font changes and 
multicolumn output. If you are using MM along with troff to output your text 
to a phototypesetter, you can specify variable spacing and the size of your type. 

Although using nroff or troff directly offers you a much wider range of 
commands and options, we recommend that you use MM for most of your 
formatting needs. Use the nroff and troff requests discussed in Chapter 5, 
"The Nroff/Troff Tutorial" and Chapter 6, "Nroff/Troff Reference" only when 
necessary. 

3 .1.1 Inserting MM Macros 

To use the MM macros to format a document, type in your text normally, 
interspersed with formatting commands. These commands are uppercase 
letters preceded by a dot(.) and appear at the beginning of a line. Instead of 
indenting for paragraphs, for example, you can use the .P macro before each 
paragraph, to produce extra line space: 

.P 
To meet the objectives proposed at the meeting ... 

The .P macro can also be used to indent paragraphs. For more information, see 
Section 4.4.1, "Paragraphs" 

A single MM macro can often perform a number of formatting functions at 
once. In a long document, you might have several sections, each beginning with 
a numbered heading, like this 

1.0 Saltwater Fishing in the Pacific Northwest 

To create this header, you would enter: 

3-1 



XENIX Text Processing 

.H 1 "Saltwater Fishing in the Pacific Northwest" 

Not only will MM create a bold heading and leave a space between the heading 
and the text which follows, it will also automatically number all the headings in 
the document sequentially. Furthermore, if you use the table of contents macro 
(.TC) at the end of the document, MM will create a table of contents, listing all ( 
the numbered headings and the pages where they occur. 

The MM macros provide a convenient facility for creating a consistent format 
for such document elements as lists and displays. For example, if you wanted a 
"bullet list'' to look like this: 

• Convenience 

• Ease of use 

• Portability 

you would enter the following text and macros: 

.BL 

.LI 
Convenience 
.LI 
Ease of use 
.LI 
Portability 
.LE 

MM will provide the current indents, spacing, and bullets. 

Note that you must always begin a document to be formatted with MM with a 
macro, rather than an ordinary line of text. You might start with a .P 
command, for example, to begin your document with an ordinary paragraph. 

3.1.2 lnvokingMM 

After you have created a file containing text and MM macros, you can format it 
with the following command: 

nroff-mm filename> filename.mm& 

This command line tells the XENIX system that you want to format the 

( 

documentJ using the nroff formatting program, and the MM macro package to ( 
prepare i~ for a letter-quality printer or lineprinter. Once the document is . 
formatted, it will be stored in filename.mm or whatever file you specify. You 
can then send it to the lineprinterwith the command: 

3-2 



) 

Using the MM Macros 

lprfilename.mm 

If you are formatting documents for printing on a typesetter, you would use the 
MM macros with the troff program instead: 

troff-mm filename>filename.t 

If you have more complex formatting, such as two-column text, formatted with 
the two-column (.2C) macro, or if you have used the table start(.TS) and table 
end (.TE) macros to produce multicolumn tabular material, you must 
remember to pipe the output through the preprocessor col, in order to prepare 
the columns of text. Your command line might look like this: 

nroff-mm filename I col> filename.mm 

If you are using the tbl or eqn programs to produce tables and mathematical 
equations, you must also process the files through these programs first, using 
tbl before eqn, as in the following: 

tbl filenamelneqnJnroff-mm >filename.mm 

3 .2 Basic Formatting Macros 

) The following sections describe the most commonly used MM macros, including 
macros to define paragraphs, headings, lists, font changes, displays, and tables. 
For more detailed information about each of these macros, read Chapter 4, 
''MM Reference'' 

) 

3.2.1 ParagraphsandHeadings 

With MM, it is easy to specify paragraph and heading style. For example, look 
at the following passage: 

3-3 



XENIX Text Processing 

1.0 Paragraphs and Headings 

This section describes the types of paragraphs and the 
kinds of headings that are available. 

1.1 Pa.re.graphs 

Paragraphs are specified with the .P macro. Usually, they are 
flush left. 

1.2 Hee.dings 

Numbered Hee.dings 
There are seven levels of numbered headings. Level 1 is the 
highest; level 7 is the lowest. 

Headings are specified with the .H macro, whose first argument is 
the level of heading ( 1 through 7). 

Unnumbered Hee.dings 
The macro .HU is a special case of .H which creates a heading 
with no headinit number. 

To create this heading format, you would insert the following in a text file: 

.H 2 "Paragraphs and Headings" 
This section describes the types of paragraphs and the 
kinds of headings that are available . 
. H 3 "Paragraphs" 
Paragraphs are specified with the .P macro. Usually, they 
are flush left . 
. H3"Headings" 
.HU" Numbered Headings" 
There are seven levels of numbered headings. Level 1 is the 
highest; level 7, the lowest . 
. P 
Headings are specified with the .H macro, whose first argument 
is the level of heading ( 1 through 7) . 
. HU" Unnumbered Headings" 
The macro .HU is a special case of .H which creates a heading 
with no heading number. 

Mm produces these headings in default styles which can be redefined, if 
necessary. This is described in detail in Chapter 4, "Mm Reference". The 

3-4 

( 

( 

( 



) 

) 

) 

Using the MM Macros 

headings are automatically numbered and are used to print a table of contents if 
the table of contents (.TC) macro is used. The numbers may be altered or reset 
with the number register (.nr) request. To restart the numbering of a second 
level heading at I, you would insert the following command: 

.nrH2 l 

3.2.2 Lists 

All list formats in MM have a list-begin macro, one or more list items, each 
consisting of a .LI macro followed by the list item text, and the list-end macro 
(.LE). In addition to the bullet list demonstrated at the beginning of this 
chapter, there is also the dash list, using the list begin macro (.DL) to create a 
list format like the bullet list except marked with dashes rather than bullets. A 
mark list (.ML) is also available, to mark list items with the character of your 
choice. 

The automatic list (.AL) macro automatically numbers list items in one of 
several ways. When specified alone, or followed by" I", the .AL macro numbers 
the list items with Arabic numbers. The macro .AL A specifies a list ordered A, 
B, C, etc. The macro .AL followed by a lowercase a(.AL a), specifies a, b, c, etc. 
The macro .AL I numbers list items with Roman numerals .. AL i numbers a list 
with lowercaseRomannumerals(i, ii, iii, etc.) 

Numbered lists may be nested to produce outlines and other formats. For 
example: 

I. In can Archaeological Sites 

A. Peru 

I. Macchu Picchu 

2. Pisac 

B. Ecuador 

This is produced with: 

3-5 



XENIX Text Processing 

.ALI 
In can Archaeological Sites 
.ALA 
.LI 
Peru 
.ALI 
.LI 
MacchuPicchu 
.LI 
Pisac 
.LE 
.LI 
Ecuador 
.LE 
.LE 

In addition to the numbered and marked lists, MM offers a variable 
list ( .VL) macro, which is useful for producing two-column lists with 
indents. The .VL macro is described in detail in Chapter 4, "Mm 
Reference". 

3.2.3 Font Changes and Underlining 

( 

To produce italics on the typesetter, precede the text to be italicized ( 
with the sequence \fl and follow it with \fR. For example: 

3-6 

\flas much text as you want 
can betypedhere\fR 

Italics are represented on lineprinters and letter-quality printers by 
underlining. The .R command restores the normal (usually Roman) 
font. 

If only one word is to be italicized, it may be typed alone on a line 
after a .I command: 

.I word 

In this case no .R is needed to restore the previous font. The default 
font is automatically restored on the next line. 

Similarly, boldface can be produced by typing: 

( 



) 

) 

Using the MM Macros 

.B 
Text to be set in boldface 
goes here 
.R 

As with the .I macro, a single word can be placed in boldface by 
placing it alone on the same line with a .B command. 

3.2.4 Footnotes 

Material placed between lines with the footnote start ( .FS) and 
footnote end (.FE) macros will be collected and placed at the 
bottom of the current page. The footnotes are automatically 
numbered, or an optional footnote mark may be used. This mark 
follows the .FS macro. For example: 

Without further research 
.FS 
As demonstrated by Tiger and Leopard ( 1975) . 
. FE 
the claim could not be substantiated. 
However, other studies 
.FS• 
For example, Panther andLion(1981) . 
. FE 
indicated that the correlation was significant. 

produces one numbered footnote: 

1. As demonstrated by Tiger and Leopard ( 1975). 

and one marked footnote: 

*For example; Panther andLion(1981). 

3.2.5 Displays and Tables 

To prepare displays of lines, such as tables, which are to be set off 
from the running text, enclose them in the commands .DS and .DE. 
For example: 

.DS 
text goes here 
.DE 

3-7 



XENIX Text Processing 

3-8 

By default, lines between .DS and .DE are left-adjusted. You may 
also specify a left-adjusted display by using .DS L. To get an 
indented display, use .DS I. You can also create centered tables with 
.DSC. Forexample: 

This is a centered display preceded by 
a.DSC and followed by a .DE command. 

or: 

This is a left-adjusted display 
preceded by a .DS L command 
and followed by a .DE command. 

Note that the .DSC macro centers each subsequent line. You can 
also use .DS B to make the display into a left-adjusted block of text 
and then center that entire block. Normally a display is kept 
together on one page. Text within display is produced in "nofill" 
mode, i.e., Iinesoftextarenotrearranged. 

3.2.6 Memos 

If you need to produce many memos in a standardized format, you 
may find the memorandum type (.MT) type macros useful for 
creating titling information. Be warned, however, that because 
these memorandum types were originally developed inside Bell 
Laboratories, some of the possible parameters to this macro 
automatically print the string "Bell Laboratories" on the memo. 
To suppress this, be sure to use the "affiliation" (.AF) macro after 
an .MT macro, as follows: 

.AF'"" 

or, if you wish to have your own company or organization name 
appear automatically, use: 

.AF "Widgets, Ltd-" 

There are a number of parameters which substantially change the 
format and content of memoranda output and it is critical that you 
insert the macros in the correct order. Therefore, it is important 
that you read the section on "Memorandum Type" in Chapter 4, 
"MM Reference" before inserting these macros. Once you have 
chosen the appropriate type, you should be able to reuse these 
macros for all your memos to produce a standard style. 

( 

( 

( 



) 

) 

Using the MM Macros 

3.2.7 Multicolumn Formats 

If you place the command .2C in your document, the document will 
be printed in double column format beginning at that point. This 
feature is generally not accommodated by an ordinary lineprinter, 
but is often desirable on the typesetter. The command .1 C stops 
two-column output and returns to one-column output. 

3.3 Using Nroff/TroffCommands 

If you want to format text using MM without learning the other 
formatting programs, you should become familiar with at least a 
few simple nroff/troff commands, which you will probably need to 
supplement the MM macros. These work with both typesetter and 
lineprinter or terminal output: 

.bp Begin new page . 

. br "Break", that is, stop running text from line to 
line . 

. sp n Insert n blank lines. 

3.4 Checking MM Input with mmcheck 

The program mmcheck can be used to check the accuracy of your input to MM 
without actually formatting a document. If you use mm check regularly, you 

will save a great deal of processing time, because you will be able to "debug" 
your input file quickly, without running the nroff and troff programs. To 
invoke mmcheck, use the command line: 

mm check filename 

The output of mmcheckgoestothestanda.rdoutput by default. Mmcheck 
checks for correct pairing of macros, including .DS/.DE, .TS/.TE, and 
.EQ/ .EN. It also looks for list specification format, making sure that every list 
has a list begin macro (.AL, .DL, .BL, .ML, VL, etc.) and a list end macro (.LE). 
Normally, mmcheck prints a list of errors and the Jines where they occurred. 
For example: 

chapl.s: 
Extra .DEatline74 
539 lines done. 

Note, however, that the location of an error may occasionally be obscured. In 
the example above, the "extra" .DE could actually be caused by a missing .DS. 

3-9 



(': 

c 

( 



) 

) 

) 

Chapt.er 4 
MM Reference 

4.1 Introduction 1 
4.1.1 WhyUseMM? 1 
4.1.2 Organization and Conventions 2 
4.1.3 Structure of a Document 2 
4.1.4 Definitions 3 

4.2 Invoking the Macros 4 
4.2.1 The MM Command 4 
4.2.2 The -cm or-mm Flags 4 
4.2.3 Typical Command Lin es 5 
4.2.4 Command Line Parameters 5 
4.2.5 Omission of -cm or-mm 8 

4.3 Formatting Concepts 8 
4.3.1 Arguments and Quoting 9 
4.3.2 Unpaddable Spaces 10 
4.3.3 Hyphenation 10 
4.3.4 Tabs 11 
4.3.5 Bullets 11 
4.3.6 Dashes, Minus Signs, and Hyphens 
4.3.7 Trademark String 12 

4.4 Paragraphs and Headings 13 
4.4.1 Paragraphs 13 
4.4.2 Numbered Headings 14 
4.4.3 Appearance of Headings 15 
4.4.4 Bold, Italic, and Underlined Headings 
4.4.5 Heading Point Sizes 17 
4.4.6 Marking Styles 18 
4.4.7 Unnumbered Headings 19 
4.4.8 Headings and the Table of Contents 

12 

16 

19 
4.4.9 Firs~LevelHeadings and the Page Numbering Style 
4.4.10 User Exit Macros 20 

20 



4.5 Lists 22 
4.5.1 Sample Nested List 23 
4.5.2 Listltem 24 
4.5.3 ListEnd 25 
4.5.4 Initializing Automatically Numbered or 

Alphabetized Lists 26 
4.5.5 BulletList 26 
4.5.6 DashList 27 
4.5.7 MarkedList 27 
4.5.8 Reference List 27 
4.5.9 V ariable-ltem List 28 
4.5.10 List-Begin Macro and Customized Lists 29 

4.6 Displays 31 
4.6.1 Static Displays 31 
4.6.2 FloatingDisplays 32 
4.6.3 Tables 35 
4.6.4 Equations 36 
4.6.5 Figure, Table, Equation, andExhibitCaptions 37 
4.6.6 List of Figures, Tables, Equations, and Exhibits 38 

4.7 Footnotes 38 

4.8 

4.7.1 FormatofFootnote Text 39 

Page Headers and Footers 41 
4.8.1 DefaultHeadersandFooters 41 
4.8.2 Page Header 41 
4.8.3 Even-Page Header 42 
4.8.4 Odd-Page Header 42 
4.8.5 Page Footer 43 
4.8.6 Even-Page Footer 43 
4.8. 7 Odd-Page Footer 43 
4.8.8 Footer on the FirstPage 43 

( 

( 

4.8.9 DefaultHeader and Footer With Section-Page Numbering 44 
4 .8 .10 Strings and Registers in Header and Footer Macros 44 
4.8.11 HeaderandFooterExample 44 
4.8.12 Generalized Top-of-Page Processing 45 
4.8.13 Generalized Bottom-of-Page Processing 46 
4.8.14 TopandBottomMargins 46 

4.9 Table of Contents 46 

( 



4.10 References 48 
4.10.1 AutomaticNumberingofReferences 48 
4.10.2 Delimiting Reference Text 48 
4.10.3 SubsequentReferences 49 

) 4.10.4 Reference Page 49 

) 

4.11 Miscellaneous Features 50 
4.11.1 Bold, Italic, and Roman Fonts 50 
4.11.2 RightMargin Justification 51 
4.11.3 SCCS Release Identification 51 
4.11.4 Two-Column Output 52 
4.11.5 Vertical Spacing 53 
4.11.6 SkippingPages 54 
4.11.7 ForcinganOddPage 54 
4.11.8 SettingPointSize and Vertical Spacing 54 
4.11.9 InsertingTextlnteractively 55 

4.12 Memorandum and Released Paper Styles 56 
4.12.1 Title 56 
4.12.2 Authors 56 
4.12.3 Technical Memorandum Numbers 57 
4.12.4 Abstract 58 
4.12.5 Other Keywords 58 
4.12.6 Memorandum Types 59 
4.12.7 Date and Format Changes 60 
4.12.8 Alternate First-Page Format 60 
4.12.9 Released-PaperStyle 61 
4.12.10 OrderoflnvocationofBeginningMacros 61 
4.12.11 MacrosfortheEndofaMemorandum 62 
4.12.12 Copy to and Other Notations 63 
4.12.13 Approval Signature Line 64 
4.12.14 Forcing a One-Page Letter 64 
4.12.15 CoverSheet 65 

4.13 Reserved Names 65 
4.13.l Names Used by Formatters 66 
4.13.2 NamesUsedbyMM 66 
4.13.3 NamesUsedbyeqn/neqnandtbl 67 
4.13.4 User-Definable Names 67 
4.13.5 Sample Extension 67 



4.14 Errors 68 
4.14.l Disappearance of Output 68 
4.14.2 MM Error Messages 69 
4.14.3 Formatter Error Messages 72 

4.15 SummaryofMacros, Strings, and Number Registers 75 
4.15.1 Strings 81 
4.15.2 NumberRegisters 82 

( 

( 

( 



) 

) 

) 

MM Reference 

4.1 Introduction 

This chapter is the reference guide for the MM Memorandum 
Macros. MM provides a unified, consistent, and flexible tool for 
producing many common types of documents, often eliminating the 
need for working directly with nroff or troff commands. MM is the 
standard, general-purpose macro package for most documents. 

Using the MM macros, you can produce letters, reports, technical 
memoranda, papers, manuals, and books. Documents may range in 
length from single-page letters to documents that are hundreds of 
pages long. 

4.1.1 Why Use MM? 

There are several reasons why we recommend using MM instead of 
working with the formatting programs nroff and troff directly. These 
include: 

You need not be an expert to use MM successfully. If your 
input is incorrect, the macros attempt to interpret it, or a 
message describing the error is output. 

Reasonable default values are provided so that simple 
documents can be prepared without complex sequences of 
commands. 

Parameters are provided to allow for individual preferences 
and requirements in document styling. 

The capability exists for expert users to extend the MM 
macros by adding new macros or redefining existing ones. 

The output of MM is device independent, allowing the use 
of terminals, lineprinters, and phototypesetters with no 
change to the macros. 

The need for repetitious input is minimized by allowing the 
user to specify parameters once at the beginning of a 
document. 

4-1 



XENIX Text Processing 

Output style can be modified without making changes to 
the document input. 

4.1.2 Organization and Conventions 

Each section of this chapter explains a feature of MM, with the more 
commonly used features explained first. You may find you have no 
need for the information in the later sections, or for some of the 
options and parameters which accompany even common features. 
This reference guide is organized so that you can skim a section to 
obtain formatting information you need, and skip features for which 
you have no use. 

4.1.3 Structure of a Document 

Input for a document to be formatted with MM contains four major 
parts, any of which is optional. If present, they must occur in the 
following order: 

( 

1. Parameter-setting. This segment determines the general ( 
style and appearance of a document, including page width, 
margin justification, numbering styles for headings and 
lists, page headers and footers, and other properties. In this 
segment, macros can be added or redefined. If omitted, 
MM will produce output in a default format; this segment 
produces no actual output, but performs the setup for the 
rest of the document. 

2. Beginning. This segment includes those items that occur 
only once, at the beginning of a document (e.g., title, 
author's name, date). 

3. Body. This segment contains the actual text of the 
document. It may be as small as a single paragraph, or as 
large as hundreds of pages. It may include hierarchically-

4-2 

ordered headings of up to seven levels, which may be ( 
automatically numbered and saved to generate the table of .. 
contents. Also available are list formats with up to five 
levels of subordination, which may have automatic 
numbering, alphabetic sequencing, and marking. The body 



) 

) 

MM Reference 

may contain various types of displays, tables, figures, 
references, and footnotes. 

4. Ending. This segment contains those items that occur only 
once at the end of a document. Included here are 
signature( s) and lists of notations (e.g., ''copy to'' lists) . In 
this segment, macros may be invoked to print information 
that is wholly or partially derived from the rest of the 
document, such as the table of contents or the cover sheet. 

The size or existence of any of these segments depends on the type 
and length of the document. Although a specific item (such as date, 
title, author's name) may be printed in several different ways 
depending on the document type, it will always be entered in the 
same form. 

4.1.4 Definitions 

The following terms are used throughout this chapter: 

Formatter Refers to either of the text-formatting programs nroff 
or troff. 

Requests Built-in commands recognized by the formatters. 
Although it may not be necessary to use these requests 
directly, they are referred to in this chapter. 

Macros Named collections of requests. Each macro is an 
abbreviation for a collection of requests that would 
otherwise require repetition. MM supplies many 
predefined macros, and you may define additional 
macros as necessary. Macros and requests share the 
same set of names and are used in the same way. 

Strings Provide character variables, each of which names a 
string of characters. Strings are often used in page 
headers, page footers, and lists. They use the same 
names as requests and macros. A string can be defined 
with the define string ( .ds) request, and then referred 
to by its name, preceded by \* for a one-character 
name or\*( for a two-character name. 

4-3 



XENIX Text Processing 

Numberregisters 
Integer variables used for flags, arithmetic, and 
automatic numbering. A register can be given a value 
using a number register ( .nr) request, and can be 
referenced by preceding its name by \n for one­
character names or \n( for two-character names. 

4.2 Invoking the Macros 

This section describes the command lines necessary to MM, with 
diff erentoptions on various output devices. 

4.2.1 The MM Command 

The MM command is used to print documents using nroff and MM. 
This command is equivalent to invoking nroff with the -mm flag. 
Options are available to specify preprocessing by tbl and/or by 
eqn/neqn, and for postprocessing by various output filters, such as 
col. Any arguments or flags not recognized by MM are passed to 
nroff. The following options can occur in any order before the 
filenames: 

-e Invokes neqn. 

-t Invokes tbl. 

-c Invokes col. 

-E Invokes the "-e"optionofnroff. 

-y Invokes -mm ( uncompacted macros) instead of -cm 
{See Section 4.2.2 of this manual). 

-12 Invokes 12-pitch mode (The pitch switch on the terminal 
must be set to 12). 

4.2.2 The -cm or -mm Fl~ 

The MM package can also be invoked by including the -cm or -mm 

4-4 

( 

( 



flag as an argument to the formatter, as in: 

nroff -mm file 

MM Reference 

J 4.2.3 'fypica.I Command Lines 

) 

) 

The prototype command lines are as follows: 

Text without tables or equations: 

mm [options] filename 
nroff [options] filename 
troff [options] filename 

Text with tables: 

mm -t [options] filename 
tbl filename !nroff [options] -mm 
tbl filename !troff [options] -mm 

Text with equations: 

mm -e [options] filename 
neqn filename !nroff [options] -mm 
eqn filename !troff [options] -mm 

Text with both tables and equations: 

mm -t -e [options] filename 
tbl filenamepeqn !nroff [options] -mm 
tbl filenam4qn !troff [options] -mm 

If two-column processing is used with nroff, either the -c option 
must be specified to MM or the nroff output must be postprocessed 
by col. 

4.2.4 Command Line Parameters 

Number registers hold parameter values that control various aspects 
of output style. Many of these can be changed within the text files 
with number register ( .nr) reques~. In addition, some of these 
registers can be set from the command line itself, a useful feature for 
those parameters that should not be permanently embedded within 

4-5 



XENIX Text Processing 

the input text itself. Ir used, these registers must be set on the 
command line or before the MM macro definitions are processed. 
These are: 

-rAn For n = 1, this has the effect of invoking the .AF macro 
without an argument. 

-rCn nsets the type of copy( e.g., DRAFT) to be printed at the 
bottom of each page: 

-rDl 

n=l ForOFFICIALFILECOPY 

n=2 ForDATEFILECOPY 

n=3 For DRAFT with single-spacing and default 
paragraph style 

n = 4 For DRAFT with double-spacing and 10-space 
paragraph indent 

Sets "debug mode". This flag requests the formatter to 
continue processing even if MM detects errors that 
would otherwise cause termination. It also includes 
some debugging information in the default page header. 

-rEn Controls the Cont of the Subject/Date/From fields. IC 
n = 0 these fields are bold (default for 11'0ft) and if n = 1 
they are regular text( defaultformdf). 

-rLk Sets the length of the physical page to k lines.For nroff, k 
is an unscaled number representing lines or character 
positions; forizoft', k must be scaled. The default value is 
66 lines per page. 

-rNn 

4-6 

Specifies the page numbering style. When n=O 
(default), all pages get the (prevailing) header. When 
n = 1, the page header replaces the footer on page 1 only. 
When n = 2, the page header is omitted from page 1. 
When n= 3, section-page numbering occurs. When 
n=4, the default page header is suppressed, but user­
specifiedheaders are not affected. When n=5, section-

( 

( 

( 



) 

) 

) 

-rOk 

-rPn 

-rSn 

MM Reference 

page and section-figure numbering occurs. 

The contents of the prevailing header and footer do not 
depend on the value of the number register N; N only 
controls whether and where the header (and, for N = 3 
or 5, the footer) is printed, as well as the page numbering 
style. In particular, if the header and footer values are 
null, the value of N is irrelevant. 

Offsets output k spaces to the right. For nroff, these 
values are unscaled numbers representing lines or 
character positions. For troff, these values must be 
scaled. This register· is helpful for adjusting output 
positioning on some terminals. If this register is not set 
on the command line the default offset is .75 inches. 
NOTE: The register name is the capital letter ( 0), not 
the digit zero ( 0). 

Specifies that the pages of the document are to be 
numbered starting with n. This register may also be set 
viaa.nrrequestin the input text. 

Sets the point size and vertical spacing. The default n is 
10, i.e., 10-point type on 12-point leading (vertical 
spacing), giving 6 lines per inch. This parameter applies 
to troff only. 

-rTn Provides register settings for certain devices. If n =1, 
then the line length and page offset are set to 80 and 3, 
respectively. Setting n to 2 changes the page length to 84 
lines per page and inhibits underlining. The default 
value for nis 0. This parameter applies to nroff only. 

-rU 1 Controls underlining of section headings. This flag 
causes only letters and digits to be underlined. 
Otherwise, all characters (including spaces) are 
underlined. This parameter applies to nroff only. 

-rWk Sets page width (i.e., line length and title length) to k. 
For nroff, k is an unscaled number representing lines or 
character positions; for troff, k must be scaled. This 
register can be used to change the page width from the 

4-7 



XENIX Text Processing 

default value of 6 .0 inches ( 60 characters in 10 pitch or 
72 characters in 12 pitch). 

4.2.5 Omission or -cm or -mm 

If many arguments are required on the command line, it may be 
convenient to set up the first (or only) input file of a document as 

follows: 

.SS 18 

.so /usr/lib/tmac/tmac.m 

.SS 12 
remainder of text 

In this case, do not use the -cm or -mm flags (or the MM or mmt 
commands); the .so request has the equivalent effect. The registers 
must be initialized before the .so request, because their values are 
meaningful only if set before the macro definitions are processed. 
When using this method, it is best to put into the inputfile only those 
parameters thatare seldom changed. For example: 

.nr W 80 

.nr 0 10 

.nr N 3 

.so /usr/lib/tmac/tmac.m 

.H 1 "INTRODUCTION" 

specifies, for nroff, a line length of 80, a page offset of 10, and 
section-page numbering. 

4.3 Formatting Concepts 

The normal action of the formatters is to fill output lines from one or 
more input lines. The output lines may be justified so that both the 
left and right margins are aligned. As the lines are being filled, words 
may also be hyphenated as necessary. It is possible to turn any of 
these modes on and off. Turning off fill mode also turns off 
justification and hyphenation. 

Certain formatting commands (both requests and macros) cause the 
filling of the current output line to cease. Printing of a partially filled 

4-8 

( 

( 



) 

) 

MM Reference 

output line is known as a "break". A few formatter requests and 
most of the MM macros cause a break. 

While formatter requests can be used with MM, they occasionally 
have unpredicted consequences. There should be little need to use 
formatter requests. The macros described in this section should be 
used in most cases because you will be able to control and change the 
overall style of the document easily and specify complex features, 
such as footnotes or tables of contents, without using intricate 
formatting requests. A good rule is to use direct nroff and troff 
requests only when absolutely necessary. 

To make future revision easier, input lines should be kept short and 
should be broken at the end of clauses; each new full sentence 
should begin on anew line. 

4.3.1 Argumentll and Quoting 

For any macro, a "null argument" is an argument whose width is 
zero. Such an argument often has a special meaning; the preferred 
form for a null argument is double quotation marks ( "). Omitting an 
argument is not the same as supplying a null argument. 
Furthermore, omitted arguments can occur only at the end of an 
argument list, while null arguments can occur anywhere. 

Any macro argument containing ordinary (pad dab le) spaces must be 
enclosed in double quotation marks, (""). Otherwise, it will be 
treated as several separate arguments. A double quotation mark ( ") 
is a single character that must not be confused with two apostrophes 
or acute accents ( "),or with two grave accents ( "). 

Double quotation marks ( ") are not permitted as part of the value of 
a macro argument or of a string that is to be used as a macro 
argument. If you must, use two grave accents (")and/or two acute 
accents ( ") instead. This restriction is necessary because many 
macro arguments are processed (interpreted) several times. For 
example, headings are first printed in the text and may be reprinted 
in the table of contents. 

4-9 



XENIX Text Processing 

4.3.2 Unpacldable Spaces 

When output lines are justified to give an even right margin, existing 
spaces in a line may have additional spaces appended to them. This 
may affect the desired alignment of text. To avoid this problem, it is 
necessary to be. able to specify a space that cannot be expanded 
during justification, i.e., an "unpaddable space". There are several 
ways to do this. First, you may type a backslash (\) followed by a 
space. This pair of characters generates an unpaddable space. 
Second, you may sacrifice some seldom-used character to be 
translated into a space upon output. Because this translation occurs 
after justification, the chosen character may be used anywhere an 
unpaddable space is desired. The tilde ( -) is often used for this 
purpose. To use it in this way, insert the following line at the 
beginning of the document: 

.tr -

If a tilde must actually appear in the output, it can be temporarily 
recovered by inserting 

.tr --

before the place where it is needed. Its previous usage is restored by 
repeating the .tr-, but only after a break or after the line containing 
the tilde has been forced out. Use of the tilde in this way is not 
recommended for documents in which the tilde is used within 
equations. 

4.3.3 Hyphenat.ion 

The formatters do not perform hyphenation unless the user requests 
it. Hyphenation can be turned on in the body of the text by 
specifying 

.nr Hy 1 

at the beginning of the document. If hyphenation is requested, the 
formatters will automatically hyphenate words as needed. However, 
you may specify the hyphenation points for a specific occurrence of 
any word by using a special character known as a "hyphenation 
indicator" ( initialy, the two-character sequence \%), or you may 
specify hyphenation points for a small list of words (about 128 

4-10 

( 

( 

( 



) 

) 

MM Reference 

characters). 

If the hyphenation indicator (initially, the two-character sequence 
\%) appears at the beginning of a word, the word is not hyphenated. 
It can also be used to indicate legal hyphenation point(s) inside a 
word. In any case, all occurrences of the hyphenation indicator 
disappear on output. 

The user may specify a different hyphenation indicator with the 
command: 

.HC [hyphenation-indicator] 

The caret ( •) is often used for this purpose; this is done by inserting 
the following at the beginning of adocument: 

.HC. 

Note that any word containing hyphens or dashes-also known as 
em dashes-will be broken immediately after a hyphen or dash if it is 
necessary to hyphenate the word, even if the formatter hyphenation 
function is turned off. 

Using the .hw request, you may supply a small list of words with the 
proper hyphenation points indicated. For exa.lnple, to indicate the 
proper hyphenation of the word' 'printout'', you may specify: 

.hw print-out 

4.3.4 Tabs 

The macros .MT, .TC, and .CS use the .ta request to set tab stops, 
and then restore the default values of tab settings. Setting tabs to 
other than the default values is the user's responsibility. 

Note that a tab character is always interpreted with respect to its 
position on the input line, rather than its position on the output line. 
In general, tab characters should appear only on lines processed in 
no-fill mode. The thl program changes tab stops but does not restore 
the default tab settings. 

4.3.5 Bullets 

A bullet ( •) is often obtained on a typewriter terminal by using the 

4-11 



XENIX Text Processing 

letter o overstruck by a + . For compatibility with troff, a bullet 
string is provided by MM. Rather than overstriking, use the 
sequence: 

\*(BU 

wherever a bullet is desired. Note that the bullet list (.BL) macro 
uses this string to automatically generate bullets for the list items. 

4.3.6 Dsshes, Minus Signs, and Hyphens 

Troff has distinct graphics for a dash, a minus sign, and a hyphen, 
while nroff does not. If you intend to use nroff only, you can use the 
minus sign ( - ) for all three. 

If you plan to use both formatters, you must be careful in preparing 
text. Unfortunately, these characters cannot be represented in a way 
that is both compatible and convenient. Try the following: 

Dash Use \*(EM for each text dash for both nroff and troff. 
This string generates an em dash (-) in troff and two 
dashes ( - - ) in nroff. Note that the dash list ( .D L) 
macro automatically generates the em dashes for the list 
items. 

Hyphen Use the hyphen character (- ) for both formatters. 
Nroff will print it as is, and troff will print a true hyphen. 

Minus Use \- for a true minus sign, regardless of formatter. 
Nroff will ignore the\, while troff will print a true minus 
sign. 

4.3. 7 Trademark String 

The trademark string \*(Tm places the letters TM one half-line 
above the textthatitfollows. For example, the input: 

The XENIX\*(Tm System Reference Manual. 

yields: 

The XENIX™ System Reference Manual. 

4-12 

( 

( 



) 

) 

MM Reference 

4.4 Paragraphs and Heading;;i 

This section describes simple paragraphs and section headings. 

4.4.1 Paragraphs 

The paragraph macro is used to begin two kinds of paragraphs: 

.P [type] 
one or more lines of text. 

In a "left-justified" paragraph, the first line begins at the left margin, 
while in an "indented" paragraph, it is indented five spaces. 

A document has a default paragraph style obtained by specifying .P 
before each paragraph that does not follow a heading. The default 
style is con trolled by then umber register Pt. The initial value of Pt is 
0, which always provides left-justified paragraphs. All paragraphs 
can be forced to be indented by inserting the following at the 
beginning of the document: 

.nr Pt 1 

All paragraphs will be indented except after headings, lists, and 
displays if the following: 

.nr Pt 2 

is inserted at the beginning of the document. 

The amount a paragraph is indented is contained in the register Pi, 
whose default value is 5. To indent paragraphs by 10 spaces, for 
example, insert: 

.nr Pi IO 

at the beginning of the document. Both the Pi and Pt register values 
must be greater than zero for any paragraphs to be indented. 

The num her register Ps controls the amount of spacing between 
paragraphs. By default, the Ps register is set to 1, yielding one blank 
space ( 1/2 vertical space). Values that specify indentation must be 
unscaled and are treated as "character" positions, i.e., as a number 
of ens. In troff, an en is the number of points ( 1point=1/72-inch) 
equal to half the current point size. In nroff, an en is equal to the 
width of a character. 

4-13 



XENIX Text Processing 

Regardless of the value of Pt, an individual paragraph can be forced 
to be left-justified or indented .. P always forces left justification; .P 1 
always causes indentation by the amount specified by the register Pi. 
If .Poccurs inside a list, the indent{if any) of the paragraph is added 
to the current list indent. 

Numbered paragraphs maybe produced by setting the register Np to 
1. This produces paragraphs numbered within first level headings, 
e.g., 1.01, 1.02, 1.03, 2.01. 

A differentstyle of numbered paragraphs is obtained by using the 

.nP 

macro rather than the .P macro for paragraphs. This produces 
paragraphs that are numbered within second level headings and 
contain a double-line indent in which the text of the second line is 
indented to be aligned with the text of the first line so that the 
numberstands out. For example: 

.H 1 "FffiST HEADING" 

.H 2 "Second Heading" 

.nP 
one or more lines of text 

4.4.2 Numbered Headinp 

The heading macro has the form: 

.H level [heading-text] (heading-suffix] 
zero or more lines of text 

The .H macro provides seven levels of numbered headings. Level 1 
is the highest; level 7 the lowest. The heading-auffix is appended to 
the heading-text and may be used for footnote marks which should 
not appear with the heading text in the table of contents. You will 
not need to insert a .P macro after a.Hor .HU macro, because the .H 
macro also performs the function of the .P macro. If a .P follows a 
.H, the .Pis ignored. 

The effect of .H varies according to the level argument. First-level 
headings are preceded by two blank lines {one vertical space); all 
others are preceded by one blank line. 

4-14 

( 

( 



) 

MM Reference 

.H 1 heading-text 
Gives a bold heading followed by a single blank line. The 
following text begins on a new line and is indented 
according to the current paragraph type. Full capital 
letters should normally be used to make the heading 
standout . 

. H 2 heading-text 
Yields a bold heading followed by a single blank line. 
The following text begins on a new line and is indented 
according to the current paragraph type. Normally, 
initial capitals are used . 

. H n heading-text 
Where n is a number greater than 3 and less than 7, 
produces an underlined (italic) heading followed by two 
spaces. The following text appears on the same line. 

Appropriate numbering and spacing (horizontal and vertical) occur 
even if the heading text is omitted from an .H macro. 

4.4.3 Appearance of Headings 

You can modify the appearance of headings quite easily by setting 
certain registers and strings at the beginning of the document. In 
this way you can quickly alter a document's style because the style 
control information is concentrated in a few lines, rather than 
distributed throughout the document. 

A first-level heading normally has two blank lines (one vertical 
space) preceding it, and all others have one blank line. IC a multiline 
heading splits across pages, it is automatically moved to the top of 
the next page. Every first-level heading may be forced to the top of a 
new page by inserting 

.nr Ej 1 

at the beginning of the document. Long documents may be made 
more manageable if each section starts on anew page. Setting Ej to a 
higher value has the same effect for headings up to that level; i.e., a 
page eject occurs if the heading level is less than or equal to Ej. 

4-15 



XENIX Text Processing 

Three registers control the appearance of text immediately following 
an .H macro. They are heading break level (Hb), heading space level 
(Hs), andpost-headingindent(Hi). 

If the heading level is less than or equal to Hb, a break occurs after ( 
the heading. If the heading level is less than or equal to Hs, a blank · 
line is inserted after the heading. Defaults for Hb and Hs are 2. If a 
heading level is greater than Hb and also greater than Hs, then the 
heading (if any) is run into the following text. With these registers, 
you can separate headings from text consistently throughout the 
document, and allow for easy alteration of whitespace and header 
emphasis. 

For any stand-alone heading, i.e., a heading not run into the 
following text, the alignment of the next line of output is controlled 
by the register Hi. If Hi is 0, text is left-justified. If Hi is 1 (the 
default value), the text is indented according to the paragraph type as 
specified by the register Pt. Finally, if Hi is 2, text is indented to line 
up with the first word of the heading itself, so that the heading 
number stands out more clearly. 

For example, to cause a blank line to appear after the first three 
heading levels, to have no run-in headings, and to force the text 
following all headings to be left-justified (regardless of the value of 
Pt), the following lines should appear at the top of the document: 

.nr Hs 3 

.nr Hb 7 

.nr Hi 0 

The register He can be used to obtain centered headings. A heading 
is centered if its level is less than or equal to He, and if it is stand­
alone. He is 0 by default( no centered headings). 

4.4.4 Bold, Italic, and Underlined Headings 

Any heading that is underlined by nroff is made italic by troff. The 
string HF (heading font) contains seven codes that specify the fonts 
for heading levels 1-7. 

Levels 1 and 2 are bold; levels 3 through 7 are underlined in nroff 
and italic in troff. The user may reset HF as desired. Any value 
omitted from the right end of the list is taken to be 1. For example, 

4-16 

( 



MM Reference 

the following would result in five bold levels and two non underlined 
(Roman) levels: 

.ds HF 3 3 3 3 3 

) Nroff can underline m two ways. The underline ( .ul) request 
underlines only letters and digits. The continuous style (.cu) 
request underlines all characters, including spaces. By default, MM 
attempts to use the continuous style on any heading that is to be 
underlined and is short enough to fit on a single line. If a heading is 
too long, only letters and digits are underlined. 

) 

Using the - rUl flag when invoking nroff forces the underlining of 
only letters and digits in all headings. 

4.4.5 Heading Point Sizes 

If you are using troff, you may specify the desired point size for each 
heading level with the HP string, as follows: 

.ds HP [psl J [ps2] [ps3] [ps4] [ps5] [ps6] [ps7] 

By default, the text of headings (.Hand .HU) is printed in the same 
point size as the body except that bold stand-alone headings are 
printed in a size one point smaller than the body. The string HP, 
similar to the string HF, can be specified to contain up to seven 
values, corresponding to the seven levels of headings. For example: 

.ds HP 12 12 11 10 10 10 10 

prints the first two heading levels in 12-pointtype, the third heading 
level in 11-point type, and the remainder in 10-point type. The 
specified values may also be relative point-size changes, e.g.: 

.dsHP+2+2-1-l 

If absolute point sizes are specified, those sizes will be used 
regardless of the point size of the body of the document. If relative 
point sizes are specified, then the point sizes for the headings will be 
relative to the point size of the body, even if the point size of the 
body is changed. Omitted or zero values imply that the default point 
size will be used for the corresponding heading level. 

4-17 



XENIX Text Processing 

Note 

When you change the point size of headings, vertical 
spacing remains unchanged. Therefore, if you specify a ( 
large point size for a heading, you must also mcrease 
vertical spacing (with .HX and/or .HZ) to prevent 
overprinting. 

4.4.6 Marking Styles 

The heading mark macro has the form: 

.HM [ argl] ... [ arg7] 

to change the heading mark style of a heading. The registers named 
Hl through H7 are used as counters for the seven levels of headings. 
Their values are normally printed using Arabic numerals. The 
heading mark style (.HM) macro allows this choice to be overridden. '· 
This macro can have up to seven arguments; each argument is a \ 
string indicating the type of marking to be used. Omitted values are 
interpreted as 1; illegal values have no effect. The values available 
are: 

Value 

1 
0001 
A 
a 
I 

Interpretation 

Arabic (default for all levels) 
Arabic with enough leading zeroes to get specified digits 
Uppercase alphabetic 
Lowercase alphabetic 
Uppercase Roman 
Lowercase Roman 

By default, the complete heading mark for a given level is built by 
concatenating the mark for that level to the right of all marks for all 
levels of higher value. To inhibit the printing of successive heading 
level marks, i.e., to obtain just the current level mark followed by a 
period, set the heading-mark type (Ht) register to 1. 

For example, a commonly used outline style is obtained by: 

4-18 

( 



) 

) 

.HMIAlai 

.nr Ht 1 

4.4.7 Unnumbered Headings 

The unnumbered heading macro has the form: 

.HU heading-text 

MM Reference 

It produces unnumbered heads .. HU is a special case of .H; it is 
handled in the same way as .H, except that no heading mark is 
printed. In order to preserve the hierarchical structure of headings 
when .H and .HU macros are intermixed, each .HU heading is 
considered to exist at the level given by register Hu, whose initial 
value is 2. Thus, in the normal case, the only difference between: 

.HU heading-text 

and 

.H 2 heading-text 

is the printing of the heading mark for the latter. Both have the effect 
of incrementing the numbering counter for level 2, and resetting to 
zero the counters for levels 3 through 7. Typically, the value of Hu 
should be set to make unnumbered headings (if any) be the lowes~ 
level headings in a document. .HU can be especially helpful in 
setting up appendices and other sections thatmaynotfitwellinto the 
numbering scheme of the main bodyofadocument. 

4.4.8 Headings and the Table of Contentl:I 

The text of headings and their corresponding page numbers can be 
automatically collected for a table of contents. This is accomplished 
by specifying in the register Cl what level headings are to be saved, 
then invoking the . TC macro at the end of the document. 

Any heading whose level is less than or equal to the value of the 
contents level (CL) register is saved and printed in the table of 
contents. The default value for Cl is 2; i.e., the first two levels of 
headings are saved. 

) Because of the way the headings are saved, it is possible to exceed the 
formatter's storage capacity, particularly when saving many levels of 

4-19 



XENIX Text Processing 

many headings while also processing displays and footnotes. If this 
happens, an "Out of temp file space" message will occur; the only 
remedy is to save fewer levels or to have fewer words in the heading 
text. 

4.4.9 First-Level Headings and the Page Numbering Style 

By default, pages are numbered sequentially at the top of the page. 
For large documents, it may be desirable to use section-page 
numbering where the section is the number of the current first-level 
heading. This page numbering style can be achieved by specifying 
the -rN3 or-rN5 flag on the command line. As aside effect, this also 
sets Ej to 1, so that each section begins on a new page. The page 
number is printed at the bottom of the page, so that the correct 
section number is printed. 

4.4.10 User Exit Macros 

This section is intended only for users who are accustomed to writing 
formatter macros. With .HX, .HY and .HZ you can obtain control 
over the previously described heading macros. You must define 
these macros yourself and use them in the form: 

.HX dlevel rlevel heading-text 

.HY dlevel rlevel heading-text 

.HZ dlevel rlevel heading-text 

The .H macro invokes .HX shortly before the actual heading text is 
printed; it calls .HZ as its last action. After .HX is invoked, the size 
of the heading is calculated. This processing causes certain features 
that may have been included in .HX, such as .ti for temporary 
indent, to be lost. After the size calculation, .HY is invoked so that 
you may specify these features again. All the default actions occur if 
these macros are not defined. If you define .HX, .HY, or .HZ, your 
definition is interpreted at the appropriate point. These macros can 
therefore influence the handling of all headings, because the .HU 
macro is actually aspecial case of the .H macro. 

If the user originally invoked the .H macro, then the derived level 
di eve/ and the real level rleve/ are both equal to the level given in the 
.H invocation. If you originally invoked the .HU macro, d/eve/ is 

4-20 

( 

( 

( 



) 

) 

MM Reference 

equal to the contents of register Hu , and rlevel is 0. In both cases, 
heading-textis the textof the original invocation. 

By the time .H calls .HX, it has already incremented the heading 
counter of the specified level, produced a blank line {vertical space) 
to precede the heading, and accumulated the heading mark, i.e., the 
string of digits, letters, and periods needed for a numbered heading. 
When .HX is called, all user-accessible registers and strings can be 
referenced as well as the following: 

string }O 

register ;O 

string }2 

register ;3 

If rlevel is nonzero, this string contains the heading mark. 
IfrlevelisO, thisstringisnull. 

This register indicates the type of spacing that is to follow 
the heading. A value of 0 means that the heading is run­
in. A value of 1 means a break (but no blank line) is to 
follow the heading. A value of 2 means that a blank line is 
to follow the heading. 

If register ;O is 0, this string contains two unpaddable 
spaces that will be used to separate the heading from the 
following text. If register ;O is nonzero, this string is null. 

This register contains an adjustment factor for an .ne 
request issued before the heading is actually printed. On 
entry to .HX, it has the value 3 if dlevel equals 1, and 1 
otherwise. The .ne request is forthe following number of 
lines: the contents of the register ;O taken as blank lines 
(halves of vertical space), plus the contents of register ;3 
as blank lines {halves of vertical space) plus the number 
of lines of the heading. 

The user may alter the values of }O, }2, and ;3 within .HX as desired. 
If you use temporary string or macro names within .HX, choose 
them carefully . 

. HY is called after the .ne is issued. Certain features requested in 

.HXmustbe repeated. For example: 

4-21 



XENIX Text Processing 

.de HY 

.if \\$1=3 .ti 5n 

.P 

.HZ is called at the end of .H to permit user-controlled actions after 
the heading is produced. For example, in alarge document, sections 
may correspond to chapters of a book, and you may want to change a 
page header or footer. For example: 

.de HZ 

.if \\$1=1 .PF" "Section \\$2 ,,.,, 

.P 

4.5 Lists 

This section describes t.he kinds of lists which can be obtained with 
the MM macros, including automatically numbered and 
alphabetized lists, bullet lists, dash lists, lists wit.h arbitrary marks, 
and lists starting wit.h arbitrary strings (e.g., with terms or phrases to 
be defined). 

In order to avoid repetitive typing of arguments to describe the 
appearance of items in a list, MM provides a convenient way to 
specify lists. All lists are composed of the following parts: 

A "list-initialization" macro that controls the appearance 
of the list (e.g. line spacing, indentation, marking with 
special symbols, and numbering or alphabetizing). 

One or more "list item" macros, each followed by the 
actual textofthe corresponding list item. 

The "list end" macro that terminates the list and restores 
the previous indentation. 

Lists may be nested up to five levels. The list-item (.LI) macro saves 
the previous list status (e.g., indentation, marking style, etc.); the 
list-end (.LE) macro restores it. The format of a list is specified only 
once at the beginning of list. You may also create your own 
customized sets of list macros wit.h relatively little effort. 

4-22 

( 

( 



) 

) 

) 

MM Reference 

4.5.1 Sample Nested List 

The input for several lists and the corresponding output are shown 
below. The .AL and .DL macros are examples of the "list­
initialization'' macros. Here is some sample input text: 

.ALA 

.LI 
This is an alphabetized item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
. AL 
.LI 
This is a numbered item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
. DL 
.LI 
This is a dash item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back. 
.LI+ 1 
This is a dash item with a plus as prefix. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
. LE 
.LI 
This is numbered item 2 . 
. LE 
.LI 
This is another alphabetized item, B. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
. LE 
.P 
This paragraph appears at the left margin. 

The output looks like this: 

4-23 



XENIX Text Processing 

A. This is an alphabetized item. This text shows the 
alignment of the second line of the item. The quick 
brown fox jumped over the lazy.dog's back. 

B. 

1. This is a numbered item. This text shows the 
alignment of the second line of the item. The 
quick brown fox jumped over the lazy dog's back. 

This is a dash item. This text shows the 
alignment of the second line of the item. 
The quick brown fox jumped over the lazy 
dog's back. 

+ - This is adash item with a plus as prefix. This 
text shows the alignment of the second line 
of the item. The quick brown fox jumped 
over the lazy dog's back. 

2. This is numbered item 2. 

This is another alphabetized item, B. This text shows 
the alignment of the second line of the item. The quick 
brown fox jumped over the lazy dog's back. 

This paragraph appears at the left margin. 

4.5.2 List Item 

The list item macro has the form: 

.LI (mark] [1] 
one or more lines of text that make up the list item. 

The .LI macro is used with alllista. It normally causes the output of a 
single blank line before its item, although this may be suppressed. If 
no arguments are given, it labels its item with the "current mark" 
which is specified by the most recent list-initialization macro. If a 
single argument is given to .LI, that argument is output instead of 
the current mark. If two arguments are given, the first argument 
becomes a prefix to the current mark, thus allowing you to 
emphasize one or more items in a list. One unpaddable space is 

4-24 

( 

( 

( 



) 

) 

) 

MM Reference 

inserted between the prefix and the mark. For example: 

.BL 

.LI 
This is a simple bullet item . 
. LI+ 
This replaces the bullet with a plus . 
. LI+ 1 
But this uses plus as prefix to the bullet . 
. LE 

This yields: 

• This is asimple bullet item. 

+ This replaces the bullet with a plus. 

+ • But this uses plus as prefix to the bullet. 

Note that the mark must not contain ordinary {paddable) spaces, 
because alignment of items will be lost if the right margin is justified. 
If the "current mark" in the current list is a null string, and the first 
argument of .LI is omitted or null, the resulting effect is that of a 
"hanging indent", i.e., the first line of the following text is 
outdented, starting at the same place where the mark would have 
started. 

4.5.3 List End 

The list end macro has the form: 

.LE [1] 

The list end macro restores the state of the list to that existing just 
before the most recent list-initialization macro call. If the optional 
argument is given, the .LE outputs a blank line. You should use this 
option only when the .LE is followed by running text, but not when 
followed by a macro that produces blank lines of its own, such as .P, 
.H, or .LI. 

.Hand .HU automatically clear all list information, so you may omit 
the .LE( s) that would normally occur just before either of these 
macros. This is not recommended, however, because errors will 

4-25 



XENIX Text Processing 

occur if the list text is separated from the heading at some later time 
(e.g., by insertion of text). 

4.5.4 Initializing Automatlcally Numbered or Alphabetized Lists 

The list initialization macro for numbered lists has the form: 

.AL [type] [text-indent] [ 1] 

The .AL macro is used to begin sequentially numbered or 
alphabetized lists. If there are no arguments, the list is numbered 
and text is indented by Li, initially 6 spaces from the indentin force 
when the .AL is called, thus leaving room for a space, two digits, a 
period, and two spaces before the text. Values that specify 
indentation must be unscaled and are treated as character positions, 
i.e., as the number of ens in iraff. 

Spacing at the beginning of the list and between the items can be 
suppressed by setting the list space (Ls) register. Ls is set to the 
innermost list level for which spacing is done. For example: 

.nr Ls 0 

specifies that no spacing will occur around any list items. The default 
value for Ls is 6 (which is the maximum list nesting level). 

The type argument may be given to obtain a different type of 
sequencing, and its value should indicate the first element in the 
sequence desired, (i.e., it must be 1, A, a, I, or i). Note that the 0001 
format is not permitted. If type is omitted or null, then 1 is assumed. 
If tezt-indentis non-null, it is used as the number of spaces from the 
current indent to the text, it is used instead of Li for this list only. If 
tezt-indentis null, then the value of Li will be used. 

If the third argument is given, a blank line will not separate the items 
in the list. A blank line will occur before the first item, however. 

4.5.5 Bullet List 

The list-initialization macro for abulletlisthas the form: 

.BL [text-indent] [ 1] 

4-26 

( 

( 

( 



) 

) 

) 

MM Reference 

.BL begins a bullet list, in which each item is marked by a bullet ( • ) 
followed by one space. If text-indent is non-null, it overrides the 
default indentation-amount of paragraph indentation as given in 
the register Pi. In the default case, the text of bullet and dash lists 
lines up with the first line of indented paragraphs. If a second 
argument is specified, no blank lines will separate the items in the 
list. 

4.5.6 Dash List 

The list-initialization macro for dash lists has the form: 

.DL [text-indent] [1] 

.DL is identical to .BL, except that a dash is used instead ofabullet. 

4.5. 7 Marked List 

The form of the list-initialization macro for amarked list is: 

.ML mark [text-indent] [ 1] 

.ML is much like .BL and .DL, except that it requires an arbitrary 
mark, which may consist of more than a single character. Text is 
indented text-indent spaces if the second argument is not null; 
otherwise, the text is indented one more space than the width of the 
mark. If the third argument is specified, no blank lines will separate 
the items in the list. Note that the mark must not contain ordinary 
( paddable) spaces, because alignment of items will be lost if the right 
margin is justified. 

4.5.8 Reference List 

The list-initialization macro for a reference list has the form: 

.RL [text-indent] [1] 

A .RL macro begins an automatically numbered list in which the 
numbers are enclosed by square brackets ([]).The text-indentmay 
be supplied, as for .AL. If omitted or null, it is assumed to be 6, a 
convenient value for lists numbered up to 99. If the second 
argument is specified, no blank lines will separate the items in the 

4-27 



XENIX Text Processing 

list. 

4.5.9 Variable-Item List 

The list-initialization macro for a variable-item list is: 

.VL text-indent [mark-indent] [ 1] 

When a list begins with a .VL, there is effectively no current mark; it 
is expected that each .LI provides its own mark. This form is 
typically used to display definitions of terms or phrases. Mark-indent 
gives the number of spaces from the current indent to the beginning 
of the mark, and it defaults to 0 if omitted or null. Text-indent gives 
the distance from the current indent to the beginning of the text. If 
the third argument is specified, no blank lines will separate the items 
in the list. Here is an example of .VL usage: 

.tr 

.VL 20 2 

.LI mark-1 
Here is a description of mark 1; 
mark 1 of the .LI line contains a tilde translated 
to an unpaddable space in order to avoid extra spaces 
between the mark and 1. 
.LI second-mark 
This is the second mark, also using a tilde translated 
to an unpaddable space . 
. LI third-mark longer-than -indent: 
This item shows the effect of a long mark; one space separates the mark 
from the text . 
. LI -
This item ha.s no mark because the 
tilde following the .LI is translated into a space . 
. LE 

This yields: 

markl 

4-28 

Here is a description of mark 1; mark 1 of the 
.LI line contains a tilde translated to an 
unpaddable space in order to avoid extra 
spaces between the mark and 1. 

( 

( 



) 

second mark 

MM Reference 

This is the second mark, also using a tilde 
translated to an unpaddable space. 

third mark longer than indent This item shows the effect of a long 
mark; one space separates the mark from the 
text. 

This item has no mark because the tilde 
following the .LI is translated into a space. 

The tilde argument on the last .LI above is required; otherwise a 
hanging indent would have been produced. A hanging indent is 
produced by using .VL and calling .LI with no arguments or with a 
null first argument. For example: 

.VL 10 

.LI 
Here is some text to show a hanging indent. 
The first line of text is at the left margin. 
The second is indented 10 spaces . 
. LE 

) yields: 

) 

Here is some text to show ahanging indent. The first line of text is at 
the left margin. The second is indented 10 spaces. 

Note that the mark must not contain ordinary (paddable) spaces, 
because alignment of items will be lost if the right margin is justified. 

4.5.10 List-Begin Macro and Customized Lista 

The list-begin macro has the form: 

.LB text-indent mark-indent pad type [mark] [LI-space] [L~space] 

The list-initialization macros should be adequate for most cases. 
However, if necessary, you may obtain more control over list layouts 
by using the basic list-begin macro .LB. 

A text-indent argument gives the number of spaces that the text is to 
be indented from the current indent. Normally, this value is ta.ken 
from the register Li for automatic lists and from the register Pi for 

4-29 



XENIX Text Processing 

bullet and dash lists. The combination of mark-indent and pad 
determines the placement of the mark. The mark is placed within an 
area( called "mark area") that starts mark-indent spaces to the right 
of the current indent, and ends where the text begins text-indent 
spaces to the right of the current indent. The mark-indent argument 
is typically 0. Within the mark area, the mark is left-justified if pad is 
0. If pad is greater than 0, then n blanks are appended to the mark; 
the mark-indent value is ignored. The resulting string immediately 
precedes the text. That is, the mark is effectively right-justified pad 
spaces immediately to the leftof the text. 

Type and mark interact to control the type of marking used. If type is 
0, simple marking is performed using the mark character( s) found in 
the mark argument. If type is greaterthan 0, automatic numbering or 
alphabetizing is done, and mark is then interpreted as the first item in 
the sequence to be used for numbering or alphabetizing (i.e., it is 
chosen from the set 1, A, a, I, i). 

Each nonzero value of type from 1 to 6 selects a different way of 
displaying the items. The following table shows the output 
appearance for each value of type: 

Type Appearance 
1 x. 
2 x) 
3 (x) 
4 [x] 
5 <x> 
6 {x} 

The mark must not contain ordinary (paddable) spaces, because 
alignment of items will be lost if the right margin is justified. 

LI-space gives the number of blank lines (halves of a vertical space) 
that should be output by each .LI macro in the list. If omitted, LI­
space defaults to 1; the value 0 can be used to obtain compact lists. If 
LI-space is greater than 0, the .LI macro issues a .ne request for two 
lines just before printing the mark. LB-space, the number of blank 
lines to be output by .LB itself, default.s to 0 if omitted. 

( 

( 

There are three reasonable combinations of LI-space and LB-space. 
The normal case is to set LI-space to 1 and LB-space to O, yielding ( 
one blank line before each item in the list; such a list is usually 
terminated with a .LE 1 to end the list with a blank line. For a more 

4-30 



) 

) 

) 

MM Reference 

compact list, set LI-space to 0 and LB-space to 1, and, again, use .LE 
1 at the end of the list. The result is a list with one blank line before 
and after it. If you set both LI-space and LB-space to 0, and use .LE 
to end the list, a list without any blank lines will result. 

4.6 Displays 

Displays are blocks of text that are to be kept together rather than 
split across pages. MM provides two styles of displays: a "static" 
( .DS) style and a "floating" ( .DF) style. In the static style, the 
display appears in the same relative position in the output text as it 
does in the input text. If the displaywillnotfitin the space remaining 
on a page, it will be shifted to the top of the next page. This may 
result in extra whitespace at the bottom of some pages. In the 
floating style, the display floats through the input text to the top of 
the next page if there is not enough room for it on the current page; 
thus the input text that follows a floating display may precede itin the 
output text. A queue of floating displays is maintained so that their 
relative order is not disturbed. 

By default, a display is processed in no-fill mode, with singlespacing, 
and is not indented from the existing margins. You can specify 
indentation or centering, as well as fill-mode processing. 

Displays and footnotes can never be nested in any combination. 
Although list.s and paragraphs are permitted, no headings ( .H or 
.HU) can occur within displays or footnotes. 

4.6.1 Static Displays 

A static display macro has the form: 

.DS [format] [fill] [rindent] 
one or more lines of text 
.DE 

A static display is started by the .DS macro and terminated by the 
.DE macro. With no arguments, .DS will accept the lines of text 
exactly as they are typed (no-fill mode) and will not indent them 
from the prevailing left margin indentation or from the right margin. 
The rindentargumentis the number of characters thatthe line length 
should be decreased, i.e., an indentation from the right margin. This 

4-31 



XENIX Text Processing 

number must be unscaled in nroff and is treated as ens. It may be 
scaled in troff or else it defaults to ems. 

The /ormatargumentto .DS is an integer or letter used to control the 
left margin indentation and centering. The format argument can 
have the following meanings: 

",' 
0 or L 
1 or I 
2 or C 
3 or CB 

Meaning 
No indent 
No indent 
Indent by standard amount 
Center each line 
Center as a block 

The fill argument is also an integer or letter and can have the 
following meanings: 

"" 
OorN 
1 or F 

Meaning 
-fill mode 
No-fill mode 
Fill mode 

Omitted arguments are interpreted as zero. 

( 

The standard indentation is taken from the Si register which is 
initially set at 5. Thus, by default, the text of an indented display ( 
aligns with the first line of indented paragraphs, whose indent is 
contained in the Pi register. Even though their initial values are the 
same, these two registers are independent of one another. 

The display format value 3 (CB) centers the entire display as a block 
(as opposed to .DS 2 and .DF 2, which center each line individually). 
That is, all the collected lines a.re left-justified, and the display is 
centered based on the width of the longest line. This format must be 
used in order for the eqn/neqn mark and lineup feature to work with 
centered equations. 

By default, a blank line is placed before and after displays. The blank 
lines before and after static displays can be inhibited by setting the 
register Ds to 0. 

4.6.2 Floating Displays 

The floating display macro has the form: 

4-32 

( 



) 

) 

) 

.DF [format) [fill] [rindent] 
one or more lines of text 
.DE 

MM Reference 

A floating display is started by the .DF macro and terminated by the 
.DE macro. The arguments have the same meanings as for .DS (see 
Section 4.6.1, "Static Displays"), except that for floating displays, 
indent, no indent, and centering are always calculated with respect to 
the initial left margin, because the prevailing indent may change 
between the time when the formatter first reads the floating display 
and the time that the display is printed. One blank line always occurs 
both before and after a floating display. 

You may control output positioning of floating displays through two 
number registers, De and Df. When a floating display is 
encountered by nroff or troff, it is processed and placed into a queue 
of displays waiting to be output. Displays are removed from the 
queue and printed in the order that they were entered in the queue, 
which is the order that they appear in the input file. If a new floating 
display is encountered and the queue of displays is empty, the new 
display is a candidate for immediate output on the current page. 
Immediate output is governed by the size of the display and the 
setting of the D f register. The De register controls whether or not 
text will appear on the current page after a floating display has been 
produced. 

The settings for the De register are as follows: 

0 

1 

Default: No special action occurs. 

A page eject will always follow the output of each floating 
display, so only one floating display will appear on a page 
and no text will follow it. 

The settings for the Df register are as follows: 

0 

1 

Floating displays will not be output until end of section 
(when using section-page numbering) or end of 
document. 

Outputs the new floating display on the current page if 
there is room, otherwise hold it until the end of the 
section or document. 

4-33 



XENIX Text Processing 

2 

3 

4 

5 

Outputs exactly one floating display from the queue at 
the top of a new page or column (when in two-column 
mode). 

Outputs one floating display on current page if there is 
room. Outputs exactly one floating display at the top of a 
new page or column. 

Outputs as many displays as will fit( atleastone), starting 
at the top of a new page or column. Note that if register 
De is set to 1, each display will be followed by a page 
eject, causing a new top of page to be reached, where at 
leastone more display will be output. 

Default. Outputs a new floating display on the current 
page if there is room. Outputs as many displays as will fit 
starting at the top of a new page or column. Note that if 
register De is set to 1, each display will be followed by a 
page eject, causing a new top of page to be reached, 
where atleastone more display will be output. 

( 

Note: any value greater than 5 is treated as the value 5. 

The .WC macro may also be used to control handling of displays in 
double-column mode and to control the break in the text before 
floating displays. 

( 

As long as the queue contains one or more displays, new displays will 
be automatically added to the queue, rather than be output. When a 
new page is started (or when at the top of the second column in two­
column mode), the next display from the queue will be output if the 
D f register has specified top-of-page output. When a display is 
outputitis removed from the queue. 

When the end of a section (when using section-page numbering) or 
the end of a document is reached, all displays are automatically 
output and removed from the queue. This will occur before an .SG, 
.CS, or .TC macro is processed. 

A display fits on the current page if there is enough room to contain 
the entire display on the page, or if the display is longer than one page 
in length and less than half of the current page has been used. Wide Ii 
(full page width) display will never fit in the second column of a \\, 

4-34 



) 

) 

) 

two-column document. 

4.6.3 Tables 

The table macro has the form: 

.'IS (HJ 
global options; 
column descriptors. 
title lines 
(.TII [NJ] 
data within the table . 
• TE 

MM Reference 

The table start (.TS) and table end (.TE) macros allow use of the tbl 
processor. They are used to delimit the text to be examined by the 
tbl program as well as to set proper spacing around the table. The 
display function and the tbl delimiting function are independent of 
one another, however. In order to keep together blocks that contain 
any mixture of tables, equations, filled and unfilled text, and caption 
lines, the .TS-.TE block should be enclosed within a display ( .DS­
.D E), as each display is always treated as a unit. Floating tables may 
be enclosed inside floating displays ( .DF-.DE). (For more 
information on displays, see Section 4.6, "Displays".) 

The macros .TS and .TE also permit processing of tables that extend 
over several pages. If a table heading is needed for each page of a 
multipage table, use the argumentH with the .TS macro (as above). 
Following the options and format information, the table heading is 
typed on as many lines as required and followed by the . TII (table 
header) macro. The .TH macro must occur when .TS H is used. 
Note that this is not a feature of tbl, but rather of MM macro 
definitions. 

The table header macro .TII may take as an argument the letter N. 
This argument causes the table header to be printed only if it is the 
first table header on the page. This option is used when it is 
necessary to build long tables from smaller .TS H-.TEsegments. For 
example: 

4-35 



XENIX Text Processing 

.TSH 
global options; 
column descriptors. 
Title lines 
.IB 
data 
.TE 
.TSH 
global options; 
column descriptors. 
Title lines 
.1H N 
data 
.TE 

This causes the table heading to appear at the top of the first table 
segment, and no heading to appear at the top of the second segment 
when both appear on the same page. However, the heading will still 
appear at the top of each page that the table continues onto. This 
feature is used when a single table must be broken into segments 
because of table complexity (for example, too many blocks of filled 
text). If each segment had its own .TS H-TII sequence, each 
segment would have its own header. However, if each table segment 
after the first uses .TS H.1H N then the table header will only appear 
at the beginning of the table and the top of each new page or column 
thatthe table continues onto. 

4.6.4 Equations 

The equation macro has the form: 

.DS I 

.EQ [label] 
equation( s) 
.EN 
.DE 

The equation formatters eqn and neqn use the the equation start 
( .EQ) and equation end (.EN) macros as delimiters in the same way 
thattbl uses .TS and .TE; however, .EQ and .EN must occur inside a 
.DS-.DE pair. There is an exception to this rule: if .EQ and .EN are 
used only to specify the delimiters for in-line equations or to specify 

4-36 

( 

( 

( 



) 

) 

) 

MM Reference 

eqn/neqn "defines", .DS and .DE must not be used; otherwise, 
extra blank lines will appear in the output. 

The .EQ macro takes an argument that will be used as a label for the 
equation. By default, the label appears at the right margin in the 
vertical center of the general equation. The Eq register may be set to 
1 to set the label at the left margin. The equation is centered for 
centered displays; otherwise, the equation is adjusted to the opposite 
margin from the label. 

4.6.5 Figure, Table, Equation, and Exhibit Captions 

The macros for captions have the form: 

.FG [title] [override] [flag] 

.IB [title] [override] [flag] 

.EC [title] [override] [flag] 

.EX [title] [override] [flag] 

The figure title ( .FG}, table title ( .IB), equation caption (.EC), and 
exhibit caption (.EX} macros are normally used inside .DS-.DE 
pairs to automatically number and title figures, tables, and 
equations. They use registersFg, Tb, Ee, and Ex, respectively.As an 
example, the macro: 

.FG "This is an illustration" 

yields: 

Figure 1. This is an illustration 

Instead of "Figure" 1B print.5 "TABLE"; .EC print.5 "Equation", 
and .EX print.5 "Exhibit". Output is centered if it can fit on a single 
line; otherwise, all lines but the first are indented to line up with the 
first character of the table title. The format of the numbers may be 
changed using the .af request of the formatter. The format of the 
caption may be changed from "Figure 1. Title" to "Figure 1-Title" 
by setting the Ofregisterto 1. 

The overn"destring is used to modify the normal numbering. If flag is 
omitted or 0, override is used as a prefix to the number; if flag is 1, 
override is used as a suffix; and if flag is 2, override replaces the 
number. If the -rN5 flag is given, section-figure numbering is set 
automatically and the override string is ignored. 

4-37 



XENIX Text Processing 

As a matter of style, table headings are usually placed ahead of the 
text of the tables, while figure, equation, and exhibit captions 
usually occur after the corresponding figures and equations. 

4.6.6 List or Figures, Tables, Equations, and Exhibits 

Lists of Figures, Tables, Equations, and Exhibits may be obtained. 
They will be printed after the Table of Contents is printed if the 
number registers Lf, Lt, Lx, and Le are set to 1. Lf, Lt, and Lx are 1 
by default; Le is 0 by default. 

The titles of these lists may be changed by redefining the following 
strings which are shown here with their default values: 

.ds Lf LIST OF FIGURES 

.ds Lt LIST OF TABLES 

.ds Lx LIST OF EXHIBITS 

.ds Le LIST OF EQUATIONS 

4. 7 Footnotes 

There are two macros that delimit the text of footnotes, a string used 
to automatically number the footnotes, and a macro that specifies 
the style of the footnote text. Like displays, footnotes are processed 
differently from the body of the text. 

Footnotes may be automatically numbered by typing the three 
characters "\>!<F" immediately after the text to be footnoted, without 
any intervening spaces. This will place the next sequential footnote 
number (in a smaller point size) a half-line above the text to be 
footnoted. 

There are two macros that delimit the text of each footnote: 

.FS [label] 
one or more lines of footnote text 
.FE 

The footnote start ( .FS) macro marks the beginning of the text of 
the footnote, and the footnote end (.FE) macro marks its end. The 
label on .FS, if present, will be used to mark the footnote text. 
Otherwise, the number retrieved from the \*F will be used. 
Automatically numbered and user-labeled footnotes may be 

4-38 

( 

( 

( 



) 

) 

) 

MM Reference 

intermixed. If a footnote is labeled .FS the text to be footnoted must 
be followed by "label," rather than by \•F. The text between .FS 
and .FE is processed in fill mode. Another .FS, a .DS, or a .DF are 
not permitted between the .FS and .FE macros. Automatically 
numbered footnotes may not be used for information, such as the 
title and abstract, to be placed on the cover sheet, but labeled 
footnotes are allowed. Similarly, only labeled footnotes may be used 
with tables. Here are two examples: 

1. Automatically numbered footnote: 

This is the line containing the word \•F 
.FS 
This is the text of the footnote . 
. FE 
to be footnoted. 

2. Labeled footnote: 

This is a labeled* 
.FS * 
The footnote is labeled with an asterisk. 
.FE 
footnote. 

The text of the footnote (enclosed within the .FS-.FE pair) should 
immediately follow the word to be footnoted in the input text, so 
that \*F orlabel occurs at the end of a line of input and the next line is 
the .FS macro call. It is also good practice to append an unpaddable 
space to "label" when it follows an end-of-sentence punctuation 
mark (i.e., period, question mark, exclamation point). 

4.7.1 Format of Footnote Text 

The footnote format macro has the form: 

.FD [arg] [1] 

Within the footnote text, you can control the formatting style by 
specifying text hyphenation, right margin justification, and text 
indentation, as well as left- or right-justification of the label when 
text indenting is used. The .FD macro is invoked to select the 
appropriate style. The first argument should be a number from the 

4-39 



XENIX Text Processing 

left column of the following table. The formatting style for each 
number is given by the remaining four columns. For further 
explanation of the first two of these columns, see the definitions of 
the .ad, .hy, .na, and .nh request.s. 

ARGUMENT FORMATTING STYLE 
0 .nh .ad text indent label left-justified 
1 .hy .ad text indent label left-justified 
2 .nh .na text indent label left-justified 
3 .hy .na text indent label left-justified 
4 .nh .ad no indent label left-justified 

5 .hy .ad no indent label left-justified 
6 .nh .na no indent label left-justified 
7 .hy .na no indent label left-justified 
8 .nh .ad text indent label right-justified 
9 .hy .ad text indent label right-justified 
10 .nh .na text indent label right-justified 

11 .hy .na text indent label right-justified 

If the first argument to .FD is out of range, the effect is as if .FD 0 
were specified. If the first argument is omitted or null, the effect is 
equivalent to .FD 10 in nroff and to .FD 0 in troff; these are also the 
respective initial defaults. 

If a second argument is specified, then whenever a first-level 
heading is encountered, automatically-numbered footnotes begin 
again with 1. This is most useful with the section-page page 
numbering scheme. As an example, the inputline: 

.FD "" 1 

maintains the default formatting style and causes footnotes to be 
numbered beginning with 1 aftereach first-level heading. 

For long footnotes that continue onto the following page, it is 
possible that, if hyphenation is permitted, the last line of the 
footnote on the current page will be hyphenated. Except for this case 
(which you can change by specifying an even-numbered argument 
to .FD), hyphenation across pages is inhibited by MM. 

Footnotes are separated from the body of the text by a short rule. 
Footnotes that continue to the next page are separated from the body 

4-40 

( 

( 

( 



) 

) 

) 

MM Reference 

of the text by a full-width rule. In troff, footnotes are set in type that 
is two point.5 smaller than the pointsize used in the body of the text. 

Normally, one blank line (a three-point vertical space) separates the 
footnotes when more than one occurs on a page. To change this 
spacing, set the register Fs to the desired value. For example: 

.nr Fs 2 

will cause two blank lines (a six-point vertical space) to occur 
between footnotes. 

4.8 Page Headers and Footers 

Text that occurs at the top of each page is known as the "page 
header". Text printed at the bottom of each page is called the "page 
footer". There can be up to three lines of text associated with the 
header: every page, even page only, and odd page only. Thus the 
page header may have up to two lines of text: the line that occurs at 
the top of every page and the line for the even- or odd-numbered 
page. The same is true for the page footer. When not qualified by 
"even" or "odd", "header" and "footer" will mean those headers 
and footers that occur on every page. The default appearance of page 
headers and page footers is described here, followed by the methods 
for changing them. 

4.8.1 Default Headers and Footers 

By default, each page has a centered page number as the header. 
There is no default footer and no even/odd default headers or 
footers, except with section-page numbering. 

In a memorandum or a released paper, the page header on the first 
page is automatically suppressed, if a break does not occur before 
.MT is called. Since they do not cause a break, the header and footer 
macros are permitted before the .MT macro call. 

4.8.2 Page Header 

The page header macro has the form: 

4-41 



XENIX Text Processing 

.PH [arg] 

For this and for the .EH, .OH, .PF, .EF, and .OF macros, the 
argument is of the form: 

"'left-part' center-part'right-part'" 

If it is inconvenient to use the apostrophe ( ') as the delimiter 
(because it occurs within one of the parts), it may be replaced 
uniformly by any other character. On output, the parts are left­
justified, centered, and right-justified, respectively. 

The .PH macro specifies the header that is to appear at the top of 
every page. The initial value is the default centered page number 
enclosed by hyphens. The page number contained in the Pregister is 
an Arabic number. The format of the number may be changed by 
the .af request. 

If "debug mode" is set using the flag-rDl on the command line, 
additional information, printed at the top left of each page, is 
included in the default header. 

4.8.3 Even-Page Header 

The even-page header macro has the form: 

.EH [arg] 

The .EH macro supplies a line to be printed at the top of each even­
n umbered page, immediately following the header. The 'iii.itial value 
is a blank line. 

4.8.4 Odd-Page Header 

The odd-page header macro has the form: 

.OH [arg] 

This macro is the same as .EH, except that it applies to odd­
numbered pages. 

4-42 

( 

( 

( 



) 

) 

) 

MM Reference 

4.8.5 Page Footer 

The form of the page footer macro is: 

.PF [arg] 

The .PF macro specifies the line that is to appear at the bottom of 
each page. Its initial value is a blank line. If the -rCn flag is specified 
on the command line, the type of copy follows the footer on a 
separate line. In particular, if -rC3 or -rC4 (DRAFT) is specified, 
then the footer is initialized to contain the date, instead of being a 
blank line. 

4.8.6 Even-Page Footer 

The even-page footer macro has the form: 

.EF [arg] 

The .EF macro supplies a line to be printed at the bottom of each 
even-numbered page, immediately preceding the footer. The initial 
value is ablankline. 

4.8.7 Odd-Page Footer 

The odd-page footer macro has the form: 

.OF [arg] 

This macro is the same as .EF (described in Section 4.8.6), except 
that it applies to odd-numbered pages. 

4.8.8 Footer on the First Page 

By default, the footer on the first page is a blank line. If, in the input 
text, you specify .PF and/or .OF before the end of the first page of 
the document, then these lines will appear at the bottom of the first 
page. The header (whatever its contents) replaces the footer on the 
first page only if the -rNl flag is specified on the command line. 

4-43 



XENIX Text Processing 

4.8.Q Default Header and Footer With Section-Page Numbering 

Pages can be numbered sequentially within sections. To obtain this 
numbering style, specify-rN3 or-rN5 on the command line. In this 
case, the default footer is a centered section-page num her (e.g., 7-2) 
and the default page header is blank. 

4.8.10 Strin~ and Registel'8 in Header and Footer Macros 

St.ring and register names may be placed in the argument5 to the 
header and footer macros. If the value of the string or register is to 
be computed when the respective header or footer is printed, the 
invocation must be escaped by four backslashes. This is because the 
string or register invocation is actually processed three times: as the 
argument to the header or foot.er macro; in a format.ting request 
within the header or foot.er macro; and in a .ti request during header 
or footer processing. 

For example, the page number register P must. be escaped with four 
backslashes in order to specify a header in which the page number is 
to be printed at the right margin: 

.PH "'"Page \\\\nP'" 

This creates a right-justified header containing the word "Page" 
followed by the page number. 

4.8.U Header and Footer Example 

The following sequence specifies blank lines for the header and 
footer lines, page num hers on the out5ide edge of each page (i.e., top 
left margin of even pages and top right margin of odd pages). and 
''Revision 3" on the top inside margin of each page: 

.PH"" 

.PF"" 

.EH "'\\\\nP"Revision 3'" 

.OH "'Revision 3"\\\\nP'" 

4-44 

( 

( 

( 



) 

) 

MM Reference 

4.8.12 Generalized Top-of-Page Prooossing 

This section and the next are intended only for users accustomed to 
writing formatter macros. During header processing, MM invokes 
two user-definable macros. One, the .TP macro, is invoked in the 
environment of the header. The .PX macro may be used to provide 
text that is to appear at the top of each page after the normal header 
and that may have tab stops to align it with columns of text in the 
body of the document. 

The effective initial definition of .TP (after the first page of a 
document) is: 

.de TP 

.sp 3 

.tl \ \•(. }t 

.if e 'tl 

.if 0 'tl 

.Sp 2 

The string }t contains the header, the string }e contains the even­
page header, and the string }o contains the odd-page header, as 
defined by the .PH, .EH, and .OH macros, respectively. To obtain 
more specialized page titles, you may redefine the .TP macro to 
cause any desired header processing. Note that formatting done 
within the .TP macro is processed in an environment different from 
thatofthe body. 

For example, to obtain a page header that includes three centered 
lines of data, say, a document's number, issue date, and revision 
date, you could define .TP as follows: 

.de TP 

.Sp 

.ce 3 
777-888-999 
Iss. 2, AUG 1977 
Rev. 7, SEP 1977 
.sp 

4-45 



XENIX Text Processing 

4.8.13 Generalized Bottom-of-Page Processing 

The bottom start macro has the form: 

.BS 
zero or more lines of text 
.BE 

Lines of text that are specified between the bottom-block start (.BS) 
and bottom-block end (.BE) macros will be printed at the bottom of 
each page after the footnotes (if any), but before the page footer. 
This block of text is removed by specifying an empty block, i.e.: 

.BS 

.BE 

4.8.14 Top and Bottom Margins 

The vertical margin macro has the form: 

.VM [top] [bottom] 

The vertical margin ( .VM) macro allows you to specify extraspace at 
the top and bottom of the page. This space precedes the page header 
and follows the page footer. The .VM macro takes two unscaled 
arguments thatare treated as v's. For example: 

.VM 10 15 

adds 10 blank lines to the default top of page margin, and 15 blank 
lines to the default bottom of page margin. Both arguments must be 
positive (default spacing at the top of the page may be decreased by 
redefining .TP). 

4.9 Table of O>ntents 

The table of contents for a document is produced by invoking the 
table of contents (.TC) macro. The table of contents is produced at 
the end of the writing process because the entire document must be 
processed before the table of contents can be generated. The table of 
contents macro has the form: 

4-46 

( 

( 

( 



) 

MM Reference 

.TC [slevel] [spacing] [tlevel] [tab] [headl] ... [head7] 

The .TC macro generates a table of contents containing the headings 
that were saved for the table of contents as determined by the value 
of the Cl register. The arguments to .TC control the spacing before 
each entry, the placement of the associated page number, and 
additional text on the first page of the table of contents before the 
word "CONTENTS". 

Spacing before each entry is controlled by the first two arguments; 
headings whose level is less than or equal to sieve/ will have spacing 
blank lines (halves of a vertical space) before them. Both sieve/ and 
spacing default to 1. This means that first-level headings are 
preceded by one blank line. Note that sieve/ does not control what 
levels of heading have been saved; that is controlled by the setting of 
the Cl register. 

The third and fourth arguments control the placement of the page 
number for each heading. The page numbers can be justified at the 
right margin with either blanks or leader dots separating the heading 
text from the page number, or the page numbers can follow the 
heading text. For headings whose level is less than or equal to tlevel 
(default 2), the page numbers are justified at the right margin. In 
this case, the value of tab determines the character used to separate 
the heading text from the page number. If tab is 0 (the default 
value), dots (i.e., leaders) are used; if tab is greater than 0, spaces are 
used. For headings whose level is greater than tlevel, the page 
numbers are separated from the heading text by two spaces (i.e., 
they are ragged right). 

All additional arguments (e.g., headl, head2), if any, are 
horizontally centered on the page, and precede the actual table of 
contents itself. 

If the .TC macro is invoked with at most four arguments, then the 
user-exit macro .TX is invoked (without arguments) before the 
word "CONTENTS" is printed; or the user-exit macro .TY is 
invoked and the word "CONTENTS" is not printed. By defining 
.TX or .TY and invoking .TC with at most four arguments, you can 
specify what needs to be done at the top of the (first) page of the table 
of contents. 

) By default, the first level headings will appear in the table of contents 
at the left margin. Subsequent levels will be aligned with the text of 

4-47 



XENIX Text Processing 

headings at the preceding level. These indentations may be changed 
by defining the Ci string which talces a maximum of seven arguments 
corresponding to the heading levels. It must be given at least as 
many arguments as are set by the Cl register. The arguments must 
be scaled. For example, with CI =5, 

.ds Ci .25i .5i .75i Ii Ii 

or 

.ds Ci 0 2n 4n 6n 8n 

Two other registers are available to modify the format of the table of 
contents, Oc and Cp. By default, table of contents pages will have 
lowerca.5e Roman numeral page numbering. If the Oc register is set 
to 1, the .TC macro will not print any page number but will instead 
reset the P register to I. It is your responsibility to give an 
appropriate page footer to place the page number. Ordinarily the 
same .PF used in the body of the document and exhibits will be 
adequate. The List of Figures and List of Tables will be produced 
separately unless Cp is set to I which causes these lists to appear on 
the same page a.5 the table of content.'5. 

4.10 References 

There are two macros that delimit the text of references, a string 
used to automatically number the references, and an optional macro 
that produces reference pages within the document. 

4.10.1 Automatic Numbering of References 

Automatically numbered references may be obtained by typing 
\*(Rf immediately after the text to be referenced. This places the 
next sequential reference number (in a smaller point size) enclosed 
in brackets a half-line above the text to be referenced. 

4.10.2 Delimiting Reference Text 

The .RS and .RF macros are used to delimit text for each reference. 
They have the following form: 

4-48 

( 

( 

( 



) 

A line of text to be referenced.\*(Rf 
.RS [string-name] 
reference text 
.RF 

4.10.3 Subsequent References 

MM Reference 

.RS takes one argument, a "string-name". For example: 

.RSAA 
reference text 
.RF 

The string AA is assigned the current reference number. It may be 
used later in the document, as the string call\*( AA to reference text 
which must be labeled with a prior reference number. The reference 
is output enclosed in brackets a half-line above the text to be 
referenced. No .RS or RF is needed for subsequent references. 

4.10.4 Reference Page 

) An automatically generated reference page is produced at the end of 
the document before the table of contents and the cover sheet are 
output. The reference page is entitled "References". This page 
contains the reference text (RS/RF). The user may change the 
reference page title by defining the Rp string. For example, 

) 

.ds Rp "New Title" 

The optional reference page (.RP) macro may be used to produce 
reference pages anywhere within a document (i.e., within heading 
sections) . 

. RP [argl] [arg2] 

These arguments allow the user to control resetting of reference 
numbering and page skipping. The first argument with a value of 0 
indicates that the reference counter is to be reset; this is the default. 
A value of 1 indicates that the counter will not be reset. In the 
second argument, a value of 0 causes a following .SK; a value of 1 
does not cause an .SK .. RP need not be used unless you want to 
produce reference pages elsewhere in the document. 

4-49 



XENIX Text Processing 

4.11 Miscellaneous Features 

In this section a number of MM features to control font, spacing, 
justification, multiple-column output and page skipping are 
discussed. 

4.ll.l Bold, Italic, and Roman Fonts 

Font changes are obtained with the following macros: 

.B [bold-arg] [previous-fontrarg] 

.I [ italic-arg] [previous-fontrarg] ... 

. R 

When called without arguments, .B changes the font to bold and .I 
changes to italic (troff) or underlining (nroff). This condition 
continues until the occurrence of a .R, when the regular Roman font 
is restored. Thus, 

.I 
here is some text . 
. R 

yields: 

here is some text. 

If .B or .I is called with one argument, thatargumentis printed in the 
appropriate font (underlined in nroff for .I). Then the previous font 
is restored (underlining is turned off in nroff). If two or more 
arguments (maximum 6) are given to a .Bor .I, the second argument 
is then concatenated to the first with no intervening space ( 1/12-
space if the first font is italic), but is printed in the previous font; and 
the remaining pairs of arguments are similarly alternated. For 
example: 

.I italic " text " right -justified 

produces: 

italic text n"ght-justified 

These macros alternate with the prevailing font at the time they are 
invoked. To alternate specific pairs of fonts, the following macros 
are available: 

4-50 

( 

( 

( 



) 

) 

.IB 

.Bl 

.IR 

.RI 

.RB 

.BR 

MM Reference 

Each takes a maximum of 6 arguments and alternates the arguments 
between the specified fonts. Note that font changes in headings are 
handled separately. 

4.11.2 Right Margin Justification 

The justification macro has the form: 

.SA [arg] 

The .SA macro is used to set right-margin justification for the main 
body of text. Two justification flags are used: "current" and 
"default". .SA 0 sets both flags to no justification (i.e., it acts like 
the .na request). .SA 1 is the inverse: it sets both flags to cause 
justification, just like the .ad request. However, calling .SA without 
an argument causes the current flag to be copied from the default 
flag, thus performing either an .na or .ad, depending on what the 
default is. Initially, both flags are set for no justification in nroff and 
for justification in troff. 

In general, the request .na can be used to ensure that justification is 
turned off, but .SA should be used to restore justification, rather 
than the .ad request. In this way, justification or lack thereof for the 
remainder of the text is specified by inserting .SA 0 or .SA 1 once at 
the beginning of the document. 

4.11.3 SCX:S Release Identification 

The string \\(**(RE contains the SCX:S Release and Level of the 
currentversionofMM. Forexample, typing: 

This is version \*(RE of the macros. 

produces: 

4-51 



XENIX Text Processing 

This is version 15.110 of the macros. 

This information is useful in analyzing suspected bugs in MM. The 
easiest way to have this number appear in your output is to specify 
-rD 1 on the command line, which causes the string RE to be output 
as part of the page header. 

4.11.4 Two-Column Output 

MM can print two columns on a page: 

.2C 
text and formatting requests (except another .2C) 
.lC 

The .2C macro begins two-column processing which continues until 
a .lC macro is encountered. In two-column processing, each 
physical page is thought of as containing two columnar pages of 
equal (but smaller) page width. Page headers and footers are not 
affected by two-column processing. The .2C macro does not balance 
two-column output. 

It is possible to have full page width footnotes and displays when in 
two column mode, although the default action is for footnotes and 
displays to be narrow in two column mode and wide in one column 
mode. Footnote and display width is controlled by the width control 
(.WC) macro, which takes the following arguments: 

N Normal default mode 

WF Wide footnotes always (even in two-column mode) 

-WF Default: turns off WF (footnotes follow column mode, 
wide in lC mode, narrow in 2C mode, unless FF is set) 

FF First footnote; all footnotes have the same width as the 
first footnote encountered for that page 

-FF 

4-52 

Default: turns off FF (footnote style follows the settings 
ofWFor-WF) 

( 

( 

( 



) 

) 

MM Reference 

WD Wide displays always (even in two column mode) 

-WD Default: Dis plays follow whichever column mode is in 
effect when the display is encountered 

For example: .WC WD FF will cause all displays to be wide, and all 
footnotes on a page to be the same width, while .WC N will reinstate 
the default actions. If conflicting settings are given to .WC the last 
one is used. That is, .WCWF-WFhas the effect of .WC-WF. 

4.11.5 Vertical Spacing 

The vertical space macro has the form: 

.SP [lines] 

The .SP macro avoids the accumulation of vertical space by 
successive macro calls. Several .SP calls in a row produce not the 
sum of their arguments, but their maximum; i.e., the following 
produces only 3 blank lines: 

.SP 2 

.SP 3 

.SP 

There are several ways of obtaining vertical spacing, all with 
different effects. The .sp request spaces the number of lines 
specified, unless no-space ( .ns) mode is on, in which case the 
request is ignored. The .ns mode is typically set at the end of a page 
header in order to eliminate spacing by a .sp or .hp request that just 
happens to occur at the top of a page. The .ns mode can be turned off 
with the restore spacing (.rs) request. 

Many MM macros utilize .SP for spacing. For example, .LE 1 
immediately followed by .P produces only a single blank line 
between the end of the list and the following paragraph. An omitted 
argument defaults to one blank line (one vertical space). Negative 
arguments are not permitted. The argument must be unscaled but 
fractional amounts are permitted. Like .sp, .SP is also inhibited by 
the .ns request. 

4-53 



XENIX Text Processing 

4.11.6 Skipping Pages 

The skip page macro has the form: 

.SK [pages] 

The .SK macro skips pages, but retains the usual header and footer 
processing. If pages is omitted, null, or 0, .SK skips to the top of the 
next page unless it is currently at the top of a page, in which case it 
does nothing .. SK n skips n pages. That is, .SK always positions the 
text that follows it at the top of a page, while .SK 1 always leaves one 
page that is blank except for the header and footer. 

4.11.7 Forcing an Odd Page 

The odd page macro has the form: 

.OP 

This macro is used to ensure that the following text begins at the top 
of an odd-numbered page. If currently atthe top of an odd page, no 
motion takes place. If currently on an even page, text resumes 
printing atthe top of the next page. If currently on an odd page (but 
not at the top of the page) one blank page is produced, and printing 
resumes on the page after that. 

4.11.8 Setting Point Size and Vertical Spacing 

In troff, the default point size (obtained from the register S) is 10, 
with a vertical spacing of 12 points. The prevailing point size and 
vertical spacing may be changed by invoking the .S macro: 

.S [point size] [vertical spacing] 

The mnemonics, D for default value, C for current value, and P for 
previous value, may be used for both point size and vertical spacing 
arguments. 

Arguments may be signed or unsigned. If an argument is negative, 
the current value is decremented by the specified amount. If the 
argument is positive, the current value is incremented by the 
specified amount. If an argument is unsigned, it is used as the new 
value .. S without arguments defaults to previous (P). If the first 

4-54 

( 

( 

( 



) 

) 

MM Reference 

argument is specified but the second argument (vertical spacing) is 
not then the default(D) value is used. The default value for vertical 
spacing is always 2 points greater than the current point size value 
selected. Footnotes are printed in a size 2 points smaller than the 
point size of the body, with an additional vertical spacing of 3 points 
between footnotes. A null ("") argument for either the first or 
second argument defaults to the current ( C) value. 

4.11.9 Inserting Text Interactively 

The read insertion macro ha.5 the form: 

.RD [prompt] [diversion] [string] 

The read insertion macro (.RD) allows you to stop the standard 
output of a document and to read text from the standard input until 
two consecutive newlines are found. When the newlines are 
encountered, normal output is resumed . 

. RD follows the formatting conventions already in effect. Thus, the 
examples below assume thatthe .RD is invoked in no fill mode ( .nf). 
The first argument is a prompt which will be printed at the terminal. 
If no prompt is given, .RD signals the user with a bell on terminal 
output. 

The second argument, a diveraion name, allows the user to save all 
the entered text typed after the prompt. The third argument, a atn'ng 
name, allows the user to save for later reference the first line 
following the prompt. For example: 

.RD Name aa bb 

produces 

Name: C. R. Jones 
16 Densmore St, 
Kensington 

The diversion aa contains: 

C.R. Jones 
16 Densmore St, 
Kensington 

The string bb contains C.R. Jonea. 

4-55 



XENIX Text Processing 

A newline followed by a CNTRL-D (ASCII end-of-file) also allows 
you to resume normal output. 

4.12 Memorandum and Released Paper Styles 

MM lets you specify a style for a memorandum or technical paper 
with a macro that controls the layout of heading information (e.g. 
title, author, date, etc.) on the first page or cover sheet. The 
information is entered in the same way for both styles; an argument 
indicates which style is being used. The macros used to specify paper 
style are described in this section. 

Note that it is critical to enter the macros in the order prescribed 
here. If neither the memorandum nor released-paper style is 
desired, the macros described below should be omitted from the 
input text. If these macros are omitted, the first page will simply 
have the page header followed by the body of the document. 

4.12.1 Title 

The title macro has the form: 

.TL 
one or more lines of title text 

The title of the memorandum or paper follows the .TL macro and is 
processed in fill mode. On output, the title appears after the word 
"subject" in the memorandum style. In the released-paper style, 
the title is centered and bold. 

4.12.2 Authors 

The au th or macro has the form: 

.AU name [initials] 

.AT [title] ... 

A separate .AU macro is required for each author named. 

The .AT macro is used to specify the author's title. Up to nine 
arguments may be given. Ea.ch will appear in the Signature Block for 
memorandum style on a separate line following the signer's name. 

4-56 

( 

( 

( 



) 

) 

) 

MM Reference 

The .AT must immediately follow the .AU for the given author. For 
example: 

.AU "C.R. Jones" [initials] [loc] [dept] [ext] [room] 

.AT "Editor-in-chief" 

In the "from" portion for the memorandum style, the author's 
name is followed by location and department number on one line 
and by room nuillber and extension number on the next. The x for 
the extension is added automatically. The printing of the location, 
department number, extension number, and room number may be 
suppressed on the first page of a memorandum by setting the register 
Au to O; the default value for Au is 1. Arguments 7 through 9 of the 
.AU macro, if present, will follow this "normal" author information 
in the "from" portion, each on aseparate line. If your organization 
has a numbering scheme for memoranda, engineer's notes, etc., 
these numbers are printed after the author's name. This can be done 
by providing extra arguments to the .AU macro. 

The name, initials, location, and department are also used in the 
Signature Block described below. The author information in the 
from portion, as well as the names and initials in the Signature Block 
will appear in the same order as the .AU macros. 

The names of the authors in the released-paper style are centered 
be low the title. 

4.12.3 Technical Memorandum Numbel'll 

The technical memorandum macro has the form: 

.1M [number] ... 

If the memorandum is a Technical Memorandum, the 1M numbers 
are supplied via the .1M macro. Up to nine numbers may be 
specified. For example: 

·™ 7654321 77777777 

If present, this macro will be ignored m papers assigned the 
re leased-paper or external-letter styles. 

4-57 



XENIX Text Processing 

4.12.4 Abstract 

The abstract macro has the form: 

.AS [arg] [indent] 
text of the abstract 
.AE 

Three styles of cover sheet are available: Technical Memorandum, 
Memorandum for File, and released-paper. On the cover sheet, the 
text of the abstract follows the author information and is preceded by 
the centered and underlined (italic) word "ABSTRACT". 

The abstract start (.AS) and abstract end ( .AE) macros bracket the 
abstract. The abstract is optional except that for the Memorandum 
for File style no cover sheet will be produced unless an abstract is 
given. 

A combination of the first argument to .AS and the use of the .CS 
macro (see Section 4.12.15) controls the production of the cover 
sheet. If the first argument is 2, a Memorandum for File cover sheet 
is generated automatically. Any other value for the first argument 
causes the text of the abstract to be saved until the .CS macro is 
invoked, then the appropriate cover sheet (either Technical 
Memorandum or released paper depending on the .MT type) is 
generated. Thus, .CS is not needed for Memorandum for File cover 
sheets. Notations, such as a copy to list, are allowed on 
Memorandum for File cover sheets. The .NS and .NE macros are 
given following the .AS 2 and .AE. 

The abstract is printed with ordinary text margins. An indentation to 
be used for both margins can be specified as the second argumentfor 
.AS. Values that specify indentation must be unscaled and are 
treated as character positions, i.e., as the number of ens. Headings 
and displays are not permitted within an abstract. 

4.12.5 Other Keywords 

The keyword macro has the form: 

.OK [keyword] ... 

Topical keywords should be specified on a Technical Memorandum 
cover sheet. Up to nine such keywords or keyword phrases may be 

4-58 

( 

( 



) 

) 

MM Reference 

specified as arguments to the .OK macro; if any keyword contains 
spaces, it must be enclosed within double quotation marks. 

4.12.6 Memorandum Types 

The memorandum type macro has the form: 

.MT [type] [addressee] 

The .MT macro controls the formatof the top part of the first page of 
a memorandum or of a released paper, as well as the format of the 
cover sheets. Legal codes for type and the corresponding values are: 

Code 
.MT"" 
.MTO 
.MT 
.MTl 
.MT2 
.MT3 
.MT4 
.MT5 
.MT "string" 

Value 
No memorandum type is printed 
No memorandum type is printed 
MEMORANDUM FOR FILE 
MEMORANDUM FOR FILE 
PROGRAMMER'S NOTES 
ENGINEER'S NOTES 
Released-paper style 
External-letter style 
String 

If type indicates a memorandum style, then the value will be printed 
after the last line of author information. If type is longer than one 
character, then the string itself will be printed. For example: 

.MT "Technical Note #5" 

A simple letter is produced by calling .MT with a null (but not 
omitted!) or zero argument. 

The second argument to .MT is used to give the name of the 
addressee of a letter. The name and page number will be used to 
replace the ordinary page header on the second and following pages 
of the letter. For example, 

.MT 1 "Charles Jones" 

produces 

Charles Jones - 2 

as the header on the second page. 

4-59 



XENIX Text Processing 

This second argument may not be used if the first argument is 4 (the 
released-paper style). 

In the external-letter style (.MT 5), only the title (without the word 
"subject:") is printed in the upper left and right corners, 
respectively, on the first page. You would normally use this style 
with preprinted stationery that has the company name and address 
already printed on it. 

4.12.7 Date and Format Changes 

By default, the current date appears in the date part of a 
memorandum. This can be overridden by using: 

.ND new-date 

The .ND macro alters the value of the string DT, which is initially set 
to the current date. 

4.12.8 Alternate Firstr-Page Format 

You can specify thatthe words "subject", "date", and "from" be 
omitted in the memorandum style by using the alternate format 
(.AF) macro. Unless you use the .AF macro, with your own 
company name as an argument, "Bell Laboratories" will 
automatically be printed as the company name on any papers which 
begin with .MT macros. Therefore, you will always want to use: 

.AF [company-name] 

If an argument is given, it replaces "Bell Laboratories" without 
affecting the other headings. The .AF with no argument suppresses 
"Bell Laboratories" as well as the "subject", "date", and "from" 
headings. The use of .AF with no arguments is equivalent to the use 
of -rAl on the command line, except that the latter must be used if it 
is necessary to change the line length and/or page off set (which 
default to 5.8i and li, respectively, for preprinted forms). The 
command line options-rOk and-rWk are not effective with .AF. 

The only .AF option appropriate forttoffis to specify an argument to 
replace "Bell Laboratories" with another name. 

4-60 

( 



) 

) 

MM Reference 

4.12.9 Rele88ed-Paper Style 

The released-paper style is obtained by specifying: 

.MT4 [l] 

This results in a centered, bold title followed by centered names of 
authors. The location of the last author is used as the location 
following "Bell Laboratories" unless .AF is used to specify a 
different company. If the optional second argument to .MT 4 is 
given, Then the name of each author is followed by the respective 
company name and location. Information necessary for the 
memorandum style but not for the released-paper style is ignored. 
The Signature Block macros and their associated lines of input are 
also ignored when the released-paper style is specified. 

In addition to using the .AF macro to specify your company name, 
you can define a string with a two-character name for your address 
before each .AU. For example: 

.TL 
A Learned Treatise 
.AF "Get.em, Inc." 
.ds XX "22 Maple Avenue, Sometown 09999" 
.AU "F. Swatter""" XX 
.AF "Profit Associates" 
.AU "Sam P. Lename" "" CB 
.MT4 1 

4.12.10 Order or Invocation or Beginning Macl"Oll 

The macros described in this section must be given in the following 
order if they are used to define document style: 

4-61 



XENIX Text Processing 

.ND new-date 

.TL 
one or more lines of text 
.AF [company-name] 
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg] 
.AT [title] ... 
. 1M [number] ... 
. AS [arg] [indent] 
one or more lines of text 
.AE 
.NS [arg] 
one or more lines of text 
.NE 
.OK [keyword] ... 
. MT [type] [addressee] 

The only required macros for a memorandum or a released paper are 
.TL, .AU, and .MT; all the others (and their associated input lines) 
may be omitted if the features they provide are not needed. Once 
.MT has been invoked, none of the above macros (except .NS and 
.NE) can be reinvoked because they are removed from the table of 
defined macros to save space. 

4.12.11 Macros for the End of a Memorandum 

At the end of a memorandum (but not of a released paper), the 
signatures of the authors and a list of notations can be requested. 
The following macros and their input are ignored if the released­
paper style is selecte_d. A signature block macro is provided in the 
form: 

.FC [closing] 

.SG [arg] [1] 

.FC prints "Yours very truly" as a formal closing. It must be given 
before the .SG which prints the signer's name. A different closing 
may be specified as an argument to .FC .. SG prints the author 
name( s) after the formal closing (or the last line of text). Each name 
begins atthe center of the page. Three blank lines are left above each 
name for the actual signature. If no argument is given, the line of 
reference data (e.g., location code, department number, author's 
initials, and typist's initials) will not appear following the last line. 

4-62 

( 

( 

( 



) 

) 

) 

MM Reference 

A first argument is treated as the typist's initials, and is appended to 
the reference data. A null argument prints reference data with 
neither the typist's initials nor the preceding hyphen. 

If there are several authors and if the second argument is given, then 
the reference data is placed on the same line as the name of the first 
author, ratherthan on the line thathas the name of the last author. 

The reference data contains only the location and department 
number of the first author. Thus, if there are authors from different 
departments or from different locations, the reference data should 
be supplied manually after the invocation (without arguments) of 
the .SG macro. 

4.12.12 Copy to and Other Notations 

The notation macro has the form: 

.NS [arg] 
zero or more lines of the notation 
.NE 

After the signature and reference data, many types of notations may 
follow, such as a list of attachments or copy to lists. The various 
notations are obtained through the .NS macro, which provides for 
the proper spacing and for breaking the notations across pages, if 
necessary. 

The codes for arg and the corresponding notations are: 

4-63 



XENIX Text Processing 

Code 
.NS"" 
.NSO 
.NS 
.NS 1 
.NS 2 
.NS 3 
. NS 4 
. NS 5 
. NS 6 
. NS 7 
.NS 8 
.NS 9 
.NS "string" 

Notations 
Copy to 
Copy to 
Copy to 
Copy (with att.) to 
Copy (without att.) to 
Att . 
Atts . 
Enc . 
En cs . 
Under Separate Cover 
Letter to 
Memorandum to 
Copy (string) to 

If arg consists of more than one character, it is placed within 
parentheses between the words "Copy" and "to". For example: 

.NS "with att. 1 only" 

generates "Copy (with att. 1 only) to" as the notation. More than 
one notation may be specified before the .NE occurs, because a .NS 
macro terminates the preceding notation, if any. 

The .NS and .NE macros may also be used at the beginning following 
.AS and .AE to place the notation list on the Memorandum for File 
cover sheet. If notations are given at the beginning without .AS 2, 
they will be saved and output at the end of the document. 

4.12.13 Approval Signature Line 

The approval signature macro has the form: 

.AV "Jane Doe" 

It can be used to provide a space for an approval signature next to the 
printed name. 

4.12.14 Forcing a One-Page Letter 

( 

( 

At times it is useful to get a bit more space on the page, by forcing the ( 
signature or items within notations onto the bottom of the page, so 
that the letter or memo is just one page in length. This can be 

4-64 



) 

) 

) 

MM Reference 

accomplished by increasing the page length through the -rL noption, 
e.g. -rL90. This has the effect of making the formatter believe that 
the page is 90 lines long and therefore giving it more room than usual 
to place the signature or the notations. This will only work for a 
single-page letter or memo. 

4.12.15 Cover Sheet 

The coversheet macro has the form: 

.CS [pages] [other] [total] [figs] [this] [refs] 

The .CS macro generates a cover sheet in either the Technical 
Memorandum (TM) or released-paper style. All of the other 
information for the cover sheet is obtained from the data given 
before the .MT macro call. If a TM style is used, the .CS macro 
generates the' 'Cover Sheet for Technical Memorandum". The data 
that appears in the lower left corner of the TM cover sheet (the 
number of pages of text, the number of other pages, the total 
number of pages, the number of figures, the number of tables, and 
the number of references) is generated automatically. These values 
may be changed by supplying the appropriate arguments to the .CS 
macro. Any values that are omitted will be calculated automatically 
( 0 is used for other pages). If the released-paper style is used, all 
arguments to .CS are ignored. 

4.13 Reserved Names 

If you are extending, changing, or redefining existing MM macros, 
use the legal names listed in this section. The following conventions 
are used in this section to describe legal names: 

n Digit 
a Lowercase letter 
A Uppercase letter 
x Any letter or digit (any alphanumeric character) 
s Special character (any nonalphanumeric character) 

All other characters are literals (i.e., stand for themselves). 

Note that "request", "macro", and "string" names are kept by the 
formatters in a single internal table, so that there must be no 

4-65 



XENIX Text Processing 

duplication among such names. "Number register" names are kept 
in a separate table. 

4.13.1 Names Used by Formatters 

These are the names of the registers and requests used by nroff and 
troff. 

Requests 

Registers 

aa(mostcommon) 
an (only one, currently: .c2) 

aa(normal) 
.x (normal) 
.s(onlyone, currently:.$) 
% (page number) 

4.13.2 Ne.mes Used by MM 

These are the names of the macros, strings, and registers used by 
MM. 

Macros 

Strings 

AA (most common, accessible to user) 
A (Jess common, accessible to user) 
)x (internal, constant) 
>x(internal, dynamic) 

AA (most common, accessible to user) 
A (less common, accessible to user) 
] x (internal, usually allocated to specific functions 
throughout) 
}x (in tern al, more dynamic usage) 

Registers Aa( most common, accessible to users) 
An (common, accessible to user) 
A (accessible, set on command line) 
:x (mostly in tern al, rarely accessible, usually dedicated) 

4-66 

( 

( 



) 

) 

) 

MM Reference 

;x (internal, dynamic, temporaries) 

4.13.3 Names Used by eqn/neqn and tbl 

The equation preprocessors, eqn and neqn, use registers and string 
names of the form nn. The table preprocessor, thl, uses the 
following names: 

a... a+ a I nn #a ## #- #. ·a T& TW 

4.13.4 User-Definable Names 

None of the above may be used to define your own extensions. To 
avoid problems, use names that consist either of a single lowercase 
letter, or of a lowercase letter followed by anything other than a 
lowercase letter. The following is a sample naming convention, 
where a can be any letter: 

For macros 

For strings 

For registers 

use a lowercase letter, followed by an uppercase 
letter ( aA), or an uppercase letter followed by a 
lowercase letter (Aa). 

use a, followed by a parenthesis()), a bracket (]), 
or a brace ( }). 

use a lowercase letter followed by an uppercase 
letter(aA). 

4.13.5 Sample Extension 

The following is an example of how MM macro definitions may be 
extended. This sequence generates and numbers the pages of 
appendices: 

4-67 



XENIX Text Processing 

.nr Hu 1 

.nr aO 

.de aH 

.nr a+ 1 

.nr P 0 

.PH ""'Appendix \\na- \\\\\\\\nP'" 

.SK 

.HU "\\$1" 

After the above initialization and definition, ea.ch call of the form 
.aH "title" begins a new page (with the page header changed to 
"Appendix a -n ") and generates an unnumbered heading of 
"title," which, if desired, can be saved for the table of contents. 
Those who wish Appendix titles to be centered must, in addition, set 
the register He to 1. 

4.14 Errors 

When a macro discovers an error, a break occurs in processing. To 
avoid confusion regarding the location of the error, the formatter 
output buffer (which may contain some text) is printed and a short 
message is printed giving the name of the macro that found the 
error, the type of error, and the approximate line number (in the 
current input file) of the last processed input line. Processing 
terminates, unless the register D has a positive value. In the latter 
case, processing continues event.hough the output is guaranteed to 
be deranged from thatpointon. 

Note that the error message is printed by writing it directly to the 
user's terminal. If either tbl or eqn/neqn, or both are being used, 
and if the -olist option of the formatter causes the last page of the 
document not to be printed, a harmless "broken pipe" message 
results. 

4.14.1 Disappearance of Output 

This usually occurs because of an unclosed diversion (e.g., a missing 
.FE or.DE). Fortunately, the macros that use diversions are careful 
about it, and they check to make sure that illegal nestings do not 
occur. If any message is issued about a missing .DE or .FE, the 

4-68 

( 

( 



) 

) 

) 

MM Reference 

appropriate action is to search backwards from the termination point 
looking for the corresponding .DS, .DF, or .FS. 

The following command: 

grep -n "\.[EDFTJ[EFNQS]" files ... 

prints all the .DS, .DF, .DE, .FS, .FE, .TS, .1E, .EQ, and .EN macros 
found in the files, each preceded by its filename and line number in 
that file. This listing can be used to check for illegal nesting and/or 
omission of these macros. 

4.14.2 MM Error Messages 

Each MM error message consists of a standard part followed by a 
variable part. The standard part is of the form: 

ERROR:input line n 

The variable part consists of a descriptive message, usually 
beginning with a macro name. The variable parts are listed below in 
alphabetical order by macro name, each with a more complete 
explanation: 

Check TL, AU, AS, AE, MTsequence 

These macros for the beginning of a memorandum are out of 
sequence. 

AL:bad arg:value 

The argument to the .AL macro is not one of 1, A, a, I, or i. 
The incorrect argument is shown as value. 

CS:cover sheet too long 

The text of the cover sheet is too long to fit on one page. The 
abstract should be reduced or the indent of the abstract should 
be decreased. 

DS:too many displays 

More than 26 floating displays are active at once, i.e., have 

4-69 



XEMX Text Processing 

been accumulated butnotyetoutput. 

D S:missing FE 

A display starts inside a footnote. The likely cause is the 
omission (or misspelling) of a .FE to end a previous footnote. 

DS:missingDE 

.DS or .DF occurs within a display, i.e., a.D Ehas been omitted 
or mistyped. 

D E:no D Sor D F active 

.DE has been encountered but there has not been a previous 

.D Sor .D F to match it. 

FE:noFS 

.FE has been encountered with no previous .FS to match it. 

FS:missing FE 

A previous .FS was not matched by a closing .FE, i.e., an 
attempt is being made to begin a footnote inside another one. 

FS:missingDE 

A footnote starts inside a display, i.e., a .DS or .DF occurs 
without a matching .DE. 

H :bad arg:value 

The first argument to .H must be a single digit from 1to7, but 
value has been supplied instead. 

H:missingFE 

A heading macro (.Hor .HU) occurs inside afootnote. 

4-70 

( 

( 



) 

) 

MM Reference 

H :missing DE 

A heading macro (.Hor .HU) occurs inside a display. 

H :missing arg 

.H needs atleastl argument. 

HU :missing arg 

.HU needs 1 argument. 

LB:missing arg( s) 

.LB requires atleast4 arguments. 

LB:too many nested lists 

Another list was started when there were already 6 active lists. 

LE:mismatched 

.LE has occurred without a previous .LB or other list­
initialization macro. Although this is not a fatal error, the 
message is issued because there almost certainly exists some 
problem in the preceding text. 

LI:no lists active 

.LI occurs without a preceding list-initialization macro. The 
latter has probably been omitted, or has been separated from 
the .LI by an intervening.Hor .HU. 

ML :missing arg 

.ML requires atleastl argument. 

ND :missing arg 

.ND requires 1 argument. 

4-71 



XENIX Text Processing 

SA:bad arg:value 

The argument to .SA (if any) must be either 0 or 1. The 
incorrectargumentis shown as value. 

SG:missingDE 

.SG occurs inside a display. 

SG :missing FE 

.SG occurs inside a footnote. 

SG :no au tho rs 

.SG occurs without any previous .AU macro( s). 

VL:missingarg 

.VL requires atleastl argument. 

4.14.3 Formatter Error Messages 

Most messages issued by the formatter are self-explanatory. Those 
error messages over which the user has some control are listed 
below. 

Cannotdoev 

Caused by setting a page width that is negative or extremely 
short, setting a page length that is negative or extremely short, 
reprocessing a macro package (e.g. performing a .so to a macro 
package that was requested from the command line), or 
requesting the -sl option to troff on a document that is longer 
than ten pages. 

Cannot execute filename 

Given by the .! request if it cannot find the filename. 

4-72 

( 

( 

( 



MM Reference 

Cannot open filename 

) 
Issued if one of the files in the list of files to be processed 
cannot be opened. 

Exception word list full 

Too many words have been specified m the hyphenation 
exception list( via .hw requests). 

Line overflow 

The output line being generated was too long for the 
formatter's line buffer. The excess was discarded. See the 
"Word overflow" message below. 

Nonexistent font type 

A request has been made to mount an unknown font. 

Nonexistent macro file 

The requested macro package does not exist. 

Nonexistent terminal type 

The terminal options refers to an unknown terminal type. 

Out of temp file space 

Additional temporary space for macro definitions, diversions, 
etc. cannot be allocated. This message often occurs because of 
unclosed diversions (missing .FE or .DE), unclosed macro 
definitions (e.g., missing" .. "), or a huge table of contents. 

Too many page numbers 

The list of pages specified to the formatter-o option is too long. 

) Too many string/macro names 

4-73 



XEMX Text Processing 

The pool of string and macro names is full. Unneeded strings 
and macros can be deleted using the .rm request. 

Too manynumberregisters 

The pool of number register names is full. Unneeded registers 
can be deleted by using the .rr request. 

Word overflow 

4-74 

A word being generated exceeded the formatter's word buff er. 
The excess characters were discarded. A likely cause for this 
and for the' 'Line overflow" message above are very long lines 
or words generated through the misuse of \c or of the .cu 
request, or very long equations produced byeqn or neqn. 

( 

( 

( 



) 

) 

) 

MM Reference 

4.15 Summary of Macros, Strin~, and Number 
Registers 

The following is an alphabetical list of macro names used by MM. 
The first line of each item gives the name of the macro and a brief 
description. The second line shows the form in which the macro is 
called. Macros marked with an asterisk are not, in general, invoked 
directly by the user. They are "user exits" called from inside 
header, footer, or other macros. 

lC One-column processing 
.lC 

2C Two-column processing 
.2C 

AE Abstract end 
.AE 

AF Alternate format of' 'SubjectjD ate /From'' block 
.AF [company-name] 

AL Automatically-incremented list start 
.AL [type] [text-indent] [1] 

AS Abstract start 
.AS [arg] [indent] 

AT Author's title 
.AT[title] ... 

AU Author information 
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg] 

AV Approval signature 
.AV[name] 

B Bold 
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev] 

4-75 



XENIX Text Processing 

BE Bottom end 
.BE 

BI Bold/Italic ( .BI[bold-arg] [italic-arg] [bold] [italic] [bold] [italic] 

BL Bullet list start 
.BL[text-indent] [1] 

BR Bold/Roman 
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman] 

BS Bottom start 
.BS 

cs Coversheet 
.CS [pages] [other] [total] [figs] [this] [refs] 

DE Display end 
.DE 

DF Dis play floating start ( 
.D F [format] [fill] [right-indent] 

DL Dash list start 
.DL [text-indent] [1] 

DS Dis play static start 
.DS [format] [fill] [right-indent] 

EC Equation caption 
.EC[title] [override] [flag] 

EF Even-page footer 
.EF[arg] 

EH Even-page header 
.EH [arg] 

EN End equation display ( 
.EN 

4-76 



MM Reference 

EQ Equation display start 
.EQ [label] 

) 
EX Exhibit caption 

.EX [title] [override] [flag] 

FC Formal closing 
.FC [closing] 

FD Footnote default format 
.FD [arg] [1] 

FE Footnote end 
.FE 

FG Figure title 
.FG [title] [override] [flag] 

FS Footnote start 
.FS [label] 

) H Heading-numbered 
.H level [heading-text] [heading-suffix] 

HC Hyphenation character 
.H C [hyphenation-indicator] 

HM Heading mark style (Arabic or Roman numerals, or letters) 
.HM [ argl] ... [ arg7] 

HU Heading-unnumbered 
.HU heading-text 

HX Heading user exitX (before printing heading) 
.HX dlevel rlevel heading-text 

HY Heading user exit Y (before printing heading) 
.HY dlevel rlevel heading-text 

HZ Heading user exit Z (after printing heading) 
.HZ dlevel rlevel heading-text 

4-77 



XENIX Text Processing 

I Italic (underline in nroff) 
.I [italic-arg] [previous-fontrarg] [italic] [prev] [italic] [prev] 

IB Italic /Bold 
( .IB [ italic-arg] [bold-arg] [italic] [bold] [italic] [bold] 

IR Italic/Roman 
.IR [italic-arg] [Roman-arg] [italic] [Roman] [italic] [Roman] 

LB List begin 
.LB textrindent mark-indent pad type [mark] [LI-space] [LB-
space] 

LC Listrstatus clear 
.LC [listrlevel] 

LE List end 
.LE[l] 

LI List item 
.LI[mark] [1] 

ML Marked list start 
( 

.ML mark [ textrindent] [ 1 J 

MT Memorandum type 
.MT[type] [addressee] 
or.MT[4] [1] 

ND New date 
.ND new-date 

NE Notation end 
.NE 

NS Notation start 
.NS [arg] 

nP Double-line indented paragraphs 
( .nP 

4-78 



MM Reference 

OF Odd-page footer 
.OF[arg] 

) OH Odd-page header 
.OH [arg] 

OK Other keywords for TM coversheet 
.OK [keyword] ... 

OP Odd page 
.OP 

p Paragraph 
.P [type] 

PF Page footer 
.PF [arg] 

PH Page header 
.PH [arg] 

) PX Page-header user exit 
.PX 

R Return to regular (Roman) font( end underlining in nroff) 
.R 

RB Roman/Bold 
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold] 

RD Read insertion from terminal 
.RD [prompt] [diversion] [string] 

RF Reference end 
.RF 

RI Roman/Italic 
.RI[Roman-arg] [italic-arg] [Roman] [italic] [Roman] [italic] 

) RL Reference liststart 
.RL [ textrindent] [ 1] 

4-79 



XENIX Text Processing 

RP Produce reference page 
.RP[arg] [arg] 

RS Reference start 
.RS [string-name] 

S Settroffpointsize and vertical spacing 
.S [size] [spacing] 

SA Setadjustment(rightmarginjustification) default 
.SA [arg] 

SG Signature line 
.SG [ arg] [ 1] 

SK Skip pages 
.SK [pages] 

SP Space-vertically 
.SP [Jines] 

TB Table title 
.TB [title] [override] [flag] 

TC Table of contents 
.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2] [head3] 
[head4] [head5] 

'IE Table end 
.'IE 

TH Table header 
.TII[N] 

TL Title of memorandum 
.TL [charging-case] [filing-case] 

TM TechnicalMemorandum number(s) 
.TM [number] ... 

4-80 

( 

( 

( 



) 

TP Top-of-page macro 
.TP 

TS Table start 
.TS[H] 

TX Table-of-contents user exit 
.TX 

MM Reference 

TY Table-of-contents user exit( suppresses "CONTENTS") 
.TY 

VL Variable-item liststart 
.VL text-indent[mark-indent] [1] 

VM Vertical margins 
.VM [top] [bottom] 

WC Width control 
.WC [format] 

) 4.15.1 Stringis 

) 

The following is an alphabetic list of string names used by MM, 
giving for each a brief description and an initial default value. 

Ci Contents indent up to seven arguments for heading 
levels. 

F Footnote numberer. 
In nroff: \u \\n + ( :p \d 
In troff: \v'-.4m '\s-3\\n+ 9:p\s0\v' .4m' 

DT Date. The currentdate, unless overridden. 

EM Em dash string. Used by both nroff and troff 

HF Heading font list, up to seven codes for heading levels 1 
through 7 
3 3 2 2 2 2 2 (levels 1and2 bold, 3-7 underlined in nroff, 

4-81 



XENIX Text Processing 

HP 

italic in troff) 

Heading point size list, up to seven codes for heading 
levels 1 through 7 

Le TitleforLISTOFEQUATIONS 

Lf Title forLISTOFFIGURES 

Lt Title forLISTOFTABLES 

Lx Title forLISTOFEXHIBITS 

RE SCCS Release andMM 
Release Level 

Rf Reference numberer 

Rp Title for References 

Tm Trademark string places the letters "1M" half a line 
above the text that it follows 

4.15.2 Number Registers 

This section provides an alphabetical list of register names, giving 
for each a brief description, initial (default) value, and the legal 
range of values (where [m:n] means values from m to ninclusive). 

Any register having a single-character name can be set from the 
command line. An asterisk attached to a register name indicates that 
that register can be set only from the command line or before the 
MM macro definitions are read by the formatter. 

A Handles preprinted forms 
0, [0:2] 

Au Inhibit.sprinting of author's location, department, room, and 
extension in the from portion of a memorandum 
1, (0:1] 

4-82 

( 

( 

( 



) 

) 

) 

MM Reference 

C Copy type (Original, DRAFT, etc.) 
O(Original), [0:4] 

Cl Contents level (i.e., level of headings saved for table of 
contents) 
2, [0:7] 

Cp PlacementofListofFigures, etc. 
1 (on separate pages), [0:1] 

D Debugflag 
0, [0:1] 

De Display eject register for floating displays 
0, [0:1] 

Df Displayformatregisterforfloatingdisplays ·<' 

5, [0:5) 

D s Static display pre- and post-space 
1, [0:1] 

Ee Equation counter, used by .EC macro 
0, [O:? J, incremented by 1 for each .EC call. 

Ej Page-ejection flag for headings 
0 (no eject), [ 0:7] 

Eq Equation label placement 
0 (right-adjusted), [ 0:1 J 

Ex Exhibit counter, used by .EX macro 
0, [O:?], incremented by 1 for each .EX call. 

Fg Figure counter, used by .FG macro 
0, [ O:?], incremented by 1 for each .FG call. 

Fs Footnote space (i.e., spacing between footnotes) 
1, [O:?J 

4-83 



XENIX Text Processing 

H 1-H7 Heading counters for levels 1-7 
0, [ O:?], incremented by .H of corresponding level or .HU if at 
level given by register Hu. H2-H7 are reset to 0 by any heading 
atalower-numbered level. 

Hb Heading break level (after.Hand .HU) 
2, [0:7] 

He Heading centering level (for.Hand .HU) 
O(nocenteredheadings), [0:7] 

Hi Heading temporary indent( after.Hand .HU) 
1 (indentasparagraph), [0:2] 

Hs Heading space level (after.Hand .HU) 
2 (space only after .H 1 and .H 2), [0:7] 

Ht Heading type (for .H: single or concatenated numbers) 
0 (concatenated numbers: 1.1.1, etc.), [0:1] 

Hu Heading level (for unnumbered heading .HU) 
2 (.HU at the same level as .H 2), [0:7] 

Hy Hyphenation control for body of document 
0 (automatic hyphenation off), [ 0:1] 

L Length of page 
66, [20:?] (11i, [2i:?] introffthesevaluesmustbescaled. 

Le ListofEquations 
O(listnotproduced) [0:1] 

Lf ListofFigures 
1 (listproduced) [0:1] 

Li Listindent 
6, [O:?] 

Ls List spacing between items by level 
5 (spacing between all levels) 

4-84 

( 

( 

( 



MM Reference 

Lt List of Tables 
1 (list produced) [0:1] 

) 
Lx List of Exhibits 

1 (list produced) [ 0:1] 

N Numbering style 
0, [0:5] 

Np Numbering style for paragraphs 
0 (unnumbered) [ 0:1] 

0 Offset of page 
.75i, [O:?] (0.5i, [Oi:?] in 12-ofl 

Oc Table of Contents page numbering style 
O(lowercaseRoman), [0:1] 

Of Figure caption style 
O(periodseparator), [0:1] 

) p Page number, managed by MM. 
0, [O:?] 

Pi Paragraph indent 
5, [O:?] 

Ps Paragraph spacing 
1 (one blank space between paragraphs), [ O:?] 

Pt Paragraph type 
0 (paragraphs always leftrjustified), [ 0:2] 

s Point size 
10, [6:36] 

Si Standard indent for displays 
5, [O:?] 

) T Type of nroff output device 
0, [0:2] 

4-85 



XENIX Text Processing 

Tb Table counter 
0, [O:?], incremented by 1 for each .1Bcall. 

U Underlining style for.Hand .HU 
0 (continuous underline when possible), [0:1] 

W Width of page (line and title length) 
6i, [ 10:13~5] ( 6i, [ 2i:7 .54i] in iroff 

4-86 

( 

( 

( 



Chapter 5 
Using Nroff/Troff 

5.1 Introduction 1 

5.2 lnsertingCommands 2 

5.3 Point Sizes and Line Spacing 3 

5.4 Fonts and Special Characters 5 

5.5 Indents and Line Lengths 7 

5.6 Tabs 9 

5.7 Drawing Lines and Characters 10 

) 5.8 Strings 13 

5.9 Macros 14 

5.10 Titles, Pages and Numbering 16 

5.11 Number Registers and Arithmetic 18 

5.12 MacroswithArguments 20 

5.13 Conditionals 22 

5.14 Environments 24 

5.15 Diversions 24 



(1 

(1 

c 



) 

) 

) 

Using Nroff/Troff 

5.1 Introduction 

Nroff and troff are the XENIX text formatting programs for 
producing high-quality printed output on the lineprinter and 
phototypesetter, respectively. Commands in the two formatting 
programs nroff and troff are identical, although those specifications 
which .are impossible to achieve on a lineprinter-like changes in 
point size, font, or variable spacing-are either approximated or 
ignored by nroff. The output of nroff and troff may look dramatically 
different, but this is largely the result of the limitations of 
conventional lineprinters. In this chapter, the two programs will be 
treated together; the names nroff and troff are used synonymously. 
Commands not recognized by nroff or which result in significantly 
differentoutputwill be noted. 

Wherever possible, you should avoid using nroff or troff directly. In 
many ways, nroff and troff resemble computer assembly languages: 
they are powerful and flexible, but they require that many operations 
must be specified at a level of detail and complexity too difficult for 
most people to use effectively. That is why it is suggested that you 
use the MM macro package instead. If you must deal with specialized 
text, you can use the eqn macros for typesetting mathematics and 
the thl program for producing complex tables. Eqn and thl are 
discussed in Chapters 10and11 of this manual. 

For producing running text, whether or not it contains mathematics 
or tables, you will ordinarily want to use the MM macro package, 
described in Chapter 3, "Using the MM Macros" and Chapter 4, 
"MM Reference". 

All these macro packages offer the capability of meeting most 
formatting requirements. You may find you have little or no need to 
use nroff/troff directly. The macros define formatting rules and 
operations for specific styles of documents. The definitions are 
concise: in most cases two-letter commands. In those cases where an 
existing macro will not do the job, the solution is not to. write an 
entirely new set of nroff/troffinstructions from scratch, but to make 
small adaptations to macros you are already using. 

This chapter is meant to introduce you to the formatting possibilities 
of nroff/troff. It does not discuss every command or operation in 
detail. The emphasis is on demonstrating simple and commonly 
used specifications, with examples of some of the variations you may 

5-1 



XENIX Text Processing 

need to create. 

The following topics ace introduced in this tutorial: 

Specifying point size, fonts, and special chacacters 

Determining line spacing, line lengths, indents, and tabs 

Using string definitions and macros 

Specifying title and pagination styles 

Specifying conditionals, environments, and diversions 

5.2 Inserting Commands 

To use nroff or t.zoft'you intersperse formatting commands with the 
actual text you want printed, just as you did with MM commands 
described in the last chapter. You will notice that nroff and troff 
commands are in lowercase, so you will not confuse them with the 
MM macros. Most nroff and iroft' commands are placed on a line 
separate from the text itself, beginning with a period, one command 
per line. For example, if you had a file that contained the following 
lines: 

Some text . 
. ps 14 
Some more text. 

the .ps command would instructiroft'to change the pointsize, that is, 
the size of the letters being printed, to 14 point (one point is 1/72-
inch). Youroutputwould look like this: 

Some text. Some more text. 
If you were to use nroff to output this same file to the lineprinter, 
nroff would ignore the .ps command and you would see no difference 
in the size of your letters. 

Some nroff/iroft' commands do occur in the middle of a line. To 
produce 

This line contains font and point size changes. 

5-2 

( 

( 

( 



) 

Using Nroff/Troff 

you have to type 

This \fBline\fR cont.a.ins \fifont and \s+ 2point size\s-2 changes. 

The backslash character "\" is used to introduce nroff/troff 
commands and special characters within a line of text. 

5.3 Point Sizes and Line Spacing 

As we just saw, point size and vertical spacing are not normally 
controllable in nroff(lineprinter) output. In troff, the command .ps 
sets the pointsize. One point is 1/72-inch, so 6-pointcharacters are 
at most 1/12-inch high, and 36-point characters are 1/2-inch. There 
are 15 point sizes available, as illustrated: 

e polnl: In xanadu did Kubbla Khan ... 
7 poin\: In Xanadu did Kubhl& Khan ... 
8 point: In Xanadu did Ku bhla. Kha.n ... 
9 point: In Xanadu did Kubhla Khan ... 
10 point: In Xanadu did Kubhla Khan ... 
11 point: In Xanadu did Kubhla Khan ... 
12 point: In Xanadu did Kubhla Khan ... 

) 14 point: In Xanadu did Kubhla Khan ... 

16 point 18 point 20 point 

22 24 28 36 
If the number after.psis no tone of these legal sizes, it is rounded up 
to the next valid value, to a maximum of 36. If no number follows 
.ps, troff reverts to its previous size. Troff begins with a default point 
size of 10. 

Point size can also be changed in the middle of a line or even a word 
with the in-line command "\s". To produce 

The XENIX system is derived from the UNIX system. 

type 

The \s12XENIX\s8 system is derived from the \s12UNIX\s8 system. 

J The \s should be followed by a legal pointsize. An \sO causes the size 
to revert to its previous value. An \slOll means "size 10, followed 

5-3 



XENIX Text Processing 

by an 11". 

Relative size changes are possible. The following 

The \s+ 2XENIX\s-2 system 

increases the point size by two points, then restores it. The amount 
of the relative change is limited to asingle digit. 

Another feature to consider is the spacing between lines, which is set 
independently of the point size. Vertical spacing is measured from 
the bottom of one line to the bottom of the next. The command to 
control vertical spacing is .vs. For running text, it is usually best to 
set the vertical spacing about20%biggerthan the pointsize. 

For example, to use what typesetters call "9 on 11 ", that is, a point 
size of 9 with a vertical spacing of 11, you would insert the following 
commands: 

.ps g 

.vs llp 

If you do not specify a point size or vertical spacing, troff 
automaticallyuses 10on12. 

Point size and vertical spacing make a substantial 
difference in the amountof textpersquare inch. (This is 
12 on 14.) 
POlntalze and vel11cal spldng make asubstanllal dllreronce In Ille am>untortex\persqull1' lncb. Forexmq>le. 10 
on 12uses abouUwlceu muchspaoeu7on8. 'Ibis ls eon 7, which lsevenmialler, andpldmalotmore"'°rds per 

line. 

When you use the commands .ps and .vs without numbers, troff 
reverts to the previous size and vertical spacing. 

The .sp command can be used to get vertical space. Without a 
number, it gives you one blank line (one unit of whatever .vs has 
been set to). The .sp can be followed by a unitspecification: 

.Sp 2i 

means "two inches of vertical space". The command: 

.Sp 2p 

means ''two po in ts of vertical space''. The command: 

5-4 

( 

( 



) 

Using Nroff/Troff 

.sp 2 

means "two vertical spaces" of whatever size .vs is set to. Be careful 
to specify the correct unit of space. 

Troff also understands decimal fractions in most commands, so 

.sp 1.5i 

is a space of 1.5 inches. Scaling (designating a unit of measure such 
as inches, points, or picas) can also be used after .vs to define line 
spacing, and in fact after most commands that deal with physical 
dimensions. 

5.4 Fonts and Special Characters 

The phototypesetter is limited to fourdifferentfonts at anyone time. 
Normally three fonts (Roman, italic and bold) and one collection of 
special characters are permanently mounted. What these fonts will 
actually look like depends on your own typesetting equipment. Here 
are the Roman, italic, and bold character sets: 

abcdefghijklmnopqrstuvwxyz 0123456789 
ABCD EFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqratuvwxyz 0129456789 
ABCDEFGHIJKLMNOPQRS1VVWXYZ 
abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Troff prints in Roman by default, unless instructed otherwise. To 
switch into bold, use the .ft (font) command 

.ft B 

and for italics, 

.ft I 

To return to roman, use .ft R; to return to the previous font, 
whatever it was, use either .ft P or just .ft. The underline command 
.ul causes the next input line to print in italics. The .ul can be 
followed by a count to indicate that more than one line is to be 
italicized. 

) Fonts can also be changed within a line or word with the in-line 
command "\f". The words 

5-5 



XENIX Text Proeessing 

bold/ace text 

are produced with 

\ffibold\flface\CR text ( 
There are other fonts available besides the standard set, although 
only four can be mounted at any given time. The command .fp tells 
troff what fonts are physically mounted on the typesetter: 

.fp 3 H 

says that the Helvetica font is mounted on position 3. Appropriate 
.fp commands should appear at the beginning of your document if 
you do not use the standard fonts. 

It is possible to print a document by using font numbers instead of 
names. For example, \f3 and .ft3 mean "whateverfontis mounted 
at position 3". Normal settings are Roman font on 1, italic on 2, bold 
on 3, and special on 4. An approximation of bold font can also be 
created by overstriking letters with a slight offset. This is done with 
the command .bd. 

Special characters have four-character names beginning with"\(", 
and they may be inserted anywhere. In particular, Greek letters are 
all of the form "\( *- ", where "- " is an uppercase or lowercase 
Roman letter similar to the Greek. To get 

E( a x,B) - oo 

in troff we have to type 

\(•S(\(*a\(mu\(*b) \(\(->\(if 

which is a series of special characters: 

\( •S E 
( ( 
\(*a a 
\(mu x 
\( •b f3 
) ) 
\(- > -\(if 00 

You could also use the mathematical typesetting program eqn to (.· 
achieve the same effect: 

5-6 



) 

Using Nroff/Troff 

SIGMA ( alpha times beta ) - > inf 

Whether you choose to use eqn or the troff special character set 
should depend on how often you use Greek or other special 
characters. 

Nroff and troff treat each four-character name as a single character. 
Some characters are automatically translated into others: grave and 
acute accents ( apQ,strophes) become open and close single quotation 
marks ( "); the combination of single quotation marks is generally 
preferable to the double quotation mark character. ("). A typed 
minus sign becomes a hyphen-. To print an explicit minus sign, use 
"\- 11 • To print a backslash, use "\e" 

5.5 Indent.a and Line Lengths 

Troff starts with a default line length of 6.5 inches. To reset the line 
length, use the .11 (line length) command, as in 

.II Bi 

to indicate a line length of 6 inches. The length can be specified in 
the same ways as the space ( .sp) command, in inches, fractions of 
inches, or points. 

The maximum line length provided by the typesetter is 7 .5 inches. 
To use the full width, however, you will have to reset the default 
physical left margin, which is normally slightly less than one inch 
from the left edge of the paper. This is done with the page offset 
(.po) command: 

.po 0 

This sets the offset as far to the left as it will go. 

The indent (.in) command causes the left margin to be indented by a 
specified amount from the page offset. If we use .in to move the left 
margin in, and .11 to move the right margin to the left, we can make 
off set blocks of text. For example, 

5-7 



XENIX Text Processing 

.in 0.6i 

.II -0.6i 
text t.o be set into a block 
.II+ 0.6i 
.in -0.6i 

will create a block that looks like this: 

Pater noster qui est in caelis sanctificetur nomen 
tuum; adveniatregnum tuum; fiatvoluntas tua, sicut 
in caelo, et in terra ... Amen. 

Notice the use of+ and - to specify the amount of change. These 
change the previous setting by the specified amount, rather than just 
overriding it. The distinction is quite important: JI+ Ii makes lines 
one inch longer than current setting; .ll li makes them one inch long. 
If no argument is specified with .in, .ll, and .po, troff reverts to the 
previous value. 

To indent a single line, use the temporary indent (.ti) command. 
The default unit for .ti, as for most horizontally oriented commands 
such as .ll, .in, .po, is an em. An em is roughly the width of the letter 
m in the current point size. Although inches may seem a more 
intuitive measure to non typesetters, ems are a measure of size that is 
proportional to the currentpointsize. If you want to make text that 
keeps its proportions regardless of point size, you should use ems for 
all dimensions. Ems can be specified in the same way as points or 
inches: 

.ti 2.5m 

Lines can also be indented negatively if the indent is already 
positive: 

ti -0.3i 

causes the next line to be moved back three tenths of an inch. You 
can make a decorative initial capital, indent a whole paragraph, and 
move the initial letter back with a .ti command: 

P ater noster qui est in caelis sanctificetur nomen 
tuum; adveniat regnum tuum; fiat voluntas 

tua, sicut in caelo, et in terra .... Amen. 

This is achieved with the following: 

5-8 

( 

( 



) 

.11 -0.3i 

.fi 

.in+ 3i 

.ti -0.3i 

Using Nroff/Troff 

The P is made bigger with a "\s36P\s0". It also has been moved 
down from its normal position with a local motion, as described in 
Section 5.7, "Drawing Lines and Characters". 

5.6 Tabs 

Tabs can be used to produce output in columns, or to set the 
horizontal position of output. Typically, tabs are used only in 
unfilled text. Tab stops are set by default every I/2-inch from the 
current indent, but can be changed with the .ta command. To set 
stops every inch, for example, use: 

.ta Ii 2i 3i 4i 5i 6i 

The stops are leftrjustified, as they are on a typewriter, so lining up 
columns ofrightrjustified numbers can be painful. If you have many 
numbers, or if you need more complicated table layout, don't 
attempt to use nroff or troff commands. Use the thl program instead. 
(See Chapter7, "Formatting Tables".) 

For a handful of numeric columns, you can precede every number 
by enough blanks to make it line up when typed: 

.nf 

.ta Ii 2i 3i 
I tab 2 tab 3 

40 tab 50 tab 60 
700 tab 800 tab 900 
.fi 

Then change each leading blank into the string "\O". This is a 
character that does not print, but that has the same width as a digit. 
When printed, this will produce 

I 
40 

700 

2 
50 

800 

3 
60 

900 

5-9 



XENIX Text Processing 

It is also possible to fill up tabbed-over space with a character other 
than a space by setting the "tab replacement character" with the tab 
character ( .tc) command: 

.ta 1.5i 2.5i 

.tc \(ru 
Name tab Age tab 

produces 

Name ________ Age 

To reset the tab replacement character to a blank, use .tc with no 
argument. Lines can also be drawn with the \1 command, described 
below. 

5. 7 Drawing Lines and Characters 

Troff provides a way to pl~e characters of any size at any place, as in 
the examples Area = 11" r and the big P in the Paternoster (See 
Section 5.5). Commands can be used to draw special characters or to 
give your output a particular appearance. Most of these commands 
are reasonably straightforward, but look rather complicated. 

For example, without eqn, subscripts and superscripts are most 
easily done with the half-line local motions \u and \d. To go back up 
the page half a point-size, insert a \u at the desired place; to go down, 
insert a \d. Thus 

Area= \( *pr\u2\d 

produces 

Area= ?rr2 

To make the 2 smaller, bracket it with 

\s-2 ... \sO 

Since \u and \dare relative to the current point size, be sure to put 
them either both inside or both out.side the size changes, or the 
results will be unbalanced. 

If the space given by \u and \d doesn't look right, the \v command 
can be used to request an arbitrary amount of vertical motion. The 
in-line command 

5-10 

( 

( 



) 

) 

Using Nroff/Troff 

\v'( amount)' 

causes motion up or down the page by the specified amount. For 
example, to move the Pin Pater, the following is required: 

.tali 

.in + 0.6i \"move paragraph in 

.ll - 0.3i \"shorten lines 

.ti - 0.3i \"move P back 
\v'l'\s36P\s0\v'\-l'ater noster qui est 
in caelis ... 

The backslash\" is a troff command that causes the rest of the line to 
be ignored. I tis useful for adding comments to the macro definition. 

A minus sign, after "\v'" causes upward motion, while no sign or a 
plus sign causes downward motion. Thus "\v'- 11" causes an 
upward vertical motion of one line space. 

There are many other ways to specify the amount of motion: 

\v'O.li' 
\v'3p' 
\v'- 0.5m' 

and so on are all legal. Notice that the specifiers, i for inches, p for 
points or m for ems, go inside the quotation marks. Any character 
can be used in place of the quotation marks, as well as in any troff 
commands described in this section. 

Since troff does not take within-the-line vertical motions into 
account when figuring out where it is on the page, output lines can 
have unexpected positions if the left and right ends aren't at the 
same vertical position. Thus \v, like \u and \d, should always 
balance upward vertical motion in a line with the same amount in the 
downward direction. 

Arbitrary horizontal motions are also available: \his quite analogous 
to \v, except that its default scale is ems instead of line spaces. The 
specification \h '-0.li' causes a backwards motion of a 1 /10-inch. 

Frequently \his used with the width function \w to generate motions 
equal to the width of some character string. The construction 

\w'thing' 

5-11 



XEMX Text Processing 

is a number equal to the width of thing in machine units ( 1/432-
inch). All troff computations are actually done in these units. To 
move horizontally the width of an x, you can use: 

\h'\w'x'u' 

As we mentioned above, the default scale factor for all horizontal 
dimensions is m for ems, so here u for machine units must be 
specified, or the motion produced will be far too large. Nested 
quotation marks are acceptable to troff; be careful to supply the right 
number. 

There are also several special-purpose troff commands for local 
motion. We have already seen \0, which is an unpaddable 
whitespace of the same width as a digit. Unpaddable means that it 
will never be widened or split across a line by line justification and 
filling. There is also \(space), which is an unpaddable character the 
width of a space, \l which is half that width,.\·, which is one quarter 
of the width of a space, and\&, which has zero width. This lastone is 
useful, for example, when entering a text line which would 
otherwise begin with a dot{.). 

The command "\o", used like 

\o'set of characters' 

causes up to 9 characters to be overstruck, centered on the widest. 
This can be used for accents, as in: 

syst\o"e \( ga"me t\o"e \( aa"l\o"e \( aa"phonique 

which makes: 

systeme te'lephonique 

The accents are treated by troff as single characters. 

You can make your own overstrikes with another special 
convention, \z, the zero-motion command, which suppresses the 
normal horizontal motion after printing the single character x, so 
another character can be laid on top of it. Although sizes can be 
changed within \o, it centers the characters on the widest, and there 
can be no horizontal or vertical motions, so \z may be the only way to 
getwhatyou want. 

You can create rather ornate overstrikes with the bracketing 
function \b, which piles up characters vertically, centered on the 

5-12 

( 

( 

( 



) 

) 

) 

Using Nroff/Troff 

current baseline. Thus you can get big brackets by constructing 
them with piled-up smaller pieces: 

{ [ x ]} 

by typing in this: 

\b'\( lt\(lk\( lb'\b'\( lc\(lf x \b'\( re\( rf\b'\( rt\( rk\( rb' 

Troff also provides a convenient facility for drawing horizontal and 
vertical lines of arbitrary length with arbitrary characters. \l'Ii' draws 
a line one inch long, like this: . The length can be 
followed by the character to use if the _ isn't appropriate. For 
example, \l'0.5i.1 draws a half-inch line of dots: ............. The 
construction \L is entirely analogous, except that it draws a vertical 
line instead of horizontal. 

5.8 Strings 

Obviously, if a paper contains a large number of occurrences of an 
acute accent over a letter e, typing \o"e \'"for each occurrence would 
be a great nuisance. Fortunately, nroff and troff provide a facility for 
storing any string of text in a string definition. Strings are among the 
nroff and 1roff mechanisms that allow you to type a document with 
less effort and organize it so that extensive format changes can be 
made with few editing changes. Strings are defined with the define 
( .ds) command. Thereafter, whenever you need to use the string, 
you can replace it with the shorthand you have defined. For 
example, the line: 

.ds e \o"e'{" 

defines the string e to have the value e. 
String names may be either one or two characters long. To 
distinguish them from normal text, single-character strings must be 
preceded by"\*" and double-character strings by"\*(". Thus, to 
use the definition of the string e as above, we can say t\ *el\*ephone. 
If a string must begin with blanks, define it by using a double 
quotation mark to signal the beginning of the definition. For 
example, 

5-13 



XENIX Text Prooessing 

.ds xx " text 

defines the string "xx" as the word "text" preceded by several 
blanks. There is no trailing quote; the end of the line terminates the 
string. 

A string may actually be several lines long; if troff encounters a\ at 
the end of any line, it is thrown away and the next line added to the 
current one. So you can make a long string simply by ending each 
line but the last with a backslash: 

.ds xx this is a very long string\ 
continuing on the next line\ 
and on to the next 

Strings may be defined in terms of other strings, or even in terms of 
themselves. 

5.9 Macros 

In its simplest form, a macro is just a shorthand notation-somewhat 
like a string. For example, suppose we want every paragraph in a 
document to start with a space and a temporary indent of two ems: 

.sp 

.ti+ 2m 

To save typing, we could translate these commands into one macro: 

.P 

which troff would interpret exactly as 

.sp 

.ti+ 2m 

If you first define it with the .de command, the macro .P can replace 
the longer specification: 

.de P 

.sp 

.ti+ 2m 

The first line names the macro, in this case .P for paragraph; it is in 
uppercase to avoid conflict with any existing nroff or troff command. 

5-14 

( 

( 

( 



) 

) 

Using Nroff/Troff 

The last line marks the end of the definition. In between is the text, 
which is simply inserted whenever troff sees the command or macro 
call .P. A macro can contain any mixture of text and formatting 
commands. The definition of .P naturally has to precede its first use. 
Nam es are restricted to one or two characters. 

Using macros for commonly occurring sequences of commands not 
only saves typing, bu tit makes later changes much easier. Suppose 
we decide that the paragraph indent is too small, the vertical space is 
much too big, and roman font should be forced. Instead of changing 
the whole document, we need only change the definition of .P to 
something like 

.de P 

.sp 2p 

.ti+ 3m 

.ft R 

\" paragraph macro 

and the change takes effect everywhere the .P macro is invoked. 

As another example of a macro definition, consider these two which 
start and end a block of offset, unfilled text: 

.de BS 

.sp 

.nf 

.in + 0.3i 

.de BE 

.sp 

.fi 

.in \( mi0.3i 

\"start indented block 

\"end indented block 

Now we can surround text with the commands .BS and .BE to create 
indented blocks. Uses of .BS and .BE can be nested to get blocks 
within blocks. To change the indent, it is only necessary to change 
the definitions of .BS and .BE, not every occurrence of the indent in 
the entire document. 

The macro package MM, as well as the two specialized macro 
packages, thl and eqn, are simply very large collections of macro 
definitions which replace more cumbersome arrays of nroff and troff 
commands. One thing to keep in mind when you consider defining a 
new macro, is that unless you are doing something quite unusual, an 
MM macro probably already exists for that purpose. So check your 
documentation carefully before reinventing the wheel. 

5-15 



XENIX Text Processing 

5.10 Titles, Pages and Numbering 

None of the features described in this section are automatic. You 
may wish to copy these specifications literally until you feel more 
comfortable with these commands. For example, suppose you want 
to have a title at the top of each page. You have to give the actual 
title, along with instructions about when to print it, and directions 
for its appearance. First, a new page (.NP) macro can be created to 
process titles and the like at the end of one page and the beginning of 
the next: 

.de NP 
'bp 
'sp 0.5i 
.tl 'left top' center top'right top' 
'sp 0.3i 

To start at the top of a page, a begin page ( .bp) command should be 
included, which causes a skip to the top of the next page. Then we 
space down half an inch, use the title (.ti) command to print the title 
and space another 0.3 inches. 

To ask for .NP atthe bottom of each page, we need to specify that the 
processing for anew page should start when the text is within an inch 
of the bottom of the page. This is done with a when ( .wh) command: 

.wh \-li NP 

(Note that no dot is used before NP; this is simply the name of a 
macro, not a macro call.) The minus sign means "measure up from 
the bottom of the page,'' so- li means one inch from the bottom. 

The .wh command appears in the input outside the definition of .NP; 
typically the input would be 

.de NP 
macro defined here 

.wh - li NP 

As text is actually being output, nroff/iroffkeeps track of its vertical 
position on the page, and after a line is printed within one inch of the 
bottom, the .NP macro is activated. The .NP macro causes a skip to 
the top of the next page, then prints the title with the appropriate 

5-16 

( 

( 



) 

Using Nroff/Troff 

margins. All the input text collected but not yet printed is flushed 
out as soon as possible, and the next in put line is guaranteed to start a 
new line of output; a break is caused in the middle of the current 
output line when anew page is started. The leftover part of that line 
is printed at the top of the page, followed by the next input line on a 
new output line. Using 1 instead of dot ( .) for a command tells nroff 
and ttoffthatno break is to take place; the outputline currently being 
filled should not be forced out before the space or new page. For 
example, 'bp and 'spare used here instead of .hp and .sp. 

The list of commands that cause a break is short: 

.hp .hr .ce .fi .nf .sp .in .ti 

All others cause no break, regardless of whether you use a period ( . ) 
or a '. If you really need a break, add a .hr command at the 
appropriate place. 

If you change fonts or point sizes frequently , you may find that if 
you cross a page boundary in an unexpected font or size, your titles 
come out in that size and font instead of what you intended. 
Furthermore, the length of a title is independent of the current line 
length, so titles will come out at the default length of 6.5 inches 
unless you change it, which is done with the .It command. There are 
several ways to correct point sizes and fonts in titles. The simplest 
way is to change .NP to set the proper size and fontfor the title, then 
restore the previous values, like this: 

.ta .8i 

.de NP 
'hp 
'sp 0.5i 
.ft R \" set title font to Roman 
.ps 10 \" and size to 10 point 
.It 6i \" and length to 6 inches 
.ti 'left'center'right' 
.ps 
.ftp 
'sp 0.3i 

\" revert to previous size 
\" and to previous font 

This version of .NP does not work if the fields in the .ti command 
contain size or font changes. 

To get a footer atthe bottom of a page, you can modify .NP so it does 
some processing before the 'bp command, or split the job into a 

5-17 



XENIX Text Processing 

footer macro invoked at the bottom margin and a header macro 
invoked atthe top of the page. 

Output page numbers are computed automatically starting at 1, but 
no numbers are printed unless you ask for them. To get page 
numbers printed, include the character"%" in the .ti line at the 
position where you want the number to appear. For example 

.ti"-%-" 

centers the page number inside hyphens. You can set the page 
number at any time with either .hp n, which immediately starts anew 
page numbered n, or with .pn n, which sets the page number for the 
next page butdoesn'tcause askipto the new page. 

5.11 Number Registers and Arithmetic 

Troff uses number registers for doing arithmetic and defining and 
using variables. Number registers, like strings and macros, are 
useful for setting up a document so it is easy to change later, as well 
as for doing any sort of arithmetic computation. Like strings, 

( 

number registers have one- or two-character names. They are set by ( 
the .nr command, and are referenced by \nx (one-character name) , . 
or \n( xy( two-character name). 

There are quite a few pre-defined number registers maintained by 
troff, among them %for the current page number, .nl for the current 
vertical position on the page; .dy, .mo and .yr for the current day, 
month and year; and.sand .f for the current pointsize and font. Any 
of these can be used in computations like any other register, but 
some, like .s and .f, cannot be arbitrarily changed with an .nr 
command. 

In MM, most significant parameters are defined in terms of the 
values of a handful of number registers. These include the point size 
for text, the vertical spacing, and the line and title lengths. To set the 
point size and vertical spacing for the following paragraphs, for 
example, you could say 

.nr PS 9 

.nr VS 11 

This would set the point size to 9 and the vertical spacing to 11 
points. 

5-18 

( 



) 

) 

The paragraph macro .Pis defined as follows: 

.ta 1i 

.de.P 

.ps \\n(PS 

.vs \\n(VSp 

.ft R 

.sp 0.5v 

.ti+ 3m 

\" reset size 
\"spacing 
\"font 
\" half a line 

Using Nroff/Troff 

This sets the font to Roman and the point size and line spacing to 
whatever values are stored in the number registers PS and VS. 

Two backslashes are required to quote a quote. That is, when nroff 
or troff originally read the macro definition, they peel off one 
backslash to see what is coming next. To ensure that another is left 
in the definition when the macro is actually used, we have to put two 
backslashes in the definition. If only one backslash is used, point 
size and vertical spacing will be frozen at the time the macro is 
defined, not when it is used. 

Protection with extra backslashes is only needed for \n, \*,\$,and\ 
itself. Commands like \s, \f, \h, \v, and so on do not need an extra 
backslash, since they are converted by nroff and troff to an internal 
code when they are read. 

Arithmetic expressions can appear anywhere that a number is 
expected. For example, 

.nr PS \ \n( PS-2 

decrements PS by 2. Expressions Ca.Jl use the arithmetic operators 
+ , - , *, /, %(mod), the relational operators >, > =, <, < =, =, 
and!= (not equal), and parentheses. 

There are a few things to consider in using number register 
arithmetic. First, number registers hold only integers. Nroff/troff 
arithmetic uses truncating integer division. Second, in the absence 
of parentheses, evaluation is done left,. to-right without any operator 
precedence, including relational operators. Th us 

7*-4+ 3/13 

becomes "- 1 ". Number registers can occur anywhere in an 
expression, and so can scale indicators like p, i, m, and so on. 
Although integer division causes truncation, each number and its 

5-19 



XENIX Text Processing 

scale indicator is converted to machine units ( 1/432-inch) before 
any arithmetic is done, so li/2u evaluates to 0.5i correctly. 

The scale indicator u (for "units") often has to appear when you 
wouldn't expect it--in particular, when arithmetic is being done in a 
context that implies horizontal or vertical dimensions. For example, 

.11 7i/2u 

A safe rule is to attach a scale indicator to every number, even 
constants. 

For arithmetic done within a .nr command, there is no implication of 
horizontal or vertical dimension, so the default units are units, and 
7i/2 and 7i/2u mean the same thing. Thus 

.nr ll 7i/2 

.ll Ou 

is sufficiently explicit as long as you use u with the .II command. 

5.12 Macros with Arguments 

You can define macros that can change from one use to the next 
according to parameters supplied as arguments. To make this work, 
you need two things: first, when you define the macro, you must 
indicate that some parts of it will be provided as arguments when the 
macro is called. Second, when the macro is called you must provide 
actual arguments to be plugged into the definition. 

To illustrate, let's define a macro .SM that will print its argument two 
points smaller than the surrounding text. The definition of .SM is 

.de SM 
\s-2\\$1 \s+ 2 

Within a macro definition, the symbol \\Sn refers to the nth 
argument that the macro was called with. Thus \\$1 is the string to 
be placed in asmaller point size when .SM is called. 

The following definition of .SM permits optional second and third 
arguments that will be printed in the normal size: 

.de SM 
\\$3\s-2\\$1 \s+ 2\\$2 

5-20 

( 

( 

( 



) 

) 

Using Nrdf/Trofl 

Argumenta not provided when the macro is called are treated as 
empty. It is convenient to reverse the order of argumenta because 
trailing punctuation is much more common than leading. The 
number of argumenta that a macro was called with is available in 
numberregister$. 

For example, let's define a macro .BD to create a bold Roman for 
troff command names in text. It combines horizontal motions, 
width computations, and argument rearrangement . 

. de BD 
\&\\$3\fl \\$1 \h'\-\w'\\$1'u+1 u'\\$1 \fP\\$2 

The \h and \w commands need no extra backslash, as we discussed 
earlier in this section. The \&is there in case the argument begins 
with a period. 

Two backslashes are needed with the \\$n commands to protect one 
of them when the macro is being defined. Consider a macro called 
.SH which produces section headings rather like those in this paper, 
with the sections numbered automatically, and the title in bold in a 
smaller size. You would use itin this form: 

.SH "Section title ... " 

If the argument to a macro is to contain spaces, then it must be 
surrounded by double quotation marks. 

Here is the definition of the .SH macro: 

.ta .75i 1.15i 

.nr SH 0 

.de SH 

.sp 0.3i 

.ft B 

.nr SH \\n( SH+ 1 

.ps \\n(PS- 1 
\\n( SH. \\$1 
.ps \\n(PS 
.sp 0.3i 
.ft R 

\"initialize section number 

\"increment number 
\"decrease PS 
\" number. title 
\"restore PS 

The section number is kept in number register SH, which is 
incremented each time just before it is used. Note that a number 

5-21 



XENIX Text Processing 

register may have the same name as a macro without conflict, but a 
string may not. 

We used \\n(SH instead of \n( SH and \\n(PS insteadof\n(PS. Ifwe 
had used \n( SH, we would get the value of the register at the time ( 
the macro was defined, not at the time it was used. Similarly, by 
using \\n(PS, we getthe pointsize atthe time the macro is called. 

As an example that does not involve numbers, recall the .NP macro 
which hada 

.ti 'left'center'right' 

We could make these into parameters by using instead 

.ti '\\•(LT'\\*( CT'\\•(RT' 

so the title comes from three strings called LT, CT and RT. If these 
are empty, then tl1e title will be a blapk line. Normally CT would be 
set with something like 

.ds CT - %-

bu tyou can also supply private definitions for any of the strings. 

5.15 Conditionals 

To cause the .SH macro to leave two extra inches of space just before 
section 1, but nowhere else, you can put a test inside the .SH macro 
to determine whether the section number is 1, and add some space if 
it is. The .if command provides a conditional test just before the 
heading line is output: 

.if \\n(SH=l .sp 2i \" first section only 

The condition after the .if can be any arithmetic or logical 
expression. If the condition is logically true, or arithmetically 
greater than zero, the rest of the line is treated as if it were text. If the 
condition is false, or zero or negative, the rest of the line is skipped. 
It is possible to do more than one command if a condition is true. 
Suppose several operations are to be done before section 1. One 
possibility is to define a macro .Sl and invoke it if we are about to do 
section 1, as determined by an .if:. 

5-22 

( 

( 



) 

) 

) 

Using Nroff/Thoff 

.de Sl 
--- processing for section 1 ---

.de SH 

.if \\n(SH=l "Sl 

An alternate way is to use the extended form of the .if, like this: 

.if \\n(SH=l \{--- processing 
for section 1 ----\} 

The braces\{ and \}mustoccurin the positions shown or you will get 
unexpected extralines in your output. 

Nroff and troff also provide an if-else construction. A condition can 
be negated byprecedingitwith !; we getthe same effect as above by 
using 

.if !\\n(SH>l .Sl 

There are a handful of other conditions that can be tested with .if. 
For example, you may need to determine if the current page is even 
or odd. The following conditionals give facing pages different titles 
when used inside an appropriate new page macro . 

.if e . tl "even page title" 

.if o .tl "odd page title" 

Two other conditions, which you will find useful when you need to 
process text for both lineprinter and typesetter, are n and t. These 
can be used to indicate conditions dependent on whether troff or 
nroff are being invoked . 

.if t troff input .. . 

.if n nroff input .. . 

Finally, string comparisons may be made in an .if statement. The 
following comparison does "input" if string 1 is the same as string 2: 

e&.if 'string! 'string2' input 

The character separating the strings can be anything reasonable that 
is not contained in either string. The strings themselves can 
reference strings with\*, arguments with\$, and so on. 

5-23 



XENIX Text Processing 

5.14 Environments 

In an earlier section, the potential problem of going across a page 
boundary was mentioned: parameters like size and font for a page 
title may be different from those in effect in the text when the page 
boundary occurs. Nroff/troff provides a way to deal with this and 
similar situations. There are three environments that have 
independently controllable versions of many of the parameters 
associated with processing, including size, font, line and title 
lengths, fill or no-fill mode, tab stops, and even partially collected 
lines. Thus the titling problem may be solved by processing the main 
text in one environment and titles in a separate environment with its 
own suitable parameters. 

The environment command .ev n shifts to environment n; n must 
be 0, 1 or 2. The command .ev with no argument returns to the 
previous environment. Environment names are maintained in a 
stack, so calls for different environments may be nested and called in 
order. If, for example, the main text is processed in environmentO, 
which is where troff begins by default, we can modify the new page 
macro .NP to process titles in environmentl like this: 

.de NP 

.ev 1 

.lt 6i 

.ft R 

.ps 10 

... any other processing ... 

.ev 

'\'shift to new environment 
\"set parameters here 

\"return to previous environment 

It is also possible to initialize the parameters for an environment 
outside the .NP macro, but the version shown keeps all the 
processing in one place to make it easier to understand and change. 

5.15 Diversions 

In page layout there are numerous occasions when it is necessary to 
store some text for a period of time without actually printing it. 
Footnotes are the most obvious example: the text of the footnote 
usually appears in the input long before the place on the page where 
it is to be printed is reached. In fact, the place where it is output 

5-24 

( 

( 

( 



) 

) 

) 

Using Nroff/'I'roff 

normally depends on how big it is. The footnote text must be 
preprocessed at least to the extent that its size is determined. 

Nroff and troff provide a mechanism called a diversion for doing this 
processing. Any part of the output may be diverted into a macro 
instead of being printed, and then at some convenient time the 
macro may be put back into the input. The command .di xy begins a 
diversion. All subsequent output is collected into the macro xy until 
the command .di with no arguments is encountered. This terminates 
the diversion. The processed text is available at any time thereafter, 
simply by giving the command: 

.xy 

The vertical size of the last finished diversion is contained in the 
built-in number register dn. 

For example, suppose we want to implement a keep-release 
operation, so that text (such as a figure or table) between the 
commands .KS and .KE will not be split across a page boundary. 
Clearly, when a .KS is encountered, we have to begin diverting the 
output so we can find out how big it is. Then when a .KE is seen, we 
decide whether the diverted text will fit on the current page, and 
print it either there if it fits, or at the top of the next page if itdoesn 't. 
We could use the following to define .KS and .KE: 

.de KS 

.hr 

.ev 1 

.fi 

.di XX 

.de KE 

.br 

.di 

.if \\n( dn >=\\n( .t .bp 

.nf 

.xx 

.ev 

\"start keep 
\" start fresh line 
\"collect in new environment 
\" make it filled text 
\" collect in XX 

\"end keep 
\" get last partial line 
\" end diversion 
\" hp if doesn't fit 
\" bring it back in no-fill 
\"text 
\"return to normal environment 

Recall that number register nl is the current position on the output 
page. Since output was being diverted, this remains at its value when 
the diversion started. The amount of text in the diversion is stored 

5-25 



XENIX Text Processing 

in dn. Another built-in register, .tis the distance to the next trap, 
which we assume is at the bottom margin of the page. If the 
diversion is large enough to go past the trap, the .if is satisfied, and a 
.bp is issued automatically. In either case, the diverted output is then 
brought back with .XX. It is essential to bring it back in no-fill mode 
so nroff/troffwill do no further processing on it. 

The definition of .KS and .KE is only intended as an example to 
demonstrate the power of diversions. You will find the .KS and .KE 
macros already defined in the MM macro package. 

5-26 

( 

( 

( 



) 

Chapter 6 
Nroff/Troff Reference 

6.1 Introduction 1 
6.1.1 Invoking nroff and troff 1 
6.1.2 Technicallnformation 2 

6 .2 Basic Formatting Requests 4 
6.2.1 Font and Character Size Control 4 
6.2.2 Page Control 6 
6.2.3 Text Filling, Adjusting, and Centering 7 
6.2.4 VerticalSpacing 9 
6.2.5 Line Length and Indenting IO 
6.2.6 Tabs, Leaders, and Fields 10 
6.2.7 Hyphenation 12 
6.2.8 Three Part Titles 12 
6.2.9 OutputLine Numbering 13 

) 6.3 Character Translations, Overstrike, and Local Motions 13 

) 

6.3.1 Input/Output Conventions and Character Translations 13 
6.3.2 Local Motions and the Width Function 15 
6.3.3 Overstrike, Bracket, Linc--drawing, 

and Zero-width Functions 16 

6 .4 Processing Control Facilities 17 
6.4.1 Macros, Strings, Diversions, and Position Traps 17 
6.4.2 Number Registers 21 
6.4.3 Conditional Acceptance oflnput 22 
6.4.4 EnvironmentSwitching 23 
6.4.5 Insertions From the Standard Input 23 
6.4.6 Input/OutputFile Switching 24 
6.4.7 MiscellaneousRequests 24 

6.5 OutputandErrorMessages 25 

6.6 Summary of Escape Sequences and Number Registers 25 
6.6.l Escape Sequences for Characters, Indicators, 

and Functions ~:') 

6.6.2 Predefined General Number Registers 27 



6.6.3 Predefined Read-Only Number Registers 27 

( 

( 



) 

) 

Nroff/Troff Reference 

6.1 Introduction 

Nroff and troff are the XENIX text processing formatting programs. Nroff 
can be used to output text to terminals, lineprinters, and letter-quality 
printers. Troff can be used to output text to a number of phototypesetters 
and laser printers. Beth programs use identical commands, which are 
interspersed with lines of text. The commands used by both programs allow 
you to control the style of headers and footers, footnotes, paragraphs, and 
sections. You may specify font and point size, spacing, multiple column 
output, and local motions to create overstriking and line drawing effects. 

Because nroff and troff are compatible with each other, it is almost always 
possible to prepare input acceptable to both. By using conditional input, you 
may add commands which are specific to either program. 

6.1.l Invoking nroff a.nd troff 

The general form of invoking the formatters on the command line is: 

nroff optiona filea 

or 

troff optiona files 

where options represents any of a number of option arguments and files 
represents a list of files containing the document to be formatted. An 
argument consisting of a single minus sign (- ) is taken to be a filename 
corresponding to the standard input. If no filenames are given, input is 
taken from the standard input. The options may appear in any order so long 
as they appear before the filenames. They are: 

-olist 

-nN 

-sN 

Prints only pages whose page numbers appear in list, which 
consists of comma-separated numbers and number ranges. A 
number range has the form N- Mand means pages N through 
M; an initial-N means from the beginning to page N, and a final 
N- means from N to the end. 

Numbers firstgenerated page N. 

Stops every N pages. Nroff will halt prior to every N pages 
(default N I) to allow paper loading or changing, and resume 
upon receipt of a newline. Troff will stop the phototypesetter 
every N pages, produce a trailer to allow changing cassettes, and 
will resume after the phototypesetter' 'start'' button is pressed. 

) -m name Prepends the macro file fusrflib ftmac. nameto the inputfiles. 

-cname Same as -mname, but uses a compacted form of 
/usr/lib jtma c. name for efficiency. 

6-1 



XENIX Text Processing Guide 

-raN Registeraissetto N. 

-i Reads the standard input after the inputfiles are exhausted. 

-q Invokes the simultaneous input-outputmode of the rd request. 

The following options are recognized by nroff only: 

-Tname Specifies the name of the output terminal type. 

-e Produces equally-spaced words in adjusted lines, using full 
terminal resolution. 

The following options are recognized by troff only: 

-t Directs o'1tput to the standard output instead of the 
phototypesetter. 

-f Refrains from feeding out paper and stopping phototypesetter 
atthe end of the run. 

-w Waits until phototypesetter is available, if currently busy. 

-b Reports whether the phototypesetter is busy or available. No 
text processing is done. 

-a Sends a printable ASCII approximation of the results to the 
standard output. 0 

-pN Prints all characters in pointsize Nwhile retaining all prescribed 
spacings and motions, to reduce phototypesetter elapsed time. 

Note thateach option must be invoked as a separate argument. 

6.1.2 Technical Information 

( 

( 

The input to the formatters consists of text lines interspersed with control 
lines thats et parameters or otherwise control later processing. Control lines 
begin with a" control character", usually a period (.) or a single quotation 
mark ( '), followed by a one- or two-character name that specifies a basic 
"request" or the substitution of a user-defined "macro" in place of the 
control line. The single quotation mark control character (')suppresses the 
"break function," which is the forced output of a partially filled line caused 
by certain requests. The control character may be separated from the 
request or macro name by whitespace (spaces and/or tabs) for esthetic 
reasons. Names must be followed by either a space or a newline. Control (.• 
lines with unrecognized names are ignored. 

Various special functions may be introduced anywhere in the input by 
means of an "escape" character, normally the backslash(\). For example, 
the function "\nR" causes the interpolation of the contents of the number 

6-2 



) 

) 

) 

Nroff/Troff Reference 

register R in place of the function; here R is either a single character name as 
in \oz, or a left-parenthesis-introduced, two-character name as in \n( zz. 

Troff uses 432 units to the inch, corresponding to the Wang Laboratories 
phototypesetter which has a horizontal resolution of 1/432-inch and a 
vertical resolution of 1/144-inch. Nroff uses 240 units to the inch 
internally, corresponding to the least common multiple of the horizontal 
and vertical resolutions of various typewriter-like output devices. Troff 
rounds horizontal and vertical numerical parameter Input to the actual 
horizontal and vertical resolution of the typesetter. Nroff similarly rounds 
numerical input to the actual resolution of the output device indicated by 
the -Toption. 

Both Nroff and troff accept numerical input with the appended scale 
indicators shown in the following table, where Sis the current type size in 
points, Vis the current vertical line spacing in basic units, and C is a nominal 
character width in basic units, as shown below: 

Scale Num her of basic units 
Indicator Meanin11: Troff Nroff 

i Inch 432 240 
c Centimeter 432x50/127 240x50/127 
p Pica= 1 /16 inch 72 240/6 
m Em=Spoints 6xS c 
n En=Em/2 3xS C,sameasEm 
p Point= 1/72 inch 6 240/72 
u Basic unit 1 1 
v Vertical line space v v 

none Default 

In nroff, both the em and the en are taken to be equal to the C, which is 
output-device dependent; common values are 1/10- and 1/12-inch. Actual 
character widths in nroff need not be all the same and constructed 
characters such as - > (--+) are often extra wide. The default scaling is ems 
for the horizontally-oriented requests and functions, including: 

.II .in .ti .ta .It .po .me \h \I; 

Vs is the scaling for the vertically-oriented requests and the following 
functions: 

.pl-.wh .ch .dt .sp .sv .ne .rt .ev \v \x \L 

pis the ·scale for the .vs request; and u is the scale for the requests .nr, .if, 
and .ie. All other requests ignore any scale indicators. When a number 
register containing an already appropriately scaled num her is interpolated to 
provide numerical input, the unitscale indicator u may need to be appended 
to prevent an additional inappropriate default scaling. The number Nmay 
be specified in decimal-fraction form but the parameter finally stor~d is 
rounded to an integer number of basic units. 

The "absolute"position indicator (~may be prepended to a number Nto 
generate the distance to the vertical or horizontal place N. For vertically 

6-3 



XENIX Text Processing Guide 

oriented requests and functions, INbecomes the distance in basic units from 
the current vertical place on the page or in a' 'diversion'' to the vertical place 
N. For all other requests and functions, IN becomes the distance from the 
currenthorizontal place on the input line to the horizontal place N. 

For example, 

.sp p.2c 

will space in the required direction to 3.2 centimeters from the top of the 
page. Wherever numerical input is expected, an expression involving 
parentheses, the arithmetic operators ( +, - , /. •, %) and the logical 
operators ( <, >, < ==; > ==; ==; , & (and), : (or)) may be used. Except 
where controlled by parentheses, evaluation of expressions is left-to-right; 
there is no operator precedence. In the case of certain requests, an initial+ 
or - is stripped and interpreted as an increment or decrement indicator 
respectively. 

For example, if the num her register x contains 2 and the currentpointsize is 
10, then 

.II ( 4.25i+ OP+ 3)/2u 

sets the line length to 1/2 the sum of 4.25 inches+ 2 picas+ 30 points. 

Note: numerical parameters are indicated here in two ways. ± Nmeans that 
the argument may take the forms N, +N, or- Nand thatthe corresponding 
effect is to set the affected parameter to N, to increment it by N, or to 
decrement it by Nrespectively. Plain Nmeans thatan initial algebraic sign is 
not an increment indicator, but merely the sign of N. Generally, 
unreasonable numerical input is either ignored or truncated to a reasonable 
value. For example, most requests expect to set parameters to non­
negative values; exceptions are .sp, .wh, .ch, .nr, and .if. The requests .ps, 
.ft, .po, .vs, .ls, .II, .in and .It restore the previous parameter value in the 
absence of an argument. 

Single-character arguments are indicated by single lowercase letters, and 
one- or two-character arguments are indicated by a pair of lowercase letters. 
Character string arguments are indicated by multicharacter mnemonics. 

6.2 Basic Formatting Requests 

The following sections describe the commonly used nroff and troff 
formatting requests. 

6.2.1 Font and Character Size Control 

The troff character set includes a regular character set plus a Special 
Mathematical Font character set-each having 102 characters. All ASCII 
characters are included, with some on the Special Font. With three 
exceptions, the ASCII characters are input as themselves, and non-ASCII 
characters are input in the form\( xx where xx is a two-character name. The 

6-4 

( 

( 

( 



) 

) 

) 

Nroff/Troff Reference 

three ASCII exceptions are mapped as follows: 

ASCII Input 
Character 

Printed by troff 
Name 
acute accent 
grave accent 
mmus 

The characters',', and- maybe inputas \',\',and\- respectivelyorbytheir 
names. The ASCII characters@, #, ", ', ', <, >, , {, }, , ·,and _exist only 
on the Special Font and are printed as a I-em space if that font is not 
mounted. Nroff understands the entire troff character set, but can in 
general print only ASCII characters, such characters as can be constructed 
by overstriking or other combinations, and those that can reasonably be 
mapped into other characters. The exact behavior is determined by a 
driving table prepared for each device. The characters ', ', and_ print as 
themselves. The default mounted fonts are Roman (R), italic( I). bold (B). 
and the Special Mathematical Font( S) on physical typesetter positions 1, 2, 
3, and 4 respectively. 

The current font, initially Roman, may be changed (among the mounted 
fonts) by use of the .ft request, or by imbedding at any desired point either 
\fx,\f(xx, or\fNwhere zand zzare the name of amounted font and Nis a 
numerical font position. It is not necessary to change to the Special font; 
characters on that font are handled automatically. A request for a named 
but unmounted font is ignored. Troff can be informed that any particular 
font is mounted by use of the .fp request. The list of known fonts is 
installation-dependent. Nroff understands font control and normally 
underlines characters thatare italicized. 

Character point sizes are typically in the range 6-36 ( 1/12 to 1/2-inch). The 
.ps request is used to change or restore the point size. Alternatively the 
point size may be changed between any two characters by imbedding a \sN 
at the desired point to set the size to N, or a \s± N ( l:S;N:S;9) to 
increment/decrement the size by N; \so restores the previous size. 
Requested point size values thatare between two valid sizes yield the larger 
of the two. The current size is available in the .s register. Nroff ignores type 
size control. 

A listof fontandsize control commands follows: 

.ps 

.SS N 

Has an initial value of 10. Point size set to± N. Alternatively 
im bed \sN or \s± N. Any positive size value may be requested; 
if invalid, the next larger valid size will result, with a maxim um 
of 36. A paired sequence+ N, -Nwill work because the previous 
requested value is also remembered. Ignored in nroff. If no 
argument is given, .ps has the previous value. 

Has an initial value of 12/36 em. Space-character size is set to 
N/36 ems. This size is the minimum word spacing in adjusted 
text. Ignored in nroff. If no argument is specified, the request is 

6-5 



XENIX Text Processing Guide 

ignored . 

. cs F NM Initially off. Constant character space (width) mode is set on for 
font F (if mounted); the width of every character will be taken 
to be N/36 ems. If Mis absent, the em is that of the character's 
point size; if M is given, the em is M points. All affected 
characters are centered in this space, including those with an 
actual width larger than this space. Special Font characters 
occurring while the current font is Fare also so treated. If Nis 
absent, the mode is turned off. The mode must be in effect when 
the characters are physically printed. Ignored in nroff • 

. bd F N Initially off. The characters in font F will be artificially 
emboldened by printing each one twice, separated by N-1 basic 
units. A reasonable value for Nis 3 when the character size is in 
the vicinity of 10 points. If N is missing the em holden mode is 
turned off. The mode must be in effect when the characters are 
physically printed. Ignored in nroff • 

. bd S F N Initially off. The characters in the Special Font will be 
emboldened whenever the current font is F. The mode must be 
in effect when the characters are physically printed. 

.ft F 

.fpNF 

Initially Roman. Font changed to F. Alternatively, im bed \fF . 
The font name Pis reserved to mean the previous font. If no 
argument is specified, previous font is ass um ed. 

InitiallyR, I, B, S.Fontposition. Thisisastatementthatafont 
named Fis mounted on position N( 1-4). It is a fatal error if Fis 
not known. The phototypesetter has four fonts physically 
mounted. Each font consists of a film strip which can be 
mounted on a numbered quadrant of a wheel. This request is 
ignored if no arguments are given. 

6.2.2 Page Gmtrol 

Top and bottom margins are not automatically provided. It is standard 
procedure to define two macros and set traps for them at vertical positions 0 
(top) and -N( Nfrom the bottom). A pseudo-page transition onto the first 
page occurs either when the first break occurs or when the firstnondiverted 
text processing occurs. Arrangements for a trap to occur at the top of the 
first page must be completed before this transition. 

.pl±N 

6-6 

Page length set to ± N, initially 11 inches. The internal 
limitation is about 75 inches in troff and about 136 inches in 
nroff. The current page length is available in the .pregister. The 
default scale indicator is v. If no argument is given, 11 inches is 
assumed. 

( 

( 



) 

) 

.bp±N 

Nroff/Troff Reference 

Begin page, initially N=l. The current page is ejected and anew 
page is begun. If± Nis given, the new page number will be± N. 
The default scale indicator is v. 

.pn± N Page number, initially N=l. The next page (when itoccurs) will 
have the page number± N. A .pn must occur before the initial 
pseudo-page transition to effect the page number of the first 
page. The current page number is in the %register . 

. po± N Page offset, initiallyO. The currentleftmargin is set to± N. The 
troff initial value provides about 1 inch of paper margin 
including the physical typesetter margin of 1/27-inch. In troff 
the maximum line-length+ page-offset is about 7.54 inches. 
The current page offset is available in the .o register . 

. ne N Need Nvertical space. If the distance D to the next trap positio1. 
is less than N, a forward vertical space of size D occurs, which 
will spring the trap. If there are no remaining traps on the page, 
Dis the distance to the bottom of the page. If D<V, another line 
could still be output and spring the trap. In a diversion, Dis the 
distance to the diversion trap, if any, or is very large. If no 
argument is specified, N=l V 

.mk R Marks the current vertical place in an internal register (both 
associated with the current diversion level), or in register R, if 
given. 

.rt±N Returns upward only to a marked vertical place in the current 
diversion. If± Nis given, the place is± Nfrom the top of the 
page or diversion or, if N is absent, to a place marked by a 
previous .mk. Note thatthe .sp request may be used in all cases 
instead of .rt by spacing to the absolute place stored in an explicit 
register. 

6.2.3 Text Filling, Adjusting, and Centering 

Normally, words are collected from input text lines and assembled into an 
output text line until some word doesn'tfit. An attempt is then made to the 
hyphenate the word in an effort to place apartof itonto the output line. The 
spaces between the words on the output line are then increased to spread 
out the line to the current line length minus any current indent. A word is 
any string of characters delimited by the space character or the beginning or 
end of the input line. Any adjacent pair of words that must be kept together 
(neither split across output lines nor spread apart in the adjustment 
process) can be tied together using the unpaddable space character 
(backslash-space). The adjusted word spacings are uniform in troff and the 
minimum interword spacing can be controlled with the .ss request. In nroff, 
word spacings are normally nonuniform because of quantization to 
. character-size spaces; the command line option -e causes uniform spacing 

6-7 



XENIX Text Processing Guide 

with full output device resolution. Filling, adjustment, and hyphenation 
can all be prevented or controlled. The text length on the last line output is 
available in the .n register, and text baseline position on the page for this 
line is in the .nl register. The text baseline high-water mark (lowest place) 
on the current page is in the .h register. 

An input text line ending with.,?, or! is taken to be the end of a sentence, 
and an additional space character is automatically provided during filling. 
Multiple interword space characters found in the input are retained, except 
for trailing spaces; initial spaces also cause a break. When filling is in eff ecta 
\p may be embedded or attached to a word to cause a break atthe end of the 
word and have the resulting output line spread out to fill the current line 
length. 

A text input line that happens to begin with a control character can be 
printed as a text line by prefacing it with the nonprinting, zero-width filler 
character \&. Another method is to specify output translation of some 
convenient character into the control character using .tr. 

The copying of an input line in no-fill mode can be interrupted by 
terminating the partial line with a \c. The next encountered input text line 
will be considered to be a continuation of the same line of input text. 
Similarly, a word within filled text may be interrupted by terminating the 
word and line with \c; the next encountered text will be taken as a 
continuation of the interrupted word. If the intervening control lines cause 
a break, any partial line will be forced ou talong with any partial word. 

.br Break. The filling of the line currently being collected is stopped 
and the line is output without adjustment. Text lines beginning 
with space characters and empty text lines (blank lines) also 
cause a break . 

. fi Fill subsequentoutputlines. Initially fill is on. The register .u is 1 
in fill mode and 0 in no fill mode . 

. nf Nofill. Initially, fill is on. Subsequent output lines are neither 
filled nor adjusted. Input text lines are copied directly to output 
lines without regard for the current line length . 

. ad c Line adjustment is begun. If fill mode is not on, adjustment.will 
be deferred until fill mode is back on. If the type indicator c is 
present, the adjustment type is changed in the following ways: I 
to adjust left-margin only, r to adjust right margin only, c to 
center, b or n to adjust both margins. If c is absent the line 
remains unchanged. 

.na 

6-8 

No-adjust. Initially, set to adjust. Adjustment is turned off; the 
right margin will be ragged. The adjustment type for .ad is 
unchanged. Output line filling still occurs if fill mode is on. 

( 

( 

( 



) 

) 

) 

.ce N 

Nroff/Troff Reference 

Initially off. Center the next N input text lines within the 
current line-length minus indent. If N=O, any residual count is 
cleared. A break occurs after each of the N input lines. If the 
input line is too long, it will be left-adjusted. 

6.2.4 Vertical Spacing 

The vertical spacing (V) between the baselines of successive output lines 
can be set using the .vs request with a resolution of 1/144-inch = 1/2 point 
in troff, and to the output device resolution in nroff. V must be large 
enough to accommodate the character sizes on the affected output lines. 
For the common type sizes (9- 12 points). usual typesetting practice is to 
setV to 2 points greater than the pointsize; troff default is 10-pointtype on a 
12-point spacing. The current Vis available in the .v register. Multiple-V 
line separation (e.g. double spacing) may be requested with .ls. 

If a word contains a vertically tall construct requiring the output line 
containing it to have extra vertical space before and or after it, the extra line 
space function \x'N can be imbedded in or attached to that word. In this 
and other functions having a pair of delimiters around their parameter, the 
delimiter choice is arbitrary, exceptthatitcan 'tlook like the continuation of 
a number expression for N. If Nis negative, the output line containing the 
word will be preceded by N extra vertical space; if Nis positive, the output 
line containing the word will be followed by N extra vertical space. If 
successive requests for extra space apply to the same line, the maximum 
values are used. The most recently utilized post-line extra line space is 
available in the .a register. 

A block of vertical space is ordinarily requested using .sp, which honors the 
no-space mode and which does notspace pasta trap. A contiguous block of 
vertical space may be reserved using .sv. The following requests control 
vertical spacing: 

.vs N Initially 1/6-inch or 12 points. Set vertical baseline spacing size 
V. Transientextraverticalspace available with \x' N . 

. ls N Initially N=l. Line spacing set to± N. Vs (blank lines) are 
appended to each output text line. Appended blank lines are 
omitted, if the text or previous appended blank line reached a 
trap position. Space vertically in either direction. If N is 
negative, the motion is backward (upward) and is limited to the 
distance to the top of the page. Forward (downward) motion is 
truncated to the distance to the nearest trap . 

. spN Space vertically in either direction. If Nis negative, the motion is 
backward (upward) and is limited to the distance to the top of 
the page. Forward (downward) motion is truncated to the 
distance to the nearest trap. If no-space mode is on, no spacing 
occurs. 

6-9 



XENIX Text Processing Guide 

.svN Save a contiguous vertical block of size N. If the distance to the 
next trap is greater than N, Nvertical space is output. No-space 
mode has no effect. If this distance is less than N, no vertical 
space is immediately output, but N is remembered for later 
output. Subsequent .sv requests will overwrite any still 
remembered N. 

.os Output saved vertical space. No-space mode has no effect. Used 
to finally output a block of vertical space requested by an earlier 
.sv request . 

. ns No-space mode turned on. When on, the no-space mode 
inhibits .sp requests and .bp requests without a next page 
number. The no-space mode is turned off when a line of output 
occurs, or with .rs . 

. rs Restore spacing. The no-space mode is turned off. 

blank line Causes a break and outputof a blank line exactly like .sp 1. 

6.2.5 Line Length and Indenting 

The maximum line length for fill mode may be set with .II. The indent may 
be set with .in; an indent applicable to only the next output line may be set 
with the temporary indent request .ti. The line length includes indent space 
but not page offset space. The line length minus the indent is the basis for 
centering with .ce. The effect of .II, .in, or .ti is delayed if a partially collected 
line exists until after that line is output. In fill mode the length of text on an 
output line is less than or equal to the line length minus the indent. The 
current line length and indentare available in registers .1 and .i respectively. 
The length of three-parttitJes produced by .ti is independently set by .It. 

.II± N 

in±N 

.ti±N 

Initially 6.5 inches. Line length is set to ± N. In troff the 
maximum line-length + page-offset is about 7.54 inches. 
Withoutan argument, this means the previous line length. 

Initially N=O. Indent is set t.o ± N The indent is prepended to 
each output line. Without an argument, this means the 
previous indent. 

Temporary indent. The next output text line will be indented a 
distance ± Nwith respect to the current indent. The resulting 
total indent may not be negative. The current indent is not 
changed. Without an argument, the requestis ignored. 

6.2.6 Tam, Leaders, and Fields 

The ASCII horizontal tab character and the ASCII SOH (leader) character 

6-10 

( 

( 

( 



) 

) 

Nroff/Troff Reference 

can both be used to generate either horizontal motion or astring of repeated 
characters. The length of the generated entity is governed by internal tab 
stops specifiable with .ta. The default difference is that tabs generate 
motion and leaders generate a string of periods; .tc and .le offer the choice of 
repeated character or motion. There are three types of internal tab stops: 
left adjusting, right adjusting, and centering. In the following table D is the 
distance from the current position on the input line (where a tab or leader 
was found) to the next tab stop; the next string consists of the input 
characters following the tab (or leader) up to the next tab (or leader) or end 
of line; and Wis the width of next-string. 

Tab Length of motion or Location of 
tvoe reoeated characters nextstrine: 
Left D FollowingD 

Right D-W Right adjusted within D 
Centered D-W/2 Centered on rie:htend of D 

The length of generated motion can be negative, but the length of a 
repeated character string cannot be. Repeated character strings contain an 
integer number of characters, and any residual distance is prepended as 
motion. Tabs or leaders found after the last tab stop are ignored, butmaybe 
used as next-string terminators. 

Tabs and leaders are not interpreted in copy mode. \tand \a always generate 
a noninterpreted tab and leader respectively, and are equivalent to actual 
tabs and leaders in copy mode. 

A fie Id is contained between a pair of field delimiter characters, and consists 
of substrings separated by padding indicator characters. The field length is 
the distance on the input line from the position where the field begins to the 
next tab stop. The difference between the total length of all the substrings 
and the field length is incorporated as horizontal padding space that is 
divided among the indicated padding places. The incorporated padding is 
allowed to be negative. For example, if the field delimiter is# and the 
padding indicator is ·, #·xxx·right# specifies a right-adjusted string with 
the string xxx centered in the remaining space. The following requests are 
recognized: 

.taNt ... Set.5 tab stops and types. t=R, right adjusting; t=C, centering; t 
absent is left-adjusting. Troff tab stops are preset every 0.5 
inches, nroff every 0.8 inches. The stop values are separated by 
spaces, and a value preceded by+ is treated as an increment to 
the previous stop value. 

.tc c The tab repetition character becomes c, or is removed specifying 
motion. 

.le c The leader repetition character becomes c, or is removed 
specifying motion. 

6-11 



XENIX Text Processing Guide 

.fc ab The field delimiter is set to a; the padding indicator is set to the 
space character or to b, if given. In the absence of arguments the 
fie Id mechanism is turned off. 

6.2.7 Hyphenation 

Automatic hyphenation can be switched off and on. Whenswitchedon with 
.hy, several variants may be set. A hyphenation indicator character may be 
imbedded in a word to specify desired hyphenation points, or may be 
prepended to suppress hyphenation. In addition, the user may specify a 
small exception word list. 

Only words that consist of acen tl'al alphabetic stl'ingsurrounded by (usu ally 
null) nonalphabetic stl'ings are considered candidates for automatic 
hyphenation. Words th.at were input containing hyphens (minus), em­
dashes (\(em), or hyphenation indicator characters -such as mother-in­
law-are always subject to splitting after those characters, whether 
automatic hyphenation is on or off . 

. nh Initially hyphenation is on. Automatic hyphenation is turned 
off. 

. hyN Automatic hyphenation is turned on for N2, l, or off for N 0 . 
If N 2, last lines (ones that will cause a trap) are not 
hyphenated. For N 4 and 8, the last and first two characters 
respectively of a word are not split off. These values are 
additive; i.e., N 14 will invoke all three restl'ictions . 

. he c Hyphenation indicator character is set to c or to the default\&. 
The indicator does not appear in the output . 

. hwwordl... 
Specify hyphenation points in words with imbedded minus 
signs. Versions of a word with various endings are implied. 

6.2.8 Three Part "Iitles 

The titling function .ti provides for automatic placement of three fields at 
the left, center, and right of a line with a title-length specifiable with .It .. ti 
may be used anywhere, and is independent of the normal text collecting 
process. A common use is in header and footer macros . 

( 

( 

. tl'left'center'right' 
The st:cings left, center, and right are respectively left.adjusted, ( 
centered, and right-adjusted in the current title length. Any of 

6-12 

the strings may be empty, and overlapping is permitted. If the 
page-number character (initially%) is found within any of the 
fields it is replaced by the current page number having the 



) 

.pc c 

.It± N 

Nroff/Troff Reference 

format assigned to the register%. Any character may be used as 
the string delilil.iter. 

The page number character is set to c, or removed. The page­
num ber register remains%. 

Initially 6.5 inches. Length of title set to ± N. The line length 
and the title length are independent. Indents do not apply to 
titles; page offsets do. 

6.2.9 Output Line Numbering 

Automatic sequence numbering of output lines may be requested with .nm. 
When in effect, a three-digitArabic number plus a digit-space is prepended 
to output text lines. The text lines are thus offset by four digit-spaces, and 
otherwise retain their line length; a reduction in line length may be desired 
to keep the right margin aligned with an earlier margin. Blank lines, other 
vertical spaces, and lines generated by .ti are not numbered. Numbering 
can be temporarily suspended with .nn, or with an .nm followed by a later 
.nm+ 0. In addition, a line number indent I, and the number-text 
separation S may be specified in digit-spaces. Further, it can be specified 
thatonly those line numbers thatare multiples of some numberM are to be 
printed( the others will appear as blank num berfields) . 

. nm± N Line number mode. If± Nis given, line numbering is turned 
on, and the next output line numbered is numbered ± N. 
Default values are M=l, S=R, and l=O. Parameters 
corresponding to missing arguments are unaffected; a non­
numeric argument is considered missing. In the absence of all 
arguments, numbering is turned off; the next line number is 
preserved for possible further use inn umber register In . 

. nn N The nextNtextoutputlines are notnumbered. 

6.3 Character Translations, Overstrike, and Local 
Motions 

The troff functions described in the following sections apply to the 
processing of specialized text, including special characters and lines of 
variable length. Also described are methods for producing special effects in 
text, by changing the position of text relative to lines and using offsets to 
create bold effects. 

6.3.1 Input/Output Conventions and Character Translations 

The newline delimits input lines. In addition, the ASCII characters STX, 
ETX, ENQ, ACK, and BEL characters are accepted, and may be used as 

6-13 



XENIX Text Processing Guide 

delimiters or translated into a graphic with .tr. All others are ignored. 

The troff escape character backslash ( \) introduces escape sequences­
causes the following character to mean another character, or to indicate 
some function. The backslash(\) should not be confused with the ASCII 
control character ESC of the same name. The escape character \ can be I 
input with the sequence \ \. The escape character can be changed with .ec, ~ 
and all that has been said about the default\ becomes true for the new 
escape character. The sequence \e can be used to print whatever the current 
escape character is. If necessaryorconvenient, the escape mechanism may 
be turned off with .eo, and restored with .ec . 

. ec c SetB escape character to\. or to c, if given . 

. eo Turns the escape mechanism off. 

Five ligatures are available in the current troff character set: fi, ft, ff, Fi, and 
fll. They may be input in nroff with \( fi, \(fl, \(ff, \(Fi, and \(Fl 
respectively. 

The ligature mode is normally on in t.roff, and automatically invokes 
ligatures during input. The ligature request is: 

.lgN Ligature mode is turned on if Nis absent or nonzero, and turned 
off if N-0. If N 2, only the two-character 
ligatures are automatically invoked. Ligature mode is inhibited 
for request, macro, string, register, or filenames, and in copy 
mode. No effect in nroff. 

Unless in copy mode, the ASCII backspace character is replaced by a 
backward horizontal motion having the width of the space character. Nroff 
automatically underlines characters in the underline font, specifiable with 
uf, normally on font position 2. In addition to .ft and \fF, the underline font 
may be selected by .ul and .cu. Underlining is restricted to an output­
device-dependentsubsetof reasonable characters. 

.ul N 

.cu N 

.uf F 

6-14 

Initially off. Underlines in nroff( italicizes in troff) the next N 
input text lines. Actually, switches to underline font, saving the 
current font for later restoration; other font changes within the 
span of a .ul will take effect, but the restoration will undo the last 
change. Output generated by .ti is affected by the font change, 
but does not decrement N. If N> 1, there is the risk that a trap 
interpolated macro may provide text lines within the span; 
environmentswitching can prevent this. 

Initially off. A variant of .ul that causes every character to be 
underlined in nroff. Identical to .ul in troff. 

Initially italic. Underline font set to F. In nroff, F may not be on 
position 1. 

( 

( 



) 

) 

Nroff/Troff Reference 

Both the control character dot ( .) and the no-break control character ( ') 
may be changed, if desired. Such a change must be compatible with the 
design of any macros used in the span of the change, and particularly of any 
trap-invoked macros. 

. cc c The basic control character is set to c, or reset to dot(.) . 

.c2 c The nobreak control character is set to c, or reset to single 
quotation mark('). 

One character can be made to stand in for another character using .tr. All 
text processing (e.g., character comparisons) takes place with the input 
(stand-in) character, which appears to have the width of the final character. 
The graphic translation occurs at the moment of output (including 
diversion) . 

. tr abed.. Translates a to b, c to d, etc. If an odd number of characters is 
given, the last one will be mapped in to the space character. To 
be consistent, a particular translation must stay in effect from 
input to output time. 

An input line beginning with a\! is read in copy mode and transparently 
output (without the initial \!); the text processor is otherwise unaware of 
the line's presence. This mechanism may be used to pass control 
information to a post-processor or to imbed control lines in a macro created 
by a diversion. 

Comments and concealed newlines may appear in text. An uncomfortably 
long input line that must stay one line (e.g., a string definition, or nofilled 
text) can be split into many physical lines by ending all but the last one with 
the escape \. The sequence \(newline) is always ignored-except in a 
comment. Comments may be imbeddedatthe end of anyline byprefacing 
them with\". The newline atthe end of a comment cannot be concealed. A 
line beginning with \"will appear as a blank line and behave like .sp l; a 
commentcan be on a line by itself if the line begins with.\". 

6.3.2 Local Motions and the Width lFunction 

The functions \v' N and \h 'N can be used for local vertical and horizontal 
motion respectively. The distance N may be negative; the positive 
directions are rightward and downward. A local motion is one contained 
within a line. and otherwise within a line balance to zero. The vertical 
motions are: 

\v'N 

\u 

Move distance N 

1/2-em up in troff; 1/2-line up in nroff 

\d 1/2-em down in troff; 1/2-line down in nroff 

6-15 



XENIX Text Processing Guide 

\r 1 em up in troff; 1 Iine up in nroff 

The horizontal motions are: 

\h'N Move distance N 

\space Unpaddable space-size space 

\0 Digit-sized space 

\I 1/6-em space in troff; ignored in nroff 

\' 1/12-em space in troff; ignored in nroff 

The width function \w'string' generates the numerical width of string (in 
basic units). Size and font changes may be safely im bedded in stn"ng, and 
will not afJ ect the current environment. For example, . ti-w' 1. 'u could be 
used to temporarily indent leftward a distance equal to the size of the string 
l l l.,, 

The width function also sets three number registers. The registers st and sb 
are set to the highest and lowest extent of string relative to the baseline; 
then, for example, the total height of string is \n(stu- \n(sbu. In troff the 
number register ct is set to a value between 0 and 3: 0 means that all of the 
characters in string were short lowercase characters without descenders 

( 

(e.g., c); 1 means that at least one character has a descender (e.g., y ) ; 2 { 
means that at least one character is tall (e.g., H); and 3 means that both tall \ 
characters and characters with descenders are present. The escape 
sequence \kx will cause the current horizontal position in the input line to 
be stored in registerx. 

6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width Functions 

Automatically centered overstriking of up to nine characters is provided by 
the overstrike function \o' stn"ng'. The characters in stn"ng are overprinted 
with centers aligned; the total width is that of the widest character. String 
should not contain local vertical motion. The function \zc will output c 
without spacing over it, and can be used to produce left-aligned overstruck 
combinations. 

The Special Mathematical Font contains a number of bracket construction 
pieces ( , '\' { } I LJ r1 ) that can be combined into various bracket styles. 
The function \D' string' may be used to pile the characters in stn"ng vertically 
(the first character on top and the last at the bottom); the characters are 
vertically separated by 1 em and the total pile is centered 1/2-em above the {. 
current baseline. . 

The function\!' Ne' will draw a string of repeated e's towards the right for a 
distance N. ( \1 is \(lowercase L). If c looks like a continuation of an 
expression for N, it may insulated from Nwith a\&. If cis not specified, the 
_(baseline rule} is used (underline character in nroff). If Nis negative, a 

6-16 



) 

) 

Nroff/Troff Reference 

backward horizontal motion of size N is made before drawing the string. 
Any space resulting from N/( size of c) having a remainder is put at the 
beginning (left end) of the string. In the case of characters thatare designed 
to be connected such as baseline-rule (_), underrule (_), and root-en (l, 
the remaining space is covered by overlapping. If Nis less than the width of 
c, asingle cis centered on a distance N 

The function \L' Ne' will draw a vertical line consisting of the (optional) 
character c stacked vertically apart 1 em ( 1 line in nroff) with the first two 
characters overlapped, if necessary, to form a continuous line. The default 
character is the box rule (\(br); the other suitable character is the bold 
vertical ( \( bv). The line is begun without any initial motion relative to the 
current base line. A positive N specifies a line drawn downward and a 
negative N specifies a line drawn upward. After the line is drawn no 
compensating motions are made; the instantaneous baseline is atthe end of 
the line. The horizon ta.I and vertical line drawing functions may be used in 
combination to produce large boxes. The zero-width box-rule and the 1/2-
em wide underrule were designed to form corners when using 1 em vertical 
spacmgs. 

6.4 Processing <Jontrol Facilities 

The following sections describe nroff and troff requests and facilities for 
controlling the processing of text. 

6.4.1 Ma.cl'06, Strings, Diversions, and Position Traps 

A "macro" is anamed set of arbitrary lines that may be invoked by name or 
with a trap. A "string" is a named string of characters, not including a 
newline character, that may be interpolated by name at any point. Request, 
macro, and string names share the same name list. Macro and string names 
may be one or two characters long and may usurp previously defined 
request, macro, or string names. Any of these may be renamed with .rn or 
removed with .rm. Macros are created by .de and .di, and appended to by 
.am and .da; .di and .dacause normal output to be stored in a macro. Skings 
are created by .ds and appended to by .as. A macro is invoked in the same 
way as a request; a control line beginning with .xx will interpolate the 
contents of macro xx. The remainder of the line may contain up to nine 
arguments. The strings x and xx are interpolated at any desired point with 
\*x and\*( xx respectively. String references and macro invocations may be 
nested. 

During the definition and extension of skings and macros (not by 
diversion) the input is read in copy mode. The input is copied without 
interpretation except that: 

The contents of number registers indicated by\nare interpolated. 

6-17 



XENIX Text Processing Guide 

Strings indicared by\* are inrerpolared. 

Arguments indicated by\$ are inrerpolared. 

Concealed newlines indicared by \newline are eliminated. 

Comments indicated by\" are eliminared. 

\t and \a are interpreted as ASCII horizontal tab and SOH 
respectively. 

\\is inrerpreted as\. 

\. is interpreted as dot(.). 

These inrerpretations can be suppressed by prepending a\. For example, 
since \\maps into a\, \\n will copy as \n; this will be interpreted as an umber 
regisrer indicator when the macro or string is reread. 

( 

When a macro is invoked by name, the remainder of the line is taken to 
contain up to nine arguments. The argument separator is the space 
character, and arguments may be surrounded by quotation marks to permit 
imbedded space characters. Pairs of double quotation marks may be 
imbedded in double-quoted arguments to represent a single quotation 
mark. If the desired arguments won'tfiton a line, aconcealednewline may 
be used to continue on the next line. ( 

When a macro is invoked the input level is pushed down and any arguments 
available at the previous level become unavailable until the macro is 
completely read and the previous level is restored. A macro's own 
arguments can be interpolated at any point within the macro with \$N, 
which interpolates the Mb argument ( 1 SNS9). If an invoked argument 
doesn't exist, a null string results. For example, the macro xx might be 
defined as 

.de xx \''begin definition 
Today is \\$1 the \\$2. 

\"end definition 

and called with 

.xx Monday 14th 

to produce the text 

Today is Monday the 14th. 

Note that the \$ was concealed in the definition with a prepended \. The 
number of currently available arguments is in the.$ register. 

No arguments are available at the top (nonmacro) level in this 
implementation. Because string referencing is implemented as an input,. 
level push down, no arguments are available from within a string. No 
arguments a.re available within a trap-invoked macro. 

6-18 

( 



) 

) 

Nroff/Troff Reference 

Arguments are copied in copy mode onto a stack where they are available 
for reference. The mechanism does not allow an argument to contain a 
direct reference to a long string (interpolated at copy time) and it is 
advisable to conceal string references (with an extra \) to delay 
interpolation until argument reference time. 

Processed output may be diverted into a macro for purposes such as 
footnote processing or determining the horizontal and vertical size of some 
text for conditional changing of pages or columns. A single diversion trap 
may be set at a specified vertical position. The number registers .dn and .di 
respectively contain the vertical and horizontal size of the most recently 
ended diversion. Processed text that is diverted into a macro retains the 
vertical size of each of its lines when reread in no-fill mode, regardless of the 
current value of V. Constant-spaced (.cs) or emboldened ( .bd) text that is 
diverted can be reread correctly only if these modes are again or still in effect 
atreread time. 

Diversions may be nested and certain parameters and registers are 
associated with the current diversion level (the top nondiversion level may 
be thought of as the 0th diversion level). These are the diversion trap and 
associated macro, the no-space mode, the internally saved marked place 
(see .mk and .rt), the current vertical place ( .d register), the current high­
water text baseline ( .h register), and the current diversion name ( .z 
register). 

Three types of trap mechanisms are available-page traps, a. diversion trap, 
and an input line count trap. Macro invocation traps may be planted using 
.wh at any page position including the top. This trap position may be 
changed using .ch. Trap positions at or below the bottom of the page have 
no effect unless or until moved to within the page or rendered effective by 
an increase in page length. Two traps may be planted at the same position 
only by first planting them a.tdiff erent positions and then moving one of the 
traps; the first planted trap will conceal the second unless and un ti! the first 
one is moved. If the first one is moved back, it again conceals the second 
trap. The macro associated with a. page trap is automatically invoked when a 
line of text is output whose vertical size reaches or sweeps past the trap 
position. Reaching the bottom of a page springs the top-of-page trap, if any, 
provided there is a next page. The distance to the next trap position is 
available in the .tregister; if there are no traps between the current position 
and the bottom of the page, the distance returned is the distance to the page 
bottom. 

A macro-invocation trap effective in the current diversion may be planted 
using .dt. The .tregisterworks in a diversion; if there is no subsequent trap 
a. large distance is returned. For a. description of input line count tcaps, see 
.it in the following list. 

.de xx yy Define or redefine the macro xx. The contents of the macro 
begin on the next input line. Input lines are copied in copy mode 
until the definition is terminated by a line beginning with .yy, 
whereupon the macro yy is called. In the absence of yy, the 
definition is terminated by a. line beginning with two dots ( .. ) . A 

6-19 



XENIX Text Processing Guide 

macro may contain .de requests provided the terminating 
macros differ or the contained definition terminator is 
concealed. The dots can be concealed as \ \.. which will copy as 
\ .. and be reread as dots ( .. ). 

.am zz 1111 Append to macro . 

. ds zz stn"ng 
Define a string zz containing string. Any initial double 
quotation mark in string is stripped off to permit initial blanks . 

. as zz stnngAppendstring to string zz . 

. rm zz Remove request, macro, or string. The name zz is removed 
from the name list and any related storage space is freed. 
Subsequentreferences will have no effect . 

. rn zz 1111 Rename request, macro, or stcing zz to 1111. If yyexist."l, it is first 
removed. 

.di %% Divert output to macro zz. Normal text processing occurs 
during diversion except that page offsetting is not done. The 
diversion ends when the request .di or .da is encountered 
without an argument; extraneous requests of this type should 
notappearwhen nested diversions are being used . 

. dazz Divert, appending to zz . 

. wh Nzz Install a trap to invoke zzatpage position N; a negative Nwill be 
interpreted with respect to the page bottom. Any macro 
previously planted atNis replaced by zz. A zero Nrefers to the 
top of a page. In the absence of zx, the first found trap at N, if 
any, is removed . 

. ch zz N Change the trap position for macro xx to N. In the absence of N, 
the trap is removed . 

. dt N zx Install a diversion trap at position Nin the current diversion to 
invoke macro zz. Another .dtwill redefine the diversion trap. If 
no arguments are given, the diversion trap is removed. 

.itNzz 

.em zz 

6-20 

Setan inputline count trap to invoke the macro zzafter Nlines 
of text input have been read (control or request lines don't 
count). The text may be in-line text or text interpolated by in­
line or trap-invoked macros. 

The macro zz will be invoked when all input has ended. The 
effect is the same as if the contents of zz had been at the end of 
the last file processed. 

( 

( 

( 



) 

) 

Nroff/Troff Reference 

6.4.2 Number Registers 

A variety of parameters are available to the user as predefined, named 
number registers. In addition, the user may define his own named registers. 
Register names are one or two characters long and do not conflict with 
request, macro, or string names. Except for certain predefined read-only 
registers, a number register can be read, written, automatically 
incremented or decremented, and interpolated into the input in a variety of 
formats. One common use of user-defined registers is to automatically 
number sections, paragraphs, lines, etc. A number register may be used 
any time numerical input is expected or desired and may be used in 
numerical expressions. 

Number registers are created and modified using .nr, which specifies the 
name, numerical value, and the auto-increment size. Registers are also 
modified, if accessed with an auto-incrementing sequence. If the registers x 
and xx both contain Nand have the auto-increment size M, the following 
access sequences have the eff ectshown: 

Effecton Value 
Seauence Ree:ister In teroolated 
\nx none N 
\n(xx none N 
\n+x x incremented byM N+M 
\n-x x decremented byM N-M 
\n+(xx xx incremented byM N+M 
\n-( xx xx decremented bvM N-M 

When interpolated, a number register is converted to decimal (default). 
decimal with leading zeros, lowercase Roman, uppercase Roman, 
lowercase sequential alphabetic, or uppercase sequential alphabetic 
according to the formatspecified by .af . 

. nr R± NM The number register R is assigned the value ± Nwith respect 
to the previous value, if any. The increment for auto­
incrementing is set to M . 

. afR c Assign format cto register R. The available formats are: 

Numbering 
Format Seauence 

1 0, 1,2,3,4,5,. .. 
001 000' 001, 002' 003' 004' 005 •... 

i 0,i,ii,iii,iv,v, ... 
I 0,1,11,III,IV, V, ... 
a O,a, b, c, ... , z,aa, ab, ... , zz,aaa, ... 
A 0 A B C ... Z AA AB ... ZZ AAA ... 

An Arabic format having N digits specifies a field width of N 

6-21 



XENIX Text JProoessing Guide 

.IT R 

digitB. The read-only registers and the width function are 
always Arabic. 

Remove register R. If many registers are being created 
dynamically, it may become necessary to remove no longer 
used registers to recapture internal storage space for newer 
registers. 

6.4.3 Clonditional Aooept&noe of Input 

In the following, c is a one-character, builtrin condition name, ! signifies 
not, N is a numerical expression, stEingl and string2 are strings delimited by 
any non blank, non-numeric character not in the strings, and text represents 
what is conditionally accepted . 

.if c text 

.if ! c text 

.if N text 

.if !N text 

If condition c is true, process text as input; in multiline case, use 
\{text\} . 

If condition c is false, process text . 

If expression N>O, process text. 

If expression N <O, process text . 

.if 'string! 'string2' text 
If stEingl identical tostring2, process text . 

.if! 'stringl 'string2' text 
If string 1 not identical to string2, process text . 

.ie c text 
"If" portion of if-else; all above forms( like if) . 

. el text 
"Else" portion of if-else. 

There are several builtrin condition names: 

o Current page number is odd 

e Current page number is even 

t Formatter is troff' 

6-22 

( 

( 



Nroff/Troff Reference 

n Formatter is nroff 

If condition c is true, or if the number Nis greater than zero, or if the strings 
compare identically (including motions and character size and font), text is 
accepted as input. If a ! precedes the condition, number, or string 

) comparison, the sense of the acceptance is reversed. 

) 

Any spaces between the condition and the beginning of text are skipped 
over. The text can be either a single input line (text, macro, or whatever) or 
a number of input Jines. In the multiline case, the first line must begin with 
a leftdelimiter \{and the last line mustend with aright delimiter\}. 

The request .ie (if-else) is identical to .if except that the accept.a.nee st.ate is 
remembered. A subsequent and matching .el (else) request then uses the 
reverse sense of that st.ate . .ie-.el pairs maybe nested. 

6.4.4 Environment Switching 

A number of the parameters that control text processing are gathered 
together into an environment, which can be switched by the user. Partially 
collected lines and words are in the environment. Everything else is global; 
examples are page-oriented parameters, diversion-oriented parameters, 
number registers, and macro and string definitions. All environments are 
initialized with defaultparametervalues. 

.ev N Initially N 0. Environment switched to environment where N 
is in the range 0- 2. Switching is done in push-down fashion so 
that restoring a previous environment must be done with .ev 
with no parameters rather than a specific numeric reference. 

6.4.5 Insertions From the Standard Input 

The inpu tcan be temporarily switched to the system standard input with .rd, 
which will switch back when two newlines in a row are found (the extra 
blank line is not used). This mechanism is in tended for insertions in 
document.a.tion cont.a.ining standard formats. The st.a.ndard input can be the 
terminal, a.pipe, or a.file . 

. rd prompt Reads insertion from the standard input until two newlines in a 
row are found. If the standard input is the user's keyboard, a 
prompt( or a BEL) is written onto the terminal. The .rd request 
behaves like a macro, and arguments may be placed after the 
prompt. 

.ex Exit from either nroff or troff. Text processing is terminated 
exactly as if all input had ended. 

If insertions are to be taken from the terminal keyboard while output is 
being printed on the terminal, the command line option -q will turn off the 
echoing of keyboard input and prompt only with BEL. The regular input 

6-23 



XENIX Text Processing Guide 

and insertion inputcannotsimultaneously come from the standard input. 

6.4.6 Input/Output File Switching 

The following requests con trnl the switching of input and ou tputfiles: 

.so filename 
Switch source file. The top input( file reading) level is switched 
to filename. The effectof a .so encountered in a macro is not felt 
until the input level returns to the file level. When the new file 
ends, input is again taken from the original file .. so's may be 
nested . 

. nx filename 

. pi program 

Next file is filename. The current file is considered ended, and 
the input is immediately switched to filename . 

Pipe output to program in nroff only. Tb.is request must occur 
before any printing occurs. No arguments are transmitted to 
program. 

6.4. 7 Miscellaneous Requests 

.me c N Specifies that a margin character c appear a distance N to the 
right of the right margin after each nonempty text line (except 
those produced by .U). If the output line is too long, the 
character will be appended to the line. If N is not given, the 
previous Nis used; the initial Nis 0.2 inches in nroff, and 1 em in 
t.roft' . 

. tm string After skipping initial blanks, string (rest of line) is read in copy 
mode and written on the user's terminal. 

.ig 1111 

.pm t 

Ignores input lines. The .ig request behaves exactJy like .de 
except that the input is discarded. The input is read in copy 
mode, and any auto-incremented registers will be affected. 

Prints macros. The names and sizes of all of the defined macros 
and strings are printed on the user's terminal; if tis given, only 
the total of the sizes is printed. The sizes are given in blocks of 
128 characters . 

. fl Flushes output buffer. Used in interactive debugging to force 
output. 

6-24 

( 

( 

( 



) 

) 

Nroff/Troff Reference 

6.5 Output and Error Messages 

The output from .tm, .pm, and the prompt from .rd, as well as various error 
messages are written onto the standard message output. The latter is 
different from the standard output, where nroff formatted output goes. By 
default, both are written onto the user's terminal, but they can be 
independently redirected. 

Various error conditions may occur during the operation of nroffand troff. 
Certain less serious errors having only local impact do not cause processing 
to terminate. Two examples are word overflow, caused bya word that is too 
large to fit in to the word buff er (in fill mode), and line overflow, caused by 
an output line that grew too large to fit in the line buffer; in both cases, a 
message is printed, the offending excess is discarded, and the affected word 
or line is marked atthe pointof truncation with a* in nroff and a{'= in troff. 
The program continues processing, if possible, on the grounds that output 
useful for de bugging may be produced. If a serious error occurs, processing 
terminates, and an appropriate message is printed. Examples are the 
inability to create, read, or write files, and the exceeding of certain internal 
limits that make future output unlikely to be useful. 

6.6 Summary of &cape Sequences and Number Registers 

6.6.l Escape Sequences for Characters, Indicators, and Functions 

6-25 



XENIX Text Processing Guide 

Seauence 

\\ 
\e 
\' 
\' 
\-
\. 
\(space 
\0 
\I 
\~ 

\& 
\! 
\" 
\$N 
\% 
\(xx 
\a 
\b'abc ... ' 
\c 
\d 
\fx, \f( xx, \fN 
\h'N' 
\kx 
\!'Ne' 
\L'Nc' 
\nx,\n(xx 
\o'abc .. .' 
\p 
\r 
\sN, \s±N 
\t 
\u 
\v'N' 
\w'string' 
\x'N' 
\zc 
\{ 

~newline) 
1Y 

6-26 

Meanine: 
\(to preven tor delay the interpretation of\) 
Printable version of the currentescape character 
Acute accent('); equivalentto \( aa 
Grave accent('); equivalent to \(ga 
Minus sign(-) in the currentfont 
Period(.) 
U npaddable space-size space character 
Digit width space 
1/6-em narrow space character( zero width in nroff) 
1/12-em half-narrow space character( zero width in nroff) 
Non printing, zero-width character 
Transparent line indicator 
Beginning of comment 
interpolate argument( ll ~N ~9) 
Def aultoptional hyphenation character 
Character named xx 
Non interpreted leader character 
Bracket building function 
interrupt text processing 
Forward( down) 1/2 em vertical motion ( 1/2 line in nroff) 
Change to fontnamedx orxx, or position N 
Local horizontal motion; move rightN (negative left) 
Mark horizontal input place in register x 
Horizontal line drawing function( optionallywith c) 
Vertical line drawing function (optionally with c) 
Interpolate numberregisterx or xx 
Overstrike characters a, b, c 
Break and spread output line 
Reverse 1 em vertical motion (reverse line in nroff) 
Pointsize change function 
Noninterpretedhorizonta.! tab 
Reverse 1 /2-em vertical! motion ( 1 /2-line in nroff) 
Local vertical motion; move down N (negative up) 
Interpolate width of string 
Extra line space function( negative before, positive after) 
Printcwith zero width ( witb.outspacing) 
Begin conditional input 
End conditional input 
Concealed (ignored) newline 
X anv character notlisted above 

( 

( 

( 



Nroff/Troff Reference 

6.6.2 Predefined General Number Regist.ers 

) 
Register Contents 

% Current page number 
ct Character type (set by width function) 
di Width (maximum) of last completed diversion 
dn Height( vertical size) of last completed diversion 
dw Current day of the week ( 1-7) 
dy Current day of the month ( 1-31) 
hp Current horizontal place on input line 
In Output line number 
mo Currentmonth(l-12) 
nl Vertical position of last printed text baseline 
sb Depth of string below base line (generated by width function) 
st Heightof string above base line (generated by width function) 
yr Lasttwodigitsofcurrentyear 

6.6.3 Predefined Read-Only Number Registers 

) Register Contents 

.& Number of arguments available atthe currentmacro level 

.A Set to 1 in troff, if -a option used; 1 in nroff 

.H Available in horizontal resolution in basic units 

.T Set to 1 in nroff, if-Toption used; always 0 in troff 

.V Available vertical resolution in basic units 

.a Post-line extra line space most recently utilized using \x 1N' 

.c Number of lines read from currentinputfile 

.d Current vertical place in currentdiversion; equal to nl, 
1f no diversion 

.f Currentfontas physical quadrant 

.h Text baseline high-water mark on current page or diversion 

.i Current indent 

.I Current line length 

.n Length of text portion on previousoutputline 

.o Current page offset 

.p Current page length 

.s Currentpointsize 

) 
. t Distance to the next trap 
. u Equal to 1 in fill mode and 0 in no-fill mode 
.v Current vertical line spacing 
.w Width of previous character 
.x Reserved version-dependent register 
.y Reserved version-dependentregister 
.z Name of currentdiversion 

6-27 



(1 

(' 

( 



) 

) 

) 

Chapter 7 
Formatting Tables 

7.1 Introduction 7-1 

7.2 lnputFormat 7-2 
7.2.l Options 7-3 
7.2.2 Format 7-3 
7.2.3 Additional Features 7-5 
7.2.4 Data 7-7 
7.2.5 Additional Command Lines 7-9 

7 .3 Invoking Tbl 7-10 

7.4 Examples 7-11 

7.5 Summary ortbl Commands 7-18 



() 

(· 

( 



) 

) 

) 

Formatting Tables 

7 .1 Introduction 

By now, you have a firm grasp or most or the principles and techniques of using 
XENIX text processing successfully. By using the mm macro package, a.long 
with nroff/troff commands, you should be able to achieve precise control of 
almost any formatting task. However, there a.re two formatting needs which 
may be best met with two specialized XENIX formatting programs: 

• Formatting tables or other complicated multicolumn material 

Setting mathematical equations 

In this chapter, the program tbl, the table formatting program, is introduced. 
Eqn, the mathematics formatting program, is discussed in Chapter 8. Unless 
you anticipate using tables or equations fairly extensively in your work, you 
may wish to postpone or skip reading about tbl and eqn. Although both 
programs use commands which are easy to learn and use, you should expect to 
spend several hours on each program-reading these instructions, learning the 
commands, and testing them out with your output device. Ir you need to create 
tables or equations in your documents, the effort or learning tbl and eqn will be 
well rewarded. You will soon be able to produce high-quality, consistent output 
with relatively little work. 

Both tbl and eqn are "preprocessors"-tha.t is, you insert commands into your 
text as you are preparing it, just as you would if you were using mm. These 
commands are translated by the tbl and eqn programs into sequences or 
nroff/troff commands, without altering either the body oC your text or other 
formatting commands. Your file is then processed through the nroff or troff 
programs themselves. 

You will find tbl especially useful in preparing charts, multicolumn list 
summaries, and other tabular material. It will give you a high degree of control 
over complicated column alignment, and it will calculate the necessary widths 
of columns, when the elements are of varying lengths. Tb! also allows you to 
draw horizontal lines, vertical lines and boxes in order to highlight your 
material. Although the effects will be somewhat limited if you are working with 
an ordinary lineprinter or similar device, you will obtain extremely high quality 
results when outputting tables to phototypesetter. 

Because the tbl program works by isolating the tabular material from the rest 
of the file, and then creating the necessary nroff or troff commands, the rest of 
the file is left intact for other programs to format. Thus you can use tbl along 
with the equation formatting program eqn or various layout macro packages 
like mm, without duplicating their functions. You need only be careful to 
invoke the various programs in the correct order. 

The latter part of this chapter is devoted to some examples-in ea.ch case, the 
text input is paired with the resulting output. You may find that at first you 
learn the features of tbl best by examining these examples and copying those 

7-1 



XENIX Text Processing 

formatting instructions for examples which resemble your own tables. 
However, first read the rules for preparing tbl input, so you have a general idea 
of how to invoke the tbl program, and an overview or the possible options and 
formats. 

7 .2 Input Format 

The input to tbl is text for a document, with tables preceded by a .TS (table 
start) command and followed by a .TE (table end) command. Thi processes 
the text and formatting commands within these two commands, genera.ting 
nroff/troff formatting commands. The .TS and .TE lines are also copied so 
that nroff and troff page layout macros can use these lines to delimit and place 
tables as necessary. In particular, any arguments on the .TS or .TE lines are 
copied but otherwise ignored, and may be used by document layout macro 
commands. 

The format of the input is: 

text 
.TS 
table 
.TE 
text 
.TS 
table 
.TE 
text 

Each table will contain text, options, and formatting specifications: 

.TS 
options; 
format. 
data 
.TE 

Each table is independent, and must contain formatting information followed 
by the data to be entered in the table. The formatting information, which 
describes the individual columns and rows or the table, may be preceded by 
options that affect the entire table. 

( 

( 

Each table may contain global options, a format section describing the layout ( 
of individual table entries, and then the text to be printed. The format and data I 
are always required, but not the options. The various parts or a table are 
described in the following sections. 

7-2 



) 

) 

) 

Formatting Tables 

7 .2.1 Options 

There may be a single line or options which affects the whole table. Ir present, 
this line must immediately rollow the .TS line and must contain a list or option 
names separated by spaces, tabs, or commas, and must be terminated by a 
semicolon. The allowable options are: 

center 
Centers the table (default is lert-adjust) 

expand 
Makes the table as wide as the current line length 

box 
Encloses the table in a box 

all box 
Encloses each item in the table in a box 

double box 
Encloses the table in two boxes 

tab (x) 
Uses x instead or tab to separate data items 

linesize ( n) 
Sets lines or rules in n point type 

delim (3:y) 
Recognizes 3: and y as the eqn delimiters. 

The tbl program tries to keep boxed tables on one page by issuing appropriate 
.ne commands. These requests are calculated rrom the number orlines in the 
tables, and ir there are spacing commands embedded in the input, these 
requests may be inaccurate. To ensure the correct format on one page, you can 
surround the table with the display macros .DS and .DE. 

7 .2.2 Format 

The format section or the table specifies the layout or the columns. Each line in 
this section corresponds to one line or the table. The last format line applies to 
all the remaining lines in the table. Each line contains a keyletter for each 
column or the table. It is good practice to separate the key letters ror each 
column by spaces or tabs. The keyletters, which may be either uppercase or 
lowercase, are: 

Lor 1 
Indicates a left-adjusted column entry 

7-3 



XENIX Text Processing 

Rorr 

Core 

Norn 

Aora. 

Sors 

Indicates a right-adjusted column entry 

Indicates a centered column entry 

Indicates a numerical column entry, to be aligned with other 
numerical entries so that the units digits om umbers line up 

Indicates an a.lpha.betic column; all corresponding entries are aligned 
on the left, and positioned so tha.t the widest is centered within the 
column 

Indicates a. spanned heading, i.e., the entry from the previous column 
continues a.cross this column 

Indicates a vertically spanned heading, i.e., the entry from the 
previous row continues down through this row. (Not allowed for the 
first row of the ta.hie.} 

( 

When you a.re aligning numerical information, a location for the decimal point { 
is sought. The rightmost dot a.dja.cent to a. digit is used a.s a. decimal point; if 'l 
there is no dot adjoining a. digit, the rightmost digit is used for the units; if no 
alignment is indicated, the item is centered in the column. However, the special 
nonprinting cha.ra.cter string"\&" ma.y be used to override dots a.nd digits, or 
to align alphabetic data; this string lines up where a. dot normally would, a.nd 
then disa.ppea.rs from the final output. In the example below, the items shown 
a.t the left will be aligned (in a numerical column) as shown on the right: 

input tblformat 

13 13 
4.2 4.2 
26.12 26.12 
a.be a.be 
a.be\& a.be 
43\&3.22 433.22 
74D.12 74D.12 

Note tha.t if numerical text is used in the same column with wider left-adjusted 
(L) or right-adjusted (R) type table entries, the widest number is centered (.• 
relative to the wider left-adjusted or right-adjusted items (Lis used instead of 1 
for readability; they have the same meaning as keyletters). Alignment within 
the numerical items is preserved, in the same way as using the A format. 
However, a.lpha.betic subcolumns requested by the key letter are always slightly 
indented relative toL items; if necessary, the column width is increased to force 

7-4 



) 

) 

) 

Formatting Tables 

this. This is not true for n type entries. Do not put N and A type entries in the 
same column. ' 

To make your ta.hie formatting information more readable, you should 
separate the key letters describing each column with spaces. The layout of the 
keyletters in the format section resembles the layout or the actual data in the 
ta.hie. The end oC the format section of the table specification is indicated by a 
period. For example, a simple format might look like this: 

c s s 
I n n. 

This specifies a table of three columns. The first line or the table contains a 
heading centered a.cross all three columns; each remaining line contains a left­
a.djusted item in the first column followed by two columns of numerical data. 

Here is a. sample ta.hie in this format: 

Overall title 
Item-a. 34.22 9.1 
ltem-b 12.65 .02 
Items: c,d,e 23 5.8 
Tota.I 69.87 14.92 

Note that instead of listing the format of successive lines of a table on 
consecutive lines of the format section, successive line Corm a.ts may be given on 
the same line, separated by commas. In the example above, the format might 
have been written: 

c s s, I n n. 

7 .2.3 Additional Features 

There are some additional features of the key letter system: 

Horizontal Lines 

A keyletter may be replaced by an underscore (_) to indicate a. 
horizontal line in place or the corresponding column entry, or by an 
equal sign(=) to indicate a. double horizontal line. Ir an adjacent 
column contains a. horizontal line, or if there a.re vertical lines 
adjoining this column, this horizontal line is extended to meet the 
nearby lines. Ir any data. entry is provided for this column, it is 
ignored and a. warning message is printed. 

Vertical Lines 

A vertical bar (I) may be placed between column keyletters. This 

7-5 



XENIX Text Processing 

will ca.use a. vertical line between the corresponding columns or the 
table. A vertical bar to the left of the first key letter or to the right 
or the last one produces a line at the edge or the ta.hie. Ir two vertical 
bars appear between keyletters, a double vertical line is drawn. 

Space Between Columns 

A number may follow the keyletter. This indicates the amount of 
separation between this column and the next column. The number 
normally specifies the separation in ens (one en is about the width of 
the letter n), or more precisely, an en is a number of points (I point 
= 1/72-inch) equal to half the current type size. Ir the "expand" 
option is used, then these numbers are multiplied by a constant so 
that the table is as wide as the current line length. The default 
column separation number is 3. Ir the separation is changed, the 
largest space requested prevails. 

Vertical Spanning 

Normally, vertically spanned items extending over several rows of 
the table are centered in their vertical range. Ir a. keyletter is 
followed by tor T, any corresponding vertically spanned item will 
begin at the top line of its range. 

Font Changes 

A key letter may be followed by a string containing a font name or 
number preceded by the letter r or F. This indicates that the 
corresponding column should be in a different font from the default 
font (usually Roman). All font names are one or two letters; a one­
letter font name should be separated from whatever follows by a 
space or tab. Font change commands given with the table entries 
will override these specifications. 

Point Size Changes 

A keyletter may be followed by the letter p or P and a number to 
indicate the point size of the corresponding table entries. The 
number may be a signed digit, in which case it is taken as an 
increment or decrement from the current point size. Jr both a point 
size and a column separation value are given, one or more blanks 
must separate them. 

Vertical Spacing Changes 

1-6 

A keyletter may be followed by the letter v or V and a number to 
indicate the vertical line spacing to be used within a multiline 
corresponding table entry. The number may be a signed digit, in 
which case it is taken as an increment or decrement from the 
current vertical spacing. A column separation value must be 

( 

( 

( 



) 

) 

Formatting Tables 

separated by blanks or some other specification from a. vertical 
spacing request. This request has no effect unless the corresponding 
ta.hie entry is a. text block. 

Column Width Indication 

A key letter ma.y be followed by the Jetter w or Wand a width value 
in parentheses. This width is used as a minimum column width. Ir 
the largest element in the column is not as wide as the width value 
given, the largest element is assumed to be that wide. Ir the largest 
element in the column is wider than the specified value, its width is 
used. The width is also used as a default line length for included 
text blocks. Norma.I troff units can be used to scale the width 
value; the default is ens. Ir the width specification is a unitless 
integer the parentheses may be omitted. Ir the width value is 
changed in a column, the last value given controls. 

Equal Width Columns 

A key letter may be followed by the letter e or E to indicate equal 
width columns. All columns whose key letters are followed bye or E 
are made the same width. This allows you to get a group or 
regularly spaced columns. 

The order or the a.hove features is immaterial; they need not be separated by 
spaces, except as indicated a.hove to avoid point size a.nd font change 
ambiguities. Thus a. numerical column entry in italic font a.nd 12-point type 
with a minimum width of 2.5 inches a.nd separated by 6 ens Crom the next 
column could be specified as 

npl2w(2.5i)rI 6 

Note the following format defaults: Column descriptors missing from the end of 
a. format line a.re assumed to be L. The longest line in the format section, 
however, defines the number or columns in the table; extra. columns in the data 
a.re ignored silently. 

7.2.4 Data 

The text for the ta.hie is typed arter the format specification. Norma.By, each 
table line is typed as one line or data.. Very long input lines can be broken: any 
line whose last character is a backslash (\) is combined with the following line 
(and the backslash vanishes). The data for different columns (the table entries) 
a.re separated by tabs, or by whatever character has been specified in the tabs 
option. There a.re a rew special cases: 

Troff commands within tables 

An input line beginning with a dot(.) followed by anything but a 

7-7 



XENIX Text Processing 

number is assumed to be a command to troff and is passed through 
unchanged, retaining its position in the table. For example, space 
within a table may be produced by .sp commands in the data. 

Full Width Horizontal Lines 

An input line containing only the underscore (J or equal sign (=)is 
taken to be a single or double line, respectively, extending the full 
width of the table. 

Single Column Horizontal Lines 

An input table entry containing only the underscore or equal sign 
character is taken to be a single or double line extending the full 
width of the column. Such lines are extended to meet horizontal or 
vertical lines adjoining this column. To obtain these characters 
explicitly in a column, either precede them by "\&" or follow them 
by a space before the usual tab or newline. 

Short Horizontal Lines 

An input table entry containing only the string"\_'' is taken to be a 
single line as wide as the contents or the column. It is not extended 
to meet adjoining lines. 

Vertically Spanned Items 

Text blocks 

An input table entry containing only the character string "\A,, 
indicates that the table entry immediately above spans downward 
over this row. It is equivalent to the table format key letter. 

In order to include a block or text as a table entry, precede it by T { 
and follow it by T}. Thus the sequence 

... T{ 
block or 
text 
T} ... 

is the way to enter, as a single entry in the table, something that 
cannot conveniently be typed as a simple string between tabs. Note 

( 

( 

that the T} end delimiter must begin a line; additional columns or ( 
data may follow after a tab on the same line. Ir more than twenty 
text blocks are used in a table, various limits in the troff program 

7-8 

are likely to be exceeded, producing diagnostics such as "too many 
string/macro names" or "too many number registers." 



) 

) 

) 

Formatting Tables 

Text blocks are pulled out from the table, processed separately by 
troff, and replaced in the table as a solid block. Ir no line length is 
specified in the block of text itself, or in the table format, the 
default is to use$ L times G / ( N+ 1) $ where L is the current line 
length, Ois the number of table columns spanned by the text, and N 
is the total number of columns in the table. The other parameters 
used in setting the block or text are those in effect at the beginning 
or the table. These include the effect or the .TS macro and any table 
format specifications or size, spacing and font, using the p, v and r 
modifiers to the column keyletters. Commands within the text 
block itself are also recognized. However, troff commands within 
the table data but not within the text block do not affect that block. 

Note the following limitations. Although any number oflines may be present in 
a table, only the first 200 lines are used in calculating the widths or the various 
columns. A multipage table may be arranged as several single-page tables if 
this proves to be a problem. Other difficulties with formatting may arise 
because in the calculation or column widths all table entries are assumed to be 
in the font and size being used when the .TS command was encountered. Not 
included in the calculation are font and size changes indicated in the table 
format section and within the table data. Therefore, although arbitrary troff 
requests may be sprinkled in a table, care must be taken to avoid confusing the 
width calculations; use requests such as. ps with care. 

7 .2.5 Additional Command Lines 

Ir the format or a table must be changed after many similar lines, as with sub­
headings or summarizations, the .T& (table continue) command can be used to 
change column parameters. The outline of such a table input is: 

.TS 
options; 
format. 
data 

.T& 
format. 
data 
.T& 
format. 
data 
.TE 

Using this procedure, each table line can be close to its corresponding format 
line. It is not possible to change the number or columns, the space between 
columns, the global options such as box, or the selection of columns to be made 
equal width. 

7-9 



XENIX Text Processing 

7 .3 Invoking Tbl 

You can runt bl on a simple table with the command 

tbl input-file I troff 

but for more complicated use, where there are several input files, and they 
contain equations and mm commands as well as tables, the normal command 
would be 

tbl file-1 file-e . .. I eqn I troff -mm 

The usual options may be used on the troff' and eqn commands. The usage for 
nroff is similar to that for troff'. 

For the convenience of users employing line printers without adequate driving 
tables or post-filters, there is a special-TX command line option to tbl which 
produces output that does not have fractional line motions in it. The only other 
command line option recognized by tbl is -mm which fetches the mm macro 
packages. 

( 

When you are using both eqn and tbl on the same file, tbl should be used first. 
Ir there are no equations within tables either order works, but it is usually faster 
to run tbl first, since eqn normally produces a larger expansion of the input 
than tbl. However, ifthere are equations within tables (e.g. when you are using ( 
the eqn delim command), tbl must be first or the output will be scrambled. 
(See Chapter 8, "Formatting Mathematics.") You must also be cautious of 
using equations in n-style columns; this is nearly always wrong, since tbl 
attempts to split numerical format items into two parts and this is not possible 
with equations. Give the delim(xx) tbl option instead; this prevents splitting ot 
numerical columns within the delimiters. For example, if the eqn delimiters 
are$$, giving delim($$) a numerical column such as "1245 $+- 16$" will be 
divided after 1245, not after 16. 

Thi limits tables to twenty columns; however, use or more than 16 numerical 
columns may tail because of limits in troff', producing the "too many number 
registers" message. Troff' number registers used by tbl must be avoided by the 
user within tables; these include two-digit names from 31 to 99, and names of 
the forms #x, x+, xi, 'x, and x-, where xis any lowercase letter. The names 
##,#-,and#' are also used in certain circumstances. To conserve number 
register names, then and a formats share a register; hence the restriction that 
they may not be used in the same column. 

For aid in writing macros, tbl defines a number register TW which is the table 
width; it is defined by the time that the .TE macro is invoked and may be used 
in the expansion of that macro. To assist in laying out multipage boxed tables 
the macro T# is defined to produce the bottom lines and side lines of a boxed 
table, and then invoked at the of the table. By using this macro in the page 
footer a multipage table can be boxed. In particular, the mm macros can be 

7-10 



Formatting Tables 

used to print a multipage boxed table with a repeated heading by giving the 
argument H to the . TS macro. Ir the table start macro is written 

.TSH 

) a line of the form 

) 

) 

.TH 

must be given in the ta.hie after any ta.hie heading (or at the start if none). 
Material up to the . TH is placed a.t the top of ea.ch page of ta.hie; the remaining 
lines in the table are placed on several pages as required. 

7 .4 Examples 

Here are some examples illustrating features of tbl. The symbol() in the input 
represents a tab character. 

Input: 

.TS 
box; 
c c c 
I 1 I. 
Language())Author<()Runs on 

Fortran()Many()Almost anything 
PL/I(}IBM(}360/370 
C(JBTL(}I 1/ 45,H6000,370 
BLISS)Carnegie-Me llon(}PD P-10, 11 
ID~Honeywell(}H6000 
Pasca0Sta.nford(}370 
.TE 

Output: 

Language Authors Runs on 

Fortran 
PL/I 
c 
BLISS 
IDS 
Pascal 

Many 
IBM 

Almost anything 
360/370 

BTL 
Carnegie-Mellon 
Honeywell 
Stanford 

11/ 45,H6000,370 
PDP-10,11 
H6000 
370 

7-11 



XENIX Text Processing 

Input: 

.TS 
all box; 
cs s 
c c c 
n n n. 
AT&T Common Stock 
Year0Price0Dividend 
1971~41-5~260 
2(]41-540270 
3(J)46-550'287 
040-53()324 
5(}4&-52()340 
6(Jl51-59(}95• 
.TE 
* (first quarter only) 

Output: 

AT&T Common Stock 
Year Price Dividend 
1971 41-54 $2.60 

2 41-54 2.70 
3 46-55 2.87 
4 40-53 3.24 
5 45-52 3.40 
6 51-59 .95• 

* (first quarter only) 

7-12 

( 

( 

( 



) 

Input: 

.TS 
box; 
cs s 
c I c I c 
l I l In. 
Major New York Bridges 

Bridg~Designer(J)Length 

Brooklyn()J A Roebling(}l595 
Manhattan()G Lindenthai(}l470 
Williamsburg()L L Buci.01600 

Queensborough()Palmer &(}I 182 
() Hornbostel 

001380 
Triborough()O H Ammann()_ 
00383 

Bronx Whitestone(JO H AmmannCJ2300 
Throgs Neck(}O H Ammann(.)1800 

George WashingtonCJO H Ammann(.)3500 
.TE 

Output: 

Maior New York Bride:es 
Brid11:e Desi11:ner 

Brooklyn J. A Roehling 
Manhattan G. Lindenthal 
Williamsbur11: L. L. Buck 
Queensborough Palmer & 

Hornbostel 

Tri borough 0. H. Ammann 

Bronx Whitestone 0. H. Ammann 
Throgs Neck 0. H. Ammann 
Geore:e Washine:ton 0. H. Ammann 

Formatting Tables 

Len11:th 
1595 
1470 
1600 
1182 

1380 

383 
2300 
1800 
3500 

7-13 



XENIX Text Processing 

Input: 

.TS 
c c 
np-2 I n I . 
(}Stack 
GI_ 
1Ql46 
GI_ 
2(}23 

°'-3(}15 
GI_ 
4()65 
GI_ 
5(}21 

°'-.TE 

Output: 

7-14 

Stack 
46 

2 23 
3 15 
4 6.5 
6 2.1 

( 

( 

( 



) 

) 

Input: 

.TS 
box; 
LLL 
LL_ 
LL I LB 
LL_ 
LL L. 
january(}f'ebruary(}march 
apriOmay 
june(}july(}Months 
augusOseptem ber 
october(}november(}december 
.TE 

Output: 

january 
april 
june 
august 
ortober 

f'ebruary march 
may 

1 july 
september '-------1 

Months 

november december 

For matting Tables 

7-15 



XENIX Text . Processing 

Input: 

.TS 
box; 
cfB s s s. 
Composition or Foods 

.T& 
c I cs s 
c I cs s 

c I c I c I c. 
Food(}Percent by Weight 
\'(}_ 
\ '(}Protein(}Fat(}Carbo­
\ 'C'.P\ '(}\'(}hydrate 

-
.T& 
I In In In. 
Apple~.4(]).5(}13.0 
Halibu t018. 4(])5.2() ... 
Lima beans(}'T.5(}.8(}22.0 
Milk(J)3.3(}4.o(J)5.0 
Mushrooms():J.5(}.4(}6.0 
Rye bread(}g.o(J).6()52. 7 
.TE 

Output: 

Com oosition of Foods 
Percent by Weiitht 

Food 
Protein Fat Carbo-

hvdrate 
Apples .4 .5 113.0 
Halibut 18.4 5.2 ... 
Lima beans 7.5 .8 22.0 
Milk 3.3 4.0 5.0 
Mushrooms 3.5 .4 6.0 
Rye bread 0.0 .6 52.7 

7-16 

( 

( 

( 



Formatting Tables 

Input: 

.TS 
all box; 

) en s s 
c cw(li) cw(li) 
lp9 lp9 lp9. 
New York Area Rocks 
Era(}Formation(}Age (years) 
Precambrian(}Reading Prong(}> 1 billion 
Paleozoic()Manhattan Prong(}400 million 
Mesozoic()T{ 
.na 
Newark Basin, incl. 
Stockton, Lockatong, and Brunswick 
formations; also Watchungs 
and Palisades. 
T.}(}200 million 
Cenozoic(}Coastal Plain()T { 
On Long Island 30,000 yea.rs; 
Cretaceous sediments redeposited 
by recent glaciation . 
. ad 
T} ).TE 

Output: 

New York Area Rock• 
Era Formation 

Precambrian Readinit Pronit 
Paleozoic Manhattan Pronit 
Mesozoic Newark Basin, incl. 

Stockton, Lockatong, and Brunswick 
formations; also Watchungs 
and Palisades. 

Cenozoic Coastal Plain 

ke (years} 
>I billion 
400 million 
200 million 

On Long Island 30,000 years; 
Cretaceous sediments redeposited 
by recent itlaciation. 

7-17 



XENIX Text Processing 

'1.5 Summary of tbl Commands 

Command Meaning ( 
aA Alohabetic subcolumn 
all box Draws box around all items 
bB Boldface item 
box Draws box around table 
cC Cent-ered column 
center Centers table in page 
doublebox Doubled box around table 
eE Equal width columns 
expand Makes table full line width 
fF Font change 
i I Italic item 
IL Left adiusted column 
nN Numerical column 
nnn Column separation 
oP Point size change 
rR Ri.e.:ht adiusted column 
s s Spanned item 
tT Vertical spanning at top 
tab (z) Chanire data seoarator character 
$fat roman "Tf" -- fat roman "T}" S Text block 
vV Vertical spacin1t chan.e.:e 
wW Minimum width value 
.zz Included troff command 
I Vertical line 
II Double vertical line 

A Vertical span 
\ ,, Vertical soan 

- Double horizontal line 
$fat"_"$ Horizontal line 
$fat"\_"$ Short horizontal line 

( 

7-18 



) 

) 

) 

Chapter 8 
Formatting Mathematics 

8.1 Introduction 8-1 

8.2 Displayed Equations 8-2 

8.3 Basic Mathematical Constructions 8-3 
8.3. l Subscripts and Superscripts 8-3 
8.3.2 Braces for Grouping 8-4 

8.4 

8.3.3 Fractions 8-5 
8.3.4 Square Roots 8-6 
8.3.5 Summation and Integrals 8-7 

Complex Mathematical Constructions 
8.4.1 Big Brackets, Parentheses, and Bars. 
8.4.2 Piles 8-8 
8.4.3 Matrices 8-9 
8.4.4 Lining Up Equations 8-10 

8-7 
8-7 

8.5 Layout and Design of Mathematical Text 8-11 
8.5.1 InputSpaces 8-11 
8.5.2 Output Spaces 8-11 
8.5.3 Spaces Between Special Sequences 8-11 
8.5.4 Symbols, Special Names, and Greek Characters -

8-12 
8.5.5 Size and Font Changes 8-12 
8.5.6 Diacritical Marks 8-14 
8.5.7 Quoted Text 8-14 
8.5.8 Local Motions 8-15 

8.6 In-line Equations 8-15 

8.7 Definitions 8-16 

8.8 Invoking eqn 8-18 



8.9 Sample Equation 8-18 

8.10 Error Messages 8-19 

8.11 Summary of Keywords and Precedences 8-20 ( 

( 



) 

8.1 Introduction 

In the previous chapter you were introduced to the tbl program, a. special 
preprocessing formatting program which helps you design a.nd create 
professional-looking tables in documents. This chapter describes another 
preprocessor: eqn, a program that simplifies the task of formatting complex 
mathematical equations a.nd printing special symbols. Once a.gain, unless you 
need to use mathematical equations or special symbols in your documents, you 
can postpone or skip reading a.bouteqn. 

Like tbl, eqn is a. "preprocessor" -that is, you must embed commands in the 
text as you a.re preparing it, a.long with mm macros a.nd nroff/troff 
commands. The eqn macros are then translated by the eqn program into 
nroff/troff commands, without altering either the body of the text or other 
formatting commands. The file is processed through the nroff or troff 
programs themselves to produce final output. 

The uses of eqn a.re fairly specialized-you may simply not need to format 
equations. However, eqn offers you precise control over line spacing, which is 
suitable to formulas and subscripting, necessary for documents in such fields as 
chemistry and physics. You also have such special character sets as the Greek 
alphabet available to you. 

The design of the eqn program makes it relatively easy to learn. Wherever 
possible, the formatting commands resemble ordinary English words (e.g. over, 
lineup, bold, union), and the format is specified much as you might try to 
describe an equation in conversation. Ir you are faced with the task of 
typesetting equations, you will soon appreciate how quickly you can specify 
even complicated equations requiring unusual line motions, such as arrays, 

Mathematical equations are notoriously difficult to format by conventional 
typesetting methods. With the help of the XENIX program eqn, however, you 
will quickly learn to use troff to typeset mathematical equations directly to a 
phototypesetter. Eqn employs a language which is quite easy to use, even if 
you have know little a.bout either mathematics or typesetting. In a half hour or 
so, you shoul!l be able to learn enough of the language to set equations like 
lim (tan x)sm 2r = 1 or equations like: 

%-+'If /2 

8-1 



XENIX Text Processing 

The same commands may also be used with the XENIX formatter nroff to 
rormat mathematical expressions for lineprinters. To do this, invoke the 
program neqn instead of eqn. The same limitations (inability to change font 
and point size, and do variable spacing, etc.) apply to any text output to a 
lineprinter. The resulting output from neqn, however, is usually adequate for (. 
proofreading. 

As you work with eqn, remember that the eqn program itselrknows relatively 
little about mathematics. In particular, mathematical symbols like +, -, X, 
and parentheses have no special meanings. Eqn will set anything that looks 
like an equation, regardless of whether it makes sense mathematically. 

To use eqn on your XENIX system, type 

eqn file I troff -mm 

This command line processes file with eqn, then pipes the resulting output file 
to the troff program. 

8.2 Displayed Equations 

To tell eqn where~ mathematical expression begins and ends, surround it with 
the commands .EQ and .EN. Thus, if you type the lines 

.EQ 
x=y+z 
.EN 

your output will look like: 

x=y+z 

The .EQ and .EN are not processed by eqn. Ir you want to specify centering, 
numbering, or other formatting features for your mathematical text, you will 
need to enter the appropriate formatting commands in your text. Ir you want, 
you can add nroff/troff commands, but it is far simpler to use mm. mm 
provides commands which allow you to center, indent, left-justify and number 
equations. 

You can give the .EQ command an argument that is treated as an arbitrary 
equation number which will be placed in the right margin. For example, the 
input 

.EQ 7 
x. f(y/2) + y/2 
.EN 

produces the output 

8-2 

( 

( 



) 

Formatting Mathematics 

x=J(y/2)+11/2 7 

Note that .EQ is an mm macro. In other computer systems' macro packages it 
may have a different meaning. 

8.3 Basic Mathematical Constructions 

This section describes how eqn can be used to handle the following frequently 
used mathematical constructions: 

subscripts and superscripts 

grouping 

fractions 

square roots 

summation and integrals 

8.3.l Subscripts and Superscripts 

To get subscripts and superscripts into mathematical text, use sub and sup. 
For example, the following 

x sup 2 + y sub k 

produces 

Eqn supplies all the commands tor size changes and vertical motions to make 
the output look right. The words sub and sup must be surrounded by spaces. 
For example: 

x sub2 

will give you zsub2 instead or:&:!· Furthermore, don't forget to leave a space or 
a tilde to mark the end or a subscript or superscript. Note that it you use an 
expression like 

y = (x sup 2)+1 

you will get 

instead of 

8-3 



XENIX Text Processing 

y=(x2)+1 

Subscripted subscripts and superscripted superscripts can also be created. The 
rollowing 

x sub i sub 1 

produces 

A subscript and superscript on the same object are printed one above the other 
ir the subscript comes first. For example, 

x sub i sup 2 

produces 

Other than in this special case, sub and sup group to the right, so x supy sub z 
"• _v means :t , not x-,,. 

8.3.2 Braces for Grouping 

Normally, the end or a subscript or superscript is marked simply by a blank, 
tab, or tilde. Ir you need to produce a subscript or superscript with blanks in it, 
you can use braces ( {}) to mark the beginning and end or the subscript or 
superscript. For example: 

e sup {i omega t} 

produces: 

Braces can always be used to rorce eqn to treat an expression as a unit, or just 
to make your intention perfectly clear. When you use braces: 

x sub {i sub l} sup 2 

produces 

The same text without braces: 

8-4 

( 

( 

( 



) 

Formatting Mathematics 

x sub i sub 1 sup 2 

produces 

Bra.ces ca.n occur within bra.ces if necessary: 

e sup {i pi sup {rho +1}} 

results in 

The genera.I rule is that anywhere you could use a single item like x, you could 
also use any complicated expression, if you enclose it in braces. Positioning and 
size will be ta.ken care or by eqn. 

You will need to make sure you have the right number or braces. Ir for some 
reason you need to print braces, enclose them in double quotations("), like"{". 

8.3.3 Fractions 

To make a. Cra.ction, use the word "over." For example: 

a. + b over 2c = 1 

produces 

b 
a+-=I 

2c 

The line is ma.de the right length and positioned automatically. You can use 
braces to make clear what goes over what: 

{alpha+ beta} over {sin(x)} 

JS 

Ir you have both an over and a sup in the same expression, eqn does the sup 
before the over, so 

-b sup 2 over pi 

8-5 



XENIX Text Processing 

JS 

instead of 

2 

-h" 

The rules of precedence that control which operation will be done first are 
summarized at the end or this chapter. Ir you a.re in doubt, however, use braces 
to make clear what you mean.· 

8.3.4 Square Roots 

To draw a. square root, use "sqrt". For example 

sqrt a+b + I over sqrt {a."< sup 2 +bx+c} 

produces 

Ja+h+ 1 
v' aX2+hx+c 

You should note, however, that the square roots or ta.II quantities often do not 
look good. A square root big enough to cover the quantity is too dark and 
heavy. For example 

sqrt {a sup 2 over b sub 2} 

produces 

You are better off writing big square roots as the power 1/2. For example, you 
could use 

(a. sup 2 /b sub 2) sup ha.Ir 

to produce 

8-6 

( 

( 

( 



) 

) 

Formatting Mathematics 

8.3.5 Summation and Integrals 

Summations, integrals, and similar constructions can be produced with eqn. 
For example 

sum Crom i=O to {i= inf} x sup i 

produces 

Braces are used here to indicate where the upper part i 00 begins and ends. 
No braces were necessary Cor the lower part i=O, because it contained no 
blanks. Braces never hurt, and irthe Crom and to parts contain any blanks, you 
must use braces around them. The Crom and to parts are optional, but if both 
are used, they have to occur in that order. 

Other useful characters can replace the sum, including: 

int prod union inter 

These become, respectively, 

f II U n 
The expression before the "from" can be anything, including an expression in 
braces. The Crom-to expression can often be used in unexpected ways. For 
example 

Jim from {n -> inf} x sub n =0 

. produces 

8.4 Complex Mathematical Constructions 

This section describes how to use eqn to produce more complicated 
mathematical constructions, including piles and matrices, often surrounded by 
brackets, parentheses or bars. 

8.4.1 Big Brackets, Parentheses, and Bars 

8-7 



XENIX Text Processing 

To get big brackets (( J), braces ({ }), parentheses (( )), and bars (II) around 
things, use the left and right commands. For example 

lert f a over b + 1 right } 
-= - lert (cover d right) 
+ lert I e right ) 

produces 

The resulting brackets are big enough to cover whatever they enclose. Other 
characters can be used besides these, but they probably won't look very good. 
One exception is the floor and ceiling characters. For example 

left floor x over y right floor 
< = le rt ceiling a over b right ceiling 

produces 

Please note that braces are typically bigger than brackets and parentheses, 
because the number of pieces is incremented by two (three, five, seven, etc.) 
while the number or pieces in a bracket is incremented by one (two, three, etc.). 
Also, big left and right parentheses orten look poor, because of character set 
limitations. 

The right part may be omitted: a left expression need not have a corresponding 
right expression. Ir the right part is omitted, put braces around the thing you 
want the lert bracket to encompass. Otherwise the resulting brackets may be 
too large. Ir you want to omit the left part, things are more complicated, 
because technically you can't have a right without a corresponding left. 
Instead you have to say 

le rt "" ..... right ) 

The left"" means a "left nothing". This satisfies the rules without affecting 
your output. 

8.4.2 Piles 

There is a facility for making vertical piles or things with several variants. For 
example: 

8-8 

( 

( 

( 



) 

) 

) 

Formatting Mathematics 

A·==· left. ( 
pile { a above b above c } 
• • pile { x above y above z } 

right) 

will produce 

A=[~~ 
You can have as many elements in a pile as you want. They will be centered one 
above another, at the right height for most purposes. The keyword above is 
used to separat.e t.he pieces; braces are used around the entire list. The elements 

. of a pile can be as complicated as needed, and may even contain more piles. 

Three ot.her forms of pile exist.: "lpile" makes a pile with the elements left.­
justified; "rpile" makes a right-justified pile; and "cpile" makes a centered pile, 
just like pile. The vertical spacing between the pieces is somewhat larger for 1-, 
r- and cpiles than it is for ordinary piles. For example 

roman sign (xf = • 
left { 

!pile { 1 above 0 above -1} 
• • !pile 
{irx>O above if"x=O above if"x<O} 

creates the pile 

1
1 if z>O 

sign( z) = 0 if z=O 

-1 ifz<O 

Not.e that. t.he left. brace has no matching right one. 

8.4.3 Matrices 

It is also possible t.o make matrices. For example, to make a neat array like 

z, il 
y,,; 

use 

8-9 



XENIX Text Processing 

matrix { 

} 

ecol { x sub i above y sub i } 
ecol { x sup 2 a.hove y sup 2 } 

This produces a. matrix wi~h two centered columns. The elements of the 
columns a.re then listed just as for a pile, each element separated by the word 
above. You can also use lcol or rcol to left or right adjust columns. Ea.ch 
column can be separately adjusted, a.nd there ca.n be as many columns as you 
like. 

The reason for using a matrix instead of two adjacent piles is that if the 
elements of the piles do not all have the same height, they will not line up 
properly. A matrix forces them to line up, because it looks at the entire 
structure before deciding what spacing to use. A word of warning about 
ma.trices: each column must have the same number of elements in it. 

8.4.4 Lining Up Equations 

( 

Sometimes it is necessary to line up a series of equations at some horizontal 
position, such as a.t a.n equal sign. This is done with two operations ca.lied 
"ma.rk"and "lineup." The word mark may appear once at any place in an 
equation. It remembers the horizontal position where it appeared. Successive ( 
equations can contain one occurrence or the word lineup. The place where · 
lineup appears is made to line up with the place marked by the previous mark if 
at all possible. Thus, for example, you can say 

.EQ 
x+y mark= z 
.EN 
.EQ 
x lineup= 1 
.EN 

to produce 

x+y=z 
x=l 

Note that mark does not look ahead, so 

x mark =l 

x+y lineup =z 

will not work, because there is not room for the x+y pa.rt after the mark 
remembers where the xis. 

8-10 

( 



Formatting Mathematics 

8.5 Layout a.nd Design of Mathematical Text 

The following sections describe the format and layout control features of eqn. 

) 8.S.1 Input Spaces 

Eqn ignores spaces and newlines within an expression. Ir you have any of the 
following equations between .EQ and .EN commands, 

x=y+z 

or 

x = y + z 

or 

x y 
+z 

they will all produce the same output: 

x=y+z 

Therefore, use spaces and newlines freely to make your input equations 
readable and easy to edit. 

8.S.2 Output Spaces 

To get extra spaces into the your output, use a tilde C) for each space you want: 

This produces 

x= y+z 

You can also use a caret('), which produces a space half the width or a tilde. 
Tabs may be used t.o position pieces of an expression, but the tab !'tops must be 
set with the troff tab(. ta) command. 

) 8.5.3 Spaces Between Special Sequences 

Ir you need to separate a special sequence or characters, you will have to make 
this clear to eqn. You can either surround a special sequence with ordinary 
spaces, tabs, or newlines, or make special words stand out by surrounding them 

8-11 



XENIX Text Processing 

with tildes or carets, as in the following: 

The tildes not only separate the words sin, omega, etc., but also add extra I 
spaces, one space per tilde: ~ 

z = 2 1r J sin ( w I) di 

Special words can also be separated by braces ( { } ) and double quotation marks 
(" ). 

8.l>.4 Symbols, Special Names, and Greek Characters 

Eqn knows some mathematical symbols, some mathematical names, and the 
Greek alphabet. For example, 

x=2 pi int sin ( omega t)dt 

produces 

z=211' J sin(wt)dt 

Here you need input spaces to tell eqn that int, pi, sin and omega are separate ( 
entities that should get special treatment. The sin, digit 2, and parentheses are 
set in Roman type instead of italic; pi and omega are translated into Greek; int 
becomes the integral sign. 

When in doubt, leave spaces around separate parts of the input. A common 
error is to type r(pi) without leaving spaces on both sides of the pi. If you do 
thi~ eqn does not recognize pi as a special word, and it appears as J(pa) instead 
of J\11"). A complete list ofeqn names appears at the end of this chapter. You 
can also use troff names for anything eqn doesn't know about. 

8.l>.l> Size and Font Changes 

By default, equations are set in IO.point type; standard mathematical 
conventions determine which characters are in Roman and which are in italic. 
Ir you are dissatisfied with the default sises and fonts, you can change them 
using the commands size a and roman, italic, bold and fat. Like sub and sup, 
size and font changes affect only what follows immediately and then revert t.o 
the default. Thus 

bold x y 

is 

8-12 

( 



) 

) 

) 

and 

xy 

size 14 bold x = y + 
size 14 {alpha+ beta} 

gives 

X=y+a+/3 

Formatting Mathematics 

You can use braces if you want to apply a change to something more 
complicated than a single letter. For example, you can change the size or an 
entire equation with 

size 12 { ... } 

Legal sizes are: 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. You can also 
change the size by a given amount; For example, you can say 

size+2 

to make the size two points bigger, or 

size-3 

to make it three points smaller. The advantage of this method is that you do 
not need to know what the current size is. 

Ir you are using fonts other than Roman, italic and bold, you can say font X 
where Xis a one character troff name or number for the font. However, since 
eqn is designed for Roman, italic and bold, other fonts may not give quite as 
good an appearance. 

The fat operation takes the current font and widens it by overstriking: fat grad 
is V and fat {x sub i} is%;. 

Ir an entire document is to be in a nonstandard size or font, you need not write 
out a size and font change for each equation. Instead, you can set a "global" size 
or font which thereafter affects all equations. At the beginning or any equation, 
you might say, for instance, 

.EQ 
gsize 16 
gfont R 

.EN 

to set the size to 16 points and the font to Roman. In place ofR, you can use any 

8-13 



XENIX Text Processing 

troff font name. The size after gsize ca.n be a. rela.t.ive change with+ or-. 

Generally, gsize a.nd gfont will a.ppea.r a.t the beginning or a. document but they 
ca.n also appear throughout a. document: the global font and size can be changed 
as often as needed. For example, in a. footnote you will typically want the size of ( 
equations to match the size of the footnote text, which is two points smaller I 
than the main text. Don't forget to reset the global size a.t the end or the 
footnote. 

8.5.6 Diacritical Marks 

There are several words that produce diacritical marks on top or letters: 

x dot z 
x dotdot z 
x hat i 
x tilde i 
x vec z 
x dyad '.i 
x ba.r x 
x under 1: 

The diacritical mark is a.utoma.tica.lly placed at the correct height. The "ba.r" 
and "under" a.re made the right length for the entire construct, as in~ 
other marks are centered. 

8.5.7 Quoted Text 

Any input entirely within quotes (" ... ")is not subject to a.ny of the font changes 
and spacing adjustments normally done by the equation setter. This provides a. 
way to do your own spacing a.nd adjusting if needed. For example 

italic "sin(x)" + sin (x) 

produces 

sin(z)+sin( z) 

Quotation marks a.re also used to get braces and other eqn keywords printed. 
For example 

" { size a.Ip ha. } " 

produces 

{ size alpha } 

Similarly 

8-14 

( 

( 



) 

) 

Formatting Mathematics 

roman " { size alpha }" 

produces 

{size alpha} 

The construction "" can be used as a place-holder when eqn syntax requires 
something, but you don't actually want anything in your output. For example, 
to make 

2He 

you can't just type 

sup 2 roman He 

because a sup has to be a superscript on something. Thus you must say 

"" sup 2 roman He 

'To get a literal quotation mark, use the sequence\". 

8.5.8 Local Motions 

Although eqn tries to get most things at the right place on the paper, it isn't 
perfect, and occasionally you will need to tune the output to make it just right. 
Small extra horizontal spaces can be obtained with tildes(") and carets('). You 
can also say "back n" and "fwd n" to move small distances horizontally. Then 
is the distance to be moved in 1/100 em units (an em is about the width of the 
letter m). Thus "back 50" moves back about half the width of an m. Similarly 
you can move things up or down with "up n" and "down n." As with sub or sup, 
the local motions affect the next thing in the input. This can be a complex 
expression, as long as it is enclosed in braces. 

8.6 In-line Equations 

In a mathematical document it is often necessary to follow mathematical 
conventions in the body of the text, as well as in display equations. For 
example, you may need to make variable names like :r italic. Although this 
could be done by surrounding the appropriate parts with .EQ and .EN, the 
continual repetition of .EQ and .EN is a nuisance. Furthermore, this implies a 
displayed equation. 

Eqn provides a shorthand for short in-line expressions. You can define two 
characters to mark the left and right ends of an in-line equation, and then type 
expressions right in the middle of text lines. To set both the left and right 
characters to percent signs, for example, add to the beginning of your 
document the three lines 

8-15 



XENIX Text Processing 

.EQ 
delim %% 
.EN 

Having done this, you create text like 

Let %alpha sub i% be the primary variable, and let %beta% be zero. 
Then we can show that %x sub 1% is %>=0%. 

This produces: 

Let a, be the primary variable, and let f3 be zero. Then we can show 
that z1 is ~0. 

This works as you might expect: spaces, newlines, and so on are significant in 
the text, but not in the equation pa.rt itseir. Multiple equations ca.n occur in a. 
single input line. 

Enough room is left before a.nd a(ter a. line that contains in-line expressions that 
" something like E z, does not interrere with the lines surrounding it. 

i=l 

To turn off the delimiters, use: 

.EQ 
delim off 
.EN 

Do not use braces, tildes, carets, or double quotation marks a.s delimiters; these 
have special meanings. 

8.7 Definitions 

Eqn allows you to give a frequently used string or characters a name, and 
thereafter just type the name instead or the whole string. For example, if the 
sequence 

x sub i sub 1 + y sub i sub 1 

appears repeatedly throughout a paper, you can save retyping it each time by 
defining it like this: 

.EQ 
define xy 'x sub i sub 1 + y sub i sub l' 
.EN 

This makes xy a shorthand for whatever characters occur between the single 
quotation marks in the definition. You can use any character instead of 

8-16 

( 

( 

( 



) 

) 

Formatting Mathematics 

quotation marks to indicate the ends or the definition, so long as that character 
does not appear inside the definition. 

You can use xy like this: 

.EQ 
r(x) = xy ... 
. EN 

Ea.ch occurrence or xy will expand into the string or characters you defined. Be 
careful to leave spaces or their equivalent around the name when you actually 
use it, so eqn will he a.hie to identify it as special. 

There are several things to watch out for. First, although definitions can use 
previous definitions, as in: 

.EQ 
define xi ' x sub i ' 
define xii ' xi sub 1 ' 
.EN 

don't define something in terms oritselr. You cannot use 

define X ' roman X ' 

because this defines x in terms or itselr. Ir you say 

define X ' roman "X" ' 

however, the quotation marks protect the second X, and everything works fine. 

Eqn keywords can be also be redefined. You can make/ mean over by saying 

define / ' over ' 

·or redefine over as/ with 

define over ' / ' 

Ir you need to print a symbol one way on a terminal and another way on the 
typesetter, it is sometimes worth defining a symbol differently for neqn and 
eqn. This can be done with "ndefine" and "tdefine." A definition made with 
ndefine only takes effect if you are running neqn. Ir you use tdefine, the 
definition only applies for eqn. Na.mes defined with "define" apply to both eqn 
andneqn. 

8-17 



XENIX Text Processing 

8.8 Invoking eqn 

To print a. document that contains mathematics on the typesetter, use 

eqn fi )es I troff 

Ir there are any troff options, place them arter the troff part or the command. 
For example, 

eqn files I troff -mm files 

To print equations on a lineprinter or similar device, use 

neqn files I nroff -mm files 

The language for equations recognized by neqn is identical to that or eqn, 
although or course the output is more restricted. 

Eqn and neqn can be used with the tbl program for setting tables that contain 
mathematics. Use tbl before eqn like this: 

tbl files 
tbl files 

eqn I troff -mm 
neqn I nroff -mm 

. 8.9 Sample Equation 

Now that you are familiar with the features or eqn, here is the complete input 
text for the three display equations at the beginning or this chapter: 

8-18 

( 

( 



) 

) 

.EQ 
G(zrmark = • e sup { In • G(z) } 
• = • exp left ( 

Formatting Mathematics 

sum Crom k>=l {S sub k z sup k} over k right) 
·=· prod Crom k>=l e sup {Ssub k z sup k /k} 
.EN 
.EQ 
lineup = left ( 1 + S sub 1 z + 
{ S sub 1 sup 2 z sup 2 } over 2! + ... right ) 
leCt ( I+ { S sub 2 z sup 2 } over 2 
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! } 
+ ... right) ... 
. EN 
.EQ 
lineup = sum Crom m>=O left ( 
sum Crom 
pile { k sub 1 ,k sub 2 , ... , k sub m >=O 
above 
k sub 1 +2k sub 2 + ... +mk sub m =m} 
{ S sub l sup {k sub l} } over {1 sup k sub l k sub l ! } · 
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } • 
{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! } 
right ) z sup m 
.EN 

8.10 Error Messages 

Ir you make a mistake in an equation, such as leaving out a brace or having one 
too many braces or having a sup with nothing before it, eqn will respond with 
the message 

syntax error between lines x and y, file 

where x and y are the lines between which the trouble occurred, and file is the 
name of the file in question. The line numbers are only approximate, so check 
nearby lines as well. You will receive self-explanatory messages iCyou leave out 
a quotation mark or try to run eqn on a nonexistent file. 

Ir you want to check a document before actually printing it try: 

eqn files >/dev/null 

J This will throw away the output but print the error messages. 

Ir you use something like dollar signs as delimiters, it is easy to leave one out. 
The program eqncheck checks Car misplaced or missing dollar signs and 
similar errors. 

8-19 



XENIX Text Processing 

In-line equations are limited in size because or an internal buffer in troff. Ir you 
get the message "word overflow", you have exceeded this limit. Ir you print the 
equation as a display this message will usually go away. The message 
"line"overflow indicates you have exceeded an even bigger buffer. The only (. 
cure ror this is to break the equation into two separate ones. ~ 

Also, eqn does not break equations by itselr; you must split long equations up 
across multiple lines by yourselr, marking each by a separate .EQ .... EN 
sequence. Eqn warns about equations that are too long to fit on one line. 

8.11 Summary of Keywords and Precedences 

Ir you don't use braces around expressions, eqn will do operations in the order 
shown in this list. 

dyad vec under bar tilde hat dot dotdot 
rwd back down up 
Cat roman italic bold size 
sub sup sqrt over 
Crom to 

These operations group to the lert: 

over sqrt Iert right 

All others group to the right. 

Digits, parentheses, brackets, punctuation marks, and these mathematical 
words are converted to Roman ront when encountered: 

sin cos tan sinh cosh tanh arc 
max min Jim log In exp 
Re Im and ir ror det 

These character sequences are recognized and translated as shown. 

>== > 
<= ~ 
== -
I= 'I= 
+- ± 
-> -<- -<< << 
>> >> 
inr 00 

partial 0 
hair 
prime 

8-20 

( 



) 

) 

) 

Formatting Mathematics 

a.ppr ox 
nothing 
cdot 
times 
del 
grad 

, ... , 
sum 

int 

prod 
union 
inter 

x 
v 
v 

t""I 
J 
II 

H 
To obtain Greek letters, simply spell them out in whatever ca.se you wa.nt: 

DELTA A. iota. 
GAMMA r kappa. IC 

LAMBDA A lambda. x 
OMEGA n mu µ 
Plll cl> nu II 

PI n omega. w 
PSI "' omicron 0 

SIGMA E phi rP 
THETA e pi 1r 

UPSILON T psi !/J 
XI 8 rho p 
alpha. a sigma. (1 

beta. f3 ta.u T 

chi x theta. 8 
delta. 8 upsilon v 
epsilon f xi e 
eta. ,, zeta. ~ 
gamma. "I 

These a.re a.II the words known to eqn except Cor cha.ra.cters with names: 

8-21 



XENIX Text Processing 

above dotdot italic rcol to 
back down lcol right under 
bar dyad Jett roman up 
bold rat lineup rpile vec 

( ecol ront lpile size 
col Crom mark sqrt {} 
cpile twd matrix sub \" ... \" 
define gtont ndefine sup 
delim gsize over tdefine 
dot hat pile tilde 

( 

( 

8-22 



) 

) 

) 

Appendix A 
Editing with Sed and Awk 

A.l Introduction A-1 

A.2 Editing With sed A-1 
A.2.1 Overall Operation A-2 
A.2.2 Addresses A-3 
A.2.3 Functions A-5 

A.3 Pattern Matching With awk A-12 
A.3.1 Invoking awk A-13 
A.3.2 Program Structure A-13 
A.3.3 Records and Fields A-13 
A.3.4 Printing A-14 
A.3.5 Patterns A-15 
A.3.6 Actions A-17 



(l 

(' 



) 

) 

) 

A.1 Introduction 

This appendix describes two XENIX utilities that allow you to perform large­
scale, noninteractive editing tasks: 

Sed, a noninteractive, or "batch", editor which is useful if you must 
work with large files or run a complicated sequence or editing 
commands on a file or group of files. 

Awk, which searches numerics, logical relations, variables, and 
particular fields within lines or text. 

Although you can perform many or the same tasks with grep, sort, and the 
variants or di ff, you will find that these two programs offer an added facility for 
the processing of complicated changes to large files, or many files at once. Sed is 
very handy for large batch editing jobs, but if you choose not to learn it, many 
or the same tasks can be performed withed scripts. The awk program offers 
several features not available with the other tools described in this chapter, but 
it is somewhat more complicated to learn and use. 

A.2 Editing With sed 

The sed program is a noninteractive editor which is especially useful when the 
files to be edited are either too large, or the sequence or editing commands too 
complex, to be executed interactively. sed works on only a few lines of input at 
a time and does not use temporary files, so the only limit on the size or the files 
you can process is that both the input and output must be able to fit 
simultaneously on your disk. You can apply multiple" global" editing functions 
to your text in one pass. Since you can create complicated editing scripts and 
submit them to sed as a command file, you can save yourselr considerable 
retyping and the possibility of making errors. You can also save and reuse sed 
command files which perform editing operations you need to repeat frequently. 

Processing files with sed command files is more efficient than using ed, even if 
you prepare a prewritten script. Note, however, that sed lacks relative 
addressing becauses it processes a file one line at a time. Also, sed gives you no 
immediate verification that a command has altered your text in the way you 
actually intended. Check your output carefully. 

The sed program is derived from ed, although there are considerable 
differences between the two, resulting from the different characteristics or 
interactive and batch operation. You will notice a striking resemblance in the 
class of regular expressions they recognize; the code for matching patterns is 
nearly identical for ed and sed. 

A-1 



XENIX Text Processing 

A.2.1 Overall Operation 

By derault, sed copies the standard input to the standard output, performing 
one or more editing commands on each line berore writing it to the output. 
Typically, you will need to specify the file or files you are processing, along with (. · 
the name or the command file which contains your editing script, as in the 
rollowing: 

sed -r script filename 

The flags a.re optional. The -n flag tells sed to copy only those lines specified by 
-p functions or -p flags after -s functions. The -e flag tells sed to take the next 
argument as an editing command, and the -r flag tells sed to take the next 
argument as a. filename. (This file must contain editing commands, one to a 
line.) 

The general format of a sed editing command is: 

addressl,address2 function arguments 

In any command, one or both addresses may be omitted. A function is always 
required, but an argument is optional for some runctions. Any number of 
blanks or tabs may separate the addresses from the function, and tab 
characters and spaces at the beginning orlines are ignored. 

Three flags are recognized on the command line: 

-n Directs sed to copy only those lines specified by p functions or p 
flags afters functions. 

-e Indicates that the next argument is an editing command. 

-r Indicates that the next argument is the name of the file which 
contains editing commands, typed one to a. line. 

Sed commands are applied one at a time, generally in the order they are 
encountered, unless you change this order with one of the "flow-of-control" 
functions discussed below. Sed works in two phases, compiling the editing 
commands in the order they are given, then executing the commands one by 
one to each line of the input file. 

The input to each command is the output of all preceding commands. Even if 
you change this default order or a.pp lying commands with one of the two flow-

( 

or-control commands, t and b, the input line to any command is still the output (. 
or any previously applied command. 

You should also note that the range or pattern match is normally one line of 
input text. This range is ca.lied the "pattern space." More than one line can be 
read into the pattern space by using the N command described below in 

A-2 



) 

) 

) 

Editing with Sed and Awk 

"Multiple Input-Line Functions". 

The rest or this section discusses the principles or sed addressing, rollowed by a. 
description or sed functions. All the examples here a.re based on the following 
lines from Samuel Taylor Coleridge's poem, "Kubla.Kha.n": 

In Xa.na.du did Kubla. Kha.n 
A stately plea.sure dome decree: 
Where Alph, the sacred river, ra.n 
Through caverns measureless to man 
Down to a. sunless sea.. 

For example, the command 

2q 

will quit after copying the first two lines or the input. Using the sample text, the 
result will be: 

In Xa.na.du did Kubla. Kha.n 
A stately plea.sure dome decree: 

A.2.2 Addresses 

The following rules apply to addressing in sed. There are two ways to select the 
lines in the input file to which editing commands are to be applied: with line 
numbers or with "context addresses". Context addresses correspond to 
regular expressions. The application or a. group or commands ca.n be controlled 
by one address or a.n address pair, by grouping the commands with curly braces 
( { } ). There may be 0, 1, or 2 addresses specified, depending on the command. 
The maximum number of addresses possible for each command is indicated. 

A line number is a decimal integer. As ea.ch line is read from the input file, a line 
number counter is incremented. A line number address matches the input line, 
causing the internal counter to equal the address line-number. The counter 
runs cumulatively through multiple input files; it is not reset when a new input 
file is opened. A special case is the dollar sign character ($) which matches the 
last line or the last input file. 

Context addresses are enclosed in slashes (/). They include all the regular 
expressions common to both ed a.nd sed: 

1. An ordinary character is a regular expression and matches itseir. 

2. A caret(') a.t the beginning or a regular expression matches the null 
character a.t the beginning or a. line. 

A-3 



XENIX Text Processing 

3. A dollar sign ($) at the end or a regular expression matches the null 
character at the end or a line. 

4. The characters \n match an embedded newline character, but not the 
newline at the end or a pattern space. 

5. A period(.) matches any character except the terminal newline or the 
pattern space. 

6. A regular expression rollowed by a star (•) matches any number, 
including 0, or adjacent occurrences or the regular expression it 
follows. 

7. A string or characters in square brackets ([ J) matches any character in 
the string, and no others. Ir, however, the first character or the string 
is a caret(·), the regular expression matches any character except the 
characters in the string and the terminal newline or the pattern space. 

8. A concatenation or regular expressions is a regular expression which 
matches the concatenation or strings matched by the components or 
the regular expression. 

Q. A regular expression between the sequences"\(" and"\)" is identical 
in effect to itself, but has side-effects with the s command. Note the 
roll owing specification. 

10. The expression \d means the same string or characters matched by an 
expression enclosed in\( and\) earlier in the same pattern. Here "d" 
is a single digit; the string specified is that beginning with the "dth" 
occurrence or\( counting rrom the lert. For example, the expression 
·\(.•\)\1 matches a line beginning with two repeated occurrences or 
the same string. 

11. The null regular expression standing alone is equivalent to the last 
regular expression compiled. 

For a context address to "match" the input, the whole pattern within the 
address must match some portion or the pattern space. Ir you want to use one or 
the special characters literally, that is, to match an occurrence or itself in the 
input file, precede the character with a backslash(\) in the command. 

Each sed command can have 0, 1, or 2 addresses. The maximum number or 
allowed addresses is included. A command with no addresses specified is 
applied to every line in the input. Ir a command has one address, it is applied to 
all lines which match that address. On the other hand, ir two addresses are 
specified, the command is applied to the first line which matches the first 
address, and to all subsequent lines until and including the first subsequent line 
which matches the second address. An attempt is made on subsequent lines to 
again match the first address, and the process is repeated. Two addresses are 
separated by a comma. Here are some examples: 

A-4 

( 



) 

) 

/an/ 
/an.•an/ 
ran/ 
/./ 
/r•an/ 

Editing with Sed and Awk 

Matches lines 1, 3, 4 in our sample text 
Matches line 1 
Matches no lines 

Matches all lines 
Matches lines 1,3, 4 (number = zero!) 

A.2.3 Functions 

All sed fonctions are named by a single character. They are or the following 
types: 

Whole-line oriented (unctions add, delete, and change whole text 
lines. 

Substitute £unctions search and substitute regular expressions within 
a line. 

Input-output £unctions read and write lines and/or files. 

Multiple input-line fonctions match patterns that extend across line 
boundaries. 

Hold and get fonctions save and retrieve input text for later use. 

Flow-or-control £unctions control the order or application or 
£unctions. 

Miscellaneous £unctions. 

Whole-Line Oriented Functions 

d Deletes Crom the file all lines matched by its addresses. No Curther 
commands will be executed on a deleted line. As soon as the d 
(unction is executed, a new line is read from the input, and the list or 
editing commands is restarted Crom the beginning on the new line. 
The maximum number of addresses is two. 

n Reads and replaces the current line Crom the input, writing the 
current line to the output if specified. The list or editing commands 
is continued following the n command. The maximum number or 
addresses is two. 

a Causes the text to be written to the output arter the line matched 
by its address. The a command is inherently multiline; The a 
command must appear at the end or a line. The text may contain 
any number or lines. The interior newlines must be hidden by a 
backslash character (\) immediately preceding each newline. The 
text argument is terminated by the first unhidden newline, the first 
one not immediately preceded by backslash. Once an a function is 

A-5 



XENIX Text Processing 

successfully executed, the text will be written to the output 
regardless or what later commands do to the line which triggered it, 
even if the line is subsequently deleted. The text is not scanned for 
address matches, and no editing commands are attempted on it, 
nor does it cause any change in the line-number counter. Only one (• 
address is possible. 

c 

When followed by a text argument it is the same as the a function, 
except that the text is written to the output before the matched 
line. It has only one possible address. 

The c function deletes the lines selected by its addresses, and 
replaces them with the lines in the text. Like the a and i commands, 
c must be followed by a newline hidden with a backslash; interior 
newlines in the text must be hidden by backslashes. The c 
command may have two addresses, and therefore select a range of 
lines. Ir it does, all the lines in the range are deleted, but only one 
copy of the text is written to the output, not one copy per line 
deleted. AB in the case of lll and i, the text is not scanned for address 
matches, and no editing commands are attempted on it. It does not 
change the line-number counter. After a line has been deleted by a 
c function, no further commands are attempted on it. If text is 
appended after a line by lll or r functions, and the line is 
subsequently changed, the text inserted by the c function will be 
placed before the text of the a or r functions. 

Note that when you insert text in the output with these functions, leading 
blanks and tabs will disappear in all sed commands. To get leading blanks and 
tabs into the output, precede the first desired blank or tab by a backslash; the 
backslash will not appear in the output. 

For example, the list of editing commands: 

n 
a\ 
xxxx 
d 

applied to our standard input, produces: 

In Xanadu did Kubhla Khan 
xxxx 
Where Alph, the sacred river, ran 
xxxx 
Down to a sunless sea. 

In this particular case, the same effect would be produced by either of the two 
following command lists: 

A-6 

( 

( 



) or 

n 

i\ 
xxxx 
d 

n 
c\ 
xxxx 

Editing with Sed and Awk 

Substitute Functions The substitute function(s) changes parts of lines 
selected by a context search within the line, as in: 

(2)s pattern replacement flags substitute 

The s function replaces pa.rt of a line selected by the designated pattern with 
the replacement pattern. The pattern argument contains a pattern, exactly 
like the patterns in addresses. The only difference between a pattern and a 
context address is that a pattern argument may be delimited by any character 
other than space or newline. By default, only the first string matched by the 
pattern is replaced, except when the -g option is used. 

The replacement argument begins immediately after the second delimiting 
character of the pattern, and must be followed immediately by another 
instance of the delimiting character. The replacement is not a pattern, and the 
characters which a.re special in patterns do not have special meaning in 
replacement. Instead, the following characters are special: 

Is replaced by the string matched by the pattern. 

\d dis a single digit which is replaced by the dth substring matched by 
parts of the pattern enclosed in\( and\). If nested substrings occur 
in the pattern, the dth substring is determined by counting opening 
delimiters. 

As in patterns, special characters may be ma.de literal by preceding them with a 
backslash(\). 

A flag argument may contain the following: 

g Substitutes the replacement for all nonoverlapping instances of the 
pattern in the line. After a. successful substitution, the scan for the 
next instance of the pattern begins just after the end of the inserted 
characters; characters put into the line from the replacement a.re 
not rescanned. 

p Prints the line if a successful replacement was done. The p flag 
causes the line to be written to the output if and only if a 
substitution was actually ma.de by the s function. Notice that if 

A-7 



XENIX Text Processing 

several s functions, each followed by a p flag, successfully 
substitute in the same input line, multiple copies or the line will be 
written to the output: one for each successful substitution. 

w file Writes the line to a file if a successful replacement was done. The 
-w option causes lines which are actually substituted by the s 
function to be written to the named file. Ir the filename existed 
before sed is run, it is overwritten; if not, the file is created. A single 
space must separate -w and the filename. The possibilities or 
multiple, somewhat different copies or one input line being written 
are the same as for the -p option. A combined maximum or ten 
different filenames may be mentioned after w flags and w functions. 

Here are some examples. When applied to our standard input, the following 
command: 

s/to/by /w changes 

produces, on the standard output: 

In Xanadu did Kubhla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

and on the file thangu: 

Through caverns measureless by man 
Down by a sunless sea. 

The command 

s/l.,;!:)/•P&•/gp 

produces: 

A stately pleasure dome decree•P:• 
Where Alph•P,• the sacred river•P,• ran 
Down to a sunless sea•P.• 

With the g flag, the command 

/X/s/an/AN/p 

produces: 

In XANadu did Kubhla Khan 

and the command 

A-8 

( 

( 



) 

) 

Editing with Sed and A wk 

/X/s/an/AN/gp 

produces: 

In XANadu did Kubhla KhAN 

Input-Output Functions 

p The print function writes the addressed lines to the standard 
output file at the time the p function is encountered, regardless or 
what succeeding editing commands may do to the lines. The 
maximum number of possible addresses is two. 

w The write function writes the addressed lines to file name. Ir the file 
previously existed, it is overwritten; if not, it is created. The lines 
are written exactly as they exist when the write function is 
encountered for each line, regardless or what subsequent editing 
commands may do to them. Exactly one space must separate thew 
command and the filename. The combined number or write 
functions and w flags may not exceed 10. 

r The read function reads the contents of the named file, and appends 
them after the line matched by the address. The file is read and 
appended regardless of what subsequent editing commands do to 
the line which matched its address. Ir r and a functions are 
executed on the same line, the text from the a functions and the r 
functions is written to the output in the order that the functions are 
executed. Exactly one space must separate the r and the filename. 
One address is possible. Ir a file mentioned by an r function cannot 
be opened, it is considered a null file rather than an error, and no 
diagnostic is given. 

Note that since there is a limit to the number or files that can be opened 
simultaneously, be sure that no more than ten files are mentioned in functions 
or flags; that number is reduced by one ir any r functions are present. Only one 
read file is open at one time. 

Here are some examples. Assume that the file note 1 has the following con ten ts: 

Note: Kubla Khan (more properly Kublai Khan; 
1216-1294) was the grandson and most eminent 
successor or Genghiz (Chingiz) Khan, and 
founder or the Mongol dynasty in China. 

The following command: 

/Kubla/r notel 

produces: 

A-Q 



XENIX Text Processing 

In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 
1216-12Q4) was the grandson and most eminent 
successor or Genghiz (Chingiz) Khan, and 
founder of the Mongol dynasty in China. 

A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

Multiple Input-Line Functions Three functions, all spelled with upper 
case letters, deal specially with pattern spaces containing embedded newlines. 
They are intended principally to provide pattern matches across lines in the 
input. 

N Appends the next input line to the current line in the pattern space; 
the two input lines are separated by an embedded newline. PatLern 
matches may extend across the embedded newline(s). There is a 
maximum of two addresses. 

D Deletes up to and including the first newline character in the 
current pattern space. Ir the pattern space becomes empty (the 
only newline was the terminal newline), another line is read from 
the input. In any case, begin the list of editing commands again 
from its beginning. The maximum number or addresses is two. 

P Prints up to and including the first newline in the pattern space. 
The maximum number or addresses is two. 

The P and D functions are equivalent to their lowercase counterparts if there 
are no embedded newlines in the pattern space. 

Hold and Get Functions These runctionssave and retrieve part of the input 
for possible later use: 

h The h function copies the contents of the pattern space into a 
holding area, destroying any previous contents of the holding area. 
The maximum number of addresses is two. 

H The H function appends the contents of the pattern space to the 
contents of the holding area. The former and new contents are 
separated by a newline. 

g The g function copies the contents of the holding area into the 
pattern space, destroying the previous contents or the pattern 
space. 

G The G function appends the contents of the holding area to the 
contents of the pattern space. The former and new contents are 
separated by a. newline. The maximum number of addresses is two. 

A-10 

( 

( 

( 



) 

) 

x 

Editing with Sed and A wk 

The exchange command interchanges the contents of the pattern 
space and the holding area. The maximum number of addresses is 
two. 

For example, the commands 

lh 
ls/ did.•// 
Ix 
G 
s/\n/ :/ 

applied to our standard example, produce: 

In Xanadu did Kubla Khan :Jn Xanadu 
A stately plea.sure dome decree: :in Xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

Flow-of-Control Functions These functions do no editing on the input 
.lines, but control the application or functions to the lines selected by the 
address part. 

{ 

:label 

blab el 

This command ca.uses the next command written on the same line 
to be applied to only those input lines not selected by the address 
pa.rt. There are two possible addresses. 

This command causes the next set or commands to be applied or not 
applied as a block to the input lines selected by the addresses or the 
grouping command. The first of the commands under control or 
the grouping command may appear on the same line as the { or on 
the next line. The group of commands is terminated by a matching 
} on a line by itself. Groups can be nested and may have two 
addresses. 

The label function marks a place in the list or editing commands 
which may be referred to by b and t functions. The label may be 
any sequence of eight or fewer characters; if two different colon 
functions have identical labels, an error message will be generated, 
and no execution attempted. 

The branch function causes the sequence of editing commands 
being applied to the current input line to be restarted immediately 
after encountering a colon function with the same label. Ifno colon 
function with the same label can be found after a.II the editing 
commands have been compiled, an error message is produced, and 
no execution is attempted. Ab function with no label is interpreted 
as a branch to the end of the list of editing commands. Whatever 
should be done with the current input line is done, and another 

A-11 



XENIX Text Processing 

input line is read; the list of editing commands is restarted from the 
beginning on the new line. Two addresses are possible. 

tlabel/R The t function tests whether any successful substitutions have been 
made on the current input line. If so, it branches to the label; if not, 
it does nothing. The flag which indicates that a successful 
substitution has been executed is reset either by reading a new 
input line, or executing a. t function. 

Miscellaneous Functions There are two other functions of sed not 
discussed a.hove. 

= The= function writes to the standard output the line number of 
the line matched by its address. One address is possible. 

q The q function causes the current line to be written to the output (if 
it should be), any appended or read text to be written, and 
execution to be terminated. One address is possible. 

A.3 Pattern Matching With awk 

( 

By now you have been introduced to several tools for locating patterns and 
strings in one or more text files, including grep and its variants. You should 
also be familiar with using the various text editors to do global searching. Awk { 
offers another approach to many of these same tasks. Awk is actually a. \ 
programming language designed to make many common search and text 
manipulation tasks easy to state and to perform. It offers several key features 
not available with grep or sed: numeric processing, the handling of variables, 
general selection, and flow-of-control in commands. Awk is also uniquely 
suited to operations on fields within lines. 

In practice, awk is used in two ways for report generation, procesing input to 
extract counts, sums, subtotals, etc.; and to transform data. from the form 
produced by one program into that expected by another. Awk searches input 
lines consecutively for a. match of patterns which you designate. For each 
pattern, an action can be specified; this action will be performed on each line 
that matches the pattern. A wk allows you to perform more complex actions 
than merely printing a. matching line. For example, the awk program: 

{print $3, $2} 

prints the third and second columns of a. ta.hie in that order. The program 

$2 /AIBIC/ 

prints all input lines with an A, B, or C in the second field, where the second field 
is text separated by whitespace. The program 

A-12 

( 



) 

) 

) 

Editing with Sed and Awk 

$1 != prev { print; prev = $1 } 

prints all lines in which the first field is different from what was previously the 
first field. 

A.3.1 Invoking awk 

The command in the following form: 

a.wk program filename 

executes the awk commands written into the named program on the set of 
named files, or on the standard input if no files a.re named. The statements can 
also be placed in a file pfile, and executed by the command: 

awk -f pfile filename 

A.3.2 Program Structure 

An a wk program is a sequence of statements, ea.ch in the form: 

pattern { action } 

Each line of input is matched in turn against ea.ch of the specified patterns. For 
each pattern matched, the associated action is executed. When a.II the patterns 
have been tested, the next line is read and the matching process repeated. 
Either the pattern or the action may be omitted, but not both. Ir there is no 
action for a pattern, the matching line is simply copied to the output. Thus a 
line which matches several patterns can be printed several times. Ir there is no 
pattern for an action, then the action is performed for every input line. A line 
which matches no pattern is ignored. Since patterns and actions are both 

•optional, actions must be enclosed in braces to distinguish them from patterns. 

A.3.3 Records and Fields 

A wk input is divided into "records" which a.re terminated by a record 
separator. Because the default record separator is a. newline, awk processes its 
input one line a.t a. time. The number of the current record is available in a 
predefined variable named NR, for "number register". 

Ea.ch input record is divided into "fields". Fields a.re normally separated by 
whitespace, either blanks or tabs, but the input field separator can be changed. 
Fields a.re referred to as $1, $2, and so forth, where $1 is the first field, and $0 is 
the whole input record itself. Assignments may be ma.de to fields. The number 
of fields in the current record is available in another predefined variable named 
NF, for "number fields". 

A-13 



XENIX Text Processing 

The variables FS and RS refer to the input field and record separators; they 
may be changed at any time to any single character. The optional command­
line argument-Fe may also be used to setFS to the character "c". Ir the record 
separator is empty, an empty input line is taken as the record separator, and 
blanks, tabs and newlines are treated as field separators. The variable (. 
FILENAME contains the name of the current input file. !I 

A.3.4 Printing 

Ir an action has no pattern, the action is executed for all lines. The simplest 
action is to print some or all or a record, using the awk command print. This 
command prints each record, copying the input to the output intact. A field or 
group of fields may be printed from each record. For instance, 

print $2, $1 

prints the first two fields in reverse order. Items separated by a comma in the 
print statement will be separated by the current output field separator when 
output. Items not separated by commas will be concatenated, so 

print $1 $2 

runs the first and second fields together. 

The predefined variables NF and NR can be used. For example, 

{ print NR, NF, $0 } 

, prints each record preceded by the record number and the number of fields. 
Also, output may be diverted to multiple files. For example, the program 

{print $1 >"listl"; print $2 >"list2" } 

writes the first field, $1, on the file li11t1, and the second field on file li11t1!. The 
">>"notation can also be used. For example, 

print $1 >>"list" 

appends the output to the file li11t. In each case, the output files a.re created if 
necessary. The filename can be a variable or a field as well as a constant. For 
example, 

print $1 >$2 

uses the contents of field 2 as a filename. There is a limit of ten possible output 
files. Output can also be piped into another process. For instance, 

print I "mail fredm" 

A-14 

( 



) 

) 

) 

Editing with Sed and Awk 

mails the output to tredm's mailbox. 

The variables OFS and ORS may be used to change the current output field 
separator and output record separator. The output record separator is 
appended to the output otthe print statement. Awk also provides the printf 
statement tor output formatting. 

printr Corm at, ex pr, ex pr, ... 

formats the expressions in the list according to the specification in the file 
format and prints them. For example, 

printf "%8.2f %10ld\n", $1, $2 

prints $1 as a floating point number 8 digits wide, with two digits arter the 
decimal point, and $2 as a IO-digit decimal number, followed by a newline. No 
output separators are produced automatically; they must be added, as in the 
above example. 

A.3.5 Patterns 

You may specify a pattern before an action to act as a selector tor determining 
whether the action is to be executed. A variety of expressions may be used as 
patterns: regular expressions, arithmetic relational expressions, string-valued 
expressions, and arbitrary Boolean combinations of these. 

The special pattern BEGIN matches the beginning of the input, before the first 
record is read. The pattern END matches the end of the input, after the last 
record has been processed. BEGIN and END thus provide a way to gain control 
before and after processing, so you can initialize and terminate the program 
normally. 

For example, the field separator can be set to a colon with: 

BEGIN { FS = ":" } 

Or the input lines may be counted by: 

END { print NR } 

HBEGIN is present, it must be the first pattern; END must be the last. 

Regular Expressions The simplest regular expression is a literal string of 
characters enclosed in slashes, such as: 

/smith/ 

This is actually a complete awk program which prints all lines containing any 
occurrence ot the name "smith". Ir a line contains "smith" as part of a larger 

A-15 



XENIX Text Processing 

word, it will also be printed, as in 

blacksmithing 

The list or regular expressions recognized by awk includes the regular ( 
expressions recognized by ed, sed, and the grep command. In addition, awk I 
allows parentheses for grouping, the pipe (I) for alternatives, the plus ( +) for 
"one or more", and the question mark(!) for "zero or one". Character classes 
may be abbreviated: (a-zA-Z0-9) is the set or all letters and digits. For 
example, the awk program 

/(Aa)pplesl(Bb)ananaslfCc)herries/ 

prints all lines which contain any or the words "apples", "bananas", or 
"cherries," whether they begin with an uppercase letter or not. 

Regular expressions must be enclosed in slashes, just as in ed and sed. Within a 
regular expression, blanks and the regular expression metacharacters are 
significant. To turn off the special meaning or one or the regular <!Xpression 
metacharacters, precede it with a backslash. 

For example, the pattern 

/\/.•V/ 
matches any string or characters enclosed in slashes. You can also speciry that 
any field or variable matches a regular expression (or does not match it) with 
the operators tilde rl and exclamation point tilde(!-). The program 

$1 - /UJ)ohn/ 

prints all lines where the first field matches "john" or "John". Notice that this 
will also match" Johnson", "St. Johnsbury", and so on. To restrict the match 
to exactly" John" or "john", use 

$1 - rfiJ)ohn$/ 

The caret ( ·) refers to the beginning or a line or field; the dollar sign ($) rerers to 
the end. 

Relational Expressions An awk pattern can be a relational expression 
involving the operators <, < =, ==, !=, > =, and >. For example, 

$2 > $1+100 

selects lines where the second field is at least 100 greater than the first field. 
Similarly, 

NF %1== 0 

A-16 

( 



) 

) 

Editing with Sed and Awk 

prints a.II lines with a.n even number orfields. 

In relational tests, ir neither operand is numeric, a. string comparison is ma.de; 
otherwise it is numeric. Thus, 

$1 >= "s" 

selects lines that begin with "s", "t", "u", etc. In the absence of other 
information, fields a.re treated a.s strings, so the program 

$1 > $2 

will perform a. string comparison. 

Combinations or Patterns A pattern ca.n be a.ny Boolean combination of 
patterns, using the operators 11 (or), && (a.nd), and I (not). For example, 

$1 >= "s" " & $1 < "t" && $1 I= "smith" 

selects lines where the first field begins with "s", but is not "smith". The 
operators && and 11 guarantee that their operands will be evaluated from lert 
to right; evaluation stops as soon a.s their truth or falsehood is determined. 

The pattern that selects an action ma.y also consist of two patterns separated 
by a comma, as in 

pa.ti, pat2 { ... } 

In this case, the action is performed for each line between an occurrence of pat1 
and the next occurrence or patt'(inclusive). For example, 

/start/, /stop/ 

prints a.II lines between "start" and "stop", while 

NR == 100, NR == 200 { ... } 

does the action for lines 100 through 200 ofthe input. 

A.3.6 Actions 

In addition to the patterns described above, the awk program offers a set of 
possible actions. An a wk action is a sequence of action statements terminated 
by newlines or semicolons. These action statements can do a variety or 
bookkeeping and string manipulating tasks. The possible actions are: built-in 
runctions, the assignment or variables and strings, the use of field variables, 
string concatenation statements, arrays, and flow-of-control statements. 

A-17 



XENIX Text Processing 

Built-in Functions Awk provides a "length" (unction to compute the 
length or a string of characters. This program prints each record, preceded by 
its length: 

{print length, $0} 

The length by itself is a. "pseudo-variable" which yields the length of the 
current record; length( argument) is a (unction which yields the length of its 
argument, as in the equivalent: 

{print length($0), $0} 

The argument may be any expression. 

A wlk also provides the arithmetic functions sqrt, log, exp, and int, for square 
root, logarithm, exponential, and integer parts of their respective arguments. 
The name of one of these built-in (unctions, without argument or parentheses, 
stands for the value of the function on the whole record. The program 

length < llO II length > 20 

prints lines whose length is less than lO or greater than 20. 

( 

The function substr(s,m,n) produces the substring of' that begins at position I 
m (origin l) and is at most 11 characters long. Ir 11 is omitted, the substring goes \ 
to the end of s. The function index(sl, s2) returns the position where the string 
s2occurs ind, or zero if it does not. 

The function sprintf(f, el, e2, ... ) produces the value of the expressions el, e2, 
etc., in the pirintfformat specified by/. Thus, for example, 

x ..., sprintf(" %8.2f %101d", $1, $2) 

sets z to the string produced by formatting the values of$l and $2. 

Variables, Expressions, and Assignments Awk variables take on 
numeric (floating-point) or string values according to context. Jin the following 
example, 

x = l 

zis clearly a number, while in 

x ="smith" 

it is clearly a string. Strings are converted to numbers and vice versa whenever 
context demands it. For instance, 

x = "3" + "4" 

A-18 



) 

Editing with Sed and Awk 

assigns 7 to z. Strings which cannot be interpreted as numbers in a numerical 
context will generally have the numeric value zero. 

By default, variables (other than built-in functions) are initialized to a null 
string, which has numerical value zero. This eliminates the need for most 
BEGIN sections. For example, the sums of the first two fields can be computed 
with: 

{ sl += $1; s2 += $2 } 
END { print sl, s2 } 

Arithmetic is done internally in floating-point. The arithmetic operators are: 
+, -, 111 , /, and%. The C increment++ and decrement- - operators are also 
available, as well as the assignment operators+=,-=, c=, /=, and%=. 
These operators may all be used in expressions. 

Field Variables Fields in awk share essentially all of the properties of 
variables. They may be used in arithmetic or string operations, and may be 
assigned to. Thus you can replace the first field with a sequence number: 

{ $1 = NR; print } 

or accumulate two fields into a third, 

) { $1 = $2 + $3; print $0 } 

) 

or assign a string to a field, 

{ if ($3 > 1000) 
$3 = "too big" 

print 
} 

which replaces the third field by "too big" when it is too big, and prints the 
record in either ca.se. 

Field references may be numerical expressions, as in the following: 

{ print $i, $(i+l), $(i+n) } 

Whether a field is deemed numeric or string depends on context; in ambiguous 
cases like 

ir ($1 == $2) ... 

fields are treated as strings. 

Each input line is automatically split into fields as necessary. It is also possible 
to split any variable or string into fields. For example, 

A-19 



XENIX Text Processing 

n ... split(e, array, sep) 

splits the the string 1 into arrapf 1/, arrapfn/. The number of elements found is 
returned. Ir the 1ep argument is provided, it is used as the field separator. 
Otherwise FS is used as the separator. ( 

String Concatenation Strings may be concatenated. For example: 

length(Sl $2 $3) 

returns the length ofthe firstthree fields. In a print statement, 

print $1 " is " $2 

prints the two fields separated by" is". Variables and numeric expressions 
may also appear in concatenations. 

Arrays Array elements are not declared; they spring into existence when 
mentioned in a program. Subscripts may have any non-null value, including 
non-numeric strings. For example, in a conventional numeric subscript, the 
statement 

x(NR) = $0 

assigns the current input record to the NRth element of the array z. In ( 
principle it is possible to process the entire input in a. random order with the 
awk program: 

{ x(NR) == $0} 
END { ... program ... } 

The first action merely records ea.ch input line in the array z. 

Array elements may be named by non-numeric values. Suppose the input 
con ta.ins fields with values like apple, orange, etc. The program 

/apple/ { xra.pple")++} 
/orange/{ xrora.nge")++} 
END { print xra.pple"), xrora.nge") } 

increments counts for the named array elements, and prints them a.t the end of 
the input. Any expression can be used as a subscript in a.n array reference. 
Thus, 

x($1) = $2 

uses the first field or a record as a string to index the array z. 

Suppose ea.ch line or input contains two fields, a name and a nonzero value. 
Na.mes may be repeated. To print a list of ea.ch unique name followed by the 

A-20 

( 



) 

) 

) 

Editing with Sed and Awk 

sum or all the values for that name, use the program: 

{ amount!StJ += S2 } 
END { for (name in amount) 

print name, amount(nameJ } 

To sort the output, replace the last line with 

print name, amount!nameJ I "sort" 

Flow-of-Control Statements Like a.ny programming language, awk 
provides flow-of-control statements. These are: it-else, while, tor, and 
statement groupings with braces. When using the it statement the condition in 
parentheses is evaluated. IC it is true, the statement following the it is done. 
The else part is optional. 

A while statement is also available. For example, to print a.JI input fields one 
per line, use: 

i = 1 
while (i <= NF) { 

print Si 
++i 

} 

The for statement 

for (i = l; i <=NF; i++) 
print Si 

does the same job as the while statement above. 

An alternate form of the for statement is useful for accessing the elements or an 
associative array. For example, 

for (i in array) 
11tatement 

performs statement with i set in turn to each element or the array. The 
elements are accessed in an apparently random order. Chaos will ensue if i is 
altered, or if any new elements are accessed during the loop. 

The expression in the condition part of an if, while or for statement can 
include relational operators like<,<=,>,>=,== ("is equal to"), and!= 
("not equal to"); regular expression matches with the match operators\ - and 
!\ -; the logical operators 11, &&, and!, and parentheses for grouping. 

The break statement causes an immediate exit from an enclosing while or tor 
statement. The continue statement causes the next iteration to begin. The 
next statement causes awk to skip immediately to the next record and begin 

A-21 



XENIX Text Processing 

scanning the patterns from the top. The exit statement causes the program to 
behave as if the end of the input had occurred. 

One final note: comments may be placed in awk programs. Ir you are going to 
store complex awk programs for future use, it is a good idea to use comment 
lines generously' to remind you or what your program does: ( 

print x, y # this is a comment 

Comments begin with the character"#" and end with the end ofthe line. 

( 

A-22 



Index 
awk (continued} 

A 
relational expressions A-17 

numeric processing A-13 
variables A-13 

) special characters A-17 
abstracts 3-1 st.ring concatenation A-21 
abstracts 4-58 variables A-14 
Acknowledgem'ents 1-4 variables A-20 
adjective usage 2-17 
.AL, list begin macro 1-10 

B alphabetizing lines in files 2-6 
Appendices 1-5 
Archiving 1-12 
awk 1-14 Back matter 1-5 
awk 1-7 Background processes 1-16 
awk A-1 Background processing 1-11 

actions A-19 Ba.tch 1-14 
arrays A-22 Ba.tch 1-9 
assignments A-20 ba.tch A-1 
BEGIN A-16 Ba.tch editing 1-15 
break A-23 ba.tch editing A-I 
builtrin functions A-19 Bibliography 1-5 

exp A-19 Body of text 1-4 
int A-19 Boilerplate 1-5 
length A-19 Boilerplates 1-14 
log A-19 Boilerplates 1-15 

) sprintf A-19 Boldface 1-10 
sqrt A-19 boldface 3-6 
SU bstr A-19 brackets 6-16 

combination of patterns A-18 bullet list 4-26 
comments A-23 
continue A-23 c END A-16 
exit A-23 
expressions A-20 
field variables A-20 captions 4-37 
fields A-14 Centering 1-6 
flow-of-control A-13 centering 6-7 
flow-of-control A-23 Centering 1-10 

for A-23 Chapters 1-4 
if-else A-23 character sets 5-5 
statement grouping A-23 column alignment 7-1 
while A-23 column width 7-1 

next A-23 comm 2-1 
number registrer A-14 comm 2-3 
output field separator A-15 comm 2-6 
output record separator A-15 12 2-6 
patterns A-16 23 2-6 

) printr statement A-15 sorting before using 2-6 
printing A-15 complex sentences 2-15 
records A-14 compound sentences 2-15 
regular expression A-16 Conditional processing 1-15 

1 



Index 

conditional processing 6-22 drawing lines 6-16 
connectivity 2-17 drawing lines and characters 5-10 
Copyright. notice 1-4 ( cover pages 3-1 

E cover sheet. 4-46 
cover sheet. 4-65 
cut 2-2 
cut 2-7 ed 2-2 
Cut and paste 1-12 ed scripts A-1 
Cut and paste 1-15 Editing techniques 1-15 
cut and paste 2-2 boilerplates 1-14 
cut. and paste 2-8 consistency 1-13 
Cut and paste 1-9 editing scripts 1-14 

debar 2-8 markers in text 1-13 
ftist. 2-8 shell scripts 1-14 
s 2-8 short. lines 1-12 
-dist 2-7 templates 1-13 

using writing tools 1-15 

D 
egrep 2-1 
Entering text 1-9 
Eqn 1-7 
Eqn 1-8 

dash list 4-27 braces 8-13 
deleting text 2-1 braces 8-4 
Deletions 1-9 brackets 8-7 ( derofl' 2-10 ceiling 8-7 
diacritical marks 8-14 centering 8-2 
Diction 1-7 commands 8-1 
diction 2-9 diacritical marks 8-14 

-r option 2-20 error checking with eqncheck 
-n option 2-20 8-lQ 

di ff 1-7 error messages 8-19 
diff 2-1 floor 8-7 
di IT 2-3 Con ts 8-12 
difT3 2-1 Con ts 8-13 
difT3 2-3 fractions 8-5 
diff3 2-5 Greek alphabet 8-21 

e 2-5 grouping 8-4 
-e 2-3 in-line equations 8-15 
producing ed scripts with 2-4 input spaces 8-10 

Displays 1-4 integrals 8-6 
displays 3-7 invoking 8-18 
displays 4-31 invoking 8-2 

floating 4-31 keywords 8-20 
floating 4-32 keywords 8-21 
static 4-31 line spacing 8-1 

Document life cycle 1-12 lining up equations 8-10 
( Document number 1-4 local mot.ions 8-15 

Document. specifications 1-15 matrices 8-9 
Document specifications 1-5 numbering 8-2 
Document standardization 1-5 order of precedence 8-19 
Documentation projects 1-4 output spaces 8-11 

2 



Index 

Eqn (continued} roots 4-50 
overstriking 8-13 Fonts 1-6 

) piles 8-8 typesetting 5-5 
point sizes 8-12 Footers 1-6 

line printer 8-17 Footnotes 1-5 
phototypesetter 8-17 Footnotes 1-7 

quoted text 8-14 footnotes 3-1 
reserved names 4-67 footnotes 3-7 
special characters 8-20 footnotes 4-38 
special sequences with 8-11 Foreword 1-4 
square roots 8-6 rormatter 4-3 
string definitions 8-16 Formatting commands 1-7 
subscripts 8-3 Formatting documents 1-7 
summation 8-6 Formatting tables 1-8 
superscripts 8-3 formatting tables 7-1 
using caret 8-11 Front matter 1-4 
using tildes 8-11 

centering 8-2 
G numbering 8-2 

with nroff 8-2 
with nroff /troff 8-1 

eqncheck 8-19 gfrep 2-1 
Equations 1-5 Global substitution 1-12 
extracting columns 2-7 Global substitution 1-g 

) extracting fields 2-7 global substitution 2-1 
global substitution A-1 

F 
Glossary 1-5 
Greek alphabet 5-6 
Greek alphabet 8-1 
Greek alphabet 8-21 

fields 6-10 Greek alphabet 8-11 
Figures 1-4 grep 1-7 
File comparison 1-12 grep 2-1 
File comparison 1-15 grep 2-2 
file comparison 2-1 -h 2-3 
file comparison 2-3 -n 2-2 

backup copies 1-6 combined with other commands 
backups 1-16 2-2 
file length 1-15 Gutter width 1-6 
help files 1-13 
help files 1-15 

H hierarchical file structure 1-15 
managing long documents 1-13 
naming conventions 1-13 
README files 1-15 horizontal motions 5-11 
updates 1-12 Hyphenation 1-7 

) using comment lines 1-15 hyphenation 4-10 
versions 1-12 

filling 6-7 
Filling 1-6 
font changes 3-1 
Fonts 1-7 

hyphena.tion 6-12 

3 



Index 

I 

Illustcations 1-4 
Indentation 1-6 
indentation &-8 
Index 1-5 
insert.ing text interact.ively 
Interact.ive 1-9 

eqn 1-9 
MM 1-8 
nroff /tcolJ 1-8 
order 1-8 
using col 1-9 

italics 3-6 

J 

Just.ill cation 1-6 
Just.ill cation 1-7 
just.ill cation 4-51 
just.ill cation 6-7 

K 

keep-release &-26 

L 

LE, list end macro 1-10 
leaders 6-10 
Letters 1-4 
.LI, line item macro 
Line length 1-6 
line length &-7 
list or llgures, tables, etc. 
lists 3-1 
lists 4-22 
local motions 6-15 
local motions &-10 
locating awkward phrases 
locating awkward phrases 

locating long sentences 

4 

4-55 

1-10 

4-38 

2-19 
2-19 

2-15 

M 

Macro dellnit.ion 1-16 
macro definit.ion 4-65 
macro definit.ion 6-17 
Macro definit.ion files 
Macros 1-8 
macros 3-1 
macros 4-3 
macros 7-1 
macros 8-1 

dell nit.ion 
Margins 1-6 

1-ll 

marked list (.ML) macro 
Mathematical equations 
mathematical equations 
mathematical equations 

formatting 8-1 
print.ing 8-1 

memorandum styles 
Memos 1-4 
merging columns 2-8 
MM 1-15 
MM 1-3 
MM 1-7 
MM 3-1 

1-13 

4-27 
1-6 
4-36 
7-1 

4-56 

MM, marking macro (.HM) 4-18 
abstract (.AS) macro 4-58 
abstracts 3-1 
alt.ernate format (.AF) 3-8 
alternate format (.AF) 4-60 
author (.AU) macro 4-56 
automatic list (.AL) 3-5 
automatically numbered list (.AL) 

macro 4-26 
beginning segment 4-2 
body 4-2 
bold ( .B) macro 
bullet. list 4-26 
bullets 4-11 

4-50 

capt.ion macro (.FG) 
closing ( .FC) macro 
command line 4-5 
command line parameters 
cover pages 3-1 
cover sheet (.CS) macro 
dash list. ( .DL) 3-5 

4-37 
4-62 

4-6 

4-65 

dash list. ( .D L) m aero 4-27 
dashes, minuses, and hyphens 

4-12 

( 

( 

( 



) 

) 

Index 

MM, marking macro (.HM) 
(continued} 

disappearance or output 4-68 
display ( .D S I) macro 4-31 
display macro(.DS-.DE) 3-7 
displays 4-31 

indentation 3-8 
ending 4-3 
equation ( .EQ) macro 4-36 
error checking with mmcheck 

3-0 
error messages 4-68 
error messages 4-60 
error messages 4-71 
even page Cooter (.EF) macro 

4-43 
even page header (.EH) macro 

4-42 
exit macros (.HX, .HY and .HZ) 

4-20 
floating display ( .DF) macro 4-32 
font changes 3-6 
fan t changes 3-1 

boldface 3-6 
italics 3-6 

fonts in headings 4-16 
footnote ( .FS) macro 4-38 
footnotes 3-1 
footnotes 3-7 
formatting with 4-8 
heading ( .H) macros 4-14 
headings 4-13 
headings, modifying 4-15 

unnumbered 4-19 
hype nation 4-10 
inserting commands 3-1 
invoking 3-2 
invoking 4-4 
invoking aa a flag 4-4 
invoking mmcheck 3-9 
italic (.I) macro 4-50 
keyword (.OK) macro 4-58 
list end (.LE) macro 4-25 
list end macro 4-22 
list item (.LI) macro 4-24 
list item macro 3-5 
list item macro 4-22 
list of figures 4-38 
list;.initialization macro 4-22 
lists 3-1 
lists 3-5 
lists 4-22 

MM, marking macro (.HM) 
(continued} 

macro definition 4-65 
mark list (.ML) 3-5 
memorandum type (.MT) 3-8 
memorandum type (.MT) macro 

4-50 
multicolumn output 3-1 
nested lists 3-5 
nested lists 4-23 
new date (.ND) macro 4-60 
notation (.NS) macro 4-63 
null arguments 4-0 
numbered headings 3-3 
odd page (.OP) macro 4-54 
odd page header (.OH) macro 

4-42 
odd-page footer macro 

12 4-4 
c 4-4 
E 4-4 
t 4-4 
y 4-4 
-e 4-4 

order of beginning macros 
page footer (.PF) macro 
page header (.PH) macro 
page numbering 3-1 
page numbering 4-20 
paragraph ( .P m aero). 
paragraph ( .P) m aero 
paragraph style 3-1 
paragraphs 4-13 
paragraphs and headings 
parameter setting 4-2 
point size ( .S) macro 
point size in headings 
read insertion (.RD) macro 
reaaons to use 4-1 

4-43 

4-61 
4-43 
4-41 

3-3 
4-13 

3-3 

4-54 
4-17 
4-55 

redefining heading styles 3-4 
reference (.RS) macro 4-48 
reference list ( .RL) macro 4-27 
reference page (.RP) macro 4-49 
Roman (.R) macro 4-50 
section headers 3-1 
set right justification (.SA) m aero 

4-51 
signature ( .SG) macro 
skip page (.SK) macro 
space (.SP) macro 4-53 
strings 4-81 
summary of macros 

4-62 
4-54 

4-75 

5 



Index 

MM, marking macro (.HM) 
(continued} 

summary or number registers 
4-82 

table (.TS) macro 4-35 
table macro (.TS-.TE) 3-7 
table or contents (.TC) macro 

3-5 
table or contents (.TC) macro 

4-19 
table or contents (.TC) macro 

4-46 
tables or contents 3-1 
tabs 4-11 
technical memorandum (.TM) 

macro 4-57 
titJe (.TL) macro 4-56 
titJes 3-1 
top or page processing 4-45 
trademark string 4-12 
two column (.2C) macro 4-52 
two column command (.2C) 3-9 
unnumbered headings 3-3 
unpaddable spaces 4-10 
using tilde n 4-10 
variable list (.VL) macro 4-28 
variable lists ( .VL) 3-6 
vertical margin ( .VM) macro 4-46 
with nroff/troll' 3-1 
with nroff /troff 3-9 
with col 3-3 

mm check 3-9 
Multicolumn output 1-6 
Multicolumn output 1-7 
multicolumn output 3-1 
multicolumn output 3-9 
multicolumn output 4-52 

N 

Naming conventions 1-13 
nested lists 4-23 
nominalizations 2-17 
Notes 1-5 
noun usage 2-17 
nroff 1-7 

6 

brackets 6-16 
relative point size changes S-4 
underline Cont (.ur) command 

6-14 

nroff ( conlinuetl} 
underline font ( .uf) command 

( conlinuetl} 
new page (.NP) macro S-

16 
absolute position 6-3 
adjust (.ad) command 6-8 
append string (.as) command 6-20 
append to macro (.am) command 

6-20 
assign format to register ( .ar) 

command 6-21 
begin page (.bp) command S-16 
begin page ( .bp) command 6-7 
blank lines 6-10 
brackets 6-16 
break (.br) command 6-8 
break function 6-2 
breaks in S-17 
center ( .ce) command 6-9 
centering 6-7 
change trap position (.ch) command 

6-20 
character translations 6-13 
conditional processing S-22 
conditional processing 6-22 

even and odd S-23 
if-else S-22 
lineprinter and typesetter S-

23 
string comparison S-23 

control lines 6-2 
copy mode 6-15 
define macro (.de) command 6-19 
define string ( .ds) command 6-20 
difference between S-1 
difference between 6-1 

printing 6-5 
difference in output S-1 
differences 1-5 

changing point sizes 1-5 
ignoring commands 1-5 
replacing italics with underlining 

1-5 
rounding parameters 1-5 
underlining 1-7 

diversions 6-19 
diversions (.di) S-24 

nesting 6-19 
tra.ps l>-19 

divert (.di) comma.nd 6-20 
divertra.ppend (.da.) command 

6-20 

( 

( 

( 



) 

) 

Index 

nroff (continued} 
dra.wing lines 6-16 
drawing lines and characters 5-10 
end macro (.em) command 6-20 
environments 6-23 
environments ( .ev) 5-24 
error messages 4-72 
error messages 4-73 
error messages 4-74 
error messages 6-25 
escape character 6-14 
escape character 6-2 
escape sequences 6-25 
even page ( e) condition 6-22 
exit (.ex) command 6-23 
field delimiter ( .fc) command 

6-12 
fields 6-10 
fill ( .fi) command 6-8 
filling 6-7 
flush output buffer (.fl) 6-24 
fonts 5-5 
formatter nroff (n) condition 6-23 
formatter troff ( t) condition 6-22 
horizontal motions 5-11 
horizontal motions 6-16 
hyphenation 6-12 
hyphenation on ( .hy) command 

6-12 
if (.if) command 6-22 
ignore ( .ig) command 
indent (.in) 5-7 
indent (.in) command 
inline commands 5-3 
inputroutput conventions 
inserting commands 
install diversion trap ( .dt) 

command 6-20 

6-24 

6-10 

6-13 
5-2 

install trap (.wh) command 6-20 
invoking 6-1 
ju still cation 6-7 
leader repetition character (.le) 

command 6-11 
leaders 6-10 
ligature mode on (.lg) command 

6-14 
ligatures 6-14 
line length (.II) 5-7 
line length ( .11) command 6-10 
line length and indenting 6-10 
line number mode (.nm) command 

6-13 

nroff (continued} 
line space (.ls) command 6-g 
local motion 5-12 
local motions 5-10 
local motions 6-15 
macro definitions 5-14 

arguments 6-18 
input 6-17 

macros 6-17 
macros 6-2 

arguments 5-20 
margin character (.me) command 

6-24 
mark current vertical place (.mk R) 

6-7 
needs ( .ne) command 6-7 
next filename ( .nx) command 

6-24 
no adjust (.na) command 6-8 
no fill ( .nf) command 6-8 
no hyphenation (.nh) command 

6-12 
no number (.nn) command 6-13 
no space (.ns) command 6-10 
number register assign ( .nr) 

command 6-21 
number registers 5-18 
number registers 5-rn 
number registers 6-21 

predefined 6-27 
read-only 6-27 

numerical input 6-4 
odd page (o) condition 6-22 

i 6-2 
mname 6-1 
nN 6-1 
q 6-2 
raN 6-2 
sN 6-1 
-cname 6-1 
-olist 6-1 

output line numbering 6-13 
output save (.os) command 6-10 
overstrike 6-16 
overstriking 5-12 
page control 6-6 
page length (.pl command) 6-6 
page number (.pn) command 

6-7 
page number character (.pc) 

command 6-13 
page offset (.po) 5-7 

7 



Index 

nroff (conmued} 

8 

page offset (.po) command 6-7 
pipe output (.pi) command 6-24 
point size ( .ps) 5-3 
pre-defined number registers 5-18 
print macro (.pm) command 6-24 
quoting quotes 5-19 
read standard input (.rd) command 

6-23 
read string in copy mode ( .tmO 

command 6-24 
remove (.rm) command 6-20 
remove register ( .rr) command 

6-22 
rename (.rn) command 6-20 
requests 6-2 
reserved register and request names 

4-66 
restore spacing (.rs) command 

6-10 
return upward (.rt) command 

6-7 
save ( .sv) command 6-10 
scale indicatDrs 6-3 
section titles 5-21 
set control character (.cc) command 

6-15 
set environment (.ev) commands 

6-23 
set escape character (.ec) command 

6-14 
set hyphenation indicatDr (.he) 

command 6-12 
set inputrline-count trap (.it) 

command 6-20 
set no break ( .c2) command 6-15 
set tabs (.ta) command 6-11 
space ( .sp) command 6-9 
spacing units 5-4 
special characters 5-6 
speciry hyphenation points (.hw) 

command 6-12 
standard input 6-1 
string define ( .ds) 5-13 
string definition 5-13 
stl'ing definition 6-17 
switch source file (.so) command 

6-24 
tab repetition character ( .tc) 

command 6-11 
tab replacement (.tc) 5-10 
tabs 6-10 

nroff ( conmued} 
tabs (.ta) 5-9 
temporary indent (.ti) 5-8 
temporary indent (.ti) command 

6-10 
title (.tl) command 5-16 
title (.tl) command 6-12 
title length (.It) command 6-13 
titles 5-16 
titles 6-12 

fonts and point sizes 5-
17 

translate (.tr) command 6-15 
turn escape off ( .eo) command 

6-14 
underline (.ul) command 6-14 
using backalash () 5-19 
using backslash() 6-14 
using backslash () 6-2 
vertical motions 6-15 
vertical space (.n) command 6-9 
vertical spacing (.vs) 5-4 
width function 6-15 
width function 6-16 
with MM 4-1 
zero-width function 6-16 
internal units 6-3 

e 6-2 
Tname 6-2 

underline (.cu) command 6-14 
number registers 4-4 
Numbered lists 1-10 

0 

Organizing writing projects 1-12 
overstrike 6-16 

p 

.P, paragraph macro 1-10 
page rooters 4-41 
page rooters 4-43 
page headers 4-41 
Page headers 1-6 
Page length 1-6 
Page numbering 1-6 
Page numbering 1-7 

( 

( 

( 



) 

) 

Index 

page numbering 3-1 
page numbering 4-20 
paper styles 4-56 
Paragraph style 1-7 
paragraph style 3-1 
paralle I sen te nee structures 
parts 2-11 
Parts of document 

back matter 
appendices 
bibliography 
glossary 1-5 
index 1-5 
notes 1-5 

1-4 
1-5 

1-5 
1-5 

body of text 1-4 
front matter 1-4 

acknowledgements 1-4 
copyright notice 1-4 
document number 1-4 
foreword 1-4 
illustrations 
preface 1-4 

1-4 

table or contents 1-4 
tables 1-4 
title page 1-4 

parts of speech 
paste 2-2 
paste 2-8 

-d 2-8 
-s 2-8 
list 2-8 

2-16 

pattern matching A-1 
pattern matching A-13 
pattern matching A-14 
pattern recognition 2-2 
Point size 1-6 
Point size 1-7 
point size 
Preface 1-4 
pre paring charts 
Preprocessor 
Preprocessors 
preprocessors 
Printing documents 

4-54 

7-1 
1-8 
1-8 
7-1 

line printer 1-7 
line printer 1-8 
phot.otypesetters 1-7 

printing lists 7-1 

2-17 

1-11 

printing multi-column material 
7-1 

Production consistency 1-5 

Q 

quoting quotes 4-9 

R 

readability 2-11 
readability 2-14 
readability indices 2-11 
readability indices 2-13 
readability or documents 2-9 
rearranging columns 2-7 
reference page 4-49 
references 4-48 
regular expression 2-2 
regular expressions A-1 
regular expressions A-16 
relative addressing A-1 
requests 4-3 
reversing columns of output A-13 
Revisions 1-12 
Revisions 1-9 
Running footers 1-5 
Running headers 1-5 
Running heads, see Page Headers 

1-6 

s 
searching 2-1 
searching A-13 
searching within fields A-13 

fields A-1 
line numbers 2-2 
numerics A-1 
pattern recognition 2-2 
strings 2-3 
variables A-1 

section headers 3-1 
Section-page numbering 1-6 
Sections 1-4 
Sed 1-14 
sed A-1 

-e A-2 
-r A-2 

9 



Index 

sed (continued} Spell 1-7 
-n A-2 2-9 

( : label function A-12 -b 2-10 
=function A-13 -Y 2-10 
a function A-6 British spelling 2-10 
addressing A-3 dictionary 2-10 
b label function A-12 square roots 8-6 
B!function A-12 formatting to 1-11 
c function A-6 Standardization 1-12 
D function A-10 Starting paragraphs 1-10 
d function A-5 Strategies for managing writing 
flow-of-control A-2 projects 1-2 
flow-of-control functions A-12 string definition 6-17 
functions A-5 strings 4-3 
G function A-11 Style 1-7 
g function A-8 style 2-11 
H function A-11 style 2-9 
hold and get functions A-11 -I option 2-15 
i function A-6 elements or writing style 2-10 
input/output functions A-9 percentage or verbs 2-17 
miscellaneous functions A-12 readability 2-10 
multiple inputrline functions A-10 readability grades 2-12 
N function A-10 readability indices 2-13 
n function A-5 automated readability index 2-

( P function A-11 13 
p function A-8 Coleman-Liau Formula 2-
p function A-9 14 
q function A-13 Flesch Rea.ding Ease Schore 2-
r function A-9 14 
s function A-7 Kincaid Formula 2-13 
substitution functions A-7 sentence determination 2-12 
t label function A-12 sentence length 2-12 
w function A-8 sentence length 2-13 
w function A-9 sentence length 2-15 
x function A-11 sentence openers 2-13 
{function A-12 sentence type 2-12 

sentence length 2-10 sentence type 2-15 
sentence length 2-11 word length 2-13 
sentence openers 2-18 word usage 2-13 
sentence type 2-10 subscripts 8-3 
sentence type 2-11 superscripts 8-3 
sim pie sentences 2-15 symbols, mathematical 8-11 
skipping pages 4-54 System features 1-6 
sort 1-7 hierarchical file structure 1-13 
sort 2-1 hierarchical file structure 1-2 
sort 2-6 hierarchical file structure 1-6 
.sp command 1-10 multitasking 1-6 ( special characters 5-6 pipes 1-2 

in eqn 8-20 pipes 1-8 
special symbols 8-1 shell 1-2 
spell 2-10 shell scripts 1-2 
spell 2-9 System utilities 1-7 

10 



) 

) 

) 

Index 

system utilities 2-1 
system utilities 2-9 

T 

Ta.hie a.t line 877 file 1.intro.s is too 
wide - 2591 units 

Ta.hie a.t line 986 file 1.intro.s is too 
wide - 2592 units 

Ta.hie of contents 1-4 
ta.hie of contents 4-19 
ta.hie of contents 4-46 
Ta.hies 1-4 
Ta.hies 1-5 
Ta.hies 1-6 
ta.hies 3-7 
ta.hies 4-35 
ta.hies of contents 3-1 
ta.bs 6-10 
Tbl 1-7 
Tbl 1-8 

7-1 
spa.ce between columns 7-6 

a.dditional comma.nd lines 7-9 
centering in columns 7-4 
column a.lignment 7-1 
column width 7-1 
column width 7-7 
da.ta. 7-7 
decima.l point a.lignment 7-4 
defaults 7-7 
dra.wing boxes 7-1 
dra.wing horizonta.l lines 7-1 
dra.wing vertica.l lines 7-1 
equal width columns 7-7 
error messa.ges 7-10 
error messa.ges 7-8 
font cha.nges 7-6 
forma.t section 7-3 

A or a. option 7-4 
C or c option 7-4 
L or I option 7-3 
N or n option 7-4 
R or r option 7-4 
S or s option 7-4 

option 7-4 
forma.tting section 7-2 
full width horizontal lines 7-8 
horizonta.1 lines 7-5 
input to 7-2 

Tbl (continued} 
invoking 7-10 

with other forma.tters 7-
10 

keyletters 7-5 
need ( .ne) comma.nds 7-3 
options 7-3 
options section 7-2 

allbox 7-3 
box 7-3 
center 7-3 
delim 7-3 
double box 7-3 
expa.nd 7-3 
linesize 7-3 
ta.b 7-3 

point sizes 7-6 
prepa.ring cha.rts with 7-1 
printing lists 7-1 
printing multi-column ma.teria.1 

7-1 
printing with phototypesetter 7-1 
reserved na.mes 4-67 
short horizonta.l lines 7-8 
single column horizonta.1 lines 

7-8 
ta.hie end {.TE) 7-2 
ta.hie sta.rt (.TS) 7-2 
text blocks 7-8 
vertical lines 7-5 
vertica.l spa.cing 7-6 
vertical spa.nning 7-6 
vertically spa.nned items 7-8 
with nroff /troiI 7-1 
with eqn 7-1 
with mm 7-1 
tmff comma.nds in 7-7 

Technical pa.pers 1-4 
Techniques, text processing 1-6 
Templa.tes 1-15 
Title page 1-4 
Titles 1-7 
titles 3-1 
titles 4-56 
titles 6-12 
tools 2-9 
Tools, text processing 
Tools, text processing 
top a.nd bottom ma.rgins 
troff 1-7 

1-6 
1-7 
4-46 

point size ( .ps) comma.nd 6-5 
cha.nge font (.ft) comma.nd 5-6 

11 



Index 

troff (continued} 
character set 6-4 
constant character space (.cs) 

command 6-6 
embolden (.bd) commands 6-6 
font position ( .fp) command 6-6 
internal unit.s 6-3 
mathematical font set 6-4 
mounted font.s 6-5 

a 6-2 
b 6-2 
f 6-2 
pN 6-2 
t 6-2 
w 6-2 

space-character size ( .ss) command 
6-5 

using ASCII characters with 6-4 
Typesetting mathematical equations 

1-8 

u 

Updates 1-15 
Updates to document.a 1-12 
use or expletives 2-18 

v 

Variable spacing 1-7 
Versions 1-12 
Versions 1-15 
Versions of documents 1-12 
Versions of documents 1-13 
Vertical spacing 1-10 
Vertical spacing 1-6 
vi 1-6 
vi 1-7 

vi 2-2 
12 

w ( 
WC 2-1 
WC 2-7 
width function 6-15 
word length 2-10 
word usage 2-lo 
word usage 2-11 
word usage 2-16 
Writing tools 1-7 

x 
xx 4-52 

z 

zero-width function 6-16 ( • I T /. 2-12 

( 



) 

) 

) 

Contents 

Text Processing Commands (CT) 

intro 
check mm 
col 
cut 
cw,cwcheck 
deroff 
diction 
diffmk 
eqn,neqn,eqncheck 
explain 
hyphen 
man, manprog 
mm 
mmcheck 
mmt 
neqn 
nroff 
paste 
prep 
ptx 
soelim 
spell, spellin, spellout 
style 
tbl 
troff 

Introduces text processing commands. 
Checks usage of MM macros. (same as mmcheck) 
Filters reverse linefeeds. 
Cuts out selected fields of each line of a file. 
Prepares constant-width text for troff. 
Removes nroff/troff, tbl, and eqn constructs. 
Checks language usage. 
Marks differences between files. 
Formats mathematical text for nroff or troff. 
Corrects language usage. 
Finds hyphenated words. 
Print entries in this manual. 
Prints documents formatted with the mm macros. 
ChecksusageofMMmacros. (same as checkmm) 
Typesets documents. 
Formats mathematics. 
A text formatter. 
Merges lines of files. 
Prepares text for statistical processing. 
Generates a permuted index. 
Eliminates .so's from nroff input. 
Finds spelling errors. 
Analyzes characteristics of a document. 
Formats tables for nroff or troff. 
Typesets text. 



(J 

( 



) 

) 

) 

/NTRO(CT) INTRO(CT) 

Name 

intro - Introduces text processing commands. 

Description 

This section describes use of the individual commands available in 
the XENIX Text Processing System. Each individual command is 
labeled with the letters CT to distinguish it from commands available 
in the XENIX Timesharing a.nd Software Development Systems. 
These letters a.re used for easy reference from other documentation. 
For ex:imple, the reference mm( CT) indicates a. reference to a. dis­
cussion of the mm command in this section, where the letter "C" 
stands Cor "command" and the letter "T' stands for "Text Process­
ing". 

Syntax 

Unless otherwise noted, commands described in this section accept 
options and other arguments according to the following synta..~: 

name (option. .. ) ( cmtlarg ... J 

This syntax is detailed below: 

name 

option 

cmtlarg 

See Also 

The filename or pathname or an executable file 

A single letter representing a. command option By con­
vention, most options are preceded with a dash. 
Option letters can sometimes be grouped together as 
in - abed or alternatively they are specified individu­
ally as in - a - b - c - d . The method or specifying 
options depends on the syntax or the individual com­
mand. In the latter method or specifying options, 
argument.I! can be given to the options. For example, 
the - r option for many commands often takes a. fol­
lowing filename argument. 

A pathname or other command argument not begin­
ning with a dash or a. period ( .) . It may also be a. dash 
alone by it.eelr indicating the standard input. 

getopt.(C), getopt(S) 

Diagnostics 

Upon termination, ea.ch command returns 2 bytes of status, one 

Page 1 



!NTRO(CT) !NTRO(CT) 

supplied by the system and giving the cause for termination, and (in 
the case of "normal" termination) one supplied by the program (see 
wait(S) and ezit(S)). The former byte is 0 for normal termination; 
the latter is customarily 0 for successful execution and nonzero to 
indicate troubles such as erroneous parameters, bad or inaccessible 
data, or other inability to cope with the task at hand. It is called 
variously "exit code", "exit status", or "return code", and is 
described only where special conventions are involved. 

Notes 

Many commands do not adhere to the given syntax. 

Page 2 

( 

( 



) 

) 

CHECKMM (CT) CHECKMM (CT) 

N8.111e 

checkmm, mmcheck - Checks usage of MM macros. 

Syntax 

checkmrn [ files ] 
mrncheck [files] 

Description 

Checkmm and mmcheck check files for usage of the MM for­
matting macros. Checkmm and mmcheck also check for usage 
of some eqn( CT) constructions. Appropriate messages are 
produced. The program skips all directories, and if no 
filename is given the standard input is read. 

See Also 

col( CT), env( C), eqn( CT), mm( CT), mmt( CT), nroff( CT), 
tbl( CT), profile(M) 

Diagnostics 

If checkmm and mmcheck encounter unreadable files they 
display the message "Cannot open filename". The remaining 
output of the program is diagnostic of the source file. 

Page I 



( 

(' 



) 

) 

COL (CT) COL (CT) 

Name 

col - Filters reverse !indeeds. 

Syntax 

col [ - bCxp I 

Description 

Col prepares output Crom processes, such as the text formatter 
nrofi{CT), for output on devices that limit or do not allow reverse or 
half-line motions. Col is typically used to process nroff output text 
that contains tables generated by the tbl program. A typical com­
mand line might be 

tbl file I nroff I col ppr 

Col takes the following options: 

- b Col assumes the output device in use is not capable or backspac­
ing. Ir two or more characters appear in the same place, col out,. 
puts the last character read. 

- r Allows forward halr-linereeds. Ir not given, col accepts hair-line 
motions in its input, but text that would appear between lines is 
moved down to the next run line. Reverse rull and hair 
linereeds are never allowed with this option. 

- x Prevents conversion or whitespace to tabs on output. Col nor­
mally converts whitespace to tabs wherever possible to shorten 
printing time. 

- p Causes col to ignore unknown escape sequences found in its 
input and j1ass them to the output as regular characters. 
Because these characters are subject to overprinting from 
reverse line motions, the use or this option is discouraged 
unless the user is fully aware of the position or the escape 
sequences. 

Col assumes that the ASCII control characters SO (octal 016} and SI 
(octal 017) start and end text in an alternate character set. Ir you 
have a reverse linefeed (ESC 7), reverse hair-linefeed (ESC 8). or 
forward half-linereed ( ESC g), within an SI-SO sequence, the ESC 
7, 8 and g are still recognized as line motions. 

On input, the only control characters col accepts are space, back­
space, tab, return, newline, reverse linefeed ( ESC 7), reverse half­
linefeed (ESC 8), forward half-linereed (ESC g), alternate character 
start( SI), alternate character end (SO), and vertical tag (VT). (The 
VT character is an alternate form or foll reverse linefeed, included 

Page I 



COL (CT) COL (CT) 

ror compatibility with some earlier programs or this type.) All other 
nonprinting characters are ignored. 

See Also 

nroff(CT), tbl(CT) 

Notes 

Col cannot back up more than 128 lines. 

Col allows at most 800 charac~rs, including backspaces, on a line. 

Vertical motions that would back up over the first line or the docu­
ment are ignored. Therefore the first line must not contain any 
superscripts. 

Page 2 

( 

( 

( 



) 

) 

CUT( CT) CUT( CT) 

Name 

cut - Cuts out selected fields oC ea.ch line of a. file. 

Syntax 

cut - cli8t l fild file!! ... ) 
cut - tliat - dchar) [- s) (file1 file!! ... ) 

Description 

Use cut to cut out columns from a. ta.hie or fields from ea.ch line of a 
file. The fields as specified by li8t can be fixed length, i.e., cha.ract.er 
positions as on a. punched card (- c option), or the length can vary 
Crom line to line and be marked with a field delimiter character like 
tab (- r option). Cut ca.n be used as a. filter; if no files a.re given, 
the sta.nda.rd input is used. 

The meanings oC the options are: 

list A comma-separated list oC integer field numbers (in 
increasing order), with an optiona.I dash (- ) to indicate 
ranges, as in the - o option of nroff/troff for page ranges; 
e.g., 1,4,7; 1- 3,8; - 5,10 (short for 1- 5,10); or 3-'­
(short ror third through last field). 

- cli8t The liet following - c (no space) specifies character posi­
tions (e.g., - cl- 72 would pass the first 72 characters of 
ea.ch line). 

- flist The liet following - r is a list or fields assumed to be 
separated in the file by a delimiter cha.ra.cter (see - d ) ; 
e.g., - fl,7 copies the first and seventh field only. Lines 
with no field delimiters will be passed through in ta.ct (use­
ful for ta.hie subheadings), unless - s is specified. 

- dchar The character following - d is the field delimiter (- r 
option only). Default is tab. Space or other characters 
with special meaning to the shell must be quoted. 

- s Suppresses lines with no delimiter characters in case oC - f 
option. Unless specified, lines with no delimiters will be 
passed through untouched. 

Either the - c or - f option must be specified. 

Hints 

Use grep(C) to make horizonta.1 "cuts" (by context) through a. file, 
or pute( CT) to put files together horizonta.lly. To reorder columns 

Page l 



CUT( CT) 

in a table, use cut and paste. 

Examples 

cut - d: - n,s /etc/passwd 

name= 'who am i I cut - n - d" "' 

See Also 

grep(C), paste(CT) 

Diagnostics 

CUT( CT) 

Maps user IDs to names 

Sets name to current login 
name. 

line too long A line can have no more than SI I characters 
or fields. 

bad lid /or c II option Missing - c or - r option or incorrectly 
specified lid. No error occurs if a line has 
fewer fields than the li11t calls for. 

no field1 The li1t is empty. 

Page 2 

( 

( 

( 



) 

) 

OW(CT) OW(CT) 

Name 

cw, checkcw, cwcheck - Prep81'es constantrwidth text for 
troff. 

Syntax 

cw [ - lxx I [ - rxx I [ - fn I [ - t I [ + t I [ - d I [ /Je ... I 
checkcw [ - lxx ] [ - rxx ] file .. . 

cwcheck [ - lxx ] [ - rxx ] file .. . 

Description 

Ow prep81'es troffC. CT) input files that contain text m the 
constantrwidth (CW) font for typesetting. 

Because the CW font contains a nonstandard set of characters 
and requires different character and interword spacing from 
standard fonts, documents that use the CW font must be 
preprocessed by cw. Typical usage is: 

cw file I troff ... 

The checkcw and cwcheck programs check to see that the left 
and right delimiters, as well as the .CW /.CN pairs, are properly 
balanced. It prints out all incorrect lines. 

The options for cw, checkcw, cwcheck are: 

- lx:r Designates the one- or two-character string :r:r as the 
left delimiter. If :r:r is omitted, the left delimiter is 
undefined, which is the default setting. 

- r:r::r Designates the one- or two-character string :r:r as the 
right delimiter. The left and right delimiters may be 
different. 

- fn Mounts the CW font in font position n; acceptable 
values for n are 1, 2, and 3. The default is 3, replac­
ing the bold font. This option is only useful at the 
beginning of a document, and can only be used with 
cw. 

Page 1 



CW (CT) CW( CT) 

- t Turns transparent mode off. This option can only be 
used with cw. 

+t Turns transparent mode on (this is the default). This 
option can only be used with cw. 

- d Prints current option settings on the standard error, 
in the form of troJJ( CT) comment lines. This option 
is meant for debugging, and can only be used with 
cw. 

The left and right delimiters perform the same function as the 
.CW j.CN requests; they are meant, however, to enclose CW 
words or phrases in running text. Cw treats text enclosed by 
delimiters in the same manner as text bracketed by .CW /.CN 
pairs, except that while spaces in text bracketed by .CW /.CN 
pairs have the same width as any other CW character, spaces 
between delimiters are half as wide, so that they have the 
same width as spaces in the prevailing text. This width is not 
adjustable. 

Delimiters have no special meaning inside .CW /.CN pairs. 

Cw recognizes five requests. The requests look like troff( CT) 
macros (see EXAMPLES below), and are copied by cw onto 
its output; thus, they can be defined by the user as troff( CT) 
macros. 

The five requests are: 

.CW Marks the start of text to be set in the CW font .. CW 
takes the same options, in the same format, that are 
available on the cw command line . 

. CN Marks the end of text to be set in the CW font; .CN 
takes the same options that are available on the cw 
command line . 

. CD option( a) 
Changes delimiters and/or settings of other options; 
takes the same options as the cw command line. 

.CP argl arg2 arg9 ... 
Sets the odd-numbered arguments in the CW font and 
the even-numbered arguments in the prevailing font. 

Page 2 

( 

( 



) 

) 

) 

CW(CT) CW(CT) 

The arguments are delimited like troJK CT) macro 
arguments . 

. PC arg1 argt arg9 ... 
Same as .CP, except that the even-numbered (rather 
than odd-numbered) arguments are set in the CW 
font, and the odd-numbered arguments are set in the 
prevailing font. 

Except for the .CD request and the nine special four-character 
names listed in the table below, every character between the 
.CW and .CN requests is taken literally and output as is. The 
- t option turns off this feature (called tranaparent mode), and 
applies normal troJI( CT) rules to the CW text. 

Text typeset with the CW font resembles the output of termi­
nals and lineprinters. This font is often used to typeset exam­
ples of programs and computer output in documents such as 
user manuals and programming texts. The CW font contains 
the 94 printing ASCII characters: 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWJ(YZ 
0123456789 
tSo/o&O "•+@ .,/:;=7 I I I- _ • ..,,< > 0#\ 

It also contains eight nonASCII characters represented by 4-
character troD( CT) names 

Character Symbol Troff Name 

"Cents" sign \(ct 
EBCDIC "not" sign \(no 

Left arrow - \( <-
Right arrow -+ \( - > 
Down arrow ! \( da 

Vertical single quote \( fm 
Control-shift indicator t \( dg 
Visible space indicator \(sq 

Hyphen \(hy 

Page 3 



CW(CT) CW(CT) 

The hyphen is a synonym for the minus sign ( - ) . 

Examples 

The following are typical definitions of the .CW and .CN mac- ( 
ros. They are meant to be used with the MM(CT) macro 
package: 

.de CW Begins definition 

.DS I Display start, indented 

.ps 9 9 point type 

.vs 10.5p Vertical spacing 10.5 points 

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u Sets tabs 

.. Ends definition 

.de CN Begins definition 

.ta 0.5i Ii I.5i 2i 2.5i 3i 3.5i 4i 4.5i 5i 5.5i 6i Resets tabs 

.vs Resets vertical spacing 

.ps Resets point size 

.DE Ends display 
Ends definition 

When set in running text, the CW font is, by default, set in 
the same point size as the rest of the text. In displayed f 
matter, it can often be set one point smaller than the prevail- { 
mg point size (the displayed definitions of .CW and .CN above 
are one point smaller than the running text on this page). 
When the .CW font is set in 9-point type, there are 12 charac-
ters per inch. 

If a document that contains CW text also contains tables and 
equations, the order of preprocessing should be cw, tbl, and 
eqn. Usually, the tables contained in such documents will not 
contain any CW text, although it is possible to have elements 
of the table set in the CW font; care must be taken that 
tbl( CT) format information is not modified by cw. Attempts 
to set equations in the CW font are not likely to be either 
pleasing or successful. 

Files 

/usr/lib/font/ftCW CW fontr-width table 

Page 4 

( 



) 

) 

CW(CT) CW(CT) 

See Also 

eqn(CT), mmt{CT), tbl(CT), troff(CT) 

Waniing 

Text preprocessed by cw must be set on a typesetter equipped 
with the CW font. 

Notes 

Don't use periods ( .) or backslashes (\) as delimiters. 

Certain CW characters don't fit gracefully with certain Times 
Roman characters, such as a CW ampersand ( &) followed by a 
Times Roman comma(,); in such cases, use troff( CT) half­
and quarter-spaces. See also Notea under troff( CT). 

Page 5 



c 

(; 



) 

) 

DEROFF(CT) DEROFF(CT) 

Name 

deroff - Removes nroff/troff, tbl, and eqn constructs. 

Syntax 

derofi I - w I I - mx I [fiLu I 

Description 

Deroff reads each of the files in sequence and removes all troff( CT) 
requests, macro calls, backslash constructs, eqn( CT) constructs 
(between .EQ and .EN lines, and between delimiters), and tbl(CT) 
descriptions, and writes the remainder of the file on the standard 
output. Deroff follows cha.ins of included files (.so and .nx troff 
commands); if a file has already been included, a .so naming that file 
is ignored and a .nx naming that file terminates execution. If no 
input file is given, deroff reads the standard input. 

The - m option may be followed by an m, s, or I. The resulting 
- mm or - ms option causes the MM or MS macros to be inter­
preted so that only running text is output (i.e., no text from macro 
lines). The - ml option forces the - mm option and also causes 
deletion of lists associated with the MM macros. This option is used 
by the diction (CT) command. 

The - w option outputs a word list, one "word" per line, with all 
other characters deleted. Otherwise, the output follows the original, 
with the deletions mentioned above. In text, a "word" is any string 
that contains at least two letters and is composed of letters, digits, 
ampersands ( &) , and apostrophes ( '); in a macro call, however, a 
"word" is a string that begins with at least two letters and contains a 
total of at least three letters. Delimiters are any characters other 
than letters, digits, apostrophes, and ampersands. Trailing apos­
trophes and ampersands are removed from "words". 

See Also 

diction(CT), eqn(CT), style(CT), tbl(CT), troff(CT) 

Notes 

Deroff is not a complete troff interpreter, so it can be confused by 
subtle constructs. Most such errors result in too much rather than 
too little output. 

The - ml option does not handle nested lists correctly. 

Deroff also removes words of two or fewer letters in lines that begin 
with macro calls or troff requests. 

Page l 



(1 

( 

(/ 



DICTION (CT) DICTION (CT) 

Name 

diction - Checks language usage. 

) Syntax 

) 

) 

diction I - ml J I - mm J I I - n J J I - r pattemfile J file ... 

Description 

Diction finds all sent.ences in a document that contain phrases from a 
data base of bad or wordy diction. On output, each phrase is 
enclosed within brackets. Because diction runs deroff before looking 
at the t.ext, formatting header files should be included as part or the 
input. The options are: 

- llll!. 

Overrides the default macro package, MM. 

- ml 
Causes deroff t.o skip lists. Should be used if the document con­
tains many lists of nonsent.ences. 

- rpattem/ile 
A user-supplied pattemfile or words and phrases is used in addi­
tion t.o the default file. 

- n Suppresses the default file. 

Credit 

This utility was developed at the University of California at Berkeley 
and is used with permission. 

See Also 

deroff(CT), explain(CT) 

Notes 

Use or nonstandard formatting macros may cause incorrect sent.ence 
breaks. 

The - n option can't be specified by itself. 

Page 1 



c 

(! 



) 

) 

) 

DIFFMK(CT) DIFFMK(CT) 

Name 

diffmk - Marks differences between files. 

Syntax 

diffmk name1 namee names 

Description 

Diffmk compares two versions or a file and creates a third file that 
includes "change mark" commands for nroff(CT) or troff(CT). 
Name1 and namee are the old and new versions or the file. Diffmlc 
generates names, which contains the lines or namee plus inserted 
formatter "change mark" (.me) requests. When nameS is formatr 
ted, changed or inserted text is shown by "I" at the right margin or 
each line. The position or deleted text is shown by a single ...... 

The diffmlc command will produce listings or C (or other) programs 
with changes marked. A typical command line for such use is: 

diffmk old.c new.c tmp; nroff macs tmp I pr 

where the file macs contains: 

.pl 1 

.II 77 

.nr 

.eo 

.nc 

The .II request might specify a different line length, depending on 
the nature of the program being printed. The .eo and .nc requests 
are probably needed only for C programs. 

Ir the characters "I" and "*" are inappropriate, a copy or diffmlc can 
be edited to change them ( d1ffmlc is a shell procedure). 

See Also 

dill( C), nroff( CT) 

Notes 

Aesthetic considerations may dictate manual adjustment or some 
output.. File differences involving only formatting requests may pro­
duce undesirable output, that is, replacing .sp by .sp 2 will produce a 
"change mark" on the preceding or following line or output.. 

Page I 



(\ 

c 



) 

) 

) 

EQN(CT) EQN(CT) 

Name 

eqn, neqn, checkeq, eqncheck - Formats mathematical text 
for nroff, troff. 

Syntax 

eqn [ - dxy ] [ - pn ] [ - sn ] [ - f/ ont ] [ file ... ] 

neqn [ - dxy] [ - pn ] [ - an ] [ - f/ont] [ fie ... ] 

checkeq [ files ] 

eqncheck [ files ] 

Description 

Eqn is a troff( CT) preprocessor for typesetting mathematical 
text on a phototypesetter. Neqn is used with nroff( CT) for 
setting mathematical text on typewriter-like terminals. Usage 
is normally one of the following or its equivalent: 

eqn fies I troff 
neqn /ilea I nroff 

If no files are specified, these programs read from the stan­
dard input. 

The options are: 

- dxy Reduces subscripts and superscripts n points from the 
previous size; the default reduction is 3 points. 

- sn Sets eqn delimiters to characters x and y. 

- pn Changes the point size within eqn delimiters to n. 

- f/ont Changes the font within eqn delimiters to font. 

A line beginning with .EQ marks the start of an equation; the 
end of an equation is marked by a line beginning with .EN. 
Neither of these lines is altered, so they may be defined in 
macro packages for centering, numbering, etc. It is also possi­
ble to designate two characters as delimiters; subsequent text 

Page 1 



EQN(CT) EQN(CT) 

between delimiters is then treated as eqn input. Delimiters 
may be set to characters x and 11 with the command-line argu­
ment - dx11 or (more commonly) with delim x11 between .EQ 
and .EN. The left and right delimiters may be the same char- ( 
acter; the dollar sign is often used as such a delimiter. D elim- .• 
iters are turned off by delim off. All text that is neither 
between delimiters nor between .EQ and .EN is passed 
through untouched. 

The programs checkeq and eqncheck report missing or unbal­
anced delimiters and .EQ/.EN pairs. 

Tokens within eqn are separated by spaces, tabs, newlines, 
braces, double quotation marks, tildes, and carets. Braces {} 
are used for grouping; generally speaking, anywhere a single 
character such as x could appear, a complicated construction 
enclosed in braces may be used instead. A tilde ( -) 
represents a full space in the output; a caret (A) represents 
half as much. 

Subscripts and superscripts are produced with the keywords 
sub and sup. Thus x sub j makes 

a sub k sup 2 produces 

af 

while 

is made with e sup {x sup 2 + 11 sup 2}. Fractions are made 
with over: a over b yields 

a 

b 

sqrt makes square roots: 1 over sqrt {ax sup 2+ bx+ c} results 
in 

1 

Page 2 

( 

( 



) 

) 

) 

EQN(CT) EQN(CT) 

The keywords from and to introduce lower and upper limits: 

" lim I;z; 
11-+00 0 

is made with lim from {n - > inf } sum from 0 to n x sub i. 
Left and right brackets, braces, etc., of the right height are 
made with left and right: 
left f x aup 2 + 11 aup 2 over alpha right j -=- 1 produces 

Legal characters after left and right are braces, brackets, bars, 
c and f for ceiling and floor, and "" for nothing at all (useful 
for a rightrside-only bracket). A left need not have a match­
ing right 

Vertical piles are made with pile, lpile, epile, and rpile: 
pile {a above b above c} produces 

a 
b 
c 

Piles may have arbitrary numbers of elements; lpile leftr 
justifies, pile and epile center (but with different vertical spac­
ing), and rpile right justifies. Matrices are made with matrix: 
matrix { /co/ { x aub i above 1 aub 2 } ecol { 1 above 2 } } 
produces 

Z; 1 

1/2 2 

There is also red for a rightrjustified column. 

Diacritical marks are made with dot, dot.dot, hat, tilde, bar, 
vec, dyad, and under: :z dot = f{t) bar is 

i=!Ttf 

1 dotdot bar-=- n under is 

11 =.n 

Page 3 



EQN(CT) EQN(CT) 

and x vec -=- y dyad is 

x=V 

Point sizes and fonts can be changed with size n or size ± n, (• 
roman, italic, bold, and font n. Point sizes and fonts can be 
changed globally in a document by gsize n and gfont n, or by 
the command-line arguments - sn and - fn. 

Normally, subscripts and superscripts a.re reduced by 3 points 
from the previous size; this may be changed by the 
command-line argument - pn. 

Successive display arguments can be lined up. Place mark 
before the desired lineup point in the first equation; place 
lineup at the place that is to line up vertically in subsequent 
equations. 

Shorthands may be defined or existing keywords redefined 
with define. For example, 

define thing % replacement % 

defines a new token called thing that will be replaced by 
replacement whenever it appears thereafter. The % may be 
a.ny character that does not occur in replacement. 

Keywords such as sum ( E), int ( J ) , inf ( oo), and short­
hands such as >= ( 2'.:), != ( r). and - > (-+) are recog­
nized by eqn. Greek letters are spelled out in the desired 
case, as in alpha (a), or GAMMA (f). Mathematical words 
such as sin, eos, and log are made Roman automatically. 
Troff( CT) four-character escapes such as \( dd ( *) and \(be 
( 0) may be used anywhere. Strings enclosed in double quo­
tation marks ( " ... ") a.re passed through untouched; this per­
mits keywords to be entered as text, and can be used to com­
municate with troff( CT) when all else fails. 

See Also 

mm(CT), mmt(CT), tbl(CT), troff(CT) 

Page 4 

( 



) 

) 

) 

EQN(CT) EQN(CT) 

Notes 

To embolden digits, parentheses, etc., it is necessary to sur­
round them with double quotation marks. See also Notes 
under troJTC. CT). 

Page 5 



( 



) 

EXPLAIN (CT) EXPLAIN (CT) 

Name 

explain - Corrects language usage. 

Syntax 

explain 

Description 

Ezplain interactively reports on language usage. It suggests ·alterna­
tives to phrases round with the diction command. 

Credit 

This utility was developed at the University or California at Berkeley 
and is used with permission. 

See Also 

deroff( CT), diction( CT) 

Page 1 



(J 

( 



) 

) 

HYPHEN( CT) HYPHEN( CT) 

Name 

hyphen - Finds hyphenated words. 

Syntax 

hyphen file ... 

Description 

Hyphen finds all the hyphenated words in file• and prints them on 
the standard output. Ir no arguments are given, the standard input 
is used. Thus hyphen may be used as a filter. 

Notes 

Hyphen doesn't properly deal with hyphenated italic (i.e., under­
lined) words; it will often miss them completely. 

Hyphen occasionally gets confused, but with no ill effects other than 
extra output. 

Page 1 



( 

c 

( 



) 

MAN( CT) MAN( CT) 

N8.llle 

man, m:mprog - Print entries in this manual. 

Syntax 

man [ options ] [ section ] titles 

/usrjlib/manprog file 

Description 

Man locates and prints the entry named title in the section 
named &ection Crom the XENIX Reference Manual. (For historical 
reasons, the word "page" is often used as a synonym for 
"entry" in this context.) The title is entered in lower case. 
The section number may not have a letter suffix. If no section 
is specified, the whole manual is searched for title and all 
occurrences of it a.re printed. Options and their meanings are: 

-t 

- s 
- Tterm 

-w 

-d 

- 12 

Typeset the entry m the default format 
(8.5 11 Xl.1"). 
Typeset the entry in the small format (6 11~ 11 ). 

Format the entry using nroff and print it on the 
standard output (usually, the terminal); term is 
the terminal type (see term(M) and the explana­
tion below); for a list of recognized values of 
term, type help term2. The default value of tenn 
is 450. 
Print on the standard output only the path names 
of the entries, relative to /usr/man, or to the 
current directory for - d option. 
Search the current directory rather than 
/usr/man; requires the full file name (e.g., cu.C, 
rather than just cu). 
Indicates that the manual entry is to be produced 
in 12-pitch. May be used when $TERM (see 
below) is set to one of 300, 300s, 450, and 1620. 
(The pitch switch on the DASI 300 and 300s ter­
minals must be manually set to 12 if this option is 
used.) 

Page 1 



MAN( CT) 

- c 

-y 

MAN( CT) 

Causes man to invoke col( CT); note that col( CT) 
is invoked automatically by man unless term is 
one of 300, 300s, 450, 37, 4000a, 382, 4014, t.ek, 
1620, and X 
Causes man to use the non-compacted version of 
the macros. 

The above options other than - d, - c, and - y are mutually 
exclusive, except that the - s option may be used in conjunc­
tion with the first four - T options above. Any other options 
are passed to troff, nroff, or the man( CT) macro package. 

When using nroff, man examines the environment variable 
$TERM (see environ(M)) and attempts to select options to 
nroff, as well as filters, that adapt the output to· the terminal 
being used. The - Tterm option overrides the value of 
$TERM; in particular, one should use - Tip when sending the 
output of man to a line printer. 

Section may be changed before each title. 

As an example: 

man man 

would reproduce on the terminal this entry, as well as any 
other entries named man that may exist in other sections of 
the manual. 

If the first line of the input for an entry consists solely of the 
string: 

'\" x 

where x is any combination of the three characters c, e, and t, 
and where there is exactly one blank between the double 
quote ( ") and x, then man will preprocess its input through 
the appropriate combination of cw( CT), eqn( CT) ( neqn for 
nroff) and tbl( CT), respectively. If eqn or neqn are invoked, 
they will automatically read the file /usr/pub/eqnchar 

The man command executes manprog that takes a file name as 
its argument. M anprog calculates and returns a string of three 
register definitions used by the formatters identifying the date 
the file was last modified. The returned string has the form: 

Page 2 

( 

( 

( 



) 

) 

MAN( CT) MAN( CT) 

- rd.day- rm.month - ryyear 

and is passed to nroff which sets this string as variables for the 
man macro package. Months are given from 0 to 11, there­
fore month is always 1 less than the actual month. The man 
macros calculate the correct month. If the man macro pack­
age is invoked as an option to nroff/troff (i.e., nroff - man 
file), then the current day/month/year is used as the printed 
date. 

See Also 

checkcw( CT), checkeqn( CT), nroff( CT), tbl( CT), troff( CT), 
environ(M), man( CT), term(M). 

Notes 

All entries are supposed to be reproducible either on a 
typesetter or on a terminal. However, on a terminal some 
information is necessarily lost. 

Page 3 



(l 

( 

( 



) 

) 

) 

MM (CT) 

Name 

mm - Prints documents formatted with the mm macros. 

Syntax 

mm ( options ) [ files J 

mmcheck ( files) 

Description 

MM (CT) 

Mm can be used to type out documents using nroff( CT) and the mm 
text-formatting macro package. It has options to specify preprocess­
ing by tbl( CT) and/or ne9n( CT) and postprocessing by various 
terminal-oriented output filters. The proper pipelines and the 
required arguments and flags for nroff( CT) and mm are generated, 
depending on the options selected. 

The option.1 for mm are given below. Any other arguments or flags 
(for example, - rC3) are passed to nroff( CT) or to mm, as appropri­
ate. Such options can occur in any order, but they must appear 
before the files arguments. Ir no arguments are given, mm prints a 
list or its options. 

- c Causes mm to invoke col(CT). 

-· e Causes mm to invoke neqn( CT). 

- t Causes mm to invoke tbl( CT). 

-E 
Invokes the - e option or nroff( CT). 

- y Causes mm to use the noncompacted version or the macros (see 
mm(M)). 

Mm reads the standard input when a dash is is specified instead or 
any filenames. (Mentioning other files together with the dash can 
lead to disaster.) This option allows mm to be used as a filter; Cor 
example: 

cat dws I mm -

Hints 

1. Mm invokes nroff( CT) with the - h flag. With this flag, 
nroff( CT) assumes that the terminal has tabs set every 8 charac­
ter positions. 

Page I 



MM(CT) MM(CT) 

2. Use the - olilt option or nroff( CT) to speciry ranges or pages to 
be output. Note, however, that mm, if invoked with one or 
more or the - e, - t, and - options, together with the - olist 
option of nroff( CT) may cause a harmless "broken pipe" diag­
nostic ir the last page or the document is not specified in Ii~. 

3. Ir you use the - s option or nroff( C) (to stop between pages or 
output), use lineleed (rather than return or newline) to restart 
the output. The - s option or nroff( C) does not work with the 
- c option or mm, or ir mm automatically invokes col( C) (see 
- coption above). 

Use the mmcAeck program to check the contents or mm source files 
ror errors in usage or the macros. 

See Also 

col{CT), env(C}, eqn(CT), mmt{CT), mmcheck(CT}, nroff(CT), 
tbl(CT}, profile(F) 

Xenix Tezt Procersing Guide 

Diagnostics 

mm: no input file None or the arguments is a readable file and 
mm has not been used as a filter 

Page 2 

( 

( 

( 



) 

) 

MMT(CT) MMT(CT) 

Name 

mmt - Typesets documents. 

Syntax 

mmt [ optiona] [ file] 

Description 

Mmt uses the MM macro package. It has options to specify 
preprocessing by tbl( CT) and eqn( CT). The proper pipelines 
and the required arguments and flags for troff( CT) and for the 
macro packages are generated, depending on the options 
selected. 

Options are given below. Any other arguments or flags (e.g., 
- rC3) are passed to troff( CT) or to the macro package, as 
appropriate. Such options can occur in any order, but they 
must appear before the files arguments. If no arguments are 
given, these commands print a list of their options. 

- e Causes these commands to invoke eqn( CT). 

- t Causes these commands to invoke tbl( CT). 

- a Invokes the - a option of troff( CT). 

- y Causes mmt to use the noncompacted version of 
the macros (see mm( CT)). 

When a dash ( - ) is specified, mmt reads the standard input 
instead of any filenames. 

Hints 

Use the - olist option of troff( CT) to specify ranges of pages 
to be output. Note, however, that these commands, if 
invoked with one or more of the - e, - t, and - options, 
together with the - olist option of troff( CT) may cause a 
harmless "broken pipe" diagnostic if the last page of the 
document is not specified in list. 

Page 1 



MMT(CT) MMT(CT) 

See Also 

env( C), eqn( CT), mm( CT), tbl( CT), troff( CT), profile(M), 
environ(M) 

Diagnostics 

mmt: no input fi1e 

typesetter busy 

None of the arguments is a read­
able file and the command is not 
used as a filter. 
Either the typesetter is already 
being used, or it is not attached to 
the- system as /dev/cat. In the 
latter case, you must use the - t 
option of the troff command to 
direct output to the standard outr 

put. See tro.ff(_ CT). 

Page 2 

( 

( 

( 



) 

) 

NEQN(CT) 

Name 

neqn - Formats mathematics. 

Syntax 

neqn I - dxy J I - rn J I file J .•. 
checkeq [ file J ... 

Description 

NEQN(CT) 

Neqn is an nroff(CT) preprocessor ror rormatting mathematics on 
terminals and for printers; eqn( CT) is its counterpart ror typesetting 
with troff( CT). Usage is almost always: 

neqn file ... I nroff 

Ir no files are specified, these programs read rrom the standard 
input. A line beginning with .EQ marks the start or an equation; the 
end or an equation is marked by a line beginning with .EN. Neither 
or these lines is altered, so they may be defined in macro packages to 
get centering, numbering, etc. It is also possible to set two charac­
ters as "delimiters"; subsequent text between delimiters is also 
treated as neqn input. Delimiters may be set to characters z and y 
with the command-line argument - clzy or (more commonly) with 
"delim zy" between .EQ and .EN. The Iert and right delimiters may 
be identical. Delimiters are turned off by 'delim off'. All text that is 
neither between delimiters nor between .EQ and .EN is passed 
through untouched. Fonts can be changed globally in a document 
with gf'ont n, or with the command-line argument - rn. 

The program checkeq reports missing or unbalanced delimiters and 
.EQ/.EN pairs. 

Tokens within neqn are separated by spaces, tabs, newlines, braces, 
double quotation marks, tildes or carets. Braces {} are used for 
grouping; generally speaking, anywhere a single character like z 
could appear, a complicated construction enclosed in braces may be 
used instead. Tilde (-) represents a full space in the output, caret 
( ·) hair as much. 

See Also 

eqn( CT), checkeq( CT), troff( CT), tbl( CT) 

Notes 

To embolden digits, parentheses, etc., it is necessary to quote them, 
as in 'bold "12.3"'. 

Page I 



·, : ' , . 

(_' 

( 



NROFF(CT) NROFF( CT) 

Name 

nroff - A text formatter. 

) Syntax 

) 

nroff [ option ... ] [ /Je ... ] 

Description 

Nroff formats text in the named /Jes. Nroff is part of the 
nroff/troff family of text formatters. Nroff is used to format 
files for output to a lineprinter or daisy wheel printer; troff to 
a phototypesetter. 

If no file argument is present, the standard input is read. An 
argument consisting of a single dash (- ) is ta.ken to be a 
filename corresponding to the standard input. The options, 
which may appear in any order so long as they appear before 
the files, are: 

- olist 

-nN 

-sN 

Prints only pages whose page numbers appear in the 
comma-separated list of numbers and ranges. A 
range N- M means pages N through M; an initial 
- N means from the beginning to page N; and a 
final N- means from N to the end. 

Numbers first generated page N. 

Stops every N pages. Nroff will halt prior to every 
N pages (default N 1) to allow paper loading or 
changing, and will resume upon receipt of a new­
line. 

- mname Prepends the macro file /usr/lib/tmac/tmac.name 
to the input files. 

- cname Prepends to the input files the compacted macro 
files /usr/lib/macros/cmp.[nt] .[ dt] .name and 
/usr/lib/macros/ucmp.[ nt] .name. 

- raN Sets register a (one-character) to N. 

Page 1 



NROFF(CT) NROFF( CT) 

- i Reads standard input after the input files are 
exhausted. 

-q Invokes the simultaneous input-output mode of the 
.rd request. 

- e Produces equally spaced words m adjusted lines, 
using full terminal resolution. 

- h Uses output tabs during horizontal spacing to speed 
output and reduce output character count. Tab set­
tings are assumed to be every 8 nominal character 
widths. 

- Tdevice Specifies the output device. The default device 1s 
"lp", the lineprinter. 

Other supported devices include: 

- T300 
DASI (DTC, GSI) 300. 

- T300s 
DASI 300s. 

- T450 
DASI 450 (same as Diablo 1620). 

- T300-12 
DASI 300 at 12-pitch. 

- T300s-12 
DASI 300s at 12-pitch. 

- T450-12 
DASI 450 at 12-pitch. 

- T33 
TTY 33. Invokes col automatically. 

- Tdumb 
Terminal types with no special features. Invokes col 
automatically. 

Page 2 

( 

( 

( 



) 

) 

) 

NROFF(CT) NROFF( CT) 

- T37 
TTY 37. 

- T735 
TI 735. Invokes col aut.omatically. 

- T745 
TI 7 45. Invokes col aut.omatically. 

- T43 
TTY 43. Invokes col aut.omatically. 

- T40/2. 
Teletype model 40/2 Invokes col automatically. 

- T40/4 
Teletype mode 40/4. Invokes col aut.omatically. 

- T2631 
HP 2631 series lineprinter. Invokes col aut.omatically. 

- '1."2631-e 
HP 2631 series lineprinter, expanded mode. Invokes col 
aut.omatically. 

- '1."2631-c 
HP 2631 series lineprinter, compressed mode. Invokes col 
aut.omatically. 

- T42 
ADM 42. Invokes col aut.omatically. 

- TJl 
TTY 31. Invokes col aut.omatically. 

- T35 
TTY 35. Invokes col aut.omatically. 

- Tl620 
Diablo 1620 (same as DASI 450). 

- T1620-12 
Diablo 1620 at 12-pitch. 

Page 3 



NROFF(CT) 

Files 

/usr /lib/suftab 

/tmp/ta* 

Suffix hyphenation tables 

Temporary file 

/usr/lib/tmac/tmac.* Standard macro files 

/usr/lib/term/* Terminal driving tables 

See Also 

col( CT), eqn( CT), tbl( CT), troff( CT) 

NROFF( CT) 

( 

( 

Page 4 



) 

) 

) 

PASTE(CT) 

Name 

past.e - Merges lines or files. 

Syntax 

paste fild fild ... 

paste - dlilt filel filee ... 

paste - 8 [- dlitt) fild fild ... 

Description 

PASTE(CT) 

In the first two forms, palte concatenat.es corresponding lines of the 
given input files fild, filet, etc. It treats each file as a column or 
columns or a table and past.es them oogether horizontally (parallel 
merging). It is the count.erpart of eat( C) which concatenat.es verti­
cally, i.e., one file after the other. In the last Corm above, pHte sub­
sumes the function of an older command with the same name by 
combining subsequent lines or the input file (serial merging). In all 
cases, lines are glued oogether with the tab character, or with charac­
ters Crom an optionally specified li1t. Output is oo the standard out­
put, so it can be used as the start or a pipe, or as a filter, if - is 
used in place or a filename. 

The meanings or the options are: 

- d Without this option, the newline characters or each but the last 
file (or last line in case of the - s option) are replaced by a tab 
character. This option allows replacing the tab character by one 
or more alt.ernate characters (see below). 

lilt One or more characters immediately following - d replace the 
default tab as the line concatenation character. The list is used 
circularly, i. e. when exhausted, it is reused. In parallel merging 
(i. e. no - s option), the lines from the last file are always ter­
minated with a newline character, not from the lilt. The list 
may contain the special escape sequences: \n (newline), \t 
(tab), \\(backslash), and \0 (empty string, not a null charac­
ter). Quoting may be necessary, if characters have special 
meaning oo the shell (e.g. oo get one backslash, use - d"\\\\" ). 

- s Merges subsequent lines rather than one Crom each input file. 
Use tab Cor concatenation, unless a li1t is specified with - d 
option. Regardless or the lilt, the very last character or the file 
is forced oo be a newline. 

May be used in place or any filename oo read a line from the 
standard input. (There is no prompting.) 

Page 1 



PASTE (CT) PASTE( CT) 

Examples 

ls paste - d" n - Lists directory in one column 

ls paste - Lists directory in rour columns 

paste - s - d"\ t\n" rile Combines pairs or lines into lines 

See Also 

cut( CT), grep( C), pr( C) 

Diagnostics 

line too long 

too many fiJ.e1 

Output lines are restricted to 511 cha.ra.cters. 

Except for - s option, no more tha.n 12 input 
files ma.y be specified. 

Page 2 

( 

( 



) 

PREP( CT) PREP( CT) 

Name 

prep - Prepares text for statistical processing. 

Syntax 

prep [ - diq> I fie ... 

Descriptiao 

Prep reads each fie in sequence and writes it on the standard 
output, one "word" to a line. A word is a string of alphabetic 
characters and imbedded apm1trophes, delimited by space or 
punctuation. Hyphenated words are broken apart; hyphens at 
the end of lines are removed and the hyphenated parts are 
joined. Strings of digits are discarded. 

The following option letters may appear in any order: 

-d 
Prints the word number (in the input stream) with each 
word. 

- i Takes the next file as an "ignore" file. These words will 
not appear in the output. (They will be counted, for pur­
poses of the - d count.) 

-o 

-p 

Takes the next file as an "only" file. Only these words 
will appear in the output. (All other words will also be 
counted for the - d count.) 

Includes punctuation marks (single nonalphanumeric char­
acters) as separate output lines. The punctuation marks 
are not counted for the - d count. 

The ignore and only files contain words, one per line. 

See Also 

deroff( CT) 

Page 1 



PREP(CT) PREP( CT) 

Not.es 

Prep ignores any nroff/troff commands it may find in a file. 
In some cases, it may mistake sentences that begin with a 
period or a quote as nroff/troff commands and ignore them. 

Page 2 

( 

( 



) 

PTX(CT) PTX(CT) 

Name 

ptx - Generates a permuted index. 

Syntax 

ptx [ optiona J [ input [ output J J 

Description 

Ptz generates a permuted index to file input on file output 
(standard input and output default). It has three phases: the 
first does the permutation, generating one line for each key­
word in an input line. The keyword is rotated to the front. 
The permuted file is then sorted. Finally, the sorted lines are 
rotated so the keyword comes at the middle or each line. Ptx 
produces output in the form: 

.xx "tail" "before keyword" "keyword and after" "head" 

where .xx is assumed to be an nroff or troff(, CT) macro pro­
vided by the user. The "6e/ore keyword'' and "keyword and 
after' fields incorporate as much or the line as will fit around 
the keyword when it is printed. Tail and head, at least one of 
which is always the empty string, are wrapped-around pieces 
small enough to fit in the unused space at the opposite end of 
the line. 

The following options can be applied: 

-f 

-t 

-wn 

- gn 

Folds uppercase and lowercase letters for sorting. 

Prepares the output for the phototypesetter. 

Uses the next argument, n, as the length of the 
output line. The default line length is 72 charac­
ters for nroff and 100 for troff. 

Uses the next argument, n, as the gap size in 
characters. The gap size determines the number 
of characters to be output for the "before key­
word" and "keyword and after" fields of the output 
line. The total number of characters in these 

Page 1 



P1X(CT) P1X( CT) 

fields is no more than the maximum line length 
less the total size of all gaps less whatever charac­
ters are in the "tail" and "head" fields. Ptx does 
not copy the gaps to the output lines. It is the 
responsibility of the user to provide the gaps 
when printing the lines. The default gap is 3 
characters. 

- o only Uses as keywords only the words given in the only 
file. 

- i ignore Does not use as keywords any words given in the 
ignore file. If the - i and - o options are missing, 
use /usr/Iib/eign as the ignore file. 

- b break Uses the characters in the break file to separate 
words. Tab, newline, and space characters are 
always used as break characters. 

- r Takes any leading nonblank characters of each 
input line to be a reference identifier (as to a page 
or chapter), separate from the text of the line. 
Attaches that identifier as a fifth field on each out­
put line. 

Files 

/bin/sort 

/usr/lib/eign 

Notes 

Line length counts do not account for overstriking or propor­
tional spacing. 

Lines that contain tildes (-) are not handled correctly, because 
ptx uses that character internally. 

Page 2 

( 

( 



) 

SOELIM (CT) SOELIM(CT) 

Name 

soelim - Eliminates .so's Crom nroff input. 

Syntax 

soelim ( file .•. 

Description 

Soelim reads the specified files or the standard input and performs 
the textual inclusion implied by the nroff directives or the form 

.so somefile 

when they appear at the beginning or input lines. This is useful 
since programs such as tbl do not normally do this; it allows the 
placement or individual tables in separate files to be run as a part or 
a large document. 

Note that inclusion can be suppressed by using a single quotation 
mark ( ') instead or a dot ( .) ' e.g. 

'so /usr/lib/tmac.s 

Example 

A sample usage or 1oelim would be 

soelim exum!.n ltbl !nroff - mm lcol llpr 

See Also 

nroff( CT), troff( CT) 

Credit 

This utility was developed at the University or California at Berkeley 
and is used with permission. 

Page 1 



SOELIM (CT) SOELIM(CT) 

Notes 

Exactly one blank must precede and no blanks may follow the 
filen:i.me. Lines or the form 

.ir t .so /usr/lib/macros.t 

mean that ".so" statements embedded in the text are expanded. 

Page 2 

( 

( 

( 



SPELL (CT) SPELL (CT) 

Name 

spell, spellin, spellout - Finds spelling errors. 

)syntax 

spell ( option•) ( fiJe1) 

/usr/lib/spell/spellin [ li.t) 

/usr/Jib/spell/spellout ( - d) li1t 

Description 

) 

) 

Spell collects words Crom the named fiJe1 and looks them up in a 
spelling list. Words that neither occur among nor are derivable (by 
applying certain inflections, prefixes, and/or suffixes) Crom words in 
the spelling list a.re printed on the standard output. Ir no files are 
named, words are collected Crom the standard input. 

Spell ignores most troff( CT), tbl( CT), and eqn( CT) constructions. 

Under the - v option, all words not literally in the spelling list are 
printed, and plausible derivations Crom the words in the spelling list 
are indicated. 

Under the - b option, British spelling is checked. Besides preCerring 
centre, colour, 1pecialit11, travelled, etc., this option insists upon -i1e in 
words like 1tandardi1e, Under the - x option, every plausible stem is 
printed with = Cor ea.ch word. 

The spelling list is based on many sources, a.nd while more ha.pha.­
za.rd than an ordinary dictionary, is also more effective with respect 
to proper names and popular technical words. Coverage or the spe­
cialized vocabularies or biology, medicine, and chemistry is light. 

Pertinent auxiliary files ma.y be specified by name arguments, indi­
cated below with their default settings. The stop list filters out 
misspellings (e.g., thier=thy- y+ ier) that would otherwise pass. 

Two routines help main ta.in the ha.sh lists used by 1pell (both expect 
a. list or words, one per line, Crom the stand a.rd input). 1pellin adds 
the words on the standard input to the preexisting lilt and places a. 
new list on the standard output. Ir no lilt is specified, the new list is 
created Crom scratch. Spellout looks up ea.ch word read from the 
standard input, and prints on the standard output those that are 
missing Crom (or, with the - d option, present in) the hash list. 

Page 1 



SPELL (CT) SPELL (CT) 

Files 

D_SPELL=/usr/lib/spell/hlist!ab) Hashed spelling lists, American 
and British 

S_SPELL=/usr/lib/spell/hstop Hashed stop list 

/tm p/spell. Temporary 

/usr/lib/spell/spellprog Program 

D_SPELL and S_SPELL can be overridden by placing alternate pa.th 
definitions in your environment. 

See Also 

deroff(CT), eqn(CT), sed(C), sort(C), tbl(CT), tee(C), troff(CT) 

Notes 

The spelling list's coverage is uneven: You may wish to monitor the 
output Cor several months to gather local additions. Typically, these 
additions are kept in a separate local dictionary that is added to the 
hashed li•t via •pellin. 

By default, logging or errors to /usr/lib/spell/spellhist is turned off. 

D_SPELL and S_SPELL can be overridden by placing alternate 
definitions in your environment. 

Page 2 

( 

( 



) 

) 

) 

STYLE( CT) STYLE(CT) 

Name 

style - Analyzes characteristics or a. document. 

Syntax 

style [ - ml J [ - nun J [ - a J ( - e) [ - 1 num J [ - r num J 
l - P I l - P I file ·•· 

Description 

Stije analyzes the characteristics or the writing style or a. document. 
It reports on readability, sentence length and structure, word length 
and usage, verb type, and sentence openers. Because 11tpe runs 
deroff before looking at the text, formatting header files should be 
included as pa.rt or the input. The default macro package - ms may 
be overridden with the flag - mm. The flag - ml, which causes 
derofl' to skip lists, should be used if the document contains many 
lists or nonsentences. The other options a.re used to locate sentences 
with ce rta.in characteristics. 

- a Prints a.II sentences with their length and readability index. 

- e Prints a.II sentences that begin with a.n expletive. 

-p Prints a.II sentences that contain a. passive verb. 

- lnum 
Prints all sentences longer than num. 

- rnum 
Prints a.II sentences whose readability index is greater than 
num. 

- p Prints pa.rte or speech or the words in the document. 

Credit 

This utility was developed a.t the University or California. a.t Berkeley 
and is used with permission. 

See Also 

deroff(CT), diction(CT) 

Notes 

Use or nonstandard formatting macros may cause incorrect sentence 
breaks. 

Page 1 



( 



) 

) 

TBL (CT) TBL (CT) 

Name 

tbl - Formats tables lor nroff or troll. 

Syntax 

tbl I - 'IX I I riles I 

Description 

Thl is a preprocessor that formats tables lor nrofl( CT) or troff( CT). 
The input riles are copied to the standard output, except lor lines 
between .'I'S and .'IE command lines, which are assumed to describe 
tables and are reformatted by tbl. (The .'I'S and .'IE command lines 
are not altered by tbl) . 

• 'I'S is followed by global options. The available global options are: 

center Centers the table (default is leftr·adjust) 
expand Makes the table as wide as the current line length 
box Encloses the table in a box 
doublebox Encloses the table in a double box 
allbox Encloses each item of the table in a box; 
tab(z) Uses the character z instead of a tab to separate 

items in a line or input data. 

The global options, il any, are terminated with a semicolon(;). 

Next come lines describing the format ol each line ol the table. 
Each such format line describes one line ol the actual table, except 
that the last lo rm at line (which must end with a period) describes all 
remaining lines ol the actual table. Each column of each line of the 
table is described by a single keyletter, optionally followed by 
specifiers that determine the lont and point size ol the corresponding 
item, indicate where vertical bars are to appear between columns, 
and determine parameters such as column width and intercolumn 
spacing. The available keyletters are: 

c Centers item within the column 
r Right-adjusts item within the column 
1 Left-adjusts item within the column 
n Numerically adjusts item in the columrl: unit positions of 

numbers are aligned vertically; 
s Spans previous item on the left into this column 
a Centers longest line in this column and then left-adjusts all 

other lines in this column with respect to that centered line 
Spans down previous entry in this column 
Replaces this entry with a horizontal line 
Replaces this entry with a double horizontal line 

Page 1 



TEL (CT) TBL (CT) 

The characters B and I stand for the bold and italic fonts, respec­
tively; the character I indicates a vertical line between columns. 

The format lines are followed by lines containing the actual data for 
the table, followed finally by .TE. Within such data lines, data items 
are normally separated by tab characters. 

If a data line consists or only an underscore (j or an equals sign 
occurs, then a single or double line, respectively, is drawn across the 
table at that point. Ir a 11inglf 1~em in a data line consists or only an 
underscore or equals sign then that item is replaced by a single or 
double line. 

Full details or all these and other features or tbl are given m the 
XENIX Tezt Proceuing Guide. 

The - TX option forces tbl to use only foll vertical line motions, 
making the output more suitable for devices that cannot generate 
partial vertical line motions, such as lineprinters. 

Ir no filenames arc given as arguments, tbl reads the standard input, 
so it may be used as a filter. When it is used with eqn( CT) or 
neqn( CT), tbl should come first to minimize the volume or data 
passed through pipes. 

Example 

Ir we let -+ represent a tab (which should be typed as a genuine 
tab), then the input: 

:rs 
center box 
cB s s 
cllcls 
~ 1 c c 
1 I n n . 
Household Population 

Town-+House holds 
-+Num her-Size 

Bedminster-+789-+3.26 
Bernards Twp.-+3087-+3.7 4 
Bernardsville-+2018-+3 .30 
Bound Brook-+3425-3.04 
Bridgewater-+ 7897 -+3 .81 
Far H ills-+240-+3.19 
.TE 

yields: 

Page 2 

( 

( 

( 



) 

) 

) 

TBL (CT) 

Household Po lation 

Town Hou1ehold11 

See Also 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook 
Bridgewater 
Far Hills 

Xenix Tezt Proce111ing Guide 

789 
3087 
2018 
3425 
7897 

240 

eqn(CT), mm(CT), mmt(CT), trolT(CT) 

Notes 

See also Notes under troff( CT). 

3.26 
3.74 
3.30 
3.04 
3.81 
3.19 

TBL (CT) 

Page 3 



c 

·1·', 



) 

) 

TROFF( CT) 1ROFF(CT) 

Name 

troff - Typesets text. 

Syntax 

troff [ options ] [ files ] 

Description 

Troff formats text contained in files (standard input by 
default) for printing on a phototypesetter. 

An argument consisting of a lone dash ( - ) is taken to be a 
filename corresponding to the standard input. The options, 
which may appear in any order, but must appear before the 
files, are: 

- olist 

-nN 

-sN 

- raN 

Prints only pages whose page numbers appear in 
the list of numbers and ranges, separated by com­
mas. A range N- M means pages N through M; 
an initial - N means from the beginning to page N; 
and a final N- means from N to the end. (See 
NOTES below.) 

Numbers first generated page N. 

Stops every N pages. Nroff will halt after every N 
pages (default N-1) to allow paper loading or 
changing, and will resume upon receipt of a 
linefeed or newline (newlines do not work in pipe­
lines, e.g., with mm( CT)). This option does not 
work if the output of nroff is piped through 
col( CT). Troff will stop the phototypesetter every 
N pages, produce a trailer to allow changing 
cassettes, and resume when the typesetter's start 
button is pressed. When nroff (troff) halts between 
pages, an ASCII BEL (in troff, the message page 
stDp) is sent to the terminal. 

Sets register a (which must have a one-character 
name) to N. 

Page 1 



TROFF( CT) TROFF( CT) 

- i Reads standard input after files are exhausted. 

-q Invokes the simultaneous input-output mode of the 
.rd request. 

- z Prints only messages generated by .tm (terminal 
message) re quests. 

- mname Prepends to the input files the noncompacted 
(ASCII text) macro file /usr/lib/tmac/tmac.name. 

- cname Prepends to the input files the compacted macro 
files /usr/lib/macros/cmp.[ nt] .[ dt] .name and 
/usr/lib/macros/ucmp.[ nt] .name. 

- kname Compacts the macros used in this invocation of 
nroff /troff, placing the output in files [ dt] .name in 
the current directory. 

- e Produces equally-spaced words in adjusted lines, 
using the full resolution of the particular terminal. 

-h Uses output tabs during horizontal spacing to speed 
output and reduce output character count. Tab set­
tings are assumed to be every 8 nominal character 
widths. 

- un Sets the emboldening factor (number of character 
overstrikes) for the third font position (bold) to n, 
or to zero if n is missing. 

Troff only: 

- t Directs output to the standard output instead of the 
phototypesetter. 

- f Refrains from feeding out paper and stopping pho­
totypesetter at the end of the run. 

-w Waits until phototypesetter is available, if it 1s 
currently busy. 

- b Reports whether the phototypesetter is busy or 
available. No text processing is done. 

Page 2 

( 

( 

( 



) 

) 

TROFF( CT) TROFF( CT) 

- a Sends a printable ASCII approximation of the 
results to the standard output. 

-pN Prints all characters in point size N while retainin& 
all prescribed spacings and motions, to reduce pho­
totypesetter elapsed time. 

- Tname Uses font-width tables for device name (the font 
tables are found in /usrjlib/font/name/*). 
Currently, no names are supported. 

Files 

/usr/lib/suftab Suffix hyphenation tables 

/tmp/ta# Temporary file 

/usr/lib/tmac/tmac Standard macro files and pointers 

/usr/lib/macros/• Standard macro files 

/usr/lib/term/* 

/usr/lib/font/• 

See Also 

eqn( CT), tbl( CT) 

Terminal driving tables for nroff 

Font width tables for troff 

(nroff only) col( CT), mm( CT) 

(troff only) mmt( CT) 

Not.es 

Nroff/troff uses Eastern Standard Time; as a result, depending 
on the time of the year and on your local time zone, the date 
that nroff /troff generates may be off by one day. 

When nroff /troff is used with the - olist option inside a pipe­
line (e.g., with one or more of cw( CT), eqn( CT), and 
tbl( CT)), it may cause a harmless "broken pipe" diagnostic if 
the last page of the document is not specified in list. 

Page 3 



TROFF( CT) TROFF( CT) 

Troff normally sends output directly to the typesetter. If you 
cjo not have a typesetter attached to your system as /dev/cat, 
troff will display the message "typesetter busy". If this is ·the 
case, you must use the - t option and the shell's redirection (·• 
symbol to direct the output to the standard output and into a 
file. 

( 

Page 4 



Index 

Macros, checking usage .................................................. check mm 
Reverse linefeed ............................................................. col 

) 
Files, selecting fields ....................................................... cut 
Constant width text ....................................................... cw 
cw check command ......................................................... cw 
Macros, removal ........................................................... deroff 
Language usage, description .......................................... diction 
File, differences .. .. .. .. .... .... . .... .. .. .... .. .... diffmk 
Mathematical text .. .. .. .. .. . .. .. .. . .. .. .. .. .. .. . . ...... eqn 
eqncheck command ............................... eqn 
Language usage, correction............................ . ....... explain 
Hyphenation................................................. .. .. hyphen 
Manual pages, printing . .... . ........................... man 
Macros, memorandum for line printer ........................ mm 
Macros, checking(see checkmm(CT)) ................. . .. mmcheck 
Macros, memorandum for typesetting ..... mmt 
Mathematical text.... . .. .. .. .. . .. .. . ............................. neqn 
Text formatter for line printer .. . .. ..... nroff 
Files, merging lines ..... ..... .... .. .. ... paste 
Statistical processing....... .. . prep 
Permuted index. . ............................ ptx 
Macros, .so elimination .. . .. .. .. .. .. .. .. .. . .. .. . soelim 
Spelling... ....... ...... .. .. . . .. . . . . .. .. .. ............................ spell 
spellin command . .. .. .. .. . .... . ..... spell 
spellout command ....... .. ................. spell 
Document characteristics .................................... sty le 
Tables... ............... ... tbl 
Text formatter for typesetter . . . .. ..... troff 

) 



( 


