

Information in this document is subject to change without notice and does not
represent a commitment on the part of The Santa Cruz Operation, Inc. nor
Microsoft Corporation. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement. [t is against
the law to copy this software on magnetic tape, disk, or any other medium for
any purpose other than the purchaser’s personal use.

© 1983, 1984 Microsoft Corporation
© 1984, 1985 The Santa Cruz Operation, Inc.

This document was typeset with an IMAGEN® 8/300 Laser Printer.

XENIXis a trademark of Microsoft Corporation.
IMAGEN is aregistered trademark of IMAGEN Corporation.

Document Number: G-2-14-85-1.3/1.0

Contents

et et et
OO W

21

2.3
2.4
2.5

Text Processing Overview

Introduction 1-1

Basic Concepts 1-3

Formatting Documents 1-7

A Sample Project 1-9

Managing Writing Projects 1-12
Summary 1-15

ToolsFor Writing and Editing

Introduction 2-1

XENIX Commands for Text Processing 2-2
Writing Tools 2-9

Using Spell 2-9

Using Style and Diction 2-10

Using the MM Macros

Getting Started withMM 3-1

Basic Formatting Macros 3-3

Using Nroff/Troff Commands 3-9
Checking MM Input with mmcheck 3-9

MM Reference

Introduction 4-1

Invoking the Macros 4-4

Formatting Concepts 4-8

Paragraphsand Headings 4-13

Lists 4-22

Displays 4-31

Footnotes 4-38

Page Headersand Footers 4-41

Tableof Contents 4-46

References 4-48

MiscellaneousFeatures 4-50

Memorandum and Released Paper Styles 4-56
Reserved Names 4-65

Errors 4-68

Summary of Macros, Strings, and Number Registers

4-75

Using Nroff/ Troff

Introduction 5-1

Inserting Commands 5-2

Point Sizes and Line Spacing 5-3 (
Fontsand Special Characters 5-5
Indentsand Line Lengths 5-7

Tabs 5-9

Drawing Lines and Characters 5-10
Strings 5-13

Macros 5-14

Titles, Pagesand Numbering 5-16
Number Registers and Arithmetic 5-18
Macros with Arguments 5-20
Conditionals 5-22

Environments 5-24

Diversions 5-24

Nroff/Troff Reference

Introduction 6-1

Basic Formatting Requests 6-4

Character Translations, Overstrike, and Local Motions 6-13

Processing Control Facilities 6-17

Output and Error Messages 6-25 (
Summary of Escape Sequences and Number Registers 6-25

Formatting Tables

Introduction 7-1

Input Format 7-2

Invoking Tbl 7-10

Examples 7-11

Summary of tbl Commands 7-18

Formatting Mathematics

Introduction 8-1

Displayed Equations 8-2

Basic Mathematical Constructions 8-3

Complex Mathematical Constructions 8-7

Layout and Design of Mathematical Text 8-10

In-line Equations 8-15

Definitions 8-16

Invokingeqn 8-17 (
Sample Equation 8-18

Error Messages 8-19

8.11 Summary of Keywords and Precedences 8-19

Appendix A Editing With Sed and Awk
Al Introduction A-1 !
A2 Editing Withsed A-1

A3 Pattern Matching With awk A-13

il

Chapter 1
Text Processing Overview

1.1 Introduction 1
1.1.1 Before YouBegin 2
1.1.2 Overview of ThisManual 3

1.2 Basic Concepts 3
1.2.1 Writing Tasks 4
1.2.2 AnatomyofaDocument 4
1.2.3 Formatting Characteristics 5
1.2.4 AnlInventoryof Tools 6

1.3 FormattingDocuments 7
1.3.1 The MM Macros 7
1.3.2 Supporting Tools 8
1.3.3 Orderof Invoking Programs 8

1.4 A Sample Project 9
1.4.1 Entering Textand Formatting Commands 9
1.4.2 Formatting Text 10
1.4.3 Printing the Document 11

1.5 Managing Writing Projects 11
1.5.1 The Life Cycle of aDocument 12
1.5.2 Organizing YourProject 12
1.5.3 Shortcuts: The Boilerplates Concept 14

1.6 Summary 14

1.1 Introduction

The XENIX Text Processing System is a collection of powerful tools for
enhancing writing productivity and making the process of document
preparation more efficient. To create documents with the XENIX system, you
will be using special XENIX text processing programs, including text editors and
text formatters. You will also be relying on XENIX system features and utilities
with which you may already be familiar. Whether you have used other text
processing programs or not, this manual provides you with a practical
orientation toward text processing and describes the XENIX tools in detail,
along with examples that illustrate their applications to your writing tasks.
Where possible, strategies are offered for using the XENIX system to best
advantage inyour own environment.

This manual emphasizes the interrelationship of tools and techniques into a
“text processing system’. Understanding the relationship between these
programs discussed here is as important as learning to use each individual
program. Think of the XENIX system as a ‘‘writing environment”. How you
organize this environment is up to you. Once you learn to use your XENIX tools
selectively, and make the right decisions in planning your writing projects
before you begin them, the XENIX system is ultimately more powerful and
flexible than any of the ‘‘word processing packages” with which you may be
familiar.

This introduction provides you with an overview of text processing with the
XENIX System, including:

o The text processing concepts and terms you will need to understand
s Theediting and formatting tools you will be using

o Thestepsin the process of creating a finished document

o Thestrategies for managing writing projects

As you read the XENIX Tezt Processing Guide remember that the XENIX
system has been evolving over a number of years and that it offers an enormous
range of programs and utilities. Many of the tools introduced here were not
originally designed for text processing——they are general-purpose utilities upon
which all XENIX users depend heavily. Programmers, for example, use the
same text editors and file comparison utilities discussed here to write andrevise
programs. Those programs intended solely for text processing applications,
including the formatters and style analysis programs, have developed
independently of each other. You will often find that their capabilities overlap.
A large part of learning to use your XENIX system successfully is deciding how
to make the various programs and utilities work together.

Do not expect to sit down and learn the XENIX Text Processing System in a
single afternoon. This manual is designed to help you approach a wide range of

1-1

XENIX Text Processing

editing and formatting tools gradually. There are many programs described
here for which you may not have an immediate application, and some you may
never need at all. You need not learn all the material introduced here to
produce professional-quality manuscripts. Choose the tools that will work best
for your projects.

1.1.1 Before You Begin

Before you can begin to use your XENIX system effectively as a text processing
environment, you should already be familiar with the material covered in the
XENIX User’s Gusde, particularly:

e The most common XENIX commands
e The XENIX hierarchical file structure
e TheXENIXshell programming language
e Atleastoneof the XENIX text editors

Equally important, however, is making use of the power of XENIX as an
operating system by using its features to your advantage. In particular, as you
begin working with XENIX Text Processing, consider how your work can be
made easier by utilizing the XENIX hierarchical file structure to organize files
efficiently. Make use of the XENIX shell to “pipe’’ one process to another and
run several processes concurrently. Use the XENIX shell programming
language to create ‘‘scripts’’ for automating your text processing work.
Develop strategies for managing your writing projects beyond merely learning
a collection of commands.

Most importantly, before you begin working with the XENIX Text Processing
System, learn one of the XENIX text editors well enough to feel comfortable
entering and revising document text.

Because there is so much to learn about text processing with the XENIX system,
the best approach is to read through this volume first and decide which editors,
utilities, and formatters best suit your needs. Then learn selectively, but
thoroughly, those tools which are most appropriate. As you become more
experienced, you will develop a feel for which functions work best in which
situations, and you will find new ways to make the writing process more
efficient. You will be continually amazed at how powerful the editors and
related tools can be.

1.1.2 Reading This Manual

This manual contains the following chapters:

1-2

Text Processing Overview

1. Text Processing Overview
The chapter you are now reading provides you with a general
overview of XENIX text processing: how it works and what kinds of
tasks it can do. The XENIX tools and how they fit into each phase of
document production are described.

2. Writing and Editing Tools
This chapter introduces several XENIX programs which can help
you search for recurring patterns, compare files, and make global
revisions to large files and groups of files. It also introduces three
special writing tools for locating spelling errors and awkward
diction, as well as assessing the readability of a document.

3.Using mm
This chapter introduces mm, a package of document formatting
requests which simplifies the task of formatting documents.

4. Mm Reference
Thischapter isa comprehensive guide to mm.

5. Nroff/Troff Tutorial
This chapter introduces the two XENIX text formatters, nroff and
troff.

6. Nroff/Troff Reference
This chapter is a comprehensive guide to the nroff and troff
formatting programs.

7.Formatting Tables
This chapter describes the specialized formatter, tbl, which
produceseffective tables in documents.

8. Formatting Mathematical Equations
This chapter describes the eqn program which formats
mathematical symbols and equations.

Appendix A: Editing With sed and awk

This appendix describes how to use the two batch editing programs
sed and awk.

1.2 Basic Concepts

This section reviews some general text processing terms and concepts,
including the:

— Typesof writing tasks which can be done with XENIX text processing

— Partsof adocument

1-3

XENIX Text Processing

— Design characteristicsof a formatted document

— Typesof XENIX tools which you will be using

(
1.2.1 Writing Tasks)
You can write, edit, and typeset any manuscript on the XENIX system—
whether a memo, business letter, novel, academic dissertation, feature article
or manual. In some respects this manual relies more heavily on examples
relevant to technical documentation, because these projects require the
application of the greatest number of XENIX tools, and demand the most
careful planning and strategy in their construction.
1.2.2 Anatomy of a Document
To fully determine the scope of your formatting needs, let’s look at the partsof
a typical document. Unless you are using your XENIX text processing system to
write memos and letters, you may have some or all of the following in your
documents:
Front Matter
— Title page (
— Copyright notice or document number
— Tableof contents
— Listof tablesorillustrations
— Foreword
— Preface
— Acknowledgements
Body of Text
-— Chaptersor sections
— Figuresanddisplay
— Tablesand equations (

— Footnotes

— Running headers and footers

Text Processing Overview

Back Matter
— Appendices
— Notes
— Glossary
— Bibliography
— Index

Your XENIX tools will help you automatically generate many parts of your
document. For example, you will be able to create lists of figures and tables,
and a table of contents as part of the formatting process. You can create and
store in advance a standard copyright notice page {often called a ‘“boilerplate’’)
and change only that information specific to the document.

Even in those sections of your document that must be written from scratch you
can do much to standardize the ““look” of a preface page, the pagination of an
appendix, or the section numbering and format of a chapter. Once you have
developed specifications, you can achieve consistency in the production of a
long and complex document, and even produce many documents with the same
specifications, without going through the definition process again. A further
advantage is that you can change your specifications at any time, often without
re-editing the text and formatting commands themselves. Then, you need only
reformat your document and print it.

1.2.3 Formatting Characteristics

There are many characteristics of your finished text that can be controlled with
XENIX formatting tools. Keep in mind, however, that the appearance of your
finished document depends largely on the capabilities of your output device.
To determine the format of your text you will insert commands in your text file
as you write and edit. These commands will be identical, whether you are
planning to produce your document on a lineprinter using the XENIX formatter
nroff, or whether you are sending your document directly to a phototypesetter
using troff. Because a lineprinter cannot do variable spacing, or change the
point size or font of your text, nroff will ignore commands to change point size,
round the parameters of spacing commands to the nearest line unit, and replace
italics with underlining.

You will also notice qualitative differences in the output. For example, the
justification of text—the spacing of text across the line to preserve a margin—is
considerably less subtle in lineprinter output. Some of the characteristics you
can control with the nroff/ troff programsare:

— Textfilling, centering, and justification

1-5

XENIX Text Processing

— Multicolumn output, margin, and gutter width

— Vertical spacing, line length, page length, and indentation
— Font typeand pointsize

— Styleof page headersand footers

— Pageandsection numbering

— Layout of mathematical equationsand tables

1.2.4 An Inventory of Tools

When you approach any writing project, you should examine the whole range
of XENIX tools to find those that will work best, just as you might look inside a
toolbox. Although you can often do a job in several ways, there is frequently a
tool, or a combination of tools, designed especially for that job.

Feel free to experiment in using the various editors, utilities, and formatters. If
you are cautious about making copies of your files and backing up your XENIX
system regularly, you can do little irreversible damage. As you work, you will
gain more confidence and find new solutions.

While it is a good idea to learn to use a few of the XENIX tools skillfully, you
should also work consciously to learn new tools and methods, rather than
depending on a few procedures which you feel you know well. Some XENIX
tools, like the screen editor vi, offer many more commands and functions than
you can comfortably learn at one sitting. You may find yourself relying on a
limited number of commands quite heavily. To prevent this, periodically
review the documentation and force yourself to try new commands.

In this manual we will be looking at XENIX *‘tools” which fall into a few basic
categories:

System features
Aspects of the XENIX operating system that can be used to enhance
the text processing environment, such as multitasking and the
hierarchical file structure.

Utilities
These include the XENIX text editors (such as vi) and other utilities

that are used for both software development and text processing
{(such assort, diff, grep, or awk]).

1-6

Text Processing Overview

Text Processing Tools

These include specialized programs designed solely for text
formatting tasks, including mm, eqn, and tbl and the formatters
nroff and troff. Also included are the special writing tools, spell,
style, and diction, which help you edit what you write.

1.3 Formatting Documents

In this section you will be introduced to nroff and troff, the two XENIX
formatting programs. By inserting a series of commands in your text files you
will be able to produce text with justified right margins, automatic page
numbering and titling, automatic hyphenation, and many other special
features. Nroff (pronounced “en-roff’’) is designed to produce output on
terminals and lineprinters. Troff (pronounced ‘‘tee-rofl’’) uses identical
commands to drive a phototypesetter. The two programs are completely
compatible, but because of the limitations of ordinary lineprinters, troff
output can be made considerably more sophisticated. With troff, for example,
you can specify italic font, variable spacing, and point size. If you format the
text using the same macros with nroff, italicized text will be underlined, the
spacing will be approximated, and the text will be printed in whatever size type
the lineprinter offers.

1.3.1 The mm Macros

To use nroff and troff, you must insert a fairly complicated series of
commands directly into your text. These ‘“formatting commands” specify in
detail how the final output will look. Because nroff and troff are relatively
hard to learn to use eflectively, XENIX also offers a package of canned
formatting requests called the mm macros. With mm you can specify the style
of paragraphs, titles, footnotes, multicolumn output, lists and so on, with less
effort and without learning nroff and troff themselves. The mm program
reads the commands from the text, and translates them into nroff/troff
specifications. Mm is described in detail in the next two chapters. It is
recommended that you learn mm first, and use it for most of your formatting
needs. If you need to fine-tune your output, you can add nroff/troff requests
to the text as necessary.

To produce adocument with mm, use the command
nroff -mm filename

to view the output on your terminal screen. To store the output of nroffin a
file, use the command line:

nroff -mm filename > outfile

where outfile is the name of the file you wish to designate for the stored output.

1-7

XENIX Text Processing

It is suggested that you give consistent extensions to your input and output
filenames. You might use ‘‘.s” for “source’’ as the extension for all input
filenames, and “.mm” as the extension for the names of files which are the
outputof mm. For example,

nroff -mm L.intro.s>intro.mm&

Note that the ampersand is used to process the file in the background.

1.3.2 Supporting Tools

In addition to the nroff and troff formatting programs, and the mm
formatting package, there are also formatting programs to meet some
specialized needs. The eqn program, for example, formats complicated
mathematical symbols and equations. A version of eqn called neqn outputsthe
same mathematical text for the more limited capabilities of lineprinter. Eqn is
a preprocessor. That is, you run eqn first, before nroff/ troff, to translate the
commands of the eqn ‘‘language” into ordinary nroff/troff requests. The eqn
commands resemble English words (e.g., over, lineup, bold, union), and the
format is specified much as you might try to describe an equation in
conversation. It is recommended that you delay learning about eqn in detail
until you actually need to use it.

The tbl program is also a preprocessor: tbl commands are translated into
nroff/troff commands to prepare complex tables. Tbl gives a you a high
degree of control over material which must appear in tabular form, by doingall
the computations necessary to align complicated columns with elements of
varying widths. Like eqn, it requires that you learn another group of
commands, and process your files through another program before using
nroff/troff.

1.3.3 Order of Invoking Programs

After you have inserted all your formatting commands into the text, you are
ready to process your files, using the XENIX formatting programs. Please note
that it is extremely important to use the various macro packages and
formatters in the correct order. However, you may invoke all these programs
with a single command line, using the XENIX pipe facility. As noted above, you
can invoke the mm macro package along with nroff/troff using a command
such as:

nroff -mm intro.s>intro.mm
However, if you are using several specialized formatters along with
nroff/troff, the command becomes more complex. You must invoke eqn

before nroff/troff and mm, in order to translate the eqn commands into
nroff/troff specifications before the filesare formatted, as in the following:

1-8

Text Processing Overview

neqn intro.s | nroff - mm>intro.mm
If you are using both eqn and tbl, the tbl program should be called first:
tbl intro.s | neqn|nroff -mm>intro.mm

If you are formatting multicolumn material or tables with nroff you must use
the col (for ““column”) program. Col processes your text into the necessary
columns, after formatting, asin:

nrofl -mm intro.s | col>intro.mm

1.4 A Sample Project

The preparation of every document has several phases: entering and editing
text, checking your draft for spelling errors and style quality, formatting the
finished version, and printing it on a printer or typesetter. To illustrate the
process of producing a finished document with the XENIX Text Processing
System, let’s look at the steps for creating asimple document one by one.

1.4.1 Entering Text and Formatting Commands

First you must write the text of the document. To do this, you will invoke one
of the XENIX text editors and type the text on the screen. For example, to
produce a memo informing the members of your department that you will be
holding a seminar on the XENIX Text Processing System, you might begin by
typing the following command line:

vi memo.s

You will probably use your editor’s special functionsto correct errors and make
revisions as you write, such as deleting words or lines, globally substituting one
word for another, or moving whole paragraphs and sections around in the
document.

If you have used a dedicated word processing system or a microcomputer word
processing program before, note that the XENIX Text Processing System works
somewhat differently. Formatting of text takes place in a **batch” rather than
an “‘interactive’’ mode. That s, instead of using special function keys to format
your text on the screen as you work, you will be interspersing commands with
ordinary text in your file. Most of these are two-letter commands preceded by a
dot (.), that appear at the beginning of text lines. These will be lowercase
letters, if you are using either of the XENIX text formatters, nroff, or troff.

In addition to these two programs, there is another program called mm which

we recommend you use, especially if you are new to text processing. Mm
commands are called ““macros’’. These macros, which are generally two upper

1-9

XENIX Text Processing

or lowercase letters preceded by a dot (.), replace whole sequences of nroff and
trofl commands, and allow you to reduce the number and complexity of the
commands necessary to format a document. You can use the mm macros
wherever possible and add extra nroff or troff commands, as necessary, for
fine-tuning the format of your document.

Let’slook at the beginning of a file called memo.s:

.ce

.B MEMO

.sp 2

.P

A seminar has been scheduled for Thursday, September 15,

to introduce users to the XENIX Text Processing System.

It is is intended for all department members

planning to use XENIX for writing or preparing documentation.

The seminar will include the following topies:

AL 1

.LI

Reviewing the XENIX file structure and basic commands.
.LI

Using the vi text editor.

.LI

Formatting documents with mm.

.LE

P

The seminar will begin at 9 A.M. and will last approximately
two hours...

In the input file above, each paragraph of text begins with the mm paragraph
macro, .P. In the final document, the word *“MEMO”’ will appear centered on
the page and in boldface. The nroff/troff command .ce means “center” and
the mm macro .B means “boldface”. The nroff/troff command .sp 2 below
MEMO means‘‘2"spaces

Note the three mm macros .AL, .LI, and .LE. These will turn the text following
the words *‘following topics’ into an automatically numbered list.

1.4.2 Formatting Text

Now, let’s format the finished memo into the file called memo.mm using the
following command line:

nroff -mm memo.s>memo.mmé&

1-10

Text Processing Overview

This command invokes the nroff formatter using the mm macro package to
format the file memo.s. When formatted, the memo will be stored in an output
file called memo.mm. If you do not specify an output file, the formatted text
will simply roll acrossyour screen and be lost. Note that the command line ends
with an ampersand (&), an instruction to put the formatting of this file *“in the
background”. It is generally a good idea to put formatting jobs in the
background because they will often take several minutes, especially if the file is
long and the formatting relatively complex. If you put the formatting job in the
background, your terminal will remain free for you to do other work on the
system.

1.4.3 Printing the Document
When you are ready to print the memo, use the command
Ipr text.memo.mm

The finished memo looks like this:

MEMO

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
It is intended for all department members planning

to use XENIX for writing or preparing documentation.
The seminar will include the following topics:

1. Reviewing the XENIX file structure and
basic commands.

2. Using the vi text editor.
3. Formatting documents with mm.

The seminar will begin at 8 A M and will last
approximately two hours...

1.5 Managing Writing Projects

Once you have mastered one or more of your text editors, and are ready to do

1-11

XENIX Text Processing

extensive writing, revision, and text processing with the XENIX system, it is
time to consider the overall organization of your writing projects. This section
offers some common-sense suggestions for managing and standardizing your
text files to make processing more efficient. Not all of the suggestions and
writing aids discussed here will be equally appropriate in all situations. The
larger and more complex the writing project, however, the more time and
confusion can be saved by their implementation.

1.5.1 The Life Cycle of a Document

Before you can begin to work successfully with XENIX text processing tools, you
need to determine which tools are appropriate for each phase of a project. This
section discusses the application of XENIX tools to each step in the life cycle of a
document from the first notes you take and outlines you develop, to the
archiving and management of multiple versions and updates.

Every document goes through several phases before it is complete. First, you
must enter the body of the text, using one of the XENIX text editors. As you
write, you will insert formatting commands, or “macros,” which specify in
detail to the formatting programs how the final output should look. In addition
to checking your work for mistakes and spelling errors, you may need to go
through an extensive revision process—the global substitution of one name or
term for another, for instance, or the reorganization of your manuscript using a
“‘cut and paste’ technique.

Depending on the size and scope of your project, you may need to compare text
variants and maintain several versions of your documents. Finally, you will be
producing formatted output, whether it is a one-page business letter produced
on an ordinary lineprinter or a book-length manuscript communicated directly
to a phototypesetter. XENIX provides all the necessary tools for every phase of
document preparation, and in many cases offers several approaches to each
task.

1.5.2 Organizing Your Project

Organization is a key element of writing projects, especially if you are working
on a large document, or attempting to control many short ones. Text
processing can greatly simplify any writing project if you use common sense in
adapting the wide range of XENIX tools to your work. If you work with many
short memos, letters, and documents that are similar in content but require
constant revision, or if you are involved with the production of book-length
manuscripts, you can easily find yourself swamped by huge files containing
innumerable text variations and fragments. These can become difficult to
control and process. Time you spend defining the scope of your project in
advance is be well rewarded. Decide which files and versions you need to
maintain, and which formatting and error-checking programs you need to use.
Determine in advance, if possible, the style and format of your text.

1-12

Text Processing Overview

Since most documents go through several revisions before they are finished, a
few simple measures make the work of repeated revision considerably easier. If
you are like most people, you rewrite phrases and add, delete, or rearrange
sentences. Subsequent editing of your text will be easier if every sentence starts
on anew line, and if each line isshort and breaksat a natural place, such as after
asemicolon or comma.

As you are editing, you can insert markers in your text, so that you can return
to them later; use an unlikely string as a marker that you can search for easily
using the grep command or your text editor to do a global search. If, for
example, you are unsure of which term to use, or how you want the final text to
look, use a given word, or text formatting macro provisionally, but
consistently. In this way, a global substitution can be made easily.

You may find that certain global definitions, like the choice of a font for agiven
header level, or a commonly used string, may be created at the last minute and
placed at the beginning of your text file. When you are experienced in the use of
macros, you may want to create “template’” definitions which you use
repeatedly. You can even place your definitions in a separate file to be called
every time you invoke a script you have prewritten for processing your
documents. This will facilitate consistency in your documents and allow
greater flexibility if changes are required. In many cases, you will find that you
can delay your formatting decisions until the document is to be printed or
typeset.

Long documents should be broken down into individual files of reasonable
length, perhaps ten to fifteen thousand characters. Operations on larger files
are considerably slower, and the accidental loss of a small file is less
catastrophic. If possible, each file should represent a natural boundary in a
document, such as a chapter or section. Develop naming conventions to make
your filenames consistent and self-explanatory, such as:

l.intro.s 2.basic.s 3.adv.s

This allows files to be processed in groups with global commands, editing and
shell scripts. You will also be able to see the contents of files and directories at a
glance, and if someone else needs to access your files, they will not be confronted
with filesnamed “aardvark”, “katmandu”, or “‘fred”.

You should also use the XENIX hierarchical file structure to your advantage in
organizing your work, by creating diflerent directories for special purposes.
For example, you may wish to have your source text filesin a different directory
from your formatted output files, or you may find it handy to have “rough” and
“final” draft directories. If your projects grow and change over time, you may
need to maintainseveral versionsof a document atonce.

Unless your project is truly unwieldy, the creation of parallel directories should
provide sufficient organization for storing multiple versions of a document:

1-13

XENIX Text Processing

[usr /docwriter

versionl version2 version3

rough final nroff
|
l.intro.s l.intro.n
2.basic.s 2.basic.n
3.adv.s 3.adv.n

If you have created definition files and scripts, such as shell programs for
processing text or sed scripts for making uniform changes (see Appendix A),
place them in yet another directory. This might also be a good place to add
some “help”’ files, which explain which versions of a document are contained in
the directory or explain formatting procedures.

There are no rules to apply in deciding which procedures will produce
documentation with the least effort and the fewest errors. How elaborate you
make your procedures depends on the quantity and complexity of the text you
need to process and maintain. The essential point here is the theme of this
entire volume: select the XENIX tools which seem most appropriate and adapt
them to your own specific needs. The more organized and consistent your work
is, the more powerful y our use of these tools will become.

1.5.3 Shortcuts: Boilerplates and Cut and Paste

You will almost always find several approaches to any writing or revision you
do with the XENIX system. Begin each writing project by reviewing these
alternatives, and determine which solution requires the least repetitive human
effort and leaves the least room for error. You can increase your productivity,
whether you are writing technical papers, documentation, or many memos
with similar content, by focusing on writing clearly and concisely, rather than
wasting time on needless duplication of effort. If you proceed in an organized,
consistent way, as outlined in the previous section, you will quickly find that
XENIX offers you many shortcuts. One of these is the concept of the ‘‘editing
script’’. Either of the line editors, ed or ex, can be used to perform a
complicated sequence of editing operations on a large group of files
simultaneously. These can often be a substitute for the use of a batch editing
facility like sed, or awk.

For example, to change every “Xenix” to “XENIX" in all your files, create a
script file with the following lines:

Text Processing Overview

g/Xenix/s/ [XENIX/g
q

Now, you can use the command
ed filename <script

to make this change to any given file. The editor will take its commands from
the prepared script. You can further automate procedures by using the XENIX
shell language to write a shell procedure. For example, you can write a script
which asks XENIX to make the above changes, reformat the entire text, and
print the results. It is even possible to put this procedure in a file to be read by
the at command to do your processing at some other time.

If you must produce many similar documents, or long documents which contain
repeated material, the concept of the ““boilerplate’’ may already be familiar to
you. Often, information which must be presented in a standardized way can be
stored in a separate file which can be reused as necessary. Not only is this a
valuable shortcut to rewriting, it may be the preferred approach if a complex
display or an example of program text must be reproduced. Using boilerplates
assures consistency and makes subsequent changes to all recurrences of the
copied material muchsimpler.

1.8 Summary

Here are some hints for making your XENIX Text Processing System work for
you:

— Make your filenames easy to understand, and use a naming
convention that allows you to take advantage of wildcard characters.

— Create text files of manageable length which represent chapters or
logical divisions in the document; arrange files into directories which
represent major documents or versions so that they can be easily
identified.

— Create “help” or “README?" files in each directory which explain
your text—what version you are writing, what scripts, processors,
and files are needed to successfully produce the document. Use
comment lines in your text to explain organizational details of your
project or any special macros you have created.

— Control parallel versions and updates carefully, especially if you are
working on a large project. Use conditional processing in your text
files, copies of text in different directories, and file linking where
appropriate. If you are in doubt about versions of text in different files
use diffto compare text.

1-15

XENIX Text Processing

1-16

When using vi or another text editor to write text, start each sentence
or clause on a new line.

Identify text and formats which recur in a document or several
documents, and create boilerplates or templates to save work.

Make full use of “‘cut and paste’’ techniques to rearrange materialina
file, move text between files, or use the same text repeatedly in several
places.

Use batch processes like sed, awk, or an ed script to make consistent
changes to a large number of files.

Use spell, style, and diction regularly to reduce the number of
editorial corrections.

Try to define your production specifications and style conventions in
advance; prepare editing scripts to reduce the number of changesyou
need to make individually.

Always use the simplest possible technique to achieve your results.
Use the mm macros where possible, reserving nroff/troff
commands for “fine-tuning’ or creating an effect impossible with
mm. If you define a new macro, explain it in a comment line so it can
be readily understood.

Avoid running too many formatting processes simultaneously. If
necessary, use the at command to process files at a time when the
system isnot busy.

Protect yourself by backing up your system and user files regularly.
Make copies of files if you are in doubt about whether your procedures
will damage them.

Chapter 2
Tools For Writing and Editing

2.1 Introduction 2-1

2.2 XENIX Commands for Text Processing 2-2
2.2.1 PatternRecognition: The Grep Commands 2-2
2.2.2 File Comparison: diff, diff3, and comm 2-3
2.2.3 OtherUseful Commands 2-8

2.3 Writing Tools 2-9
2.4 UsingSpell 2-9
2.5 Using Style and Diction 2-10

251 Style 2-11
2.5.2 Diction 2-19

ToolsFor Writing and Editing

2.1 Introduction

This chapter introduces you to some XENIX system utilities that can simplify
document editing and revision. It also discusses three special XENIX writing
tools for improving writing style and locating typographical errors in
documents.

This chapter focuses on how the XENIX tools are used to accomplish some
common text processing tasks. These tools are XENIX utilities which are also
used by programmers for searching and editing data and program text. The
emphasis here is on XENIX commands and utilities that can help you simplify
complicated editing procedures, and allow you to work with many files at once.
As you read, it will become apparent that several of the programs introduced
here can be used interchangeably, and that many of these tasks can also be
performed with your text editor. You may also find the two XENIX programs,
sed and awk, helpful for making complex changes to text files. (See Appendix
A, “Editing With sed and awk’.)

There are several revision tasks common to all text processing projects. The
larger your project, the more complex these tasks become. For example, you
may need to change a key term, name, or phrase everywhere it appears, or
locate references to items you need to change or delete. You may need to
compare and contrast multiple versions of your text in order to locate
variations. You may also need to alter some aspect of the text format to suit
production requirements. To do any of these tasks, you must locate a stringa
word, a phrase, a text formatting macro or any repeated set of charactersand, if
necessary, change it everywhere it appears. Using the XENIX system tools
discussed in this chapter, these changes can be made rapidly and consistently.

The first half of this chapter discusses several easy ways to learn XENIX
commands. If you have read the XENIX User’s Gusde, you may already be
familiar with some of them. More detailed information about these commands
is provided in the XENIX Reference Manual. The commandsinclude:

— Grep commands print lines that match a single specified pattern.
When combined with other commands in a shell procedure and used
to process many files at once, the grep commands become extremely
powerful for locating text in large files. Two variants of grep are also
introduced in this chapter: egrep and fgrep.

— The XENIX file comparison utilities, diff, diff3, and comm. These
utilities compare two or more files and output those lines which do not
match. In text processing applications these programs can be
extremely useful for quickly locating variations between several
versions of documents.

— Additional XENIX commands, including sort, which alphabetizes
lines in your text files; we, which counts lines, words, and characters

XENIX Text Processing

in your text; and cut and paste, which duplicates ‘‘cut and paste”
editing operations.

2.2 XENIX Commands for Text Processing

2.2.1 Pattern Recognition: The Grep Commands

Because of its power to search for patterns in many files at once, grep and its
variants are among the most useful XENIX commands. The members of the
grep family, like the awk program and the batch editor, sed, have as their
basis the same principle of pattern recognition as the text editors, ed and vi.
Each of these programs searches for the occurrence of a given patterna
character or group of characters, a word or word stringand generates a list of
those lines containing the pattern. Finding all occurrences of a word or pattern
in a group of files is a common text processing task. You can easily write a shell
script using the grep command or one of its variants, egrep and fgrep, and
quickly search multiple files. Grep searches for the same regular expressions
recognized by ed. The word *‘grep” stands for

g/re/p

that is, “globally’’ locate a pattern and then print it. Grep searches every line
in a set of files for all occurrences of the specified regular expression. Thus,

grep thing filel file2 file3

finds the pattern “thing'’ wherever it occurs in any of the files you name (e.g.
file1, fileg, fileS). If you use the —n-option with grep, it will indicate not only
the file in which the line was found but also the line number, so that you can
locate and edit it later. By combining the use of grep with other commands to
generate a shell program that reads and transforms input, large quantities of
text can be processed through multiple searching or editing procedures quickly.

The commands grep, egrep, and fgrep all search files for a specified pattern.
They appear on the command line in the following form:

grep [option] expression filename

Commands of the grep family search the files you specify (or the standard
input if you do not specify any files) for lines matching a pattern. Each line is
copied to the standard output (your terminal screen), but if you are processing
great quantities of text you should specify a filename in which to store the
results of the grep search.

For example, the command

ToolsFor Writing and Editing

grep —n 'system utility’ chap*.s > util

requests that grep command search for the phrase ‘‘system utility’’ in every file
that begins with ‘‘chap’’ and ends with ‘‘.s”, and store the resulting list, with
line numbers, in a file called util. Unless the —h option is used, the filename is
given if there ismore than one input file.

The difference between the three grep variantsis the type of expression you are
allowed to search for. Grep searches for every regular expression and allows
you to use the special characters to define special patterns. Egrep looks for the
same regular expression as grep, but also has an extra set of characters that
allows you to search for more than one occurrence of an expression, or more
than one expression at a time. Fgrep can only look for strings; no special
characters are allowed, and thus fgrep is faster than grep oregrep. For more
information about grep, egrep, and fgrep, see grep(C) in the XENIX
Reference Manual.

2.2.2 File Comparison: diff, diff3, and comm

In addition to locating occurrencesof particular stringsor regular expressions in
your text, you will find it useful to compare and contrast two or more similar
text files.

The diff command compares two files and outputs a list of differences. You can
use diff to store file versions more compactly. This is accomplished by storing
the output of diff, which would be the differences in that file version, rather
than the file itself. The —e option collects a script of those ed commands (such
as append, change, and delete) which would be necessary to recreate the revised
file from the original.

Diff 3 issimilar to diff, but isused to compare three files.

Another comparison tool, comm, is discussed in this section. Comm is useful
primarily for comparing the output of two sorted lists.
Diff
To use the diff command to compare two files, use the form:

diff -option filel file2
Diff reports which lines must be changed in two files to bring them into
agreement. If you use a dash (-) instead of the first filename, diff will read from

the ‘“‘standard input’’. The normal output contains lines in this format, where n
isthe linenumber of the text file:

XENIX Text Processing

17al18

> line affectedin file 2

23,25d 26

< line affectedin file 1 (
< line affectedin file 1

30c31

< line from file 1

> line from file 2

These lines resemble the ed commands which would be necessary to convert
filelinto file2. The letters g, ¢, and ¢ are ed commands for appending, deleting,
and changing, respectively. The line numbers after the letters refer to file2.
Following each of these lines are printed all the lines that are affected in the first
file, flagged by a less-than sign (<), then all the lines that are affected in the
second file, flagged by a greater-than sign (>).

For example, you might want to compare two text files, frust and vegies. The
contents of the file called frustare the lines:

apples
bananas (
cherries '
tomatoes

The contents of the file called vegses are the lines:

asparagus
beans
cauliffower
tomatoes

The command line
diff fruit vegies> diffile&

produces the file diffile that contains a list of differences between frust and
vegies which are the output of the diff program:

ToolsFor Writing and Editing

1,313
< apples

< bananas
< cherries

;asparagus
>Dbeans
> cauliflower
In this case, lines 1 through 3 in the file vegiesare different from lines 1 through 3
in the file frust. See diff{ C)for options.
Using Diff3
Diff3 works like diff, except that it compares three files. 1t hasthe form:
diff3 —option filel file2 file8
Diff3 reports disagreeing ranges of text flagged with the following codes:
=======All three files differ
======1Filel isdifferent
======2File2is different
======3File3isdifferent

The change which has occurred in converting agiven range of linesin agiven file
tosomeother isreported.

For example, the message
filel :nla

means text is to be appended after line numbern1 in file file1. The message:
filel :nl1,n2c¢

means that the text to be changed is in the range of linesnl to line n2. If n1 =
n2, the range may be abbreviated tonl.

The original contents of the range follow immediately after a “¢’’ indication.
When the contents of two files are identical, the contents of the lower-numbered
file issuppressed.

Asin the case of diff, diff3 used with the —e option prints a script for ed that will

XENIX Text Processing

incorporate into file all changes between file2 fileS. In other words, it records
the changes that normally would be flagged the changes that normally would be
flagged ====and =====3.

Comm

The comm program selects or rejects lines common to two sorted files. It has
the form:

comm [-option] filel file2

Comm reads file! and file2, and produces a three-column output: lines only in
file1, lines only in file2, and lines in both files. Ordinarily, both files should be
sorted in ASCII collating sequence by using the sort program before using
comm. As in diff and its variants, if you type a dash (-) instead of a filename,
commwill read either file1 or file2from the standard input.

The possible options with comm are the flags 1, 2, or 3, which suppress printing
of the corresponding column. Thus comm with —12 suppresses printing of the
first two columns and prints only the lines common to the two files; comm -23
prints only lines in the first file but not in the second. The command comm
with the options—123 would print no lines.

2.2.3 Other Useful Commands

In this section a group of XENIX commands that are helpful in text
manipulations are summarized. In each case you may find it helpful to refer to
the XENIX Reference Manualfor more information.

Sort

If you have been using your XENIX system for a while, you may have already
learned the sort command. Because of its capacity to alphabetize a list of
items, it can be extremely useful in a variety of text processing situations(e.g.,
alphabetizing the names on a mailing list or the entries in an index). To use sort,
simply type the command

sort, filename> list.out
The output file list. out will contain the sorted list.
Like some other XENIX commands, if you use “~” instead of a filename, sort
will read from the standard input, and unless you direct the output to another

file, the sorted list will appear on your screen. Sort will, by default, sort an
entire line in ascending ASCII collating sequence, including letters, numbers,

Tools For Writing and Editing

and special characters. See sor{C) in the XENIX Reference Manual for a list of
available options.

If you need to do repeated sorts by field, you may find it easier to prepare a
simple awk script, as described in “Appendix A”.

Note that if you invoke one or more of the sort options, or use position names,
you must use the following syntax:

sort [-options] [posi] [posf] [-o output] [filenames]

We

The XENIX command we counts words, characters, or lines in your files. If, for
example, you are submitting a manuscript to a publisher, an exact word count
may be necessary, or you may want to estimate the number of lines in your file
before you make some critical formatting decision. To use we, type

wc filename

If you give no options, we automatically counts lines, words, and characters in
the named files, or in the standard input if you do not specify any filenames. It
keeps a total count for all named files, and the filenames will also be printed
along with the counts. The option -1 for ‘‘lines,” option —w for “words” and
option —c for ‘‘characters’’ can be also be used in any combination, if you donot
want all three statistics printed. Remember, when doing a word count, that we
will automatically treat as a word any string of characters delimited by spaces,
tabs, or newlines.

Cutand Paste

If you work with large text files, you will find the two XENIX commands, cut
and paste, extremely useful for rearranging text blocks within a document.

Cut is a shortcut for extracting columns or fields of information from a file, or
forrearranging columnsin lines. Toinvoke cut in itssimplest form, type:

cut [options] file
The cut command will cut out columns from each line of a file. The columns can
be specified as fields separated by 2 named delimiter or by character positions.

The following optionsare available:

—clist A list of numbers following —c specifies character positions or
ranges.

XENIX Text Processing

—flist A list of numbers following —f is a list of fields, delimited by a
character specified after the —d option.

—~dchar A character following the —d option is read as the field
delimiter. The default is the tab character. Spaces or other
characters with special meanings must be surrounded with
single quotation marks(').

-8 This option suppresses lines which do not contain the delimiter
character, if the —f option isinvoked.

Either the —c or —f option must be invoked when using cut.

The paste command performs the reverse operation: it can be used to merge
lines in one or several files. To use paste in its simplest form, type

paste filel file2

Paste will concatenate filef and file2, treating each file as a column or columns
of a table and pasting them together horizontally. As with the cut command,
you can also specify a delimiter character to replace the default tab. You can
even use paste to merge material in columnsinto lines in a single file.

The following optionsare available:

—d The -d option suppresses the tab which automatically
replaces the newline character in the old file. It can be followed
by one or more characters which act as delimiters.

list The list of characters which follow the -d option.

-8 The -s option merges subsequent lines, rather than one from
each input file. The tab is the default character, unless a list is
specified with the-d option.

The dash can be used in place of any filename, to read a line
from the standard input.

There are, of course, several other ways to approach ‘‘cut and paste' operations
with the XENIX system. By now you should feel fairly confident using one of the
XENIX text editors to move blocks of text, write parts of files to new files, and
rearrange lines. Using sort to alphabetically sort fields within lines, or the awk
program to change the order of fields in a text file, are two special cases of cut
and paste operations.

2-8

ToolsFor Writing and Editing

2.3 Writing Tools

In the previous sections you were introduced to some common XENIX utilities
that are used both by programmers and text processing users: programs that
can be used to search for patterns, do batch editing, or compare two or more
files. This section introduces three XENIX programs which have been designed
solely for writing and editing documents:

— spell, a program that checks for spelling and typographical errorsin
your text files.

— style, a program that analyzes the readability of your writing style,
based on statistical measures of sentence length and type.

— diction, a program that searches for awkward, ambiguous, and
redundant phrases, and suggests alternatives.

Think of these programs as “tools” in the same way as the system utilities
discussed earlier in the chapter. The XENIX system will not do your writing for
you, but it will help you rewrite and polish your work efficiently. As you read
about these programs, keep in mind that they are not intended to substitute for
careful reviewing, editing, and proofreading on your part. Use spell, style, and
diction early in the editing process as a preliminary check on your work. You
will get some interesting feedback on your writing and uncover recurrent
patterns in your word usage and sentence construction. Your common spelling
errors will be pointed out. As you are preparing your final draft, you may wish
to use spell again to locate any last-minute typographical errors.

2.4 Using Spell

You can save a lot of time and grief in proofreading your documents by using
spell. Although not totally infallible, the spell program will find most of your
spelling and typographical errors with a minimum of effort and processing time.
Spell compares all the words in the text files you specify with the correctly
spelled words in a pre-existing XENIX dictionary file. Words which neither
appear in this dictionary, nor can be derived by the application of ordinary
English prefixes, suffixes, or inflections are printed out as spelling errors. You
can either specify an output file in which to store the list of misspelled words, or
allow them toappear on your screen. For example, to find the spelling errorsin a
file named I.intro.s, type

spell L.intro.s

and a list of possible misspelled words will appear on your screen. You can also
use acommand line like

XENIX Text Processing

spell *. s> errors&

to check all your files with names ending in *“.s"’ at once and output the possible
misspellingsinto asingle file named errors.

Spell ignores the common formatting macros from nroff, troff, tbl, and eqn.
It automatically invokes a program called deroff to remove all formatting
commands from the text file being examined for spelling errors.

Several options are available. With “spell —v"’, words not literally in the
dictionary are also printed, along with plausible derivations from dictionary
words. The —b option checks British spelling. This option prefers British
spelling variants such as: centre, colour, speciality, and travelled, and insists on
the use of ‘*-ise’’ in words like ‘‘standardise”.

The XENIX dictionary is derived from many sources, and while it recognizes
many proper names and popular technical terms, it does not include an
extensive specialized vocabulary in biology, medicine, or chemistry. The XENIX
dictionary will not recognize your friends’ names, your company’s acronyms,
and many esoteric words, and will list them as spelling ‘‘errors”. It isdifficult to
predict in advance which technical terms, names, and acronyms spell will
uncover in your documents.

2.5 Using Styleand Diction

This section describes two programs, style and diction. Although these two
programs attempt to critique your writing style, keep in mind that the qualities
which distinguish good writing from bad are not entirely quantifiable. Tastein
writing remains subjective, and different stylistic qualities may be appropriate
to different writing situations. XENIX is neither a literary critic nor your
sophomore English teacher. These tools are best used to eliminate errors and
give you preliminary assessment of a document’s readability. They are not
intended tosubstitute for human editing,.

Both style and diction are based on statistical measures of writing
characteristicscharacteristics that can be counted and summarized on your
computer. With a large number of documents stored on computers, it has
become feasible to study the recurrent features of writing style in agreat many
documents. The programs described here use the results of such studies to help
you write in a more readable style. They produce a stylistic profile of writing,
including;

— A measurement of readability, determined on the basis of sentence
and word length, sentence type, word usage, and sentence openers.

— A listing of awkward, ambiguous, redundant and ungrammatical
phrasesfound in the document.

(

ToolsFor Writing and Editing

This will help you evaluate overall document style, and correct or eliminate
poor word choices or awkward sentences. As you work with these programs, you
can accumulate data to provide you with a profile of your writing style based on
all your documents.

Because the style and diction programs can only produce a statistical
evaluation of words and sentences, the term “style’ is defined here in a rather
narrow way: the results of a writer's particular word and sentence choices.
Although many stylistic judgements are subjective, particularly those
involving word choice, these programs make use of some relatively objective
measures developed by experts.

These programs have been written to measure some of the objectively definable
characteristics of writing style and to identify some commonly misused or
unnecessary phrases. Although a document that conforms to these stylistic
rules is not guaranteed to be coherent and readable, one that violates all of the
rules will almost certainly be difficult or tedious toread. These programsare:

1. Style, which calculates readability, sentence length variability,
sentence type, word usage and sentence openers. It assumes that the
sentences are well formed, i.e., that each sentence has a verb and that
the subject and verb agree in number.

2. Diction, which identifies phrases that reflect dubious usage or seem
unnecessarily awkward.

These programs are described in detail in the following sections.

2.5.1 Style

Style reads a document and prints a summary of sentence length and type,
word usage, sentence openers and ‘‘readability indices.” The readability indices
are traditional school grade levels assigned to a document, based on four
different studies of what makes one style more readable than another. You can
also use the style program to locate all sentences in a document longer than a
given length; those containing passive verb forms; those beginning with
expletives; or those with readability indices higher than a specified number.

Style is based on a system called “parts”, which determines parts of speech in
the English language. Parts is a set of programs which uses a small dictionary
and experimentally derived rules of word order to assign word classes to all
words in your text. It can be used for any text with an accuracy rate of
approximately 95%. Style measures have been built into the output phase of
the programs that make up parts.

The style program is invoked with the following syntax:

2-11

XENIX Text Proceasing

Style [options] file

WhatisaSentence?

A human reader has little trouble deciding where a sentence begins and ends.
Computers, however, are confused by different usesof the period character(.) in
constructions like 1.25, A. J. Jones, Ph.d,, i.e., or etc. Before attempting to
count the words in a sentence, the text is stripped of potentially misleading
formatting macros. Then style defines a sentence as a string of words ending in
one of the punctuation marks:

The end marker “/.” may be used to indicate an imperative sentence.
Imperative sentences not marked in this way are not identified. Style
recognizes numbers with embedded decimal points and commas, strings of
letters and numbers with embedded decimal points used in computer filenames,
and alist of commonly used abbreviations. Numbers that end sentences cause a
sentence break if the next word begins with a capital letter. Initials followed by
periods are only assumed to be at the end of the sentence if the next word begins
with a capital and is found in the dictionary of function words used by parta.
Asaresult, the periods in thestring

J.D. Jones

are not read as the ends of sentences, but the period after the Hin the following
string is assumed to end asentence:

...system H. The...

Using these rules, most sentences are correctly identified, although occasionally
two sentencesare counted as one or a fragment is identified as a sentence.

The results of running style are reported in five parts. A typical output might
have values that look like this:

readability grades
(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5
(46.3)

sentence info
no. sent 335 no. wds 7419 av sent leng 22.1 av word leng 4.91
no. questions 0 no. imperatives 0 no. nonfunc wds 4362 58.8%
av leng 6.38 short sent (< 17) 35% (118) long sent (>32) 16%
(55) longest sent 82 wds at sent 174; shortest sent 1 wds at sent
117

2-12

ToolsFor Writing and Editing

sentence types
simple 34% (114) complex 32% (108) compound 12% (41)
compound-complex 21%(72)

word usage
verb types as % of total verbs tobe 45% (373) aux 16% (133)
inf 14% (114) passives as % of non-inf verbs 20% (144) types
as % of total prep 10.8% (804) conj 3.5% (262) adv 4.8% (354
noun 26.7% (1983) ad) 18.7% (1388) pron 53% 5393;
nominalizations 2 % (155)

sentence beginnings
subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot
67% prep 12% (39) adv 9% (31) verb 0% (1) sub_conj 6%
(20)conj 1% (5)expletives 4% (13)

Readability Grades

The style program uses four separate readability indices. Generally, a
readability index is used to estimate the grade level of the reading skills needed
by the reader to understand a document. The readability indices reported by
style are based on measures of sentence and word lengths. Although the indices
themselves do not measure whether the document is coherent and well
organized, high indices correlate with stylistic difficulty. Documents with short
sentences and short words have low scores; those with long sentences and many
polysyllabic words have high scores. Four sets of results computed by four
commonly used readability formulae are reported: the Kincaid Formula, the
Automated Readability Index, the Coleman-Liau Formula, and a version of the
Flesch Reading Ease Score. Because each of these indices was experimentally
derived from different text and subject results, the resuits may vary. They are
summarized here.

Kincaid Formula

The formula is: Reading Grade=11.8 * syllables per word +
.39 » words per sentence- 15.59

The Kincaid formula is based on Navy training manuals
ranging in difficulty from 5.5 to 16.3 in grade level. The score
reported by this formula tends to be in the mid-range of the
four scores. Because it is based on adult training manuals
rather than schoolbook text, this formula is probably the best
one toapply to technicaldocuments.

Automated Readability Index (ARI)

The formula is: Reading Grade=4.71 ¢letters per word +.5 *

2-13

XENIX Text Processing

words per sentence-21.43

The Automated Readability Index is based on text from grades
0 to 7, and intended for easy automation. ARI tends to
produce scores that are higher than Kincaid and Coleman-
Liau but are usually slightly lower than Flesch.

If you invoke style with the —r option followed by a number,
all sentences with an Automated Readability Index equal to or
greater than the number specified will be printed.

Coleman-Liau Formula

The formula is: Reading Grade = 5.89 # letters per word - .3 ¢
sentences per 100 words- 15.8

This is based on text ranging in difficulty from .4 to 16.3. This
formula usually yields the lowest grade when applied to
technical documents.

Flesch Reading Ease Score

The formula is: Reading Score = 206.835 - 84.6 * syllables per
word - 1.015 » words per sentence.

This formula is based on grade school text covering grades3 to
12. The first number reported is the grade level of the
document. The second number, in parentheses, is the
difficulty score. It is usually reported in the range O (very
difficult) to 100 (very easy).

The score reported by style is scaled to be comparable to the other formulas,
except that the maximum grade level reported is 17. On the whole, the Kincaid
formula is the best predictor for technical dccuments. Both ARI and Flesch
tend to overestimate text difficulty; Coleman-Liau tends to underestimate. On
text in the range of grades 7 to 9 the four formulas tend to be about the same.
For easy text, use the Coleman-Liau formula since it is reasonably accurate at
the lower grades.

It is generally safer to present text that is too easy than too hard. If a document
has particularly difficult technical content, especially if it includes a lot of
mathematics, it is probably best to make the text very easy to read. You can
lower the readability index by shortening sentences and words, so that the
reader can easily concentrate on the technical content.

Remember that these indices produce only rough estimates; the results should
not be taken as absolute.

2-14

ToolsFor Writing and Editing

Sentence Length and Structure

The output sections labeled ‘“‘sentence info’” and “sentence types’’ give both
length and structure measures. Style reports on the number and average
length of both sentences and words. It also reports the number of questions and
imperative sentences. ‘“‘Nonfunction words’’ refer to all the nouns, adjectives,
adverbs, and nonauxiliary verbs. Function words are prepositions,
conjunctions, articles, and auxiliary verbs.

Since most function words are short, they tend to lower the average word
length. The average length of nonfunction words, therefore, is a more useful
measure for comparing word choice of different writers than the total average
word length. The percentages of short and long sentences measure sentence
length variability. Short sentences are those at least five words less than the
average. Long sentences are those at least ten words longer than the average.
Finally, the length and location of the longest and shortest sentences is reported
in the “‘sentence information” section. If the flag —Inumber is used, style will
print all sentences longer than the specified number.

Styleapplies the following rules to the definition of sentence types:
1. Asimplesentence hasone verb and no dependent clause.

2. A complex sentence has one independent clause and one dependent
clause, each with one verb. Complex sentences are found by
identifying sentences that contain either a subordinate conjunction or
a clause beginning with a word like “that’ or ‘““‘who’. The preceding
sentence hassuch a clause.

3. A compound sentence has more than one verb and no dependent
clause. Sentences joined by a semi-colon (;) are also counted as
compound.

4. A compound-complex sentence has either several dependent clauses
or one dependent clause and a compound verb in either the dependent
or independent clause.

Most authorities on effective writing style emphasize variety in sentence length,
as well as overall sentence structure. Three simple rules for writing sentences
are:

1. Avoid the overuse of short simple sentences.

2. Avoid the overuse of long compound sentences.

3. Use various sentence structures to avoid monotony and increase
effectiveness.

2-15

XENIX Text Processing

Word Usage

The word usage measurements used by style attempt to identify other features
of writing constructions. In English, there are many ways to say the same thing,.
For example, the following sentences all convey approximately the same
meaning but differ in word usage:

— The cxio program is used to perform all communication between the
systems.

— The cxio program performs all communicationsbetween the systems.
— Thecxio program is used to communicate between the systems.
— The cxio program communicates between the systems.

— All communication between the systems is performed by the cxio
program.

The distribution of the parts of speech and verb constructions in a document
helps the writer identify the overuse of particular construction. For each
category, style reports a percentage and a raw count of the parts of speech
used. Although these measures are somewhat crude, they demonstrate
excessive repetition of sentence constructions. In addition to looking at
percentages, it is useful to compare the raw count with the number of sentences.
If, for example, the number of infinitives is almost equal to the number of
sentences, then an unusual number of sentences in the document must contain
infinitives, like the first and third sentences in the example above. You may
want to change some of these sentences for greater variety.

Verbs

To determine the predominant verb constructions in a document, Verb
frequency is measured in several ways. Technical writing, for example, tends
toward passive verb constructions and other usages of the verb “to be’’. The
category of verbs labeled “‘tobe’’ measures both passives and sentences of the
form:

subject tobe predicate

Whole verb phrases are counted as a single verb. Verb phrases containing
auxiliary verbs are counted in an ‘‘aux’’ category, including verb phrases whose
tense is not simple present or simple past. Infinitives are listed as ‘‘inf.”” The
percentages reported for these three categories are based on the total number of
verb phrases found. These categories are not mutually exclusive; some
constructions may be in more than one category. For example, “to be going”
counts as both “tobe’’ and “inf”. Use of these three types of verb constructions

ToolsFor Writing and Editing

variessignificantly among different writers.

Style reports passive verbs as a percentage of the finite verbs in the document.
Because sentences with active verbs are easier to comprehend than those with
passive verbs, you should avoid the overuse of passive verbs. Although the
inverted object-subject order of the passive voice seems to emphasize the
object, studies show that comprehension is not significantly aflected by word
position. Furthermore, a reader will retain the direct object of an active verb
better than thesubject of a passive verb. The —p option causes style to print all
sentences containing passive verbs.

Conjunctions

Conjunctions provide logical parallelism between ideas by connecting two or
more equal units. These units may be whole sentences, verb phrases, nouns,
adjectives, or prepositional phrases. The compound and compound-complex
sentences reported under sentence type are parallel structures. Other uses of
parallel structures are indicated by the degree that the number of conjunctions
reported under word usage exceeds the com pound sentence measures.

Adverbs

Adverbs provide transitions between sentences and order in time and space.
Like pronouns, adverbs provide connectivity and cohesiveness.

Nounsand Adjectives

Some writers qualify almost every noun with one or more adjectives. If the ratio
of nouns to adjectives in your text approaches one, it is probable that you are
using too many adjectives. Multiple qualifiers in phrases like “simple linear
single-link network model’’ lend more obscurity than precision to a text.
Pronouns

Pronouns can add cohesiveness to a document by acting as a shorthand
notation for something previously mentioned. Documents with no pronouns
tend to be verbose and to have little connectivity.

Nominalizations

Nominalizations are verbs transformed into nouns by the addition of a suffix

like: “ment”, ‘“‘ance”, ‘‘ence”, or “ion”. Examples are accomplishment,
admittance, adherence, and abbreviation. When a writer transforms a

2-17

XENIX Text Processing

nominalized sentence to a non-nominalized sentence, it becomes more effective.
The noun becomes an active verb and frequently one complicated clause
becomes two shorter clauses. For example

Their inclusion of this provision is admission of the
importance of the system.

could be changed to:
When they included this provision, they admitted the ...

The transformed sentences are easier to comprehend, even if they are slightly
longer, provided that the transformation breaks one clause into two. If your
document contains many nominalizations, you may want to transform some of
the sentences to use active verbs.

Sentence Openers

Another principle of style is the desirability of varied sentence openers. Because
style determines the type of sentence opener by looking at the part of speech of
the first word in the sentence, the sentences counted under the heading ‘“subject
opener’’ may not all really begin with the subject. However, a large total
percentage in this category suggests a lack of variety insentence openers. Other
sentence opener measurements help determine if there are transitions between
sentences and where subordination occurs. Adverbs and conjunctions at the
beginning of sentences are mechanisms for the transition between sentences. A
pronoun at the beginning of a sentence shows a link to something previously
mentioned and indicates connectivity.

The location of subordination can be determined by comparing the number of
sentences that begin with & subordinate conjunction with the number of
sentences with complex clauses. If few sentences start with subordinate
conjunctions then the subordination is embedded or at the end of the complex
sentences. For greater variety, transform some sentences so that they have
leading subordination.

The last category of openers, expletives, is commonly overworked in technical
writing. Expletives are the words “it” and “there’’, generally used with the
verb “to be” in constructions where the subject follows the verb. For example,

There are three streets used by the traffic.
There are too many userson thissystem.

This construction tends to emphasize the object rather than the subject of the

sentence. The —e option will cause style to print all sentences that begin with
anexpletive.

2-18

ToolsFor Writing and Editing

2.5.2 Diction

The diction program prints all sentences in a document containing phrases
that are either frequently misused or indicate wordiness. Diction uses fgrep to
match a file of phrases or patterns to a file containing the text of the document
to be searched. A data base of about 450 phrases has been compiled as a default
pattern file for diction. To facilitate the matching process, diction changes
uppercase letters to lowercase and substitutes blanks for punctuation before
beginning the search for matching patterns. Since sentence boundaries are less
critical in diction than in style, abbreviations and other uses of the period
character (.) are not treated specially. Diction marks all pattern matches in a
sentence with brackets ([]). Although many of the phrases in the default data
base may be correct in some contexts, they generally indicate an awkward or
verbose construction. Some examples of the phrases and suggested alternatives
are:

Phrase: Alternative:
alarge number of many
arrive at a decision decide
collect together collect

for this reason SO
pertaining to about
through the use of by or with
utilize use

with the exceptionof except

All of the following examples contain the repetitious and awkward phrase ‘“the
fact™

Phrase: Alternative:
accounted for by the fact that caused by
anexample of thisisthe fact that thus

based on the fact that because
despite the fact that although
due to the fact that because

in light of the fact that because
inview of the fact that since
notwithstanding the fact that although

If you have some phrases that you particularly dislike, or feel you use too often,
you may create your own file of patterns. Then, you can invoke the diction

2-19

XENIX Text Processing

program with the —f option:
diction —f patternfile

The default pattern file for the diction program will be loaded first, followed by
your pattern file. In this way, you can either suppress patterns contained in the
default file or include your own favorites in addition to those in the default file.
You can also use the —n option to exclude the default file altogether:

diction —n patternfile

In constructing a pattern file, spacesshould be used before and after each phrase
to avoid matching substrings in words. For example, to find all occurrences of
the word ‘‘the”, use leading and trailing spaces, so that only the word ““the" is
matched and not the string “the” in words like there, other, and therefore.
Note however, that one side effect of surrounding the words with spaces is that
if two instances occur without intervening words, e.g., “‘the the'’, only the first
will be matched because the intervening space will be counted as part of the first
pattern.

2-20

Chapter 3
Using the MM Macros

3.1 Getting Started withMM 3-1
3.1.1 InsertingMMMacros 3-1
3.1.2 InvokingMM 3-2

3.2 Basic FormattingMacros 3-3
3.2.1 Paragraphsand Headings 3-3
3.2.2 Lists 3-5
3.2.3 Font Changes and Underlining 3-6
3.2.4 Footnotes 3-7
3.2.5 Displaysand Tables 3-7
3.26 Memos 3-8
3.2.7 Multicolumn Formats 3-9

3.3 Using Nroff/Troff Commands 3-9

3.4 Checking MM Input with mmcheck 3-9

Using the MM Macros

3.1 Getting Started with MM

This chapter provides a simple introduction to MM, the ‘“Memorandum
Macros’’, a macro package which you can use on your XENIX System with either
of the two XENIX formatting programs, nroff or troff, to produce formatted
text for the lineprinter or typesetter, respectively. The features of MM are
described comprehensively in the next chapter, “MM Reference”. You can
learn to use the MM macros quickly and format text immediately, without
learning the more complicated nroffor troff formatting commands.

The MM program reads the commands you have inserted in your text and
“‘translates” them into nroff or troff commands when your text file is
processed. With MM you can specify the style of paragraphs, section headers,
lists, page numbering, titles, and footnotes. You can also produce cover pages,
abstracts, and tables of contents, as well as control font changes and
multicolumn output. If you are using MM along with troff to output your text
to aphototypesetter, you can specify variable spacing and the size of your type.

Although using nroff or troff directly offers you a much wider range of
commands and options, we recommend that you use MM for most of your
formatting needs. Use the nroff and troff requests discussed in Chapter 5,
““The Nroff/ Troff Tutorial”’ and Chapter 6, *‘Nroff/ Troff Reference” only when
necessary.

3.1.1 Inserting MM Macros

To use the MM macros to format a document, type in your text normally,
interspersed with formatting commands. These commands are uppercase
letters preceded by a dot (.) and appear at the beginning of a line. Instead of
indenting for paragraphs, for example, you can use the .P macro before each
paragraph, to produce extra line space:

P
Tomeet the objectives proposed at the meeting. ..

The .P macro can also be used to indent paragraphs. For more information, see
Section4.4.1, “‘Paragraphs”

A single MM macro can often perform a number of formatting functions at
once. In a long document, you might have several sections, each beginning with
anumbered heading, like this

1.0 Saltwater Fishing in the Pacific Northwest

To create this header, you would enter:

31

XENIX Text Processing

.H 1”Saltwater Fishing in the Pacific Northwest”

Not only will MM create a bold heading and leave a space between the heading
and the text which follows, it will also automatically number all the headings in
the document sequentially. Furthermore, if you use the table of contents macro
(.TC) at the end of the document, MM will create a table of contents, listing all
the numbered headings and the pages where they occur.

The MM macros provide a convenient facility for creating a consistent format
for such document elements as lists and displays. For example, if you wanted a
“bullet list’’ to look like this:

e Convenience
o FEaseof use
o Portability
you would enter the following text and macros:

.BL

.LI
Convenience
.LI

Ease of use
LI
Portability
.LE

MM will provide the current indents, spacing, and bullets.

Note that you must always begin a document to be formatted with MM with a
macro, rather than an ordinary line of text. You might start with a P
command, for example, to begin your document with an ordinary paragraph.

3.1.2 Invoking MM

After you have created a file containing text and MM macros, you can format it
with the following command:

nroff—-mm filename > filename. mmé&

This command line tells the XENIX system that you want to format the
document; using the nroff formatting program, and the MM macro package to
prepare it for a letter-quality printer or lineprinter. Once the document is
formatted, it will be stored in filename.mm or whatever file you specify. You
can then send it to the lineprinter with the command:

3-2

Using the MM Macros

Ipr filename.mm

If you are formatting documents for printing on a typesetter, you would use the
MM macros with the troff program instead:

troff -mm filename > filename.t

If you have more complex formatting, such as two-column text, formatted with
the two-column (.2C) macro, or if you have used the table start (.TS)and table
end (.TE) macros to produce multicolumn tabular material, you must
remember to pipe the output through the preprocessor col, in order to prepare
the columns of text. Your command line might look like this:

nroff-mm filename | col > filename.mm
If you are using the tbl or eqn programs to produce tables and mathematical
equations, you must also process the files through these programs first, using

tblbefore eqn, as in the following:

tblfilename|neqnjnroff—-mm >filename.mm

3.2 Basic Formatting Macros

The following sections describe the most commonly used MM macros, including
macros to define paragraphs, headings, lists, font changes, displays, and tables.
For more detailed information about each of these macros, read Chapter 4,
“MMReference’’

3.2.1 Paragraphsand Headings

With MM , it is easy to specify paragraph and heading style. For example, look
at the following passage:

XENIX Text Processing

1.0 Paragraphs and Headings

This section describes the types of paragraphsand the
kindsof headings that are available.

1.1 Paragraphs

Paragraphs are specified with the .P macro. Usually, they are
flush left.

1.2 Headings

Numbered Headings
There are seven levels of numbered headings. Level 1 is the
highest; level 7 is the lowest.

Headings are specified with the .H macro, whose first argument is
the level of heading (1 through 7).

Unnumbered Headings
The macro HU is aspecial case of .H which createsa heading
with no heading number.

To create thisheading format, you would insert the following in a text file:

.H2"Paragraphs and Headings”

Thissection describes the types of paragraphs and the

kinds of headings that are available.

.H3"Paragraphs”

Paragraphs are specified with the P macro. Usually, they
are flush left.

.H3”Headings”

.HU "Numbered Headings”

There areseven levels of numbered headings. Level 1is the
highest; level 7, the lowest.

P

Headings are specified with the H macro, whose first argument
isthe level of heading (1 through 7).

.HU”Unnumbered Headings”

The macro .HU is aspecial case of Hwhich createsaheading
with noheading number.

Mm produces these headings in default styles which can be redefined, if
necessary. This is described in detail in Chapter 4, “Mm Reference’’. The

Using the MM Macros

headings are automatically numbered and are used to print a table of contentsif
the table of contents (.TC) macrois used. The numbers may be altered or reset
with the number register (.nr) request. To restart the numbering of a second
level headingat 1, you would insert the following command:

nrH21

3.2.2 Lists

All list formats in MM have a list-begin macro, one or more list items, each
consisting of a .LI macro followed by the list item text, and the list-end macro
(.LE). In addition to the bullet list demonstrated at the beginning of this
chapter, there is also the dash list, using the list begin macro (.DL) to create a
list format like the bullet list except marked with dashes rather than bullets. A
mark list (ML) is also available, to mark list items with the character of your
choice.

The automatic list (.AL) macro automatically numbers list items in one of
several ways. When specified alone, or followed by 1", the .AL macro numbers
the list items with Arabic numbers. The macro .AL A specifies a list ordered A,
B, C, etc. The macro .AL followed by a lowercase a (.AL a), specifies a, b, ¢, etc.
The macro .AL I numbers list items with Roman numerals. .AL i numbers a list
with lowercase Roman numerals (i, i, iii, etc.)

Numbered lists may be nested to produce outlines and other formats. For
example:

I. IncanArchaeological Sites

A. Peru

1. MacchuPicchu
2. Pisac
B. Ecuador

This is produced with:

XENIX Text Processing

ALI
Incan Archaeological Sites
ALA

Ll /
Peru @
AL1

LI

Macchu Picchu

LI

Pisac

LE

LI

Ecuador

LE

LE

In addition to the numbered and marked lists, MM offers a variable
list (.VL) macro, which is useful for producing two-column lists with
indents. The .VL macro is described in detail in Chapter 4, “Mm
Reference”.

3.2.3 Font Changesand Underlining

To produce italicson the typesetter, precede the text to beitalicized €
with the sequence \fI and follow it with \fR. For example:

\flas much text as you want
can be typed here\fR

Italics are represented on lineprinters and letter-quality printers by
underlining. The .R command restores the normal (usually Roman)
font.

If only one word is to be italicized, it may be typed alone on a line
aftera.l command:

Iword

In this case no .R isneeded to restore the previous font. The default
font is automatically restored on the next line.

Similarly, boldface can be produced by typing;:

3-6

Using the MM Macros

B

Text to beset in boldface
goes here

R

As with the .I macro, a single word can be placed in boldface by
placing it alone on the same line with a . B command.

3.2.4 Footnotes

Material placed between lines with the footnote start (.FS) and
footnote end (.FE) macros will be collected and placed at the
bottom of the current page. The footnotes are automatically
numbered, or an optional footnote mark may be used. This mark
followsthe .FS macro. Forexample:

Without further research

FS

As demonstrated by Tiger and Leopard (1975).
FE

the claim could not be substantiated.
However, other studies

FSx

For example, Panther and Lion (1981).

FE

indicated that the correlation wassignificant.

produces one numbered footnote:
1. As demonstrated by Tiger and Leopard (1975).
and one marked footnote:

* For example; Panther and Lion (1981).

3.2.5 Displaysand Tables

To prepare displays of lines, such as tables, which are to be set off
from the running text, enclose them in the commands .DS and .DE.
For example:

DS
text goes here
DE

XENIX Text Processing

By default, lines between DS and .DE are left-adjusted. You may
also specify a left-adjusted display by using DS L. To get an
indented display, use DSI. You can also create centered tableswith
DS C. For example:

This isacentered display preceded by
a.DS C and followed by 2 .DE command.

or:

Thisisaleft-adjusted display
preceded by a DSL command
and followed by a .DE command.

Note that the .DS C macro centers each subsequent line. You can
also use .DS B to make the display into a left-adjusted block of text
and then center that entire block. Normally a display is kept
together on one page. Text within display is produced in ‘“‘nofill”
mode, i.e., lines of text are not rearranged.

3.2.6 Memos

If you need to produce many memos in a standardized format, you
may find the memorandum type ((MT) type macros useful for
creating titling information. Be warned, however, that because
these memorandum types were originally developed inside Bell
Laboratories, some of the possible parameters to this macro
automatically print the string ‘‘Bell Laboratories’” on the memo.
To suppress this, be sure to use the ‘‘affiliation” (.AF) macro after
an .MT macro, as follows:

AF n»

or, if you wish to have your own company or organization name
appear automatically, use:

.AF "Widgets, Ltd.”

There are a number of parameters which substantially change the
format and content of memoranda output and it is critical that you
insert the macros in the correct order. Therefore, it is important
that you read the section on ‘“Memorandum Type'’ in Chapter 4,
“MM Reference” before inserting these macros. Once you have
chosen the appropriate type, you should be able to reuse these
macros for all your memos to produce astandard style.

Using the MM Macros

3.2.7 Multicolumn Formats

If you place the command .2C in your document, the document will
be printed in double column format beginning at that point. This
feature is generally not accommodated by an ordinary lineprinter,
but is often desirable on the typesetter. The command .1C stops
two-column output and returns to one-column output.

3.3 Using Nroff/ Troff Commands

If you want to format text using MM without learning the other
formatting programs, you should become familiar with at least a
few simple nroff/troff commands, which you will probably need to
supplement the MM macros. These work with both typesetter and
lineprinter or terminal output:

.bp Begin new page.

.br “Break”’, that is, stop running text from line to
line.

.spn Insert n blank lines.

3.4 Checking MM Input with mmcheck

The program mmcheck can be used to check the accuracy of your input to MM

without actually formatting a document. If you use mmcheck regularly, you
will save a great deal of processing time, because you will be able to ‘‘debug”
your input file quickly, without running the nroff and troff programs. To
invoke mmcheck, use the command line:

mmcheck filename

The output of mmcheckgoestothestandardoutput by default. Mmcheck
checks for correct pairing of macros, including .DS/.DE, .TS/.TE, and
.EQ/.EN. It also looks for list specification format, making sure that every list
has a list begin macro (.AL, .DL, .BL, ML, VL, etc.) and a list end macro (.LE).
Normally, mmcheck prints a list of errors and the lines where they occurred.
For example:

chapl.s:
Extra DEatline 74
539 lines done.

Note, however, that the location of an error may occasionally be obscured. In
the example above, the ‘‘extra’” DE could actually be caused by a missing .DS.

3-9

Chapter 4
MM Reference

4.1 Introduction 1
4.1.1 WhyUseMM? 1
4.1.2 Organization and Conventions 2
4.1.3 Structure ofaDocument 2
414 Definitions 3

4.2 Invokingthe Macros 4
4.2.1 TheMM Command 4
4,22 The-cmor-mmPFlags 4
4.2.3 TypicalCommandLines 5
424 CommandLine Parameters 5
4.2.5 Omissionof-cmor-mm 8

4.3 Formatting Concepts 8
4.3.1 Argumentsand Quoting 9
4.3.2 Unpaddable Spaces 10
4.3.3 Hyphenation 10
434 Tabs 11
4.3.5 Bullets 11
4.3.6 Dashes, Minus Signs, and Hyphens 12
4.3.7 Trademark String 12

4.4 ParagraphsandHeadings 13
4.4.1 Paragraphs 13
4.4.2 Numbered Headings 14
4.4.3 Appearance of Headings 15
4.44 Bold, Italic, and Underlined Headings 16
44.5 HeadingPointSizes 17
4.4.6 Marking Styles 18
4.4.7 UnnumberedHeadings 19
4.4.8 Headingsand the Tableof Contents 19
4.4.9 First-Level Headings and the Page NumberingStyle 20
4.4.10 UserExitMacros 20

4.5

4.6

4.7

4.8

4.9

Lists 22
4.5.1 Sample NestedList 23
452 Listltem 24 7
4,53 ListEnd 25 (
4.5.4 Initializing Automatically Numbered or
Alphabetized Lists 26
455 BulletList 26
45.6 DashList 27
4.5.7 MarkedList 27
458 ReferenceList 27
4.5.9 Variable-ItemList 28
4.5.10 List-Begin Macro and Customized Lists 29
Displays 31
4.6.1 StaticDisplays 31
4.6.2 FloatingDisplays 32
4.6.3 Tables 35
46.4 Equations 36
4.6.5 Figure, Table, Equation, and Exhibit Captions 37
4.6.6

Listof Figures, Tables, Equations, and Exhibits 38 (

Footnotes 38

4.7.1

Formatof Footnote Text 39

Page Headers and Footers 41

4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.8.9
4.8.10
4.8.11
4.8.12
4.8.13
4.8.14

DefaultHeaders and Footers 41

Page Header 41

Even-Page Header 42

Odd-Page Header 42

Page Footer 43

Even-Page Footer 43

Odd-Page Footer 43

Footeron the First Page 43

DefaultHeader and Footer With Section-Page Numbering 44
Strings and Registers in Header and Footer Macros 44
Header and Footer Example 44 ‘
Generalized Top-of-Page Processing 45 (
Generalized Bottom-~of-Page Processing 46

Top and Bottom Margins 46

Table of Contents 46

4.10 References 48
4.10.1 Automatic Numberingof References 48
4.10.2 Delimiting Reference Text 48
4.10.3 SubsequentReferences 49
4.10.4 Reference Page 49

4.11 Miscellaneous Features 50
4.11.1 Bold, Italic, and Roman Fonts 50
4.11.2 RightMargin Justification 51
4.11.3 SCCSRelease Identification 51
4.11.4 Two-Column Output 52
4.11.5 Vertical Spacing 53
4.11.6 SkippingPages 54
4.11.7 Forcingan Odd Page 54
4.11.8 Setting PointSize and Vertical Spacing 54
4.11.9 Inserting TextInteractively 55

4.12 Memorandum and Released Paper Styles 56
4.12.1 Title 56
4.12.2 Authors 56
4.12.3 TechnicalMemorandum Numbers 57
4.12.4 Abstract 58
4.12.5 OtherKeywords 58
4.12.6 Memorandum Types 59
4.12.7 Date and Format Changes 60
4.12.8 Alternate First-Page Format 60
4.12.9 Released-PaperStyle 61
4.12.10 Orderof Invocation of BeginningMacros 61
4.12.11 Macros for the End of aMemorandum 62
4.12.12 Copy to and Other Notations 63
4.12.13 Approval Signature Line 64
4.12.14 Forcing aOne-Page Letter 64
4.12.15 Cover Sheet 65

4.13 Reserved Names 65
4.13.1 NamesUsedbyFormatters 66
4.13.2 NamesUsedbyMM 66
4.13.3 NamesUsedbyeqn/neqn andtbl 67
4.13.4 User-Definable Names 67
4.13.5 Sample Extension 67

4.14 Errors 68
4.14.1 Disappearance of Output 68

4.14.2 MM Error Messages 69
4.14.3 Formatter Error Messages 72 (
{

4.15 Summary of Macros, Strings, and Number Registers 75

4.15.1 Strings 81
4.15.2 NumberRegisters 82

MM Reference

4.1 Introduction

This chapter is the reference guide for the MM Memorandum
Macros. MM provides a unified, consistent, and flexible tool for
producing many common types of documents, often eliminating the
need for working directly with nroff or troff commands. MM is the
standard, general-purpose macro package for mostdocuments.

Using the MM macros, you can produce letters, reports, technical
memoranda, papers, manuals, and books. Documents may range in
length from single-page letters to documents that are hundreds of
pageslong.

4.1.1 Why Use MM?

There are several reasons why we recommend using MM instead of
working with the formatting programs nroff and troff directly. These
include:

— You need not be an expert to use MM successfully. If your
input is incorrect, the macros attempt to interpret it, or a
message describing the erroris output.

— Reasonable default values are provided so that simple
documents can be prepared without complex sequences of
commands.

— Parameters are provided to allow forindividual preferences
and requirements in documentstyling.

— The capability exists for expert users to extend the MM
macros by adding new macros or redefining existing ones.

— The output of MM is device independent, allowing the use
of terminals, lineprinters, and phototypesetters with no
change to the macros.

— The need for repetitious inputis minimized by allowing the

user to specify parameters once at the beginning of a
document.

4-1

XENIX Text Processing

— Output style can be modified without making changes to
the documentinput.

4.1.2 Organization and Conventions

Each section of this chapter explains a feature of MM, with the more
commonly used features explained first. You may find you have no
need for the information in the later sections, or for some of the
options and parameters which accompany even common features.
This reference guide is organized so that you can skim asection to
obtain formatting information you need, and skip features for which
you have no use.

4.1.3 Structure of a Document

Input for a document to be formatted with MM contains four major
parts, any of which is optional. If present, they must occur in the
following order:

1. Parameter-setting. This segment determines the general
style and appearance of a document, including page width,
margin justification, numbering styles for headings and
lists, page headers and footers, and other properties. In this
segment, macros can be added or redefined. If omitted,
MM will produce output in a default format; this segment
produces no actual output, but performs the setup for the
restof the document.

2. Beginning. This segment includes those items that occur
only once, at the beginning of a document (e.g., title,
author’s name, date).

3. Body. This segment contains the actual text of the
document. It may be as small as a single paragraph, or as
large as hundreds of pages. It may include hierarchically-
ordered headings of up to seven levels, which may be
automatically numbered and saved to generate the table of
contents. Also available are list formats with up to five
levels of subordination, which may have automatic
numbering, alphabetic sequencing, and marking. The body

MM Reference

may contain various types of displays, tables, figures,
references, and footnotes.

4. Ending. This segment contains those items that occur only
once at the end of a document. Included here are
signature(s) and lists of notations (e.g., ‘“‘copy to”’ lists). In
this segment, macros may be invoked to print information
that is wholly or partially derived from the rest of the
document, such as the table of contents orthe coversheet.

The size or existence of any of these segments depends on the type
and length of the document. Although aspecific item (such as date,
title, author’s name) may be printed in several different ways
depending on the document type, it will always be entered in the

same form.

4.1.4 Definitions

The following terms are used throughoutthis chapter:

Formatter

Requests

Macros

Strings

Refers to either of the text-formatting programs nroff
or troff.

Built-in commands recognized by the formatters.
Although it may not be necessary to use these requests
directly, they are referred to in this chapter.

Named collections of requests. Each macro is an
abbreviation for a collection of requests that would
otherwise require repetition. MM supplies many
predefined macros, and you may define additional
macros as necessary. Macros and requests share the
same setof names and are used in the same way.

Provide character variables, each of which names a
string of characters. Strings are often used in page
headers, page footers, and lists. They use the same
names as requests and macros. A string can be defined
with the define string (.ds) request, and then referred
to by its name, preceded by * for a one-character
name or *(foratwo-character name.

XENIX Text Processing

Numberregisters
Integer variables used for flags, arithmetic, and
automatic numbering. A register can be given avalue
using a number register (.nr) request, and can be
referenced by preceding its name by \n for one-
character names or \n(for two-character names.

4.2 Invoking the Macros

This section describes the command lines necessary to MM, with
differentoptionson various output devices.

4.2.1 The MM Command

The MM command is used to print documents using nroff and MM.
This command is equivalent to invoking nroff with the -mm flag.
Options are available to specify preprocessing by tbl and/or by
eqn /neqn, and for postprocessing by various output filters, such as
col. Any arguments or flags not recognized by MM are passed to
nroff. The following options can occur in any order before the
filenames:

-e Invokes neqn.

-t Invokes thl.

-c Invokes col.

-E Invokes the ‘‘-e’’ option of nroff.

-y Invokes -mm (uncompacted macros) instead of -cm

(See Section 4.2.2 of this manual).

-12 Invokes 12-pitch mode (The pitch switch on the terminal

mustbe setto 12).
4.2.2 The -cm or -mm Flags

The MM package can also be invoked by including the -ecm or -mm

MM Reference

flag as an argumentto the formatter, asin:

nroff -mm file

4.2.3 Typical Command Lines

The prototype command lines are as follows:

Textwithouttables or equations:

mm [options| filename
nroff [options] filename
troff [options] filename

Textwith tables:

mm -t [options] filename
tbl filename [nroff [options] -mm
tbl filename jtrofl [options] -mm

Text with equations:

mm -e [options] filename
neqn filename nroff [options] -mm
eqn filename jtroff [options] -mm

Textwith both tables and equations:

mm -t -e [options] filename
tbl filenameheqn |nroff [options] -mm
tbl filenamebqn |troff [options] -mm

If two-column processing is used with nroff, either the -c option
must be specified to MM or the nroff output must be postprocessed
by col.

4.2.4 Command Line Parameters

Numberregisters hold parameter values that control various aspects
of output style. Many of these can be changed within the text files
with number register (.nr) requests. In addition, some of these
registers can be setfrom the command line itself, auseful feature for
those parameters that should not be permanently embedded within

4-5

XENIX Text Processing

the input text itself. If used, these registers must be set on the
command line or before the MM macro definitions are processed.
These are:

-rAn For n= 1, this has the effect of invoking the .AF macro
without an argument.

-rCn nsets the type of copy (e.g., DRAFT) to be printed at the
bottom of each page:

n=1 For OFFICIAL FILE COPY
n=2 ForDATEFILE COPY

n=3 For DRAFT with single-spacing and default

paragraph style
n=4 For DRAFT with double-spacing and 10-space
paragraph indent
-D1 Sets ‘‘debug mode”’. This flag requests the formatter to

continue processing even if MM detects errors that
would otherwise cause termination. It also includes
some debugging information in the default page header.

-rEn Controls the font of the Subject/Date/From fields. If
n=n0 these fields are bold (default for troff) and if s =1
they are regular text(defaultfor nroff).

-tLk Sets the length of the physical page to k lines. For nroff, &
is an unscaled number representing lines or character
positions; for troff, k must be scaled. The default value is
66 lines per page.

-rtNn Specifies the page numbering style. When n=0
(default), all pages get the (prevailing) header. When
n=1, the page header replaces the footer on page 1 only.
When n=2, the page header is omitted from page 1.
When n=3, section-page numbering occurs. When
n=4, the default page header is suppressed, but user-
specified headers are not affected. When n—=25, section-

4-6

-rOk

-rPn

-rSn

-rTn

-rU1

-rWk

MM Reference

page and section-figure numberingoccurs.

The contents of the prevailing header and footer do not
depend on the value of the number register N; N only
controls whether and where the header (and, for N=3
or 5, the footer) is printed, as well as the page numbering
style. In particular, if the header and footer values are
null, the value of Nis irrelevant.

Offsets output k spaces to the right. For nroff, these
values are unscaled numbers representing lines or
character positions. For troff, these values must be
scaled. This register is helpful for adjusting output
positioning on some terminals. If this register is not set
on the command line the default offset is .75 inches.
NOTE: The register name is the capital letter (O), not
the digit zero (0).

Specifies that the pages of the document are to be
numbered starting with n. This register may also be set
viaa.nrrequestin the inputtext.

Sets the point size and vertical spacing. The default nis
10, i.e., 10-point type on 12-point leading (vertical
spacing), giving 6 lines per inch. This parameter applies
to troffonly.

Provides register settings for certain devices. If n =1,
then the line length and page offset are set to 80 and 3,
respectively. Setting n to 2 changes the page length to 84
lines per page and inhibits underlining. The default
value for nis 0. This parameter applies to nroffonly.

Controls underlining of section headings. This flag
causes only letters and digits to be underlined.
Otherwise, all characters (including spaces) are
underlined. This parameter applies to nroffonly.

Sets page width (i.e., line length and title length) to k.
For nroff, k is an unscaled number representing lines or
character positions; for troff, k¥ must be scaled. This
register can be used to change the page width from the

XENIX Text Processing

default value of 6.0 inches (60 characters in 10 pitch or
72 characters in 12 pitch).

4.2.5 Omission of -cm or -mm

If many arguments are required on the command line, it may be
convenient to set up the first (or only) input file of a document as
follows:

.ss 18

.50 Jusr/lib/tmac/tmac.m
.ss 12

remainder of text

In this case, do not use the -cm or -mm flags (or the MM or mmt
commands); the .so request has the equivalent effect. The registers
must be initialized before the .so request, because their values are
meaningful only if set before the macro definitions are processed.
When using this method, itis best to putinto the inputfile only those
parameters that are seldom changed. Forexample:

.nr W 80

nr O 10

.nr N 3

.50 /usr/lib/tmac/tmac.m
.H 1 "INTRODUCTION"

specifies, for nroff, a line length of 80, a page offset of 10, and
section-page numbering.

4.3 Formatting Concepts

The normal action of the formatters is to fill outputlines from one or
more input lines. The output lines may be justified so that both the
left and right margins are aligned. As the lines are being filled, words
may also be hyphenated as necessary. It is possible to turn any of
these modes on and off. Turning off fill mode also turns off
justification and hyphenation.

Certain formatting commands (both requests and macros) cause the
filling of the current outputline to cease. Printing of a partially filled

MM Reference

output line is known as a “‘break’’. A few formatter requests and
mostof the MM macros cause abreak.

While formatter requests can be used with MM, they occasionally
have unpredicted consequences. There should be little need to use
formatter requests. The macros described in this section should be
used in most cases because you will be able to control and change the
overall style of the document easily and specify complex features,
such as footnotes or tables of contents, without using intricate
formatting requests. A good rule is to use direct nroff and troff
requests only when absolutely necessary.

To make future revision easier, input lines should be kept short and
should be broken at the end of clauses; each new full sentence
should begin on anew line.

4.3.1 Arguments and Quoting

For any macro, a ‘‘null argument’’ is an argument whose width is
zero. Such an argument often has a special meaning; the preferred
form for anull argumentis double quotation marks (7). Omitting an
argument is not the same as supplying a null argument.
Furthermore, omitted arguments can occur only at the end of an
argumentlist, while null arguments can occuranywhere.

Any macro argument containing ordinary (paddable) spaces mustbe
enclosed in double quotation marks, (””). Otherwise, it will be
treated as several separate arguments. A double quotation mark (”)
is asingle character that must not be confused with two apostrophes
oracute accents (**), or with two grave accents ().

Double quotation marks (”) are not permitted as part of the value of
a macro argument or of a string that is to be used as a macro
argument. If you must, use two grave accents (*) and/or two acute
accents (°’) instead. This restriction is necessary because many
macro arguments are processed (interpreted) several times. For
example, headings are first printed in the text and may be reprinted
in the table of contents.

XENIX Text Processing

4.3.2 Unpaddable Spaces

When outputlines are justified to give an even right margin, existing
spaces in a line may have additional spaces appended to them. This
may affect the desired alignment of text. To avoid this problem, itis
necessary to be able to specify a space that cannot be expanded
during justification, i.e., an ‘‘unpaddable space’’. There are several
ways to do this. First, you may type a backslash () followed by a
space. This pair of characters generates an unpaddable space.
Second, you may sacrifice some seldom-used character to be
translated into a space upon output. Because this translation occurs
after justification, the chosen character may be used anywhere an
unpaddable space is desired. The tilde () is often used for this
purpose. To use it in this way, insert the following line at the
beginning of the document:

tr -

If a tilde must actually appear in the output, it can be temporarily
recovered by inserting

.tr

before the place where itis needed. Its previous usage is restored by
repeating the .tr 7, but only after a break or after the line containing
the tilde has been forced out. Use of the tilde in this way is not
recommended for documents in which the tilde is used within
equations.

4.3.3 Hyphenation

The formatters do not perform hyphenation unless the userrequests
it. Hyphenation can be turned on in the body of the text by
specifying

.nr Hy 1

at the beginning of the document. If hyphenation is requested, the
formatters will automatically hyphenate words as needed. However,
you may specify the hyphenation points for a specific occurrence of
any word by using a special character known as a ‘‘hyphenation
indicator’’ (initialy, the two-character sequence \%), or you may
specify hyphenation points for a small list of words (about 128

MM Reference

characters).

If the hyphenation indicator (initially, the two-character sequence
\%) appears at the beginning of a word, the word is not hyphenated.
It can also be used to indicate legal hyphenation point(s) inside a
word. In any case, all occurrences of the hyphenation indicator
disappear on output.

The user may specify a different hyphenation indicator with the
command:

HC [hyphenation-indicator]

The caret (") is often used for this purpose; this is done by inserting
the following at the beginning of adocument:

HC ~©

Note that any word containing hyphens or dashes—also known as
em dashes—will be broken immediately after a hyphen or dash if itis
necessary to hyphenate the word, even if the formatter hyphenation
function is turned off.

Using the .hw request, you may supply a small list of words with the
proper hyphenation points indicated. For example, to indicate the
proper hyphenation of the word ‘‘printout’’, you may specify:

.hw print-out
4.3.4 Tabs

The macros MT, .TC, and .CS use the .ta request to set tab stops,
and then restore the default values of tab settings. Setting tabs to
other than the defaultvaluesis the user’s responsibility.

Note that a tab character is always interpreted with respect to its
position on the inputline, rather than its position on the outputline.
In general, tab characters should appear only on lines processed in
no-fillmode. The tbl program changes tab stops but does not restore
the default tab settings.

4.3.5 Bullets

A bullet (+) is often obtained on a typewriter terminal by using the

4-11

XENIX Text Processing

letter o overstruck by a + . For compatibility with troff, a bullet
string is provided by MM. Rather than overstriking, use the
sequence:

*(BU

wherever a bullet is desired. Note that the bullet list (.BL) macro
uses this string to automatically generate bullets for the list items.

4.3.6 Dashes, Minus Signs, and Hyphens

Troff has distinct graphics for a dash, a minus sign, and a hyphen,
while nroff does not. If you intend to use nroffonly, you can use the
minussign (-) forall three.

If you plan to use both formatters, you must be careful in preparing
text. Unfortunately, these characters cannotbe represented in away
thatis both compatible and convenient. Try the following:

D ash Use *(EM for each text dash for both nroff and troff.
This string generates an em dash (—) in troff and two
dashes (- ~) in nroff. Note that the dash list (.DL)
macro automatically generates the em dashes for the list
items.

Hyphen Use the hyphen character (-) for both formatters.
Nroff will printit as is, and troff will printa true hyphen.

Minus Use \- for a true minus sign, regardless of formatter.
Nroff will ignore the \, while troff will print a true minus
sign.

4.3.7 Trademark String

The trademark string *(Tm places the letters TM one half-line
above the text thatit follows. For example, the input:

The XENIX*(Tm System Reference Manual.
yields:
The XENIX™ System Reference Manual.

MM Reference

4.4 Paragraphs and Headings
This section describes simple paragraphs and section headings.
4.4.1 Paragraphs

The paragraph macro is used to begin two kinds of paragraphs:

P [type]
one or more lines of text.

In a‘“‘left-justified’’ paragraph, the firstline begins at the left margin,
while in an ‘“‘indented’’ paragraph, itis indented five spaces.

A document has a default paragraph style obtained by specifying .P
before each paragraph that does not follow a heading. The default
style is controlled by the number register Pt. The initial value of Ptis
0, which always provides left-justified paragraphs. All paragraphs
can be forced to be indented by inserting the following at the
beginningof the document:

.ar Pt 1

All paragraphs will be indented except after headings, lists, and
displaysif the following:

.nr Pt 2
isinserted at the beginningof the document.

The amount a paragraph is indented is contained in the register Pi,
whose default value is 5. To indent paragraphs by 10 spaces, for
example, insert:

.nr Pi 10

at the beginning of the document. Both the Pi and Ptregister values
must be greater than zero for any paragraphs to be indented.

The number register Ps controls the amount of spacing between
paragraphs. By default, the Ps registeris set to 1, yielding one blank
space (1/2 vertical space). Values that specify indentation must be
unscaled and are treated as ‘‘character’’ positions, i.e., as anumber
of ens. In troff, an en is the number of points (1 point = 1/72-inch)
equal to half the current point size. In nroff, an en is equal to the
width of a character.

XENIX Text Processing

Regardless of the value of Pt, an individual paragraph can be forced
to be left-justified orindented. .P always forces left justification; .P 1
always causes indentation by the amountspecified by the register Pi.
If .P occurs inside alist, the indent (if any) of the paragraph is added
to the currentlistindent.

Numbered paragraphs may be produced by setting the register Np to
1. This produces paragraphs numbered within first level headings,
e.g.,1.01,1.02,1.03,2.01.

A differentstyle of numbered paragraphs is obtained by using the
.nP

macro rather than the .P macro for paragraphs. This produces
paragraphs that are numbered within second level headings and
contain a double-line indent in which the text of the second line is
indented to be aligned with the text of the first line so that the
numberstands out. Forexample:

H 1 "FIRST HEADING”
.H 2 "Second Heading”
.nP

one or more lines of text

4.4.2 Numbered Headings

The heading macro has the form:

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings. Level 1
is the highest; level 7 the lowest. The heading-suffiz is appended to
the headmg-text and may be used for footnote marks which should
not appear with the heading text in the table of contents. You will
notneed to insert a.P macro after a .H or .HU macro, because the H
macro also performs the function of the .P macro. If a .P follows a
.H, the .Pisignored.

The effect of .H varies according to the level argument. First-level
headings are preceded by two blank lines (one vertical space); all
others are preceded by one blank line.

4-14

MM Reference

.H 1 heading-text
Gives abold heading followed by asingle blank line. The
following text begins on a new line and is indented
according to the current paragraph type. Full capital
letters should normally be used to make the heading
stand out.

.H 2 heading-text
Yields a bold heading followed by a single blank line.
The following text begins on a new line and is indented
according to the current paragraph type. Normally,
initial capitals are used.

.H nheading-text
Where n is a number greater than 3 and less than 7,
produces an underlined (italic) heading followed by two
spaces. The following textappears on the same line.

Appropriate numbering and spacing (horizontal and vertical) occur
even if the heading textis omitted from an .H macro.

4.4.3 Appearance of Headings

You can modify the appearance of headings quite easily by setting
certain registers and strings at the beginning of the document. In
this way you can quickly alter a document’s style because the style
control information is concentrated in a few lines, rather than
distributed throughoutthe document.

A first-level heading normally has two blank lines (one vertical
space) preceding it, and all others have one blank line. If amultiline
heading splits across pages, it is automatically moved to the top of
the nextpage. Every first-level heading may be forced to the topof a
new page by inserting

arEjl

at the beginning of the document. Long documents may be made
more manageable if each section starts on anew page. Setting Ejto a
higher value has the same effect for headings up to thatlevel; i.e., a
page ejectoccursif the headinglevelis less than or equal to Ej.

4-15

XENIX Text Processing

Three registers control the appearance of textimmediately following
an .H macro. They are heading break level (Hb), heading space level
(Hs), and post-heading indent (Hi).

If the heading level is less than or equal to Hb, a break occurs after
the heading. If the heading level is less than or equal to Hs, a blank
line is inserted after the heading. Defaults for Hb and Hs are 2. If a
heading level is greater than Hb and also greater than Hs, then the
heading (if any) is run into the following text. With these registers,
you can separate headings from text consistently throughout the
document, and allow for easy alteration of whitespace and header
emphasis.

For any stand-alone heading, i.e., a heading not run into the
following text, the alignment of the next line of outputis controlled
by the register Hi. If Hi is 0, text is left-justified. If Hi is 1 (the
defaultvalue), the textisindented according to the paragraph type as
specified by the register Pt. Finally, if Hiis 2, textisindented to line
up with the first word of the heading itself, so that the heading
numberstands out more clearly.

For example, to cause a blank line to appear after the first three
heading levels, to have no run-in headings, and to force the text
following all headings to be left-justified (regardless of the value of
Pt), the following lines should appear at the top of the document:

.nr Hs 3
.nr Hb 7
arHi O

The register Hc can be used to obtain centered headings. A heading
is centered if its level is less than or equal to He, and if it is stand-
alone. Heis Obydefault(no centered headings).

4.4.4 Bold, Italic, and Underlined Headings

Any heading that is underlined by nroff is made italic by troff. The
string HF (heading font) contains seven codes that specify the fonts
forheadinglevels 1-7.

Levels 1 and 2 are bold; levels 3 through 7 are underlined in nroff
and italic in troff. The user may reset HF as desired. Any value
omitted from the right end of the list is taken to be 1. For example,

4-16

MM Reference

the following would resultin five bold levels and two nonunderlined
(Roman) levels:

dsHF 33333

Nroff can underline in two ways. The underline (.ul) request
underlines only letters and digits. The continuous style (.cu)
request underlines all characters, including spaces. By default, MM
attempts to use the continuous style on any heading that is to be
underlined and is short enough to fit on asingle line. If aheading is
too long, only letters and digits are underlined.

Using the — rUl flag when invoking nroff forces the underlining of
only letters and digits in all headings.

4.4.5 Heading Point Sizes

If you are using troff, you may specify the desired pointsize for each
heading level with the HP string, as follows:

ds HP [ps1] [ps2] [ps3] [ps4] [ps5] [ps6] [ps7)

By default, the text of headings (.H and .HU) is printed in the same
point size as the body except that bold stand-alone headings are
printed in a size one point smaller than the body. The string HP,
similar to the string HF, can be specified to contain up to seven
values, corresponding to the seven levels of headings. For example:

.ds HP 12 12 11 10 10 10 10

prints the first two heading levels in 12-point type, the third heading
level in 11-point type, and the remainder in 10-point type. The
specified values may also be relative point-size changes, e.g.:

dsHP +2 +2-1-1

If absolute point sizes are specified, those sizes will be used
regardless of the point size of the body of the document. If relative
pointsizes are specified, then the pointsizes for the headings will be
relative to the point size of the body, even if the point size of the
body is changed. Omitted or zero values imply that the default point
size will be used for the corresponding headinglevel.

4-17

XENIX Text Processing

Note

When you change the point size of headings, vertical
spacing remains unchanged. Therefore, if you specify a
large point size for a heading, you must also increase
vertical spacing (with .HX and/or .HZ) to prevent
overprinting.

4.4.6 Marking Styles

The heading mark macro has the form:
.HM [argl] ...[arg7]

to change the heading mark style of aheading. The registers named
H1 through H7 are used as counters for the seven levels of headings.
Their values are normally printed using Arabic numerals. The
heading mark style (.HM) macro allows this choice to be overridden.
This macro can have up to seven arguments; each argument is a
string indicating the type of marking to be used. Omitted values are
interpreted as 1; illegal values have no effect. The values available
are:

Value Interpretation

1 Arabic (default for all levels)

0001 Arabic with enough leading zeroes to get specified digits
A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase Roman

i Lowercase Roman

By default, the complete heading mark for a given level is built by
concatenating the mark for that level to the right of all marks for all
levels of higher value. To inhibit the printing of successive heading
level marks, i.e., to obtain just the current level mark followed by a
period, set the heading-mark type (Ht) registerto 1.

For example, acommonly used outline style is obtained by:

4-18

MM Reference

HMIA1ai
ar He 1

4.4.7 Unnumbered Headings

The unnumbered heading macro has the form:
.HU heading-text

It produces unnumbered heads. .HU is a special case of H; it is
handled in the same way as .H, except that no heading mark is
printed. In order to preserve the hierarchical structure of headings
when .H and .HU macros are intermixed, each .HU heading is
considered to exist at the level given by register Hu, whose initial
value is 2. Thus, in the normal case, the only difference between:

.HU heading-text
and
.H 2 heading-text

is the printing of the heading mark for the latter. Both have the effect
of incrementing the numbering counter for level 2, and resetting to
zero the counters for levels 3 through 7. Typically, the value of Hu
should be set to make unnumbered headings (if any) be the lowest-
level headings in a document. .HU can be especially helpful in
setting up appendices and other sections thatmay notfitwellinto the
numberingscheme of the main body of adocument.

4.4.8 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accomplished
by specifying in the register Cl what level headings are to be saved,
then invoking the .TC macro at the end of the document.

Any heading whose level is less than or equal to the value of the
contents level (CL) register is saved and printed in the table of
contents. The default value for Cl is 2; i.e., the first two levels of
headings are saved.

Because of the way the headings are saved, itis possible to exceed the
formatter’s storage capacity, particularly when saving many levels of

4-19

XENIX Text Processing

many headings while also processing displays and footnotes. If this
happens, an ‘‘Out of temp file space’’ message will occur; the only
remedy is to save fewerlevels or to have fewer words in the heading
text.

4.4.9 First-Level Headings and the Page Numbering Style

By default, pages are numbered sequentially at the top of the page.
For large documents, it may be desirable to use section-page
numbering where the section is the number of the current first-level
heading. This page numbering style can be achieved by specifying
the -rN3 or-rN5 flag on the command line. As aside effect, this also
sets Ej to 1, so that each section begins on a new page. The page
number is printed at the bottom of the page, so that the correct
section number is printed.

4.4.10 User Exit Macros

This section is intended only for users who are accustomed to writing
formatter macros. With .HX, HY and .HZ you can obtain control
over the previously described heading macros. You must define
these macros yourself and use them in the form:

.HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .H macro invokes .HX shortly before the actual heading textis
printed; it calls HZ as its last action. After . HX is invoked, the size
of the heading is calculated. This processing causes certain features
that may have been included in .HX, such as .ti for temporary
indent, to be lost. After the size calculation, .HY is invoked so that
you may specify these features again. All the default actions occurif
these macros are not defined. If you define HX, HY, or .HZ, your
definition is interpreted at the appropriate point. These macros can
therefore influence the handling of all headings, because the .HU
macro is actually aspecial case of the .H macro.

If the user originally invoked the .H macro, then the derived level
dlevel and the real level rlevel are both equal to the level given in the
.H invocation. If you originally invoked the .HU macro, dlevel is

4-20

MM Reference

equal to the contents of register Hu , and rlevel is 0. In both cases,
heading-teztis the textof the original invocation.

By the time .H calls .HX, it has already incremented the heading
counter of the specified level, produced a blank line (vertical space)
to precede the heading, and accumulated the heading mark, i.e., the
string of digits, letters, and periods needed for anumbered heading.
When .HX is called, all user-accessible registers and strings can be
referenced as well as the following:

string JO
If rlevel is nonzero, this string contains the heading mark.
If rlevelis 0, this string is null.

register ;0
This register indicates the type of spacing that is to follow
the heading. A value of 0 means that the heading is run-
in. A value of 1 means a break (but no blank line) is to
follow the heading. A value of 2 means that ablank line is
to follow the heading.

string }2
If register ;0 is 0, this string contains two unpaddable
spaces that will be used to separate the heading from the
following text. If register ;0 is nonzero, this string is null.

register ;3

This register contains an adjustment factor for an .ne
request issued before the heading is actually printed. On
entry to .HX, it has the value 3 if dlevel equals 1, and 1
otherwise. The .ne requestis for the following number of
lines: the contents of the register ;0 taken as blank lines
(halves of vertical space), plus the contents of register ;3
as blank lines (halves of vertical space) plus the number
of lines of the heading.

The user may alter the values of }0, }2, and ;3 within HX as desired.
If you use temporary string or macro names within .HX, choose
them carefully.

HY is called after the .ne is issued. Certain features requested in
HX mustbe repeated. For example:

4-21

XENIX Text Processing

de HY
Af \\$1=3 .ti 5n
P

.HZ is called at the end of .H to permit user-controlled actions after
the heading is produced. Forexample, in alarge document, sections
may correspond to chapters of abook, and you may want to change a
page header or footer. Forexample:

.de HZ
Af \\$1=1 PF” “*Section \\$2 "~
P

4.5 Lists

This section describes the kinds of lists which can be obtained with
the MM macros, including automatically numbered and
alphabetized lists, bullet lists, dash lists, lists with arbitrary marks,
and lists starting with arbitrary strings (e.g., with terms or phrases to
be defined).

In order to avoid repetitive typing of arguments to describe the
appearance of items in a list, MM provides a convenient way to
specifylists. Alllists are composed of the following parts:

— A “list-initialization’’ macro that controls the appearance
of the list (e.g. line spacing, indentation, marking with
special symbols, and numbering or alphabetizing).

— One or more ‘‘list item”’ macros, each followed by the
actual textof the corresponding listitem.

— The ““list end’’ macro that terminates the list and restores
the previous indentation.

Lists may be nested up to five levels. The list-item (.LI) macrosaves
the previous list status (e.g., indentation, marking style, etc.); the
list-end (.LE) macro restores it. The formatof alist is specified only
once at the beginning of list. You may also create your own
customized sets of list macros with relatively little effort.

4-22

MM Reference

4.5.1 Sample Nested List

The input for several lists and the corresponding output are shown
below. The .AL and .DL macros are examples of the ‘‘list-
initialization’’ macros. Here is some sample inputtext:

AL A

.LI

This is an alphabetized item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

AL

.LI

This is a numbered item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

DL

.LI

This is a dash item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

LI+ 1

This is a dash item with a plus as prefix.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.LE

.LI

This is numbered item 2.

LE

.LI

This is another alphabetized item, B.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.LE

P

This paragraph appears at the left margin.

The outputlooks like this:

4-23

XENIX Text Processing

A. This is an alphabetized item. This text shows the
alignment of the second line of the item. The quick
brown fox jumped over the lazy dog’s back.

1. This is a numbered item. This text shows the
alignment of the second line of the item. The
quick brown fox jumped over the lazy dog’s back.

— This is a dash item. This text shows the
alignment of the second line of the item.
The quick brown fox jumped over the lazy
dog’s back.

+ — This is adash item with a plus as prefix. This
text shows the alignment of the second line
of the item. The quick brown fox jumped
overthe lazy dog’s back.

2. Thisisnumbered item 2.

B. This is another alphabetized item, B. This text shows
the alignment of the second line of the item. The quick
brown fox jumped over the lazy dog’s back.

This paragraph appears at the left margin.
4.5.2 List Item

The list item macro has the form:

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LImacro is used with all lists. It normally causes the outputofa
single blank line before its item, although this may be suppressed. If
no arguments are given, it labels its item with the ‘‘current mark”’
which is specified by the most recent list-initialization macro. If a
single argument is given to .LI, that argument is output instead of
the current mark. If two arguments are given, the first argument
becomes a prefix to the current mark, thus allowing you to
emphasize one or more items in a list. One unpaddable space is

4-24

MM Reference

inserted between the prefix and the mark. Forexample:

.BL

L1

This is a simple bullet item.

LI+

This replaces the bullet with a plus.
LI+ 1

But this uses plus as prefix to the bullet.
.LE

This yields:
¢« Thisis asimple bulletitem.
+ This replaces the bullet with a plus.

+ o Butthisuses plus as prefix to the bullet.

Note that the mark must not contain ordinary (paddable) spaces,
because alignment of items will be lost if the right margin is justified.
If the ‘‘current mark’’ in the current list is a null string, and the first
argument of .LI is omitted or null, the resulting effect is that of a
‘‘hanging indent’’, i.e., the first line of the following text is
outdented, starting at the same place where the mark would have
started.

4.5.3 List End

The list end macro has the form:
LE [1]

The list end macro restores the state of the list to that existing just
before the most recent list-initialization macro call. If the optional
argumentis given, the .LE outputs a blank line. You should use this
option only when the .LE is followed by running text, but not when

followed by a macro that produces blank lines of its own, such as .P,
.H,or.LL

.H and .HU automatically clear all list information, so you may omit
the .LE(s) that would normally occur just before either of these
macros. This is not recommended, however, because errors will

4-25

XENIX Text Processing

occur if the list text is separated from the heading at some later time
(e.g., by insertion of text).

4.5.4 Initializing Automatically Numbered or Alphabetized Lists

The listinitialization macro for numbered lists has the form:
AL [type] [text-indent] [1]

The .AL macro is used to begin sequentially numbered or
alphabetized lists. If there are no arguments, the list is numbered
and text is indented by L1, initially 6 spaces from the indentin force
when the .AL is called, thus leaving room for a space, two digits, a
period, and two spaces before the text. Values that specify
indentation must be unscaled and are treated as character positions,
i.e.,asthe numberof ens in troff.

Spacing at the beginning of the list and between the items can be
suppressed by setting the list space (Ls) register. Ls is set to the
innermostlistlevel for which spacingis done. Forexample:

anrls O

specifies that no spacing will occur around any listitems. The default
value for Ls is 8 (which is the maximum list nesting level).

The type argument may be given to obtain a different type of
sequencing, and its value should indicate the first element in the
sequence desired, (i.e.,itmustbe 1, A, a, I, ori). Note that the 0001
format is not permitted. If typeis omitted or null, then 1 is assumed.
If tezt-indentis non-null, it is used as the number of spaces from the
currentindent to the text, it is used instead of Li for this list only. If
tezt-indentis null, then the value of Liwill be used.

If the third argumentis given, ablank line will notse parate the items
in the list. A blank line willoccurbefore the firstitem, however.

4.5.5 Bullet List

The list-initialization macro for abulletlisthas the form:

BL [text-indent] [1]

4-26

MM Reference

.BL begins abullet list, in which each item is marked by abullet (e)
followed by one space. If tezt-indent is non-null, it overrides the
default indentation—amount of paragraph indentation as given in
the register Pi. In the default case, the text of bullet and dash lists
lines up with the first line of indented paragraphs. If a second
argument is specified, no blank lines will separate the items in the
list.

4.5.6 Dash List

The list-initialization macro for dash lists has the form:
DL [text-indent] [1]
.DL isidentical to .BL, except thatadash is usedinstead of abullet.

4.5.7 Marked List

The form of the list-initialization macro for amarked list is:
ML mark [text-indent] [1]

.ML is much like .BL and .DL, except that it requires an arbitrary
mark, which may consist of more than a single character. Text is
indented tezt-indent spaces if the second argument is not null;
otherwise, the textis indented one more space than the width of the
mark. If the third argument is specified, no blank lines will separate
the items in the list. Note that the mark must not contain ordinary
(paddable) spaces, because alignmentof items will be lostif the right
margin is justified.

4.5.8 Reference List

The list-initialization macro for areference listhas the form:
RL [text-indent] [1]

A RL macro begins an automatically numbered list in which the
numbers are enclosed by square brackets ([]). The tezt-indent may
be supplied, as for .AL. If omitted or null, it is assumed to be 6, a
convenient value for lists numbered up to 99. If the second
argument is specified, no blank lines will separate the items in the

4-27

XENIX Text Processing

list.
4.5.9 Variable-Item List

The list-initialization macro for a variable-item listis:
.VL text-indent [mark-indent] [1]

When alist begins with a .VL, there is effectively no current mark; it
is expected that each .LI provides its own mark. This form is
typically used to display definitions of terms or phrases. Mark-indent
gives the number of spaces from the current indent to the beginning
of the mark, and it defaults to 0 if omitted or null. Tezt-indentgives
the distance from the currentindent to the beginning of the text. If
the third argument is specified, no blank lines will separate the items
in the list. Here is an example of .VL usage:

tr”

.VL 20 2

.LI mark™1

Here is a description of mark 1;

mark 1 of the .LI line contains a tilde translated

to an unpaddable space in order to avoid extra spaces
between the mark and 1.

.LI second"mark

This is the second mark, also using a tilde translated
to an unpaddable space.

.LI third 'mark longer than “indent:

This item shows the effect of a long mark; one space separates the mark
from the text.

LI~

This item has no mark because the

tilde following the .LI is translated into a space.

.LE

This yields:
mark 1 Here is a description of mark 1; mark 1 of the
.LI line contains a tilde translated to an

unpaddable space in order to avoid extra
spaces between the markand 1.

4-28

MM Reference

second mark This is the second mark, also using a tilde
translated to an unpaddable space.

third mark longer than indent This item shows the effect of along
mark; one space separates the mark from the
text.

This item has no mark because the tilde
following the .Llis translated into aspace.

The tilde argument on the last .L1 above is required; otherwise a
hanging indent would have been produced. A hanging indent is
produced by using .VL and calling .LI with no arguments or with a
null firstargument. For example:

.VL 10

.LI

Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces.

.LE

yields:
Here is some text to show ahangingindent. The firstline of textis at
the left margin. The second isindented 10 spaces.

Note that the mark must not contain ordinary (paddable) spaces,
because alignmentof items will be lostif the right margin is justified.

4.5.10 List-Begin Macro and Customized Lists

The list-begin macro has the form:
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

The list-initialization macros should be adequate for most cases.
However, if necessary, you may obtain more controlover listlayouts
by using the basic list-begin macro .LB.

A text-indent argument gives the number of spaces that the textis to
be indented from the current indent. Normally, this value is taken
from the register Li for automatic lists and from the register Pi for

4-29

XENIX Text Processing

bullet and dash lists. The combination of mark-indent and pad
determines the placement of the mark. The mark is placed within an
area(called ““mark area’’) that starts mark-indentspaces to the right
of the current indent, and ends where the text begins text-indent
spaces to the right of the current indent. The mark-indent argument
is typically 0. Within the mark area, the mark is left-justified if pad is
0. If pad is greater than 0, then n blanks are appended to the mark;
the mark-indent value is ignored. The resulting string immediately
precedes the text. Thatis, the mark is effectively right-justified pad
spaces immediately to the leftof the text.

Type and mark interact to control the type of marking used. If typeis
0, simple marking is performed using the mark character(s) found in
the mark argument. If typeis greater than 0, automatic numberingor
alphabetizing is done, and mark is then interpreted as the firstitem in
the sequence to be used for numbering or alphabetizing (i.e., it is
chosen from theset1, A, a, I,i).

Each nonzero value of type from 1 to 6 selects a different way of
displaying the items. The following table shows the output
appearance for each value of type:

Type Appearance

1 X.

2 x)

3 (x)
4 (x]

5 <x>
6 &}

The mark must not contain ordinary (paddable) spaces, because
alignment of items will be lost if the right margin is justified.

LI-space gives the number of blank lines (halves of a vertical space)
that should be output by each .LI macro in the list. If omitted, LI-
space defaults to 1; the value 0 can be used to obtain compactlists. If
LI-spaceis greater than 0, the .LI macro issues a .ne request for two
lines just before printing the mark. LB-space, the number of blank
lines to be outputby .LBitself, defaults to 0 if omitted.

There are three reasonable combinations of LI-space and LB-space.
The normal case is to set LI-space to 1 and LB-space to 0, yielding
one blank line before each item in the list; such a list is usually
terminated with a LE 1 to end the list with ablank line. For a more

4-30

MM Reference

compact list, set LI-space to 0 and LB-space to 1, and, again, use .LE
1 at the end of the list. The resultis alist with one blank line before
and after it. If you set both LI-space and LB-space to 0, and use .LE
to end the list, alist without any blank lines will result.

4.6 Displays

Displays are blocks of text that are to be kept together rather than
split across pages. MM provides two styles of displays: a ‘‘static”’
(.DS) style and a “floating’’ (.DF) style. In the static style, the
display appears in the same relative position in the output text as it
does in the input text. If the display willnotfitin the space remaining
on a page, it will be shifted to the top of the next page. This may
result in extra whitespace at the bottom of some pages. In the
floating style, the display floats through the input text to the top of
the next page if there is not enough room for it on the current page;
thus the input text that follows a floating display may precede itin the
output text. A queue of floating displays is maintained so that their
relative orderisnot disturbed.

By default, a display is processed in no-fill mode, with singlespacing,
and is not indented from the existing margins. You can specify
indentation or centering, as well as fill-mode processing.

Displays and footnotes can never be nested in any combination.
Although lists and paragraphs are permitted, no headings (.H or
HU) can occur within displays or footnotes.

4.8.1 Static Displays

A static display macro has the form:
.DS [format] [fill] [rindent]

one or more lines of text

.DE

A static display is started by the .DS macro and terminated by the
.DE macro. With no arguments, .DS will accept the lines of text
exactly as they are typed (no-fill mode) and will not indent them
from the prevailing left margin indentation or from the right margin.
The rindentargumentis the numberof characters that the line length
should be decreased, i.e., an indentation from the right margin. This

4-31

XENIX Text Processing

number must be unscaled in nroff and is treated as ens. It may be
scaled in troffor else it defaults to ems.

The formatargumentto .DSis an integerorletter used to control the
left margin indentation and centering. The format argument can
have the following meanings:

Code Meaning

(en No indent

OorL No indent

lorl Indent by standard amount

20rC Center each line
3 or CB Center as a block

The fill argument is also an integer or letter and can have the
following meanings:

Code Meaning
(e -fill mode
Oor N No-fill mode
lorF Fill mode

Omitted arguments are interpreted as zero.

The standard indentation is taken from the Si register which is
initially set at 5. Thus, by default, the text of an indented display
aligns with the first line of indented paragraphs, whose indent is
contained in the Piregister. Even though their initial values are the
same, these two registers are independentof one another.

The display format value 3 (CB) centers the entire display as a block
(as opposed to .DS 2 and .DF 2, which center each line individually).
That is, all the collected lines are left-justified, and the display is
centered based on the width of the longestline. This format mustbe
used in order for the eqn/neqn mark and lineup feature to work with
centered equations.

By default, ablank line is placed before and after displays. The blank
lines before and after static displays can be inhibited by setting the
registerDs to 0.

4.6.2 Floating Displays

The floating display macro has the form:

4-32

MM Reference

.DF [format] [fill] [rindent]
one or more lines of text

.DE

- A floating display is started by the .DF macro and terminated by the
.DE macro. The arguments have the same meanings as for .DS (see
Section 4.6.1, ‘‘Static Displays’’), except that for floating displays,
indent, no indent, and centering are always calculated with respect to
the initial left margin, because the prevailing indent may change
between the time when the formatter first reads the floating display
and the time that the display is printed. One blank line always occurs
both before and after afloating display.

You may control output positioning of floating displays through two
number registers, De and Df. When a floating display is
encountered by nroff or troff, it is processed and placed into a queue
of displays waiting to be output. Displays are removed from the
queue and printed in the order that they were entered in the queue,
which is the order that they appear in the input file. If a new floating
display is encountered and the queue of displays is empty, the new
display is a candidate for immediate output on the current page.
Immediate output is governed by the size of the display and the
setting of the Df register. The De register controls whether or not
text will appear on the current page after a floating display has been
produced.

The settings for the De register are as follows:
0 Default: No special action occurs.

1 A page eject will always follow the outputof each floating
display, so only one floating display will appear on a page
and no text will follow it.

The settings for the Df register are as follows:

0 Floating displays will not be output until end of section
{(when using section-page numbering) or end of
document.

1 Outputs the new floating display on the current page if

there is room, otherwise hold it until the end of the
section ordocument.

4-33

XENIX Text Processing

2 Outputs exactly one floating display from the queue at
the top of a new page or column (when in two-column
mode).

3 Outputs one floating display on current page if there is

room. Outputs exactly one floating display at the top of a
new page or column.

4 Outputs as many displays as will fit (atleastone), starting
at the top of a new page or column. Note that if register
De is set to 1, each display will be followed by a page
eject, causing a new top of page to be reached, where at
least one more display will be output.

5 Default. Outputs a new floating display on the current
page if there is room. Outputs as many displays as will fit
starting at the top of a new page or column. Note that if
register De is set to 1, each display will be followed by a
page eject, causing a new top of page to be reached,
where atleast one more display will be output.

Note: any value greater than 5 is treated as the value 5.

The .WC macro may also be used to control handling of displays in
double-column mode and to control the break in the text before
floating displays.

Aslong as the queue contains one or more displays, new displays will
be automatically added to the queue, rather than be output. When a
new page is started (or when at the top of the second column in two-
column mode), the next display from the queue will be outputif the
Df register has specified top-of-page output. When a display is
outputitisremoved from the queue.

When the end of asection (when using section-page numbering) or
the end of a document is reached, all displays are automatically
output and removed from the queue. This will occur before an .SG,
.CS, or.TC macro is processed.

A display fits on the current page if there is enough room to contain
the entire display on the page, orif the display is longer than one page
in length and less than half of the current page has been used. Wide
(full page width) display will never fit in the second column of a

4-34

MM Reference

two-column document.
4.8.3 Tables

The table macro has the form:

global options;
column descriptors.
title lines

[.TH [N]]

data within the table.
.TE

The table start (.TS) and table end (.TE) macros allow use of the tbl
processor. They are used to delimit the text to be examined by the
tbl program as well as to set proper spacing around the table. The
display function and the tbl delimiting function are independent of
one another, however. In order to keep together blocks that contain
any mixture of tables, equations, filled and unfilled text, and caption
lines, the .TS-.TE block should be enclosed within a display (.D S-
.DE), as each display is always treated as a unit. Floating tables may
be enclosed inside floating displays (.DF-.DE). (For more
information on displays, see Section 4.6, ‘‘Displays’’.)

The macros .TS and . TE also permit processing of tables that extend
over several pages. If a table heading is needed for each page of a
multipage table, use the argument H with the .TS macro (as above).
Following the options and format information, the table heading is
typed on as many lines as required and followed by the .TH (table
header) macro. The .TH macro must occur when .TS H is used.
Note that this is not a feature of tbl, but rather of MM macro
definitions.

The table header macro .TH may take as an argument the letter N.
This argument causes the table header to be printed only if it is the
first table header on the page. This option is used when it is
necessary to build long tables from smaller .TS H-.TE segments. For
example:

4-35

XENIX Text Processing

JTSH

global options;
column descriptors.
Title lines

.TH

data

TE

.ISH

global options;
column descriptors.
Title lines

THN

data

TE

This causes the table heading to appear at the top of the first table
segment, and no heading to appear at the top of the second segment
when both appear on the same page. However, the heading will still
appear at the top of each page that the table continues onto. This
feature is used when a single table must be broken into segments
because of table complexity (for example, too many blocks of filled
text). If each segment had its own .TS H-TH sequence, each
segment would have its own header. However, if each table segment
after the first uses .TSH.TH N then the table header will only appear
at the beginning of the table and the top of each new page or column
that the table continues onto.

4.8.4 Equations

The equation macro has the form:

DS1

EQ [label]
equation(s)
EN

DE

The equation formatters eqmn and neqn use the the equation start
(\EQ) and equation end (.EN) macros as delimiters in the same way
that tbl uses .TS and . TE; however, .EQ and .EN must occur inside a
.DS-.DE pair. There is an exception to this rule: if . EQ and .EN are
used only to specify the delimiters for in-line equations or to specify

4-36

MM Reference

eqn/neqn ‘‘defines’’, .DS and .DE must not be used; otherwise,
extrablank lines will appearin the output.

The .EQ macro takes an argument that will be used as alabel for the
equation. By default, the label appears at the right margin in the
vertical center of the general equation. The Eq register may be set to
1 to set the label at the left margin. The equation is centered for
centered displays; otherwise, the equation is adjusted to the opposite
margin from the label.

4.8.5 Figure, Table, Equation, and Exhibit Captions

The macros for captions have the form:

FG [title] [override] [flag]
B [title] [override] {flag]
.EC [title] [override] [flag]
EX [title] [override] [flag]

The figure title (.FG), table title (.TB), equation caption (.EC), and
exhibit caption (.EX) macros are normally used inside .DS-.DE
pairs to automatically number and title figures, tables, and
equations. They useregisters Fg, Tb, Ec, and Ex, respectively. As an
example, the macro:

.FG "This is an illustration”
yields:
Figure 1. This is an illustration

Instead of ‘‘Figure’’ TB prints ““TABLE’’; .EC prints ‘‘Equation”’,
and .EX prints ‘‘Exhibit’’. Outputis centered if it can fiton asingle
line; otherwise, all lines but the first are indented to line up with the
first character of the table title. The format of the numbers may be
changed using the .af request of the formatter. The format of the
caption may be changed from “Figure 1. Title’’ to “‘Figure 1 - Title”
by setting the Of registerto 1.

The overridestring is used to modify the normal numbering. If flagis
omitted or 0, override is used as a prefix to the number; if flagis 1,
override is used as a suffix; and if flag is 2, override replaces the
number. If the -rN5 flag is given, section-figure numbering is set
automatically and the override stringis ignored.

4-37

XENIX Text Processing

As a matter of style, table headings are usually placed ahead of the
text of the tables, while figure, equation, and exhibit captions
usually occur after the corresponding figures and equations.

4.6.8 List of Figures, Tables, Equations, and Exhibits

Lists of Figures, Tables, Equations, and Exhibits may be obtained.
They will be printed after the Table of Contents is printed if the
number registers Lf, Lt, Lx, and Le are setto 1. Lf, Lt, and Lx are 1
by default; Le is 0 by default.

The titles of these lists may be cﬁanged by redefining the following
strings which are shown here with their default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS
.ds Le LIST OF EQUATIONS

4.7 Footnotes

There are two macros thatdelimit the textof footnotes, astring used
to automatically number the footnotes, and a macro that specifies
the style of the footnote text. Like displays, footnotes are processed
differently from the body of the text.

Footnotes may be automatically numbered by typing the three
characters ‘‘*F’’ immediately after the text to be footnoted, without
any intervening spaces. This will place the next sequential footnote
number (in a smaller point size) a half-line above the text to be
footnoted.

There are two macros thatdelimit the text of each footnote:

.FS [label]
one or more lines of footnote text
FE

The footnote start (.FS) macro marks the beginning of the text of
the footnote, and the footnote end (.FE) macro marks its end. The
label on .F'S, if present, will be used to mark the footnote text.
Otherwise, the number retrieved from the \#F will be used.
Automatically numbered and user-labeled footnotes may be

4-38

MM Reference

intermixed. If afootnote is labeled .F'S the text to be footnoted must
be followed by ‘‘label,’’ rather than by *F. The text between .FS
and .FE is processed in fill mode. Another .FS, a.DS, or a . DF are
not permitted between the .FS and .FE macros. Automatically
numbered footnotes may not be used for information, such as the
title and abstract, to be placed on the cover sheet, but labeled
footnotes are allowed. Similarly, only labeled footnotes may be used
with tables. Here are two examples:

1. Automatically numbered footnote:

This is the line containing the word \#F
FS

This is the text of the footnote.

.FE

to be footnoted.

2. Labeled footnote:

This is a labeled*

FS *

The footnote is labeled with an asterisk.
FE

footnote.

The text of the footnote (enclosed within the .FS-.FE pair) should
immediately follow the word to be footnoted in the input text, so
that *F or labeloccurs atthe end of aline of input and the nextline is
the .F'S macro call. Itis also good practice to append an unpaddable
space to ‘‘label’’ when it follows an end-of-sentence punctuation
mark (i.e., period, question mark, exclamation point).

4.7.1 Format of Footnote Text

The footnote formatmacro has the form:

FD {arg] (1]
Within the footnote text, you can control the formatting style by
specifying text hyphenation, right margin justification, and text
indentation, as well as left- or right-justification of the label when

text indenting is used. The .FD macro is invoked to select the
appropriate style. The first argument should be a number from the

4-39

XENIX Text Processing

left column of the following table. The formatting style for each
number is given by the remaining four columns. For further
explanation of the first two of these columns, see the definitions of
the .ad, .hy, .na, and .nh requests.

ARGUMENT | FORMATTING STYLE

0 .nh | .ad | text indent | label left-justified
1 .hy | .ad | textindent | label left-justified
2 .nh | .na | text indent | label left-justified
3 .hy na | textindent | label left-justified
4 .nh | .ad | no indent label left-justified
5 .hy | .ad | no indent label left-justified
6 .nh | .na | no indent label left-justified
7 hy na | no indent label left-justified
8 .nh | .ad { textindent | label right-justified
9 .hy ad | text indent | label right-justified
10 .nh | .na | text indent | label right-justified
11 .hy | .na | textindent | label right-justified

If the first argument to .FD is out of range, the effectis as if .FD 0
were specified. If the first argument is omitted or null, the effect is
equivalent to .FD 10 in nroff and to .FD 0 in troff; these are also the
respective initial defaults.

If a second argument is specified, then whenever a first-level
heading is encountered, automatically-numbered footnotes begin
again with 1. This is most useful with the section-page page
numberingscheme. As an example, the inputline:

FD ™1

maintains the default formatting style and causes footnotes to be
numbered beginning with 1 after each first-level heading.

For long footnotes that continue onto the following page, it is
possible that, if hyphenation is permitted, the last line of the
footnote on the current page will be hyphenated. Except for this case
(which you can change by specifying an even-numbered argument
to .FD), hyphenation across pages isinhibited by MM.

Footnotes are separated from the body of the text by a short rule.
Footnotes that continue to the next page are separated from the body

4-40

MM Reference

of the textby afull-width rule. In troff, footnotes are set in type that
is two points smaller than the pointsize used in the body of the text.

Normally, one blank line (a three-point vertical space) separates the
footnotes when more than one occurs on a page. To change this
spacing, set the register F's to the desired value. For example:

nrFs 2

will cause two blank lines (a six-point vertical space) to occur
between footnotes.

4.8 Page Headers and Footers

Text that occurs at the top of each page is known as the ‘‘page
header’’. Textprinted at the bottom of each page is called the ‘‘page
footer’’. There can be up to three lines of text associated with the
header: every page, even page only, and odd page only. Thus the
page header may have up to two lines of text: the line that occurs at
the top of every page and the line for the even- or odd-numbered
page. The same is true for the page footer. When not qualified by
‘““even’’ or “‘odd”’, ““header’’ and ‘‘footer’’ will mean those headers
and footers thatoccur on every page. The defaultappearance of page
headers and page footers is described here, followed by the methods
forchanging them.

4.8.1 Default Headers and Footers

By default, each page has a centered page number as the header.
There is no default footer and no even/odd default headers or
footers, except with section-page numbering.

In a memorandum or a released paper, the page header on the first
page is automatically suppressed, if a break does not occur before
MT s called. Since they do not cause abreak, the header and footer
macros are permitted before the MT macro call.

4.8.2 Page Header

The page header macro has the form:

4-41

XENIX Text Processing

PH |[arg]

For this and for the .EH, .OH, .PF, EF, and .OF macros, the
argumentis of the form:

”’left-part’center-part’right-part’”

If it is inconvenient to use the apostrophe (’) as the delimiter
(because it occurs within one of the parts), it may be replaced
uniformly by any other character. On output, the parts are left-
justified, centered, and right-justified, respectively.

The .PH macro specifies the header that is to appear at the top of
every page. The initial value is the default centered page number
enclosed by hyphens. The page number contained in the P register is
an Arabic number. The format of the number may be changed by
the .af request.

If ‘““debug mode”’ is set using the flag -rD 1 on the command line,
additional information, printed at the top left of each page, is
included in the defaultheader.

4.8.3 Even-Page Header

The even-page header macro has the form:
.EH [arg]

The .EH macro supplies a line to be printed at the top of each even-
numbered page, immediately following the header. The ihitial value
isablank line.

4.8.4 Odd-Page Header

The odd-page header macro has the form:
.OH |[arg]

This macro is the same as .EH, except that it applies to odd-
numbered pages.

4-42

MM Reference

4.8.5 Page Footer

The form of the page footer macro is:
PF [arg]

The .PF macro specifies the line that is to appear at the bottom of
each page. Its initial value is ablank line. If the -rCn flag is specified
on the command line, the type of copy follows the footer on a
separate line. In particular, if -rC3 or -rC4 (DRAFT) is specified,
then the footer is initialized to contain the date, instead of being a
blank line.

4.8.6 Even-Page Footer

The even-page footermacro has the form:
.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each
even-numbered page, immediately preceding the footer. The initial
value is ablank line.

4.8.7 Odd-Page Footer

The odd-page footer macro has the form:
.OF [arg]

This macro is the same as .EF (described in Section 4.8.6), except
thatitapplies to odd-numbered pages.

4.8.8 Footer on the First Page

By default, the footer on the first page is a blank line. If, in the input
text, you specify .PF and/or .OF before the end of the first page of
the document, then these lines will appear at the bottom of the first
page. The header (whateverits contents) replaces the footer on the
first page only if the -rN1 flag is specified on the command line.

4-43

XENIX Text Processing

4.8.9 Default Header and Footer With Section-Page Numbering

Pages can be numbered sequentially within sections. To obtain this
numbering style, specify -rN3 or -rN5 on the command line. In this
case, the defaultfooteris a centered section-page number(e.g., 7-2)
and the defaultpage headeris blank.

4.8.10 Strings and Registers in Header and Footer Macros

String and register names may be placed in the arguments to the
header and footer macros. If the value of the string or register is to
be computed when the respective header or footer is printed, the
invocation must be escaped by four backslashes. This is because the
string or register invocation is actually processed three times: as the

argument to the header or footer macro; in a formatting request

within the header or footer macro; and in a .tl request during header
or footer processing.

For example, the page number register P must be escaped with four
backslashes in order to specify aheader in which the page number is
to be printed at the right margin:

PH ™"Page \\\\nP""

This creates a right-justified header containing the word ‘‘Page”’
followed by the page number.

4.8.11 Header and Footer Example

The following sequence specifies blank lines for the header and
footer lines, page numbers on the outside edge of each page (i.e., top
left margin of even pages and top right margin of odd pages), and
‘‘Revision 3’ on the top inside margin of each page:

PH ™
PE™
.EH ”\\\\nP"’Revision 3"
.OH ™Revision 3”’\\\\nP"”

4-44

MM Reference

4.8.12 Generalized Top-of-Page Processing

This section and the next are intended only for users accustomed to
writing formatter macros. During header processing, MM invokes
two user-definable macros. One, the .TP macro, is invoked in the
environment of the header. The .PX macro may be used to provide
text that is to appear at the top of each page after the normal header
and that may have tab stops to align it with columns of text in the
body of the document.

The effective initial definition of .TP (after the first page of a
document) is:

.de TP
.sp 3

A A\(*)t
if e 't
Af o 'l
.sp 2

The string Jt contains the header, the string Je contains the even-
page header, and the string Jo contains the odd-page header, as
defined by the .PH, .EH, and .OH macros, respectively. To obtain
more specialized page titles, you may redefine the .TP macro to
cause any desired header processing. Note that formatting done
within the .TP macro is processed in an environment different from
thatof the body.

For example, to obtain a page header that includes three centered
lines of data, say, a document’s number, issue date, and revision
date, you could define .TP as follows:

.de TP

.Sp

.ce 3
777-888-999

Iss. 2, AUG 1977
Rev. 7, SEP 1977

.Sp

4-45

XENIX Text Processing

4.8.13 Generalized Bottom-of-Page Processing

The bottom start macro has the form:

BS (

zero or more lines of text
.BE

Lines of text that are specified between the bottom-block start (.BS)
and bottom-block end (.BE)} macros will be printed at the bottom of
each page after the footnotes (if any), but before the page footer.
This block of textis removed by specifying an empty block, i.e.:

BS
.BE

4.8.14 Top and Bottormn Margins

The vertical margin macro has the form:
.VM |[top] [bottom]

The vertical margin { .VM) macro allows you to specify extraspace at
the top and bottom of the page. This space precedes the page header (
and follows the page footer. The .VM macro takes two unscaled

arguments thatare treated as v’s. For example:

VM 1015

adds 10 blank lines to the default top of page margin, and 15 blank
lines to the default bottom of page margin. Both arguments must be
positive (default spacing at the top of the page may be decreased by
redefining . TP).

4.9 Table of Contents

The table of contents for a document is produced by invoking the
table of contents (.TC) macro. The table of contents is produced at
the end of the writing process because the entire document must be
processed before the table of contents can be generated. The table of
contents macro has the form: (

4-46

MM Reference

.TC [slevel] [spacing] [tlevel] [tab] [headl] ... [head7]

The .TC macro generates atable of contents containing the headings
that were saved for the table of contents as determined by the value
of the Cl register. The arguments to .TC control the spacing before
each entry, the placement of the associated page number, and
additional text on the first page of the table of contents before the
word ¢“CONTENTS”’.

Spacing before each entry is controlled by the first two arguments;
headings whose level is less than or equal to slevel will have spacing
blank lines (halves of a vertical space) before them. Both slevel and
spacing default to 1. This means that first-level headings are
preceded by one blank line. Note that slevel does not control what
levels of heading have been saved; thatis controlled by the setting of
the Clregister.

The third and fourth arguments control the placement of the page
number for each heading. The page numbers can be justified at the
right margin with either blanks or leader dots separating the heading
text from the page number, or the page numbers can follow the
heading text. For headings whose level is less than or equal to #evel
(default 2), the page numbers are justified at the right margin. In
this case, the value of tab determines the character used to separate
the heading text from the page number. If tab is 0 (the default
value), dots (i.e., leaders) are used; if tab is greater than 0, spaces are
used. For headings whose level is greater than tlevel, the page
numbers are separated from the heading text by two spaces (i.e.,
they are ragged right).

All additional arguments (e.g., headl, head2), if any, are
horizontally centered on the page, and precede the actual table of
contents itself.

If the .TC macro is invoked with at most four arguments, then the
user-exit macro .TX is invoked (without arguments) before the
word “CONTENTS’ is printed; or the user-exit macro .TY is
invoked and the word ‘“CONTENTS”’ is not printed. By defining
. TX or.TY and invoking .TC with at most four arguments, you can
specify whatneeds to be done atthe top of the (first) page of the table
of contents.

By default, the firstlevel headings will appear in the table of contents
at the left margin. Subsequent levels will be aligned with the text of

4-47

XENIX Text Processing

headings at the precedinglevel. These indentations may be changed
by defining the Cistring which takes amaximum of seven arguments
corresponding to the heading levels. It must be given at least as
many arguments as are set by the Cl register. The arguments must
be scaled. For example, with Cl =5,

.ds Ci .251 .51 .751 1i 1i
or
.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table of
contents, Oc and Cp. By default, table of contents pages will have
lowercase Roman numeral page numbering. If the Oc register is set
to 1, the .TC macro will not print any page number but will instead
reset the P register to 1. It is your responsibility to give an
appropriate page footer to place the page number. Ordinarily the
same .PF used in the body of the document and exhibits will be
adequate. The List of Figures and List of Tables will be produced
separately unless Cp is set to 1 which causes these lists to appear on
the same page as the table of contents.

4.10 References

There are two macros that delimit the text of references, a string
used to automatically number the references, and an optional macro
that produces reference pages within the document.

4.10.1 Automatic Numbering of References

Automatically numbered references may be obtained by typing
*(Rl immediately after the text to be referenced. This places the
nextsequential reference number (in a smaller pointsize) enclosed
in brackets ahalf-line above the textto be referenced.

4.10.2 Delimiting Reference Text

The .RS and .RF macros are used to delimit text for each reference.
They have the following form:

4-48

MM Reference

A line of text to be referenced.*(Rf
RS [string-name|
reference text

.RF
4.10.3 Subsequent References

.RStakesone argument, a‘‘string-name’’. For example:
g y g

RS AA
reference text
.RF

The string AA is assigned the current reference number. It may be
used later in the document, as the string call \¥(AA to reference text
which must be labeled with apriorreference number. The reference
is output enclosed in brackets a half-line above the text to be
referenced. No .RSorRF isneeded forsubsequentreferences.

4.10.4 Reference Page

An automatically generated reference page is produced at the end of
the document before the table of contents and the cover sheet are
output. The reference page is entitled ‘‘References’. This page
contains the reference text (RS/RF). The user may change the
reference page title by defining the Rpstring. For example,

.ds Rp "New Title”

The optional reference page (.RP) macro may be used to produce
reference pages anywhere within a document (i.e., within heading
sections).

RP [argl] [arg2]

These arguments allow the user to control resetting of reference
numbering and page skipping. The first argument with a value of 0
indicates that the reference counteris to be reset; this is the default.
A value of 1 indicates that the counter will not be reset. In the
second argument, a value of 0 causes a following .SK; a value of 1
does not cause an .SK. .RP need not be used unless you want to
produce reference pages elsewhere in the document.

4-49

XENIX Text Processing

4.11 Miscellaneous Features

In this section a number of MM features to control font, spacing,
justification, multiple-column output and page skipping are
discussed.

4.11.1 Bold, Italic, and Roman Fonts

Fontchanges are obtained with the following macros:

.B [bold-arg] [previous-font-arg] ...
I [italic-arg] [previous-font-arg| ...
R

When called without arguments, .B changes the font to bold and .I
changes to italic (troff) or underlining (nroff). This condition
continues until the occurrence of a R, when the regular Roman font
isrestored. Thus,

B
here is some text.

R
yields:
here 1s some text.

If Bor.lis called with one argument, thatargumentis printed in the
appropriate font (underlined in nroff for .I). Then the previous font
is restored (underlining is turned off in nroff). If two or more
arguments (maximum 6) are given to a.Bor .I, the second argument
is then concatenated to the first with no intervening space (1/12-
space if the first font isitalic}, butis printed in the previous font; and
the remaining pairs of arguments are similarly alternated. For
example:

J italic ” text ” right -justified
produces:
ttalic text right-justified

These macros alternate with the prevailing font at the time they are
invoked. To alternate specific pairs of fonts, the following macros
are available:

4-50

MM Reference

B
.BI
JR
.RI
.RB
.BR

Each takes amaximum of 6 arguments and alternates the arguments
between the specified fonts. Note that font changes in headings are
handled separately.

4.11.2 Right Margin Justification

The justification macro has the form:
.SA [arg]

The .SA macro is used to set right-margin justification for the main
body of text. Two justification flags are used: ‘‘current’’ and
“‘default”’. .SA O sets both flags to no justification (i.e., it acts like
the .na request). .SA 1 is the inverse: it sets both flags to cause
justification, just like the .ad request. However, calling .SA without
an argument causes the current flag to be copied from the default
flag, thus performing either an .na or .ad, depending on what the
default is. Initially, both flags are set for no justification in nroff and
for justification in troff.

In general, the request .na can be used to ensure that justification is
turned off, but .SA should be used to restore justification, rather
than the .ad request. In this way, justification or lack thereof for the
remainder of the text is specified by inserting .SA 0 or .SA 1 once at
the beginning of the document.

4.11.3 SCCS Release Identification

The string \\(**(RE contains the SCCS Release and Level of the
currentversion of MM. For example, typing:

This is version *(RE of the macros.

produces:

4-51

XENIX Text Processing

This is version 15.110 of the macros.

This information is useful in analyzing suspected bugs in MM. The

easiest way to have this number appear in your output is to specify

-rD1 on the command line, which causes the string RE to be output {
as partof the page header.

4.11.4 Two-Column Output

MM can printtwo columns on apage:

.2C
text and formatting requests (except another .2C)
1C

The .2C macro begins two-column processing which continues until
a .1C macro is encountered. In two-column processing, each
physical page is thought of as containing two columnar pages of
equal (but smaller) page width. Page headers and footers are not
affected by two-column processing. The .2C macro does not balance
two-column output.

It is possible to have full page width footnotes and displays when in (
two column mode, although the default action is for footnotes and

displays to be narrow in two column mode and wide in one-column

mode. Footnote and display width is controlled by the width control

(-WC) macro, which takes the following arguments:

N Normal default mode
WF Wide footnotes always (even in two-column mode)
-WF Default: turns off WF (footnotes follow column mode,

wide in 1C mode, narrow in 2C mode, unless FF is set)

FF First footnote; all footnotes have the same width as the
first footnote encountered for that page

-FF Default: turns off FF (footnote style follows the settings
of WFor-WF)

4-52

MM Reference

WD Wide displays always (even in two column mode)

-WD Default: Displays follow whichever column mode is in
effect when the display is encountered

For example: . WC WD FF will cause all displays to be wide, and all
footnotes on apage to be the same width, while .WC N will reinstate
the default actions. If conflicting settings are given to .WC the last
oneisused. Thatis, WCWF-WF has the effectof WC-WF,

4.11.5 Vertical Spacing

The vertical space macro has the form:
.SP [lines]

The .SP macro avoids the accumulation of vertical space by
successive macro calls. Several .SP calls in a row produce not the
sum of their arguments, but their maximum; i.e., the following
produces only 3 blank lines:

SP 2
.SP 3
SP

There are several ways of obtaining vertical spacing, all with
different effects. The .sp request spaces the number of lines
specified, unless no-space (.ns) mode is on, in which case the
request is ignored. The .ns mode is typically set at the end of a page
header in order to eliminate spacing by a .sp or .bp request that just
happens to occur at the top of apage. The .ns mode can be turned off
with the restore spacing(.rs) request.

Many MM macros utilize .SP for spacing. For example, LE 1
immediately followed by .P produces only a single blank line
between the end of the list and the following paragraph. An omitted
argument defaults to one blank line (one vertical space). Negative
arguments are not permitted. The argument must be unscaled but

fractional amounts are permitted. Like .sp, .SP is also inhibited by
the .nsrequest.

4-53

XENIX Text Processing

4.11.8 Skipping Pages

The skip page macro has the form:
.SK [pages]

The .SK macro skips pages, but retains the usual header and footer
processing. If pagesis omitted, null, or 0, .SK skips to the top of the
next page unless it is currently at the top of a page, in which case it
does nothing. .SK n skips n pages. That is, .SK always positions the
textthat follows it at the top of a page, while .SK 1 always leaves one
page thatis blank exceptforthe header and footer.

4.11.7 Forcing an Odd Page

The odd page macro has the form:
.OP

This macro is used to ensure that the following text begins at the top
of an odd-numbered page. If currently at the top of an odd page, no
motion takes place. If currently on an even page, text resumes
printing at the top of the next page. If currently on an odd page (but
not at the top of the page) one blank page is produced, and printing
resumes on the page after that.

4.11.8 Setting Point Size and Vertical Spacing

In troff, the default point size (obtained from the register S) is 10,
with a vertical spacing of 12 points. The prevailing point size and
vertical spacing may be changed by invoking the .S macro:

.S [point size] [vertical spacing]

The mnemonics, D for default value, C for current value, and P for
previous value, may be used for both point size and vertical spacing
arguments.

Arguments may be signed or unsigned. If an argument is negative,
the current value is decremented by the specified amount. If the
argument is positive, the current value is incremented by the
specified amount. If an argument is unsigned, it is used as the new
value. .S without arguments defaults to previous (P). If the first

4-54

MM Reference

argument is specified but the second argument (vertical spacing) is
notthen the default (D) value is used. The defaultvalue for vertical
spacing is always 2 points greater than the current point size value
selected. Footnotes are printed in a size 2 points smaller than the
pointsize of the body, with an additional vertical spacing of 3 points
between footnotes. A null (™) argument for either the first or
second argument defaults to the current (C) value.

4.11.8 Inserting Text Interactively

The read insertion macro has the form:
RD [prompt| [diversion] [string]

The read insertion macro (.RD) allows you to stop the standard
output of a document and to read text from the standard input until
two consecutive newlines are found. When the newlines are
encountered, normal outputisresumed.

.RD follows the formatting conventions already in effect. Thus, the
examples below assume thatthe .RD isinvoked in no fill mode (.nf).
The first argument is a prompt which will be printed at the terminal.
If no prompt is given, .RD signals the user with a bell on terminal
output.

The second argument, a diversion name, allows the user to save all
the entered text typed after the prompt. The third argument, a string
name, allows the user to save for later reference the first line
following the prompt. Forexample:

.RD Name aa bb
produces

Name: C. R. Jones
16 Densmore St,
Kensington

The diversion aa contains:

C. R. Jones
16 Densmore St,
Kensington

The string bb contains C.R. Jones.

4-55

XENIX Text Processing

A newline followed by a CNTRL-D (ASCII end-of-file) also allows

you to resume normal output.
4.12 Memorandum and Released Paper Styles

MM lets you specify a style for a memorandum or technical paper
with a macro that controls the layout of heading information (e.g.
title, author, date, etc.) on the first page or cover sheet. The
information is entered in the same way for both styles; an argument
indicates which style is being used. The macros used to specify paper
style are described in this section.

Note that it is critical to enter the macros in the order prescribed
here. If neither the memorandum nor released-paper style is
desired, the macros described below should be omitted from the
input text. If these macros are omitted, the first page will simply
have the page header followed by the body of the document.

4.12.1 Title

The title macro has the form:

.TL

one or more lines of title text

The title of the memorandum or paper follows the .TL macro and is
processed in fill mode. On output, the title appears after the word
“‘subject’” in the memorandum style. In the released-paper style,
the title is centered and bold.

4.12.2 Authors

The author macro has the form:

AU name [initials]
AT [title] ...

A separate .AU macro is required for each author named.

The .AT macro is used to specify the author’s title. Up to nine
arguments may be given. Each will appearin the Signature Block for
memorandum style on a separate line following the signer’s name.

4-56

MM Reference

The .AT must immediately follow the .AU for the given author. For
example:

AU "C. R. Jones” [initials] [loc] [dept] [ext] [room]
AT "Editor-in-chief”

In the *from’’ portion for the memorandum style, the author’s
name is followed by location and department number on one line
and by room number and extension number on the next. The x for
the extension is added automatically. The printing of the location,
department number, extension number, and room number may be
suppressed on the first page of amemorandum by setting the register
Au to 0; the default value for Auis 1. Arguments 7 through 9 of the
.AU macro, if present, will follow this ‘‘normal’’ author information
in the ““from’’ portion, each on aseparate line. If your organization
has a numbering scheme for memoranda, engineer’s notes, etc.,
these numbers are printed after the author’s name. This can be done
by providing extra arguments to the .AU macro.

The name, initials, location, and department are also used in the
Signature Block described below. The author information in the
from portion, as well as the names and initials in the Signature Block
will appearin the same order as the .AU macros.

The names of the authors in the released-paper style are centered
below the title.

4.12.3 Technical Memorandum Numbers

The technical memorandum macro has the form:
TM [number]| ...

If the memorandum is a Technical Memorandum, the TM numbers
are supplied via the .TM macro. Up to nine numbers may be
specified. Forexample:

TM 7654321 77777777

If present, this macro will be ignored in papers assigned the
released-paperor external-letter styles.

4-57

XENIX Text Processing

4.12.4 Abstract

The abstract macro has the form:

.AS [arg] [indent]
text of the abstract
AE

Three styles of cover sheet are available: Technical Memorandum,
Memorandum for File, and released-paper. On the coversheet, the
textof the abstractfollows the author information and is preceded by
the centered and underlined (italic) word ¢‘ABSTRACT"’.

The abstract start (.AS) and abstract end (.AE) macros bracket the
abstract. The abstract is optional except that for the Memorandum
for File style no cover sheet will be produced unless an abstract is
given.

A combination of the first argument to .AS and the use of the .CS
macro (see Section 4.12.15) controls the production of the cover
sheet. If the firstargumentis 2, aMemorandum for File coversheet
is generated automatically. Any other value for the first argument
causes the text of the abstract to be saved until the .CS macro is
invoked, then the appropriate cover sheet (either Technical
Memorandum or released paper depending on the .MT type) is
generated. Thus, .CSisnotneeded forMemorandum forFile cover
sheets. Notations, such as a copy to list, are allowed on
Memorandum for File cover sheets. The .NS and .NE macros are
given following the .AS2 and .AE.

The abstractis printed with ordinary text margins. An indentation to
be used for both margins can be specified as the second argument for
AS. Values that specify indentation must be unscaled and are
treated as character positions, i.e., as the number of ens. Headings
and displays are not permitted within an abstract.

4.12.5 Other Keywords

The keyword macro has the form:
.OK [keyword] ...

Topical keywords should be specified on a Technical Memorandum
cover sheet. Up to nine such keywords or keyword phrases may be

4-58

MM Reference

specified as arguments to the .OK macro; if any keyword contains
spaces, it mustbe enclosed within double quotation marks.

4.12.6 Memorandum Types

The memorandum type macro has the form:
MT [type] [addressee]

The MT macro controls the formatof the top part of the first page of
a memorandum or of areleased paper, as well as the format of the
coversheets. Legal codesfor type and the corresponding values are:

Code Value

MT ™ No memorandum type is printed
MToO No memorandum type is printed
MT MEMORANDUM FOR FILE
MT1 MEMORANDUM FOR FILE
MT 2 PROGRAMMER’S NOTES
MT3 ENGINEER’S NOTES

MT 4 Released-paper style

MTS5 External-letter style

MT 7"string” String

If type indicates a memorandum style, then the value will be printed
after the last line of author information. If type is longer than one
character, then the stringitself will be printed. For example:

MT "Technical Note #5”

A simple letter is produced by calling MT with a null (but not
omitted!) or zero argument.

The second argument to .MT is used to give the name of the
addressee of a letter. The name and page number will be used to
replace the ordinary page header on the second and following pages
of the letter. Forexample,

MT 1 "Charles Jones”
produces

Charles Jones - 2
as the headeron the second page.

4-59

XENIX Text Processing

This second argument may not be used if the first argumentis 4 (the
released-paperstyle).

In the external-letter style (.MT 5), only the title (without the word
‘“‘subject:’’) is printed in the upper left and right corners,
respectively, on the first page. You would normally use this style
with preprinted stationery that has the company name and address
already printed on it.

4.12.7 Date and Format Changes

By default, the current date appears in the date part of a
memorandum. This can be overridden by using:

.ND new-date

The .ND macro alters the value of the string D T, which is initially set
to the currentdate.

4.12.8 Alternate First-Page Format

You can specify that the words ‘‘subject’’, ‘“‘date’’, and ‘‘from”’ be
omitted in the memorandum style by using the alternate format
(.AF) macro. Unless you use the .AF macro, with your own
company name as an argument, ‘‘Bell Laboratories’’ will
automatically be printed as the company name on any papers which
begin with . MT macros. Therefore, you will always wantto use:

.AF [company-name]

If an argument is given, it replaces ‘‘Bell Laboratories’’ without
affecting the other headings. The .AF with no argumentsuppresses
‘‘Bell Laboratories’’ as well as the ‘‘subject’’, ‘‘date’’, and ‘‘from”’
headings. The use of .AF with no arguments is equivalent to the use
of -rAl on the command line, except that the latter must be used if it
is necessary to change the line length and/or page offset (which
default to 5.8i and 1i, respectively, for preprinted forms). The
command line options -rOk and -rWk are noteffective with .AF.

The only .AF option appropriate for troffis to specify an argument to
replace ‘‘Bell Laboratories’’ with another name.

4-60

MM Reference

4.12.9 Released-Paper Style

The released-paperstyle is obtained by specifying:
MT 4 [1]

This results in a centered, bold title followed by centered names of
authors. The location of the last author is used as the location
following ‘‘Bell Laboratories’’ unless .AF is used to specify a
different company. If the optional second argument to .MT4 is
given, Then the name of each author is followed by the respective
company name and location. Information necessary for the
memorandum style but not for the released-paper style is ignored.
The Signature Block macros and their associated lines of input are
also ignored when the released-paper style isspecified.

In addition to using the .AF macro to specify your company name,
you can define a string with a two-character name for your address
before each .AU. Forexample:

.TL

A Learned Treatise

AF "Getem, Inc.”

.ds XX "22 Maple Avenue, Sometown 09999”
AU "F. Swatter” ™ XX

AF "Profit Associates”

.AU "Sam P. Lename” ™ CB

MT41

4.12.10 Order of Invocation of Beginning Macros

The macros described in this section must be given in the following
orderif they are used to define documentstyle:

4-61

XENIX Text Processing

.ND new-date

.TL

one or more lines of text
.AF [company-name]
AU name [initials] [loc] [dept] [ext] [room]| [arg] [arg] [arg]
AT [title] ...

.TM [number] ...

.AS [arg] [indent]

one or more lines of text
.AE

.NS [arg]

one or more lines of text
.NE

.OK [keyword] ...

MT [type] [addressee]

The only required macros for amemorandum or areleased paper are
.TL, .AU, and .MT, all the others (and their associated input lines)
may be omitted if the features they provide are not needed. Once
.MT has been invoked, none of the above macros (except .NS and
.NE) can be reinvoked because they are removed from the table of
defined macros to save space.

4.12.11 Macros for the End of a Memorandum

At the end of a memorandum (but not of a released paper), the
signatures of the authors and a list of notations can be requested.
The following macros and their input are ignored if the released-
paper style is selected. A signature block macro is provided in the
form:

.FC [closing]
SG [arg] [1]

.FC prints ‘“Yours very truly’’ as a formal closing. It must be given
before the .SG which prints the signer’s name. A different closing
may be specified as an argument to .FC. .SG prints the author
name(s) after the formal closing (or the lastline of text). Each name
begins at the center of the page. Three blank lines are left above each
name for the actual signature. If no argument is given, the line of
reference data (e.g., location code, department number, author’s
initials, and typist’s initials) will not appearfollowing the lastline.

4-62

MM Reference

A first argument is treated as the typist’s initials, and is appended to
the reference data. A null argument prints reference data with
neither the typist’sinitials nor the preceding hyphen.

If there are several authors and if the second argumentis given, then
the reference data is placed on the same line as the name of the first
author, rather than on the line that has the name of the last author.

The reference data contains only the location and department
number of the first author. Thus, if there are authors from different
departments or from different locations, the reference data should
be supplied manually after the invocation (without arguments) of
the .SG macro.

4.12.12 Copy to and Other Notations

The notation macro has the form:

.NS [arg]
zero or more lines of the notation

.NE

After the signature and reference data, many types of notations may
follow, such as a list of attachments or copy to lists. The various
notations are obtained through the .NS macro, which provides for
the proper spacing and for breaking the notations across pages, if
necessary.

The codes for argand the corresponding notations are:

4-63

XENIX Text Processing

Code Notations

.NS*?” Copy to

NSO Copy to

.NS Copy to

NS 1 Copy (with att.) to
.NS 2 Copy (without att.) to
.NS 3 Att.

.NS 4 Atts.

NS 5 Enc.

.NS 6 Encs.

.NS7 Under Separate Cover
.NS 8 Letter to

.NS g Memorandum to

NS 7string” Copy (string) to

If arg consists of more than one character, it is placed within
parentheses between the words ‘“‘Copy’’ and ‘““to”’. For example:

.NS "with att. 1 only”

generates ‘‘Copy (with att. 1 only) to” as the notation. More than
one notation may be specified before the .NE occurs, because a .NS
macro terminates the preceding notation, if any.

The .NS and .NE macros may also be used atthe beginning following
.AS and .AE to place the notation list on the Memorandum for File
cover sheet. If notations are given at the beginning without .AS 2,
they will be saved and output at the end of the document.

4.12.13 Approval Signature Line

The approval signature macro has the form:
AV ™Jane Doe”

It can be used to provide aspace for an approval signature next to the
printed name.

4.12.14 Forcing a One-Page Letter

Attimes it is useful to get abit more space on the page, by forcing the
signature or items within notations onto the bottom of the page, so
that the letter or memo is just one page in length. This can be

4-64

MM Reference

accomplished by increasing the page length through the -rL noption,
e.g. -rL.90. This has the effect of making the formatter believe that
the page is 90 lines long and therefore giving it more room than usual
to place the signature or the notations. This will only work for a
single-page letterormemo.

4.12.15 Cover Sheet

The coversheet macro has the form:
.CS [pages] [other] [total] [figs] [tbls] [refs]

The .CS macro generates a cover sheet in either the Technical
Memorandum (TM) or released-paper style. All of the other
information for the cover sheet is obtained from the data given
before the MT macro call. If a TM style is used, the .CS macro
generates the ‘“Cover Sheetfor TechnicalMemorandum’’. The data
that appears in the lower left corner of the TM cover sheet (the
number of pages of text, the number of other pages, the total
number of pages, the number of figures, the number of tables, and
the number of references) is generated automatically. These values
may be changed by supplying the appropriate arguments to the .CS
macro. Any values that are omitted will be calculated automatically
(0 is used for other pages). If the released-paper style is used, all
arguments to .CS are ignored.

4.13 Reserved Names

If you are extending, changing, or redefining existing MM macros,
use the legal names listed in this section. The following conventions
are used in this section to describe legal names:

Digit

Lowercase letter

Uppercase letter

Any letter or digit (any alphanumeric character)
Special character (any nonalphanumeric character)

vox BP D

Allother characters are literals (i.e., stand for themselves).

Note that ‘‘request’’, ‘“macro’’, and ‘‘string’’ names are kept by the
formatters in a single internal table, so that there must be no

4-65

XENIX Text Processing

duplication among such names. ‘“Number register’’ names are kept
in aseparate table.

4.13.1 Names Used by Formatters

These are the names of the registers and requests used by nroff and
troff.

Requests
aa(mostcommon)
an (only one, currently: .c2)

Registers
aa(normal)
x (normal)
.s(onlyone, currently: .$)
% (page number)

4.13.2 Names Used by MM

These are the names of the macros, strings, and registers used by
MM.

Macros
AA (mostcommon, accessible to user)
A (less common, accessible to user)
)x (internal, constant)
>x (internal, dynamic)

Strings

AA (mostcommon, accessible to user)

A (lesscommon, accessible to user)

]x (internal, usually allocated to specific functions
throughout)

}x (internal, more dynamic usage)

Registers Aa(mostcommon, accessible to users)
An (common, accessible to user)
A (accessible,seton command line)
:x (mostly internal, rarely accessible, usually dedicated)

4-66

MM Reference

;x (internal, dynamic, temporaries)
4.13.3 Names Used by eqn/neqn and tbl

The equation preprocessors, eqn and negn, use registers and string
names of the form nn. The table preprocessor, tbl, uses the
following names:

a a+ a | nn #a #H# # # "a T& TW
4.13.4 User-Definable Names

None of the above may be used to define your own extensions. To
avoid problems, use names that consist either of a single lowercase
letter, or of a lowercase letter followed by anything other than a
lowercase letter. The following is a sample naming convention,
where acan be any letter:

For macros use a lowercase letter, followed by an uppercase
letter (aA), or an uppercase letter followed by a

lowercase letter (Aa).

For strings use a, followed by a parenthesis ()), a bracket (}),
orabrace (}).

For registers use a lowercase letter followed by an uppercase
letter (aA).

4.13.5 Sample Extension

The following is an example of how MM macro definitions may be
extended. This sequence generates and numbers the pages of
appendices:

4-67

XENIX Text Processing

ar Hu 1

nra0

.de aH

.nra-+1

.nrPO

PH " "’Appendix \\na - \\\\\\\\nP ”
SK

HU "\\$1”

After the above initialization and definition, each call of the form
.aH “‘title’” begins a new page {with the page header changed to
‘“Appendix a -n '’) and generates an unnumbered heading of
““title,”’ which, if desired, can be saved for the table of contents.
Those who wish Appendix titles to be centered must, in addition, set
the register He to 1.

4.14 Errors

When a macro discovers an error, a break occurs in processing. To
avoid confusion regarding the location of the error, the formatter
output buffer (which may contain some text) is printed and a short
message is printed giving the name of the macro that found the
error, the type of error, and the approximate line number (in the
current input file) of the last processed input line. Processing
terminates, unless the register D has a positive value. In the latter
case, processing continues even though the output is guaranteed to
be deranged from thatpointon.

Note that the error message is printed by writing it directly to the
user’s terminal. If either tbl or eqn/neqn, or both are being used,
and if the -olist option of the formatter causes the last page of the
document not to be printed, a harmless ‘‘broken pipe’’ message
results.

4.14.1 Disappearance of Output

This usually occurs because of an unclosed diversion (e.g., amissing
.FEor .DE). Fortunately, the macros thatuse diversions are careful
about it, and they check to make sure that illegal nestings do not
occur. If any message is issued about a missing .DE or .FE, the

4-68

MM Reference

appropriate action is to search backwards from the termination point
looking for the corresponding .DS, .DF, or .FS.

The following command:
grep -n "\.[EDFT]}[EFNQS]” files ...

prints allthe DS, DF, DE, .FS, FE, .TS, .TE, .EQ, and .EN macros
found in the files, each preceded by its filename and line number in
that file. This listing can be used to check for illegal nesting and for
omission of these macros.

4.14.2 MM Error Messages

Each MM error message consists of a standard part followed by a
variable part. The standard partisof the form:

ERROR:input line n

The variable part consists of a descriptive message, usually
beginning with a macro name. The variable parts are listed below in
alphabetical order by macro name, each with a more complete
explanation:

Check TL, AU, AS, AE, MTsequence

These macros for the beginning of a memorandum are out of
sequence.

AL:bad arg:value

The argument to the .AL macro is notone of 1, A, a, I, ori.
Theincorrect argumentis shown as value.

CS:coversheettoo long
The text of the cover sheet is too long to fiton one page. The
abstract should be reduced or the indentof the abstractshould
be decreased.

D S:too many displays

More than 26 floating displays are active at once, i.e., have

4-69

XENIX Text Processing

been accumulated butnotyetoutput.
D S:missing FE

A display starts inside a footnote. The likely cause is the
omission {or misspelling) of a FE to end a previous footnote.

DS:missingDE

.DSor.DF occurs within adisplay, i.e., a.DEhas been omitted
or mistyped.

DE:noDSorDF active

.DE has been encountered but there has not been a previous
.DSor.DF to match it.

FE:no FS
.FEhas been encountered with no previous .FSto match it.
FS:missing FE

A previous .FS was not matched by a closing .FE, ie., an
attemptis being made to begin afootnote inside anotherone.

FS:missing DE

A footnote starts inside a display, i.e., a . DS or .DF occurs
withoutamatching .DE.

H:bad arg:value

The first argument to .H must be a single digit from 1 to 7, but
value has been supplied instead.

H:missing FE

A heading macro (.H or HU) occursinside afootnote.

4-70

MM Reference

H:missingDE
A heading macro (.H or HU) occurs inside adisplay.
H:missing arg
.H needs atleast1 argument.
HU:missing arg
.HU needs 1 argument.
LB:missing arg(s)
.LBrequires atleast4 arguments.
LB:too many nested lists
Another list was started when there were already 6 active lists.
LE:mismatched
.LE has occurred without a previous .LB or other list-
initialization macro. Although this is not a fatal error, the
message is issued because there almost certainly exists some
problem in the preceding text.
LI:nolists active
.LT occurs without a preceding list-initialization macro. The
latter has probably been omitted, or has been separated from
the .LIbyan intervening .H or . HU.
ML :missingarg
.ML requires atleast 1 argument.
ND :missingarg

.ND requires 1 argument.

4-71

XENIX Text Processing

SA :bad arg:value

The argument to .SA (if any) must be either 0 or 1. The
incorrect argumentis shown as value.

SG:missingDE
.SG occursinside adisplay.
SG:missing FE
.SG occursinside afootnote.
SG:no authors
.8G occurs without any previous .AU macro(s).
VL:missing arg

.VL requires atleast 1 argument.
4.14.3 Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those
error messages over which the user has some control are listed
below.

Cannotdoev
Caused by setting a page width that is negative or extremely
short, setting a page length thatis negative or extremely short,
reprocessing a macro package (e.g. performing a .so to a macro
package that was requested from the command line), or
requesting the -s1 option to troff on a document that is longer
than ten pages.

Cannotexecute filename

Given by the .! requestifitcannotfind the filename.

4-72

MM Reference

Cannotopen filename

Issued if one of the files in the list of files to be processed
cannotbe opened.

Exception word list full

Too many words have been specified in the hyphenation
exception list(via.hw requests).

Line overflow
The output line being generated was too long for the
formatter’s line buffer. The excess was discarded. See the
“Word overflow’’ message below.
Nonexistent font type
A request has been made to mount an unknown font.
Nonexistent macro file
The requested macro package does notexist.
Nonexistent terminal type
The terminal options refers to an unknown terminal type.
Outof temp file space
Additional temporary space for macro definitions, diversions,
etc. cannot be allocated. This message often occurs because of
unclosed diversions (missing .FE or .DE), unclosed macro
definitions (e.g., missing ‘‘..”’}, or ahuge table of contents.
Too many page numbers

The list of pages specified to the formatter -o option is too long.

Too many string/macro names

4-73

XENIX Text Processing
The pool of string and macro names is full. Unneeded strings
and macros can be deleted using the .rm request.

Too many number registers

The pool of numberregister names is full. Unneeded registers
can be deleted by using the .rrrequest.

Wordoverflow

A word being generated exceeded the formatter’s word buffer.
The excess characters were discarded. A likely cause for this
and forthe “‘Line overflow’’ message above are very long lines
or words generated through the misuse of \¢c or of the .cu
request, or very long equations produced by eqn or neqn.

4-74

4.15 Summary of Macros, Strings, and Number

MM Reference

Registers

The following is an alphabetical list of macro names used by MM.
The first line of each item gives the name of the macro and a brief
description. The second line shows the form in which the macro is
called. Macros marked with an asterisk are not, in general, invoked
directly by the user. They are ‘‘user exits” called from inside
header, footer, orother macros.

1C

2C

AE

AF

AL

AS

AT

AU

AV

One-column processing
1C

Two-column processing

2C

Abstractend
AE

Alternate format of ‘‘Subject/D ate /From’’ block
AF [company-name]

Automatically-incremented list start
AL [type] [text-indent] [1]

Abstract start
.AS [arg| [indent]

Author’s title
AT [title] ...

Authorinformation

AU name [initials] {loc] [dept] [ext] [room| [arg] [arg] [arg]

Approval signature
AV [name]

Bold

B[bold-arg] [previous-font-arg| [bold] [prev] {bold] [prev]

4-75

XENIX Text Processing

BE

BI

BL

BR

BS

CS

DE

DF

DL

DS

EC

EF

EH

EN

4-76

Bottom end

.BE

Bold/Italic

Bl [bold-arg] [italic-arg] [bold] [italic] [bold] [italic]
Bulletlist start

BL [text-indent] [1]

Bold/Roman

BR [bold-arg| [Roman-arg] [bold] [Roman] [bold] [Roman]
Bottom start

.BS

Coversheet

.CS [pages]| [other] [total] [figs] [tbls] [refs]
Display end

DE

Display floating start

DF [format] [fill] [right-indent]

Dash list start

DL [text-indent] [1]

Display static start

DS [format] [fill] [right-indent]

Equation caption

EC [title] [override]| [flag]

Even-page footer
EF [arg]

Even-page header
EH [arg]

Endequation display
.EN

EQ

EX

FC

FD

FE

FG

FS

HC

HM

HU

HX

HY

HZ

Equation display start
EQ [labe)]

Exhibit caption
EX [title] [override] [flag]

Formal closing
FC|closing]

Footnote defaultformat
FD [arg] (1]

Footnote end
FE

Figure title
FG [title] [override| [flag]

Footnote start
FS(label]

Heading—numbered
Hlevel [heading-text] [heading-suffix]

Hyphenation character
HC [hyphenation-indicator]

MM Reference

Heading mark style (Arabic orRoman numerals, or letters)

HM [argl] ... [arg7]

Heading—unnumbered
.HU heading-text

Heading user exitX (before printing heading)

HX dlevelrlevel heading-text

Heading user exit Y (before printing heading)

HY dlevelrlevel heading-text

Heading user exit Z (after printing heading)

.HZ dlevelrlevel heading-text

4-77

XENIX Text Processing

IB

IR

LB

LC

LE

LI

ML

MT

ND

NE

NS

nP

4-78

Italic (underline in nroff)
I [italic-arg] [previous-font-arg] [italic] [prev] [italic] [prev]

Italic /Bold
IBitalic-arg] [bold-arg] [italic] [bold] [italic] [bold]

Italic/Roman
IR [italic-arg] [Roman-arg] [italic] [Roman] [italic] [Roman]

List begin
.LB text-indent mark-indent pad type [mark| [LI-space| [LB-
space|

List-status clear
LC [list-level]

Listend
LE[1]

Listitem
LI[mark] [1]

Marked list start
ML mark [text-indent] [1]

Memorandum type
MT|type| [addressee]

or MT|[4] [1]
New date

.ND new-date
Notation end
.NE

Notation start
NS [arg]

Double-line indented paragraphs
.nP

OF

OH

OK

OP

PF

PH

PX

RB

RD

RF

RI

RL

MM Reference
Odd-page footer
.OF [arg]

Odd-page header
.OH [arg]

Other keywords for TM coversheet
.OK [keyword] ...

Odd page
.OP

Paragraph
P [type]

Page footer
.PF [arg]

Page header
.PH [arg]

Page-header user exit
PX

Return to regular (Roman) font(end underlining in nroff)
R

Roman/Bold
RB[Roman-arg| [bold-arg] [Roman] [bold] [Roman] [bold]

Read insertion from terminal
RD [prompt] [diversion] [string]

Reference end
.RF

Roman/Italic
.RI[Roman-arg] [italic-arg] [Roman] [italic] [Roman] [italic]

Reference list start
RL [text-indent] [1]

4-79

XENIX Text Processing

RP

RS

SA

SG

SK

SP

TC

4-80

Produce reference page
RP arg] [arg]

Referencestart
RS {string-name|

Settroff pointsize and vertical spacing
.S [size] [spacing]

Setadjustment (right margin justification) default
SA [arg]

Signature line
SG [arg] [1]

Skip pages
SK [pages|

Space—vertically
SP [lines]

Table title
.TB (title] [override] [flag]

Table of contents
.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2] [head3]
[head4] {head5]

Table end
.TE

Table header
.TH [N]

Title of memorandum
.TL [charging-case] [filing-case|

TechnicalMemorandum number(s)

TM [number] ...

VL

MM Reference
Top-of-page macro
.TP

Table start

Table-of-contents userexit
TX

Table-of-contents user exit (suppresses ‘‘ CONTENTS’’)
TY

Variable-item liststart
VL text-indent [mark-indent] [1]

VM Vertical margins

VM [top] [bottom]

WC Width control

.WC[format]

4.15.1 Strings

The following is an alphabetic list of string names used by MM,
giving for each abrief description and an initial default value.

Ci

DT

EM

HF

Contents indent up to seven arguments for heading
levels.

Footnote numberer.

In nroff: \u\\n+ (:p\d

In troff: \v’-.4m’\s-3\\n+ 9:p\sO\v’.4m’

Date. The currentdate, unlessoverridden.

Em dash string. Used by both nroffand troff

Heading font list, up to seven codes for heading levels 1

through 7
3322222(levels 1 and 2 bold, 3-7 underlined in nroff,

4-81

XENIX Text Processing

italic in troff)

HP Heading point size list, up to seven codes for heading
levels 1 through7

Le Title for LISTOF EQUA TIONS

Lf Title for LIST OF FIGURES

Lt Title for LIST OF TABLES

Lx Title for LIST OF EXHIBITS

RE SCCSRelease and MM
Release Level

Rf Reference numberer

Rp Title for References

Tm Trademark string places the letters ‘“TM’’ half a line

above the text thatitfollows
4.15.2 Number Registers

This section provides an alphabetical list of register names, giving
for each a brief description, initial (default) value, and the legal
range of values (where [m:n] means values from mto ninclusive).

Any register having a single-character name can be set from the
command line. An asterisk attached to aregister name indicates that
that register can be set only from the command line or before the
MM macro definitions are read by the formatter.

A Handles preprinted forms
0, [0:2]

Au Inhibits printing of author’s location, department, room, and

extension in the from portion of amemorandum
1,[0:1}

4-82

PN

Cl

Cp

De

Df

Eq

Ex

Fs

MM Reference

Copy type (Original, DRAFT, etc.)
0(Original), [0:4]

Contents level (i.e., level of headings saved for table of

contents)
2,[0:7]

Placementof Listof Figures, etc.
1 (on separate pages), [0:1]

Debugflag
0, [0:1]

Display eject register for floating displays
0, [0:1]

Display format register for floating displays
5, [0:5]

Static display pre- and post-space
1, [0:1]

Equation counter, used by .EC macro
0, [0:?], incremented by 1 foreach .EC call.

Page-ejection flag for headings
0(no eject), [0:7]

Equation label placement
0(right-adjusted), [0:1]

Exhibit counter, used by .EX macro
0,[0:?], incremented by 1 foreach .EX call.

Figure counter, used by .F'G macro
0,[0:?], incremented by 1 foreach .FG call.

Footnote space (i.e., spacing between footnotes)
1,[0:7]

4-83

XENIX Text Processing

H1-H7 Heading counters forlevels 1-7

Hb

Hy

Ls

4-84

0, [0:?], incremented by .H of corresponding level or HU if at
level given by register Hu. H2-H7 are resetto O by any heading
atalower-numbered level.

Headingbreak level (after . and .HU)
2, [0:7]

Heading centeringlevel (for H and .HU)
0 (no centered headings), [0:7]

Heading temporary indent(after .H and .HU)
1 (indentas paragraph), [0:2]

Headingspace level (after .H and .HU)
2 (space only after .H 1 and .H 2), [0:7]

Heading type (for .H:single or concatenated numbers)
0 (concatenated numbers: 1.1.1, etc.), {0:1]

Headinglevel (forunnumbered heading . HU)
2(.HU at the same level as .H 2), [0:7]

Hyphenation control for body of document
0 (automatic hyphenation off), [0:1]

Length of page
66, (20:?] (11i, [2i:?] in troff these values must be scaled.

Listof Equations
0(list not produced) [0:1]

Listof Figures
1 (listproduced) [0:1]

Listindent
6, [0:7]

Listspacing between items by level
5 (spacing between all levels)

Lt

Np

Oc¢

of

Pi

Ps

Pt

Si

MM Reference
Listof Tables
1 (list produced) [0:1]

List of Exhibits
1 (list produced) [0:1]

Numbering style
0, [0:5]

Numbering style for paragraphs
0 (unnumbered) [0:1]

Off setof page
.751,{0:?] (0.5i, [0i:?] in troff

Table of Contents page numbering style
0(lowercase Roman), {0:1]

Figure caption style
0(period separator), [0:1]

Page number, managed by MM.
0,{0:7}

Paragraph indent
5,[0:7]

Paragraph spacing
1 (one blank space between paragraphs), [0:7}

Paragraph type
0 (paragraphs always left-justified), [0:2]

Pointsize
10, {6:36]

Standard indent for displays
5,[0:?]

Type of nroff output device
0, [0:2]

4-85

XENIX Text Processing
Tb Table counter
0, [0:?], incremented by 1 foreach .TBcall.

U Underliningstyle for . H and . HU
0 (continuous underline when possible), [0:1]

W Width of page (line and title length)
6i, [10:1365] (6i, [2i:7.54i] in troff

4-86

Chapter 5
Using Nroff /Troff

5.1 Introduction 1

5.2 Inserting Commands 2

5.3 PointSizes and Line Spacing 3
5.4 Fontsand Special Characters 5
5.5 IndentsandLineLengths 7
56 Tabs 9

5.7 DrawingLines and Characters 10
5.8 Strings 13

5.9 Macros 14

5.10 Titles, Pagesand Numbering 16
5.11 NumberRegistersand Arithmetic 18
5.12 Macros with Arguments 20
5.13 Conditionals 22

5.14 Environments 24

5.15 Diversions 24

Using Nroff/Troff

5.1 Introduction

Nroff and troff are the XENIX text formatting programs for
producing high-quality printed output on the lineprinter and
phototypesetter, respectively. Commands in the two formatting
programs nroff and troff are identical, although those specifications
which are impossible to achieve on a lineprinter—like changes in
point size, font, or variable spacing—are either approximated or
ignored by nroff. The output of nroff and troff may look dramatically
different, but this is largely the result of the limitations of
conventional lineprinters. In this chapter, the two programs will be
treated together; the names nroff and troff are used synonymously.
Commands not recognized by nroff or which result in significantly
different output willbe noted.

Wherever possible, you should avoid using nroff or troff directly. In
many ways, nroff and troff resemble computer assembly languages:
they are powerful and flexible, but they require that many operations
must be specified at a level of detail and complexity too difficult for
most people to use effectively. That is why it is suggested that you
use the MM macro package instead. If you mustdeal with specialized
text, you can use the eqn macros for typesetting mathematics and
the thl program for producing complex tables. Eqn and tbl are
discussed in Chapters 10 and 11 of this manual.

For producing running text, whether or not it contains mathematics
or tables, you will ordinarily want to use the MM macro package,
described in Chapter 3, ‘‘Using the MM Macros’’ and Chapter 4,
‘““MM Reference’.

All these macro packages offer the capability of meeting most
formatting requirements. You may find you have little or no need to
use nroff/troff directly. The macros define formatting rules and
operations for specific styles of documents. The definitions are
concise: in most cases two-letter commands. In those cases where an
existing macro will not do the job, the solution is not to. write an
entirely new set of nroff /troff instructions from scratch, but to make
small adaptations to macros you are already using.

This chapter is meantto introduce you to the formatting possibilities
of nroff/troff. It does not discuss every command or operation in
detail. The emphasis is on demonstrating simple and commonly
used specifications, with examples of some of the variations you may

XENIX Text Processing

need to create.

The following topics are introduced in this tutorial:
— Specifying pointsize, fonts, and special characters
— Determiningline spacing, line lengths, indents, and tabs
— Usingstring definitions and macros
— Specifying title and pagination styles

— Specifying conditionals, environments, and diversions
5.2 Inserting Commands

To use nroff or troff you intersperse formatting commands with the
actual text you want printed, just as you did with MM commands
described in the last chapter. You will notice that nroff and troff
commands are in lowercase, so you will not confuse them with the
MM macros. Most nroff and troff commands are placed on a line
separate from the textitself, beginning with a period, one command
per line. For example, if you had a file that contained the following
lines:

Some text.
.ps 14
Some more text.

the .ps command would instruct troff to change the pointsize, thatis,
the size of the letters being printed, to 14 point (one pointis 1/72-
inch).Youroutput would look like this:

Some text. Some more text.

If you were to use nroff to output this same file to the lineprinter,
nroff would ignore the .ps command and you would see no difference
in the size of yourletters.

Some nroff/troff commands do occur in the middle of a line. To
produce

This line contains font and point size changes.

Using Nroff/Troff

you have to type
This \fBline\fR contains \fIfont and \s+ 2point size\s-2 changes.

The backslash character ‘‘\’’ is used to introduce nroff/troff
commands and special characters within aline of text.

5.3 Point Sizes and Line Spacing

As we Just saw, point size and vertical spacing are not normally
controllable in nroff (lineprinter) output. In troff, the command .ps
sets the pointsize. One pointis 1/72-inch, so 6-point characters are
at most 1/12-inch high, and 36-point characters are 1/2-inch. There
are 15 pointsizes available, as illustrated:

6 polat In Xanadu did Kubhia Khaa...

7 point: In Xanadu did Kubhla Khan...

8 point: In Xanadu did Kubhla Khan...

9 point: In Xanadu did Kubhla Khan...

10 point: In Xanadu did Kubhla Khan...

11 point: In Xanadu did Kubhla Khan...

12 point: In Xanadu did Kubhla Khan...
14 point: In Xanadu did Kubhla Khan...

16 point 18 point 20 point

22 24 28 30

If the number after .ps is notone of these legal sizes, itisrounded up
to the next valid value, to a maximum of 36. If no number follows
.ps, troffreverts to its previous size. Troffbegins with adefault point
size of 10.

Point size can also be changed in the middle of aline or even a word
with the in-line command ‘“\s”’. To produce

The XENIX system is derived from the U NIX system.
type
The \s12XENIX\s8 system is derived from the \s12UNIX\s8 system.

The \s should be followed by alegal pointsize. An \sO causes the size
to revert to its previous value. An \s1011 means *‘size 10, followed

5-3

XENIX Text Processing

byan 11",
Relative size changes are possible. The following
The \s+ 2XENIX\s-2 system

increases the point size by two points, then restores it. The amount
of the relative change is limited to asingle digit.

Another feature to consider is the spacing between lines, which is set
independently of the point size. Vertical spacing is measured from
the bottom of one line to the bottom of the next. The command to
control vertical spacing is .vs. For running text, it is usually best to
setthe vertical spacing about 20%bigger than the pointsize.

For example, to use what typesetters call ‘9 on 11°’, that is, a point
size of 9 with a vertical spacing of 11, you would insert the following
commands:

.ps 9
.vs 11p

If you do not specify a point size or vertical spacing, troff
automatically uses 10 on 12.

Point size and vertical spacing make a substantial
difference in the amount of text per square inch. (This is

120n14.)

Polntsize and vertical spacing make asubstantial difference in the amountof textpersquare iInch. Forexample, 10
on 12 uses about twice as muchspace 287 on 8. This1s60n 7, whichtseven dler, and packs al words per
line.

When you use the commands .ps and .vs without numbers, troff
reverts to the previoussize and vertical spacing.

The .sp command can be used to get vertical space. Without a
number, it gives you one blank line (one unit of whatever .vs has
been setto). The .sp can be followed by aunitspecification:

.sp 2i
means ‘‘two inches of vertical space’’. The command:
.sp 2p

means ‘‘two points of vertical space’’. The command:

5-4

Using Nroff /Troff

.sp 2

means ‘‘two vertical spaces’’ of whatever size .vsis set to. Be careful
to specify the correct unitof space.

Troff also understands decimal fractions in most commands, so
.sp 1.51

is aspace of 1.5 inches. Scaling (designating a unit of measure such
as inches, points, or picas) can also be used after .vs to define line
spacing, and in fact after most commands that deal with physical
dimensions.

5.4 Fonts and Special Characters

The phototypesetterislimited to four differentfonts at any one time.
Normally three fonts (Roman, italic and bold) and one collection of
special characters are permanently mounted. What these fonts will
actually look like depends on your own typesetting equipment. Here
are the Roman, italic, and bold character sets:

abcdefghijklmnopgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcedefghyklmnopgrstuvwzyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Troff prints in Roman by default, unless instructed otherwise. To
switch into bold, use the .ft (font) command

ftB
and for italics,
ft I

To return to roman, use .ft R; to return to the previous font,
whatever it was, use either .ft P or just .ft. The underline command
.ul causes the next input line to print in italics. The .ul can be
followed by a count to indicate that more than one line is to be
italicized.

Fonts can also be changed within a line or word with the in-line
command ‘‘\f”’. The words

XENIX Text Processing

boldface text
are produced with
\fBbold\fIface\fR text

There are other fonts available besides the standard set, although
only four can be mounted at any given time. The command .fp tells
troff what fonts are physically mounted on the typesetter:

fp3H

says that the Helvetica font is mounted on position 3. Appropriate
.fp commands should appear at the beginning of your document if
you do notuse the standard fonts.

It is possible to print a document by using font numbers instead of
names. For example, \f3 and .ft 3 mean ‘‘whatever fontis mounted
atposition 3”’. Normal settings are Roman fonton 1, italic on 2, bold
on 3, and special on 4. An approximation of bold font can also be
created by overstriking letters with aslight offset. This is done with
the command .bd.

Special characters have four-character names beginning with ‘“\(”’,
and they may be inserted anywhere. In particular, Greek letters are

all of the form ‘‘\(*~ ’’, where ‘‘~ ’’ is an uppercase or lowercase
Roman lettersimilar to the Greek. Toget

E(axf) — oo
in troff we have to type

\(*S(\(*a\(mu\(*b) \(\(-> \(if

which is aseries of special characters:

\(*s
(
\(*a
\(mu
\(*b

)
\(=>
\(if

You could also use the mathematical typesetting program egn to
achieve the same effect:

8 1"”%)(9"[“]

5-6

Using Nroff /Troff

SIGMA (alpha times beta) — > inf

Whether you choose to use eqn or the troff special character set
should depend on how often you use Greek or other special
characters.

Nroff and troff treat each four-character name as a single character.
Some characters are automatically translated into others: grave and
acute accents (appstrophes) become open and close single quotation
marks (’); the combination of single quotation marks is generally
preferable to the double quotation mark character. (). A typed
minus sign becomes ahyphen-. To print an explicit minussign, use
“\-". To printabackslash, use *“\e”’

5.5 Indents and Line Lengths

Troff starts with a default line length of 6.5 inches. To reset the line
length, use the .11 {line length) command, as in

Al 6i

to indicate a line length of 6 inches. The length can be specified in
the same ways as the space (.sp) command, in inches, fractions of
inches, or points.

The maximum line length provided by the typesetter is 7.5 inches.
To use the full width, however, you will have to reset the default
physical left margin, which is normally slightly less than one inch
from the left edge of the paper. This is done with the page offset
{.po) command:

.po O
This sets the off set as far to the left as it will go.

The indent (.in) command causes the left margin to be indented by a
specified amount from the page off set. If we use .in to move the left
margin in, and .1l to move the right margin to the left, we can make
off set blocks of text. For example,

5-7

XENIX Text Processing

.in 0.6i

11 -0.6i

text to be set into a block
Al + 0.6i

.in -0.61

will create a block thatlooks like this:

Pater noster qui est in caelis sanctificetur nomen
tuum; adveniat regnum tuum; fiat voluntas tua, sicut
in caelo, etin terra... Amen.

Notice the use of + and ~ to specify the amount of change. These
change the previoussetting by the specified amount, rather than just
overriding it. The distinction is quite important: .1l + 1i makes lines
one inch longer than currentsetting; .1l 1i makes them one inch long.
If no argument is specified with .in, .1, and .po, troff reverts to the
previous value.

To indent a single line, use the temporary indent (.ti) command.
The default unit for .ti, as for most horizontally oriented commands
such as 1], .in, .po, is an em. An em is roughly the width of the letter
m in the current point size. Although inches may seem a more
intuitive measure to nontypesetters, ems are ameasure of size thatis
proportional to the current pointsize. If you want to make text that
keeps its proportions regardless of pointsize, you should use ems for
all dimensions. Ems can be specified in the same way as points or
inches:

.t 2.5m

Lines can also be indented negatively if the indent is already
positive:

ti -0.3i

causes the next line to be moved back three tenths of an inch. You
can make a decorative initial capital, indent a whole paragraph, and
move the initial letter back with a.ti command:

Pater noster qui est in caelis sanctificetur nomen
tuum; adveniat regnum tuum; fiat voluntas
tua, sicut in caelo, et in terra. ... Amen.

This is achieved with the following:

Using Nroff/Troff

A1 -0.3i
§il

in + 3i
4 -0.31

The P is made bigger with a ‘“‘\s36P\s0”’. It also has been moved
down from its normal position with a local motion, as described in
Section 5.7, “‘Drawing Lines and Characters’’.

5.6 Tabs

Tabs can be used to produce output in columns, or to set the
horizontal position of output. Typically, tabs are used only in
unfilled text. Tab stops are set by default every 1/2-inch from the
current indent, but can be changed with the .ta command. To set
stopseveryinch, forexample, use:

.ta 1i 2i 3i 4i 5i 61
The stops are left-justified, as they are on a typewriter, so lining up
columns of right-justified numbers can be painful. If you have many
numbers, or if you need more complicated table layout, don’t

attempt to use nroff or troff commands. Use the tbl program instead.
(See Chapter7, ‘‘Formatting Tables’’.)

For a handful of numeric columns, you can precede every number
by enough blanks to make itline up when typed:

.nf
.ta 1i 2i 3i

1 tab 2 tab 3
40 tab 50 tadb 60
700 tab 800 tab 900
A

Then change each leading blank into the string ‘“\0’’. This is a
character that does not print, but that has the same width as a digit.
When printed, this will produce

1 2 3
40 50 60
700 800 900

5-9

XENIX Text Processing

It is also possible to fill up tabbed-over space with a character other
than a space by setting the ‘‘tab replacement character” with the tab
character (.tc) command:

.ta 1.51 2.5i
te \(ru
Name tab Age tad

produces

Name Age

To reset the tab replacement character to a blank, use .tc with no
argument. Lines can also be drawn with the \l command, described
below.

5.7 Drawing Lines and Characters

Troff provides a way to pla‘ée characters of any size at any place, asin
the examples Area = wr” and the big P in the Paternoster (See
Section 5.5). Commands can be used to draw special characters or to
give your output a particular appearance. Most of these commands
are reasonably straightforward, butlook rather complicated.

For example, without eqn, subscripts and superscripts are most
easily done with the half-line local motions \u and \d. To go back up
the page half a point-size, insert a \u at the desired place; to go down,
inserta\d. Thus

Area = \(*pr\u2\d
produces
Area = 7rr2
To make the 2smaller, bracket it with
\s-2...\sO

Since \u and \d are relative to the current point size, be sure to put
them either both inside or both outside the size changes, or the
results will be unbalanced.

If the space given by \u and \d doesn’t look right, the \v command
can be used to request an arbitrary amount of vertical motion. The
in-line command

Using Nroff/Troff

\v’(amount)’

causes motion up or down the page by the specified amount. For
example, to move the Pin Pater, the followingis required:

.ta 11

.in + 0.6i \’move paragraph in
- 0.31 \"shorten lines

4i- 0.3i V’move P back
\v’1’\s36P\s0\v’\-1’ater noster qui est

in caelis ...

The backslash \”is a troff command that causes the restof the line to
be ignored. Itis useful foradding comments to the macro definition.

A minus sign, after ‘‘\v’’’ causes upward motion, while no signor a
plus sign causes downward motion. Thus ‘‘\v/~ 1’ causes an
upward vertical motion of one line space.

There are many other ways to specify the amountof motion:
\v'0.1¢’

\v)3p)
\v’- 0.5m’

and so on are all legal. Notice that the specifiers, i for inches, p for
points or m for ems, go inside the quotation marks. Any character
can be used in place of the quotation marks, as well as in any troff
commands described in this section.

Since troff does not take within-the-line vertical motions into
account when figuring out where it is on the page, output lines can
have unexpected positions if the left and right ends aren’t at the
same vertical position. Thus \v, like \u and \d, should always
balance upward vertical motion in aline with the same amountin the
downward direction.

Arbitrary horizontal motions are also available: \h is quite analogous
to \v, except that its default scale is ems instead of line spaces. The
specification \h’-0.1i’ causes a backwards motion of a1 /10-inch.

Frequently \h is used with the width function \w to generate motions
equal to the width of some characterstring. The construction

\w’thing’

5-11

XENIX Text Processing

is a number equal to the width of thing in machine units (1/432-
inch). All troff computations are actually done in these units. To
move horizontally the width of an x, you can use:

\h’\w’x’uw’

As we mentioned above, the default scale factor for all horizontal
dimensions is m for ems, so here u for machine units must be
specified, or the motion produced will be far too large. Nested
quotation marks are acceptable to troff; be careful to supply the right
number.

There are also several special-purpose troff commands for local
motion. We have already seen \0, which is an unpaddable
whitespace of the same width as a digit. Unpaddable means that it
will never be widened or split across a line by line justification and
filling. There is also \(space), which is an unpaddable character the
width of aspace, \| which is half that width,.\", which is one quarter
of the width of aspace, and \&, which has zero width. This lastone is
useful, for example, when entering a text line which would
otherwise begin with adot(.).

The command ‘“\o”’, used like
\o’set of characters’
causes up to 9 characters to be overstruck, centered on the widest.
This can be used for accents, asin:
syst\o”e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique
which makes:
systéme t€l€phonique
The accents are treated by troff as single characters.

You can make your own overstrikes with another special
convention, \z, the zero-motion command, which suppresses the
normal horizontal motion after printing the single character x, so
another character can be laid on top of it. Although sizes can be
changed within \o, it centers the characters on the widest, and there
can be no horizontal or vertical motions, so \z may be the only way to
getwhatyou want.

You can create rather ornate overstrikes with the bracketing
function \b, which piles up characters vertically, centered on the

5-12

Using Nroff/Troff

current baseline. Thus you can get big brackets by constructing
them with piled-up smaller pieces:

=]}

by typing in this:

\b?\(1t\(1k\(1b’\b’\(Ic\(}f x \b’\(re\(rf\b’\(rt\(rk\(rb’
Troff also provides a convenient facility for drawing horizontal and
vertical lines of arbitrary length with arbitrary characters. \I'1i’ draws

aline one inch long, like this: . The length can be
followed by the character to use if the _ isn’t appropriate. For
example, \I'0.5i./ draws a half-inch line of dots: The

construction \L is entirely analogous, except that it draws a vertical
line instead of horizontal.

5.8 Strings

Obviously, if a paper contains a large number of occurrences of an
acute accentoveraletter e, typing \o”e\'” for each occurrence would
be agreat nuisance. Fortunately, nroff and troff provide afacility for
storing any string of text in astring definition. Strings are among the
nroff and troff mechanisms that allow you to type a document with
less effort and organize it so that extensive format changes can be
made with few editing changes. Strings are defined with the define
(.ds) command. Thereafter, whenever you need to use the string,
you can replace it with the shorthand you have defined. For
example, the line:

‘ds e \one\lﬂ
defines the string e to have the value €.

String names may be either one or two characters long. To
distinguish them from normal text, single-character strings must be
preceded by ‘“‘*"’ and double-character strings by ‘‘\¥(’’. Thus, to
use the definition of the string e as above, we can say t*el*ephone.
If a string must begin with blanks, define it by using a double
quotation mark to signal the beginning of the definition. For
example,

5-13

XENIX Text Processing

.ds xx 7 text

defines the string ‘‘xx”’ as the word ‘‘text’’ preceded by several
blanks. There is no trailing quote; the end of the line terminates the
string.

A string may actually be several lines long; if troff encounters a \ at
the end of any line, itis thrown away and the next line added to the
current one. So you can make along string simply by ending each
line but the last with a backslash:

.ds xx this is a very long string)\
continuing on the next line\
and on to the next

Strings may be defined in terms of otherstrings, or even in terms of
themselves.

5.9 Macros

In its simplest form, amacro is just ashorthand notation—somewhat
like a string. For example, suppose we want every paragraph in a
document to start with aspace and atemporary indentof two ems:

.8p
.ti +2m

To save typing, we could translate these commands into one macro:
P
which troff would interpret exactly as

.Sp
ti +2m

If you first define it with the .de command, the macro .P can replace
the longerspecification:
.de P

.sp
ti 4+ 2m

The first line names the macro, in this case .P for paragraph; it is in
uppercase to avoid conflict with any existing nroff or troff command.

Using Nroff /Troff

The last line marks the end of the definition. In between is the text,
which is simply inserted whenever troff sees the command or macro
call .P. A macro can contain any mixture of text and formatting
commands. The definition of .P naturally has to precede its first use.
Names are restricted to one or two characters.

Using macros for commonly occurring sequences of commands not
only saves typing, but it makes later changes much easier. Suppose
we decide that the paragraph indentis too small, the vertical space is
much too big, and roman fontshould be forced. Instead of changing
the whole document, we need only change the definition of .P to
somethinglike

de P \” paragraph macro
.sp 2p

i +3m

ftR

and the change takes effecteverywhere the .Pmacroisinvoked.

As another example of a macro definition, consider these two which
startand end a block of off set, unfilled text:

.de BS \” start indented block
.sp

.nf

.in 4+ 0.31

.de BE \” end indented block
.sp

A

.in \(mi0.3i

Now we can surround text with the commands .BS and .BE to create
indented blocks. Uses of .BS and .BE can be nested to get blocks
within blocks. To change the indent, it is only necessary to change
the definitions of .BS and .BE, not every occurrence of the indentin
the entire document.

The macro package MM, as well as the two specialized macro
packages, tbl and eqn, are simply very large collections of macro
definitions which replace more cumbersome arrays of nroff and troff
commands. One thing to keep in mind when you consider defining a
new macro, is that unless you are doing something quite unusual, an
MM macro probably already exists for that purpose. So check your
documentation carefully before reinventing the wheel.

XENIX Text Processing

5.10 Titles, Pages and Numbering

None of the features described in this section are automatic. You
may wish to copy these specifications literally until you feel more
comfortable with these commands. For example, suppose you want
to have a title at the top of each page. You have to give the actual
title, along with instructions about when to print it, and directions
for its appearance. First, a new page (.NP) macro can be created to
process titles and the like at the end of one page and the beginning of
the next:

.de NP

’bp

’sp 0.51

.tl ’left top’center top’right top’
’sp 0.3i

To start at the top of a page, a begin page (.bp) command should be
included, which causes a skip to the top of the next page. Then we
space down half an inch, use the title (.tl) command to print the title
and space another0.3 inches.

To ask for .INP at the bottom of each page, we need to specify that the
processing for anew page should start when the textis within an inch
of the bottom of the page. This is done with awhen (.wh) command:

wh \-1i NP

(Note that no dot is used before NP; this is simply the name of a
macro, not a macro call.) The minus sign means ‘“measure up from
the bottom of the page,’’ so— 1i meansone inch from the bottom.

The .wh command appears in the input outside the definition of .NP;
typically the input would be

.de NP
macro defined here

.wh - 1i NP
As textis actually being output, nroff/troff keeps track of its vertical
position on the page, and after aline is printed within one inch of the

bottom, the .NP macro is activated. The .NP macro causes askip to
the top of the next page, then prints the title with the appropriate

5-16

Using Nroff /Troff

margins. All the input text collected but not yet printed is flushed
outas soon as possible, and the nextinputline is guaranteed tostarta
new line of output; a break is caused in the middle of the current
output line when anew page is started. The leftover part of that line
is printed at the top of the page, followed by the nextinputline on a
new output line. Using’ instead of dot (.) for acommand tells nroff
and troff that no break is to take place; the outputline currently being
filled should not be forced out before the space or new page. For
example, ’bp and ’sp are used here instead of .bp and .sp.

The list of commands that cause abreak is short:
.bp .br .ce fi .nf .sp .in .ti

Allothers cause no break, regardless of whether you use aperiod(.)
or a ’. If you really need a break, add a .br command at the
appropriate place.

If you change fonts or point sizes frequently , you may find that if
you cross a page boundary in an unexpected font or size, your titles
come out in that size and font instead of what you intended.
Furthermore, the length of atitle is independent of the current line
length, so titles will come out at the default length of 6.5 inches
unless you change it, which is done with the .ltcommand. There are
several ways to correct point sizes and fonts in titles. The simplest
way is to change .NP to set the proper size and font for the title, then
restore the previous values, like this:

.ta .8i

.de NP

’ bp

’sp 0.51

ftR \” set title font to Roman
.ps 10 \” and size to 10 point

Jt6i \” and length to 6 inches

.tl ’left’center’right’

.ps \” revert to previous size
ft P \” and to previous font
’sp 0.3i

This version of .NP does not work if the fields in the .tl command
contain size or font changes.

To get afooter atthe bottom of a page, you can modify .NPso it does
some processing before the ’bp command, or split the job into a

XENIX Text Processing

footer macro invoked at the bottom margin and a header macro
invoked at the top of the page.

Output page numbers are computed automatically starting at 1, but
no numbers are printed unless you ask for them. To get page
numbers printed, include the character ““%’’ in the .tl line at the
position where you want the number to appear. Forexample

.tl)’_ %_),

centers the page number inside hyphens. You can set the page
number at any time with either .bp n, which immediately starts anew
page numbered n, or with .pn n, which sets the page number for the
next page butdoesn’t cause askip to the new page.

5.11 Number Registers and Arithmetic

Troff uses number registers for doing arithmetic and defining and
using variables. Number registers, like strings and macros, are
useful for setting up a document so it is easy to change later, as well
as for doing any sort of arithmetic computation. Like strings,
number registers have one- or two-character names. They are set by
the .nr command, and are referenced by \nz (one-character name)
or \n(zy(two-character name).

There are quite a few pre-defined number registers maintained by
troff, among them %for the current page number, .nl for the current
vertical position on the page; .dy, .mo and .yr for the current day,
month and year; and .s and .f for the current pointsize and font. Any
of these can be used in computations like any other register, but
some, like .s and .f, cannot be arbitrarily changed with an .nr
command.

In MM, most significant parameters are defined in terms of the
values of ahandful of number registers. These include the pointsize
fortext, the vertical spacing, and the line and title lengths. Toset the
point size and vertical spacing for the following paragraphs, for
example, you could say

.nrPS 9
.nr VS 11

This would set the point size to 9 and the vertical spacing to 11
points.

Using Nroff/Troff

The paragraph macro .Pis defined as follows:

ta 11

.de.P

.ps \\n(PS \” reset size
vs \\n(VSp V" spacing

ftR \” font
sp 0.5v \” half a line
4+ 3m

This sets the font to Roman and the point size and line spacing to
whatevervalues are stored in the number registers PSand VS.

Two backslashes are required to quote a quote. Thatis, when nroff
or troff originally read the macro definition, they peel off one
backslash to see what is coming next. To ensure that another is left
in the definition when the macro is actually used, we have to put two
backslashes in the definition. If only one backslash is used, point
size and vertical spacing will be frozen at the time the macro is
defined, notwhen itisused.

Protection with extra backslashes is only needed for \n, *, \$, and \
itself. Commands like \s, \f, \h, \v, and so on do not need an extra
backslash, since they are converted by nroff and troff to an internal
code when they are read.

Arithmetic expressions can appear anywhere that a number is
expected. Forexample,

.r PS \\n(PS-2

decrements PS by 2. Expressions can use the arithmetic operators
+,-,%*/,%(mod), the relational operators >, >=, <, <=, =,
and !={(notequal), and parentheses.

There are a few things to consider in using number register
arithmetic. First, number registers hold only integers. Nroff/troff
arithmetic uses truncating integer division. Second, in the absence
of parentheses, evaluation is done left-to-right without any operator
precedence, including relational operators. Thus

7%4+3/13

becomes ‘‘— 1’’. Number registers can occur anywhere in an
expression, and so can scale indicators like p, i, m, and so on.
Although integer division causes truncation, each number and its

5-19

XENIX Text Processing

scale indicator is converted to machine units (1/432-inch) before
any arithmetic is done, so 1i/2u evaluates to 0.5i correctly.

The scale indicator u {for "units”) often has to appear when you
wouldn’t expect it--in particular, when arithmetic is being done in a
contextthatimplies horizontal or vertical dimensions. For example,

Al 71/2u

A safe rule is to attach a scale indicator to every number, even
constants.

For arithmetic done within a.nr command, there is no implication of
horizontal or vertical dimension, so the default units are units, and
7i/2 and 7i/2u mean the same thing. Thus

ar 1l 71/2
Al Ou

issufficiently explicit as long as you use u with the .l command.

5.12 Macros with Arguments

You can define macros that can change from one use to the next
according to parameters supplied as arguments. To make this work,
you need two things: first, when you define the macro, you must
indicate thatsome parts of it will be provided as arguments when the
macro is called. Second, when the macro is called you must provide
actual arguments to be plugged into the definition.

To illustrate, let’s define a macro .SM that will printits argument two
points smaller than the surrounding text. The definition of .SM is

.de SM
\s-2\\$1\s+ 2

Within a macro definition, the symbol \\$n refers to the nth
argument that the macro was called with. Thus \\$1 is the string to
be placed in asmaller pointsize when .SM is called.

The following definition of .SM permits optional second and third
arguments that will be printed in the normal size:

.de SM
\\$3\s-2\\$1\s+ 2\\$2

5-20

Using Nroff/Troff

Arguments not provided when the macro is called are treated as
empty. It is convenient to reverse the order of arguments because
trailing punctuation is much more common than leading. The
number of arguments that a macro was called with is available in
numberregister $.

For example, let’s define a macro .BD to create a bold Roman for
troff command names in text. It combines horizontal motions,
width computations, and argument rearrangement.

.de BD
\E\\$3\T\\$1\h " \-\w'\\$1 u+ 1u’\\$1\[P\\$2

The \h and \w commands need no extra backslash, as we discussed
earlier in this section. The \& is there in case the argument begins
with a period.

Two backslashes are needed with the \\$n commands to protectone
of them when the macro is being defined. Consider a macro called
.SH which produces section headings rather like those in this paper,
with the sections numbered automatically, and the title in bold in a
smallersize. You would use itin thisform:

.SH ”Section title ...”

If the argument to a macro is to contain spaces, then it must be
surrounded by double quotation marks.

Here is the definition of the .SH macro:

.ta .751 1.15i

.ar SH 0 \” initialize section number
.de SH

.sp 0.31

ftB

.or SH \\n(SH+ 1 \” increment number
.ps \\n(PS- 1 \” decrease PS
\\n(SH. \\$1 \” number. title

.ps \\n(PS \” restore PS

.sp 0.3i

ftR

The section number is kept in number register SH, which is
incremented each time just before it is used. Note that a number

5-21

XENIX Text Processing

register may have the same name as a macro without conflict, but a
string may not.

We used \\n(SH instead of \n(SH and \\n(PS instead of \n(PS. If we
had used \n(SH, we would get the value of the register at the time
the macro was defined, not at the time it was used. Similarly, by
using \\n(PS, we get the pointsize atthe time the macro is called.

As an example that does not involve numbers, recall the .NP macro
which hada

.tl ’left’center’right’

We could make these into parameters by using instead
A\\KLT\\H CT'\\#{RT’

so the title comes from three strings called LT, CT and RT. If these
are empty, then the title will be ablank line. Normally CT would be
setwith something like

ds CT -%-

butyou can also supply private definitions for any of the strings.
5.15 Conditionals

To cause the .SH macro to leave two extrainches of space just before
section 1, but nowhere else, you can put a test inside the .SH macro
to determine whether the section numberis 1, and add some space if
it is. The .if command provides a conditional test just before the
headingline is output:

Af \\n(SH=1 .sp 2i \” first section only

The condition after the .iff can be any arithmetic or logical
expression. If the condition is logically true, or arithmetically
greater than zero, the restof the line is treated as if it were text. If the
condition is false, or zero or negative, the rest of the line is skipped.
It is possible to do more than one command if a condition is true.
Suppose several operations are to be done before section 1. One
possibility is to define a macro .S1 and invoke it if we are about to do
section 1, as determined by an .if:.

5-22

Using Nroff /Troff

.de S1

--- processing for section 1 ---
.de SH

if \\n(SH=1 "S1

An alternate way is to use the extended form of the .if, like this:

Af \\n(SH=1 \{-- processing
for section 1 ----\}

The braces \{and \} mustoccurin the positions shown or you will get
unexpected extralines in youroutput.

Nroff and troff also provide an if-else construction. A condition can
be negated by preceding it with !; we get the same effect as above by
using

if \n(SH>1 .81

There are a handful of other conditions that can be tested with .if.
For example, you may need to determine if the current page is even
or odd. The following conditionals give facing pages different titles
when used inside an appropriate new page macro.

.if e .tl ’even page title”’
Af o .tl ’odd page title”’

Two other conditions, which you will find useful when you need to
process text for both lineprinter and typesetter, are n and t. These
can be used to indicate conditions dependent on whether troff or
nroff are beinginvoked.

Af t troff input ...
Af n nroff input ...

Finally, string comparisons may be made in an .if statement. The
following comparison does ‘‘input’ if string 1 is the same as string 2:

e&.if ’stringl’string2’ input

The character separating the strings can be anything reasonable that
is not contained in either string. The strings themselves can
reference strings with *, arguments with \$, and so on.

5-23

XENIX Text Processing

5.14 Environments

In an earlier section, the potential problem of going across a page
boundary was mentioned: parameters like size and font for a page
title may be different from those in effectin the text when the page
boundary occurs. Nroff/troff provides a way to deal with this and
similar situations. There are three environments that have
independently controllable versions of many of the parameters
associated with processing, including size, font, line and title
lengths, fill or no-fill mode, tab stops, and even partially collected
lines. Thus the titling problem may be solved by processing the main
textin one environmentand titles in aseparate environment with its
own suitable parameters.

The environment command .ev n shifts to environment n; n must
be 0, 1 or 2. The command .ev with no argument returns to the
previous environment. Environment names are maintained in a
stack, so calls for different environments may be nested and called in
order. If, for example, the main textis processed in environmentO0,
which is where troff begins by default, we can modify the new page
macro .NP to process titles in environment1 like this:

.de NP

ev 1 \” shift to new environment

1t 61 \” set parameters here

ftR

.ps 10

... any other processing ...

.ev \” return to previous environment

It is also possible to initialize the parameters for an environment
outside the .NP macro, but the version shown keeps all the
processing in one place to make it easier to understand and change.

5.15 Diversions

In page layout there are numerous occasions when it is necessary to
store some text for a period of time without actually printing it.
Footnotes are the most obvious example: the text of the footnote
usually appears in the input long before the place on the page where
it is to be printed is reached. In fact, the place where it is output

5-24

Using Nroff /Troff

normally depends on how big it is. The footnote text must be
preprocessed at least to the extentthatitssize is determined.

Nroff and troff provide a mechanism called adiversion for doing this
processing. Any part of the output may be diverted into a macro
instead of being printed, and then at some convenient time the
macro may be put back into the input. The command .di zybegins a
diversion. All subsequentoutputis collected into the macro zyuntil
the command .di with no argumentsis encountered. This terminates
the diversion. The processed textis available at any time thereafter,
simply by giving the command:

Xy

The vertical size of the last finished diversion is contained in the
built~-in numberregister dn.

For example, suppose we want to implement a keep-release
operation, so that text (such as a figure or table) between the
commands .KS and KE will not be split across a page boundary.
Clearly, when a .KS is encountered, we have to begin diverting the
output so we can find out how bigitis. Then when a KE isseen, we
decide whether the diverted text will fit on the current page, and
printiteither there if itfits, or at the top of the next page if itdoesn’t.
We could use the following to define .KS and .KE:

.de KS \” start keep

.br \” start fresh line

ev 1 \” collect in new environment
il \” make it filled text

di XX \” collect in XX

.de KE \” end keep

.br \” get last partial line

di \” end diversion

A \\n(dn >=\\n(.t .bp \” bp if doesn’t fit

.nf \” bring it back in no-fill

XX \” text

.ev \” return to normal environment

Recall that number register nl is the current position on the output
page. Since output was being diverted, this remains atits value when
the diversion started. The amount of text in the diversion is stored

5-25

XENIX Text Processing

in dn. Another built-in register, .t is the distance to the next trap,
which we assume is at the bottom margin of the page. If the
diversion is large enough to go past the trap, the .if is satisfied, and a
.bp is issued automatically. In either case, the diverted outputis then
brought back with . XX. Itis essential to bring it back in no-fill mode
so nroff /troff will do no further processingon it.

The definition of .KS and .KE is only intended as an example to
demonstrate the power of diversions. You will find the XS and . KE
macros already defined in the MM macro package.

5-26

Chapter 6
Nroff /Troff Reference

6.1 Introduction 1
6.1.1 Invoking nroff and troff 1
6.1.2 Technical Information 2

6.2 Basic FormattingRequests 4
6.2.1 Fontand Character Size Control 4
6.2.2 Page Control 6
6.2.3 TextFilling, Adjusting, and Centering 7
6.2.4 Vertical Spacing 9
6.2.5 Line Length and Indenting 10
6.2.6 Tabs, Leaders, andFields 10
6.2.7 Hyphenation 12
6.2.8 Three Part Titles 12
6.2.9 OutputLine Numbering 13

6.3 Character Translations, Overstrike, and Local Motions 13
6.3.1 Input/Output Conventions and Character Translations
6.3.2 LocalMotions and the Width Function 15
6.3.3 Overstrike, Bracket, Line-drawing,

and Zero-width Functions 16

6.4 Processing Control Facilities 17
6.4.1 Macros, Strings, Diversions, and Position Traps 17
6.4.2 NumberRegisters 21
6.4.3 Conditional Acceptance of Input 22
6.4.4 EnvironmentSwitching 23
6.4.5 Insertions From the Standard Input 23
6.4.6 Input/Output File Switching 24
6.4.7 Miscellaneous Requests 24

6.5 Outputand ErrorMessages 25

6.6 Summary of Escape Sequences and Number Registers 25
6.6.1 Escape Sequences for Characters, Indicators,
and Functions 25

6.6.2 Predefined General NumberRegisters 27

13

6.6.3 Predefined Read-Only Number Registers 27

Nroff/Troff Reference

6.1 Introduction

Nroff and troff are the XENIX text processing formatting programs. Nroff
can be used to output text to terminals, lineprinters, and letter-quality
printers. Troff can be used to output text to a number of phototypesetters
and laser printers. Beth programs use identical commands, which are
interspersed with lines of text. The commands used by both programs allow
you to control the style of headers and footers, footnotes, paragraphs, and
sections. You may specify font and point size, spacing, multiple column
output, and local motions to create overstriking and line drawing effects.

Because nroff and troff are compatible with each other, it is almost always
possible to prepare inputacceptable to both. By using conditionalinput, you
may add commands which are specific to either program.

8.1.1 Invoking nroff and troff

The general form of invoking the formatterson the command line is:
nroff options files

or
troff options files

where options represents any of a number of option arguments and files
represents a list of files containing the document to be formatted. An
argument consisting of a single minus sign (-) is taken to be a filename
corresponding to the standard input. If no filenames are given, input is
taken from the standard input. The options may appearin any orderso long
as they appear before the filenames. They are:

-olist Prints only pages whose page numbers appear in /ist, which
consists of comma-separated numbers and number ranges. A
number range has the form N- M and means pages N through
M; an initial -N means from the beginning to page N, and a final
N- means from N to the end.

-nN Numbers first generated page N.

-sN Stops every N pages. Nroff will halt prior to every N pages
(default N=1) to allow paper loading or changing, and resume
upon receipt of a newline. Troff will stop the phototypesetter
every Npages, produce atrailer to allow changing cassettes, and
willresume afterthe phototypesetter ‘‘start’’ button is pressed.

-mname Prependsthe macro file fusrfib fmac.nameto the inputfiles.

-cname Same as -mname, but uses a compacted form of
Jusrflib fmac.namefor efficiency.

XENIX Text Processing Guide

-raN Registeraissetto N.
-i Reads the standard inputafter the inputfiles are exhausted.
-q ' Invokes the simultaneousinput-outputmode of the rd request.

The following options are recognized by nroffonly:
-Tname Specifies the name of the outputterminal type.

-e Produces equally-spaced words in adjusted lines, using full
terminal resolution.

The following options are recognized by troffonly:

-t Directs output to the standard output instead of the
phototypesetter.

-f Refrains from feeding out paper and stopping phototypesetter
atthe end of the run.

-w Waits until phototypesetter is available, if currently busy.

-b Reports whether the phototypesetter is busy or available. No
textprocessingisdone.

-3 Sends a printable ASCII a.pproxnmation of the results to the
standard output.

-pN Prints all characters in pointsize Nwhile retaining all prescribed

spacings and motions, to reduce phototypesetter elapsed time.

Note thateach option mustbe invoked as a separate argument.
6.1.2 Technical Information

The input to the formatters consists of text lines interspersed with control
lines thatset parameters or otherwise control later processing. Control lines
begin with a ‘‘control character”’, usually a period (.) or a single quotation
mark ('), followed by a one- or two-character name that specifies a basic
‘‘request’’ or the substitution of a user-defined ‘““macro’’ in place of the
control line. The single quotation mark control character (’) suppresses the
‘‘break function,’’ which is the forced outputof a partially filled line caused
by certain requests. The control character may be separated from the
request or macro name by whitespace (spaces and/or tabs) for esthetic
reasons. Names must be followed by either a space or a newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by
means of an ‘‘escape’’ character, normally the backslash (). For example,
the function ‘“‘\nR’’ causes the interpolation of the contents of the number

6-2

Nroff /Troff Reference

register R in place of the function; here R is either asingle character name as
in\nz, or aleft-parenthesis-introduced, two-character name as in \n(zz.

Troff uses 432 units to the inch, corresponding to the Wang Laboratories
phototypesetter which has a horizontal resolution of 1/432-inch and a
vertical resolution of 1/144-inch. Nroff uses 240 units to the inch
internally, corresponding to the least common multiple of the horizontal
and vertical resolutions of various typewriter-like output devices. Troff
rounds horizontal and vertical numerical parameter input to the actual
horizontal and vertical resolution of the typesetter. Nroff similarly rounds
numerical input to the actual resolution of the output device indicated by
the -Toption.

Both Nroff and troff accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in
points, Vis the currentvertical line spacing in basic units, and Cis anominal
character width in basic units, asshown below:

Scale Number of basic units
Indicator Meaning Troff Nroff
i Inch 432 240
c Centimeter 432x50/127 240x50/127
P Pica=1/I6inch 72 240/6
m Em = S points 6xS C
n En=Em/2 3xS C,sameasEm
p Point=1/72inch | 6 240/72
u Basic unit 1 1
v Vertical linespace | V A\
none Default

In nroff, both the em and the en are taken to be equal to the C, which is
output-device dependent; common values are 1/10- and 1/12-inch. Actual
character widths in nroff need not be all the same and.constructed
characters such as — > (—) are often extra wide. The defaultscaling is ems
for the horizontally-oriented requests and functions, including:

Al in ti ta.lt .po .mc\h\|

Vs is the scaling for the vertically-oriented requests and the following
functions:

.pl.wh .ch .dt sp .sv .ne rt .ev \v \x \L

p is the 'scale for the .vs request; and u is the scale for the requests .nr, .if,
and .ie. All other requests ignore any scale indicators. When a number
register containing an already appropriately scaled number is interpolated to
provide numerical input, the unitscale indicator u may need to be appended
to prevent an additional inappropriate default scaling. The number Nmay
be specified in decimal-fraction form but the parameter finally stored is
rounded to an integer number of basic units.

The ‘‘absolute’’ position indicator () may be prepended to a number N to
generate the distance to the vertical or horizontal place N. For vertically

XENIX Text Processing Guide

oriented requests and functions, [Nbecomes the distance in basic units from
the current vertical place on the page orin a‘‘diversion’’ to the vertical place
N. For all other requests and functions, [N becomes the distance from the
currenthorizontal place on the inputline to the horizontal place N.

Forexample,

sp B.2¢c

will space in the required direction to 3.2 centimeters from the top of the
page. Wherever numerical input is expected, an expression involving
parentheses, the arithmetic operators (+, —, /, *, %) and the logical
operators (<, >, <= >= = == & (and), :{or)) may be used. Except
where controlled by parentheses, evaluation of expressions is left-to-right;
there is no operator precedence. In the case of certain requests, an initial +
or — is stripped and interpreted as an increment or decrement indicator
respectively.

Forexample, if the numberregister z contains 2 and the currentpointsize is
10, then

A1 (4.251+ 0P+ 3) /2u
sets the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

Note: numerical parameters are indicated here in two ways. + Nmeansthat
the argument may take the forms N, + N, or — Nand thatthe corresponding
effect is to set the affected parameter to N, to increment it by N, or to
decrementit by Nrespectively. Plain Nmeans thatan initial algebraicsign is
not an increment indicator, but merely the sign of N. Generally,
unreasonable numerical input is either ignored or truncated to areasonable
value. For example, most requests expect to set parameters to non-
negative values; exceptions are sp, .wh, .ch, .nr, and .if. The requests .ps,
t, .po, .vs, s, I, .in and .It restore the previous parameter value in the
absence of an argument.

Single-character arguments are indicated by single lowercase letters, and
one- or two-character arguments are indicated by a pair of lowercase letters.
Character string arguments are indicated by multicharacter mnemonics.

8.2 Basic Formatting Requests

The following sections describe the commonly used nroff and troff
formattingrequests.

8.2.1 Font and Character Size Control

The troff character set includes a regular character set plus a Special
Mathematical Font character set—each having 102 characters. All ASCII
characters are included, with some on the Special Font. With three
exceptions, the ASCII characters are input as themselves, and non-ASCII
characters are input in the form \{ zz where zzis a two-character name. The

Nroff /Troff Reference

three ASCII exceptions are mapped as follows:

ASCIlInput Printed by troff
Character Name

’ acute accent
grave accent

— minus

N

The characters’, ‘, and - may be inputas \', \', and \- respectively or by their
names. The ASCllcharacters @, #,”,,*, <, >,,{, }, , *, and _existonly
on the Special Font and are printed as a 1-em space if that font is not
mounted. Nroff understands the entire troff character set, but can in
general print only ASCII characters, such characters as can be constructed
by overstriking or other combinations, and those that can reasonably be
mapped into other characters. The exact behavior is determined by a
driving table prepared for each device. The characters ', ‘, and _ print as
themselves. The defaultmounted fonts are Roman (R), italic(I), bold (B},
and the Special Mathematical Font (S) on physical typesetter positions 1, 2,
3, and 4 respectively.

The current font, initially Roman, may be changed (among the mounted
fonts) by use of the .ft request, or by imbedding at any desired point either
\fx,\f(xx, or \fN where z and zz are the name of a mounted fontand Nisa
numerical font position. It is not necessary to change to the Special font;
characters on that font are handled automatically. A requestfor anamed
but unmounted font is ignored. Troff can be informed that any particular
font is mounted by use of the fp request. The list of known fonts is
installation-dependent. Nroff understands font control and normally
underlines characters that are italicized.

Character pointsizes are typically in the range 6-36 (1/12 to 1/2-inch). The
.ps request is used to change or restore the point size. Alternatively the
pointsize may be changed between any two characters by imbedding a \sN
at the desired point to set the size to N, or a \s+ N (1<N<9) to
increment/decrement the size by N, \sO restores the previous size.
Requested pointsize values that are between two valid sizes yield the larger
of the two. The currentsize is available in the .s register. Nroffignores type
size control.

A listof fontand size control commands follows:

ps Has an initial value of 10. Point size set to &+ N. Alternatively
imbed \sNor \s+ N. Any positive size value may be requested;
if invalid, the next larger valid size will result, with a maximum
of 36. A pairedsequence + N, - Nwill work because the previous
requested value is also remembered. Ignored in nroff. If no
argumentis given, .ps has the previous value.

ss N Has an initial value of 12/36 em. Space-character size is set to

N/36 ems. This size is the minimum word spacing in adjusted
text. Ignored in nroff. If no argumentis specified, the requestis

6-5

XENIX Text Processing Guide

.sFNM

bd F N

ignored.

Initially off. Constant character space (width) mode isseton for
font F (if mounted); the width of every character will be taken
to be N/36 ems. If M is absent, the em is thatof the character’s
point size; if M is given, the em is M points. All affected
characters are centered in this space, including those with an
actual width larger than this space. Special Font characters
occurring while the current font is F are also so treated. If Nis
absent, the mode is turned off. The mode mustbe in effect when
the characters are physically printed. Ignored in nroff.

Initially off. The characters in font F will be artificially
emboldened by printing each one twice, separated by N-1 basic
units. A reasonable value for Vis 3 when the charactersize is in
the vicinity of 10 points. If Vis missing the embolden mode is
turned off. The mode must be in effect when the characters are
physically printed. Ignored in nroff.

.bd S F N Initially off. The characters in the Special Font will be

ftF

Ap NF

emboldened whenever the current fontis F. The mode must be
in effect when the characters are physically printed.

Initially Roman. Font changed to F. Alternatively, imbed \fF.
The font name P is reserved to mean the previous font. If no
argumentisspecified, previous fontis assumed.

Initially R, I, B, S. Font position. This is astatement thatafont
named F is mounted on position N(1-4).Itisafatal errorif F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. This request is
ignored if no arguments are given.

6.2.2 Page Control

Top and bottom margins are not automatically provided. It is standard
procedure to define two macros and set traps for them at vertical positions 0
(top) and - N(Nfrom the bottom). A pseudo-page transition onto the first
page occurs either when the first break occurs or when the first nondiverted
text processing occurs. Arrangements for a trap to occur at the top of the
first page mustbe completed before this transition.

plx N

Page length set to + N, initially 11 inches. The internal
limitation is about 75 inches in troff and about 136 inches in
nroff. The current page length is available in the .pregister. The
default scale indicator is v. If no argumentis given, 11 inches is
assumed.

Nroff/Troff Reference

bp+t N Begin page, initially N=1. The currentpage is ejected and anew
page is begun. If + Nisgiven, the new page number willbe + N.
The defaultscale indicatorisv.

pn+ N Pagenumber, initially N=1. The next page (when itoccurs) will
have the page number + N. A .pn must occur before the initial
pseudo-page transition to effect the page number of the first
page. The current page number is in the %register.

.pox N Pageoffset, initially 0. The currentleft margin issetto + N. The
troff initial value provides about 1 inch of paper margin
including the physical typesetter margin of 1/27-inch. In troff
the maximum line-length + page-offset is about 7.54 inches.
The currentpage offsetis available in the .o register.

ne N Need Nvertical space. If the distance D to the next trap positios.
is less than N, a forward vertical space of size D occurs, which
will spring the trap. If there are no remaining traps on the page,
Dis the distance to the bottom of the page. If D<V, anotherline
could still be output and spring the trap. In a diversion, D is the
distance to the diversion trap, if any, or is very large. If no
argumentisspecified, N=1V.

.mk R Marks the current vertical place in an internal register (both
associated with the current diversion level), or in register R, if
given.

TItx N Returns upward only to a marked vertical place in the current
diversion. If + Nis given, the place is + Nfrom the top of the
page or diversion or, if N is absent, to a place marked by a
previous .mk. Note that the .sprequest may be used in all cases
instead of .rt by spacing to the absolute place stored in an explicit
register.

8.2.3 Text Filling, Adjusting, and Centering

Normally, words are collected from input text lines and assembled into an
outputtextline until some word doesn’t fit. An attemptis then made to the
hyphenate the word in an effort to place a partof itonto the outputline. The
spaces between the words on the output line are then increased to spread
out the line to the current line length minus any currentindent. A word is
any string of characters delimited by the space character or the beginning or
end of the inputline. Any adjacent pair of words that must be kept together
(neither split across output lines nor spread apart in the adjustment
process) can be tied together using the unpaddable space character
(backslash-space). The adjusted word spacings are uniform in troff and the
minimum interword spacing can be controlled with the .ss request. In nroff,
word spacings are normally nonuniform because of quantization to
_character-size spaces; the command line option -e causes uniform spacing

6-7

XENIX Text Processing Guide

with full output device resolution. Filling, adjustment, and hyphenation
can all be prevented or controlled. The textlength on the lastline outputis
available in the .n register, and text baseline position on the page for this
line is in the .nl register. The text baseline high-water mark (lowest place)
on the current page is in the .h register.

An inputtextline ending with ., ?, or! is taken to be the end of asentence,
and an additional space character is automatically provided during filling.
Multiple interword space characters found in the input are retained, except
for trailing spaces; initial spaces also cause abreak. When fillingisin effecta
\p may be embedded or attached to a word to cause a break atthe end of the
word and have the resulting output line spread out to fill the current line
length.

A text input line that happens to begin with a control character can be
printed as a text line by prefacing it with the nonprinting, zero-width filler
character \&. Another method is to specify output translation of some
convenientcharacterinto the control character using .tr.

The copying of an input line in no-fill mode can be interrupted by
terminating the partial line with a \c. The nextencountered input text line
will be considered to be a continuation of the same line of input text.
Similarly, a word within filled text may be interrupted by terminating the
word and line with \¢; the next encountered text will be taken as a
continuation of the interrupted word. If the intervening control lines cause
abreak, any partial line will be forced outalong with any partial word.

br Break. The filling of the line currently being collected is stopped
and the line is output without adjustment. Text lines beginning
with space characters and empty text lines (blank lines) also
cause abreak.

A Fill subsequentoutputlines. Initially fillison. The register .u is 1
in fillmode and 0 in nofill mode.

nf Nofill. Initially, fill is on. Subsequent output lines are neither
filled nor adjusted. Input text lines are copied directly to output
lines withoutregard for the currentline length.

ad ¢ Line adjustment is begun. If fill mode isnoton, adjustment.will
be deferred until fill mode is back on. If the type indicator cis
present, the adjustment type is changed in the following ways: |
to adjust left-margin only, r to adjust right margin only, ¢ to
center, b or n to adjust both margins. If ¢ is absent the line
remains unchanged.

.na No-adjust. Initially, set to adjust. Adjustmentis turned off; the
right margin will be ragged. The adjustment type for .ad is
unchanged. Outputline filling still occurs if fill mode is on.

Nroff /Troff Reference

.ce N Initially off. Center the next N input text lines within the
current line-length minus indent. If N=0, any residual count is
cleared. A break occurs after each of the Ninput lines. If the
inputline is too long, it will be left-adjusted.

6.2.4 Vertical Spacing

The vertical spacing (V) between the baselines of successive output lines
can be set using the .vs request with a resolution of 1/144-inch = 1/2 point
in troff, and to the output device resolution in nroff. V must be large
enough to accommodate the character sizes on the affected output lines.
For the common type sizes (9- 12 points), usual typesetting practice is to
set'V to 2 points greater than the pointsize; troff defaultis 10-pointtypeona
12-point spacing. The current V is available in the .v register. Multiple-V
line separation (e.g. double spacing) may be requested with .1s.

If a word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and or after it, the extraline
space function \x’N' can be imbedded in or attached to that word. In this
and other functions having a pair of delimiters around their parameter, the
delimiter choice is arbitrary, exceptthatitcan'tlook like the continuation of
anumber expression for N. If Nis negative, the outputline containing the
word will be preceded by N extra vertical space; if N is positive, the output
line containing the word will be followed by N extra vertical space. If
successive requests for extra space apply to the same line, the maximum
values are used. The most recently utilized post-line extra line space is
available in the .aregister.

A block of vertical space is ordinarily requested using .sp, which honors the
no-space mode and which does notspace pastatrap. A contiguous block of
vertical space may be reserved using sv. The following requests control
vertical spacing:

vs N Initially 1/6-inch or 12 points. Set vertical baseline spacing size
V. Transientextra vertical space available with \x'N".

Is N Initially N=1. Line spacing set to + N. Vs (blank lines) are
appended to each output text line. Appended blank lines are
omitted, if the text or previous appended blank line reached a
trap position. Space vertically in either direction. If N is
negative, the motion is backward (upward) and is limited to the
distance to the top of the page. Forward (downward) motion is
truncated to the distance to the nearest trap.

spN Space vertically in either direction. If Nis negative, the motion is
backward (upward) and is limited to the distance to the top of
the page. Forward (downward) motion is truncated to the
distance to the nearest trap. If no-space mode is on, no spacing
occurs.

XENIX Text Processing Guide

sv N Save a contiguous vertical block of size N. If the distance to the
next trap is greater than N, Nvertical space is output. No-space
mode has no effect. If this distance is less than N, no vertical
space is immediately output, but N is remembered for later
output. Subsequent .sv requests will overwrite any still
remembered V.

.08 Outputsaved vertical space. No-space mode has no effect. Used
to finally outputa block of vertical space requested by an earlier
.svrequest.

.ns No-space mode turned on. When on, the no-space mode

inhibits sp requests and .bp requests without a next page
number. The no-space mode is turned off when aline of output
occurs, or with .rs.

IS Restore spacing. The no-space mode is turned off.

blank line Causesabreak and outputof ablank line exactly like sp1.
8.2.5 Line Length and Indenting

The maximum line length for fill mode may be set with .1l. The indent may
be set with .in; an indent applicable to only the next output line may be set
with the temporary indentrequest .ti. The line length includes indentspace
but not page offset space. The line length minus the indent is the basis for
centering with .ce. The effectof .1l, .in, or .tiis delayed if a partially collected
line exists until after that line is output. In fill mode the length of texton an
output line is less than or equal to the line length minus the indent. The
current line length and indent are available in registers .1 and .irespectively.
The length of three-parttitles produced by .tlisindependently set by .1t.

N Initially 6.5 inches. Line length is set to + N. In troff the
maximum line-length + page-offset is about 7.54 inches.
Withoutan argument, this means the previous line length.

in+ N Initially N=0. Indentis set to + N. The indent is prepended to
each output line. Without an argument, this means the
previousindent.

tix N Temporary indent. The next output text line will be indented a
distance + N with respect to the current indent. The resulting

total indent may not be negative. The current indent is not
changed. Withoutan argument, the requestis ignored.

8.2.6 Tabs, Leaders, and Fields

The ASCII horizontal tab character and the ASCII SOH (leader) character

Nroff/Troff Reference

can both be used to generate either horizontal motion or astring of repeated
characters. The length of the generated entity is governed by internal tab
stops specifiable with .ta. The default difference is that tabs generate
motion and leaders generate astring of periods; .tc and .Icoffer the choice of
repeated character or motion. There are three types of internal tab stops:
left adjusting, right adjusting, and centering. In the following table D is the
distance from the current position on the input line (where a tab or leader
was found) to the next tab stop; the next string consists of the input
characters following the tab (or leader) up to the next tab (orleader) orend
of line; and W is the width of next-string.

Tab Length of motionor Location of
type repeated characters nextstring
Left D FollowingD
Right D-W Rightadjusted within D
Centered D-W/2 Centeredonrightendof D

The length of generated motion can be negative, but the length of a
repeated character string cannot be. Repeated character strings contain an
integer number of characters, and any residual distance is prepended as
motion. Tabs orleaders found after the lasttab stop are ignored, butmay be
used as next-string terminators.

Tabs and leaders are notinterpreted in copy mode. \tand \aalways generate
a noninterpreted tab and leader respectively, and are equivalent to actual
tabs and leaders in copy mode.

A fieldis contained between a pair of field delimiter characters, and consists
of substrings separated by padding indicator characters. The field length is
the distance on the inputline from the position where the field begins to the
next tab stop. The difference between the total length of all the substrings
and the field length is incorporated as horizontal padding space that is
divided among the indicated padding places. The incorporated padding is
allowed to be negative. For example, if the field delimiter is # and the
padding indicator is “, #“xxx ‘right# specifies a right-adjusted string with
the string zzz centered in the remaining space. The following requests are
recognized:

taNt... Setstabstops and types. t=R, right adjusting; t=C, centering; t
absent is left-adjusting. Troff tab stops are preset every 0.5
inches, nroff every 0.8 inches. The stop values are separated by
spaces, and a value preceded by + is treated as an increment to
the previous stop value.

e The tabrepetition character becomes ¢, orisremoved specifying
motion.

Ic ¢ The leader repetition character becomes ¢, or is removed
specifying motion.

6-11

XENIX Text Processing Guide

fcabd The field delimiter is set to ¢; the padding indicator is set to the
space characterorto b, if given. In the absence of arguments the
field mechanism is turned off.

8.2.7 Hyphenation

Automatic hyphenation can be switched off andon. When switched on with
.hy, several variants may be set. A hyphenation indicator character may be
imbedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. In addition, the user may specify a
small exception word list.

Ouly words that consistof acentral alphabeticstring surrounded by (usually
null) nonalphabetic strings are considered candidates for automatic
hyphenation. Words that were input containing hyphens (minus), em-
dashes (\(em), or hyphenation indicator characters ——such as mother-in-
law—are always subject to splitting after those characters, whether
automatic hyphenation ison oroff.

.nh Initially hyphenation is on. Automatic hyphenation is turned
off.

hy N Automatic hyphenation is turned on for N> 1, or off for N=0.
If N=2, last lines (ones that will cause a trap) are not
hyphenated. For N=4 and 8, the last and first two characters
respectively of a word are not split off. These values are
additive; 1.e., N=14 will invoke all three restrictions.

hee Hyphenation indicator character is set to c or to the default \&.
The indicator does notappear in the output.

.hwwordl...
Specify hyphenation points in words with imbedded minus
signs. Versions of a word with various endings are implied.

8.2.8 Three Part Titles

The titling function .tl provides for automatic placement of three fields at
the left, center, and right of a line with a title-length specifiable with .1t. .t
may be used anywhere, and is independent of the normal text collecting
process. A common use is in header and footer macros.

W’left’center’right’
The strings left, center, and right are respectively left-adjusted,
centered, and right-adjusted in the current title length. Any of
the strings may be empty, and overlapping is permitted. If the
page-number character (initially %) is found within any of the
fields it is replaced by the current page number having the

6-12

Nroff/Troff Reference

format assigned to the register %. Any character may be used as
the string delimiter.

.pce¢ The page number character is set to ¢, or removed. The page-
numberregister remains %.

N Initially 6.5 inches. Length of title set to + N. The line length
and the title length are independent. Indents do not apply to
titles; page offsets do.

6.2.8 Output Line Numbering

Automatic sequence numbering of outputlines may be requested with .nm.
When in effect, a three-digit Arabic number plus a digit-space is prepended
to output text lines. The text lines are thus offset by four digit-spaces, and
otherwise retain their line length; areduction in line length may be desired
to keep the right margin aligned with an earlier margin. Blank lines, other
vertical spaces, and lines generated by .tl are not numbered. Numbering
can be temporarily suspended with .nn, or with an .nm followed by a later
nm+ 0. In addition, a line number indent I, and the number-text
separation S may be specified in digit-spaces. Further, it can be specified
thatonly those line numbers that are multiples of some number M are to be
printed (the others will appear as blank number fields).

nm+ N Line number mode. If + Nis given, line numbering is turned
on, and the next output line numbered is numbered + N.
Default values are M=1, S=R, and [=0. Parameters
corresponding to missing arguments are unaffected; 2 non-
numeric argument is considered missing. In the absence of all
arguments, numbering is turned off; the next line number is
preserved for possible furtheruse in numberregisterin.

nn N The next Ntextoutputlines are notnumbered.

6.3 Character Translations, Overstrike, and Local
Motions

The troff functions described in the following sections apply to the
processing of specialized text, including special characters and lines of
variable length. Also described are methods for producing special effects in
text, by changing the position of text relative to lines and using offsets to
create boldeffects.

6.3.1 Input/Output Conventions and Character Translations

The newline delimits input lines. In addition, the ASCII characters STX,
ETX, ENQ, ACK, and BEL characters are accepted, and may be used as

6-13

XENIX Text Processing Guide

delimiters or translated into agraphic with .tr. Allothers are ignored.

The troff escape character backslash (\} introduces escape sequences—
causes the following character to mean another character, or to indicate
some function. The backslash (\) should not be confused with the ASCII
control character ESC of the same name. The escape character \ can be
input with the sequence \\. The escape character can be changed with .ec,
and all that has been said about the default \ becomes true for the new
escape character. The sequence \e can be used to print whatever the current
escape character is. If necessary or convenient, the escape mechanism may
be turned off with .eo, and restored with .ec.

.ecc Sets escape character to \, or to ¢, if given.

.e0 Turns the escape mechanism off.

Five ligatures are available in the current troff characterset: fi, fl, ff, Fi, and
fi. They may be input in nroff with \(fi, \(f, \(fi, \(Fi, and \(FI
respectively.

The ligature mode is normally on in troff, and automatically invokes
ligatures during input. The ligature requestis:

g N Ligature mode is turned on if Nisabsentornonzero, and turned
off if N=0.If N=2, only the two-character
ligatures are automatically invoked. Ligature mode is inhibited
for request, macro, string, register, or filenames, and in copy
mode. No effectin nroff.

Unless in copy mode, the ASCII backspace character is replaced by a
backward horizontal motion having the width of the space character. Nroff
automatically underlines characters in the underline font, specifiable with
uf, normally on font position 2. In addition to .ftand \(F, the underline font
may be selected by .ul and .cu. Underlining is restricted to an output-
device-dependentsubsetof reasonable characters.

ul N Initially off. Underlines in nroff (italicizes in troff) the next N
input textlines. Actually, switches to underline font, saving the
current font for later restoration; other font changes within the
span of a .ul will take effect, but the restoration willundo the last
change. Output generated by .tl is affected by the font change,
but does not decrement V. If N> 1, there is the risk that a trap
interpolated macro may provide text lines within the span;
environmentswitching can preventthis.

cu ¥ Initially off. A variant of .ul that causes every character to be
underlined in nroff. Identical to .ulin troff.

ufF Initially italic. Underline fontset to F. In nroff, F may notbe on
position 1.

6-14

Nroff/Troff Reference

Both the control character dot (.) and the no-break control character (')
may be changed, if desired. Such a change must be compatible with the
design of any macros used in the span of the change, and particularly of any
trap-invoked macros.

cce The basic control characterisset to ¢, orresetto dot(.).

2 ¢ The nobreak control character is set to ¢, or reset to single
quotation mark ().

One character can be made to stand in for another character using .tr. All
text processing (e.g., character comparisons) takes place with the input
(stand-in) character, which appears to have the width of the final character.
The graphic translation occurs at the moment of output (including
diversion).

tr abed.. Translatesato b, ¢ to d, ete. If an odd number of characters is
given, the last one will be mapped into the space character. To
be consistent, a particular translation must stay in effect from
inputtooutputtime.

An input line beginning with 2 \! is read in copy mode and transparently
output (without the initial \!); the text processor is otherwise unaware of
the line’s presence. This mechanism may be used to pass control
information to a post-processor or to imbed control lines in amacro created
by adiversion.

Comments and concealed newlines may appear in text. An uncomfortably
long input line that must stay one line (e.g., a string definition, or nofilled
text) can be split into many physical lines by ending all but the last one with
the escape \. The sequence \(newline) is always ignored—except in a
comment. Comments may be imbedded at the end of any line by prefacing
them with \”. The newline atthe end of acommentcannotbe concealed. A
line beginning with \” will appear as a blank line and behave like sp 1; a
commentcan be on aline by itself if the line begins with .\".

8.3.2 Local Motions and the Width Function

The functions \v' V' and \b’ V' can be used for local vertical and horizontal
motion respectively. The distance N may be negative; the positive
directions are rightward and downward. A local motion is one contained
within a line. and otherwise within a line balance to zero. The vertical
motions are:

\v'N Move distance N
\u 1/2-em upin troff; 1/2-line up in nroff

\d 1/2-em down in troff; 1/2-line down in nroff

XENIX Text Processing Guide

\r 1em upin troff; 1line up in nroff

The horizontal motions are:
\b’'N’ Move distance N

\space Unpaddable space-size space

\0 Digit-sized space
\l 1/6-em space in troff; ignored in nroff
\" 1/12-em space in troff; ignored in nroff

The width function \w'string’ generates the numerical width of string (in
basic units). Size and font changes may be safely imbedded in string, and
will not affect the current environment. For example, .ti-w’1.’u could be
used to tem porarily indent leftward adistance equal to the size of the string
ot l'l)

The width function also sets three number registers. The registers st and sb
are set to the highest and lowest extent of string relative to the baseline;
then, for example, the total height of string is \n(stu— \n(sbu. In troff the
number register ct is set to a value between 0 and 3: 0 means that all of the
characters in string were short lowercase characters without descenders
(e.g., ¢); 1 means that at least one character has a descender (e.g., y); 2
means that at least one characteris tall(e.g., H); and 3 means that both tall
characters and characters with descenders are present. The escape
sequence \kx will cause the current horizontal position in the input line to
be stored in registerx.

8.3.3 Overstrike, Bracket, Line-drawing, and Zero-width Functions

Avutomatically centered overstriking of up to nine characters is provided by
the overstrike function \o’string’. The characters in string are overprinted
with centers aligned; the total width is that of the widest character. String
should not contain local vertical motion. The function \zc will output ¢
without spacing over it, and can be used to produce left-aligned overstruck
combinations.

The Special Mathematical Font contains a number of bracket construction
pieces ((4’ {} | i 1) that can be combined into various bracket styles.
The function \b'string’ may be used to pile the characters in string vertically
(the first character on top and the last at the bottom); the characters are
vertically separated by 1 em and the total pile is centered 1/2-em above the
currentbaseline.

The function \I’N¢' will draw a string of repeated ¢'s towards the rightfor a
distance N. (\l is \(lowercase L). If ¢ looks like a continuation of an
expression for N, it may insulated from Nwith a\&. If cis notspecified, the
— (baseline rule) is used (underline character in nroff). If Nis negative, a

6-16

Nroff /Troff Reference

backward horizontal motion of size Nis made before drawing the string.
Any space resulting from N/(size of ¢} having a remainder is put at the
beginning (leftend) of the string. In the case of characters thatare designed
to be connected such as baseline-rule (_), underrule (_}, and root-en (),
the remaining space is covered by overlapping. If Nis less than the width of
¢, asingle cis centered on adistance V.

The function \L’Nc’ will draw a vertical line consisting of the (optional)
character ¢stacked vertically apart 1 em (1 line in nroff) with the first two
characters overlapped, if necessary, to form a continuous line. The default
character is the box rule (\{ br); the other suitable character is the bold
vertical (\(bv). The line is begun without any initial motion relative to the
current base line. A positive N specifies a line drawn downward and a
negative N specifies a line drawn upward. After the line is drawn no
compensating motions are made; the instantaneous baseline is at the end of
the line. The horizontal and vertical line drawing functions may be used in
combination to produce large boxes. The zero-width box-rule and the 1/2-
em wide underrule were designed to form corners when using 1 em vertical
spacings.

6.4 Processing Control Facilities

The following sections describe nroff and troff requests and facilities for
controlling the processing of text.

6.4.1 Macros, Strings, Diversions, and Position Traps

A ‘‘macro’’ isanamed set of arbitrary lines that may be invoked by name or
with a trap. A ‘‘string’’ is a named string of characters, not including a
newline character, that may be interpolated by name atany point. Request,
macro, and string names share the same name list. Macro and string names
may be one or two characters long and may usurp previously defined
request, macro, or string names. Any of these may be renamed with .rn or
removed with .rm. Macros are created by .de and .di, and appended to by
.am and .da; .di and .da cause normal output to be stored in amacro. Strings
are created by .ds and appended to by .as. A macro is invoked in the same
way as a request; a control line beginning with .zz will interpolate the
contents of macro zz. The remainder of the line may contain up to nine
arguments. The strings z and zz are interpolated at any desired point with
*z and \# zz respectively. String references and macro invocations may be
nested.

During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without
interpretation except that:

— The contents of number registers indicated by \nare interpolated.

6-17

XENIX Text Processing Guide

— Stringsindicated by * are interpolated.

— Arguments indicated by \$ are interpolated.

— Concealed newlines indicated by \newline are eliminated.
— Commentsindicated by \” are eliminated.

— \t and \a are interpreted as ASCII horizontal tab and SOH
respectively.

— \\isinterpreted as\.

— \.isinterpreted asdot(.).

These interpretations can be suppressed by prepending a \. For example,
since \\maps into a\, \\n will copy as \n; this will be interpreted as anumber
register indicator when the macro orstringis reread.

When a macro is invoked by name, the remainder of the line is taken to
contain up to nine arguments. The argument separator is the space
character, and arguments may be surrounded by quotation marks to permit
imbedded space characters. Pairs of double quotation marks may be
imbedded in double-quoted arguments to represent a single quotation
mark. If the desired arguments won’t fiton aline, aconcealed newline may
be used to continue on the nextline.

When amacro is invoked the inputlevel is pushed down and any arguments
available at the previous level become unavailable until the macro is
completely read and the previous level is restored. A macro’s own
arguments can be interpolated at any point within the macro with \$N,
which interpolates the Ath argument (1<N<9). If an invoked argument
doesn’t exist, a null string results. For example, the macro xx might be
defined as

.de xx \"begin definition
Today is \\$1 the \\$2.
\"end definition

and called with
xx Monday 14th
to produce the text
Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The
number of currently available argumentsisin the .§ register.

No arguments are available at the top (nommacro) level in this
implementation. Because string referencing is implemented as an input-
level push down, no arguments are available from within a string. No
arguments are available within a trap-invoked macro.

6-18

Nroff/Troff Reference

Arguments are copied in copy mode onto a stack where they are available
for reference. The mechanism does not allow an argument to contain a
direct reference to a long string (interpolated at copy time) and it is
advisable to conceal string references (with an extra \) to delay
interpolation until argumentreference time.

Processed output may be diverted into a macro for purposes such as
footnote processing or determining the horizontal and vertical size of some
text for conditional changing of pages or columns. A single diversion trap
may be set at aspecified vertical position. The number registers .dn and .dl
respectively contain the vertical and horizontal size of the most recently
ended diversion. Processed text that is diverted into a macro retains the
vertical size of each of its lines when reread in no-fill mode, regardless of the
current value of V. Constant-spaced (.cs) or emboldened (.bd) text that is
diverted can be reread correctly only if these modes are again orstill in effect
atreread time.

Diversions may be nested and certain parameters and registers are
associated with the current diversion level (the top nondiversion level may
be thought of as the Oth diversion level). These are the diversion trap and
assoclated macro, the no-space mode, the internally saved marked place
(see .mk and rt), the current vertical place (.d register), the current high-
water text baseline (.h register), and the current diversion name (.z
register).

Three types of trap mechanisms are available—page traps, a diversion trap,
and an input line count trap. Macro invocation traps may be planted using
.wh at any page position including the top. This trap position may be
changed using .ch. Trap positions at or below the bottom of the page have
no effect unless or until moved to within the page or rendered effective by
an increase in page length. Two traps may be planted at the same position
only by first planting them atdifferent positions and then movingone of the
traps; the first planted trap will conceal the second uniess and until the first
one is moved. If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a
line of text is output whose vertical size reaches or sweeps past the trap
position. Reaching the bottom of a page springs the top-of-page trap, if any,
provided there is a next page. The distance to the next trap position is
available in the .tregister; if there are no traps between the current position
and the bottom of the page, the distance returned is the distance to the page
bottom.

A macro-invocation trap effective in the current diversion may be planted
using .dt. The .tregister works in a diversion; if there is no subsequent trap
a large distance is returned. For a description of input line count traps, see
.itin the following list.

.de zz yy Define or redefine the macro zz. The contents of the macro
begin on the nextinputline. Inputlines are copied in copy mode
until the definition is terminated by a line beginning with .yy,
whereupon the macro yy is called. In the absence of yy, the
definition is terminated by aline beginning with two dots (..). A

XENIX Text Processing Guide

macro may contain .de requests provided the terminating
macros differ or the contained definition terminator is
concealed. The dots can be concealed as \\.. which will copy as
\..and be reread as dots(..).

.am zzyy Append tomacro.

.ds zz string

Define a string zz containing string. Any initial double
quotation mark in string is stripped off to permitinitial blanks.

.as zz string Append string to string zz.

rm zz

.M 22 Yy

di zz

dazz

wh Nzz

chzzN

dt Nzz

AtNzz

.em zz

6-20

Remove request, macro, or string. The name zz is removed
from the name list and any related storage space is freed.
Subsequentreferences willhave no effect.

Rename request, macro, or string zz to yy. If yyexists, itis first
removed.

Divert output to macro zz. Normal text processing occurs
during diversion except that page offsetting is not done. The
diversion ends when the request .di or .da is encountered
without an argument; extraneous requests of this type should
notappear when nested diversions are being used.

Divert, appending to zz.

Install a trap to invoke zz at page position N: anegative Nwill be
interpreted with respect to the page bottom. Any macro
previously planted at Nis replaced by zz. A zero Nrefers to the
top of a page. In the absence of zz, the first found trap at N, if
any, isremoved.

Change the trap position for macro zx to N.In the absence of N,
the trapisremoved.

Install a diversion trap at position Nin the currentdiversion to
invoke macro zz. Another .dt will redefine the diversion trap. If
no arguments are given, the diversion trapisremoved.

Setan input line count trap to invoke the macro zz after Nlines
of text input have been read (control or request lines don’t
count). The text may be in-line text or text interpolated by in-
line or trap-invoked macros.

The macro zz will be invoked when all input has ended. The
effectis the same as if the contents of 2z had been at the end of
the lastfile processed.

Nroff /Troff Reference

6.4.2 Number Registers

A variety of parameters are available to the user as predefined, named
numberregisters. In addition, the usermay define hisown named registers.
Register names are one or two characters long and do not conflict with
request, macro, or string names. Except for certain predefined read-only
registers, a number register can be read, written, automatically
incremented or decremented, and interpolated into the inputin a variety of
formats. One common use of user-defined registers is to automatically
number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in
numerical expressions.

Number registers are created and modified using .nr, which specifies the
name, numerical value, and the auto-increment size. Registers are also
modified, if accessed with an auto-incrementing sequence. If the registers z
and zz both contain Nand have the auto-increment size M, the following
access sequences have the effectshown:

Effecton Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+ x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx | xxincremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default),
decimal with leading zeros, lowercase Roman, uppercase Roman,
lowercase sequential alphabetic, or uppercase sequential alphabetic
according to the formatspecified by .af.

anrR+ NM The numberregister R is assigned the value 4+ Nwith respect
to the previous value, if any. The increment for auto-
incrementingissetto M.

.afRe Assign format cto register R. The available formats are:

Numbering
Format Sequence
1 0,1,2,3,4,5,...
001 | 000,001,002,003,004,005, ...

i 0,1,1i,1i,iv,v, ...
I o,LILIILIV,V, .
a 0,a,b,c,...,z,aa,ab,...,22,a3a, ...

A 0ABC, .. 7ZAAAB,. 727 AAA, ..

An Arabic format having N digits specifies a field width of N

6-21

XENIX Text Processing Guide

digits. The read-only registers and the width function are
always Arabic.

ar R Remove register R. If many registers are being created
dynamically, it may become necessary to remove no longer
used registers to recapture internal storage space for newer
registers.

6.4.3 Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies
not, N is anumerical expression, stringl and string2 are strings delimited by
any nonblank, non-numeric character notin the strings, and teztrepresents
whatis conditionally accepted.

.if c tezt
If condition c is true, process teztas input; in multiline case, use
\{text\}.
Af lc text
If condition c is false, process tezt.
Af N text
If expression N >0, process fezt.
Af IN text

If expression N <0, process fezt.

.Aif 'stringl’string?2’ tezt
If stringl identical to string2, process tezt.

AfU’string 1 ’string?2’ text
If string 1 notidentical to string2, process tezt.

.ie c text
““If”’ portion of if-else; all above forms (like if).

.eltext
‘“Else’’ portion of if-else.

There are several built-in condition names:

o Current page number is odd
e Current page numberiseven
t Formatter is tzoff

6-22

Nroff /Troff Reference

n Formatter is nroff

If condition cis true, or if the number Nis greater than zero, or if the strings
compare identically (including motions and character size and font), teztis
accepted as input. If a ! precedes the condition, number, or string
comparison, the sense of the acceptance isreversed.

Any spaces between the condition and the beginning of tezt are skipped
over. The teztcan be either asingle inputline (text, macro, or whatever) or
anumber of input lines. In the multiline case, the first line must begin with
aleftdelimiter \{and the lastline mustend with arightdelimiter \}.

The request .ie (if-else) is identical to .if except that the acceptance state is
remembered. A subsequentand matching .el (else) request then uses the
reverse sense of thatstate. .le- el pairs may be nested.

8.4.4 Environment Switching

A number of the parameters that control text processing are gathered
together into an environment, which can be switched by the user. Partially
collected lines and words are in the environment. Everything else is global;
examples are page-oriented parameters, diversion-oriented parameters,
number registers, and macro and string definitions. All environments are
initialized with default parametervalues.

ev N Initially N=0. Environment switched to environment where N
is in the range 0~ 2. Switching is done in push-down fashion so
that restoring a previous environment must be done with .ev
with no parameters rather than aspecificnumericreference.

8.4.5 Insertions From the Standard Input

The inputcan be temporarily switched to the system standard input with .rd,
which will switch back when two newlines in a row are found (the extra
blank line is not used). This mechanism is intended for insertions in
documentation containing standard formats. The standard inputcan be the
terminal, a pipe, orafile.

.1d prompt Reads insertion from the standard input until two newlines in a
row are found. If the standard input is the user’s keyboard, a
prompt(or a BEL) is written onto the terminal. The .rd request
behaves like a macro, and arguments may be placed after the
prompt.

.ex Exit from either nroff or troff. Text processing is terminated
exactly asif all inputhad ended.

If insertions are to be taken from the terminal keyboard while output is
being printed on the terminal, the command line option -q will turn off the
echoing of keyboard input and prompt only with BEL. The regular input

6-23

XENIX Text Processing Guide

and insertion input cannotsimultaneously come from the standard input.
8.4.8 Input/Output File Switching

The following requests control the switching of inputand output files:

.50 filename
Switch source file. The top input(file reading) level is switched
to filename. The effectof a .so encountered in amacro is notfelt
until the input level returns to the file level. When the new file
ends, input is again taken from the original file. .so’s may be
nested.

.nx filename
Next file is filename. The current file is considered ended, and
the inputis immediately switched to filename.

.pi program
Pipe output to program in nroff only. This request must occur
before any printing occurs. No arguments are transmitted to
program.

8.4.7 Miscellaneous Requests

.mc ¢ N Specifies that a margin character ¢ appear a distance N to the
right of the right margin after each nonempty text line (except
those produced by .tl). If the output line is too long, the
character will be appended to the line. If NV is not given, the
previous Nis used; the initial Nis 0.2 inches in nroff, and 1 em in
troff.

.tn string A fter skipping initial blanks, string (restof line) is read in copy
mode and written on the user’s terminal.

ig yy Ignores input lines. The .ig request behaves exactly like .de
except that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be affected.

.pmt Prints macros. The names and sizes of all of the defined macros
and strings are printed on the user’s terminal; if tis given, only
the total of the sizes is printed. The sizes are given in blocks of
128 characters.

il Flushes output buffer. Used in interactive debugging to force
output.

6-24

Nroff /Troff Reference

8.5 Output and Error Messages

The outputfrom .tm, .pm, and the prompt from .rd, as well as various error
messages are written onto the standard message output. The latter is
different from the standard output, where nroff formatted output goes. By
default, both are written onto the user’s terminal, but they can be
independently redirected.

Various error conditions may occur during the operation of nroff and troff.
Certain less serious errors having only local impact do not cause processing
to terminate. Two examples are word overflow, caused by a word that is too
large to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to fit in the line buffer; in both cases, a
message is printed, the offending excess is discarded, and the affected word
or line is marked at the pointof truncation with a * in nroffand a & in troff.
The program continues processing, if possible, on the grounds that output
useful for debugging may be produced. If aserious error occurs, processing
terminates, and an appropriate message is printed. Examples are the
inability to create, read, or write files, and the exceeding of certain internal
limits that make future outputunlikely to be useful.

6.6 Summary of Escape Sequences and Number Registers

8.6.1 Escape Sequences for Characters, Indicators, and Functions

6-25

XENIX Text Processing Guide

Sequence Meaning
\\ \(to preventor delay the interpretation of \)
\e Printable version of the currentescape character
\' Acute accent('); equivalentto \(aa
\¢ Grave accent(‘); equivalentto \(ga
\- Minussign (-) in the currentfont
\ Period(.)
\(space Unpaddable space-size space character
\0 Digit width space
\l 1/6-em narrow space character (zero width in nroff)
\" 1/12-em half-narrow space character (zero width in nroff)
\& Nonprinting, zero-width character
\! Transparentline indicator

» Beginningof comment
\$N Interpolate argument(1 <N <9)
\% Defaultoptional hyphenation character
\(xx Character named xx
\a Noninterpreted leader character
\b’abe...’ Bracket building function
\c Interrupt text processing
\d Forward (down) 1/2 em vertical motion (1/2 line in nrofl)
\fx, \f(xx,\fN Change to fontnamedx or xx, or position N
\h’N’ Local horizontal motion; move right N { negative left)
\kx Mark horizontal input place in register x
\I'N¢’ Horizontal line drawing function (optionally with c)
\L’Nc¢' Vertical line drawing function (optionally with c)
\nx, \n{ xx Interpolate number register x or xx
\o’abc...’ Overstrike charactersa, b, ¢
\p Break and spread outputline
\r Reverse 1 em vertical motion (reverse line in nroff)
\sN,\s+ N Pointsize change function

\t Noninterpreted horizontal tab
\u Reverse 1/2-em vertical motion (1/2-line in nmﬂ';
\v'N’ Local vertical motion; move down N (negative up
\w’string’ Interpolate width of string

\x’N° Extraline space function (negative before, positive after)
\zc Printc with zero width (withoutspacing)
\{ Begin conditional input

End conditional input

}gnewline) Concealed (ignored) newline

\X X, any character not listed above

6-26

Nroff /Troff Reference

6.6.2 Predefined General Number Registers

Register Contents

% Current page number

ct Character type (setby width function)

dl Width (maximum) of last completed diversion

dn Height(verticalsize) of last completed diversion

dw Currentday of the week (1-7)

dy Currentday of the month (1-31)

hp Currenthorizontal place on inputline

In Outputline number

mo Currentmonth (1-12)

nl Vertical position of last printed textbaseline

sb Depth of string below base line (generated by width function)
st Heightof string above base line (generated by width function)
yr Lasttwo digits of current year

8.8.3 Predefined Read-Only Number Registers

Register Contents

Numberof arguments available at the current macro level
Setto 1in troff, if -aoption used; 1 in nroff
Available in horizontal resolution in basic units
Setto 1in nroff, if -Toption used; always O in troff
Available vertical resolution in basic units
Post-line extraline space mostrecently utilized using \x'N’
Numberof linesread from currentinputfile
Currentvertical place in currentdiversion; equal to nl,
if nodiversion
Current fontas physical quadrant
Textbaseline high-water mark on current page or diversion
Currentindent
Currentline length
Length of textportion on previousoutputline
Current page offset
Current page length
Current pointsize
Distance to the next trap
Equalto 1in filmode and 0 in no-fill mode
Currentvertical line spacing
Width of previous character
Reserved version-dependent register
Reserved version-dependentregister
Name of currentdiversion

hob dnmb

Nekg<Eohoob——

6-27

Chapter 7
Formatting Tables

7.1 Introduction 7-1

7.2 InputFormat 7-2
7.2.1 Options 7-3
7.2.2 Format 7-3
7.2.3 Additional Features 7-5
7.2.4 Data 7-7
7.2.5 Additional Command Lines 7-9

7.3 Invoking Thl 7-10
7.4 Examples 7-11

7.5 Summary of tbl Commands 7-18

Formatting Tables

7.1 Introduction

By now, you have a firm grasp of most of the principles and techniques of using
XENIX text processing successfully. By using the mm macro package, along
with nroff/troff commands, you should be able to achieve precise control of
almost any formatting task. However, there are two formatting needs which
may be best met with two specialized XENIX formatting programs:

o Formatting tablesor other complicated multicolumn material
e Setting mathematical equations

In this chapter, the program tbl, the table formatting program, isintroduced.
Eqn, the mathematics formatting program, is discussed in Chapter 8. Unless
you anticipate using tables or equations fairly extensively in your work, you
may wish to postpone or skip reading about tbl and eqn. Although both
programs use commands which are easy to learn and use, you should expect to
spend several hours on each program-—reading these instructions, learning the
commands, and testing them out with your output device. If you need to create
tables or equationsin your documents, the effort of learning tbl and eqn will be
well rewarded. You will soon be able to produce high-quality, consistent output
withrelatively little work.

Both tbl and eqn are “preprocessors” —that is, you insert commands into your
text as you are preparing it, just as you would if you were using mm. These
commands are translated by the tbl and eqn programs into sequences of
nroff/troff commands, without altering either the body of your text or other
formatting commands. Your file is then processed through the nroff or troff
programs themselves.

You will find tbl especially useful in preparing charts, multicolumn list
summaries, and other tabular material. It will give you a high degree of control
over complicated column alignment, and it will calculate the necessary widths
of columns, when the elements are of varying lengths. Tbl also allows you to
draw horizontal lines, vertical lines and boxes in order to highlight your
material. Although the effects will be somewhat limitedif you are working with
an ordinary lineprinter or similar device, you will obtain extremely high quality
results when outputting tables to phototypesetter.

Because the tbl program works by isolating the tabular material from the rest
of the file, and then creating the necessary nroff or troff commands, the rest of
the file is left intact for other programs to format. Thus you can use tbl along
with the equation formatting program eqn or various layout macro packages
like mm, without duplicating their functions. You need only be careful to
invoke the various programsin the correct order.

The latter part of this chapter is devoted to some examples—in each case, the
text input is paired with the resulting output. You may find that at first you
learn the features of tbl best by examining these examples and copying those

XENIX Text Processing

formatting instructions for examples which resemble your own tables.
However, first read the rules for preparing tbl input, so you have a general idea
of how to invoke the tbl program, and an overview of the possible options and
formats.

7.2 Input Format

The input to tbl is text for a document, with tables preceded by a . TS {table
start) command and followed by a .TE (table end) command. Tbl processes
the text and formatting commands within these two commands, generating
nroff/troff formatting commands. The .TS and .TE lines are also copied so
that nroff and troff page layout macros can use these lines to delimit and place
tables as necessary. In particular, any arguments on the .TS or .TE lines are
copied but otherwise ignored, and may be used by document layout macro
commands.

The format of the input is:

text
.TS
table
.TE
text

Each table will contain text, options, and formatting specifications:

.TS
options;
format.
data
.TE

Each table is independent, and must contain formatting information followed
by the data to be entered in the table. The formatting information, which
describes the individual columns and rows of the table, may be preceded by
options that affect the entire table.

Each table may contzin global options, a format section describing the layout
of individual table entries, and then the text to be printed. The format and data
are always required, but not the options. The various parts of a table are
described in the following sections.

7-2

Formatting Tables

7.2.1 Options

There may be a single line of options which affects the whole table. If present,
this line must immediately follow the .TS line and must contain a list of option
names separated by spaces, tabs, or commas, and must be terminated by a
semicolon. The allowableoptionsare:

center

Centers the table (default isleft-adjust)
expand

Makesthe table as wide asthe current line length
box

Encloses the table in a box
allbox

Encloses eachitem in the tablein abox
doublebox

Encloses the table in two boxes
tab (x)

Usesx instead of tab to separate dataitems

linesize (n)
Setslinesor rulesin n point type

delim (zy)
Recognizes zand yasthe eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate
.ne commands. These requests are calculated from the number of lines in the
tables, and if there are spacing commands embedded in the input, these
requests may be inaccurate. To ensure the correct format on one page, you can
surround the table with the display macros.DS and .DE.

7.2.2 Format

The format section of the table specifies the layout of the columns. Each line in
this section corresponds to one line of the table. The last format line applies to
all the remaining lines in the table. Each line contains a keyletter for each
column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. The keyletters, which may be either uppercase or
lowercase, are;

Lorl
Indicates a left-adjusted column entry

XENIX Text Processing

Rorr
Indicates aright-adjusted column entry

Corec
Indicates a centered column entry

Norn
Indicates a numerical column entry, to be aligned with other
numerical entries so that the units digits of numbers line up

Aora
Indicates an alphabetic column; all corresponding entries are aligned
on the left, and positioned so that the widest is centered within the
column

Sors

Indicates a spanned heading, i.e., the entry from the previous column
continues across this column

Indicates a vertically spanned heading, i.e., the entry from the
previous row continues down through thisrow. (Not allowed for the
first row of the table.)

When you are aligning numerical information, a location for the decimal point
is sought. The rightmost dot adjacent to a digit is used as a decimal point; if
there is no dot adjoining a digit, the rightmost digit is used for the units; if no
alignment is indicated, the item is centered in the column. However, the special
nonprinting character string ‘“\&” may be used to override dots and digits, or
to align alphabetic data; this string lines up where a dot normally would, and
then disappears from the final output. In the example below, the items shown
at the left will be aligned (in a numerical column) as shown on the right:

input tblformat
13 i3
4.2 4.2
26.12 26.12
abc abe
abe\& abe
43\&3.22 433.22
749.12 749.12

Note that if numerical text is used in the same column with wider left-adjusted
(L) or right-adjusted (R) type table entries, the widest number is centered
relative to the wider left-adjusted or right-adjusted items (L is used instead of]
for readability; they have the same meaning as keyletters). Alignment within
the numerical items is preserved, in the same way as using the A format.
However, alphabetic subcolumns requested by the keyletter are alwaysslightly
indented relative to L items; if necessary, the column width is increased to force

7-4

Formatting Tables

this. This is not true for n ty pe entries. Do not put N and A type entriesin the
same column. ' o

To make your table formatting information more readable, you should
separate the keyletters describing each column with spaces. The layout of the
keyletters in the format section resembles the layout of the actual data in the
table. The end of the format section of the table specification is indicated by a
period. For example, asimple format might look like this:
css
l nn.
This specifies a table of three columns. The first line of the table contains a
heading centered across all three columns; each remaining line contains a left-
adjusted item in the first column followed by two columnsof numerical data.

Hereisasample table in thisformat:

Overall title

Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

Note that instead of listing the format of successive lines of a table on
consecutive lines of the format section, successive line formats may be given on
the same line, separated by commas. In the example above, the format might
have been written:

¢ss, lnn.

7.2.3 Additional Features

There are some additional features of the keyletter system:

Horizontal Lines
A keyletter may be replaced by an underscore (_) to indicate a
horizontal line in place of the corresponding column entry, or by an
equal sign (=) to indicate a double horizontal line. If an adjacent
column contains a horizontal line, or if there are vertical lines
adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is
ignored and a warning message is printed.

Vertical Lines

A vertical bar (|) may be placed between column keyletters. This

7-5

XENIX Text Processing

will cause a vertical line between the corresponding columns of the
table. A vertical bar to the left of the first keyletter or to the right
of the last one produces a line at the edge of the table. If two vertical
bars appear between keyletters, a double vertical line is drawn.

Space Between Columns

A number may follow the keyletter. This indicates the amount of
separation between this column and the next column. The number
normally specifies the separation in ens(one enisabout the width of
the letter n), or more precisely, an en is a number of points (1 point
= 1/72-inch) equal to half the current type size. If the *expand”
option is used, then these numbers are multiplied by a constant so
that the table is as wide as the current line length. The default
column separation number is 3. If the separation is changed, the
largest space requested prevails.

Vertical Spanning

Normally, vertically spanned items extending over several rows of
the table are centered in their vertical range. If a keyletter is
followed by t or T, any corresponding vertically spanned item will
begin at the top line of its range.

Font Changes

A keyletter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the
corresponding column should be in a different font from the default
font (usually Roman). All font names are one or two letters; a one-
letter font name should be separated from whatever follows by a
space or tab. Font change commands given with the table entries
will override these specifications.

Point Size Changes

A keyletter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The
number may be a signed digit, in which case it is taken as an
increment or decrement from the current point size. If both a point
size and a column separation value are given, one or more blanks
must separate them.

Vertical Spacing Changes

7-6

A keyletter may be followed by the letter v or V and a number to
indicate the vertical line spacing to be used within a multiline
corresponding table entry. The number may be a signed digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be

Formatting Tables

separated by blanks or some other specification from a vertical
spacing request. Thisrequest hasno effect unlessthe corresponding
tableentry is a text block.

Column Width Indication

A keyletter may be followed by the letter w or W and a width value
in parentheses. This width is used as a minimum column width. If
the largest element in the column is not as wide as the width value
given, the largest element is assumed to be that wide. If the largest
element in the column is wider than the specified value, its width is
used. The width is also used as a default line length for included
text blocks. Normal troff units can be used to scale the width
value; the default is ens. If the width specification is a unitless
integer the parentheses may be omitted. If the width value is
changed in a column, the last value given controls.

Equal Width Columns

A keyletter may be followed by the letter e or E to indicate equal
width columns. All columns whose keyletters are followed by eor E
are made the same width. This allows you to get a group of
regularly spaced columns.

The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid point size and font change
ambiguities. Thus a numerical column entry in italic font and 12-point type
with a minimum width of 2.5 inches and separated by 6 ens from the next
column could be specified as

npl2w(2.5i)f1 6

Note the following format defaults: Column descriptors missing from the end of
a format line are assumed to be L. The longest line in the format section,
however, defines the number of columns in the table; extra columns in the data
are ignored silently.

7.2.4 Data

The text for the table is typed after the format specification. Normally, each
table line is typed as one line of data. Very long input lines can be broken: any
line whose last character is a backslash (\) is combined with the following line
(and the backslash vanishes). The data for different columns (the table entries)
are separated by tabs, or by whatever character has been specified in the tabs
option. There are a fewspecial cases:

Troff commands within tables

An input line beginning with a dot (.) followed by anything but a

7-7

XENIX Text Processing

number is assumed to be a command to troff and is passed through
unchanged, retaining its position in the table. For example, space
within a table may be produced by .sp commandsin the data.

Full Width Horizontal Lines

Aninput line containing only the underscore (_) or equal sign (=) is
taken to be a single or double line, respectively, extending the full
width of the table.

Single Column HorizontalLines

An input table entry containing only the underscore or equal sign
character is taken to be a single or double line extending the full
width of the column. Such lines are extended to meet horizontal or
vertical lines adjoining this column. To obtain these characters
explicitly in a column, either precede them by *“\&" or follow them
by a space before the usual tab or newline.

Short Horizontal Lines

An input table entry containingonly the string *“\ "’ istakentobea
single line as wide as the contents of the column. It is not extended
to meet adjoining lines.

Vertically Spanned Items

An input table entry containing only the character string *“*”
indicates that the table entry immediately above spans downward
over thisrow. It isequivalent to the table format keyletter.

Text blocks

In order to include a block of text as a table entry, precede it by T{
andfollow it by T}. Thus the sequence

LT
block of
text
T}...

is the way to enter, as a single entry in the table, something that
cannot conveniently be typed as a simple string between tabs. Note
that the T} end delimiter must begin a line; additional columns of
data may follow after a tab on the same line. If more than twenty
text blocks are used in a table, various limits in the troff program
are likely to be exceeded, producing diagnostics such as “too many
string/macro names” or ‘‘too many number registers.”

7-8

(

Formatting Tables

Text blocks are pulled out from the table, processed separately by
troff, and replaced in the table as a solid block. If no line length is
specified in the block of text itself, or in the table format, the
default is to use $ L times C / {N+1) $ where L is the current line
length, Cisthe number of table columns spanned by the text,and N
is the total number of columns in the table. The other parameters
used in setting the block of text are those in effect at the beginning
of the table. These include the effect of the .TS macro and any table
format specifications of size, spacing and font, using the p, v and f
modifiers to the column keyletters. Commands within the text
block itself are also recognized. However, troff commands within
the table data but not within the text block do not affect that block.

Note the following limitations. Although any number of lines may be present in
a table, only the first 200 lines are used in calculating the widths of the various
columns. A multipage table may be arranged as several single-page tables if
this proves to be a problem. Other difficulties with formatting may arise
because in the calculation of column widths all table entries are assumed to be
in the font and size being used when the .TS command was encountered. Not
included in the calculation are font and size changes indicated in the table
format section and within the table data. Therefore, although arbitrary troff
requests may be sprinkled in a table, care must be taken to avoid confusing the
width calculations; use requestssuch as.ps with care.

7.2.5 Additional Command Lines

If the format of a table must be changed after many similar lines, as with sub-
headings or summarizations, the .T& (table continue) command can be used to
change column parameters. The outlineof suchatableinputis:

TS
options ;
format .
data
T&
format .
data
T&
format .
data
.TE

Using this procedure, each table line can be close to its corresponding format
line. It is not possible to change the number of columns, the space between
columns, the global options such as box, or the selection of columns to be made
equal width.

7-9

XENIX Text Processing

7.3 Invoking Tbl
You canrun tblon asimple table with the command
tbl tnput-file | troff

but for more complicated use, where there are several input files, and they
contain equations and mm commands as well as tables, the normal command
would be

tbl file-1 file-2. .. | eqn | troff -mm

The usual options may be used on the troff and eqn commands. The usage for
nroff is similar to that for troff.

For the convenience of users employing line printers without adequate driving
tables or post-filters, there is a special -TX command line option to tbl which
produces output that does not have fractional line motionsinit. The only other
command line option recognized by tbl is-mm which fetches the mm macro
packages.

When you are using both eqn and tbl on the same file, tbl should be used first.
If there are no equations within tables either order works, but it is usually faster
to run tbl first, since eqn normally produces a larger expansion of the input
than tbl. However, if there are equations within tables{e.g. when you are using
the eqn delim command), tbl must be first or the output will be scrambled.
(See Chapter 8, ‘“Formatting Mathematics.””} You must also be cautious of
using equations in n-style columns; this is nearly always wrong, since tbl
attempts to split numerical format items into two parts and this is not possible
with equations. Give the delim(xx) tbl option instead; this prevents splitting of
numerical columns within the delimiters. For example, if the eqn delimiters
are $$, giving delim($$) a numerical column such as “1245 $4—- 168" will be
divided after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16 numerical
columns may fail because of limits in troff, producing the ‘‘too many number
registers’’ message. Troff number registersused by tbl must be avoided by the
user within tables; these include two-digit names from 31 to 99, and names of
the forms #x, x+, x|, “x, and x-, where x is any lowercase letter. The names
#4, #-, and #" are also used in certain circumstances. To conserve number
register names, the n and a formats share a register; hence the restriction that
they may not be used in the same column.

For aid in writing macros, tbl defines a number register TW which is the table
width; it is defined by the time that the .TE macro is invoked and may be used
in the expansion of that macro. To assist in laying out multipage boxed tables
the macro T+# is defined to produce the bottom lines and side lines of a boxed
table, and then invoked at the of the table. By using this macro in the page
footer a multipage table can be boxed. In particular, the mm macros can be

Formatting Tables

used to print a multipage boxed table with a repeated heading by giving the
argument H to the . TS macro. If the table start macro is written

TSH
aline of the form

.TH

must be given in the table after any table heading {or at the start if none).
Material up to the .TH is placed at the top of each page of table; the remaining
linesin the table are placed on several pages asrequired.

7.4 Examples

Here are some examples illustrating features of tbl. The symbol(@in the input
represents a tab character.

Input:

.TS

box;

ccec

111
Language(®Authors@Runs on

Fortran@QMany(DAlmost anything

PL/1Q1BM@360/370

COBTL(11/45,H6000,370

BLISS(Carnegie-Mellon(3PDP-10,11

IDSGHoney wellQH6000

Pascal@Stanford(3370

.TE

Output:

Language Authors Runs on
Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegie-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

7-11

XENIX Text Processing

Input:
TS
allbox;
css
ccec
nnn.
AT&T Common Stock
Year(QPrice@Dividend
197141-543$260
2041-543270
3(D46-55P287
4(P40-53(D324
5(45-529340
6(351-590395+
.TE
+ (first quarter only)
Output:

AT&T Common Stock
Year | Price | Dividend
1971 41-54 $2.60

2 | 41-54 2.70
3 | 46-55 2.87
4 40-53 3.24
5 | 45-52 3.40
6 | 51-59 .95

7-12

* (first quarter only)

Formatting Tables

Input:

.TS

box;

css

clele

1{1]n.

Major New York Bridges

Bridge@Designer(DLength
Brooklyn®J A Roebling(1595
Manhattan®G LindenthaK31470
WilliamsburgQL L Buck(}1600

Queensborough@Palmer &31182
@ Hornbostel

A31380
Triborough(3O H Ammann(_
G383

Bronx Whitestone®O H Ammann(2300
Throgs Neck®0 H Ammann(31800

George Washington(0 H Ammann(33500

.TE
Output:
Major New York Bridges
Bridge Designer Length
Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182
Hornbostel
1380
Triborough O. H. Ammann
383
Bronx Whitestone O. H. Ammann 2300
Throgs Neck O. H. Ammann 1800
George Washington | 0. H. Ammann 3500

7-13

XENIX Text Processing

Inpu

t:

TS

cc

np-2|nj.

@Stack

1346
o_
20923
a_
A5
a_
4365
a_
521
a_
.TE

Output:

7-14

Stack

46

23

15

6.5

A .

2.1

Input:
TS

L
LB

r'r'r-r'g‘
| anil anll el w1

LLL.

januaryQfebruary@march

aprilPmay
june@july@Months
augustOseptember

october(@november(ddecember

.TE

Output:

january february
april may

june july
august september
october november

march

Months

december

Formatting Tables

7-15

XENIX Text Processing

Input:
TS

box;
cfBsss.
Composition of Foods

.T&

c |ess

c|css

c Jejele
Food(@QPercent by Weight

\"O_

\"@Protein@F at(PCarbo-
\"O\"G\"Ghydrate

.T&

l|n|n |n

ApplesD.40.5313.0
Halibut(318.45.203. . .

Lima beans(7.5(.8(322.0

Milk(3.3(34.035.0
Mushrooms(¥3.53.4(26.0

Rye bread(9.003.6(352.7

.TE

Output:
Composition of Foods
Percent by Weight
Food . Carbo-
Protein | Fat hydrate

Apples 4 .5 13.0
Halibut 18.4 5.2
Lima beans 7.5 8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 4 6.0
Rye bread 9.0 .8 52.7

7-16

Formatting Tables

Input:

.TS
allbox;
) el s s
¢ cw(li) cw(li)
1p9 1p9 1p9.
New York Area Rocks
Era®Formation(PAge (years)
Precambrian®Reading Prong(®>1 billion
Paleozoic®Manhattan Prong(3400 million
Mesozoic(PT{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T¥3200 million
Cenoszoic@PCoastal Plain(PT{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.

.ad

Output:

New York Area Rocks
Era Formation Age (years)

Precambrian | Reading Prong >1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, incl. 200 million

Stockton, Lockatong, and Brunswick
formations; also Watchungs

and Palisades.

Cenozoic Coastal Plain On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.

7-17

XENIX Text Processing

7.5 Summary of tbl Commands

Command

Meaning

a A Alphabetic subcolumn
allbox Draws box around all items
bB Boldface item

box Draws box around table
cC Centered column

center Centers table in page
doublebox Doubled box around table
e E Equal width columns
expand Makes table full line width
fF Font change

il Italic item

1L Left adjusted column

n N Numerical column

nnn Column separation

pP Point size change

rR Right adjusted column

s S Spanned item

t T Vertical spanning at top
tab {z) Change data separator character

$fat roman "T{" " fat roman "T}”

3 Text block

vV Vertical spacing change
w W Minimum width value

o 2T Included troff command
| Vertical line

It Double vertical line

~ Vertical span

\" Vertical span

= Double horizontal line
$fat " _"$ Horizontal line

$fat "_"$ Short horizontal line

7-18

Chapter 8
Formatting Mathematics

8.1

8.3

8.4

8.5

Introduction 8-1
Displayed Equations 8-2

Basic Mathematical Constructions 8-3
8.3.1 Subscripts and Superscripts 83
8.3.2 Braces for Grouping 8-4

8.3.3 Fractions 85

8.3.4 Square Roots 8-6

8.3.5 Summation and Integrals 8-7

Complex Mathematical Constructions 8-7
8.4.1 Big Brackets, Parentheses, and Bars. 8-7
8.4.2 Piles 8-8

8.4.3 Matrices 8-9

8.4.4 Lining Up Equations 8-10

Layout and Design of Mathematical Text 8-11

8.5.1 Input Spaces 8-11

8.5.2 Output Spaces 8-11

8.5.3 Spaces Between Special Sequences 8-11

8.5.4 Symbols, Special Names, and Greek Characters -
8-12

8.5.5 Size and Font Changes 8-12

8.5.6 Diacritical Marks 8-14

8.5.7 Quoted Text 8-14

8.5.8 Local Motions 8-15

8.6 In-line Equations 8-15

8.7

8.8

Definitions 8-16

Invokingeqn 8-18

8.9 Sample Equation 8-18
8.10 Error Messages 8-19

8.11 Summary of Keywords and Precedences 8-20

)

8.1 Introduction

In the previous chapter you were introduced to the tbl program, a special
preprocessing formatting program which helps you design and create
professional-looking tables in documents. This chapter describes another
preprocessor: eqn, a program that simplifies the task of formatting complex
mathematical equations and printing special symbols. Once again, unless you
need to use mathematical equations or special symbols in your documents, you
can postpone or skip reading about eqn.

Like tbl, eqn is a ““preprocessor’ —that is, you must embed commands in the
text as you are preparing it, along with mm macros and nroff/troff
commands. The eqn macros are then translated by the eqn program into
nroff/troff commands, without altering either the body of the text or other
formatting commands. The file is processed through the nroff or troff
programs themselves to produce final output.

The uses of eqn are fairly specialized—you may simply not need to format
equations. However, eqn offers you precise control over line spacing, which is
suitable to formulas and subscripting, necessary for documents in such fields as
chemistry and physics. You also have such special character sets as the Greek
alphabet available to you.

The design of the eqn program makes it relatively easy to learn. Wherever
possible, the formatting commands resemble ordinary English words(e.g. over,
lineup, bold, union), and the format is specified much as you might try to
describe an equation in conversation. If you are faced with the task of
typesetting equations, you will soon appreciate how quickly you can specify
even complicated equations requiring unusual line motions, such as arrays,

Mathematical equations are notoriously difficult to format by conventional
typesetting methods. With the help of the XENIX program eqn, however, you
will quickly learn to use troff to typeset mathematical equations directly to a
phototypesetter. Eqn employs a language which is quite easy to use, even if
you have know little about either mathematics or typesetting. In a half hour or
so, you should be able to learn enough of the language to set equations like

lim (tan z)¥"2* =1 or equationslike:
—7/2
St
G(z) = 26 = exp y) _ 11 eskz*/k
sk 1
[resies e Jor]
= 1+512+T+ 1+T+22_'2!-+

st oS],

. Fi
>0 kyky L k,>0 lk‘lcl! 2t2k2! mk"‘km!
b42k4 - 4mk, =m

81

XENIX Text Processing

The same commands may also be used with the XENIX formatter nroff to
format mathematical expressions for lineprinters. To do this, invoke the
program neqn instead of eqn. The same limitations (inability to change font
and point size, and do variable spacing, etc.) apply to any text output to a
lineprinter. The resulting output from neqn, however, is usually adequate for
proofreading.

Asyou work with eqn, remember that the eqn program itself knows relatively
little about mathematics. In particular, mathematical symbols like +, -, X,
and parentheses have no special meanings. Eqn will set anything that looks
like an equation, regardless of whether it makes sense mathematically.

To use eqn on your XENIX system, type
eqn file | troff -mm
This command line processes file with eqn, then pipes the resulting output file
to the troff program.
8.2 Displayed Equations

To telleqn where a mathematical expression begins and ends, surround it with
the commands .EQ and .EN. Thus, if you type the lines

EQ
x=y+z

.EN
your output willlook like:
r=y+z

The .EQ and .EN are not processed by eqn. If you want to specify centering,
numbering, or othér formatting features for your mathematical text, you will
need to enter the appropriate formatting commands in your text. If you want,
you can add nroff/troff commands, but it is far simpler to use mm. mm
provides commands which allow you to center, indent, left-justify and number
equations.

You can give the .EQ command an argument that is treated as an arbitrary
equation number which will be placed in the right margin. For example, the
input

EQ7

x =f(y/2) +y/2

.EN

produces the output

8-2

(

Formatting Mathematics

=Ry/2)+y/2 7
Note that .EQ is an mm macro. In other computer systems’ macro packages it
may have a different meaning.

8.3 Basic Mathematical Constructions

This section describes how eqn can be used to handle the following frequently
used mathematical constructions:

subscripts and superscripts
grouping

fractions

square roots

summation and integrals

8.3.1 Subscripts and Superscripts

To get subscripts and superscripts into mathematical text, use sub and sup.
For example, the following

xsup 2+ y sub k
produces

172+yk
Eqn supplies all the commands for size changes and vertical motions to make
the output look right. The words sub and sup must be surrounded by spaces.
For example:

x sub2
will give you z3ub2 instead of Z,. Furthermore, don’t forget to leave a space or
a tilde to mark the end of a subscript or superscript. Note that if you use an
expression like

y = (x sup 2)+1
you will get

= (Priags

instead of

8-3

XENIX Text Processing

y=(F)+1

Subscripted subseripts and superscripted superscripts can also be created. The
following

x subisubl
produces
I,‘l

A subscript and superscript on the same object are printed one above the other
if the subscript comes first. For example,

x sub i sup 2
produces

Z
Other than in this special case, sub and sup group to the right, so xsupy subz
means zy', not 2¥,.
8.3.2 Braces for Grouping
Normally, the end of a subscript or superscript is marked simply by a blank,
tab, or tilde. If you need to produce asubscript or superscript with blanks in it,
you can use braces ({}) to mark the beginning and end of the subscript or
superscript. For example:

e sup {i omega t}
produces:

ew!

Braces can always be used to force eqn to treat an expression as a unit, or just
to make your intention perfectly clear. When you use braces:
x sub {isub 1} sup 2

produces

z

1

The same text without braces:

8-4

Formatting Mathematics

x sub i sub 1 sup 2
produces

z'%

Braces can occur within bracesif necessary:
e sup {i pi sup {rho +1}}
resultsin

em"" 1

The general rule is that anywhere you could use a single item like x, you could
also use any complicated expression, if you enclose it in braces. Positioning and
size will be taken care of by eqn.

You will need to make sure you have the right number of braces. If for some
reason you need to print braces, enclose them in double quotations ("), like " {".
8.3.3 Fractions

To make afraction, use the word “over.” For example:

a+ bover2c=1

produces

b
—=1
e+ 2¢

The line is made the right length and positioned automatically. You can use
braces to make clear what goes over what:

{alpha + beta} over {sin(x)}
is

a+f

sin(z)

If you have both an over and a sup in the same expression, eqn does the sup
before the over, so

-b sup 2 over pi

85

XENIX Text Processing

i
S

instead of @

2
b
The rules of precedence that control which operation will be done first are
summarized at the end of this chapter. If you are in doubt, however, use braces
to make clear what you mean.’
8.3.4 Square Roots
Todraw asquare root, use ‘‘sqrt’’. For example

sqrt a+b + 1 over sqrt {ax sup 2 +bx-+c}

produces

— 1
atbt v a?+bz+c (

You should note, however, that the square roots of tall quantities often do not
look good. A square root big enough to cover the quantity is too dark and
heavy. For example

sqrt {a sup 2 over b sub 2}

produces

a

b

You are better off writing big square roots as the power 1/2. For example, you
could use

(a sup 2 /b sub 2) sup half

to produce

(/1) (

8-6

Formatting Mathematics

8.3.5 Summation and Integrals

Summations, integrals, and similar constructions can be produced with eqn.
For example

sum from i=0 to {i= inf} x sup i

produces
=00
), 2
1=0

Braces are used here to indicate where the upper part =00 begins and ends.
No braces were necessary for the lower part 1==0, because it contained no
blanks. Braces never hurt, and if the from and to parts contain any blanks, you
must use braces around them. The from and to parts are optional, but if both
are used, they have tooccur inthatorder.
Other useful characters can replace the sum, including:

int prod union inter

These become, respectively,

Jmun

The expression before the *‘from’” can be anything, including an expression in
braces. The from-to expression can often be used in unexpected ways. For
example

lim from {n -> inf} x sub n =0

produces

lim z,=0
n—+00

8.4 Complex Mathematical Constructions

This section describes how to use eqn to produce more complicated
mathematical constructions, including piles and matrices, often surrounded by
brackets, parentheses or bars.

8.4.1 Big Brackets, Parentheses, and Bars

87

XENIX Text Processing

To get big brackets ([1), braces ({ }), parentheses (()), and bars (||) around
things, use the left and right commands. For example

left { a over b + 1 right }
“==" left (¢ over d right)
+ left | e right |

produces

(-1

The resulting brackets are big enough to cover whatever they enclose. Other
characters can be used besides these, but they probably won’t look very good.
One exception is the floor and ceiling characters. For example

left floor x over y right floor
< = left ceiling a over b right ceiling

produces

[f<fi

Please note that braces are typically bigger than brackets and parentheses,
because the number of pieces is incremented by two (three, five, seven, etc.)
while the number of pieces in a bracket isincremented by one (two, three, etc.).
Also, big left and right parentheses often look poor, because of character set
limitations.

The right part may be omitted: aleft expression need not have a corresponding
right expression. If the right part is omitted, put braces around the thing you
want the left bracket to encompass. Otherwise the resulting brackets may be
too large. If you want to omit the left part, things are more complicated,
because technically you can’t have a right without a corresponding left.
Instead you have to say

left *” right)

The left "” means a “left nothing”. This satisfies the rules without affecting
your output.

8.4.2 Piles

There is a facility for making vertical piles of things with several variants. For
example:

8-8

Formatting Mathematics

A="left |
pile { a above b above ¢ }
" pile { x above y above z }
right |

will produce

A=Fg

You can have asmany elements in a pile as you want. They will be centered one

above another, at the right height for most purposes. The keyword above is

used to separate the pieces; braces are used around the entire list. The elements
.of a pile can be as complicated as needed, and may even contain more piles.

Three other forms of pile exist: “Ipile’’ makes a pile with the elements left-
justified; “rpile” makes a right-justified pile; and “‘cpile’ makes a centered pile,
just like pile. The vertical spacing between the pieces is somewhat larger for |-,
r- and cpiles than it is for ordinary piles. For example

roman sign (x) ="
left {
Ipile {1 above 0 above -1}
"7 Ipile
{if"x>0 above if"x=0 above if"x<0}
creates the pile
1ifz>0
sign(z) =10 if z=0
-1 if z<0

Note that the left brace has no matching right one.

8.4.3 Matrices

It is also possible to make matrices. For example, to make a neat array like
z, 7
ny

use

89

XENIX Text Processing

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered columns. The elements of the
columns are then listed just as for a pile, each element separated by the word
above. You can also use lcol or rcol to left or right adjust columns. Each
column can be separately adjusted, and there can be as many columns as you
like.

The reason for using a matrix instead of two adjacent piles is that if the
elements of the piles do not all have the same height, they will not line up
properly. A matrix forces them to line up, because it looks at the entire
structure before deciding what spacing to use. A word of warning about
matrices: each column must have the same number of elementsin it.

8.4.4 Lining Up Equations

Sometimes it i3 necessary to line up a series of equations at some horizontal
position, such as at an equal sign. This is done with two operations called
“mark”and “lineup.” The word mark may appear once at any place in an
equation. It remembers the horizontal position where it appeared. Successive
equations can contain one occurrence of the word lineup. The place where
lineup appearsis made to line up with the place marked by the previous mark if
at all possible. Thus, for example, you can say

EQ

x4y mark = 2
.EN

EQ

x lineup = 1
.EN

to produce

+y=z
=1

Note that mark doesnot look ahead, so
x mark =1
x+y lineup =z

will not work, because there is not room for the x+y part after the mark
remembers where the x is.

8-10

Formatting Mathematics

8.6 Layout and Design of Mathematical Text

The following sections describe the format and layout control features of eqn.

8.5.1 Input Spaces

Eqn ignores spaces and newlines within an expression. If you have any of the
following equations between .EQ and .EN commands,

x=y+z
or

X=y+z2
or

x =Y

+3

they will all produce the same output:
=y+z
Therefore, use spaces and newlines freely to make your input equations
readable and easy to edit.
8.5.2 Output Spaces
To get extraspaces into the your output, use a tilde (") for each space you want:
x ="y +73
Thisproduces
z=y+z
You can also use a caret (*), which produces a space half the width of a tilde.
Tabs may be used to position pieces of an expression, but the tab stops must be
set with the troff tab (.ta) command.
8.5.3 Spaces Between Special Sequences
If you need to separate a special sequence of characters, you will have to make

this clear to eqn. You can either surround a special sequence with ordinary
spaces, tabs, or newlines, or make special words stand out by surrounding them

8-11

XENIX Text Processing

with tildes or carets, asin the following:
x"=="2"pi"int "sin"{"omega~t")"dt

The tildes not only separate the words sin, omega, etc., but also add extra
spaces, one space per tilde:

z=21rfsin(wl)dl

Special words can also be separated by braces({ }) and double quotation marks
)

8.5.4 Symbols, Special Names, and Greek Characters

Eqn knows some mathematical symbols, some mathematical names, and the
Greek alphabet. For example,

x=2 pi int sin { omega t)dt
produces
7=2n [sin(wt)dt

Here you need input spaces to tell eqn that int, pi, sin and omega are separate
entities that should get special treatment. The sin, digit 2, and parentheses are
set in Roman type instead of italic; pi and omega are translated into Greek; int
becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A common
error is to type f(pi) without leaving spaces on both sides of the pi. If you do
this, eqn does not recognise pi as a special word, and it appears as f{pi) instead
of f{r). A complete list of eqn names appears at the end of this chapter. You
can also use troff names for anything eqn doesn’t know about.

8.5.5 Size and Font Changes

By default, equations are set in 10-point type; standard mathematical
conventions determine which characters are in Roman and which are in italic.
If you are dissatisfied with the default sizes and fonts, you can change them
using the commands size n and roman, italic, bold and fat. Like sub and sup,
size and font changes affect only what follows immediately and then revert to
the default. Thus

bold x y

8-12

Formatting Mathematics

xy
and

size 14 bold x = y +
size 14 {alpha + beta}

gives

Xx=y+a+

You can use braces if you want to apply a change to something more
complicated than a single letter. For example, you can change the size of an
entire equation with

size 12 { ... }

Legalsizesare: 6,7,8,9, 10,11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. You can also
change the size by a given amount; For example, you can say

size+2
to make the size two points bigger, or
size-3

to make it three points smaller. The advantage of this method is that you do
not need to know what the current sizeis.

If you are using fonts other than Roman, italic and bold, you can say font X
where X is a one character troff name or number for the font. However, since
eqn is designed for Roman, italic and bold, other fonts may not give quite as
good an appearance.

The fat operation takes the current font and widens it by overstriking: fat grad
is'\7 and fat {x subi} is z;.

If an entire document is to be in a nonstandard size or font, you need not write
out asize and font change for each equation. Instead, you can set a “global’ size
or font which thereafter affects all equations. At the beginning of any equation,
you might say, for instance,

EQ
gsize 16
glont R
EN

toset the size to 16 points and the font to Roman. In place of R, you can use any

8-13

XENIX Text Processing

troff font name. The size after gsize can be arelative change with + or —.

Generally, gsize and gfont will appear at the beginning of a document but they

can also appear throughout a document: the global font and size can be changed
asoften as needed. For example, in a footnote you will typically want the size of
equations to match the size of the footnote text, which is two points smaller @
than the main text. Don’t forget to reset the global size at the end of the
footnote.

8.5.8 Diacritical Marks
There are several words that produce diacritical markson top of letters:

x dot

x dotdot
x hat

x tilde

x vec

x dyad
x bar

x under

I W) ag s N By

The diacritical mark is automatically placed at the correct height. The “bar”
and “‘under” are made the right length for the entire construct, as in ZFy¥7; (
other marksare centered.
8.5.7 Quoted Text
Any input entirely within quotes(”..."”) is not subject to any of the font changes
and spacing adjustments normally done by the equationsetter. Thisprovidesa
way to do your own spacing and adjusting if needed. For example
italic "sin(x)” + sin (x)
produces
sin(z)+sin(z)

Quotation marks are also used to get braces and other eqn keywords printed.
For example

" { size alpha }"
produces <
{ sizealpha}

Similarly

8-14

Formatting Mathematics

roman " { size alpha }”
produces

{ size alpha }
The construction ”” can be used as a place-holder when eqn syntax requires
something, but you don’t actually want anythingin your output. For example,
tomake

*He
you can’t just type
sup 2 roman He

because a sup hasto be a superscript on something. Thusyou must say

"" sup 2 roman He

"To get a literal quotation mark, use the sequence \”.

8.5.8 Local Motions

Although eqn tries to get most things at the right place on the paper, it isn’t
perfect, and occasionally you will need to tune the output to make it just right.
Smallextra horizontal spaces can be obtained with tildes (") and carets("). You
can also say “back n” and ““fwd n” to move small distances horizontally. The n
is the distance to be moved in 1/160 em units (an em is about the width of the
letter m). Thus “back 50" moves back about half the width of an m. Similarly
you can move things up or down with “up n”’ and “down n.” As with sub or sup,
the local motions affect the next thing in the input. This can be a complex
expression, aslong asit isenclosed in braces.

8.6 In-line Equations

In a mathematical document it is often necessary to follow mathematical
conventions in the body of the text, as well as in display equations. For
example, you may need to make variable names like z italic. Although this
could be done by surrounding the appropriate parts with .EQ and .EN, the
continual repetition of .EQ and .EN is a nuisance. Furthermore, thisimpliesa
displayed equation.

Eqn provides a shorthand for short in-line expressions. You can define two
characters to mark the left and right endsof anin-line equation, and then type
expressions right in the middle of text lines. To set both the left and right
characters to percent signs, for example, add to the beginning of your
document the three lines

8-15

XENIX Text Processing

EQ
delim %%
.EN

Having done this, you create text like

Let %alpha sub i% be the primary variable, and let %beta% be zero.
Then we can show that %x sub 1% is %>=0%.

This produces:

Let a, be the primary variable, and let f be zero. Then we can show
that z; is >0.

This works as you might expect: spaces, newlines, and so on are significant in
the text, but not in the equation part itself. Multiple equations can occur in a
single input line.

Enough room is lﬂeft before and after aline that contains in-line expressions that

something like z z,does not interfere with the lines surroundingit.
=1

To turn off the delimiters, use:

EQ
delim off
.EN

Do not use braces, tildes, carets, or double quotation marks as delimiters; these

have special meanings.

8.7 Definitions

Eqn allows you to give a frequently used string of characters a name, and
thereafter just type the name instead of the whole string. For example, if the
sequence

xsubisubl + y subisub 1

appears repeatedly throughout a paper, you can save retyping it each time by
defining it like this:

EQ
define xy ’x subisub1 + y subisub I’
.EN

This makes xy a shorthand for whatever characters occur between the single
quotation marks in the definition. You can use any character instead of

8-16

Formatting Mathematics
quotation marks to indicate the ends of the definition, so long as that character
does not appear inside the definition.

You can use xy like this:
.EQ

f(x) = xy ...

.EN

Each occurrence of xy will expand into the string of characters you defined. Be
careful to leave spaces or their equivalent around the name when you actually
use it, so eqn will be able to identify it asspecial.

There are several things to watch out for. First, although definitions can use
previous definitions, asin:

EQ
define xi ’xsubi’
define xil ’xisub 1’
.EN
don’t define something in terms of itself. You cannot use
define X ' roman X'
because this defines Xin terms of itself. If you say
define X ’roman "X"’
however, the quotation marks protect the second X, and everything works fine.
Eqn key wordscanbe also be redefined. You can make / meanover by saying
define / ’over’
‘or redefine over as / with
define over '/’
If you need to print a symbol one way on a terminal and another way on the
typesetter, it is sometimes worth defining a symbol diflerently for neqn and
eqn. This can be done with “ndefine” and *‘tdefine.” A definition made with
ndefine only takes effect if you are running neqn. If you use tdefine, the

definition only applies for eqn. Names defined with “define’’ apply to both eqn
and neqn.

8-17

XENIX Text Processing

8.8 Invoking eqn
To print a document that containsmathematicson the typesetter, use
eqn files | troff <

If there are any troff options, place them after the troff part of the command.
For example,

eqn files | troff -mm files
To print equations on alineprinter or similar device, use
neqn files | nroff -mm files

The language for equations recognized by negn is identical to that of eqn,
although of course the output is more restricted.

Eqn and neqn can be used with the tbl program for setting tablesthat contain
mathematics. Use tbl before eqn like this:

tbl files | eqn | troff -mm
tbl files | neqn | nroff -mm
.8.9 Sample Equation

Now that you are familiar with the featuresof eqn, here is the complete input
text for the three display equations at the beginning of this chapter:

818

Formatting Mathematics

EQ
G(z) mark =" e sup { In ~ G(z) }
=" exp left (
sum from k>=1 {S sub k 2 sup k} over k right)
“=" prod from k>=1 e sup {S sub k z sup k /k}
EN
EQ
lineup = left (1 + Ssub 1z +
{ Ssub 1 sup 2zsup2} over 2! + ... right)
left (1+ { Ssub 2 z sup 2 } over 2
+ { Ssub2sup 2zsup4}over {2sup2ecdot 2!}
+ ... right) ...
EN
EQ
lineup = sum from m>=0 left (
sum from
pile { ksub 1 ksub2,.., ksubm >=0
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{ Ssub t sup {ksub1} } over {Isupksublksubl!}"
{ S sub 2 sup {k sub 2} } over {2sup ksub2ksub2!} "~
{ S sub m sup {k subm} } over {m sup k subm k subm !}
right) z sup m
.EN

8.10 Error Messages

If you make a mistake in an equation, such asleaving out a brace or having one
too many braces or having a sup with nothing before it, eqn will respond with
the message

syntax error between lines x and y, file

where x and y are the lines between which the trouble occurred, and file is the
name of the file in question. The line numbers are only approximate, so check
nearby lines as well. You will receive self-explanatory messages if you leave out
aquotation mark or try torun eqn on anonexistent file.

If you want to check a document before actually printing it try:

eqn files > /dev/null

This will throw away the output but print the error messages.

If you use something like dollar signs as delimiters, it is easy to leave one out.
The program eqncheck checks for misplaced or missing dollar signs and
similarerrors.

8-19

XENIX Text Processing

In-line equations are limited in size because of an internal buffer in troff. If you
get the message ‘‘word overflow’’, you have exceeded this limit. If you print the
equation as a display this message will usually go away. The message
“line’’overflow indicates you have exceeded an even bigger buffer. The only)
cure for thisis to break the equation into two separate ones. @

Also, eqn does not break equations by itself; you must split long equations up
across multiple lines by yourself, marking each by a separate .EQ ...EN
sequence. Eqn warns about equationsthat are too long to fit on one line.

8.11 Summary of Keywords and Precedences

If you don’t use braces around expressions, eqn will do operations in the order
shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

These operations group to the left:
over sqrt left right {
Allothersgroup to the right.

Digits, parentheses, brackets, punctuation marks, and these mathematical
words are converted to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

These character sequencesare recognized and translated asshown.

>m
<=
1=
+_
->
<-
<<
>>
inf
partial
half
prime

,Q, "
SVQT L EXN AV
=

8-20

Formatting Mathematics

x

approx
nothing
cdot
times
del
grad
yeeny

sum

int
prod
union
inter

D @il \gH gddx :

Toobtain Greek letters, simply spell them out in whatever case you want:

DELTA A iota i
GAMMA T kappa K
LAMBDA A lambda A
OMEGA mu i
PHI ¢ nu v
PI n omega w
PSI 1 omicron 0
SIGMA T phi p
THETA © pi n
UPSILON T psi ¥
X1 B rho P
alpha a sigma c
beta B tau T
chi X theta)
delta 6 upsilon v
epsilon € xi '3
eta n zeta ¢
gamma "

These are all the words known to eqn except for characters with names:

8-21

XENIX Text Processing

8-22

above
back
bar
bold
ccol
col
cpile
define
delim
dot

dotdot
down
dyad
fat
font
from
fwd
glont
gsize
hat

italic

leol

left

lineup
Ipile size
mark
matrix
ndefine
over

pile

reol
right
roman
rpile

sqrt
sub
sup
tdefine
tilde

to
under
up
vec

Appendix A
Editing with Sed and

Awk

A.l1 Introduction A-1

A.2 Editing Withsed A-1
A.2.1 Overall Operation A-2
A.2.2 Addresses A-3
A.2.3 Functions A-5

A.3 Pattern Matching With awk A-12
A.3.1 Invokingawk A-13
A.3.2 Program Structure A-13
A.3.3 Recordsand Fields A-13
A.3.4 Printing A-14
A.3.5 Patterns A-15
A.3.6 Actions A-17

A.1 Introduction

This appendix describes two XENIX utilities that allow you to perform large-
scale, noninteractive editing tasks:

— Sed, a noninteractive, or “batch”, editor which is useful if you must
work with large files or run a complicated sequence of editing
commandson a file or group of files.

— Awk, which searches numerics, logical relations, variables, and
particular fields within lines of text.

Although you can perform many of the same tasks with grep, sort, and the
variants of diff, you will find that these two programs offer an added facility for
the processing of complicated changes to large files, or many filesat once. Sed is
very handy for large batch editing jobs, but if you choose not to learn it, many
of the same tasks can be performed with ed scripts. The awk program offers
several features not available with the other tools described in this chapter, but
it is somewhat more complicated to learn and use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the
files to be edited are either too large, or the sequence of editing commands too
complex, to be executed interactively. sed works ononly a few linesof input at
a time and does not use temporary files, so the only limit on the size of the files
you can process is that both the input and output must be able to fit
simultaneously on your disk. You can apply multiple " global” editing functions
to your text in one pass. Since you can create complicated editing scripts and
submit them to sed as a command file, you can save yourself considerable
retyping and the possibility of making errors. You can also save and reuse sed
command files which perform editing operations you need to repeat frequently.

Processing files with sed command files is more efficient than usinged, even if
you prepare a prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line at a time. Also, sed givesyou no
immediate verification that a command has altered your text in the way you
actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. You will notice a striking resemblance in the
class of regular expressions they recognize; the code for matching patterns is
nearly identical for ed and sed.

XENIX Text Processing

A.2.1 Overall Operation

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you will need to specify the file or files you are processing, along with
the name of the command file which contains your editing script, as in the
following:

sed ~f script filename

The flags are optional. The -n flag tells sed to copy only those lines specified by
—p functionsor -p flags after -s functions. The -e flag tells sed to take the next
argument as an editing command, and the -f flag tells sed to take the next
argument as a filename. (This file must contain editing commands, one to a
line.)

The general format of ased editing command is:

addressl,address2 function arguments
In any command, one or both addresses may be omitted. A function is always
required, but an argument is optional for some functions. Any number of
blanks or tabs may separate the addresses from the function, and tab

charactersand spacesat the beginning of lines are ignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p functions or p
flags after s functions.

-e Indicates that the next argument is an editing command.

-f Indicates that the next argument is the name of the file which

contains editing commands, typed one to a line.

Sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one of the ‘“flow-of-control”
functions discussed below. Sed works in two phases, compiling the editing
commands in the order they are given, then executing the commands one by
one to each line of the input file.

The input to each command is the output of all preceding commands. Even if
you change this default order of applying commands with one of the two flow-
of-control commands, t and b, the input line to any command is still the output
of any previously applied command.

You should also note that the range of pattern match is normally one line of

input text. This range is called the *‘pattern space.” More than one line can be
read into the pattern space by using the N command described below in

A-2

Editing with Sed and Awk

“Multiple Input-Line Functions’.

The rest of this section discusses the principles of sed addressing, followed by a
description of sed functions. All the examples here are based on the following
linesfrom Samuel Taylor Coleridge’s poem, “Kubla Khan’’:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

For example, the command
2q

will quit after copying the first two lines of the input. Using the sample text, the
result will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

A.2.2 Addresses

The following rulesapply to addressinginsed. There are two ways toselect the
lines in the input file to which editing commands are to be applied: with line
numbers or with ‘“‘context addresses’. Context addresses correspond to
regular expressions. The application of a group of commands can be controlled
by one address or an address pair, by grouping the commands with curly braces
({ })- There may be 0, 1, or 2 addresses specified, depending on the command.
The maximum number of addresses possible for each command isindicated.

Aline numberisa decimal integer. Aseach line isread from the input file, a line
number counter isincremented. A line number address matchesthe input line,
causing the internal counter to equal the address line-number. The counter
runs cumulatively through multiple input files; it is not reset when a new input
file is opened. A special case is the dollar sign character ($) which matches the
last line of the last input file.

Context addresses are enclosed in slashes (/). They include all the regular
expressions common to both ed and sed:

1. Anordinary character isaregular expression and matches itself.

2. A caret (") at the beginning of a regular expression matches the null
character at the beginning of a line.

XENIX Text Processing

3. A dollar sign ($) at the end of a regular expression matches the null
character at theend of aline.

4. The characters\n match an embedded newline character, but not the
newline at the end of a pattern space.

5. A period (.) matchesany character except the terminal newline of the
patternspace.

6. A regular expression followed by a star (¢) matches any number,
including 0, of adjacent occurrences of the regular expression it
follows.

7. Astringof charactersinsquare brackets([|) matchesany character in
the string, and no others. If, however, the first character of the string
is a caret ("), the regular expression matches any character except the
charactersin the string and the terminal newline of the pattern space.

8. A concatenation of regular expressions is a regular expression which
matches the concatenation of strings matched by the components of
the regular expression.

9. Aregular expression between the sequences “\(” and *“\)” isidentical
in effect to itself, but has side-eflects with the s command. Note the
following specification.

10. Theexpression \d means the same string of characters matched by an
expression enclosed in \(and \) earlier in the same pattern. Here ‘*d”
is a single digit; the string specified is that beginning with the “dth”
occurrence of \(counting from the left. For example, the expression
“\(-*\)\1 matches a line beginning with two repeated occurrences of
the same string.

11. The null regular expression standing alone is equivalent to the last
regular expression compiled.

For a context address to “match” the input, the whole pattern within the
address must match some portion of the patternspace. If you want to use one of
the special characters literally, that is, to match an occurrence of itself in the
input file, precede the character with a backslash (\) in the command.

Each sed command can have 0, 1, or 2 addresses. The maximum number of
allowed addresses is included. A command with no addresses specified is
applied to every line in the input. If a command hasone address, it is applied to
all lines which match that address. On the other hand, if two addresses are
specified, the command is applied to the first line which matches the first
address, and to all subsequent lines until and including the first subsequent line
which matches the second address. An attempt is made on subsequent lines to
again match the first address, and the process is repeated. Two addresses are
separated by a comma. Here are some examples:

A-4

Editing with Sed and Awk

/an/ Matches lines 1, 3, 4 in our sample text
/an.san/ Matches line 1

/ an/ Matches no lines

/-/ Matches all lines

/r*an/ Matches lines 1,3, 4 (number = zero!)

A.2.3 Functions

All sed functions are named by a single character. They are of the following
types:

— Whole-line oriented functions add, delete, and change whole text
lines.

— Substitute functions search and substitute regular expressions within
aline.

— Input-output functions read and write linesand/or files.

— Multiple input-line functions match patterns that extend across line
boundaries.

— Hold and get functions save and retrieve input text for later use.

— Flow-of-control functions control the order of application of
functions.

— Miscellaneousfunctions.

Whole-Line Oriented Functions

d

Deletes from the file all lines matched by its addresses. No further
commands will be executed on a deleted line. As soon as the d
function isexecuted, anew lineisread from the input, and the list of
editing commands is restarted from the beginning on the new line.
The maximum number of addressesistwo.

Reads and replaces the current line from the input, writing the
current line to the output if specified. The list of editing commands
is continued following the n command. The maximum number of
addresses is two.

Causes the text to be written to the output after the line matched
by its address. The a command is inherently multiline; The a
command must appear at the end of a line. The text may contain
any number of lines. The interior newlines must be hidden by a
backslash character (\) immediately preceding each newline. The
text argument is terminated by the first unhidden newline, the first
one not immediately preceded by backslash. Once an a function is

A-5

XENIX Text Processing

successfully executed, the text will be written to the output
regardless of what later commands do to the line which triggered it,

even if the line is subsequently deleted. The text is not scanned for

address matches, and no editing commands are attempted on it,

nor does it cause any change in the line-number counter. Only one (
addressis possible.

i When followed by a text argument it is the same as the a function,
except that the text is written to the output before the matched
line. It has only one possible address.

c The ¢ function deletes the lines selected by its addresses, and
replaces them with the linesin the text. Like the a andi commands,
¢ must be followed by a newline hidden with a backslash; interior
newlines in the text must be hidden by backslashes. The ¢
command may have two addresses, and therefore select a range of
lines. If it does, all the lines in the range are deleted, but only one
copy of the text is written to the output, not one copy per line
deleted. Asin the case of a and i, the text is not scanned for address
matches, and no editing commands are attempted on it. It does not
change the line-number counter. After a line has been deleted by a
¢ function, no further commands are attempted on it. If text is
appended after a line by a or r functions, and the line is
subsequently changed, the text inserted by the ¢ function will be
placed before the text of the a or r functions. (

Note that when you insert text in the output with these functions, leading
blanks and tabs will disappear in all sed commands. To get leading blanks and
tabs into the output, precede the first desired blank or tab by a backslash; the
backslash will not appear in the cutput.

For example, the list of editing commands:

n

a\
XXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan

XXX

Where Alph, the sacred river, ran

Down to a sunless sea. (

In this particular case, the same eflect would be produced by either of the two
following command lists:

Editing with Sed and Awk

or

n
°\
XXXX

Substitute Functions The substitute function(s) changes parts of lines
selected by a context search within the line, asin:

(2)s pattern replacement flage substitute

The s function replaces part of a line selected by the designated pattern with
the replacement pattern. The pattern argument contains a pattern, exactly
like the patterns in addresses. The only difference between a pattern and a
context address is that a pattern argument may be delimited by any character
other than space or newline. By default, only the first string matched by the
patternisreplaced, except when the —g option is used.

The replacement argument begins immediately after the second delimiting
character of the pattern, and must be followed immediately by another
instance of the delimiting character. The replacement isnot a pattern, and the
characters which are special in patterns do not have special meaning in
replacement. Instead, the following characters are special:

Isreplaced by the string matched by the pattern.

\d dis a single digit which is replaced by the dth substring matched by
partsof the pattern enclosed in \(and \}. If nested substrings occur
in the pattern, the dth substring is determined by counting opening
delimiters.

Asin patterns, special characters may be made literal by preceding them with a
backslash (\).

A flag argument may contain the following:

g Substitutes the replacement for all nonoverlapping instances of the
pattern in the line. After a successful substitution, the scan for the
next instance of the pattern begins just after the end of the inserted
characters; characters put into the line from the replacement are
not rescanned.

p Prints the line if a successful replacement was done. The p flag

causes the line to be written to the output if and only if a
substitution was actually made by the s function. Notice that if

A-T

XENIX Text Processing

w file

several s functions, each followed by a p flag, successfully
substitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

Writes the line to a file if a successful replacement was done. The
—~w option causes lines which are actually substituted by the s
function to be written to the named file. If the filename existed
before sed isrun, it isover written; if not, the file is created. A single
space must separate ~w and the filename. The possibilities of
multiple, somewhat different copies of one input line being written
are the same as for the —p option. A combined maximum of ten
different filenames may be mentioned after w flagsand w functions.

Here are some examples. When applied to our standard input, the following

command:

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

andon the file changes:

Through caverns measureless by man
Down by a sunless sea.

The command

s/[..;t:|/+P&+/gp

produces:

A stately pleasure dome decreesP:#
Where Alph*P,* the sacred river*P,* ran
Down to a sunless seasP.#

With the g flag, the command

[X/[s/an/AN/p

produces:

In XANadu did Kubhla Khan

and the command

A-8

Editing with Sed and Awk

[X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

Input-Output Functions

| 4

The print function writes the addressed lines to the standard
output file at the time the p function is encountered, regardless of
what succeeding editing commands may do to the lines. The
maximum number of possible addressesis two.

The write function writes the addressed lines to filename. If the file
previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is
encountered for each line, regardless of what subsequent editing
commands may do to them. Exactly one space must separate the w
command and the filename. The combined number of write
functions and w flags may not exceed 10.

The read function readsthe contents of the named file, and appends
them after the line matched by the address. The file is read and
appended regardless of what subsequent editing commands do to
the line which matched its address. If r and a functions are
executed on the same line, the text from the a functions and the r
functions is written to the output in the order that the functions are
executed. Exactly one space must separate the r and the filename.
One addressis possible. If a file mentioned by an r function cannot
be opened, it is considered a null file rather than an error, and no
diagnostic is given.

Note that since there is a limit to the number of files that can be opened
simultaneously, be sure that no more than ten files are mentioned in functions
or flags; that number is reduced by one if any r functions are present. Only one
read fileis open at one time.

Here are some examples. Assume that the file note 1 hasthe following contents:

Note:

Kubla Khan (more properly Kublai Khan;

1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

The following command:

/Kubla/r notel

produces:

A-9

XENIX Text Processing

In Xanadu did Kubla Khan

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Multiple Input-Line Functions Three functions, all spelled with upper
case letters, deal specially with pattern spaces containing embedded newlines.
They are intended principally to provide pattern matches across lines in the

input.

N

P

Appends the next input line to the current line in the pattern space;
the two input lines are separated by anembedded newline. Pattern
matches may extend across the embedded newline(s). There is a
maximum of two addresses.

Deletes up to and including the first newline character in the
current pattern space. If the pattern space becomes empty (the
only newline was the terminal newline), another line is read from
the input. In any case, begin the list of editing commands again
from itsbeginning. The maximum number of addressesis two.

Prints up to and including the first newline in the pattern space.
The maximum number of addressesis two.

The P and D functions are equivalent to their lowercase counterparts if there
are no embedded newlinesin the pattern space.

Hold and Get Functions These functions save and retrieve part of the input
for possible later use:

h

A-10

The h function copies the contents of the pattern space into a
holding area, destroying any previous contents of the holding area.
The maximum number of addressesis two.

The H function appends the contents of the pattern space to the
contents of the holding area. The former and new contents are
separated by a newline.

The g function copies the contents of the holding area into the
pattern space, destroying the previous contents of the pattern
space.

The G function appends the contents of the holding area to the
contents of the pattern space. The former and new contents are
separated by anewline. The maximum number of addresses is two.

X

Editing with Sed and Awk

The exchange command interchanges the contents of the pattern
space and the holding area. The maximum number of addresses is
two.

For example, the commands

1h
1s/ did.«//
1x

G
s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

Flow-of-Control Functions These functions do no editing on the input
lines, but control the application of functions to the lines selected by the
address part.

:label

blabel

This command causes the next command written on the same line
to be applied to only those input lines not selected by the address
part. There are two possible addresses.

This command causes the next set of commands to be applied or not
applied as a block to the input lines selected by the addresses of the
grouping command. The first of the commands under control of
the grouping command may appear on the same line as the { or on
the next line. The group of commands is terminated by a matching
} on a line by itself. Groups can be nested and may have two
addresses.

The label function marks a place in the list of editing commands
which may be referred to by b and ¢ functions. The label may be
any sequence of eight or fewer characters; if two different colon
functions have identical labels, an error message will be generated,
and no execution attempted.

The branch function causes the sequence of editing commands
being applied to the current input line to be restarted immediately
after encountering a colon function with the same label. If no colon
function with the same label can be found after all the editing
commands have been compiled, an error message is produced, and
no execution is attempted. A b function with nolabel isinterpreted
as a branch to the end of the list of editing commands. Whatever
should be done with the current input line is done, and another

A-11

XENIX Text Processing

input line is read; the list of editing commands isrestarted from the
beginning on the new line. Two addresses are possible.

tiabelfR The t function tests whether any successful substitutions have been
made on the current input line. If so0, it branches to the label; if not,
it does nothing. The flag which indicates that a successful
substitution has been executed is reset either by reading a new
input line, or executing a t function.

Miscellaneous Functions There are two other functions of sed not
discussed above.

= The = function writes to the standard output the line number of
the line matched by itsaddress. One addressis possible.

q The q function causes the currentline to be written to the output (if
it should be), any appended or read text to be written, and
execution to be terminated. One address is possible.

A.3 Pattern Matching With awk

By now you have been introduced to several tools for locating patterns and
strings in one or more text files, including grep and its variants. You should
also be familiar with using the various text editors to do global searching. Awk
offers another approach to many of these same tasks. Awk is actually a
programming language designed to make many common search and text
manipulation tasks easy to state and to perform. It offers several key features
not available with grep or sed: numeric processing, the handling of variables,
general selection, and flow-of-control in commands. Awk is also uniquely
suited to operationson fields within lines.

In practice, awk is used in two ways for report generation, procesing input to
extract counts, sums, subtotals, etc.; and to transform data from the form
produced by one program into that expected by another. Awk searchesinput
lines consecutively for a match of patterns which you designate. For each
pattern, an action can be specified; this action will be performed on each line
that matches the pattern. Awk allows you to perform more complex actions
than merely printing a matching line. For example, the awk program:

{print $3, $2}
prints the third and second columns of a table in that order. The program
$2 /A|B|C/

prints allinput lines with an A, B, or C in the second field, where the second field
is text separated by whitespace. The program

A-12

Editing with Sed and Awk

$1 !== prev { print; prev == §1 }

prints all lines in which the first field is different from what was previously the
first field.

A.3.1 Invoking awk
The command in the following form:
awk program filename

executes the awk commands written into the named program on the set of
named files, or on the standard input if no files are named. The statements can
also be placed in afile pfile, and executed by the command:

awk -f pfile filename

A.3.2 Program Structure
Anawk programis asequence of statements, each in the form:
pattern { action }

Each line of input is matched in turn against each of the specified patterns. For
each pattern matched, the associated action is executed. When all the patterns
have been tested, the next line is read and the matching process repeated.
Either the pattern or the action may be omitted, but not both. If there is no
action for a pattern, the matching line is simply copied to the output. Thus a
line which matches several patterns can be printed several times. If thereis no
pattern for an action, then the action is performed for every input line. A line
which matches no pattern is ignored. Since patterns and actions are both
* optional, actions must be enclosed in braces to distinguish them from patterns.

A.3.3 Records and Fields

Awk input is divided into ‘“‘records” which are terminated by a record
separator. Because the default record separator is a newline, awk processesits
input one line at a time. The number of the current record is available in a
predefined variable named NR, for ‘“‘number register”.

Each input record is divided into ‘‘fields”. Fields are normally separated by
whitespace, either blanks or tabs, but the input field separator can be changed.
Fields are referred to as $1, $2, and so forth, where $1 is the first field, and $0 is
the whole input record itself. Assignments may be made to fields. The number

of fields in the current record is available in another predefined variable named
NF, for “number fields’.

A-13

XENIX Text Processing

The variables FS and RS refer to the input field and record separators; they
may be changed at any time to any single character. The optional command-
line argument -Fc may also be used to set F'S to the character ‘‘c”. If the record
separator is empty, an empty input line is taken as the record separator, and
blanks, tabs and newlines are treated as field separators. The variable
FILENAME contains the name of the current input file.

A.3.4 Printing
If an action has no pattern, the action is executed for all lines. The simplest
action is to print some or all of arecord, using the awk command print. This
command prints each record, copying the input to the output intact. A field or
group of fields may be printed from each record. For instance,

print $2, $1
prints the first two fields in reverse order. Items separated by a comma in the
print statement will be separated by the current output field separator when
output. Itemsnot separated by commas will be concatenated, so

print $1 $2
runs the first and second fields together.
The predefined variables NF and NR can be used. For example,

{ print NR, NF, §0 }

. prints each record preceded by the record number and the number of fields.
Also, output may be diverted to multiple files. For example, the program

{ print $1 >"list1”; print $2 >"list2” }

writes the first field, 1, on the file lsst1, and the second field on file lsst2. The
““> >" notation can also be used. For example,

print $1 > >"list”
appends the output to the file list. In each case, the output files are created if
necessary. The filename can be a variable or a field as well as a constant. For
example,

print $1 >§2

uses the contents of field 2 as a filename. There is a limit of ten possible output
files. Output can also be piped into another process. For instance,

print | "mail fredm”

A-14

Editing with Sed and Awk

mailsthe output to fredm’s mailbox.

The variables OFS and ORS may be used to change the current output field
separator and output record separator. The output record separator is
appended to the output of the print statement. Awk also provides the printf
statement for output formatting.

printf format, expr, expr, ...

formats the expressions in the list according to the specification in the file
formatand prints them. For example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide, with two digits after the
decimal point, and $2 as a 10-digit decimal number, followed by a newline. No
output separators are produced automatically; they must be added, as in the
above example.

A.3.5 Patterns

You may specify a pattern before an action to act as a selector for determining
whether the action is to be executed. A variety of expressions may be used as
patterns: regular expressions, arithmetic relational expressions, string-valued
expressions, and arbitrary Boolean combinations of these.

The special pattern BEGIN matches the beginning of the input, before the first
record is read. The pattern END matches the end of the input, after the last
record has been processed. BEGIN and END thus provide a way to gain control
before and after processing, so you can initialize and terminate the program
normally.
For example, the field separator can be set to a colon with:

BEGIN {FS ="}
Or the input lines may be counted by:

END { print NR }
If BEGIN is present, it must be the first pattern; END must be the last.

Regular Expressions The simplest regular expression is a literal string of
charactersenclosed in slashes, such as:

/smith/

This is actually a complete awk program which prints all lines containing any
occurrence of the name *‘smith”. If a line contains *smith” as part of a larger

A-15

XENIX Text Processing

word, it will also be printed, asin
blacksmithing

The list of regular expressions recognized by awk includes the regular
expressions recognized by ed, sed, and the grep command. In addition, awk
allows parentheses for grouping, the pipe (]) for alternatives, the plus (+) for
‘““one or more’’, and the question mark (?) for ““zero or one’’. Character classes
may be abbreviated: [a-2A-Z0-9] is the set of all letters and digits. For
example, the awk program

/|Aa]pples|[Bb]ananas|[Cc]herries/

prints all lines which contain any of the words ‘‘apples”, “bananas”, or
“cherries,” whether they begin with an uppercase letter or not.

Regular expressions must be enclosed in slashes, just asined and sed. Withina
regular expression, blanks and the regular expression metacharacters are
significant. To turn off the special meaning of one of the regular expression
metacharacters, precede it with a backslash.

For example, the pattern

IN*\/]

matches any string of characters enclosed in slashes. You can also specify that
any field or variable matches a regular expression (or does not match it) with
the operatorstilde (”) and exclamation point tilde (!). The program

$1 ~ /|jJ]John/
prints all lines where the first field matches ““john” or *“John’". Notice that this
will also match “Johnson”, *‘St. Johnsbury”, and so on. To restrict the match
to exactly *“John’’ or “john”, use

$1 " /"[iJ]ohn$/

The caret (*) refersto the beginning of a line or field; the dollar sign (8) refers to
the end.

Relational Expressions An awk pattern can be a relational expression
involving the operators <, < ==, ===, {=, > ==, and >. For example,

$2 > 81 + 100

selects lines where the second field is at least 100 greater than the first field.
Similarly,

NF % 2 ==0

A-16

(

Editing with Sed and Awk

prints all lines with an even number of fields.

In relational tests, if neither operand is numeric, a string comparison is made;
otherwiseitisnumeric. Thus,

31 >____ nsn

selects lines that begin with “s”, “t", ‘“u”, etc. In the absence of other
information, fieldsare treated as strings, so the program

$1 > $2
will perform a string comparison.

Combinations of Patterns A pattern can be any Boolean combination of
patterns, using the operators || (or), && (and), and ! (not}. For example,

$1 >="5" "& $1 <"t” && $1 != "smith”

selects lines where the first field begins with “s”, but is not “smith”. The
operators && and || guarantee that their operands will be evaluated from left
to right; evaluation stops as soon as their truth or falsehood is determined.

The pattern that selects an action may also consist of two patterns separated
by a comma, asin

patl, pat2 {..}

In this case, the action is performed for each line between an occurrence of pat!
and the next occurrence of pat2(inclusive). For example,

[start/, [stop/
prints all lines between *‘start’ and “stop’’, while
NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

A.3.8 Actions

In addition to the patterns described above, the awk program offers a set of
possible actions. An awk action is a sequence of action statements terminated
by newlines or semicolons. These action statements can do a variety of
bookkeeping and string manipulating tasks. The possible actions are: built-in
functions, the assignment of variables and strings, the use of field variables,
string concatenation statements, arrays, and flow-of-control statements.

A-17

XENIX Text Processing

Built-in Functions Awk provides a “length” function to compute the
length of a string of characters. This program prints each record, preceded by
its length:

{print length, $0}
The length by itself is a ‘“‘pseudo-variable” which yields the length of the
current record; length(argument) is a function which yields the length of its
argument, asin the equivalent:

{print length($0), $0}
The argument may be any expression.
Awk also provides the arithmetic functions sqrt, log, exp, and int, for square
root, logarithm, exponential, and integer parts of their respective arguments.
The name of one of these built-in functions, without argument or parentheses,
stands for the value of the function on the whole record. The program

length < 10 || length > 20
prints lines whose length isless than 10 or greater than 20.
The function substr(s,m,n) produces the substring of s that begins at position
m (origin 1) and is at most n characterslong. If n is omitted, the substring goes
to the end of ¢. The function index(sl, s2) returnsthe position where the string

a2occursin ol,or gero if it does not.

The function sprintf(f,el, €2, ...) produces the value of the expressions el, 2,
etc., in the print{format specified by f. Thus, for example,

x == sprintf(” %8.2f %101d”, 81, $2)
sets z to the string produced by formatting the values of $1 and $2.
Variables, Expressions, and Assignments Awk variables take on
numeric (floating-point) or string values according to context. In the following
example,

x =1
zisclearly anumber, whilein

x == "smith”

it is clearly a string. Strings are converted to numbers and vice versa whenever
context demandsit. For instance,

X=n3n +ﬂ4n

A-18

Editing with Sed and Awk

assigns 7 to 2. Strings which cannot be interpreted as numbers in a numerical
context will generally have the numeric value zero.

By default, variables (other than built-in functions) are initialized to a null
string, which has numerical value zero. This eliminates the need for most
BEGIN sections. For example, the sumsof the first two fields can be computed
with:

{sl +=81;s2 += 82}
END { print sl,s2 }

Arithmetic is done internally in floating-point. The arithmetic operators are:
+, -, %, /, and %. The Cincrement ++ and decrement ~ - operators are also
available, as well as the assignment operators +=, -=, =, /=, and %=.
These operators may all be used in expressions.

Field Variables Fields in awk share essentially all of the properties of

variables. They may be used in arithmetic or string operations, and may be
assigned to. Thus you can replace the first field with a sequence number:

{ 81 = NR; print }
or accumulate two fields into a third,
{ 81 = $2 + $3; print $0 }
or assign a string to a field,
{ if ($3 > 1000)
$3 = "too big”

print

}

which replaces the third field by *‘too big" when it is too big, and prints the
record in either case.

Field references may be numerical expressions, asin the following;:
{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string depends on context; in ambiguous
cases like

if (81 == §2) ...
fields are treated asstrings.

Each input line is automatically split into fields as necessary. It is also possible
tosplitany variable or string into fields. Forexample,

A-19

XENIX Text Processing

n = split(s, array, sep)

splits the the string s into array[1), arrag[n]. The number of elements found is
returned. If the sep argument is provided, it is used as the field separator.
Otherwise FSis used as the separator.

String Concatenation Strings may be concatenated. For example:
length($1 $2 $3)

returns the length of the first three fields. In a print statement,
print $1 " is " $2

prints the two fields separated by *‘ is ”’. Variables and numeric expressions
may also appear in concatenations.

Arrays Array elements are not declared; they spring into existence when
mentioned in a program. Subscripts may have any non-null value, including
non-numeric strings. For example, in a conventional numeric subscript, the
statement

x[NR] = $0

assigns the current input record to the NRth element of the array z. In
principle it is possible to process the entire input in a random order with the
awk program:

{ x|NR] = ¢0 }
END { ... program ... }

The first action merely recordseach input line in the array z.

Array elements may be named by non-numeric values. Suppose the input
contains fields with valueslike apple, orange, etc. The program

/apple/ { x["apple”]++ }
[orange/{ x["orange”]++ }
END { print x["apple”], x["orange”] }
increments counts for the named array elements, and prints them at the end of

the input. Any expression can be used as a subscript in an array reference.
Thus,

x[$1] = $2
uses the first field of arecord asastringtoindex the array z.

Suppose each line of input contains two fields, 2 name and a nonzero value.
Names may be repeated. To print a list of each unique name followed by the

A-20

Editing with Sed and Awk

sum of all the values for that name, use the program:

{ amount[$1] +=$2 }
END { for {(name in amount)
print name, amount[name] }

To sort the output, replace the last line with
print name, amount[name] | "sort”

Flow-of-Control Statements Like any programming language, awk
provides flow-of-control statements. These are: if-else, while, for, and
statement groupings with braces. When using the if statement the condition in
parentheses is evaluated. If it is true, the statement following the if is done.
The else part is optional.

A while statement is also available. For example, to print all input fields one
per line, use:

i=1

while (i <= NF) {
print $i
++i

}

The for statement

for (i=1;i <= NF; i++)
print $i

does the same job as the while statement above.

An alternate form of the for statement is useful for accessing the elementsof an
associative array. For example,

for (i in array)
statement

performs statement with 1 set in turn to each element of the array. The
elements are accessed in an apparently random order. Chaos will ensue if 1 is
altered, or if any new elements are accessed during the loop.

The expression in the condition part of an if, while or for statement can
include relational operators like <, <=, >, >=, == {("'isequal to”), and |=
(““not equal to”'); regular expression matches with the match operators \ ™ and
\"; the logical operators ||, &&, and!, and parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or for

statement. The continue statement causes the next iteration to begin. The
next statement causes awk to skip immediately to the next record and begin

A-21

XENIX Text Processing

scanning the patterns from the top. The exit statement causes the program to
behave asif the end of the input had occurred.

One final note: comments may be placed in awk programs. If you are going to
store complex awk programs for future use, it is a good idea to use comment
lines generously, to remind you of what your program does:

print x, y # this is a comment

Comments begin with the character “#’ and end with the end of the line.

A-22

Index

A

abstracts 3-1
abstracts 4-58
Acknowledgements 1-4
adjective usage 2-17
AL, list begin macro 1-10
alphabetizing lines in files 2-6
Appendices 1-5
Archiving 1-12
awk 1-14
awk 1-7
awk A-1
actions A-19
arrays A-22
assignments A-20
BEGIN A-16
break A-23
built-in functions A-19
exp A-19
int A-19
length A-19
log A-18
sprintf A-19
sqrt A-19
substr A-18
combination of patterns A-18
comments A-23
continue A-23
END A-16
exit A-23
expressions A-20
field variables A-20
fields A-14
flow-of-control A-13
flow-of-control A-23

for A-23
if-else A-23
statement grouping A-23
while A-23
next A-23
number registrer A-14
output field separator A-15
output record separator A-15

patterns A-16
printf statement A-15
printing A-15
records A-14
regular expression A-16

awk (continued)

relational expressions A-17
numeric processing A-13
variables A-13

special characters A-17

string concatenation A-21

variables A-14

variables A-20

B

Back matter 1-5
Background processes 1-16
Background processing 1-11
Batch 1-14

Batch 1-9

batch A-1

Batch editing 1-15

batch editing A-1
Bibliography 1-5
Body of text 1-4
Boilerplate 1-5
Boilerplates 1-1
Boilerplates 1-1
Boldface 1-10
boldface 3-8

brackets 6-16

bullet list 4-26

C

captions 4-37
Centering 1-6
centering 6-7

Centering 1-10
Chapters 1-4
character sets 5-5
column alignment 7-1
column width 7-1
comm 2-1

comm 2-3

comm 2-6

12 2-6

23 2-6

sorting before using 2-6
complex sentences 2-15
compound sentences 2-15

Conditional processing 1-15

Index

conditional processing 6-22 drawing lines 6-16
connectivity 2-17 drawing lines and characters 5-10
Copyright notice 1-4
cover pages 3-1
cover sheet 4-48 E
cover sheet 4-65
cut 2-2
cut 2-7 ed 2-2
Cut and paste 1-12 ed scripts A-1
Cut and paste 1-16 Editing techniques 1-15
cut and paste 2-2 boilerplates 1-14
cut and paste 2-8 consistency 1-13
Cut and paste 1-9 editing seripts 1-14
dchar 2-8 markers in text 1-13
flist. 2-8 shell seripts 1-14
8 2-8 short lines 1-12
-clist 2-7 templates 1-13
using writing tools 1-15
egrep 2-1
D Entering text 1-9
Eqn 1-7
Eqn 1-8
dash list 4-27 braces 813
deleting text 2-1 braces 84
Deletions 1-9 brackets 8-7
deroff 2-10 ceiling 87
diacritical marks 8-14 centering 8-2
Diction 1-7 commands 81
diction 2-9 diacritical marks 8-14
-f option 2-20 error checking with eqncheck
-n option 2-20 8-19
diff 1-7 error messages 819
diff 2-1 floor 8-7
diff 2-3 fonts 812
diff3 2-1 fonts 813
difi 3 2-3 fractions 8-5
diff3 2-5 Greek alphabet 8-21
e 2-5 grouping 8-4
-e 2-3 in-line equations 8-15
producing ed scripts with 2-4 input spaces 8-10
Displays 1-4 integrals 8-6
displays 3-7 invoking 8-18
displays 4-31 invoking 8-2
floating 4-31 keywords 8-20
floating 4-32 keywords 8-21
static 4-31 line spacing 8-1
Document life cycle 1-12 lining up equations 8-10
Document number 1-4 local motions 8-15
D ocument specifications 1-15 matrices 89
Document specifications 1-5 numbering 82
Document standardization 1-5 order of precedence 8-19
Documentation projects 1-4 output spaces 8-11

2

Index

Eqn (continued) fonts 4-50
overstriking 8-13 Fonts 1-6
piles 88 typesetting 55
point sizes 812 Footers 1-8
lineprinter 817 Footnotes 1-6
phototypesetter 8-17 Footnotes 1-7
quoted text 814 footnotes 3-1
reserved names 4-67 footnotes 3-7
special characters 820 footnotes 4-38
special sequences with 811 Foreword 1-4
square roots 8-6 formatter 4-3
string definitions 8-16 Formatting commands 1-7
subscripts 83 Formatting documents 1-7
summation 86 Formatting tables 1-8
superscripts 83 formatting tables 7-1
using caret 811 Front matter 1-4
using tildes 811
centering 82
numbering 8-2 G
with nroff 82
with nroff /trofl 81
eqncheck 8-19 gfrep 2-1
Equations 1-5 Global substitution 1-12
extracting columns 2-7 Global substitution 1-9
extracting flelds 2-7 global substitution 2-1
global substitution A-1
Glossary 1-5
F Greek alphabet 5-6

Greek alphabet 8-1
Greek alphabet 8-21

fields 6-10 Greek alphabet 8-11

Figures 1-4 grep 1-7

File comparison 1-12 grep 2-1

File comparison 1-15 grep 2-2

file comparison 2-1 -h 2-3

file comparison 2-3 -n 22
backup copies 1-8 combined with other commands
backups 1-16 2-2
file length 1-15 Gutter width 1-6

help files 1-13
help files 1-15

hierarchical file structure 1-15 H
managing long documents 1-13
naming conventions 1-13
README files 1-15 horizontal motions 5-11
updates 1-12 Hyphenation 1-7
using comment lines 1-15 hyphenation 4-10
versions 1-12

filling 6-7

Filling 1-6

font changes 3-1

Fonts 1-7

hyphenation 6-12

Index

I
Illustrations 1-4
Indentation 1-6
indentation 58
Index 1-5
inserting text interactively
Interactive 1-9
eqn 1-9
MM 1-8
nroff /troff 1-8
order 1-8
using col 1-9
italics 3-6
J
Justification 1-6
Justification 1-7
justification 4-51
justification 6-7
K
keep-release 5-26
L
.LE, list end macro 1-10
leaders 6-10
Letters 1-4
L1, line item macro
Line length 1-6
line length 57
list of figures, tables, ete.
lists 3-1
lists 4-22
local motions 8-15
local motions 510

locating awkward phrases
locating awkward phrases

locating long sentences

4

4-55

2-19
2-19

2-16

M

Macro definition 1-16
macro definition 4-65
macro definition 6-17
Macro definition files 1-13
Macros 1-8
macros 3-1
macros 4-3
macros 7-1
macros 8-1
definition 1-9
Margins 1-6
marked list (ML) macro 4
Mathematical equations 1-6
mathematical equations 4-36
mathematical equations 7-1
formatting 8-1
printing 8-1
memorandum styles 4-56
Memos 1-4
merging columns 2-8
MM 1-15
MM 1-3
MM 1-7
MM 3-1
MM, marking macro (.(HM) 4-18
abstract (.AS) macro 458
abstracts 3-1
alternate format (.AF) 3-8
alternate format (.AF) 4-60
author (.AU) macro 4-56
automatic list (.AL) 3-5
automatically numbered list (.AL)
macro 4-26
beginning segment 4-2
body 42
bold (B) macro 4-50
bullet list 4-26
bullets 4-11
caption macro (.FG) 437
closing (.FC) macro 1-62
command line 4-5
command line parameters 4-6
cover pages 31
cover sheet (.CS) macro 4-65
dash list (.DL 35
DL

dash list macro 4-27
dashes, minuses, and hyphens
412

Index

MM, marking macro (.HM)

(continuced}
disappearance of output 4-68
display (.DS I) macro 4-31

display macro(.DS-.DE) 3-7
displays 4-31

indentation 3-8
ending 43
equation (.EQ) macro 4-36
error checking with mmcheck
39
error messages 4-68
error messages 4-69
error messages 471
even page footer (.EF) macro
443
even page header (.EH) macro
4-42
exit macros ((HX, .HY and .HZ)
4-20
floating display (.DF) macro 4-32
font changes 3-8
font changes 31
boldface 3-6
italics 3-6
fonts in headings 4-16
footnote (.FS) macro 4-38
footnotes 31
footnotes 37
formatting with 4-8
heading (.H) macros 414
headings 4-13
headings, modifying 4-15
unnumbered 4-19
hypenation 4-10
inserting commands 31
invoking 3-2
invoking 4-4

invoking as a flag 4-4
invoking mmcheck 3-9
italic (.I) macro 4-50

keyword (.OK) macro 4-58
list end (.LE) macro 425
list end macro 4-22

list item (.LI) macro 4-24
list item macro 3-5

list item macro 4-22

list of figures 4-38
list-initialization macro 4-22
lists 3-1

lists 3-5

lists 4-22

MM, marking macro (.HM)

(continued)
macro definition 4-65
mark list (ML) 3-5
memorandum type (.MT) 3-8
memorandum type (.MT) macro

4-59
multicolumn output 31
nested lists 35
nested lists 4-23
new date (.ND) macro 4-60
notation (.NS) macro 463
null arguments 4-9
numbered headings 33
odd page (.OP) macro 4-54
odd page header (.OH) macro
4-42

odd-page footer macro 4-43

12 4-4

¢ 4-4

E 4-4

t 4-4

y 4-4

-e 4-4
order of beginning macros 4-61
page footer (.PF) macro 443
page header (.PH) macro 441
page numbering 3-1
page numbering 4-20

paragraph (.P macro). 3-3
paragraph (.P) macro 4-13
paragraph style 31
paragraphs 4-13

paragraphs and headings 3-3
parameter setting 4-2

point size (.S) macro 4-54
point size in headings 4-17
read insertion (.RD) macro 4-55
reasons to use 4-1

redefining heading styles 3-4
reference (.RS) macro 4-48

reference list (RL) macro 4-27
reference page (.RP) macro 4-49
Roman (.R) macro 4-50

section headers 31

set right justification (.SA) macro

4-561
signature (.SG) macro 4-62
skip page (.SK) macro 4-54
space (.SP) macro 4-53
strings 4-81

summary of macros 4-75

Index

MM, marking macro ((HM)
(continued)

summary of number registers
4-82

table (.TS) macro 4-35

table macro (.TS-.TE) 37

table of contents (.TC) macro
35

table of contents (.TC) macro
4-19

table of contents (.TC) macro
4-46

tables of contents 3-1

tabs 4-11

technical memorandum (.TM)

macro 4-57
title (.TL) macro 4-56

titles 31

top of page processing 4-45
trademark string 4-12

two column (.2C) macro 4-52
two column command (.2C) 3-9
unnumbered headings 33
unpaddable spaces 4-10

using tilde (") 410

variable list (.VL) macro 4-28
variable lists (.VL) 3-6
vertical margin (.VM) macro 4-46
with nroff /troff 31
with nroff /troff 39

with col 3-3
mmcheck 39
Multicolumn output 1-8
Multicolumn output 1-7
multicolumn output 3-1
multicolumn output 3-9
multicolumn output 4-52

N

Naming conventions 1-13
nested lists 4-23
nominalizations 2-17
Notes 1-6
noun usage 2-17
nroff 1-7

brackets 6-16

relative point size changes 54
underline font (.uf) command
6-14

nroff (conkinued)
underline font (.uf) command

(continued)
new page (.NP) macro 5
16
absolute position 6-3
adjust (.ad) command 6-8

append string (.as) command 6-20
append to macro (.am) command

6-20
assign format to register (.af)
command 6-21

begin page (.bp) command 516
begin page (.bp) command 6-7

blank lines 6-10
brackets 6-18
break (.br) command 6-8

break function 6-2
breaks in 5-17

center (.ce) command 6-9
centering 8-7
change trap position (.ch) command
6-20
character translations 6-13
conditional processing 522
conditional processing 6-22
even and odd 523
if-elge 522

lineprinter and typesetter 5
23

string comparison 523
control lines 6-2
copy mode 8-15
define macro (.de) command 6-19
define string (.ds) command 6-20
difference between 51
difference between 6-1
printing 6-5
difference in output 51
differences 1-5
changing point sizes 1-5
ignoring commands 1-5
replacing italics with underlining
1-5
rounding parameters 1-5
underlining 1-7
diversions 8-19
diversions (.di) 5-24
nesting 6-19
traps 6-19
divert (.di) command 6-20
divert-append (.da) command
6-20

Index

nroff {continued)
drawing lines 6-16
drawing lines and characters 5-10
end macro (.em) command 6-20

environments 6-23
environments (.ev) 5-24
error messages 4-72
error messages 4-73
error messages 4-74
error messages 6-25

escape character 6-14

escape character 6-2

escape sequences 6-25

even page (e) condition 6-22

exit (.ex) command 6-23

field delimiter (.fc) command
6-12

fields 6-10

fill (.fi) command 6-8

filling 6-7

flush output buffer (.fl) 6-24

fonts 5-5

formatter nroff (n) condition 6-23

formatter troff (t) condition 6-22

horizontal motions 5-11

horizontal motions 6-16

hyphenation 6-12

hyphenation on (.hy) command
6-12

if (.if) command 6-22

ignore (.ig) command 6-24

indent (.in 57

indent ﬁ.in; command 6-10

inline commands 53

input-output conventions 6-13

inserting commands 52

install diversion trap (.dt)
command 6-20
install trap (.wh) command 6-20
invoking 6-1
justification 6-7
leader repetition character (.l¢)
command 6-11
leaders 6-10
ligature mode on (.lg) command
6-14
ligatures 6-14
line length (.ll; 57
line length (.ll) command 6-10
line length and indenting 6-10
line number mode (.nm) command
6-13

nrofl (continued)

line space (.Is) command 6-9
local motion 5-12
local motions 5-10
local motions 6-15
macro definitions 5-14
arguments 6-18
input 6-17

macros 6-17
macros 6-2

arguments 5-20
margin character (.mc) command
6-24
mark current vertical place (.mk R)
6-7
needs (.ne) command 6-7
next filename (.nx) command
8-24
no adjust (.na) command 6-8
no fill (.nf) command 6-8
no hyphenation (.nh) command
6-12
no number (.nn) command 6-13
no space (.ns) command 6-10

number register assign (.nr)
command 6-21
number registers 5-18
number registers 5-19
number registers 6-21

predefined 6-27

read-only 6-27
numerical input 6-4
odd page (o) condition 6-22

i 6-2

mname 61

nN 6-1

q 6-2

raN 6-2

sN 6-1

-cname 6-1

~olist 6-1
output line numbering 6-13
output save (.0s) command 6-10
overstrike 6-16
overstriking 5-12
page control 6-6

page length (.pl command) 6-6
page number (.pn) command
6-7
page number character (.pc)
command 6-13
page offset (.po) 5-7

Index

nrofl (continued)

page offset (.po) command 6-7
pipe output (.pi; command 6-24
point size (.ps) 53

pre-defined number registers 5-18
print macro (.pm) command 6-24
quoting quotes 519

read standard input (.rd) command

6-23
read string in copy mode (.tm0
command 6-24
remove (.rm) command 6-20
remove register (.rr) command
6-22
rename (.rn) command 6-20
requests 6-2
reserved register and request names
4-66
restore spacing (.rs) command
6-10
return upward (.rt) command
6-7
save (.8Y) command 6-10
scale indicators 6-3
section titles 521
set control character (.c¢) command
6-15
set environment (.ev) commands
6-23
set escape character (.ec) command
6-14
set hyphenation indicator (.hc)
command 6-12

set input-line-count trap (.it)
command 6-20
set nobreak (.c2) command 6-15

set tabs (.ta) command 6-11
space (.sp) command 6-9
spacing units 54

special characters 586

specify hyphenation points (.hw)
command 6-12

standard input 6-1

string define (.ds) 5-13

string definition 5-13

string definition 6-17

switch source file (.80) command

6-24

tab repetition character (.tc)
command 6-11

tab replacement (.tc) 510

tabs 6-10

nroff (continued)
tabs (.ta) 59
temporary indent (.ti) 58
temporary indent (.ti) command

title command 6-12
title length (.It) command 6-13
titles 5-16

title E t.l; command 516

titles 6-12
fonts and point sizes 5
17
translate (.tr) command 6-15
turn escape off (.e0) command
6-14

underline (.ul) command 6-14
using backslashk () 6-19

using backslash 8 6-14

using backslash

vertical motions 6—15

vertical space (.v8) command 6-9
vertical spacing (.vs) 54
width function 6-15

width function 6-16

with MM 41
zero-width function 6-16
internal units 6-3

e 6-2

Tname 6-2

underline (.cu) command 6-14
number registers 4-4
Numbered lists 1-10

o

Organizing writing projects 1-12
overstrike 6-16

P

P, paragraph macro 1-10
page footers 4-41

page footers 4-43

page headers 4-41

Page headers 1-6

Page length 1-6
Page numbering 1-6
Page numbering 1-7

Index

page numbering 3-1
page numbering 4-20
paper styles 4-56
Paragraph style 1-7
paragraph style 3-1

parallel sentence structures 2-17

parts 2-11

Parts of document 1-4
back matter 1-5
appendices 1-
bibliography 1-
glossary 1-5
index 1-5
notes 1-5
body of text 1-
front matter 1-
acknowledgements
copyright notice
document number
foreword 1-4
illustrations 1-4
preface 1-4
table of contents 1-4
tables 1-4
title page 1-4
parts of speech 2-16
paste 2-2
paste 2-8
-d 2-8
-s 2-8
list 2-8
pattern matching A
pattern matching A-13
pattern matching A-14
pattern recognition 2
Point size 1-
1
4

5
5

4
4
1-4
1-4
1-4

Point size

point size

Preface 1-4

preparing charts 7

Preprocessor 1

Preprocessors 1-

preprocessors 7

Printing documents 1-11
lineprinter 1-7
lineprinter 1-8
phototypesetters 1-7

printing lists 7-1

printing multi-column material

7-1

Production consistency 1-5

Q

quoting quotes 4-9

readability 2-11
readability 2-14
readability indices 2-11
readability indices 2-13
readability of documents 2-9
rearranging columns 2-7
reference page 4-49
references 4-48

regular expression 2-2

regular expressions A-1

regular expressions A-16

relative addressing A-1

requests 4-3

reversing columns of output A-13
Revisions 1-12

Revisions 1-9

Running footers 1-5
Running headers 1-5
Running heads, see Page Headers

1-6
S
searching 2-1
searching A-13
searching within fields A-13
flelds A-1
line numbers 2-2

numerics A-1
pattern recognition 2-2
strings 2-3
variables A-1
section headers 3-1

Section-page numbering 1-6
Sections 1-4
Sed 1-14
sed A-1
-e A-2
-f A-2

Index

sed (continued)

-n A-2

: label function A-12
= function A-13
a function A-6
addressing A-3
b label function A-12
Btfunction A-12
¢ function A-6
D function A-10
d function A-5

flow-of-control A-2
flow-of-control functions
functions A-5

G function A-11
g function A-8
H function A-11
hold and get functions

i function A-6

input/output functions

miscellaneous functions

multiple input-line functions

N function A-10

n function

P function

p function

p function

q function

r function

s function

substitution functio

t label function

w function

w function

x function

{ function
sentence length 2-10
sentence length 2-11
sentence openers 2-18
sentence type 2-10
sentence type 2-11
simple sentences 2-15
skipping pages 4-54

]
[

(]
]

\lc»-c'oco»-m

(]

??>?>E?>>>>>>

1
- D 00

[

sort 1-7

sort 2-1

sort 2-6

.8p command 1-10

special characters 5-6
in eqn 8-20

special symbols 8-1

spell 2-10

spell 2-9

10

A-11
A-9

A-12
A-10

A-7

Spell 1-7
2-9
-b 2-10
-y 2-10
British spelling 2-10
dictionary 2-10
square roots 8-6
formatting to 1-11

Standardization 1-12
Starting paragraphs 1-10
Strategies for managing writing
projects 1-2
string definition 6-17
strings 4-3
Style 1-7
style 2-11
style 2-9
-l option 2-15
elements of writing style 2-10
percentage of verbs 2-17
readability 2-10
readability grades 2-12
readability indices 2-13
automated readability index 2-
13
Coleman-Liau Formula 2-
14
Flesch Reading Ease Schore 2-
14

Kincaid Formula 2-13
sentence determination 2-12
sentence length 2-12
sentence length 2-13
sentence length 2-15
sentence openers 2-13

sentence type 2-12

sentence type 2-15

word length 2-13

word usage 2-13
subscripts 8-3
superscripts 8-3
symbols, mathematical 8-11

System features 1-6
hierarchical file structure 1-1
hierarchical file structure 1-2
hierarchical file structure 1-6

w

multitasking 1-6
pipes 1-2
pipes 1-8
shell 1-2
shell scripts 1-2

System utilities 1-7

Index

system utilities 2-1
system utilities 2-9

T

Table at line 877 file l.intro.s is too
wide - 2501 units

Table at line 986 file l.intro.s is too
wide - 2592 units

Table of contents 1-4

table of contents 4-19

table of contents 4-46

Tables 1-4
Tables 1-5
Tables 1-6
tables 3-7
tables 4-35
tables of contents 3-1
tabs 6-10
Tbl 1-7
Tbl 1-8
7-1
space between columns 7-6
additional command lines 7-9
centering in columns 7-4
column alignment 7-1
column width 7-1
column width 7-7
data 7-7
decimal point alignment 7-4
defaults 7-7
drawing boxes 7-1

drawing horizontal lines 7-1
drawing vertical lines 7-1
equal width columns 7-7
error messages 7-10

error messages 7-8

font changes 7-6

format section 7-3

A or a option
C or c option
L or] option
N or n option
R or r option
S or s option
" option 7-4

formatting section 7-2

full width horizontal lines 7-8

horizontal lines 7-5

inputto 7-2

NNNNaa
PO QA S

Tbl {continued)
invoking 7-10

with other formatters 7-
10
keyletters 7-5
need (.ne) commands 7-3
options 7-3
options section 7-2
allbox 7-3
box 7-3
center 7-3
delim 7-3
doublebox 7-3
expand 7-3
linesize 7-3
tab 7-3
point sizes 7-8
preparing charts with 7-1
printing lists 7-1
printing multi-column material
7-1
printing with phototypesetter 7-1
reserved names 4-67
short horizontal lines 7-8
single column horizontal lines
7-8
table end {.TF) 7-2
table start (.TS) 7-2
text blocks 7-8
vertical lines 7-5
vertical spacing 7-6
vertical spanning 7-6
vertically spanned items 7-8
with nroff /troil 7-1

with eqn 7-1

with mm 7-1

troff commands in 7-7
Technical papers 1-4
Techniques, text processing 1-6

Templates 1-15

Title page 1-4

Titles 1-7

titles 3-1

titles 4-56

titles 6-12

tools 2-9

Tools, text processing 1-6
Tools, text processing 1-7
top and bottom margins 4-46
troff 1-7

point size {.ps) command 6-5
change font (.ft) command 6-6

11

Index

troff (continued)

character set 6-4
constant character space (.cs)
command 6-6

embolden (.bd) commands 6-6
font position (.fp) command 6-6

internal units 6-3
mathematical font set 6-4
mounted fonts 6-5

a 6-2

b 6-2

f 6-2

pN 6-2

t 6-2

w 6-2

space-character size (.ss) command
using ASCII characters with 6-4
Typesetting mathematical equations
1-8

U

Updates 1-15
Updates to documents 1-12
use of expletives 2-18

v

Variable spacing 1-7

Versions 1-12

Versions 1-16

Versions of documents 1-12
Versions of documents 1-13
Vertical spacing 1-10

Vertical spacing 1-6

vi 1-6
vi 1-7
vi 2-2

12

W (

we 2-1

we 2-7

width function 6-15
word length 2-10
word usage 2-10
word usage 2-11
word usage 2-16
Writing tools 1-7

X
XX 452

y/

zero-width function 6-16 ’
g/ 212 (

Contents

Tezt Processing Commands (CT)

intro
checkmm

col

cut

cw, cwcheck
deroff

diction

diffmk

eqn, neqn, eqncheck
explain
hyphen

man, manprog
mm

mmcheck
mmt

neqn

nroff

paste

prep

ptx

soelim

spell, spellin, spellout
style

tbl

troff

Introduces text processing commands.

Checks usage of MM macros. (same as mmcheck)
Filtersreverse linefeeds.

Cutsout selected fields of each line of a file.
Prepares constant-width text for troff.

Removes nroff/troff, tbl, and eqn constructs.
Checks language usage.

Marks differences between files.
Formatsmathematical text for nroff or troff.
Corrects language usage.

Finds hyphenated words.

Print entriesin thismanual.

Prints documents formatted with the mm macros.
Checksusage of MM macros. (same as checkmm)
Typesets documents.

Formats mathematics.

A text formatter.

Merges linesof files.

Prepares text for statistical processing.

Generates a permuted index.

Eliminates .so’s from nroff input.

Findsspelling errors.

Analyzes characteristicsof a document.

Formats tablesfor nroff or troff.

Typesets text.

INTRO(CT) INTRO (CT)

Name

intro — Introduces text processing commands.

Description

This section describes use of the individual commands available in
the XENIX Text Processing System. Each individual command is
labeled with the letters CT to distinguish it from commands available
in the XENIX Timesharing and Software Development Systems.
These letters are used for easy reference from other documentation.
For example, the reference mm(CT) indicates a reference to a dis-
cussion of the mm command in this section, where the letter **C”’
stands for ‘‘command’’ and the letter *‘T*’ stands for ‘‘Text Process-

H 13

ing

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [option...] [cmdarg...]
This syntax is detailed below:
name The filename or pathname of an executable file

option A single letter representing a command option By con-
vention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in — abecd or alternatively they are specified individu-
ally as in ~ a - b— ¢ -~ d. The method of specifying
options depends on the syntax of the individual com-
mand. In the latter method of specifying options,
arguments can be given to the options. For example,
the ~ f option for many commands often takes a fol-
lowing filename argument.

cmdarg A pathname or other command argument not begin-

ning with a dash or a period (.). It may also be a dash
alone by itself indicating the standard input.

See Also

getopC), getopy(S)
Diagnostics

Upon termination, each command returns 2 bytes of status, one

Page 1

INTRO(CT) INTRO (CT)

supplied by the system and giving the cause for termination, and (in
the case of ‘‘normal’’ termination) one supplied by the program (see
wast(S) and ezit(S)). The former byte is 0 for normal termination;
the latter is customarily 0 for successful execution and nonzero to
indicate troubles such as erroneous parameters, bad or inaccessible
data, or other inability to cope with the task at hand. It is called
variously ‘‘exit code’’, ‘‘exit status’’, or ‘‘return code’’, and is
described only where special conventions are involved.

Notes

Many commands do not adhere to the given syntax.

Page 2

CHECKMM (CT) CHECKMM (CT)

Name

checkmm, mmcheck - Checks usage of MM macros.

Syntax

checkmm | files |
mmcheck | files |

Description

Checkmm and mmcheck check files for usage of the MM for-
matting macros. Checkmm and mmcheck also check for usage
of some eqn(CT) constructions. Appropriate messages are
produced. The program skips all directories, and if no
filename is given the standard input is read.

See Also
col(CT), env(C), eqn(CT), mm(CT), mmt{CT), nroff(CT),
tbl(CT), profile(M)

Diagnostics

If checkmm and mmcheck encounter unreadable files they
display the message ‘‘Cannot open filename’’. The remaining
output of the program is diagnostic of the source file.

Page 1

COL (CT) COL (CT)

Name

col — Filters reverse linefeeds.

Syntax
col [- bixp]

Description

Col prepares output from processes, such as the text formatter
nroff{lCT), for output on devices that limit or do not allow reverse or
half-line motions. Col is typically used to process nroff output text
that contains tables generated by the tbl program. A typical com-
mand line might be

tbl file |nroff {col |lpr
Col takes the following options:

~ b Col assumes the output device in use is not capable of backspae-
ing. If two or more characters appear in the same place, col out-
puts the last character read.

— f Allows forward half-linefeeds. If not given, col accepts half-line
motions in its input, but text that would appear between lines is
moved down to the next full line. Reverse full and half
linefeeds are never allowed with this option.

— x Prevents conversion of whitespace to tabs on output. Col nor-
mally converts whitespace to tabs wherever possible to shorten
printing time.

— p Causes col to ignore unknown escape sequences found in its
input and pass them to the output as regular characters.
Because these characters are subject to overprinting from
reverse line motions, the use of this option is discouraged
unless the user is fully aware of the position of the escape
sequences.

Col assumes that the ASCIl control characters SO (octal 016) and SI
(octal 017) start and end text in an alternate character set. If you
have a reverse linefeed (ESC 7), reverse half-linefeed (ESC 8), or
forward half-linefeed (ESC 9), within an SI-SO sequence, the ESC
7, 8 and 9 are still recognized as line motions.

On input, the only control characters col accepts are space, back-
space, tab, return, newline, reverse linefeed (ESC 7), reverse half-
linefeed (ESC 8), forward half-linefeed { ESC 9), alternate character
start{ SI), alternate character end (SO), and vertical tag (VT). (The
VT chdracter is an alternate form of full reverse linefeed, included

Page 1

COL (CT) COL (CT)

for compatibility with some earlier programs of this type.) All other
nonprinting characters are ignored.

See Also
nroff (CT), tbl(CT) (

Notes
Col cannot back up more than 128 lines.
Col allows at most 800 characters, including backspaces, on a line.

Vertical motions that would back up over the first line of the docu-
ment are ignored. Therefore the first line must not contain any
superscripts.

Page 2

CUT(CT) CUT(CT)

Name

cut - Cuts out selected fields of each line of a file.

) Syntax

cut — clist | filel file2 ..]
cut — flist [~ dchar] |- 8] [filel file2 ..

Description

Use cut to cut out columns from a table or fields from each line of a
file. The fields as specified by liet can be fixed length, i.e., character
positions as on a punched card (- c option), or the length can vary
from line to line and be marked with a field delimiter character like
tab (- f option). Cut can be used as a filter; if no files are given,
the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in

increasing order), with an optional dash (-) to indicate

ranges, as in the — o option of nroff/troff for page ranges;

_ e.g, 1,47, 1- 3,8; - 5,10 (short for 1- 5,10); or 3~
D (short for third through last field).

—~ clist The list following — ¢ (no space) specifies character posi-
tions (e.g., — ¢i— 72 would pass the first 72 characters of
each line).

~ flist The list following — f is a list of fields assumed to be
separated in the file by a delimiter character (see — d);
e.g., — f1,7 copies the first and seventh field only. Lines
with no field delimiters will be passed through intact (use-
ful for table subheadings), unless — s is specified.

— dchar The character following — d is the field delimiter (- f
option only). Default is tab. Space or other characters
with special meaning to the shell must be quoted.

-8 Suppresses lines with no delimiter characters in case of — f
option. Unless specified, lines with no delimiters will be
passed through untouched.

Either the — ¢ or — f option must be specified.

Hints

Use grep(C) to make horizontal ‘‘cuts” (by context) through a file,
or paste(CT) to put files together horizontally. To reorder columns

Page 1

CUT(CT) CUT(CT)

in a table, use cut and paste.

Examples
cut ~ d: - f1,5 fetc/passwd Maps user IDs to names (
name="who am i |cut - f1 - 4" "* Sets name to current login
name.
See Also
grep(C), paste(CT)
Diagnostics
line too long A line can have no more than 511 characters

or fields.
bad list for ¢ [f option Missing — ¢ or - option or incorrectly
specified list. No error occurs if a line has

fewer fields than the list calls for.

no fields The list is empty.

Page 2

CW (CT) CW (CT)

Name

cw, checkecw, cwcheck - Prepares constant-width text for
troff.

Syntax
ew[—box] [—mx] [—fo] [—t] [+¢] [-d] [fde...]
checkew | - Ixx | [- rxx | file ...
cweheek | — Ixx | [- rxx | file ...

Description

Cw prepares troff(CT) input files that contain text in the
constant-width (CW) font for typesetting.

Because the CW font contains a nonstandard set of characters
and requires different character and interword spacing from
standard fonts, documents that use the CW font must be
preprocessed by cw. Typical usage is:

cw file [troff ...

The checkew and cwcheck programs check to see that the left
and right delimiters, as well as the .CW /.CN pairs, are properly
balanced. It prints out all incorrect lines.

The options for cw, checkew, cwcheck are:

— lzz Designates the one- or two-character string zz as the
left delimiter. If zz is omitted, the left delimiter is
undefined, which is the default setting.

—rzz Designates the one- or two-character string zz as the
right delimiter. The left and right delimiters may be
different.

- fn Mounts the CW font in font position n; acceptable
values for n are 1, 2, and 3. The default is 3, replac-
ing the bold font. This option is only useful at the
beginning of a document, and can only be used with
cw.

Page 1

CW (CT) CW (CT)

-t Turns transparent mode off. This option can only be
used with cw.

+t Turns transparent mode on (this is the default). This
option can only be used with cw.

-d Prints current option settings on the standard error,
in the form of troff{ CT) comment lines. This option
is meant for debugging, and can only be used with
cw.

The left and right delimiters perform the same function as the
.CW /.CN requests; they are meant, however, to enclose CW
words or phrases in running text. Cuw treats text enclosed by
delimiters in the same manner as text bracketed by .CW/.CN
pairs, except that while spaces in text bracketed by .CW/ CN
pairs have the same width as any other CW character, spaces
between delimiters are half as wide, so that they have the
same width as spaces in the prevailing text. This width is not
adjustable.

Delimiters have no special meaning inside .CW /.CN pairs.

Cw recognizes five requests. The requests look like troff{ CT)
macros (see EXAMPLES below), and are copied by cw onto
its output; thus, they can be defined by the user as troff{ CT)
macros.

The five requests are:

.CW Marks the start of text to be set in the CW font. .CW
takes the same options, in the same format, that are
available on the cw command line.

.CN Marks the end of text to be set in the CW font; .CN
takes the same options that are available on the cw
command line.

.CD option(s)
Changes delimiters and/or settings of other options;
takes the same options as the ¢cw command line.

.CP argl arg2 arg$...
Sets the odd-numbered arguments in the CW font and
the. even-numbered arguments in the prevailing font.

Page 2

CW (CT) CW (CT)

The arguments are delimited like #roff{ CT) macro
arguments.

.PC argl arg? arg$...
Same as .CP, except that the even-numbered (rather
than odd-numbered) arguments are set in the CW
font, and the odd-numbered arguments are set in the
prevailing font.

Except for the .CD request and the nine special four-character
names listed in the table below, every character between the
.CW and .CN requests is taken literally and output as is. The
— t option turns off this feature (called transparent mode), and
applies normal troff{ CT) rules to the CW text.

Text typeset with the CW font resembles the output of termi-
nals and lineprinters. This font is often used to typeset exam-
ples of programs and computer output in documents such as
user manuals and programming texts. The CW font contains
the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

18968() %+ @, /5= |} _"<> O\

It also contains eight nonASCIl characters represented by 4-
character troff{ CT) names

Character Symbol Troff Name
“‘Cents”’ sign \(et
EBCDIC “‘not” sign -~ \(no
Left arow +— \(<-
Right arrow — \(->
Down arrow | \(da
Vertical single quote " \(fm
Control-shift indicator \(dg
Visible space indicator \(sq
Hyphen - \(hy

Page 3

CW (CT) CW (CT)

The hyphen is a synonym for the minus sign (-).

Examples

The following are typical definitions of the .CW and .CN mac-
ros. They are meant to be used with the MM(CT) macro

package:

.de CW Begins definition

DSI Display start, indented

.ps 9 9 point type

.vs 10.5p Vertical spacing 10.5 points

ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u Sets tabs
Ends definition

.de CN Begins definition

.ta 0.51 1i 1.5i 2i 2.51 3i 3.5i 4i 4.51 51 5.51 6i Resets tabs
R Resets vertical spacing

.ps Resets point size

.DE Ends display

Ends definition

When set in running text, the CW font is, by default, set in
the same point size as the rest of the text. In displayed
matter, it can often be set one point smaller than the prevail-
ing point size (the displayed definitions of .CW and .CN above
are one point smaller than the running text on this page).
When the .CW font is set in 9-point type, there are 12 charac-
ters per inch.

If a document that contains CW text also contains tables and
equations, the order of preprocessing should be cw, tbl, and
eqn. Usually, the tables contained in such documents will not
contain any CW text, although it is possible to have elements
of the table set in the CW font; care must be taken that
th{(CT) format information is not modified by cw. Attempts
to set equations in the CW font are not likely to be either
pleasing or successful.

Files

/usr/lib/font/ftCW CW font-width table

Page 4

CW (CT) CW (CT)

See Also
eqn(CT), mm(CT), tbl(CT), woff(CT)

‘Warning
Text preprocessed by cw must be set on a typesetter equipped
with the CW font.

Notes

Don’t use periods (.) or backslashes (\) as delimiters.

Certain CW characters don’t fit gracefully with certain Times
Roman characters, such as a CW ampersand (&) followed by a
Times Roman comma(,); in such cases, use troff{CT) half-
and quarter-spaces. See also Notes under troff(CT).

Page 5

DEROFF (CT) DEROFF (CT)

Name

deroff - Removes nroff /troff, tbl, and eqn constructs.

Syntax

deroff | - w] [- mx | [files]

Description

Deroff reads each of the files in sequence and removes all troff{ CT)
requests, macro calls, backslash constructs, egn{(CT) constructs
(between .EQ and .EN lines, and between delimiters), and tbi(CT)
descriptions, and writes the remainder of the file on the standard
output. Deroff follows chains of included files (.so and .nx troff
commands); if a file has already been included, a .s0 naming that file
is ignored and a .nx naming that file terminates execution. If no
input file is given, deroff reads the standard input.

The — m option may be followed by an m, s, or I. The resulting
- mm or — ms option causes the MM or MS macros to be inter-
preted so that only running text is output (i.e., no text from macro
lines). The — mi option forces the — mm option and also causes
deletion of lists associated with the MM macros. This option is used
by the diction(CT) command.

The — w option outputs a word list, one “word'’ per line, with all
other characters deleted. Otherwise, the output follows the original,
with the deletions mentioned above. In text, a ““word’’ is any string
that contains at least two letters and is composed of letters, digits,
ampersands (&), and apostrophes (’); in a macro call, however, a
‘‘word’’ is a string that begins with at least two letters and contains a
total of at least three letters. Delimiters are any characters other
than letters, digits, apostrophes, and ampersands. Trailing apos-
trophes and ampersands are removed from ‘‘words'’.

See Also

diction(CT), eqn(CT), style(CT), tbl(CT), troff(CT)

Notes
Deroff is not a complete troff interpreter, so it can be confused by
subtle constructs. Most such errors result in too much rather than
too little output.
The — ml option does not handle nested lists correctly.

Deroff also removes words of two or fewer letters in lines that begin
with macro calls or troff requests.

Page 1

DICTION (CT}) DICTION (CT)

Name

diction — Checks language usage.

Syntax
diction [- ml] [~ mm] [[-n]]| - f patternfile] file ...

Description

Diction finds all sentences in a document that contain phrases from a
data base of bad or wordy diction. On output, each phrase is
enclosed within brackets. Because diction runs deroff before looking
at the text, formatting header files should be included as part of the
input. The options are:

- ms.
Overrides the default macro package, MM.

— ml
Causes deroff to skip lists. Should be used if the document con-
tains many lists of nonsentences.

fpatternfile
A user-supplied patternfile of words and phrases is used in addi-
tion to the default file.

~ n Suppresses the default file.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

See Also

deroff(CT), explain(CT)

Notes

Use of nonstandard formatting macros may cause incorrect sentence
breaks.

The - n option can’t be specified by itself.

Page 1

DIFFMK (CT) DIFFMK (CT)

Name

difmk - Marks differences between files.

) Syntax
diffmk namel name2 name$

Description

Diffmk compares two versions of a file and creates a third file that
includes ‘‘change mark’ commands for aroff{CT) or troff(CT).
Namel and name2 are the old and new versions of the file. Diffmk
generates name8, which contains the lines of name2 plus inserted
formatter ‘‘change mark” (.mc) requests. When name§ is format-
ted, changed or inserted text is shown by *‘|” at the right margin of
each line. The position of deleted text is shown by a single ‘.

The diffmk command will produce listings of C (or other) programs
with changes marked. A typical command line for such use is:

difmk old.c new.c tmp; nroff macs tmp | pr
) where the file macs contains:
pl 1
A 77
.nf
.eo
.ne
The .11 request might specify a different line length, depending on
the nature of the program being printed. The .eo and .nc requests

are probably needed only for C programs.
If the characters *'|"" and ‘‘*'" are inappropriate, a copy of diffmk can
be edited to change them (diffmk is a shell procedure).

See Also

diff (C), nroff(CT)

> Notes

Aesthetic considerations may dictate manual adjustment of some
output. File differences involving only formatting requests may pro-
duce undesirable output, that is, replacing .sp by .sp 2 will produce a
‘‘change mark’’ on the preceding or following line of output.

Page 1

EQN (CT) EQN (CT)

Name
eqn, neqn, checkeq, eqncheck — Formats mathematical text
for nroff, troff.

Syntax
eqn - dzy] [—pn] [-sn] [~ ffont] [file..]
neqn [- dzy] [~ pn] [sn] [- ffont] [fie ...]
checkeq | files |
eqncheck | files |

Description

Eqn is a troff(CT) preprocessor for typesetting mathematical
text on a phototypesetter. Negn is used with nroff(CT) for
setting mathematical text on typewriter-like terminals. Usage
is normally one of the following or its equivalent:

eqn files | troff
neqn fdes | nroff

If no files are specified, these programs read from the stan-
dard input.

The options are:

— dzy Reduces subscripts and superscripts n points from the
previous size; the default reduction is 3 points.

- sn Sets egn delimiters to characters z and y.
- pn Changes the point size within egn delimiters to n.
— ffont Changes the font within egn delimiters to font.

A line beginning with .EQ marks the start of an equation; the
end of an equation is marked by a line beginning with .EN.
Neither of these lines is altered, so they may be defined in
macro packages for centering, numbering, etc. It is also possi-
ble to designate two characters as delimiters; subsequent text

Page 1

EQN(CT) EQN (CT)

between delimiters is then treated as egn input. Delimiters
may be set to characters z and y with the command-line argu-
ment — dzy or (more commonly) with delim zy between .EQ
and .EN. The left and right delimiters may be the same char-
acter; the dollar sign is often used as such a delimiter. Delim-
iters are turned off by delim off. All text that is neither
between delimiters nor between .EQ and .EN is passed
through untouched.

The programs checkeq and egncheck report missing or unbal-
anced delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, newlines,
braces, double quotation marks, tildes, and carets. Braces {}
are used for grouping; generally speaking, anywhere a single
character such as z could appear, a complicated construction
enclosed in braces may be used instead. A tilde (7)
represents a full space in the output; a caret (%) represents
half as much.

Subscripts and superscripts are produced with the keywords
sub and sup. Thus z sub ; makes

zj

a sub k sup 2 produces

is made with ¢ sup {z sup 2 + y sup 2}. Fractions are made
with over: a over b yields

a

b

sqrt makes square roots: I over sqrt {az sup 2+ bz+ c} results
in

1

Vazritbz +e

Page 2

EQN(CT) EQN(CT)

The keywords from and to introduce lower and upper limits:

lim }z;

8—00 0

is made with lim from {n - > inf } sum from 0 to n z sub .
Left and right brackets, braces, etc., of the right height are
made with left and right:
left [z sup 2 + y sup 2 over alpha right | ~=" 1 produces

Legal characters after left and right are braces, brackets, bars,
¢ and f for ceiling and floor, and *” for nothing at all (useful
for a right-side-only bracket). A left need not have a match-
ing right
Vertical piles are made with pile, lpile, cpile, and rpile:
pie {a above b above ¢} produces

a

b

c

Piles may have arbitrary numbers of elements; lpile left-
justifies, pile and cpile center (but with different vertical spac-
ing), and rpile right justifies. Matrices are made with matrix:
matriz { lcol { z sub i above y sub 2 } ccol { 1 above 2 } }
produces

z; 1
y2 2
There is also real for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar,
vec, dyad, and under: z dot = f{t) baris

#=f(1)

y dotdot bar ~="" n under is

vy =n

Page 3

EQN(CT) EQN (CT)

and z vec “=" y dyad is
7 =y

Point sizes and fonts can be changed with size n or size + n,
roman, italic, bold, and font n. Point sizes and fonts can be
changed globally in a document by gsize n and gfont n, or by
the command-line arguments — sn and — fn.

Normally, subscripts and superscripts are reduced by 3 points
from the previous size; this may be changed by the
command-line argument — pn.

Successive display arguments can be lined up. Place mark
before the desired lineup point in the first equation; place
lineup at the place that is to line up vertically in subsequent
equations.

Shorthands may be defined or existing keywords redefined
with define. For example,

define thing % replacement %

defines a new token called thing that will be replaced by
replacement whenever it appears thereafter. The % may be
any character that does not occur in replacement.

Keywords such as sum (Y3), int (), inf (co), and short-
hands such as >= (>), != (s£), and - > (—) are recog-
nized by eqn. Greek letters are spelled out in the desired
case, as in alpha (a), or GAMMA (I'). Mathematical words
such as sin, cos, and log are made Roman automatically.
Troff{CT) four-character escapes such as \(dd (}) and \(bs
(@) may be used anywhere. Strings enclosed in double quo-
tation marks (”...”) are passed through untouched; this per-
mits keywords to be entered as text, and can be used to com-
municate with troff{ CT) when all else fails.

See Also
mm(CT), mm¢(CT), tbl(CT), troff(CT)

Page 4

EQN(CT) EQN(CT)

Notes
To embolden digits, parentheses, etc., it is necessary to sur-

round them with double quotation marks. See also Notes
under #roff{ CT).

Page 5

EXPLAIN (CT) EXPLAIN (CT)

Name

explain — Corrects language usage.

Syntax
explain

Description
Ezplain interactively reports on language usage. It suggests alterna-
tives to phrases found with the diction command.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

See Also

deroff(CT), diction({CT)

Page 1

HYPHEN (CT) HYPHEN (CT)

Name

hyphen - Finds hyphenated words.

Syntax

hyphen file ...

Description

Hyphen finds all the hyphenated words in files and prints them on
the standard output. If no arguments are given, the standard input
is used. Thus hyphen may be used as a filter.

Notes

Hyphen doesn’t properly deal with hyphenated stalic (i.e., under-
lined) words; it will often miss them completely.

Hyphen occasionally gets confused, but with no ill effects other than
extra output.

Page 1

MAN (CT)

Name

MAN (CT)

man, manprog — Print entries in this manual.

Syntax

man | options | [section] titles

/usr/lib/manprog file

Description

Man locates and prints the entry named title in the section
named section from the XENIX Reference Manual. (For historical
reasons, the word ‘‘page” is often used as a synonym for
“‘entry’’ in this context.) The title is entered in lower case.
The section number may not have a letter suffix. If no section
is specified, the whole manual is searched for title and all
occurrences of it are printed. Options and their meanings are:

- 12

Typeset the entry in the default format
(8.5"x11").

Typeset the entry in the small format (6" x9").
Format the entry using nroff and print it on the
standard output (usually, the terminal); term is
the terminal type (see term(M) and the explana-
tion below); for a list of recognized values of
term, type help term2. The default value of term
is 450.

Print on the standard output only the path names
of the entries, relative to /usr/man, or to the
current directory for — d option.

Search the current directory rather than
/usr/man; requires the full file name (e.g., cu.C,
rather than just cu).

Indicates that the manual entry is to be produced
in 12-pitch. May be used when $TERM (see
below) is set to one of 300, 300s, 450, and 1620.
(The pitch switch on the DASI 300 and 300s ter-
minals must be manually set to 12 if this option is
used.)

Page 1

MAN(CT) MAN (CT)

-c Causes man to invoke ¢ol(CT); note that col(CT)
is invoked automatically by man unless term is
one of 300, 300s, 450, 37, 4000a, 382, 4014, tek,
1620, and X

-y Causes man to use the non-compacted version of
the macros.

The above options other than — d, — ¢, and — y are mutually
exclusive, except that the — s option may be used in conjunc-
tion with the first four — T options above. Any other options
are passed to troff, nroff, or the man(CT) macro package.

When using nroff, man examines the environment variable
$TERM (see environ(M)) and attempts to select options to
nroff, as well as filters, that adapt the output to the terminal
being used. The — Tterm option overrides the value of
$TERM; in particular, one should use — TIp when sending the
output of man to a line printer.

Section may be changed before each title.
As an example:
man man

would reproduce on the terminal this entry, as well as any
other entries named man that may exist in other sections of
the manual.

If the first line of the input for an entry consists solely of the
string:

I\n z

where z is any combination of the three characters ¢, e, and t,
and where there is exactly one blank between the double
quote (”) and z, then man will preprocess its input through
the appropriate combination of cw(CT), egn(CT) (negn for
nroff) and tbl(CT), respectively. If egn or negn are invoked,
they will automatically read the file /usr/pub/eqnchar

The man command executes manprog that takes a file name as
its argument. Manprog calculates and returns a string of three
register definitions used by the formatters identifying the date
the file was last modified. The returned string has the form:

Page 2

MAN(CT) MAN(CT)

— rdday — rmmonth — ryyear

and is passed to nroff which sets this string as variables for the
man macro package. Months are given from 0 to 11, there-
fore month is always 1 less than the actual month. The man
macros calculate the correct month. If the man macro pack-
age is invoked as an option to nroff/troff (i.e., nroff - man
file), then the current day/month/year is used as the printed
date.

See Also

checkew(CT), checkeqn(CT), nrofi{ CT), tbi(CT), troff(CT),
environ(M), man(CT), term(M).

Notes
All entries are supposed to be reproducible either on a

typesetter or on a terminal. However, on a terminal some
information is necessarily lost.

Page 3

MM (CT) MM (CT)

Name

mm - Prints documents formatted with the mm macros.

Syntax
mm | options | [files |

mmcheck [files]

Description

Mm can be used to type out documents using nroff(CT) and the mm
text-formatting macro package. It has options to specify preprocess-
ing by t!(CT) and/or negn(CT) and postprocessing by various
terminal-oriented output filters. The proper pipelines and the
required arguments and flags for nroff(CT) and mm are generated,
depending on the options selected.

The options for mm are given below. Any other arguments or flags
(for example, — rC3) are passed to nroff(CT) or to mm, as appropri-
ate. Such options can occur in any order, but they must appear
before the files arguments. If no arguments are given, mm prints a
list of its options.

- ¢ Causes mm to invoke ¢ol(CT).

- e Causes mm to invoke negn(CT).

t Causes mm to invoke t{(CT).

-E
Invokes the — e option of nroff{CT).

— y Causes mm to use the noncompacted version of the macros (see
mm(M)).

Mm reads the standard input when a dash is is specified instead of

any filenames. (Mentioning other files together with the dash can

lead to disaster.) This option allows mm to be used as a filter; for

example:

cat dws | mm -

Hints
1. Mm invokes nroff{CT) with the — h flag. With this flag,

nroffl{ CT) assumes that the terminal has tabs set every 8 charac-
ter positions.

Page 1

MM (CT) MM (CT)

2. Use the — olist option of nroff{ CT) to specify ranges of pages to
be output. Note, however, that mm, if invoked with one or
more of the — e, — t, and — options, together with the — olist
option of nroff{CT) may cause a harmless ‘“broken pipe’’ diag-
nostic if the last page of the document is not specified in list.

3. If you use the — s option of nroff{C) (to stop between pages of
output), use linefeed (rather than return or newline) to restart
the output. The — 8 option of nroff{C) does not work with the
— ¢ option of mm, or if mm automatically invokes ¢ol(C) (see
- c option above).

Use the mmcheck program to check the contents of mm source files

for errors in usage of the macros.

See Also

col(CT), env(C), eqn(CT), mmi{CT), mmcheck(CT), nrofi(CT),
tbl(CT), profile(F)

Xenix Tezt Processing Guide
Diagnostics

mm: no input file None of the arguments is a readable file and
mm has not been used as a filter

Page 2

MMT(CT) . MMT(CT)

Name

mmt - Typesets documents.

Syntax

mmt [options] [fie]

Description

Mmt uses the MM macro package. It has options to specify
preprocessing by tb{{CT) and egn(CT). The proper pipelines
and the required arguments and flags for troff(CT) and for the
macro packages are generated, depending on the options
selected.

Options are given below. Any other arguments or flags (e.g.,
— rC3) are passed to troff(CT) or to the macro package, as
appropriate. Such options can occur in any order, but they
must appear before the files arguments. If no arguments are
given, these commands print a list of their options.

-e Causes these commands to invoke egn(CT).

-t Causes these commands to invoke th!(CT).

-a Invokes the — a option of troff{ CT).

-y Causes mmt to use the noncompacted version of

the macros (see mm(CT)).

When a dash (-~) is specified, mmt reads the standard input
instead of any filenames.

Hints

Use the — olist option of troff{ CT) to specify ranges of pages
to be output. Note, however, that these commands, if
invoked with one or more of the — e, —t, and — options,
together with the — olist option of troff{CT) may cause a
harmless ‘‘broken pipe’’ diagnostic if the last page of the
document is not specified in lst.

Page 1

MMT(CT)

See Also

MMT(CT)

env(C), eqn(CT), mm(CT), tbl(CT), troff(CT), profile(M),

environ(M)
Diagnostics

mmt: no input file

typeselter busy

None of the arguments is a read-
able file and the command is not
used as a filter.

Either the typesetter is already
being used, or it is not attached to
the system as /dev/cat. In the
latter case, you must use the — t
option of the troff command to
direct output to the standard out-
put. See troff{CT).

Page 2

NEQN (CT) NEQN (CT)

Name

neqn - Formats mathematics.

Syntax

neqn [- dxy][-fn][file] ..
checkeq | file | ...

Description

Negn is an nroff{ CT) preprocessor for formatting mathematics on
terminals and for printers; egn(CT) is its counterpart for typesetting
with troff[{ CT). Usage is almost always:

neqn file ... |nroff

If no files are specified, these programs read from the standard
input. A line beginning with .EQ marks the start of an equation; the
end of an equation is marked by a line beginning with .EN. Neither
of these lines is altered, so they may be defined in macro packages to
get centering, numbering, etc. It is also possible to set two charac-
ters as ‘‘delimiters’’; subsequent text between delimiters is also
treated as negn input. Delimiters may be set to characters 2z and y
with the command-line argument — dzy or (more commonly) with
‘‘delim zy"’ between .EQ and .EN. The left and right delimiters may
be identical. Delimiters are turned off by ‘delim off’. All text that is
neither between delimiters nor between .EQ and .EN is passed
through untouched. Fonts can be changed globally in a document
with gfont n, or with the command-line argument — fn.

The program checkeg reports missing or unbalanced delimiters and
.EQ/.EN pairs.

Tokens within negn are separated by spaces, tabs, newlines, braces,
double quotation marks, tildes or carets. Braces {} are used for
grouping; generally speaking, anywhere a single character like z
could appear, a complicated construction enclosed in braces may be

used instead. Tilde (°) represents a full space in the output, caret
(") half as much.

See Also
eqn(CT), checkeq(CT), troff(CT), tb)(CT)

Notes

To embolden digits, parentheses, etc., it is necessary to quote them,
as in ‘bold ““12.3'".

Page 1

NROFF (CT) NROFF (CT)
Name
nroff — A text formatter.
Syntax
nroff | option ... | [file ... |
Description

Nroff formats text in the named files. Nroff is part of the
nroff/troff family of text formatters. Nroff is used to format
files for output to a lineprinter or daisy wheel printer; troff to
a phototypesetter.

If no file argument is present, the standard input is read. An
argument consisting of a single dash (—) is taken to be a
filename corresponding to the standard input. The options,
which may appear in any order so long as they appear before
the files, are:

olist

nN
sN

mname

cname

raN

Prints only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A
range N— M means pages N through M; an initial
- N means from the beginning to page N; and a
final N- means from N to the end.

Numbers first generated page N.

Stops every N pages. Nroff will halt prior to every
N pages (default N=1) to allow paper loading or
changing, and will resume upon receipt of a new-
line.

Prepends the macro file /usr/lib/tmac/tmac.name
to the input files.

Prepends to the input files the compacted macro
files /usr/lib/macros/cmp.[nt].[dt].name and

/usr/lib/macros /ucmp.[nt] .name.

Sets register a (one-character) to N.

Page 1

NROFF (CT) NROFF (CT)

- i Reads standard input after the input files are
exhausted.
-q Invokes the simultaneous input-output mode of the
.rd request. (
—e Produces equally spaced words in adjusted lines,

using full terminal resolution.

-h Uses output tabs during horizontal spacing to speed
output and reduce output character count. Tab set-
tings are assumed to be every 8 nominal character
widths.

— Tdevice Specifies the output device. The default device is
““Ip”’, the lineprinter.

Other supported devices include:

— T300
DASI (DTC, GSI) 300.

— T300s (
DASI 300s.

— T450
DASI 450 (same as Diablo 1620).

— T300-12
DASI 300 at 12-pitch.

— T300s-12
D ASI 300s at 12-pitch.

— T450-12
DASI 450 at 12-pitch.

— T33
TTY 33. Invokes col automatically.

— Tdumb
Terminal types with no special features. Invokes col (
automatically. N

Page 2

NROFF (CT) NROFF (CT)

- T37
TTY 37.
- T735
TI 735. Invokes col automatically.
— T745
TI 745. Invokes col automatically.
— T43
TTY 43. Invokes col automatically.
~ T40/2.
Teletype model 40/2 Invokes col automatically.
~ T40/4
Teletype mode 40/4. Invokes col automatically.
- T2631
HP 2631 series lineprinter. Invokes col automatically.
— T2631-¢
HP 2631 series lineprinter, expanded mode. Invokes col
automatically.
— T2631-c
HP 2631 series lineprinter, compressed mode. Invokes col
automatically.
- T42

ADM 42. Invokes col automatically.

- T31
TTY 31. Invokes col automatically.

- T35
TTY 35. Invokes col automatically.

- T1620
Diablo 1620 (same as DASI 450).

— T1620-12
Diablo 1620 at 12-pitch.

Page 3

NROFF (CT) NROFF (CT)

Files
/usr/lib/suftab Suffix hyphenation tables
/tmp/ta* Temporary file

/usr/lib/tmac/tmac.* Standard macro files

Jusr/lib/term /* Terminal driving tables

See Also

¢ol(CT), eqn(CT), tbl(CT), troff(CT)

Page 4

PASTE (CT) PASTE (CT)

Name

paste — Merges lines of files.

Syntax
paste filel file2 ...
paste — dlist filel file? ...

paste — s [~ dliet] filel file?...

Description

In the first two forms, paste concatenates corresponding lines of the
given input files filel, file2, etc. It treats each file as a column or
columns of a table and pastes them together horizontally (parallel
merging). It is the counterpart of cat(C) which concatenates verti-
cally, i.e., one file after the other. In the last form above, paste sub-
sumes the function of an older command with the same name by
combining subsequent lines of the input file (serial merging). In all
cases, lines are glued together with the tad character, or with charac-
ters from an optionally specified list. Output is to the standard out-
put, so it can be used as the start of a pipe, or as a filter, if — is
used in place of a filename.

The meanings of the options are:

- d Without this option, the newline characters of each but the last
file (or last line in case of the — s option) are replaced by a tab
character. This option allows replacing the tab character by one
or more alternate characters (see below).

hist One or more characters immediately following — d replace the
default tab as the line concatenation character. The list is used
circularly, i. e. when exhausted, it is reused. In parallel merging
(i. e. no ~ s option), the lines from the last file are always ter-
minated with a newline character, not from the list. The list
may contain the special escape sequences: \n (newline), \t
(tab), \\ (backslash), and \O (empty string, not a null charac-
ter). Quoting may be necessary, if characters have special
meaning to the shell (e.g. to get one backslash, use — d"\\\\").

- 8 Merges subsequent lines rather than one from each input file.
Use tab for concitenation, unless a list is specified with - d
option. Regardless of the list, the very last character of the file
is forced to be a newline.

~ May be used in place of any filename to read a line from the
standard input. (There is no prompting.)

Page 1

PASTE (CT) PASTE (CT)

Examples
Is | paste - d"" - Lists directory in one column
Is | paste - - - - Lists directory in four columns
paste — s — d"\t\n" file Combines pairs of lines into lines
See Also

cut{CT), grep(C), pr(C)

Diagnostics
line too long Output lines are restricted to 511 characters.
too many files Except for — s option, no more than 12 input

files may be specified.

Page 2

PREP (CT) PREP(CT)

Name

prep — Prepares text for statistical processing.

Syntax

prep [— diop | file ...

Description

Prep reads each file in sequence and writes it on the standard
output, one ‘‘word’’ to aline. A word is a string of alphabetic
characters and imbedded apostrophes, delimited by space or
punctuation. Hyphenated words are broken apart; hyphens at
the end of lines are removed and the hyphenated parts are
joined. Strings of digits are discarded.

The following option letters may appear in any order:

-d
Prints the word number (in the input stream) with each
word.

—~ i Takes the next file as an ‘‘ignore” file. These words will
not appear in the output. {They will be counted, for pur-
poses of the — d count.)

-0
Takes the next file as an ‘“‘only”’ file. Only these words

will appear in the output. (All other words will also be
counted for the — d count.)

- P
Includes punctuation marks (single nonalphanumeric char-

acters) as separate output lines. The punctuation marks
are not counted for the — d count.

The ignore and only files contain words, one per line.

See Also
deroff(CT)

Page 1

PREP(CT) PREP(CT)

Notes
Prep ignores any nroff /troffl commands it may find in a file.

In some cases, it may mistake sentences that begin with a ¢
period or a quote as nroff /troff commands and ignore them. (

Page 2

PTX(CT) PTX(CT)

Name

ptx - Generates a permuted index.

Syntax

ptx | oplions | | input [output] |

Description

Ptz generates a permuted index to file smput on file oulput
(standard input and output default). It has three phases: the
first does the permutation, generating one line for each key-
word in an input line. The keyword is rotated to the front.
The permuted file is then sorted. Finally, the sorted lines are
rotated so the keyword comes at the middle of each line. Ptz
produces output in the form:

xx "tail” "before keyword” "keyword and after” head”

where .xx is assumed to be an nroff or troff{ CT) macro pro-
vided by the user. The ‘‘before keyword’’ and ‘‘keyword and
after’’ fields incorporate as much of the line as will fit around
the keyword when it is printed. Tasd and head, at least one of
which is always the empty string, are wrapped-around pieces
small enough to fit in the unused space at the opposite end of
the line.

The following options can be applied:

-f Folds uppercase and lowercase letters for sorting.
-t Prepares the output for the phototypesetter.
-—wn Uses the next argument, n, as the length of the

output line. The default line length is 72 charac-
ters for nroff and 100 for troff.

-gn Uses the next argument, n, as the gap size in
characters. The gap size determines the number
of characters to be output for the "before key-
word” and "keyword and after” fields of the output
line. The total number of characters in these

Page 1

PTX(CT)

o only

i ygnore

b break

Files

/bin/sort

PTX(CT)

fields is no more than the maximum line length
less the total size of all gaps less whatever charac-
ters are in the "tail” and "head” fields. Ptz does
not copy the gaps to the output lines. It is the
responsibility of the user to provide the gaps
when printing the lines. The default gap is 3
characters.

Uses as keywords only the words given in the only
file.

Does not use as keywords any words given in the
tgnore file. If the — i and — o options are missing,
use fusr/lib/eign as the ignore file.

Uses the characters in the break file to separate
words. Tab, newline, and space characters are
always used as break characters.

Takes any leading nonblank characters of each
input line to be a reference identifier (as to a page
or chapter), separate from the text of the line.
Attaches that identifier as a fifth field on each out-
put line.

/usr/lib/eign

Notes

Line length counts do not account for overstriking or propor-
tional spacing.

Lines that contain tildes (~) are not handled correctly, because
ptz uses that character internally.

Page 2

SOELIM (CT) SOELIM (CT)

Name

soelim - Eliminates .s0’s from nroff input.

Syntax
soelim | file ...]

Description

Soelim reads the specified files or the standard input and performs
the textual inclusion implied by the nroff directives of the form

.50 somefile
when they appear at the beginning of input lines. This is useful
since programs such as tbl do not normally do this; it allows the
placement of individual tables in separate files to be run as a part of

a large document.

Note that inclusion can be suppressed by using a single quotation
mark (') instead of a dot (.}, e.g.

’so fusr/lib/tmac.s
Example
A sample usage of soelim would be

soelim exum?.n |tbl |nroff - mm |col |lpr

See Also
nroff(CT), troff(CT)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Page 1

SOELIM (CT) SOELIM (CT)

Notes

Exactly one blank must precede and no blanks may follow the
filename. Lines of the form

Af t .so /usr/lib/macros.t (

mean that ‘‘.s0’’ statements embedded in the text are expanded.

Page 2

SPELL (CT) SPELL (CT)

Name

spell, spellin, spellout — Finds spelling errors.

)Synt,ax
spell | optione | | files]
Jusr/lib/spell /spellin | liet |

Jusr/lib/spell /spellout | — d] list

Description

Spell collects words from the named files and looks them up in a
spelling list. Words that neither occur among nor are derivable (by
applying certain infiections, prefixes, and/or suffixes) from words in
the spelling list are printed on the standard cutput. If no filee are
named, words are collected from the standard input.

Spell ignores most troff{ CT), thl(CT), and egn(CT) constructions.

Under the — v option, all words not literally in the spelling list are
> printed, and plausible derivations from the words in the spelling list
are indicated.

Under the — b option, British spelling is checked. Besides preferring
centre, colour, spectality, travelled, etc., this option insists upon -ise in
words like standardise, Under the — x option, every plausible stem is
printed with = for each word.

The spelling list is based on many sources, and while more hapha-
zard than an ordinary dictionary, is also more effective with respect
to proper names and popular technical words. Coverage of the spe-
cialized vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indi-
cated below with their default settings. The stop list filters out
misspellings (e.g., thier=thy- y+ ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell (both expect
a list of words, one per line, from the standard input). spellin adds
the words on the standard input to the preexisting list and places a
new list on the standard output. If no Uist is specified, the new list is
> created from scratch. Spellout looks up each word read from the
standard input, and prints on the standard output those that are
missing from (or, with the — d option, present in) the hash list.

Page 1

SPELL (CT) SPELL (CT)

Files
D_SPELL=/usr/lib/spell/hlist{ab] ~Hashed spelling lists, American
and British
S_SPELL=/fusr/lib/spell/hstop Hashed stop list
/tmp/spell. Temporary
Jusr/lib/spell/spellprog Program

D_SPELL and S_SPELL can be overridden by placing alternate path
definitions in your environment.

See Also
deroff(CT), eqn(CT}, sed(C}, sort{C), tbi(CT), tee(C}, troff(CT)

Notes
The spelling list’s coverage is uneven: You may wish to monitor the
output for several months to gather local additions. Typically, these
additions are kept in a separate local dictionary that is added to the
hashed list via spellin.
By default, logging of errors to fusr/lib/spell /spellhist is turned off.

D_SPELL and S_SPELL can be overridden by placing alternate
definitions in your environment.

Page 2

STYLE(CT) STYLE (CT)

Name

style - Analyzes characteristics of a document.

Syntax

style]-ml]{-mm][-a]{-e][-1num][- rnum]
[-pl[-P] Ale...

Description
Style analyzes the characteristics of the writing style of a document.
It reports on readability, sentence length and structure, word length
and usage, verb type, and sentence openers. Because style runs
deroff before looking at the text, formatting header files should be
included as part of the input. The default macro package — ms may
be overridden with the flag — mm. The flag — ml, which causes
deroff to skip lists, should be used if the document contains many
lists of nonsentences. The other options are used to locate sentences
with certain characteristics.
— a Prints all sentences with their length and readability index.
-e Prints all sentences that begin with an expletive.
- p Prints all sentences that contain a passive verb.

— lnum
Prints all sentences longer than num.

-~ roum
Prints all sentences whose readability index is greater than

num.

— P Prints parts of speech of the words in the document.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

See Also

deroff(CT), diction(CT)

Notes

Use of nonstandard formatting macros may cause incorrect sentence

breaks.

Page 1

7BL (CT) ~ TBL(CT)

Name

- Formats tables for nroff or troff.

Syntax
thl [~ TX] | files |

Description

Tbl is a preprocessor that formats tables for nroff(CT) or troff(CT).
The input files are copied to the standard output, except for lines
between .TS and .TE command lines, which are assumed to describe
tables and are reformatted by tbl. (The .TS and .TE command lines
are not altered by tbl).

.TS is followed by global options. The available global options are:

center Centers the table (default is left-adjust)

expand Makes the table as wide as the current line length

box Encloses the table in a box

doublebox Encloses the table in a double box

allbax Encloses cach item of the table in a box;

tab(z) Uses the character z instead of a tab to separate
items in a line of input data.

The global options, if any, are terminated with a semicolon (;).

Next come lines describing the format of each line of the table.
Each such format line describes one line of the actual table, except
that the last format line (which must end with a period) describes all
remaining lines of the actual table. Each column of each line of the
table is described by a single keyletter, optionally followed by
specifiers that determine the font and point size of the corresponding
item, indicate where vertical bars are to appear between columns,
and determine parameters such as column width and intercolumn
spacing. The available keyletters are:

¢ Centers item within the column

r Right-adjusts item within the column

1 Left-adjusts item within the column

n Numerically adjusts item in the column: unit positions of
numbers are aligned vertically;

Spans previous item on the left into this column

Centers longest line in this column and then left-adjusts all
other lines in this column with respect to that centered line
Spans down previous entry in this column

Replaces this entry with a horizontal line

== Replaces this entry with a double horizontal line

Page 1

TBL (CT) TBL (CT)

The characters B and I stand for the bold and italic fonts, respec-
tively; the character | indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for
the table, followed finally by .TE. Within such data lines, data items
are normally separated by tab characters.

If a data line consists of only an underscore (_) or an equals sign
occurs, then a single or double line, respectively, is drawn across the
table at that point. If a single stem in a data line consists of only an
underscore or equals sign then that item is replaced by a single or
double line.

Full details of all these and other fcatures of tbl are given in the
XENIX Tezt Processing Guide.

The - TX option forces thl to use only full vertical line motions,
making the output more suitable for devices that cannot generate
partial vertical line motions, such as lineprinters.

If no filenames are given as arguments, tbl reads the standard input,
so it may be used as a filter. When it is used with egn(CT) or
negn(CT), tbl should come first to minimize the volume of data
passed through pipes.

Example

If we let — represent a tab (which should be typed as a genuine
tab), then the input:

.TS

center box ;

cB s s

c| s

“Jlece

l|nn.

Household Population

Town—Households
—Number—Size

Bedminster—789—3.28
Bernards Twp.—3087—3.74
Bernardsville—2018—3.30
Bound Brook—3425—3.04
Bridge water—7897—3.81
Far Hills—240—3.19

.TE

yields:

Page 2

TBL (CT)
Household Population
Households
Town Num} Si
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridge water 7897 3.81
Far Hills 240 3.19
See Also

Xenix Tezt Processing Guide

eqn{CT), mm(CT), mm{{CT), troff{(CT)

Notes

See also Notes under troff{ CT).

TBL (CT)

Page 3

TROFF(CT)

Name

TROFF (CT)

troff — Typesets text.

Syntax

troff | options | | files)

Description

Troff formats text contained in files (standard input by
default) for printing on a phototypesetter.

An argument consisting of a lone dash (-) is taken to be a
filename corresponding to the standard input. The options,
which may appear in any order, but must appear before the

files, are:

— olist

~nN

— s8N

— raN

Prints only pages whose page numbers appear in
the list of numbers and ranges, separated by com-
mas. A range N— M means pages N through M;
an initial = N means from the beginning to page N;
and a final N- means from N to the end. (See
NOTES below.)

Numbers first generated page N.

Stops every N pages. Nroff will halt after every N
pages (default N=1) to allow paper loading or
changing, and will resume upon receipt of a
linefeed or newline (newlines do not work in pipe-
lines, e.g., with mm(CT)). This option does not
work if the output of nroff is piped through
¢ol(CT). Troff will stop the phototypesetter every
N pages, produce a trailer to allow changing
cassettes, and resume when the typesetter’s start
button is pressed. When nroff (¢roff) halts between
pages, an ASCIl BEL (in troff, the message page
stop) is sent to the terminal.

Sets register a (which must have a one-character
name) to N.

Page 1

TROFF (CT)

— mname

I

cname

kname

Troff only:

-t

-f

TR OFF (CT)

Reads standard input after files are exhausted.

Invokes the simultaneous input-output mode of the
.rd request.

Prints only messages generated by .tm (terminal
message) requests.

Prepends to the input files the noncompacted
(ASCII text) macro file fusr/lib/tmac/tmac.name.

Prepends to the input files the compacted macro
files /usr/lib/macros/cmp.|nt].[dt] .name and
/usr/lib/macros/uemp.[nt].name.

Compacts the macros used in this invocation of
nroff/troff, placing the output in files {dt].name in
the current directory.

Produces equally-spaced words in adjusted lines,
using the full resolution of the particular terminal.

Uses output tabs during horizontal spacing to speed
output and reduce output character count. Tab set-
tings are assumed to be every 8 nominal character
widths.

Sets the emboldening factor (number of character
overstrikes) for the third font position (bold) to =,
or to zero if n is missing.

Directs output to the standard output instead of the
phototypesetter.

Refrains from feeding out paper and stopping pho-
totypesetter at the end of the run.

Waits until phototypesetter is available, if it is
currently busy.

Reports whether the phototypesetter is busy or
available. No text processing is done.

Page 2

TROFF (CT) TROFF (CT)

—-—a Sends a printable ASCIl approximation of the
results to the standard output.

- pN Prints all characters in point size /N while retaining
all prescribed spacings and motions, to reduce pho-
totypesetter elapsed time.

— Trame Uses font-width tables for device name (the font
tables are found in /usr/lib/font/name/*).
Currently, no names are supported.

Files
/usr/lib/suftab Suffix hyphenation tables
/tmp/taft Temporary file

/usr/lib/tmac/tmac Standard macro files and pointers

/usr/lib/macros/* Standard macro files

Jusr/lib/term/* Terminal driving tables for nroff
/usr/lib/font/* Font width tables for troff
See Also

eqn(CT), thl(CT)
(nroff only) col(CT), mm(CT)
(troff only) mm¢t(CT)

Notes

Nroff/troff uses Eastern Standard Time; as a result, depending
on the time of the year and on your local time zone, the date
that nroff/troff generates may be off by one day.

When nroff/troff is used with the — olist option inside a pipe-
line (e.g., with one or more of cw(CT), egn(CT), and
tbl(CT)), it may cause a harmless ‘‘broken pipe’’ diagnostic if
the last page of the document is not specified in list.

Page 3

TROFF (CT) TROFF (CT)

Troff normally sends output directly to the typesetter. If you

do not have a typesetter attached to your system as /dev/cat ,

troff will display the message ‘‘typesetter busy’. If this is-the

case, you must use the — t option and the shell’s redirection .
symbol to direct the output to the standard output and into a {
file.

Page 4

Index

Macros, checking usage
Reverselinefeed
Files, selecting fields
Constant widthtext ...
cwcheck command ...
Macros, removal ..deroff

Language usage, description diction
File, differences ... diffmk
Mathematical texteqn
eqncheck command ... eqn
Language usage, COrrectionc.ceiiieinnnnn i, explain
Hyphenationhyphen
Manual pages, printingoccooeeiiiiiiiiiii man
Macros, memorandum for line printer mm
Macros, checking (see checkmm(CT)) mmcheck
Macros, memorandum for typesettingmmt
Mathematical text ..oneqn

Text formatter for line printerc.cocooiiin, nroff

Files, merging linesooooeeoiiiieei paste
Statistical processing prep
Permutedindex ... ptx
Macros, .80 eliminationc.ccoevvviini soelim
Spellingcc.o..spell
spellin command spell
spellout command ... spell

Document characteristicsstyle
.. tbl

