
Using XENIX 3.2.0 and its documentation

26-6460

XENIX 3.2.0 is a release of System III XENIX. It runs programs compiled for 3.2.0 and ear
lier versions of System III and will also run many XENIX V7 programs.

The manual Introducing your Tandy 6000 provides useful information on how to set up your
computer. The System Administrator's Guide to XENIX describes how to install XENIX on
your hard disk and how to add users to your system.

Also included are some individual manual pages. These pages were part of the XENIX
Development System. They are now included with the core because the utilities they describe
have been moved to the core, or the utilities are new. If you do not have the development
system, you do not have the binder that these pages would normally be placed in. Simply
leave these pages in the Multiuser Operating System binder. If you own the development sys
tem, then insert these pages in the XENIX Reference binder.

Radio Shack

A Division of Tandy Corporation

875-8126

(3.2.0)

Using tsh with 20-megabyte Disk Cartridges

700-3039 26-6460

If you use tsh and own a 20 megabyte Disk Cartridge System (25-4066), you need to edit
/etc/default/tsh before attempting to save or restore files to disk cartridges using tsh. For
more information on editing a file, refer to chapter 11 of the System Administrator's Guide to
XENIX.

In tbe file /etc/default/tsh, replace tbe following line:

c20:

with this line:

c20:

cd 20

cd 16

20896 20-Megabyte Cartridge Disk

20896 20-Megabyte Cartridge Disk

If you do not use tsh or do not own a 20-megabyte disk cartridge system, you do not need to
make this change.

Radio Shack

A Division of Tandy Corporation

875-8125

(3.2.0)

(

Using the Dial Program

You can configure your system to dial one of three types of modems. They are:

• Tandy®/Radio Shack® Modems
• D.C. HayesrM Modem
• V ADIC"" Modem

Please note, however, that V ADIC Modem dialing is provided on an "as-is" basis. Neither Tandy
Corporation nor Radio Shack guarantee its f unctionality.

Your XENIX system is configured to dial Tandy /Radio Shack's Modem II, DC-1200, and DC-2212
You do not need to make any changes if you are using one of these modems. However, if Yo�
should alter your system to dial another type of modem, then you must reconfigure the system if
you plan to use a Tandy/Radio Shack modem. Instructions for settiog the XENIX system back to a
Tandy/Radio Shack modem are given at the end of this document.

Using a Hayes Modem

To set XENIX to dial a Hayes modem follow these steps:

1. Log in as root. Type the following commands:

cd /usr/lib/uucp <ENTER>

rm dial <ENTER>

In diaiHAYES dial <ENTER>

2. Next, you must edit the file L-devices. XENIX uses this file to know the available dial-out
lines. The L-devices file contains a line for each dial-out line. Each line has 4 fields:

Field 1

Field2

Field 3

Type of Connection
"ACU" for a dial-out line
"DIR" for a direct connection

Line Device
/dev/ttyOl for Serial Channel A
I dev/tty02 for Serial Channel B
/dev/tty04 through /devlttyxx for any additional serial channels

Dialer Device
Set the same as Line Device.

1

Field4 Baud Rate
Can be 300, 1200, or 2400.

Edit the L-devices file using any XENIX text editor. See your XENIX documentation for
information on editors.

3. Remove any line that begins with "ACU." You'll add new lines for the dial-out modems.
You do not need to add any lines for the dial-in modems.

4. Add new lines that refer to the appropriate serial channel and baud rate. For example, to set the
dialer for Serial Channel A, use one of these lines:

ACU 1!y01 tty01 1200
ACU tty01 Uy01 300

for 1200 baud
for 300 baud

1f your modem operates at only 300 baud, do not add the line for 1200 baud.

5. Connect the modem to the appropriate serial channel on your computer.

6. Set the Hayes Modem switches as described next

SWitch

2

3

4

5

6

Set Description

UP This setting is preferred if your cable connects DTR (pin 20) between
the modem and the computer.

DOWN This setting forces DTR on if DTR is not connected, such as with a
3-wire cable. With this setting, the modem may not hang up if the
other end doesn, hang up when the session is over.

UP

DOWN

DOWN

DOWN
UP

UP

This setting is required for automatic dialing. Results are sent as
English words.

This setting is required for automatic dialing. Results codes are sent.

This setting does not allow echoing characters in the local command
mode. k is not required, but it does prevent problems with the

modem and computer echoing characters at each other on a dial-in
line. This can cause a load on the system.

Modem won't answer incoming calls.
Modem answers incoming calls.
This setting does not affect automatic dialing. However, UP is
required if the line will be used as a dial-in line.

This setting causes the Carrier Detect Line to reftect the real state
of the carrier. This allows the computer to log a user out if the

connection is broken when they dial in. Your cable must allow for
Carrier Detect (pin 8 from the modem) for this to work properly.

2

i .
"-._./

Switch Set Descrlotlon

7

8

UP This setting is used for single-line telephone installations. it can
differ depending on your telephone line.

DOWN This setting enables command recognition. It is required for
automatic dialing.

You should proceed to the section "Dial-in VS Dial-out."

Using a V ADIC Modem

Follow these steps to set up a V ADIC Modem:

1. Log in as root. Type the following commands:

cd /usr/lib/uucp <ENTER>

rm dial <ENTER>

In diaiVADIC dial <ENTER>

2. Follow Steps 2- 5 detailed in "Using a Hayes Modem."

You should now proceed to the section "Dial-in VS Dial-out."

Dial-in VS Dial-out

A serial communication line connected to a modem may be used as either a dial-in line or a dial-out

line; but, not both. If you plan to ever use the modem as a dial-in line, check the entry for that
serial line in the /etc/ttys file. For most modems the second character of the entry should be a '3'
for 1200/300. What this means is that XENIX tries 1200 b aud until a Modem Break is received.
Then it tries 300 baud. There are other codes you can use instead. They are:

Code
3
5
p
Q
R

Baud Rates
1200/300
30011200
300/1200/2400
1200/2400/300
2400/300/1200

3

To change a serial line from a dial-in line to a dial-out line, log in as root and type this connnand:

disable t!yOx <ENTER>

Replace x with the appropriate serial line number. You should wait at least 60 seconds after
entering the above command before entering any other enable or disable command on any other

communication line.

To change a serial line from a dial-out line to a dial-in line, log in as root and type this command:

/usr/lib/uucp/dial -h !dev!HyOx 0 1200 <ENTER>

enable t!yOx <ENTER>

Replace x with the appropriate serial line number. You should wait at least 60 seconds after
entering the above command before entering any other enable or disable command on any other

communication line.

Rebooting the System

You may at some time have to reboot the system, or turn the power on or off on the modem. If
you wish to do this and want the modem to operate as a dial-in line, you must enter the following

commands after rebooting. Log in as root and type:

disable ttyOx <ENTER>

wait at least 60 seconds, then type:
/usr/lib/uucp/dial -h /devlttyOx 0 1200 <ENTER>

enable ttyOx <ENTER>

Replace x with the appropriate serial line number. You should wait at least 60 seconds after
entering the above command before entering any other enable or disable command on any other

communication line.

Using cu.s3

This example illustrates usiqg cu.s3 with Serial Channel A at 1200 baud:

cu .s3 -s 1200 phone-number

You must use cu.s3 with Hayes and V ADIC modems. The cu command only dials Tandy/Radio

Shack modems.

4

odems.

801

' Modems

dialing Tandy/Radio Shack modems, follow

'X uses this file to know the available dialout
th dialout line. Each line has 4 fields:
I

on

1elA
1elB
ny additional serial channels

iev/ct' lO or /dev/cua0.1200 for Serial Channel A

'

)0 or /dev/cual.1200 for Serial Channel B
300 or /dev/cua4.1200 through /dev/cuax and
/cuax.1200 for any additional serial channels.

�
text editor. See your XENIX documentation for

" You'll add new lines for the dial-out modems.
U-in modems.

serial channel and baud rate. For example, to set the
ase lines:

for 1200 baud

for 300 baud

; do not add the line for 1200 baud.

5

5. Connect the modem to the appropriate serial channel on your compu rer.

You can now follow the intructions given in your XENIX documentation for using rn

Thank You

Radio Shack,
A Division of Tandy Corporation

7/85

6

(
'

XENIX® 3.2

Core Upgrade

Information in this document is subject to change without notice and does not represent a commitment
on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The software may
be used orcopiedoniy in accordance with the terms of the agreement. It is against the law to copy this
software on magnetic tape, disk, or any other medium for any purpose other than the purchaser's per
sonal use.

© 1983, 1984Microsoft Corporation
© 1984, 1985 The Santa Cruz Operation, Inc.
Licensed to Tandy Corporation

'
/

Index

Commands (C)

Accounting files, printing .. acctcom
Accounting, starting ... , accton
Archives, creating and restoring tar
at command ... at
atrm command .. at
Backup, creating and restoring , sysadmin
Backup, creating , dump
Backup, dates .. sddate
Backup, listing .. dumpdir
Backup, restoring .. restore
Calculator ... be
Calendar, display .. cal
Character translation , tr
Commands, constructing and executing xargs
Commands, execution on a remote system remote
Commands, execution priority nice
Commands, execution without hangups and quits nohup
Commands, options .. getopt
Commands, scheduled execution at
Communication, call up XENIX (Version 7) cu
Communication, call up XENIX (System 3) cu.s3
Communication, copying files across systems rep
Conversions, units units
Date, setting .. date
deassign command .. assign
Devices, exclusive control .. assign
Devices, names ... devnm
Directory, comparing .. dircmp
Directory, creating .. mkdir
Directory, listing columns ... lc
Directory, listing ... Is
Directory, removing .. rmdir
Directory, renaming ... mv
Displaying, command arguments echo
Displaying, first lines of a file .. head
Displaying, last lines of a file ... tail
Displaying, line numbers .. nl
Ed, restricted version ... red
egrep command ... grep
Environment, setting ... env
Expressions, evaluating .. expr
Factoring numbers .. factor
fgrep command ... grep
File copy, XENIX to XENIX ... uucp
File, linking ... ln
File, moving and renaming .. mv
File system, backup ... backup

File system, backups sys;�dmin
File system, checking and repairing,. fsck
File system, constructing mkfs
File system, mount table setmnt
File system, mounting ,•...................... mount
File system, names from inode numbers ncheck
File system, ownership, quot
File system, unmounting umount
File, access and modification dates settime
File, access and modification times, touch
File, access permissions .. chmod
File, access permissions corrections ; fix perm
File, building special files .. .,,, mknod
File, checksum and blocks ,,, sum
File, comparing side-by-side sdiff
File, comparing text , """'"""" diff
File, comparing, , , bdiff
File, compressing and expanding pack
File, concatenating and displaying cat
File, converting and copying ... dd
File, copying archives ... cpio
File, copying groups copy
File, copying .. ., cp
File, counting lines, words and characters , we
File, creation mode mask, umask
File, displaying repeatedlines ,. uniq
File, displaying pr
File, encryption ... crypt
File, group!D, chgrp
File, hexadecimal display hd
File, identifying what
File, locating ... find
File, octal display, .. ., od
File, owneriD chown
File, printing , ,. ,.lpr
File, printing queue status , , , lpq
File, printing queueentry removal lprm
File, removing , rm
File, scanning bfs
File, selecting common lines comm
File, send to remote host uusend
File, sorting ... sort
File, splitting by context,, csplit
File, splitting by lines .. split
File, type, file
File, viewing ... more
Group file grpcheck
Group, switching ... newgrp
Large letters .. banner
Line, reading from input line
Lines, finding in a sorted list .. look
Login, name .. logname
Logoff, idle users .. idle
Mail .. mail

Mail, improved , xmail
Micnet, creating and operating netutil
News ... news
Organization, tracks & sectors ... , format
Password, aging , pwadmin
Password, changing passwd
Password, file check .. pwcheck
Pathname, directory name dirname
Pathnames, filename ... basename
Pattern, searching and processing awk
Pattern, searching .. grep
peat command pack
Pipe, creating a tee ... tee
Process, quick status qps
Process, status , ps
Process, temporary suspension sleep
Process, terminating , kin
Process, waiting for background process wait
Random number random
Reboot, setting automatic .. autoboot
Relations, joining .. join
Reminder service calendar
Return value, nonzero ... false
Return value, repeated string yes
Return value, zero ... true
Root directory ... chroot
Shell .. sh
Shell, C-like csh
Shell, C-enhanced ... cshlO
Shell, restricted , .. rsh
Shell, visual vsh
System, clock speed , adj_ clock
System, current name .. uname
System, disk usage , du
System, free disk blocks .. df
System, information .. pstat
System, stopping shutdown
System, super-block ... , sync
Terminal, disable login , , disable
Terminal, enabling logins enable
Terminal, enabling messages .. mesg
Terminal, name . .. tty
Terminal, setting modes, ... tset
Terminal, writing to all .. wall
Testing conditions ... test
Text editor, line ... ed
Text editor, screen , vi
Text editor, stream sed
Time of day .. ., asktime
unpack command .. pack
User, adding to the system mkuser
User, listing action .. whodo
User, listing ... who
User, on and activity, w

User, removing from the system rmuser
User, switching ... so
User, writing toauser'stenninal write
User, writing to another ... hello
Users, information on finger
uucp sequence, initiate now ... uunow
uucp, clean spool directory .. unclean
uucp, monitor network .. uusub
uucp, status inquiry ... uustat
Working directory ... cd
IDs, user and group .. id

Alphabetized List
Commands, Systems Calls, Library Routines, and File Formats

a.out .. a.out(F) cat .. cat(C)
a641 .. a641 (S) cb .. cb(CP)
abort .. abort(S) cc ... cc(CP)
abs ... abs(S) cd .. cd(C)
access , access(S) cd ... cd(M)
acct ... acct(F) cdc cdc(CP)
acct ... acct(S) ceil ... floor(S)
acctcom acctcom(C) cfg ... cfg(M)
accton .. accton (C) chdir ... chdir(S)
acos ... trig(S) checkcw ... cw (CT)
acu ... acu(M) checkeq eqn(CT)
adb ... adb(CP) checklist checklist(F)
adj_clock adj_clock(C) chgrp .. chgrp (C)
admin ... admin (CP) chmod .. chmod(C)
alarm, alarm(S) chmod .. chmod(S)
aliases ... aliases(M) chown chown (C)
aliases.hash aliases(M) chowu ... chown(S)
aliashash alias hash (M) chroot .. chroot(C)
ar .. ar(CP) chroot ... chroot(S)
ar ... ar(F) chsize .. chsize (S)
as .. as(CP) clearerr ... ferror(S)
ascii .. ascii (M) close .. close (S)
asctime ... ctime (S) cmp .. cmp(C)
asin .. trig (S) col .. col(CT)
asktime asktime (C) comb .. comb(CP)
assert ... assert(S) comm .. comm(C)
assign ... assign(C) console console (M)
at ... at(C) copy .. copy(C)
atan ... trig (S) core core(F)
atan2 ... trig (S) cos ... trig (S)
atof ... atof(S) cosh .. sinh (S)
atoi .. atof(S) cp .. cp(C)
atol .. atof(S) cpio .. cpio(C)
atq ... at(C) cpio .. cpio (F)
atrm .. at(C) cpp .. cpp(CP)
autoboot autoboot(C) creat ... creat(S)
awk .. awk(C) creatsem creatsem(S)
backup .. backup(C) cref ... cref(CP)
backup .. backup(F) cron ... cron(C)
banner .. banner(C) crypt ... crypt(C)
basename basename(C) crypt ... c1ypt(S)
be .. bc(C) csh ... csh(C)
bdiff .. bdijf(C) cshlO ... cshJO(C)
bfs .. bfs(C) csplit .. csplit(C)
brk ... sbrk(S) ctags ctags(CP)
bsearch bsearch(S) ctermid ctermid(S)
cabs .. hypot(S) ctime .. ctime(S)
cal .. cai(C) cu .. cu(C)
calendar calendar(C) cu.s3 ... cu.s3 (C)
calloc .. malloc(S) curses ... curses(S)

I

cuserid .. cuserid(S) exp ···"·········· exp(S)
cut cut(CT) explain explain(CT)
cw .. cw(CT) expr expr(C)
cwcheck cw(CT) fabs floor(S)
daemou.mn daemon.mn (M) factor factor(C)
date date (C) faliases aliases(M)
dbminit .. dbm(S) false false(C)
de .. dc(C) fclose ... fc/ose(S)
dd ··· dd(C) fcntl fcnt/(S)
deassign assign(C) fcvt ecvt(S)
default default(M) fd fd(M)
defopen defopen(S) fdopen fopen (S)
defread defopen(S) feof ferror(S)
delete dbm(S) ferror ferror(S)
delta de/ta(CP) fetch ... dbm(S)
deroff •.. deroff(CT) fflush fclose(S)
devnm devnm(C) fgetc getc(S)
df ··· df(C) fgets .. gets(S)
dial dial (M) fgrep grep (C)
diction diction(CT) file system file system(F)
diff diff(C) file file(C)
diff3 ·· dif/3(C) fileno ... ferror(S)
diffmk dif.fmk(CT) find find(C)
dir dir(F) finger .. finger(C)
dircmp .. dircmp(C) firstkey dbm (S)
dirname dirname(C) fixperm fixperm (M)
disable .. disab/e(C) fixperm fixperm(C)
du du(C) floor floor(S)
dumpdir dumpdir(C) fmod .. floor(S)
dup .. dup(S) fopen fopen(S)
dup2 dup(S) fork .. fork(S)
echo ... echo(C) format format(C)
ecvt ... ecvt(S) fprintf printf(S)
ed ed(C) fputc putc(S)
edata end(S) fputs puts (S)
egrep grep(C) fread fread(S)
enable enable(C) free mal/oc(S)
encrypt crypt(S) freopen fopen(S)
end .. end(S) frexp frexp(S)
endgrent getgrent(S) fscanf scanf(S)
endpwent getpwent(S) fsck .. , fsck(C)
env .. env(C) fseek .. fseek(S)
environ environ (M) fstat stat(S)
eqn eqn(CT) ftell fseek(S)
eqncheck eqn(CT) ftime time(S)
erruo perror(S) fwrite .. fread(S)
etext end(S) fxlist xlist(S)
ex ex(C) gamma gamma(S)
execl exec(S) gcvt ... ecvt(S)
execle exec(S) get .. get(CP)
execlp exec(S) getc getc(S)
execv exec(S) getchar ... getc(S)
execve exec(S) getcwd getcwd(S)
execvp .. exec(S) getegid getuid(S)
exit exit(S) getenv getenv(S)

2

geteuid .. getuid(S) isprint .. ctype(S)
getgid .. getuid(S) ispunct ... ctype(S)
getgrent getgrent(S) isspace .. ctype(S)
getgrgid getgrent(S) isupper ... ctype(S)
getgrnam getgrent(S) isxdigit ... ctype(S)
getlogin getiogin(S) jO ... bessel(S)
getopt ... getopt(C) jl ... bessel(S)
getopt getopt(S) jn ... bessel(S)
getpass getpass(S) join ... join(C)
getpgrp ... getpid(S) kill ... kill(C)
getpid .. getpid(S) kill .. kill (S)
getppid getpid(S) kmem ... mem (M)
getpw .. getpw(S) I .. /(C)
getpwent getpwent(S) 13tol ... l3tol(S)
getpwnam getpwent(S) 164a .. a64l(S)
getpwuid getpwent(S) lc .. lc(C)
gets .. gets(CP) ld ... ld(CP)
gets ... gets(S) ld .. ld(M)
getty ... getty(M) ldexp ... frexp (S)
getuid .. getuid(S) lex .. lex(CP)
getw .. getc(S) line .. line (C)
gmtime ... ctime(S) link .. link(S)
graphics graphics(M) lint ... : lint(CP)
grep ... grep (C) In ln(C)
group ... group(M) localtime .. ctime(S)
grpcheck .: grpcheck(C) lock .. lock(S)
gsignal ... ssignai(S) lockf .. loc/if(S)
haltsys ... haltsys(C) locking .. locking(S)
hd ... hd(C) log .. exp(S)
hd .. hd(M) loglO exp(S)
hdr .. hdr(CP) login .. login (M)
head .. head (C) logname logname(C)
hello .. hello (C) longjmp .. setjmp(S)
help ... help(CP) look .. look(C)
hyphen hyphen(CT))order .. . lorder(CP)
hypot .. hypot(S) lp , ip(M)
id ... id(C) lpq lpq(C)
idle .. idle(C) lpr .. lpr(C)
init .. init(M) lprm .. lprm(C)
inode .. inode (F) Is .. ls(C)
intro .. intro(C) !search .. lsearch(S)
intro ... intro(CP) lseek .. lseek(S)
intro ... intra (CT) ltol3 ... /3tol(S)
intro intra (F) m4 ... m4(CP)
intro intra (M) machine machine(M)
intro .. intra (S) mail ... mail (C)
ioctl .. ioctl(S) make .. make(CP)
isalnnm .. ctype(S) makekey makekey(M)
isalpha .. ctype(S) maliases aliases(M)
isascii .. ctype (S) malloc .. malloc(S)
isatty .. tty name (S) man ... man (CT)
iscntrl ... ctype (S) master .. master(F)
isdigit ... ctype (S) mem ... mem(M)
isgraph ... ctype (S) mesg ... mesg(C)
islower .. ctype(S) messages messages(M)

3

micnet . micnet(M) profit profil(S) (
mkdir mkdir(C) profile profile(M) /
mkfs m/ifs(C) prs prs(CP)
mknod . mknod(C) ps ps(C)
mknod , mknod(S) pstat pstat(C)
mkstr mkstr(CP) ptrace ptrace(S)
mktemp mktemp(S) ptx ptx(CT)
mkuser mkuser(C) putc putc(S)
mm , .. mm(CT) putchar putc(S)
mmcheck mmcheck(CT) putpwent putpwent(S)
mmcheck checkmm(CT) puts . puts(S)
mmt mmt(CT) putw putc(S)
mnttab mnttab (F) pwadmin pwadmin (C)
modf frexp(S) pwcheck pwcheck(C)
monitor monitor(S) pwd pwd(C)
more more(C) qps qps(C)
mount . mount(C) qsort .. , .. qsort(S)
mount mount(S) quot quot(C)
mv mv(C) rand rand(S)
nap nap(S) random random(C)
nbwaitsem waitsem(S) ranlib ranlib(CP)
ncheck ncheck(C) ratfor ratfor(CP)
neqn eqn(CT) rep rcp(C)
neqn neqn(CT) rdchk .. rdchk(S)
netutil netutil(C) read read(S)
newgrp newgrp(C) realloc .. . malloc(S)
news news(C) red red(C)
nextkey dbm(S) regcmp regcmp(CP)
nice nice(C) regcmp regex(S)
nice nice(S) regex regex(S)
nl . nl(C) regexp regexp(S)
nlist nlist(S) remote remote(C)
nm : ... nm(CP) restor restor(C)
nohup nohup (C) rewind fseek(S)
nroff nroff(CT) rm . rm(C)
null null (M)
·
od od(C)

rmdel rmdel(CP)
rmdir rmdir(C)

open open(S) rmuser . .. rmuser(C)
opensem opensem(S) rsh rsh(C)
pack pack(C) sact sact(CP)
passwd passwd(C) sbrk sbrk(S)
passwd passwd (M) scanf scanf(S)
paste paste(CT) sccsdiff sccsdijf(CP)
pause pause(S) sees file sccsfile (F)
peat pack(C) screen screen(M)
pclose popen(S) sddate sddate(C)
perror perror(S) sdenter sdenter(S)
pipe pipe(S) sdget sdget(S)
plock plock(S) sdgetv sdgetv(S)
popen popen(S) sdiff ... sdiff(C)
pow exp(S) sdleave sdenter(S)
pr pr(C) sdwaitv sdgetv(S) .,
prep prep(CT) sed ... sed(C)
printf printf(S) setbuf setbuf(S)
prof prof(CP) setgid setuid(S)

4

setgrent . getgrent(S) swab swab(S)
setjmp . setjmp(S) sync .. , sync(C)
setkey . c1ypt(S) sync , sync(S)
setmnt . setmnt(C) sys_errlist perror(S)
setpgrp setpgrp(S) sys_nerr . perror(S)
setpwent , getpwent(S) sysadmin ... sysadmin(C)
settime settime (C) system system(S)
setuid . setuid(S) systemid . , systemid(M)
sh sh(C) tail tail(C)
shutdn . shutdn (S) tan . trig(S)
shutdown shutdown (C) tanh . sinh(S)
signal . , signal(S) tar .. tar(C)
sigsem sigsem (S) tbl . tbl (CT)
sin trig(S) tee . tee(C)
sinh sinh (S) term . term (M)
size size(CP) termcap termcap(M)
sleep . sleep(C) terminals . terminals(M)
sleep . sleep(S) test test(C)
soelim soe/im(CT) tgetent . , termcap(S)
sort .. sort(C) tgetflag . , termcap(S)
spell . spell (CT) tgetnum termcap(S)
spellin spell(CT) tgetstr termcap(S)
spellout spell (CT) tgoto termcap(S)
spline . spline(CP) time .. time (CP)
split . split(C) time time(S)
sprintf . printf(S) times times(S)
sqrt exp (S) tmpfile . tmpfile(S)
srand . rand(S) tmpnam . tmpnam(S)
sscanf scanf(S) toascii ... conv(S)
ssignal . ssigna/ (S) tolower . conv(S)
stat . stat(F) top top(M)
stat stat(S) top.next top (M)
stdio . stdio (S) touch touch(C)
slime stime (S) toupper . conv(S)
store dbm(S) !puts termcap(S)
strcat . string (S) tr . tr(C)
strchr string(S) troff . troff(CT)
strcmp . string(S) true . true (C)
strcpy . string(S) tset . tset(C)
strcspn . string (S) !sort tsort(CP)
strdup . string (S) tty tty(C)
strings . strings(CP) tty tty(M)
strip strip (CP) ttyuame . ttyname(S)
strlen . string (S) ttys .. ttys (M)
strncat . string (S) types types(F)
strncmp string(S) tzset ctime(S)
strncpy . string(S) ulimit ulimit(S)
strpbrk . string(S) umask . umask(C)
strrchr . string (S) umask . umask(S)
strspn string (S) umount umount(C)
strtok string (S) umount umount(S)
stty stty(C) uname unanze (C)
style . sty/e(CT) uname uname(S)
su ... su(C) unget ... unget(CP)
sum . sum(C) ungetc ungetc(S)

5

uniq ... uniq(C) /
nnits units(C)
unlink un/ink(S)
uripack . pack(C)
ustat .. ustat(S)
utime . utime(S)
utmp . utmp(M)
unclean . uuclean(C)
uucp uucp(C)
uulog . uu<p(C)
uunow . uunow(C)
uusend uusend(C)
uustat . uustat(C)
uusub . uusub(C)
uuto ... uuto(C)
uupick ... uuto(C)
uux ····'"······· . . · uux(C)
val . val(C)
vi . vi(C)
vsb . vsh(C)
wait wait(C)
wait . wait(S)
waitsem . waitsem(S)
wall . wall(C)
w . w (C)
we . wc(C)
what . what(C)
who . who(C)
whodo . whodo(C)
write write(C)
write . write(S)
wtmp utmp (M)
:r<args . xargs(C)
xlist xlist(S)
:<mail . xmail (C)
xref .. xrej(CP)
:r<str ... xstr(CP)
yO . bessel(S)
yl . bessel($)
yacc yacc(CP)
yes . yes(C)
yn bessel(S)

6

Contents

Commands (C)

intro
acctcom
accton
adj_clock
asktime
assign, deassign
at, atq, atrm
autoboot
awk
backup
banner
basename
be
bdiff
bfs
cal
calendar
cat
cd
chgrp
chmod
chown
chroot
cmp
comm
copy
cp
cpio
cron
crypt
csh
cshlO

csplit
cu
cu.s3
date
de
dd
devnm
df
diff
diff3
dircmp

Introduces XENIX commands.
Searches for and prints process accounting files.
Turns on accounting.
Adjusts the system clock speed.
Prompts for the correct time of day.
Assigns and deassigns devices.
Executes commands at a later time.
Sets automatic reboot operation.
Searches for and processes a pattern in a file.
Performs incremental file system backup.
Prints large letters.
Removes directory names from pathnarnes.
Invokes a calculator.
Compares files too large fordijf.
Scans big files.
Prints a calendar.
Invokes a reminder service.
Concatenates and displays files.
Changes working directory.
Changes group !D.
Changes the access permissions of a file or directory.
Changes owner !D.
Changes root directory for command.
Compares two files.
Selects or rejects lines common to two sorted files.
Copies groups of files.
Copies files.
Copies file archives in and out.
Executes commands at specified times.
Encodes and decodes files.
Invokes a shell command interpreter with C-like syntax.
Invokes an enhanced C shell with tenex-like file name and com
mand completion.
Splits files according to context.
Call up XENIX (Version 7).
Call up XENIX (System 3).
Prints and sets the date.
Invokes an arbitrary precision calculator.
Converts and copies a file.
Identifies device name.
Reports the number of free disk blocks.
Compares two text files.
Compares three files.
Compares directories.

dirname
disable
du
dumpdir
echo
ed
enable
env
ex
expr
factor, primes
false
file
find
finger
fixperm
format

fsck
getopt
grep,egrep,fgrep
grpcheck
haltsys
hd
head
hello
id
idle
join
kill
I
lc
line
In
logname
look
Ipq
lpr
lprm
Is
mail
mesg
mkdir
mkfs
mknod
mkuser
more
mount
mv
ncheck
netutil
newgrp
news

Delivers directory part of pathname,
Turns off terminals.
Summarizes disk usage.
Prints the names of files on a backup archive.
Echoes arguments.
Invokes the text editor.
Turns on terminals.
Sets environment for command execution.
Invokes a text editor.
Evaluates arguments as an expression.
Factor a number, generate large primes.
Returns with a nonzero exit value.
Determines file type.
Finds files.
Finds information about users.
Corrects file permissions and ownership.
Organizes floppy diskettes and disk cartridges into tracks and
sectors.
Checks and repairs file systems.
Parses command options.
Searches a file for a pattern.
Checks group file.
Closes out the file systems and halts the CPU.
Displays files in hexadecimal format.
Prints the first few lines of a stream.
Write to another user.
Prints .user and group IDs and names.
Logs idle users off.
Joins two relations.
Terminates a process.
Lists information about contents of directory.
Lists directory contents in columns.
Reads one line.
Makes a link to a file.
Gets login name.
Finds lines in a sorted list.
Line printer spooler queue status display.
Sends files to the lineprinter queue for printing.
Removes an entry from the line printer queue.
Gives information about contents of directories.
Sends, reads or disposes of mail.
Permits or denies messages sent to a terminal.
Makes a directory.
Constructs a file system.
Builds special files.
Adds a login ID to the system.
Views a file one screen full at a time.
Mounts a file structure.
Moves or renames files and directories.
Generates names from inode numbers.
Administers the XENIX network.
Logs user in to a new group.
Prints news items.

/

l_/

nice
nl
nohup
od
pack, peat, unpack
passwd
pr
ps
pstat
pwadmin
pwcheck
pwd
qps
quo I
random
rep
red
remote
restore
rm,rmdir
rmdir
rmuser
rsh
sddate
sdiff
sed
setmnt
set time
sh
shutdown
sleep
sort
split
stty
su
sum
sync
sysadmin
tail
tar
tee
test
touch
tr
true
tset
tty
umask
umount

Runs a command at a different priority.
Adds line numbers to a file.
Runs a command immune to hangups and quits.
Displays files in octal format.
Compresses and expands files.
Changes login password.
Prints files on the standard output.
Reports process status.
Reports system information.
Performs password aging administration.
Checks password file.
Prints working directory name.
Quick process status report (quick "ps ")
Summarizes file system ownership.
Generates a random number.
Copies files across XENIX systems.
Invokes a restricted version of ed(C).
Executes commands on a remote XEN1X system.
Invokes incremental file system restorer.
Removes files or directories.
Removes directories.
Removes a user from the system.
Invokes a restricted shell (command interpreter).
Prints and sets backup dates.
Compares files side-by-side.
Invokes the stream editor.
Establishes /etc/mnttab table.
Changes the access and modification dates of files.
Invokes the shell command interpreter.
Terminates all processing.
Suspends execution for an interval.
Sorts and merges files.
Splits a file into pieces.
Sets the options for a terminal.
Makes the user super-useror another user.
Calculates checksum and counts blocks in a file.
Updates the super-block.
Performs file system backups and restores files.
Delivers the last part of a file.
Archives files.
Creates a tee in a pipe.
Tests conditions.
Updates access and modification times of a file.
Translates characters.
Returns with a zero exit value.
Sets terminal modes.
Gets the terminal's name.
Sets file-creation mode mask.
Dismounts a file structure.

uname
uniq
units
unclean
uucp,uulog
uunow
uusend
uustat
uusub
uuto, uupick
uux
vi
vsh
wait
wall
w
we
what
who
whodo
write
xargs
xmail
yes

Prints the currentXENIX name.
Reports repeated lines in a file.
Converts units.
Clean-up the uucp spool directory.
Copies files from XENIX to XENIX.
Initiate a uucp sequence now. · ·
Send a file to a remote host.
Uucp status inquiry and job control.
Monitor uucp network.
Public XENIX -to-XENIX file copy.
Executes command on remote XENIX.
Invokes a screen-oriented display editor.
Invokes the visual shell.
A waits completion ofbackground processes.
Writes to all users.
Displays who is logged on and what they are doh1g.
Counts lines, words and characters.
Identifies files.
Lists who is on the system.
Determines who is doing what.
Writes to another user.
Constructs and executes commands.
Improved mail program.
Prints siting repeatedly.

/

ADJ_CLOCK (C)

Name

adLclock - Adjusts the system clock speed.

Syntax

adj_clock [-n namelist] [+seconds /period [s I m I h I d]]
adj_clock [-n namelist] [-seconds /period [s I m I h I d]]

Description

ADJ_CLOCK (C)

Adj_clock permits adjustment of the system clock speed. If the XENIX clock is slow, you may speed it up. If
it is fast, you may slow it down.

For example, if the system administrator notices that the system clock ran slow by 5 seconds in 10 hours, they
could correct the clock by typing:

adL clock -5 /10

Adj_ clock responds by setting and displaying the new clock correction factor.

You may add an 's', 'm', 'h', or 'd' at the end of the period specification to indicate seconds, minutes, hours,
or days. The default is hours.

Only the superuser may run adj-clock.

Error Messages

These are some error messages which could result from adj_ clock:

"adj_clock: You must be superuser to run this programu
The user was not logged in as root or did not use su to change to root.

"adLclock: No namelist"
"adj_clock: Bad namelist11

The program was unable to find the needed symbols in /xenix, or the file specified in namelist if "-n" was
specified.

"adj_clock: Can't open kmem"
The program was unable to open the file /dev/kmem.

"adLclock: Can't find upage"
The program was unable to find required data in the system. This usually happens when /xenix is not the
kernel with which the system was booted.

''adj_clock: Can't read adjustment"
The program was unable to read the old adjustment value.

"adj_clock: Can't write adjustment"
The program was unable to write the new adjustment value.

"adLclock: [warning]: Minimum correction is +I second every 1 8 hrs 12 min]5 sec"
The user gave an error rate that was so close to the system clock that it requires an adjustment of less
than I second every 1 8 hours 12 minutes and 15 seconds.

April 30, 1987 Page I

ADJ_CLOCK (C)

"adj_clock: Can't correct for that large of an error"
"Maximum correction is + 1 second every second"
The user gave an error rate so large that the system cannot correct it.

"adj_clock: Can't correct for that small of an error"
The user gave an error rate change so small that the system cannot correct it.

"adj_clock: Can't open xenix"
The program was unable to open the file /xenix.

"adj_clock: Can't read xenix"
The program was unable to read the file /xenix.

"adj_clock: Not enough data in /xenix"

ADJ_CLOCK (C)

The file /xenix did not match its namelist. This probably indicates a corrupted /xenix file.

"adj_clock: Can't seek to position"
The program cannot position to write the new correction value.

"adj_clock: Can't write data to xenix"
The program cannot write the new correction value.

"adj_clock: Missing argument to '-n' "
The user specified the '-n' option and did not specifiy a kernel name.

"adj_clock: Too many adjustment specifications"
The user specified more than one +/- seconds value on the command line.

"adj_clock: Bad adjustment specification"
The user gave an unintelligible +/- seconds specification.

"adj_clock: Too many period specifications"
The user specified more than one /period on the command line.

"adj_clock: Bad period specification"
The user gave an unintelligible /period specification.

'.'adj_clock [warning]: Unknown scalar"
The user gave an unknown scalar on the /period specification.

"adj_clock: You must specify both an adjustment and a period"
The user specified only an adjustment or a period.

"adj_clock: Unknown option "xxx" "
"Usage: adj_clock [-n kernel] [+ seconds 1 - seconds /period[s I m I h I d]] "

The user gave the program an unknown option.

April 30, 1987 Page 2

AUTOBOOT (C) AUTOBOOT (C)

Name

autoboot - Sets automatic reboot operation.

Syntax

autoboot [-a I -ar I -n] [namelist]

Description

The autoboot allows the system to be configured so the system automatically brings itself in multi-user mode
if the user does not answer the boot prompt within l minute. Autoboot skips the time and date entry prompts,
and automatically cleans the file system if required.

The autoboot option can sometimes bring up the system after a power failure. This depends mostly on
whether the boot ROM can load and execute the boot track when the drive heads are not positioned near the
boot track.

You may manually start an autoboot sequence by pressing the Fl key at the boot prompt, whether or not the
autoboot option is turned on.

The reboot option reboots the system after it panics or shuts down with haltsys.

You may use one of the following three options:

-ar Tum on both the autoboot and reboot options. The system will automatically boot

when it is reset
when it is shutdown with haltsys
when most panic messages occur

-a Tum on the autoboot option and tum off the reboot option, The system will only boot automatically
when it is reset. Haltsys or panic messages will not cause a boot.

-n Tum off the autoboot and reboot options. The system will not restart itself unless requested to by the
operator answering the boot prompt.

Name list is the name of the XENIX kernel that the system is running. The default is /xenix.

Files

/etc/autoboot autoboot program

/xenix default namelist

/hdboot non autoboot boot track

/hdbootr autoboot boot track

April 30, 1987 Page l

CSHJO (C) CSHJO (C)

Name

csh I 0 - Invokes an enhanced C shell with tenex-like file name and command completion.

Syntax

cshlO [-cefinstvVxX] [arg . . .]

Description

CshJO is an enhanced version of the Berkeley UNIX C shell csh (1). It behaves like the C shell, except for
two additional utilities:

Interactive file name, command, and user name recognition and completion.

2 Command, file, directory, or user list in the middle of a typed command.

A description of these features follows. For information on the other standard csh features, please see csh(C).

File name completion

Typing in file names as arguments to commands has been simplified. It is no longer necessary to type in a
complete name, only a unique abbreviation is necessary. Typing an escape to cshlO will complete a file name,
and echo the full name on the terminal. If the file name prefix typed in does not match any file name, cshl 0
rings the terminal bell. The file name may be partially completed if the prefix matches several longer file
names. If this is the case, cshJO extends the name up to the ambiguous deviation, and rings the terminal bell.

Example

In the following example, assume the plus character "+" is where the user pressed the escape key. Assume
that the current directory contained the following files:

The command

% vi ch+

DSC.OLD
DSC.NEW
bench

bin
chaosnet
class

cmd
em test
dev

lib
mail
mbox

memos
netnews
new

causes cshJO to complete the command with the name chaosnet. If you type:

% vi D+

cshl 0 will extend the name to DSC, and ring the terminal bell to indicate partial completion.

File name completion works equally well when addressing other directories. Csh/0 also understands the tilde
(-) convention for home directories in this context. For example:

% cd -speech/data/fr+

April 3D, 1987 Page 1

CSHJO (C) CSHJO (C)

does what one might expect. This may also be used to expand login names. For example:

% cd -sysi+

This command performs a cd to the sysinfo home directory.

File/directory list

At any point in typing a command, you may request a list of available files, or a list of files which match your
current specification. For example, while you are typing in:

% cd -speech/data/bench/fritz/

you might want to find out what files or
.
subdirectories are available in -speech/data/bench/fritz. Pressing

Control-D will list the available files, without eliminating the partial line that was previousiy typed in. Cshl 0
lists the files in multicolumn format, sorted by columns. The list indicates directories with a trailing '/' and
executable files with a trailing '*'. After printlng ihe list, cshlO reprints the partially entered command for
you to complete.

Cshl 0 can also list flies which have specific first letters in their names. In the example above, if you typed in:

% cd -speech/data/hench/fr

and then pressed Control-D, cshlO would list all files and subdirectories with names statting with 'fr' in
-speech/data/bench. :Notice that the. first example was a degenerate case with a null trailing file name. (The
null string is a suffix of all strings.) Also, notice that a trailing slash is required to pass to a new subdirectory
for both file name completion and listing. The degenerate case:

prints a full list of login names on the current system. In addition, cshl 0 keeps track of your current working
directory with the $cwd built-in variable.

Command name recognition

Command name recognition and completion works in the same marmer as file name recognition and comple
tion. CshlO uses the current value of the environment variable when searching for the command. For
example:

% newa+

might expand to

% newaliases

while

% new'D

would list all commands along PA Tif that begin with "new".

As an option, if the shell variable listpathnum is set, then cshl 0 prints a number next to each command on a
AD listing which indicates the index in PATH.

April 30, 1987 Page 2

CSHJO (C) CSHJO (C)

CshJO does not use raw or cbreak mode. It works by temporarily setting the "additional" tty break character to
ESC. This method does not add the overhead usually associated with programs that run in raw or cbreak
mode.

If you select ESC as your default additional break character, cshl 0 will be able to support recognition on
typeahead.

Files

/usr/lib/csh.builtins/* fake list of built-in commands

See Also

csh(l)

Notes

A AD on a blank line (a degenerate case of the List option) logs you out. [SPACEJ[AD] Iists all commands in
the system along PATH.

Typing anything immediately after pressing ESC (before recognition expansion completes) will result in char
acter juxtaposition or loss.

Terminal type is only examined the first time that you attempt to use recognition expansion.

Authors

Ken Greer, HP Labs; Mike Ellis, Fairchild, added command name recognition/completion.

April 30, 1987 Page 3

CSH (C) CSH (C)

Name

csh - Invokes a shell command interpreter with C-like syntax.

Syntax

csh [-cefinstv V xX] [arg ...

Description

Csh is a command language interpreter. It begins by executing commands from the file .cshrc in the home
directory of the invoker. If this is a login shell, then it also executes commands from the file .login there. In
the normal case, the shell will then begin reading commands from the terminal, prompting with % . Pro
cessing of arguments and the use of the shell to process files containing command scripts will be described
later.

The shell then repeatedly performs the following actions: a line of command input is read and broken into
words. This sequence of words is placed on the command history list and then parsed. Finally each command
in the current line is executed.

When a login shell terminates, it executes commands from the file .logont in the user's horne directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The characters &, I ,
;, <, >, (,), form separate words. If doubled in &&, I I , <<, or >>, these pairs form single words. These
parser metacharacters may be made part of other words, or prevented their special meaning, by preceding
them with \ A newline preceded by a \ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ·, ' or ", form parts of a word; metacharacters in
these strings, including blanks and tabs, do not form separate words. These quotations have semantics to be
described subsequently. Within pairs of ' or " characters a newline preceded by a \ gives a true newline char
acter.

When the shell's input is not a terminal, the character # introduces a comment which continues to the end of
the input line. It does not have this special meaning when preceded by \ and placed inside the quotation
marks ', �. and ".

Commands

A simple command is a sequence of words, the first of which specifies the command to be executed. A
simple command or a sequence of simple commands separated by I characters forms a pipeline. The output of
each command in a pipeline is connected to the input of the next. Sequences of pipelines may be separated
by ;, and are then executed sequentially. A sequence of pipelines may be executed without waiting for it to
terminate by following it with an &. Such a sequence is automatically prevented from being terminated by a
hangup signal; the 110hup command need not be used.

Any of the above may be placed in parentheses to form a simple command (which may be a component of a
pipeline, etc.) It is also possible to separate pipelines with I I or && indicating, as in the C language, that the
second is to be executed only if the first fails or succeeds respectively. (See Expressions.)

Substitutions

The following sections describe the various transformations the shell performs on the input in the order in
which they occur.

April 30, 1987 Page I

CSH (C) CSH (C)

History Substitutions

History substitutions can be used to reintroduce sequences of words from previous commands, possibly per
forming modifications on these words. Thus history substitutions provide a generalization of a redo function.

History substitutions begin with the character ! and may begin anywhere in the input stream if a history sub
stitution is not already in progress. This ! may be preceded by a \ to prevent its special meaning; a ! is passed
unchanged when it is followed by a blank, tab, newline, =;, or (. History substitutions also occur when an
input line begins with "· This special abbreviation will be described later.

Any input line which contains history substitution is echoed on the terminal before it is executed as it could
have been typed without history substitution.

Commands input from the terminal which consist of one or more words are saved on the history list, the size
of which is controlled by the history variable. The previous command is always retained. Commands are
numbered sequentially from I .

FoLexample, consider. the. following output from the history command:

9 write michael
10 ex write.c
1 1 cat oldwrite.c
12 diff •write.c

The commands are shown with their event numbers. It is not usually necessary to use event numbers, but the
current event number can be made part of the prompt by placing a ! in the prompt string.

With the current event 13 we can refer to previous events by event number ! 1 1 , relatively as in !-2 (referring
to the same event), by a prefix of a command word as in !d for event 12 or !w for event 9, or by a string con
tained in a word in the command as in !?mic? also referring to event 9. These forms, without further modifi
cation, simply reintroduce the words of the specified events, each separated by a single blank. As a special
case ! ! refers to the previous command; thus ! ! alone is essentially a redo. The form !# references the current
command (the one being typed in). It allows a word to be selected from further left in the line, to avoid
retyping a long name, as in !#: I.

To select words from an event we can follow the event specification by a : and a designator for the desired
words. The words of a input line are numbered from 0, the first (usually command) word being 0, the second
word (first argument) being I , and so on. The basic word designators are:

0 First (command) word

n nth argument

A First argument, i.e. 1

$ Last argument

% Word matched by (immediately preceding) ?s ? search

x-y Range of words

-y Abbreviates '0-y'

* Abbreviates '"-$', or nothing if only I word in event

x • Abbreviates 'x-$'

April 30, 1987 Page 2

CSH (C) CSH (C)

X- Like 'x*' but omitting word $

The : separating the event specification from the word designator can be omitted if the argument selector
begins with a A, $, *, - or %. After the optional word designator can be placed a sequence of modifiers, each
preceded by a : . The following modifiers are defined:

h Removes a trailing pathname component

r Removes a trailing .xxx component

s/1 /r I
Substitutes I for r

Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but do not execute it

q Quotes the substituted words, preventing substitutions

x Like q, but breaks into words at blanks, tabs, and new lines

Unless preceded by a g the modification is applied only to the first modifiable word. In any case it is an error
for no word to be applicable.

The left side of substitutions are not regular expressions in the sense of the editors, but rather strings. Any
character may be used as the delimiter in place of/; a \ quotes the delimiter into the I and r strings. The char
acter & in the right side is replaced by the text from the left. A \ quotes & also. A null I uses the previous
string either from a l or from a contextual scan string s in l?s ?. The trailing delimiter in the substitution may
be omitted if a newline follows immediately as may the trailing ? in a contextual scan.

A history reference may be given without an event specification, e.g. !$. In this case the reference is to the
previous command unless a previous history reference occurred on the same line in which case this form
repeats the previous reference. Thus !?foo?A!$ gives the first and last arguments from the command matching
?foo?.

A special abbreviation of a history reference occurs when the first nonblank character of an input line is a A.
This is equivalent to ! :sA, providing a convenient shorthand for substitutions on the text of the previous line.
Thus AlbAlib fixes the spelling of lib in the previous command. Finally, a history substitution may be sur
rounded with { and } if necessary to insulate it from the characters that follow. Thus, after Is -ld -paul we
might do ! { l } a to do Is -ld -paula, while !Ia would look for a command starting Ia.

Quotations With 'and "

The quotation of strings by ' and " can be used to prevent all or some of the remaining substitutions. Strings
enclosed in � are prevented any further interpretation. Variable and command expansion may occur on strings
enclosed in double quotes.

In both cases, the resulting text becomes (all or part of) a single word; only in one special case (see Command
Substitution below) does a " quoted string yield parts of more than one word; ' quoted strings never do.

Apri\ 30, 1987 Page 3

CSH (C) CSH (C)

Alias Substitution

The shell maintains a list of aliases which can be established, displayed and modified by the alias and unalias
commands. After a command line is scanned, it is parsed into distinct commands and the first word of each
command, left-to-right, is checked to see if it has an alias. If it does, then the text which is the alias for that
command is reread with the history mechanism available as though that command were the previous input
line. The resulting words replace the command and argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for Is is Is -1 the command "Is /usr" would map to "Is -1 /usr". Similarly if the alias for
lookup was "grep !A /etc/passwd" then "lookup bill" would map to "grep bill /etc/passwd".

If an alias is found, the word transformation of the input text is performed and the aliasing process begins
again on the reformed input line. Looping is prevented if the first word of the new text is the same as the old
by flagging it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can alias print ")r \! *
lpr'" to make a command that paginates its arguments to the lineprinter.

Variable Substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words. Some of these
variables are set by the shell or referred to by it. For instance, the argv variable is an image of the shell's
argument list, and words of this variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of the variables
referred to by the shell a number are toggles; the shell does not care what their value is, only whether they are
set or not. For instance, the verbose variable is a toggle which causes command input to be echoed. The set
ting of this variable results from)he -v command line option.

Other operations treat variables numerically. The at-sign (@) .command permits numeric calculations to be
performed and the result assigned to a variable. However, variable values are always represented as (zero or
more) strings. For the purposes of numeric operations, the null string is considered to be zero, and the second
and subseque!lt words ofmultiword values are ignored.

After !he inputline is aliased and parsed, and before each command is executed, variable substitution is per
formed, keyed by dollar sign ($) characters. This expansion can be prevented by preceding the dollar. sign
with a backslash (\) except within double quotation marks (") where it always occurs, and within single quo
tation marks (') where it never occurs . . Strings quoted by back quotation marks C) are interpreted later (see
Command substitution below) so dollar sign substitution does not occur there until later, if at all. A dollar
sign is passed unchanged if followed by a blank, tab, .or end-of-line.

Input and output redirections are recognized before variable expansion, and are variable expanded separately.
Otherwise, the command name and entire argument list are expanded together. It is thus possible for the first
(command) word to generate more than one word, the first of which becomes the command name, and the rest
of which become arguments.

Unless enclosed in double quotation marks or given the :q modifier, the results of variable substitution may
eventually be command and filename substituted. Within double quotation marks (") a variable whose value
consists of multiple words expands to a portion of a single word, with the words of the variable's value
separated by blanks. When the :q modifier is applied to a substitution the variable expands to multiple words
with each word separated by a blank and quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values into the shell input. Except as noted, it
is an error to reference a variable which is not set.

April 30, 1987 Page 4

CSH (C)

$name
${ name }

CSH (C)

Are replaced by the words of the value of variable name, each separated by a blank. Braces insulate
name from following characters which would otherwise be part of it. Shell variables have names con
sisting of up to 20 letters, digits, and underscores.

If name is not a shell variable, but is set in the environment, then that value is returned (but : modifiers and
the other forms given below are not available in this case).

$name[selector]
$ { name[selector] }

May be used to select only some of the words from the value of name. The selector is subjected to $
substitution and may consist of a single number or two numbers separated by a -. The first word of a
variables value is numbered 1. If the first number of a range is omitted it defaults to 1. If the last
member of a range is omitted it defaults to $#name. The selector * selects all words. It is not an error
for a range to be empty if the second argument is omitted or in range.

$#name
${#name }

Gives the number of words in the variable. This is useful for later use in a [selector].

$0 Substitutes the name of the file from which command input is being read. An error occurs if the name is
not known.

$number
$ { number }

Equivalent to $argv[number].

$• Equivalent to $argv[*].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above as may :gh, :gt and :gr. If braces {
} appear in the command form then the modifiers must appear within the braces. Only one : modifier is
allowed on each $ expansion.

The following substitutions may not be modified with : modifiers.

$?name
$ { ?name }

Substitutes the string 1 if name is set, 0 if it is not.

$?0 Substitutes I if the current input filename is known, 0 if it is not.

$$ Substitutes the (decimal) process number of the (parent) shelL

Command and Filename Substitution

Command and filename substitution are applied selectively to the arguments of built-in commands. This
means that portions of expressions which are not evaluated are not subjected to these expansions. For com
mands which are not internal to the shell, the command name is substituted separately from the argument list.
This occurs very late, after input-output redirection is performed, and in a child of the main shelL

Command Substitution

Command substitution is indicated by a command enclosed in back quotation marks. The output from such a
command is normally broken into separate words at blanks, tabs and newlines, with null words being dis
carded, this text then replacing the original string. Within double quotation marks, only new lines force new
words; blanks and tabs are preserved.

April 30, 1987 Page S

CSH (C) CSH (C)

In any case, the single final newline does not force a new word. Note that it is thus possible for a command
substitution to yield only part of a word, even if the command outputs a complete line. .%

Filename Substitution

If a word contains any of the characters *• ?, [or [or begins with the character -, then that word is a candi
date for filename substitution, also known as globbing. This word is then regarded as a pattern, and replaced
with an alphabetically sorted list of filenames which match the pattern. In a list of words specifying filename
substitution it is an error for no pattern to match an existing filename, but it is not required for each pattern to
match. Only the metacharacters *· ?, and [imply pattern matching, the characters - and { being more akin to
abbreviations.

In matching filenames, the character . at the beginning of a filename or immediately following a I, as well as
the character I must be matched explicitly. The character * matches any string of characters, including the
null string. The character ? matches any single character. The sequence [...] matches any one of the charac
ters enclosed. Within [. . .], a pair of characters separated by - matches any character lexically between the
two.

The character - at the beginning of a filename is used to refer to home directories. Standing alone it expands
to the invoker's home directory as reflected in the value of the variable home. When followed by a name con
sisting of letters, digits and - characters the shell searches for a user with that name and substitutes their home
directory; thus -ken might expand to lusr/ken and -kenlchmach to lusr/kenlchmach. If the character - is fol
lowed by a character other than a letter or I or appears not at the beginning of a word, it is left unchanged.

The metanotation a[b,c,d)e is a shorthand for abe ace ade. Left to right order is preserved, with results of
matches being sorted separately at a low level to preserve this order. This construct may be nested. Thus
-sourcelsll[oldls,ls).c expands to lusrlsourcelslloldls.c lusrlsourcelsl/ls.c, whether or not these files exist,
without any chance of error if the home directory for source is lusrlsource. Similarly . ./{memo,•box) might
expand to . ./memo .. /box . ./mbox. (Note that memo was not sorted with the results of matching •box.) As a
special case [,) and [) are passed unchanged.

Input/Output

The standard input and standard output of a command may be redirected with the following syntax:

< name
Opens file name (which is first variable, command and filename expanded) as the standard input.

<< word
Reads the shell input up to a line which is identical to word. Word is not subjected to variable, filename
or command substitution, and each input line is compared to word before any substitutions are done on
this input line. Unless a quoting backslash, double, or single quotation mark, or a back quotation mark
appears in word, variable and command substitution is performed on the intervening lines, allowing \ to
quote $, \ and '. Commands which are substituted have all blanks, tabs, and new lines preserved, except
for the final newline which is dropped. The resulting text is placed in an anonymous temporary file
which is given to the command as standard input.

> name
>!- name
>& name
>&! name

The file name is used as standard output. If the file does not exist then it is created; if the file exists, it
is truncated, and its previous contents is lost.

If the variable noclobber is set, then the file must not already exist or it must be a character special file
(e.g. a terminal or ldevlnull) or an error results. This helps prevent accidental destruction of files. In
this case the ! forms can be used and suppress this check.

April 30, 1987 Page 6

CSH (C) CSH (C)

The forms involving & route the diagnostic output into the specified file as well as the standard output.
Name is expanded in the same way as < input filenames are.

>> name
>>& name
>>! name
>>&! name

Uses file name as standard output like > but places output at the end of the file. If the variable
noclobber is set, then it is an error for the file not to exist unless one of the ! forms is given. Otherwise
similar to >.

If a command is run detached (followed by &) then the default standard input for the command is the empty
file /dev/null. Otherwise the command receives the environment in which the shell was invoked as modified
by the input-output parameters and the presence of the command in a pipeline. Thus, unlike some previous
shells, commands run from a file of shell commands have no access to the text of the commands by default;
rather they receive the original standard input of the shell. The << mechanism should be used to present
inline data. This permits shell command scripts to function as components of pipelines and allows the shell to
block read its input.

Diagnostic output may be directed through a pipe with the standard output. Simply use the form I & rather
than just I .

Expressions

A number of the built-in commands (to be described later) take expressions, in which the operators are similar
to those of C, with the same precedence. These expressions appear in the @, exit, if, and while commands.
The following operators are available:

I I && I A & == != <= >= < > << >>
+ - * / % ! - ()

Here the precedence increases to the right, = and !=, <=, >=, <, and >, << and >>, + and -, * I and % being,
in groups, at the same level. The == and != operators compare their arguments as strings, all others operate
on numbers. Strings which begin with 0 are considered octal numbers. Null or missing arguments are con
sidered 0. The result of all expressions are strings, which represent decimal numbers. It is important to note
that no two components of an expression can appear in the same word; except when adjacent to components
of expressions which are syntactically significant to the parser (& I < > ()) they should be surrounded by
spaces.

Also available in expressions as primitive operands are command executions enclosed in { and) and file
enquiries of the form -1 name where l is one of:

r Read access
w Write access
X Execute access
e Existence
0 Ownership
z Zero size
f Plain file
d Directory

The specified name is command and filename expanded, then tested to see if it has the specified relationship
to the real user. If the file does not exist or is inaccessible then all enquiries return false, i.e. 0. Command
executions succeed, returning true, i.e. 1 , if ¢e command exits with status 0, otherwise they fail, returning
false, i.e. 0. If more detailed status information is required then the command should be executed outside of
an expression and the variable status examined.

April 30, 1987 Page 7

CSH (C) CSH (C)

Control Flow

The shell contains a number of commands which can be used to regulate the flow of control in command files
(shell scripts) and (in limited but useful ways) from terminal input. These commands all operate by forcing
the shell to reread or skip in its input and, due to the implementation, restrict the placement of some of the
commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if statement require that the
major keywords appear in a single simple command on an input line as shown below.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being read and performs
seeb in this internal buffer to accomplish the rereading implied by the loop. (To the extent that this allows,
backward goto commands will succeed on nonseekable inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a built-in command occurs as any component of a pipe
line except the last then it is executed in a subshell.

alias
alias name
alias name wordlist

break

The first form prints all aliases. The second form prints the alias for name . The final form assigns the
specified wordlist as the alias of name; wordlist is command and filename substituted. Name is not
allowed to be alias or unalias

Causes execution to resume after the end of the nearest enclosing foreach or while statement. The
remaining commands on the current line are executed. Multilevel breaks are thus possible by writing
them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Changes the shell's working directory to directory name. If no argument is given then changes to the
home directory of the user. If name is not found as a subdirectory of the current directory (and does not
begin with /, ./, or .. !), then each component of the variable cdpath is checked to see if it has a subdirec
tory name. Finally, if all else fails but name is a shell variable whose value begins with /, then this is
tried to see if it is a directory.

continue
Continues execution of the nearest enclosing while or foreach. The rest of the commands on the current
line are executed.

default:
Labels the default case in .a switch statement. The default should come after all case labels.

April 30, 1987 Page 8

CSH (C) CSH (C)

echo wordlist
The specified words are written to the shell's standard output. An \c causes the echo to complete
without printing a newline. An \n in wordlist causes a newline to be printed. Otherwise the words are
echoed, separated by spaces.

else
end
endif
endsw

See the description of the foreach, if, switch, and while statements below.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first form) or with the value of the specified
expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the sequence of commands
between this command and the matching end are executed. (Both foreach and end must appear alone
on separate lines.)

The built-in command continue may be used to continue the loop prematurely and the built-in command
break to terminate it prematurely. When this command is read from the terminal, the loop is read up
once prompting with ? before any statements in the loop are executed.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited by nu11 characters in the output.
Useful for programs which wish to use the she11 to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a string of the form label. The shell
rewinds its input as much as possible and searches for a line of the form label: possibly preceded by
blanks or tabs. Execution continues after the specified line.

history
Displays the history event list.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is executed. Vari
able substitution on command happens early, at the same time it does for the rest of the if command.
Command must be a simple command, not a pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, when command is not executed.

if (expr) then

else if (expr2) then

else

end if
If the specified expr is true then the commands to the first else are executed; else if expr2 is true then
the commands to the second else are executed, etc. Any number of else-if pairs are possible; only one

April 30, 1987 Page 9

CSH (C) CSH (C)

en4if is needed. The else part is likewise optional. (The words else and endif must appear at the begin
ning of input lines; the if must appear alone on its input line or after an else.)

logout
Terminates a login shell. The only way to log out if ignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets the nice to the given number. The
final two forms run command at priority 4 and number respectively. The super-user may specify nega
tive niceness by using "nice -number " The command is always executed in a subshell, and the res
trictions placed on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored for the remainder of the
script. The second form causes the specified command to be run with hangups ignored. Unless the
shell is running detached, nohup has no effect. All processes detached with & are automatically
nohuped. (Thus, nohup is not really needed.)

onintr
onintr
onintr label

Controls the action of the shell on interrupts. The first form restores the default action of the shell on
interrupts which is to terminate shell scripts or to return to the terminal command input level. The
second form onintr - causes all interrupts to be ignored. The final form causes the shell to execute a
goto label when an interrupt is received or a child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of onintr have no
meaning and interrupts continue to be ignored by the shell and all invoked commands.

rehash
Causes the internal bash table of the contents of the directories in the path variable to be recomputed.
This is needed if new commands are added to directories in the path while you are logged in. This
should only be necessary if you add commands to one of your own directories, or if a systems pro
grammer changes the contents of one of the system directories.

repeat count command

set

The specified command which is subject to the same restrictions as the command in the one line if state
ment above, is executed count times. I/0 redirections occur exactly once, even if count is 0.

set name
set name=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell variables. Variables which have other than
a single word as value print as a parenthesized word list. The second form sets name to the null string.
The third form sets name to the single word. The fourth form sets the indexth component of name to
word; this component must already exist. The final form sets name to the list of words in wordlist. In
all cases the value is command and filename expanded.

These. arguments may be repeated to set multiple values in a single set command. Note however, that
variable expansion happens for all arguments before any setting occurs.

April 30, 1987 Page I 0

'
\

CSH (C) CSH (C)

setenv name value

shift

Sets the value of the environment variable name to be value, a single string. Useful environment vari
ables are TERM, the type of your terminal and SHELL, the shell you are using.

shift variable
The members of argv are shifted to the left, discarding argv[1]. It is an error for argv not to be set or to
have less than one word as value. The second form performs the same function on the specified vari
able.

source name
The shell reads commands from name. Source commands may be nested; if they are nested too deeply
the shell may run out of file descriptors. An error in a source at any level terminates all nested source
commands. Input during source commands is never placed on the history Jist.

switch (string)
case strl :

breaksw

default:

breaksw
endsw

time

Each case label is successively matched, against the specified string which is first command and
filename expanded. The file metacharacters *, ?, and [...] may be used in the case labels, which are
variable expanded. If none of the labels match before a default label is found, then the execution begins
after the default label. Each case label and the default label must appear at the beginning of a line. The
command breaksw causes execution to continue after the endsw. Otherwise control may fall through
case labels and default labels, as in C. If no label matches and there is no default, execution continues
after the endsw.

time command
With no argument, a summary of time used by this shell and its children is printed. If arguments are
given the specified simple command is timed and a time summary as described under the time variable
is printed. If necessary, an extra shell is created to print the time statistic when the command com
pletes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified value (second form). The mask is
given in octal. Common values for the mask are 002 giving all access to the group and read and exe
cute access to others, or 022 giving all access except no write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all aliases are removed by
unalias *· It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus all variables are removed by
unset •; this has noticeably distasteful side-effects. It is not an error for nothing to be unset.

April 30, 1987 Page 1 1

CSH (C)

wait

CSH (C)

All. child processes are waited for. It the shell is interactive, then an interrupt can disrupt the wait, at
which time the shell prints narnes and process numbers of all children known to be outstanding.

while (expr)

end

@

While the specified expression evaluates nonzero, the commands between the while and the matching
end are evaluated. Break and continue may be used to terminate or continue the loop prematurely.
(The while and end must appear alone on their input lines.) Prompting occurs here the first time through
the loop as for the foreach statement if the input is a terminal.

@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The second form sets the specified name to
the value of expr. If the expression contains <, >, & or I then at least this part of the expression must be
placed within (). The third form assigns the value of expr to the indexth argument of name. Both name
and its indexth component must already exist.

The operators •=, +=, etc. are available as in C. The space separating the name from the assignment
operator is optional. Spaces are mandatory in separating components of expr which would otherwise be
single words.

Special postfix ++ and - operators increment and decrement name respectively, i.e. @ i++.

Predefined Variables

The following variables have special meaning to the shell. Of these, argv, child, home, path, prompt, shell
and status are always set by the shell. Except for child and status this setting occurs only at initialization;
these v:i.r:iables will not then be modified unless done explicitly by the user.

The shell copies the environment variable PATH into the variable path , and copies the value back into the
environment whenever path is set. Thus is is not necessary to worry about its setting other than in the file
.cshrc as inferior csh processes will import the definition of path from the environment.

argv

cdpath

child

echo

histchars

history

April 30, 1987

Set to the arguments to the shell; it is from this variable that positional parameters are sub
stituted, i.e. $ 1 is replaced by $argv[l], etc.

Gives a list of alternate directories searched to find subdirectories in cd commands.

The process number printed when the last command was forked with &. This variable is
unset when this process terntina.tes.

Set when the -x command line option is given. Causes each command and its arguments
to be echoed just before it is executed. For nonbuilt-in commands all expansions occur
before echoing. Builtin commands are echoed before command and filename substitution,
since these substitutions are then done selectively.

Can be assigned a two-character string. The first character is used as a history character in
place of ! , the second character is used in place of the A substitution mechanism. For
example, set histchars=",;" will cause the history characters to be comma and senticolon.

Can be given a numeric value to control the size of the history list. Any command which
has been referenced in this many events will not be discarded. A history that is too large
inay run the shell out of memory. The last executed command is always saved on the his
tory list.

Page 12

/

CSH (C)

home

ignoreeof

mail

noclobber

noglob

nonomatch

path

prompt

shell

status

time

(
'�- verbose

April 30, 1987

CSH (C)

The home directory of the invoker, initialized from the environment. The filename expan
sion of refers to this variable.

If set the shell ignores end-of-file from input devices that are terminals. This prevents a
shell from accidentally being terminated by typing a CNTRL-D.

The files where the shell checks for mail. This is done after each command completion
which will result in a prompt, if a specified interval has elapsed. The shell says "You have
new mail' ' . if the file exists with an access time not greater than its modify time.

If the first word of the value of mail is numeric it specifies a different mail checking
interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says "New mail in name" when there is
mail in the file name.

As described in the section Input/output, restrictions are placed on output redirection to
insure that files are not accidentally destroyed, and that >> redirections refer to existing
files.

If set, filename expansion is inhibited. This is most useful in shell scripts which are not
dealing with filenames, or after a list of filenames has been obtained and further expansions
are not desirable.

If set, it is not an error for a filename expansion to not match any existing files; rather, the
primitive pattern is returned. It is still an error for the primitive pattern to be malformed,
i.e. echo [still gives an error.

Each word of the path variable specifies a directory in which commands are to be sought
for execution. A null word specifies the current directory. If there is no path variable then
only full pathnames will execute. The usual search path is /bin, /usr/bin, and ., but this may
vary from system to system. For the super-user the default search path is /etc, /bin and
/usr/bin. A shell which is given neither the -<: nor the -t option will normally hash the
contents of the directories in the path variable after reading .cshrc, and each time the path
variable is reset. If new commands are added to these directories while the shell is active,
it may be necessary to give the rehash command or the commands may not be found.

The string which is printed before each command is read from an interactive terminal input.
If a ! appears in the string it will be replaced by the current event number unless a
preceding \ is given. Default is % , or # for the super-user.

The file in which the shell resides. This is used in forking shells to interpret files which
have execute bits set, but which are not executable by the system. (See the description of
Nonbuilt-In Command Execution below.) Initialized to the (system-dependent) home of the
shell.

The status returned by the last command. If it terminated abnormally, then 0200 is added
to the status. Built-in commands which fail return exit status 1 , all other built-in commands
set status 0.

Controls automatic timing of commands. If set, then any command which takes more than
this many cpu seconds will cause a line giving user, system, and real times and a utilization
percentage which is the ratio of user plus system times to real time to be printed when it
terminates.

Set by the -v command line option, causes the words of each command to be printed after
history substitution.

Page 13

CSH (C) CSH (C)

Nonbuilt-ln Command Execution

When a command to be executed is found to not be a built-in command the shell attempts to execute the com
mand via exec(S). Each word in the variable path names a directory from which the shell will attempt to exe
cute the command. If it is given neither a -c nor a -i option, the shell will hash the names in these directories
into an internal table so that it will only try an exec in a directory if there is a possibility that the command
resides there. This greatly speeds command location when a large number of directories are present in the
search path. If this mechanism has been turned off (via unhash), or if the shell was given a -c or -t argu
ment, and in any case for each directory component of path which does not begin with a /, the shell concaten
ates with the given command name to form a pathname of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (cd ; pwd) ; pwd prints the home directory;
leaving you where you were (printing this after the home directory), while cd ; pwd leaves you in the home
directory. Parenthesized commands are most often used to prevent cd from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is assumed to be a file
containing shell commands and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument list to form the shell
command. The first word of the alias should be the full pathname of the shell (e.g. $shell). Note that this is
a special, late occumng, .case of alias substitution, and only allows words to be prepended to the argument list
without modification.

·

Argument List Processing

If argument 0 to the shell is - then this is a login shell. The flag arguments are interpreted as follows:

-c Commands are read from the (single) following argument which must be present. Any remaining argu
ments are placed in argv.

-e The shell exits if any invoked command terminates abnormally or yields a nonzero exit status.

-f . The shell will start faster, because it will neither search for nor execute commands from the file .cshrc
in the invoker's home directory.

-i The . shell is interactive and prompts for its top-level input, even if it appears to not be a terminal.
Shells are interactive without this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This may aid in syntactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. , A \ may be used to escape the newline at the end of this
line and continue onto another line.

-v Causes the verbose variable to be set, with the effect that command input is echoed after history substi
tution.

-x
'
causes the echo v;mable to be set, so that commands are echoed immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is executed.

-X Causes the echo variable to be set even before .cshrc is executed.

After processing of flag arguments, if arguments remain but none of the -c, -i, -s, or -t options were given,
the first argument is taken as the name of a file of commands to be executed. The shell opens this file, and
saves its name for possible resubstitution by $0. Since on a typical system most shell scripts are written for
the standard shell (see sh(C)), the C shell will execute such a standard shell if the first character of a script is

April 30, 1987 Page 14

('
\

CSH (C) CSH (C)

not a #, i.e. if the script does not start with a comment. Remaining arguments initialize the variable argv.

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals are ignored for an invoked command if
the command is followed by &; otherwise the signals have the values which the shell inherited from its
parent. The shells handling of interrupts can be controlled by onintr. Login shells catch the terminate signal;
otherwise this signal is passed on to children from the state in the shell's parent. In no case are interrupts
allowed when a login shell is reading the file .logout.

Files

-/.cshrc

-/.login

-/.logout

/bin/sh

/tmp/sh*

/dev/null

/etc/passwd

Limitations

Read at by each shell at the beginning
of execution

Read by login shell, after .cshrc at login

Read by login shell, at logout

Shell for scripts not starting with a #

Temporary file for <<

Source of empty file

Source of home directories for -name

Words can be no longer than 512 characters. The number of arguments to a command which involves
filename expansion is limited to 1/6 number of characters allowed in an argument list, which is 5120, less the
characters in the environment. Also, command substitutions may substitute no more characters than are
allowed in an argument list.

To detect looping, the shell restricts the number of alias substitutions on a single line to 20.

See Also

access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S), a.out(F), environ(F)

Credit

This utility was developed at the University of California at Berkeley and is used with permission.

Notes

Built-in control structure commands like foreach and while cannot be used with I , & or ;.

Commands within loops, prompted for by ? , are not placed in the history list.

It is not possible to use the colon (:) modifiers on the output of command substitutions.

April 30, 1987 Page 15

CSH (C) CSH (C)

Csh attempts to import and export the PATH variable for use with regular shell scripts. This only works for
simple cases, where the PATH contains no command characters.

This version of csh does not support or use the process control features of the 4th Berkeley Distribution.

April 30, 1987 Page 16

FIXPERM (C) FIXPERM (C)

Name

fixperm - Corrects file permissions and ownership.

Syntax

fixperm [-c 1 -s] specfile ...

Description

Fixperm makes the listed pathname conform to the specification. Fixperm does this for each line in the
specification file (specfile). The specification file must be in the format described below. There are two avail
able options in fixperm:

-s Alter the major/minor numbers of special files to match the specification when the file exists.

-c Perform the function of the -s option, and create any files that are in the specification but are not found on
the disk. Files created with this option match the specification. Plain files are given zero length, direc
tories are created empty.

If you do not select either option, fixperm leaves the major/minor numbers of existing special files alone. In
addition, fixperm sets the user id, group id, permissions, setuid bit, setgid bit, and sticky bit to match the
specification.

Only the superuser may runfixperm. Fixperm should not be setuid.

If the file type does not match the specification, fixperm does not process the file, but instead prints
appropriate diagnostic messages. Valid file types include plain, directory, character special, and block special.

Specification File Format

The specification file format uses three (with an optional fourth) data fields per line. The fields are:

Permissions

2 Owner

3 Pathname

4 Device numbers.

If a file is not a plain file, the first character of the line must contain a file type code. The codes are:

b Block special

c Character special

d Directory

The rest of first field contains the file mode, including setuid, setgid and sticky bits. The second field is the
uid in decimal, unless the uid is different from the gid. If the uid is different than the gid, the second field
contains the uid (decimal), followed by a slash, followed by the gid (decimal). The third field contains the
relative pathnarne. If the file is a block or character special file then the fourth field is required. The fourth
field contains the major and minor numbers in decimal, separated by a slash.

April 30, 1987 Page 1

FJXPERM (C)

Example:

See Alsp .

Permissions Owner Pathname

d755
7 1 1
471 1
7DD
7 1 1
d755
c222
b666
e666 ·
c222
644

3
3
D/3
D/3
3
2
D
2
2 .
D
3

bin
bin/awk
bin/.mail
bin/disable
bin/ed
dev
dev/console
dev/fdD
dev/rfdD
dev/lp
etc/default/backup

mknod(C), chown(C), chgrp(C)

Diagnostics ' '

Device-nun:tbers

DID
- 1/D
5/D
6/128

Messages resulting from any of the following are directed to the standard error output:

Poorly formatted specification file
Incomplete system call

· Unknown command line argument
Attempted use without being superuser

Notes

FIXPERM (C)

If a file is list�d twice in the 'specificaiton file,f!Xp�fin uses the last valid entry. This can happen if the file has
links and the specification file incorrectly edited.

April 30, 1987 Page 2

FORMAT (C) FORMAT (C)

Name

format - Organizes floppy diskettes and disk cartridges into tracks and sectors.

Syntax

format [-qy] [-ds 1 -dd] [-i interleave] specia/file

Description

Format formats two types of media: floppy disks and disk cartridges, based on the specialfile specified. By
default, format performs a read-verify if a floppy diskette is formatted. If the -q option is selected and a
floppy diskette is being formatted, no read-verification is performed, allowing the diskette to be formatted
more quickly.

The specialfile must be the name of the l/0 device special file that corresponds to the floppy disk drive or
disk cartridge drive.

The -i option is only used with cartridges and allows you to specify the interleave used to format them with.
You may use the following values for interleave :

1 0-meg cartridges
1, 2, 4, 8, 16, 32

20-meg cartridges
1, 2, 3, 4, 5, 7, 8, 9, 1 1 , 13, 15, 16, 17, 19, 21 , 23, 25, 27, 29, 3 1, 32

The -d option is only used when formatting floppies and allows you to specify the density to format the
floppy with. Using -d s formats the floppy in single density with 128 byte sectors. Using -d d formats the disk
as a XENIX disk (double density, 512 byte sectors).

For example, the command

format fdO

formats a diskette in floppy drive 0. The command

format cdO

formats the disk cartridge in cartridge drive 0 (if installed).

Formatting a floppy disk or disk cartridge destroys the data on it. By default, format checks to see whether
data is stored on the media before formatting it. If data is found,Jormat displays the message

Warning: device contains data. Overwrite? (y/n):

If you still wish to overwrite the data, press 'Y' and press RETURN. Otherwise, press 'N' and press
RETURN. This prompt is not displayed if you select the -y option.

Note that the floppy disk or disk cartridge must be in the appropriate drive before invoking the command.

Files

/bin/format

April 30, 1987 Page 1

FORMAT (C) FORMAT(C)

Notes

An error message appears on the console if you run format ·on meclia that has never been formatted before.
This is normal and the format conti11ues.

Format only formats the diskette in the drive the system unit. Keep this in mind if you are working from a
terminal.

The disk cartridge uses one track for the boot track. During the formatting procedure, information describing
the size and shape of the formatted media is writen to the cartridge. Each cartridge contains spare areas that
are used to maintain a constant-sized area for data storage. If these extra areas are all used, then the cartridge
will no longer format,

A 10-megabyte cattridge has 9,760 blocks available for use_ by mkfs, tar, or restore. A 20-megabyte car
tridge has 20,880 lilocks available.

!'lever remove a floppy diskette from its drive until the drive light goes out.

April 30, 1987 Page 2

HELLO (C) HELLO (C)

Name

hello - Write to another user

Syntax

hello user [ttyname]

Description

Hello copies lines from your terminal to that of another user. When first called, hello sends the message:
Hello from yow·name yourttyname ... The recipient of the message should hello back at this point. Communi
cation continues until an end of file is read from the terminal or an interrupt is sent. At that point hello writes
"bye now" on the other terminal and exits.

If you want to write to a user who is logged at more than one terminal, use the ttyname argument to indicate
the appropriate terminal name.

Permission to hello may be denied or granted by use of the mesg command which by default allows writing.
Certain commands, such as nroff and pr disallow messages in order to prevent messy output.

If you try to write to a user who has messages disabled, hello sends mail to the user saying that a hello was
attempted by you. This also happens if the user is not currently Jogged in. The following protocol is suggested
for using hello: when you first write to another user, wait for him to write back before starting to send a mes
sage. Each party should end their message with a distinctive signal, such as "o" for "over" so the other
knows to reply. Another suggestion is the use of "oo" for "over and out" when conversation is about to be
terminated.

Files

/etc/utmp
/bin/sh

See Also

mesg(C), who(C), mail(C)

April 30, 1987 Page I

IDLE (C) IDLE (C)

Name

idle - Logs idle users off.

Syntax

idle [-d]

Description

Idle finds users that have been logged in >y1d idle for more than a specified period of time, and logs them out.
Idle is usually invoked by cron, the clock daemon.

If idle is invoked with the '-d' flag, it only reports user idle times, and the names of any processes that idle
users are running. In this case, idle only reports on idle users and processes, and does not take any action.
You can use this to see whom idle would log off if run without the '-d' option.

The time allowed, and other items are set in the file /etc/default/idle. All time values are in minutes. The
items that you can control are:

NULL FILE

LOG FILE

C_LIMIT

CD LIMIT

The list of programs that are not considered work. The user is considered idle if run
ning nothing but these programs.

Where to record logouts. When set, a line is recorded here for each user that idle logs
out.

The normal idle time limit. This determines how long idle will wait before logging
out an idle user.

The normal idle time limit for dial-in lines. A line is considered a dial-in line if it
starts with "ttyd". For example, ttydO would be considered a dial-in line.

CB LIMIT The normal time limit for work programs. A work program is any program that is not
listed in NULLFILE.

CDB LIMIT The normal time limit for wqrk programs invoked through a dial-up line. A work
program is any program that is not listed in NULLFILE.

CHECK INTERVAL This tells idle how often cron is to run it. For example, if you want idle to run every
10 minutes, put a "10" here, and put the line:

0,10,20,30,40,50 * * * * /usr/lib/idle

into /usr/lib/crontab.

Error Messages

"idle: Unknown argument"
The user gave idle an argument other than '-d'.

"idle: You need to run this program as root"
The user tried to run idle to log users off, and was not logged in as the superuser.

"idle: Can't open /etc/uttnp"
The program was unable to open the login information file /etc/utmp.

April 30, 1987 Page 1

IDLE (C) , IDLE (C)

"idle: Can't stat /dev/tty??"
The program was unable to find the idle time of the specified terminal.

"idle: Can't run "ps";"
The program was unable to execute the system utility ps.

"idle: Can't open /dev/tty??"
The program was unable to open the specified terminal to warn the user.

"WARNING fron Idle Daemon at time"
"If you do not type something in about nn minutes, you will be logged off."

This is the mess�ge that is used to warn the idle user.

April 30, 1987 Page 2

LC (C) LC (C)

Name

lc - Lists directory contents in co]umns.

Syntax

lc [-lACFRabcdfgilmnqrstux] name ...

Description

Lc lists the contents of files and directories, in columns. If name is a directory name, lc lists the contents of
the directory; if name is a filename, lc repeats the filename and any other information requested. Output is
given in columns and sorted alphabetically. If no argument is given, the current directory is listed. If several
arguments are given, they are sorted alphabetically, but file arguments appear before directories.

Files that are not the contents of a directory being interpreted are always sorted across the page rather than
down the page in columns. A stream output format is available in which files are listed across the page,
separated by commas. The -m option enables this format.

The options are:

-1 Forces an output format with one entry per line.

-A If the user is not root, this option displays all files that begin with " . " (except " . " and " .. " themselves).
If the user is root, this option does not display the files that begin with "." .

-C Forces columnar output, even if redirected to a file.

-F Causes directories to be marked with a trailing "/" and executable files to be marked with a trailing "*".

-R Recursively lists subdirectories.

-a Lists all entries; usually ' '. ' ' and ' ' .. ' ' are suppressed.

-b Forces printing of nongraphic characters in the \ddd notation, in octal.

-c Sorts by time of file creation.

-d If the argument is a directory, lists only its name, not its contents (mostly used with -1 to get status on
directory).

-f Forces each argument to be interpreted as a directory and lists the name found in each slot This option
turns off -1, -t, -s, and -r, and turns on -a; the order is the order in which entries appear in the directory.

-g The same as -1, except that the owner is not printed.

-i Prints inode number in first column of the report for each file listed.

-I Lists in long format, giving mode, number of links, owner, group, size in bytes, and time of last
modification for each file. If the file is a special file the size field instead contains the major and minor
device numbers.

-o The same as -1, except that the group is not printed.

-m Forces stream output format.

April 30, 1987 Page 1

LC (C) LC (C)

-n Same as the -1 switch, but the owner's user ID appears instead of the owner's name. If used in conjunc"
lion with the -g switch, the owner's group ID appears instead of the group name.

-q Forces printing of nongraphic characters in filenames as the character "?" .

-r Reverses the order of sort to get reverse alphabetic or oldest first as appropriate.

-s Gives size in 512-byte blocks, including indirect blocks for each entry.

-t Sorts by time modified (latest first) instead of by name, as is normal.

-11 Uses time of last access instead of last modification for sorting (-t) or printing (-!).

-x Forces columnar printing to be sorted across rather than down the page.

The following are alternate invocations of the lc command:

If Produces the same output as lc -F.;

lr Produces the same output as lc -R.

Ix Produces the same output as lc -x.

The mode printed under the -1 option contains I I characters. The first character is:

If the entry is a plain file

d If the entry is a directory

b If the entry is a block-type special file

c If the entry is a character-type special file

p If the entry is a named pipe

s If the entry is a semaphore

m If the entry is shared data (memory)

The next 9 characters are interpreted as 3 sets of 3 bits each. The first set refers to owner permissions; the
next to permissions to others in the same user-group; and the last to all others. Within each set the 3 charac
ters indicate permission respectively to read, to write. or to execute the file as a program. For a . directory,
"execute" permission is interpreted to mean permission to search the directory for a specified file. The per
missions are indicated as follows;· ,

r If the file is readable

w If the file is writable

x If the file is executable
'

. If. the indicated permission is• not granted

The group-execute permission character is given as s if the file has set-group-ID mode; likewise the user
execute permission character is given as s if the file has set-user-ID mode.

The last character of the mode (normally "x" or "-") is t if the 1000 bit of the mod.e is on. See chmod(C)
for the meaning of this mode.

April 30, 1987 Page 2

LC (C) LC (C)

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is
printed.

Files

fetc/passwd

/etc/group

Credit

To get user IDs for "lc -1"

To get group IDs for "lc -g"

This utility was developed at the University of California at Berkeley and is used with permission.

Notes

Newline and tab are considered printing characters in filenames. The output device is assumed to be 80
columns wide. Column width choices are poor for terminals that can tab.

April 30, 1987 Page 3

. , ,

(

LPQ (C) LPQ (C)

Name

lpq - line printer spooler queue status display.

Syntax

lpq

Description

Lpq prints the line printer queue. Each entry in the queue is printed showing the owner of the queue entry, an
identification number, the size of the entry in characters, and the file which is to be printed. The id is useful
for removing a specific entry from the printer queue using lprm (C).

Files

/usr/spool/lpd/* spool area

See Also

lprm(C), Jpr(C)

April 30, 1987 Page 1

LPRM (C) LPRM (C)

Name

lpnn - Removes an entry from the line printer queue.

Syntax

lprm [id ...] [filename] [owner]

Description

Lprm removes an entry from the line printer queue. The id, filename, or owner should be the same as /pq(C)
reports. Lpnn will remove all of the appropriate files. Lprm will print the id of each file removed from the
queue.

Files

/usr/spool!lpd/*

/usrflib!lpd

See Also

lpq(C), lpr(C)

April 3D, 1987

spool area
printer daemon

Page I

LS (C) LS (C)

Name

ls - Gives information about contents of directories.

Syntax

Is [-Iogtasdrucif] names

Description

For each directory named, is lists the contents of that directory; for each file named, is repeats its name and
any other information requested. By default, the output is sorted alphabetically. When no argument is given,
the current directory is listed. When several arguments are given, the arguments are first sorted appropriately,
but file arguments are processed before directories and their contents. There are several options:

-1 Lists in long format, giving mode, number of links, owner, group, size in bytes, and time of last
modification for each file (see below). If the file is a special file, the size field will contain the major and
minor device numbers, rather than a size.

-o The same as -1, except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-t Sorts by time of last modification (latest first) instead of by name.

-a Lists all entries; in the absence of this option, entries whose naroes begin with a period (.) are not listed.

-s Gives size in (512 byte) blocks, including indirect blocks, for each entry.

-d If argument is a directory, lists only its name; often used with -1 to get the status of a directory.

-r Reverses the order of sort to get reverse alphabetic or oldest first, as appropriate.

-u Uses time of last access instead of last modification for sorting (with the -t option) and/or printing (with
the -1 option).

-c Uses time of last modification of the inode (mode, etc.) instead of last modification of the file for sorting
(-t) and/or printing (-1).

-i For each file, prints the inode number in the first column of the report.

-f Forces each argument to be interpreted as a directory and lists the naroe found in each slot. This option
turns off -1, -t, -s, and -r, and turns on -a; the order is the order in which entries appear in the directory.

The mode printed under the -1 option consists of 1 1 characters. The first character is;

If the entry is an ordinary file

d If the entry is a directory

b If the entry is a block special file

c If the entry is a character special file

p If the entry is a naroed pipe

April 30, 1987 Page 1

LS (C) LS (C)

s If the entry is a semaphore

m If the entry is a shared data (memory) file

The next 9 characters are interpreted as 3 sets of 3 bits each. The first set refers to the owner's permissions;
the next to permissions of others in the user-group of the file; and the last to all others. Within each set, the 3
characters indicate permission to read, to write, and to execute the file as a program, respectively. For a direc-.
tory, "execute" permission is interpreted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r , If the file is readable

w if the file is writable

x If the file is ·executable

If the indicated permission is not granted

The group-execute permission character is given as s if the file has set-group-ID mode; likewise, the user
execute permission character is given as s if the file has set-user-ID mode. The last character of the mode
(normally x or -) is t if the 1000 (octal) bit of the mode is ·on; see chmod(C) for the meaning of this mode.
The indications of set-ID and 1000 bit of the mode are capitalized if the corresponding execute permission is
not set.

When the sizes of the files in a directory are listed, a total count of blocks including indirect blocks is printed.

Files

/etc/passwd Gets user IDs for Is -1 and Is -<>

/etc/group Gets group IDs for Is -1 and Is -g

See Also

chmod(C), find(C), l(C), lc(C)

Notes

Newline and tab are considered printing characters in filenames.

All switches must be given as one argument. Thus "Is -lsg' ' is legal, but "Is -1 -s -g" is not.

April 30; 1987 Page 2

"'--

MKNOD (C) MKNOD (C)

Name

mknod - Builds special files.

Syntax

/etc/mknod name [c] [b] major minor

/etc/mknod name p

Description

Mknod makes a directory entry and corresponding inode for a special file. The first argument is the name of
the entry. In the first case, the second argument is b if the special file is block-type (disks, tape) or c if it is
character-type (other devices). The last two arguments are numbers specifying the major device type and the
minor device (e.g. unit, drive, or Jine number), which may be either decimal or octal.

The assignment of major device numbers is specific to each system,.

Mknod can also be used to create named pipes with the p option.

Only the super-user can use the first form of the syntax.

See Also

mknod(S)

April 3D, 1987 Page I

MOUNT (C) MOUNT (C)

Name

mount - Mounts a file structure.

Syntax

/etc/mount [special-device directory [-r]]

/etc/umount special-device

Description

Mount announces to the system that a removable file structure is present on special-device. The file structure
is mounted on directory. The directory must already exist; it becomes the name of the root of the newly
mounted file structure.

The mount and umount commands maintain a table of mounted devices. If invoked with no arguments, for
each special device mount prints the name of the device, the directory name of the mounted file structure,
whether the file structure is read-only, and the date it was mounted.

The optional last argument indicates that the file is to be mounted read-only. Physically write-protected must
be mounted in this way or errors occur when access times are updated, whether or not any explicit write is
attempted.

Umount removes the removable file structure previously mounted on device special-device.

Files

/etc/mnttab Mount table

See Also

umount(C), mount(S), mnttab(F)

Diagnostics

Mount issues a warning if the file structure to be mounted is currently mounted t,mder another name.

Busy file structures cannot be dismounted with umount. A file structure is busy if it contains an open file or
some user's working directory.

Notes

Some degree of validation is done on the file structure, however it is generally unwise to mount corrupt file
structures.

Be warned that when in single-user mode, the commands that look in /etc/mnttab for default arguments (for
example df, ncheck, quat, mount, and umount) give either incorrect results (due to a corrupt /etc/mnttah from
a non-shutdown stoppage) or no results (due to an empty mnttab from a shutdown stoppage).

When in multi-user mode this is not a problem; /etc/rc initializes /etc/mnttab to contain only /dev/root and
subsequent mounts update it appropriately.

April 30, 1987 Page I

MOUNT (C) MOUNT (C)

The mount (C) and umount(C) commands do not use a lock file to guarantee exclusive access to /etc/mnttab,
and it is possible to access the file while its contents are being updated. Executing mount and/or umount com
mands in parallel can cause the file to be corrupted and may cause possible warning messages in subsequent
operations. This is not a problem in practice since mount and umount are not frequent operations and conflicts
can be avoided by not performing mounts and/or umounts as background tasks.

For the purpose of system security, this command is available only to the super user.

April 30, 1987 Page 2

i

QPS (C) QPS (C)

Name

qps - Quick process status report (quick "ps")

Syntax

qps

Description

Qps is a fast version of the ps(C) program. Qps prints information about all active processes.

The qps program does not have any options.

Qps prints information in columns. The column headings and their meanings are given below:

F A status word consisting of flags associated with the process. Each flag is associated with a bit in the
status word. These flags are added to form a single number. Process flag bits and their meanings are:

OxOI in core
Ox02 system process
Ox04 locked in core for physical I/0
Ox08 being swapped
Ox I 0 being traced by another process

S The state of the process:

S sleeping
W waiting
R running
I intermediate
Z terminated
T stopped

PID The process ID

PPID The ID of the parent process

TTY The controlling terminal for the process

UID The user ID of the process owner

Wchan The event for which the process is waiting or sleeping; "[run]" means that it is running

Command The name of the command

April 30, 1987 Page I

SHUTDOWN (C) SHUTDOWN (C)

Name

shutdown - Terminates all processing.

Syntax

/etc/shutdown [[+] minutes] [-q] [-h I -r I -su] [-n namelist]

Description

Shutdown is part of the XENIX operating procedures. Shutdown terminates all currently running processes in
an orderly and cautious manner. The minutes argument is the number of minutes before a shutdown will
occur. The value must range from 0-30 inclusive. The default value is 0 (immediate shutdown). Only root can
use shutdown, although it can be run from any terminal.

Shutdown has five options:

-q Shutdown shuts down the system as quickly as possible. A Shutdown does not issue a warning to users
that the system is being shutdown. Do not specify a number of minutes when using --q.

You may use any one of the following three options. If you do not specify one, shutdown uses -h as the
default. The three options are:

-h Shutdown halts the system.

-r Shutdown reboots the system. The system retums to the boot prompt. If autoboot is enabled, the system
will automatically come up in multi-user mode if the boot prompt is not answered within one minute. If
you are at the console and wish to speed up the boot process, press the F l key. After pressing the Fl
key, the system will boot XENIX and come up in multi-user mode with no further prompts. You may
also boot normally by pressing ENTER, or entering the name of the XENIX kernel. If autoboot is dis
abled, the system will wait for the user at the console to answer the boot prompt.

-su Shutdown changes the system to single-user mode. The system changes to single-user mode, and shuts
down multi-user mode.

You should use the -n option if the name of the kernel that you are booted on is not /xenix.

-n Shutdown uses a different pathname for the kernel. Type the pathname of the alternate kernel after -n.

If you do not specify any arguments when you run shutdown, the program will prompt you for them. If you
run shutdown with at least one argument, the program will use defaults for the unspecified ones. The list of
defaults is:

0 minutes (time until shutdown)

-h (halt system)

-n /xenix (standard kernel pathname)

No prompt messages

Shutdown operates in the following sequence:

Shutdown sends a broadcast message to all users, informing them of the pending shutdown.

2 Shutdown updates all file system super-blocks (see sync(C)) to ensure file system integrity.

April 30, 1987 Page 1

SHUTDOWN (C)

3 Shutdown shuts down the system.

See Also

autoboot(C). sync(C), umount(C), wall(C)

Diagnostics

SHUTDOWN (C)

Device busy is the most common error diagnostic that will occur when running shutdown . This error occurs
when shutdown cannot dismount a file system. See umount(C).

Files

/etc/shutdown shutdown program

/xenix default kernel namelist

Notes

To cancel shutdown, press the BREAK key before the time to shut down expires. Shutdown ignores the
BREAK key after the time expires.

Sh,utdown does not lock hard disk heads.

April 30, 1987 Page 2

TAR (C) TAR (C)

Name

tar - Archives files.

Syntax

tar [key] [files]

Description

Tar saves and restores files to and from an archive medium, which is typically a storage device such as
floppy disk or tape, or a regular file. Its actions are controlled by the key argument. The key is a string of
characters containing at most one function letter and possibly one or more function modifiers. Valid function
letters are c, t, x, u, e, and r. Other arguments to the command are files (or directory names) specifying
which files are to be backed up or restored. In all cases, appearance of a directory name refers to the files and
(recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written to the end of the archive. The c function implies this function.

x The named files are extracted from the archive. If a named file matches a directory whose contents
had been written onto the archive, this directory is (recursively) extracted. The owner, modification
time, and mode are restored (if possible). If no files argument is given, the entire contents of the
archive are extracted. Note that if several files with the same name are on the archive, the last one
overwrites all earlier ones.

t The names of the specified files are listed each time that they occur on the archive. If no files argu
ment is given, a1l the names on the archive are listed.

u The named .files are added to the archive if they are not already there, or if they have been modified
since last written on that archive. Do not use the u option with a blocking factor other than I (see
the b option).

c Creates a new archive; writing begins at the beginning of the archive, instead of alter the last file.
This commaod implies the r function.

The following characters may be used in addition to the letter that selects the desired function:

0, . . . ,7 This modifier selects the drive on which the archive is mounted. The default is found in the file
/etc/default/tar.

v Normally, tar does its work silently. The v (verbose) option causes it to type the name of each file
it treats, preceded by the function Jetter. With the t function, v gives more information about the
archive entries than just the name.

w Causes tar to print the action to be taken, followed by the name of the file, and then wait for the
user's confirmation. If a word beginning with y is given, the action is performed. Any other input
means ' 'no".

f Causes tar to use the next argument as the name of the archive instead of the default device listed in
/etc/defauit/tar. If the name of the file is a dash (-), tar writes to the standard output or reads from
the standard input, whichever is appropriate. Thus, tar can be used as the head or tail of a pipeline.
Tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

April 30, 1987 Page I

TAR (C)

b

F

TAR (C)

Causes tar to use the next argument as the blocking factor for archive records. The default is taken

from the appropriate line of /etc/default/tar, and the maximum is 20. This option should only be
used with raw magnetic tape archives (see f above) or to explicitly specify that the archive is

unblocked ("b I"). The block size is determined automatically when reading tapes (key letters x
and t).

Causes tar to use the next argument as the name of a file from which succeeding arguments are

taken. A lone dash (-) signifies that arguments will be taken from the standard input.

Tells tar to print an error message if it cannot resolve all of the links to the files being backed up.

If I is not specified, no error messages are printed.

m Tells tar to not restore the modification times. The modification time of the file will be the time of
extraction.

k Causes tar to use the next argument as. the size of an archive volume in kilobytes. The minimum
value allowed is 250. This option is useful when the archive is not intended for a magnetic tape

device, but for some fixed size device, such as floppy disk (See f above). Very large files are split

into "extents" across volumes·. When restoring from a multivolume archive, tar only prompts for a

new volume if a split file has been partially restored. To override the value of k in the default file,

specify k as 0 on the command line.

. e Prevents files from being split across volumes (tapes or floppy disks). If there is not enough room
on the present volume for a given file, tar prompts for a new volume. This is only valid when the k
option is also specified on the command line.

n Indicates the archive device is not a magnetic tape. The k option implies this. Listing and extracting

the contents of an archive are sped because tar can seek over files it wishes to skip. Sizes are

printed in kilobytes instead of tape blocks.

p Indicates that files are to be extracted using their original permissions. It is possible that a non
super-user may be unable to extract files because of the permissions associated with the files or

directories being extracted.

A Suppresses absolute filenames during extraction. Any leading "/"characters are removed from

filenames. Arguments given should match the relative (rather than the absolute) pathnames of the

files extracted.

Tar reads /etc/default/tar to obtain default values for the device, blocking factor and volume size. If no
numeric key is specified on the command, tar will look for a line in the default file beginning with the string

"archiveO=". Following this pattern are 3 blank separated strings indicating the values for the device,
blocking factor, and volume size, in that order. A volume size of '0' indicates infinite volume length, (the

previous default value of volume) and is suitable for magnetic tape media. An example /etddefault!tar line

follows:

"archiveO=/dev/fdO I 400"

Any default value may be overridden on the comm.and line. The numeric keys (0-7) select the line from the

default value beginning with "archive#=", where # is the numeric key. When the f key lett�r is specified on

the command line, the entry "archive!=" is used. In this case, the default file entry must still contain 3
strings, but tl)e first entry (specifying the device) is not significant. The default file /etc/default/tar must

. exist.

April 30, 1987 Page 2

TAR (C) TAR (C)

Examples

If the name of a floppy disk device is /dev/fdl, then a tar format file can be created on this device by typing:
assign /dev /fd I
tar cvfk /dev/fdl 360 files

where files are the names of files you want archived and 360 is the capacity of the floppy disk in kilobytes.
Note that arguments to key letters are given in the same order as the key letters themselves, thus the fk key
letters have corresponding arguments /dev/fdl and 360. Note that if a file is a directory then the contents of
the directory are recursively archived. To print a listing of the archive, type:

tar tvf /dev /fd I

At some later time you will likely want to extract the files from the archive floppy. You can do this by
typing:

tar xvf /dev/fdl

The above command extracts all files from the archive using the exact same pathnames as used when the
archive was created. Because of this behavior, it is nonnally best to save archive files with relative pathnames
rather than absolute ones, since directory permissions may not let you read the files into the absolute direc
tories specified. (See the A flag under Options .)

In the above examples, the v verbose option is used simply to confirm the reading or writing of archive files
on the screen. Also, a normal file could be substituted for the floppy device /dev/fdl in the examples.

Files

/etc/default/tar

/tmp/tar*

Diagnostics

Default devices, blocking and
volume sizes

Prints an error message about bad key characters and archive read/write errors.

Prints an error message if not enough memory is available to hold the link tables.

Will not function without a valid /etc/default/tar.

Notes

There is no way to ask for the nth occurrence of a file.

The u option can be slow.

A blocking factor should not be used with archives that are going to be updated. Either explicitly specify the
b option with an argument of I , or specify a device with a default blocking factor (in /etc/default/tar) of I. If
the archive is on a disk file, the b option should be specified as I, or specify a device with a default blocking
factor of I , because updating an archive stored on disk can destroy it. In order to update (r or u option) a tar
archive, do not use raw magtape and use the b option with a blocking factor of I . This applies both when
updating and when the archive was first created.

" � The limit on filename length is I 00 characters.

April 30, 1987 Page 3

TAR (C) TAR (C)

When archiving a directory that contains subdirectories, tar will only access those subdirectories that are
within 17 levels of nesting. Subdirectories at higher levels will be ignored after tar displays an error message.

Don't do:

tar xfF - -

This would imply taking two things from the standard input at the same time.

April 30, 1987 Page 4

VI (C) VI (C)

Name

vi - Invokes a screen-oriented display editor.

Syntax

vi [-option ...] [command] [filename]

Description

Vi offers a powerful set of text editing operations based on a set of mnemonic commands. Most commands
are single keystrokes that perform simple editing functions. Vi displays a full screen "window" into the file

you are editing. The contents of this window can be changed quickly and easily within vi. While editing,
visual feedback is provided (the name vi itself is short for "visual").

Vi and the line editor ex are one and the same editor: the names vi and ex identify a particular user interface
rather than any underlying functional difference. The differences in user interface, however, are quite striking.
Ex is a powerful line-oriented editor, similar to the editor ed. However, in both ex and ed, visual updating of
the terminal screen is limited, and commands are entered on a command line. Vi, on the other hand, is a
screen-oriented editor designed so that what you see on the screen corresponds exactly and immediately to the
content> of the file you are editing.

Options available on the vi command line:

-t Equivalent to an initial tag command; edits the file containing the tag and positions the editor at
its definition.

-r Used in recovering after an editor or system crash, retrieving the last saved version of the named
file. If no file is specified, this option prints a Jist of saved files.

-1 Specific to editing LISP, this option sets the showmatch and lisp options.

-wn Sets the default window size to n . Useful on dialups to start in small windows.

-R Sets a readonly option so that files can be viewed but not edited.

The Editing Buffer

Vi performs no editing operations on the file that you name during invocation. Instead, it works on a copy of
the file in an editing buffer. The editor remembers the name of the file specified at invocation, so that it can
later copy the editing buffer back to the named file. The contents of the named file are not affected until the
changes are copied back to the original file. This allows editing of the buffer without immediately destroying
the contents of the original file.

When you invoke vi with a single filename argument, the named file is copied to a temporary editing buffer.
When the file is written out, the temporary file is written back to the named file.

April 30, 1987 Page I

VI (C) VI (C)

Modes of Operation

Within vi there are three distinct modes of operation:

Command Mode

Insert Mode

Ex Escape Mode

Special Keys

Within command mode, signals from the keyboard are interpreted as editing
commands.

Insert mode can be entered by typing any of the vi insert, append, open, substi
tute, change, or replace commands. Once in insert mode, letters typed at the
keyboard are inserted into the editing buffer.

The vi and ex editors are one and the same editor differing main! y in their user
interface. In vi commands are usually single keystrokes. In ex, comma,nds are
lines of text terminated.by a RETURN. Vi has a special "escape" command that
gives access to many of these line-oriented ex commands. To escape to ex
escape mode. type a colon (:). The colon is echoed on the status line as a
prompt for the ex command. An executing command can be aborted by pressing
INTERRUPT . . _Most tile manipulation commands are executed in ex escape
mode; for example, the commands to read in a file, and to write out the editing
buffer to a file.

There are several special keys in vi. These keys are used to edit, delimit, or abort commands and command
lines.

ESC Used to return to vi command mode, cancel partially formed commands.

RETURN Terminates ex commands when in ex escape mode. Also used to start a new line when in insert
mode.

INTERRUPT

Often the same as the -DEL or RUBOUT key on many terminals. Generates an interrupt, telling the
editor to stop what it is doing. Used to abort any command that is executing.

f Used to specify a string to be searched for. The slash appears on the status line as a prompt for a
search string. The question mark (?) works exactly like the slash key, except that it is used to
search backward in a file instead of forward.

The colon is a prompt for an ex command. You can then type in any ex command, followed by an
ESC or RETURN and the given ex command is executed.

The following characters are special in insert mode:

BKSP Backs up the. cursor one character on the current line. The last character typed before the BKSP is
removed from the input buffer, but remains displayed on the screen.

CNTRL-U Moves the cursor back to the first character of the insertion, and restarts insertion.

CNTRL-V Removes the special significance of the next typed character. Use CNTRL-V to insert control
characters. Line feed and CNTRL-J cannot be inserted in the text except as newline characters.
CNTRL-Q and CNTRL-S are trapped by the operating system before they are interpreted by vi, so
they too cannot be inserted as text.

CNTRL-W Moves the cursor back to the first character of the last inserted word.

April 30, 1987 Page 2

\

(,'___ ...

VI (C) VI (C)

CNTRL-T During an insertion, with the auto indent option set and at the beginning of the current line, typing
this character will insert shiftwidth whitespace.

CNTRL-@ If typed as the first character of an insertion it is replaced with the last text inserted, and the inser
tion terminates. Only 128 characters are saved from the last insertion. If more than 128 charac
ters were inserted, then this command inserts no characters. A CNTRL-@ cannot be part of a file,
even if quoted.

Invoking and Exiting Vi

To enter vi type:

vi Edits empty editing buffer

vi file Edits named file

vi + 1 23 file Goes to line I 23

vi +45 file Goes to line 45

vi +/word file Finds first occurrence of ' 'word' '

vi +/tty file Finds first occurrence of ' 'tty''

There are several ways to exit the editor:

ZZ The editing buffer is written to the file only if any changes were made.

:x The editing buffer is written to the file only if any changes were made.

:q! Cancels an editing session. The exclamation mark (!) tells vi to quit unconditionally. In this case, the
editing buffer is not written out.

Vi Commands

Vi is a visual editor with a window on the file. What you see on the screen is vi's notion of what the file con
tains. Commands do not cause any change to the screen until the complete command is typed. Most com
mands may take a preceding count that specifies repetition of the command. This count parameter is not
given in the following command descriptions, but is implied unless overriden by some other prefix argument.
When vi gets an improperly formatted command it rings a bell.

Cursor Movement

The cursor movement keys allow you to move your cursor around in a file. Note in particular the arrow keys
(if available on your terminal), the "h" "j", "k" , and "1" cursor keys, and SPACE, BKSP, CNTRL-N, and
CNTRL-P. These three sets of keys perform identical functions.

Forward Space - I, SPACE, or ··>

Syntax:
SPACE
··>

Function: Moves the cursor forward one character. If a count is given, move forward count characters. You
cannot move past the end of the line.

April 3D, 1987 Page 3

VI (C)

Backspace - h, BKSP, or <--

Syntax: h
BKSP
<-�

VI (C)

Function; Moves cursor backward one character. If a count is given, moves backward count characters.
Note that you cannot move past the beginning of the current line.

Next Line - +, RETURN, j, CNTRL-N, and LF

Syntax: +
RETURN

Function: Moves the cursor down to the beginning of the next line.

Syntax: j
CNTRL-N
LF
(down arrow)

Function: Moves the cursor down one line, remaining in the same column. Note the difference between
these commands and the preceding set of next line commands which move to the heginning of the
next line.

Previous Line - k, CNTRL-P, and -

Syntax: k
CNTRL-P
(up arrow)

Function: Moves the cursor up one line, remaining in the same column. If a count is given then the cursor
is moved count lines.

Syntax:

Function: Moves th� cursor up to the beginning of the previous line. If a count is given then the cursor is
moved up a count. lines.

Beginning of Line - 0 and A

Syntax:
0

Function: Moves the cursor to the beginning of the current line. Note that 0 always moves the cursor to the
first cljaracter ef the current line. The caret (A) works somewhat differently: it moves to the first
character, OlJ a line that is not a tab or a space. This is useful when editing files that have a great
deal of indentation, such as program texts.

End of Line - $

Syntax: $

Function: Moves the cursor to the end of the current line. Note that the cursor resides on top of the last
character on the line. If a count is given, then the cursor is moved forward count-] lines to the
end of the line.

April 30, 1987 Page 4

(··.
")

VI (C)

Goto Line - G

Syntax: [linenumber]G

VI (C)

Function: Moves the cursor to the beginning of the line specified by linenumber. If no line number is given,
the cursor moves to the beginning of the last line in the file. To find the line number of the
current line, use CNTRL-G.

Column - I

Syntax: [column][

Function: Moves the cursof to the column in the current line given by column. If no column is given then
the cursor is moved to the first column in the current line.

Word Forward - w and W

Syntax: w
w

Function: Moves the cursor forward to the beginning of the next word. The lowercase w command
searches for a word defined as a string of alphanumeric characters separated by punctuation or
whitespace (i.e., tab, newline, or space characters). The uppercase W command searches for a
word defined as a string of non-whitespace characters.

Back Word - b and B

Syntax: b
B

Function: Moves the cursor backward to the beginning of a word. The lowercase b command searches
backward for a word defined as a string of alphanumeric characters separated by punctuation or
whitespace (i.e., tab, newline, or space characters). The uppercase B command searches for a
word defined as a string of non-whitespace characters. If the cursor is already within a word, then
it moves backward to the beginning of that word.

End - e and E

Syntax: e
E

Function: Moves the cursor to the end of a word. The lowercase e command moves the cursor to the last
character of a word, where a word is defined as a string of alphanumeric characters separated by
punctuation or whitespace (i.e., tab, newline, or space characters). The uppercase E moves the
cursor to the last character of a word where a word is defined as a string of non-whitespace char
acters. If the cursor is already within a word, then it moves to the end of that word.

Sentence - (and)

Syntax: (
)

Function: Moves the cursor to the beginning (left parenthesis) or end of a sentence (right parenthesis). A
sentence is defined as a sequence of characters ending with a period (.), question mark (?), or
exclamation mark (!), followed by either two spaces or a newline. A sentence begins on the first
non-whitespace character following a preceding sentence. Sentences are also delimited by para
graph and section delimiters. See below.

April 3D, 1987 Page S

VI (C)

Paragraph - { and }

Syntax: }
{

Vl (C)

Function: Moves the cursor to the beginning ({) or end (}) of a paragraph, A paragraph is defined with the
paragraphs option. By default, paragraphs are delimited by the nroff macros ".IP", " .LP",
".P", ".QP", and ".bp". Paragraphs also begin after empty lines.

Section - [[and]]

Syntax:]]
[[

Function: Moves the cursor to the beginning ([[) or end (]]) of a section. A section is defined with the sec
tions option. By default, sections are delimited by the nroff macros ".NH" and ".SH". Sections
also start at formfeeds (CNTRL-L) and at lines beginning with a brace (I) .

Match Delimiter - %

Syntax: %

Function: Moves the cursor to a matching delimiter, where a delimiter is a parenthesis, a bracket. or a
brace. This is useful when matching pairs of nested parentheses, brackets, and braces.

Home - H

Syntax: [offset]H

Function: Moves the cursor to upper left comer of screen. Use this command to quiCkly move to the top
· of the screen. If an .offset is given, then. the cursor is homed offset-! number of lines from the top

of the screen. Note that the command "dH" deletes all lines from the current line to the top line
shown on the screen.

Middle Screen - M

Syntax: M

Function: Moves the cursor to the beginning of the screen's middle line. Use this command to quickly
move to the middle of the screen from either the top or the bottom. Note that the command
"dM" deletes from the current line to the line specified by the M command.

Lower Screen - L

, Syntax: [offset]L

Function: Moves the cursor to the lowest line on the screen. Use this command to quickly move to the
bottom of the screen. If an offset is given, then the cursor is homed offset-! number of lines from
the bottom of the screen. N ole that the command "dL" deletes all lines from the current line to
the bottom line shown on the screen.

Previous Context - .. and "

Syntax:
�character

'character

April 30, 1987 Page 6

VI (C) VI (C)

Function: Moves the cursor to previous context or to context marked with the m command. If the single
quotation mark or back quotation mark is doubled, then the cursor is moved to previous context.
If a single character is given after either quotation mark, then the cursor is moved to the location
of the specified mark as defined by the m command. Previous context is the location in the file
of the last "nonrelative" cursor movement. The single quotation mark (") syntax is used to
move to the beginning of the line representing the previous context. The back quotation mark (')
syntax is used to move to the previous context within a line.

The Screen Commands

The screen commands are not cursor movement commands and cannot be used in delete commands as the
delimiters of text objects. However, the screen commands do move the cursor and are useful in paging or
scrolling through a file. These commands are described below:

Page - CNTRL-U and CNTRL-D

Syntax: [si:<']CNTRL-U

[si:e]CNTRL-D

Function: Scrolls the screen up a half window (CNTRL-U) or down a half window (CNTRL-D). If si:e is
given, then the scroll is sr::.e number of lines. This value is remembered for all later scrolling
commands.

Scroll - CNTRL-F and CNTRL-B

Syntax: CNTRL-F
CNTRL-B

Function: Pages screen forward and backward. Two lines of continuity are kept between pages if possible.
A preceding count gives the number of pages to move forward or backward.

Status - CNTRL-G

Syntax: BELL
CNTRL-G

Function: Prints vi status on status line. This gives you the name of the file you are editing, whether it has
been modified, the current line number, the number of lines in the file, and the percentage of the
file (in lines) that precedes the cursor.

Zero Screen - z

Syntax: [linenumber]z[size]RETURN
[linenumber]z[size].
[linenumber]z[size]-

Function: Redraws the display with the current line placed at or "zeroed" at the top, middle, or bottom of
the screen, respectively. If you give a size, then the number of lines displayed is equal to size . If
a preceding linenumber is given, then the given line is placed at the top of the screen. If the last
argument is a RETURN, then the current line is placed at the top of the screen. If the last argu
ment is a period (.), then the current line is placed in the middle of the screen. If the last argu
ment is a minus sign (-), then the current line is placed at the bottom of the screen.

April 30, 1987 Page 7

VI (C)

· Redraw .- CNTRL-L

Syntax: CNTRL-L

VI (C)

Function: Redraws the. screen. Use this command to erase any system. messages that may scramble your
screen. Not7 that �ystem messages do not affect the file you are editing.

Text Insertion

The text insertion commands always place you in insert mode. Exit from insert mode is always done by
pressing ESC. The following insertion commands are "pure" insertion commands; no text is deleted when
you use them. This differs from the text modific�tion commands change, replace, and substitute, which delete
and then insert text in one operation.

Insert - i and I

Syntax: i[te.rt]ESC
l[text]ESC

Function: Insert text in editing buffer. The lowercase i command places you in insert mode. Text is
inserted before the character beneath the cursor. To insert a newline, just press a RETURN. Exit
insert mode by typing the ESC key. The uppercase I command places you in insert mode. but
begins text insertion at the beginning of the current line, rather than before the cursor.

Append - a and A

Syntax: a[text]ESC
A[text]ESC

Function: Appends text to the editing buffer.
'

The lowercase a command works exactly like the lowercase i
command, except that text insertion begins after the cursor and not before. This is the one way to
add text to the end of a line. The uppercase A command begins appending text at the end of the
current line rather than after the cursor.

Open New Line - o and 0

Syntax: o[text]ESC
O[text]ESC

Function: Opens a new line and inserts text. The lowercase o command opens a new line below the current
line; uppercase 0 opens a new line above the current line. After the new line has been opened,
both these commands work like the I command.

Text Deletion

Many of the text deletion commands use the letter "d" as an operator. This operator deletes text objects del
imited by the cursor and a cursor movement command. Deleted text is always saved away in a buffer. The
delete commands are describe!i below:

April30, 1987 Page S

(./

VI (C)

Delete Character - x and X

Syntax: x
X

VI (C)

Function: Deletes a character. The lowercase x command deletes the character beneath the cursor. With a
preceding count, count characters are deleted to the right beginning with the character beneath the
cursor. This is a quick and easy way to delete a few characters. The uppercase X command
deletes the character just before the cursor. With a preceding count, count characters are deleted
backward, beginning with the character just before the cursor.

Delete - d and D

Syntax: dcursor-mm•ement

dd
D

Function: Deletes a text object. The lowercase d command takes a cursor-mm•emenr as an argument. If the
cursor-mm·ement is an intraline command, then deletion takes place from the cursor to the end of
the text object delimited by the cursor-mol'ement . Deletion forward deletes the character beneath

the cursor: deletion backward does not. If the cursor-morement is a multiline command, then
deletion takes place from and including the cun-ent line to the text object delimited by the
cursor-mm•emellf .

The dd command deletes whole lines. The uppercase D command deletes from and including the cursor to
the end of the cunent line.

Deleted text is automatically pushed on a stack of buffers numbered I through 9. The most recently deleted
text is also placed in a special delete buffer that is logically buffer 0. This special buffer is the default buffer
for all (put) commands using the double quotation mark (") to specify the number of the buffer for delete, put,
and yank commands. The buffers I through 9 can be accessed with the p and P (put) commands by
appending the double quotation mark (") to the number of the buffer. For example

"4p

puts the contents of delete buffer number 4 in your editing buffer just below the current line. Note that the
last deleted text is "put" by default and does not need a preceding buffer number.

Text Modification

The text modification commands all involve the replacement of text with other text. This means that some
text will necessarily be deleted. All text modification commands can be "undone" with the u command, dis
cussed below:

Undo - u and U

Syntax: u
u

Function: Undoes the last insert or delete command. The lowercase u command undoes the Jast insert or
delete command. This means that after an insert, u deletes text; and after a delete, u inserts text.
For the purposes of undo, all text modification commands are considered insertions.

April 30, 1987

The uppercase U command restores the current line to its state before it was edited, no matter
how many times the current line has been edited since you moved to it.

Page 9

VI (C) VI (C)

Repeat - ,

Syntax:

Function: Repeats the last insert or delete command. A special case exists for repeating the p and P "put"
commands. When these c,ommands are preceded by the name of a delete buffer, then successive
u commands print out the contents of the delete buffers.

Change - c and C

Syntax: ccursor-movement textESC
CtextESC
cctextESC

Function: Changes a text object and replaces it with text . Text is inserted as with the i command. A dollar
sign ($) marks the extent of the change. The c command changes arbitrary text objects delimited
by the cursor and a cursor-movement . The C and cc commands affect whole lines and are ident
ical in function.

Replace - r and R

Syntax: rchar
RtextESC

Function: Overstrikes character or line with char or text , respectively. Use r to overstrike a single char
acter and R to· overstrike a whole line. A count multiplies the replacement text count times.

Substitute - s and S

Syntax: stextESC
StextESC

Function: Substitutes current character or current line with text. Use s to replace a single character with new
text. Use S to replace the current line with new text. If a preceding count is given, then text sub
stitutes for count number of characters or lines depending on whether the command is s or S,
respectively.

Filter - !

Syntax: !cursor-movement cmdRETURN

Function: Filters the text object delimited by the cursor and cursor-movement through the XENIX command,
cmd. For example, the following command sorts all lines between the cursor and the bottom of
the screen, substituting the designated lines with the sorted lines:

!Lsort

Arguments and shell metacharacters may be included as part of cmd; however, standard input and
output are always associated with the text object being filtered.

Join Lines - J

Syntax: J

Function: Joins the current line with the following line. If a count is given, then count lines are joined.

April W. 1987 Page 1 0

'
'

VI (C)

Shift - < and >

Syntax: >[cursor-movement]
<[cursor-movement]
>>
<<

VI (C)

Function: Shifts text left (>) or right (<). Text is shifted by the value of the option shiftwidth , which is nor
mally set to eight spaces. Both the > and < commands shift all lines in the text object delimited
by the current Hne and cursor-movement. The >> and << commands affect whole lines. All ver
sions of the command can take a preceding count that acts to multiply the number of objects
affected.

Text Mm'ement

The text movement commands move text in and out of the named buffers a-z and out of the delete buffers l -
9. These commands either "yank" text out of the editing buffer and into a named buffer or "put" text into
the editing buffer from a named buffer or a delete buffer. By default, text is put and yanked from the
"unnamed buffer", which is also where the most recently deleted text is placed. Thus it is quite reasonable
to delete text, move your cursor to the location where you want the deleted text placed, and then put the text
back into the editing buffer at this new location with the p or P command.

The named buffers are most useful for keeping track of several chunks of text that you want to keep on hand
for later access, movement, or rearrangement. These buffers are named with the letters "a" through "z". To
refer to one of these buffers (or one of the numbered delete buffers) in a command such as put, yank, or
delete, use a quotation mark. For example, to yank a line into the buffer named a, type:

"ayy

To put this text back into the file, type:

"ap

If you delete text into the buffer named A rather than a, then text is appended to the buffer.

Note that the contents of the named buffers are not destroyed when you switch files. Therefore, you can
delete or yank text into a buffer, switch files, and then do a put. Buffer contents are destroyed when you exit
the editor, so be careful.

Put - p and P

Syntax: ["alphanumeric]p
["alphanumeric]P

Function: Puts text from a buffer into the editing buffer. If no buffer name is specified, then text is put
from the unnamed buffer. The lowercase p command puts text either below the current line or
after the cursor, depending on whether the buffer contains a partial line or not. The uppercase P
command puts text either above the current line or before the cursor, again depending on whether
the buffer contains a partial line or not.

Yank - y and Y

Syntax:

April 30, 1987

[" letter]ycursor-movement
[" letter]yy
[" letter]Y

Page 1 1

VI (C) VI (C)

Function: Copies text in the editing buffer to a named buffer. If no buffer name is specified, then text is
yanked into the unnamed buffer. If an uppercase letter is used, then text is appended to the buffer
and does not overwrite and destroy the previous contents. When a cursor-movement is given as
an argument, the delimited text object is yanked. The Y and yy commands yank a single line, or,
if a preceding count is given, multiple lines can be yanked.

Searching

The search commands search either forward or backward in the editing buffer for text that matches a given
regular expression.

Search - I and ?

Syntax: /[patternj/[offset]RETURN
/[pattern]RETURN
?[pattern]?[offset]RETURN
?[pattern]RETURN

Function: Searches forward (!) or backward (?) for pattern . A string is actually a regular expression. The
trailing delimiter is not required. If no pattern is given, then last pattern searched for is used.
After the second delimiter, an offset may be given, specifying the beginning of a line relative to
the. line on which pattern was found. For example

fwordf,

finds the beginning of the line immediately preceding the line containing "word" and

/word/+2

finds the beginning of the line two lines after the line containing "word". See also the ignore
case and magic options.

Next String - n and N

Syntax: n
N

Function: Repeats the last search command. The n command repeats the search in the same direction as the
last search command. The N command repeats the search in the opposite direction of the last
search command.

Find Character - f and F

'Syntax: fi:har
Fchar

Function: Finds character char on the current line. The lowercase f searches forward on the line; the upper,
case F searches backward. The semicolon (;) repeats the last character search. The comma (,)
reverses the direction of the search.

April 30, 1987 Page 12

VI (C)

To Character - t and T

Syntax: !char
Tchar

VI (C)

Function: Moves the cursor up to but not on to char. The semicolon (;) repeats the last character search.
The comma (,) reverses the direction of the search.

Mark - m

Syntax: mletter

Function: Marks a place in the file with a lowercase letter. You can move to a mark using the "to mark"
commands described below. It is often useful to create a mark, move the cursor, and then delete
from the cursor to the mark "a" with the following command:

To Mark - ' and '

Syntax: 'letter
'letter

d'a

Function: Move to letter. These commands Jet you move to the location of a mark. Marks are denoted by
single lowercase alphabetic characters. Before you can move to a mark, it must first be created
with the m command. The back quotation mark (') moves you to the exact location of the mark
within a line; the forward quotation mark (') moves you to the beginning of the line containing
the mark. Note that these commands are also legal cursor movement commands.

Exit and Escape Commands

There are several commands that are used to escape from vi command mode and to exit the editor. These are
described below:

Ex Escape - :

Syntax:

Function: Enters ex escape mode to execute an ex command. The colon appears on the status line as a
prompt for an ex command. You then can enter an ex command line tenninated by either a
RETURN or an ESC and the ex command will execute. You are then prompted to type RETURN

to return to vi command mode. During the input of the ex command line or during execution of
the ex command you may press INTERRUPT to abort what you are doing and return to vi com
mand mode.

Exit Editor - ZZ

Synlllx: ZZ

Function: Exit vi and write out the file if any changes have been made. This returns you to the shell from
which you invoked vi.

April 30, 1987 Page 13

VI (C)

Quit to Ex - Q

Syntax: Q

VI (C)

Function: Enters the ex editor. When you do this, you will still be editing the same file. You can return to
vi by typing the vi command from ex.

Ex Commands

Typing the colon (:) escape command when in command mode, produces a colon prompt on the status line.
This prompt is for a command available in the line-oriented editor, ex. In general, ex commands let you write
out or read in files, escape to the shell, or switch editing files.

Many of these commands perform actions that affect the "current" file by default. The current file is nor
mally the file that you named when you invoked vi, although the current file can be changed with the "file"
command, f, or with the "next" command, n. In most respects, these. commands are identical. to similar com
mands for the editor, ed. All such ex commands are aborted by either a RETURN or an ESC. We shall use a
RETURN in our examples. Command entry is terminated by typing an INTERRUPT.

Command Structure

Most ex command names are English words, and initial prefixes of the words are acceptable abbreviations. In
descriptions, only the abbreviation is discussed, since this is the most frequently used form of the command.
The ambiguity of .abbreviations is resolved in favor of the more commonly used commands. As an example,
the command substitute can be abbreviated s while the shortest available abbreviation for the set command is
se.

Most commands accept prefix addresses specifying the lines in the file that they are to affect. A number of
commands also may take a trailing count specifying the number of lines to be involved in the command.
Counts are rounded down if necessary. Thus, the command " lOp" will print the tenth line in the buffer
while "move 5 " will move the current line after line 5.

Some commands take other information or parameters, stated after the command name. Examples might be
option names in a set command, such as ' 'set number'', a filename in an edit command, a regular expression
in a substitute command, or a target address for a copy command, such as

1,5 copy 25

A number of corntnands have variants. The variant form of the command is invoked by placing an exclama
tion mark (!) immediately after the command name. Some of the default variants may be controlled by
options; in this case, the exclamation mark turns off the meaning of the default.

In .addition, many commands take flags, including the characters "p" and "1". A "p" or �'l" must be pre
,ceded by a blank or tab. In this case, the command abbreviated by these characters is executed after the com
mand completes. Since ex normally prints the new current line after each change, p is rarely necessary. Any
number of plus (+) or minus (-) characters may also be given with these flags. If they appear, the specified
offset is applied to the current line value before the printing command is executed.

Most commands that change the contents of the editor buffer give feedback if the scope of the change exceeds
a threshold given by the report option. This feedback helps to detect undesirably large changes so that they
may be· quickly and easily reversed with the undo command. After commands with global effect, you will be
informed if the net change in the number of lines in the buffer during this command exceeds this threshold.

April 30, 1987 Page 14

VI (C) VI (C)

Command Addressing

The following specifies the line addressing syntax for ex commands:

11

$

%

+n or -n

The current line. Most commands leave the current line as the last line which they affect.
The default address for most commands is the current line, thus "." is rarely used alone as
an address.

The nth line in the editor's buffer, lines being numbered sequentially from I.

The last line in the buffer.

An abbreviation for " 1,$", the entire buffer.

An offset, n relative to the current buffer line. The forms " .+3" "+3" and "+++" are all
equivalent. If the current line is line 100 they all address line 103.

/pattern/ or ?pattern?

or �x

Scan forward and backward respectively for a text matching the regular expression given by
pat/em. Scans normally wrap around the end of the buffer. If all that is desired is to print
the next line containing pattem, then the trailing slash (/) or question mark (?) may be
omitted. If pattem is omitted or explicitly empty, then the string matching the last
specified regular expression is located. The forms "RETURN" and "?RETURN" scan
using the last named regular expression. After a substitute, "RETURN" and "??RETURN"

would scan using that substitute's regular expression.

Before each nonrelative motion of the current line dot (.), the previous current line is
marked with a label, subsequently referred to with two single quotation marks ("). This
makes it easy to refer or return to this previous context. Marks are established with the vi
m command, using a single lowercase letter as the name of the mark. Marked lines are
later referred to with the notation

'x.

where x is the name of a mark.

Addresses to commands consist of a series of addresses, separated by a colon (:) or a semicolon (;). Such
address lists are evaluated left to right. When addresses are separated by a semicolon (;) the current line (.)
is set to the value of the previous addressing expression before the next address is interpreted. If more
addresses are given than the command requires, then all but the last one or two are ignored. If the command
takes two addresses, the first addressed line must precede the second in the buffer. Null address specifications
are permitted in a list of addresses, the default in this case is the current line " . "; thus ",100" is equivalent
to ".,100". It is an error to give a prefix address to a command which expects none.

Command Format

The following is the format for all ex commands:

[address] [command] [!] [parameters] [count] [flags]

All parts are optional depending on the particular command and its options. The following section describes
specific commands.

April 30, 1987 Page 15

VI (C) VI (C)

Argument List Commands

The argument list commands allow you to work on a set of files, by remembering the list of filenames ihat are
specified when you invoke vi. The args command lets you examine this list of filenames. The file command
gives you information about· the current file. The n (next) command lets you either edit the next file in the
argument list or change the list. And the rewind command lets you restart editing the files in the list. All of
these commands are described below:

args

f

fji/e

n

n !

The members of the argument list are printed, with the current argument delimited by'
brackets. For example, a list might look like this:

file! file2 [file3] file4 fileS

The current file is file3.

Prints the current filename, whether it has been modified since the last write command,
whether it is readonly, the current linenumber, the number of lines in the buffer, and the per
centage of the buffer that you have edited. In the rare case that the current file is "[Not
edited] " this is noted also; in this case you have to use the form "w!" to write to the file,
since the editor is not sure that a w command will not destroy a file unrelated to the current
contents of the buffer.

The current filename is changed to file which is considered "[Not edited] " .

The next file i n the command line argument list is edited.

This variant suppresses warnings about the modifications to the buffer not having been
written out, discarding irretrievably any changes that may have been made.

n [+command] file list

rew

rew!

The specified file list is expanded and the resulting list replaces the current argument list; the
first file in the new list is then edited. If command is given (it must contain no spaces), then
it is executed after editing the first such file.

The argument list is rewound, and the first file in the list is edited.

Rewinds the argument list discarding any changes made to the current buffer.

Edit Commands

To edit a file other than the one you are currently editing, you will often use one of the variations of the e
command.

In the following discussions, note that the name of the current file is always remembered by vi and is
specified by a percent sign (%). The name of the previous file in the editing buffer is specified by a number
sign (#).

The edit commands are described below:

e file

April 30, 1987

Used to begin an editing session on a new file. The editor first checks to see if the buffer has
been modified since the last w command was issued. If it has been, a warning is issued and the
command is aborted. The command otherwise deletes the entire contents of the editor buffer,
makes the named file the current file and prints the new filename. After ensuring that this file is
sensible, (i.e., that it is not a binary file, directory, or a device), the editor reads the file into its
buffer. If the read of the file completes without error, the number of lines and characters read is
printed on the status line. If there were any non-ASCII characters in the file they are stripped of

Page 16

VI (C) VI (C)

their non-ASCII high bits, and any null characters in the file are discarded. If none of these
errors occurred, the file is considered edited. If the last line of the input file is missing the trailing
newline character, it is supplied and a complaint issued. The current line is initially the first line
of the file.

e! file This variant fonn suppresses the complaint about modifications having been made and not written
from the editor buffer, thus discarding all changes that have been made before editing the new
file.

e +11 file Causes the editor to begin editing at line 11 rather than at the first line. The argument 11 may also
be an editor command containing no spaces; for example, ' '+/pattern'' .

CNTRL-'

This is a shorthand equivalent for ":e #RETURN", which returns to the previous position in the
last edited file. If you do not want to write the file you should use ' ' :e! #RETURN' ' instead.

Write Commands

The write commands let you write out all or part of your editing buffer to either the current file or to some
other file. These commands are described below:

w file
Writes changes made back to file, printing the number of lines and characters written. Nonnally, file is
omitted and the buffer is written to the name of the current file. If file is specified, then text will be
written to that file. The editor writes to a file only if it is the current file and is edited, or if the file does
not exist. Otherwise, you must give the variant form w! to force the write. If the file does not exist it is
created. The current filename is changed only if there is no current filename; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor prints

No write since last change

even if the buffer had not previously been modified.

w» file
Appends the buffer contents at the end of an existing file. Previous file contents are not destroyed.

w! name
Overrides the checking of the nonnal write command, and writes to any file that the system pennits.

w !command
Writes the specified lines into command. Note the difference between

w! file

which overrides checks and

w lcmd

which writes to a command. The output of this command is displayed on the screen and not inserted in
the editing buffer.

April 30, 1987 Page 17

VI (C) VI (C)

Redd Commands

The read commands let you read text into your editing buffer at any location you specify. The text you read
in must be at least one line long, and can be either a file or the output from a command.

r file Places · copy of the text of the given file in the editing buffer after the specified line. If no file is
given then the current filename is used. The curre)lt filename is not changed UJ;Jless there is none,
in which case the file becomes the current name. If the file buffer is empty . and there is no
curre 11t name then this is treated as an e command.

r !command

Address 0 is legal for this command and causes the file to be read at the beginning of the buffer.
Statistics are given as for the e command when the r successfully terminates. After an r the
current line is the last line read.

Reads the output of command into the buffer after the specified line. A blank or tab before the
exclamation mark (!) is mandatory.

Quit Commands

There are several ways to exit vi. Some abort the editing session, some write out the editing buffer before
exiting, and some warn you if you decide to exit without writing out the buffer. All of these ways of exiting
are described below:

q Exits vL No automatic write of the editor buffer to a file is performed. However, vi issues a
warning message if the file has changed since the last w command was issued, and does not quit.
Vi will also issue a diagnostic if there are more files in the argument list left to edit. Normally,
you will wish to save your changes, and you should give a w command. If you wish to discard
them, use the "q!" command variant.

q! Quits from the editor, discarding changes to the buffer without complaint.

wq name Like a w and then a q command.

wq! name This variant overrides checking of the w command so that you can write to any file that the
system allows.

x name If any changes have been made and not written, writes the buffer out and then quits. Otherwise,
it just quits.

Global and Substitute Commands

The global and substitute commands allow you to perform complex changes to a file in a single command.
Learning how to use these commands is a must for the serious user of vi.

glpattern/cmds

April 30, 1987

The g command has two distinct phases. In the first phase, each line matching pattern in the
editing buffer is marked. Next, the given command list is executed with the current line, dot (.),
initially set to each marked line.

The coriunand list consists of the remaining commands oil the current input line and may con
tinue to multiple lines by ending all but the last such line with a backslash (\). This multiple-line
option will not work from within vi, you must switch to ex to do it. If cmds (or the trailing slash
(/) delimiter) is omitted, then each line matching pattern is printed.

Page 18

VI (C) VI (C)

The g command itself may not appear in cmds. The options auto print and autoindent are inhi
bited during a global command and the value of the report option is temporarily infinite, in defer
ence to a report for the entire global. Finally, the context mark (') or (') is set to the value of
the current line (.) before the global command begins and is not changed during a global com
mand.

The following global commands, most of them substitutions, cover the most frequent uses of the global com
mand.

g/s 1/p

g/s l/s//s2/

g/s l/s//s2/g

g/s l /s//s2/gp

This command simply prints all lines that contain the string " s l " .

This command substitutes the first occurrence of "s l " on all lines that contain it with the
string "s2''.

This command substitutes all occurrences of " s l " with the string "s2". This includes
multiple occurrences of " s l " on a line.

This command works the same as the preceding example, except that in addition, all
changed lines are printed on the screen.

g/s l/s//s2/gc This command asks you to confirm that you want to make each substitution of the string
"s l" with the string "s2". If you type a "y" then the given substitution is made, other
wise it is not.

g/s0/s/s l/s2/g This command marks all those lines that contain the string "sO", and then for those lines
only, it substitutes all occurrences of the string "sl " with "s2".

g!/patternlcmds This variant form of g runs cmds at each line not matching pattern .

s/pa tternl rep 1/ options
On each specified line, the first instance of text matching the regular expression pattern is
replaced by the replacement text rep/. If the global indicator option character "g" appears,
then all instances on a line are substituted. If the confirm indication character "c" appears,
then before each substitution the line to be substituted is printed on the screen with the
string to be substituted marked with caret (A) characters. By typing a "y", you cause the
substitution to be performed; any other input causes no change to take place. After an s
command the current line is the last line substituted.

v/patternlcmds A synonym for the global command variant g!, running the specified cmds on each line that
does not match pattern .

Text Movement Commands

The text movement commands are largely superseded by commands available in vi command mode. How
ever, the following two commands are still quite useful.

co addr flags

[range]maddr

A copy of the specified lines is placed after addr, which may be "0" . The current line
"." addresses the last line of the copy.

The m command moves the lines specified by range after the line given by addr. For
example, ' 'm+'' swaps the current line and the following line, since the default range is just
the current line. The first of the moved lines becomes the current line (dot).

Shell Escape Commands

You will often want to escape from the editor to execute normal XENIX commands. You may also want to

April 30, 1987 Page 19

VI (C) YI (C)

change your working directory so that your editing can be done with respect to a different working directory. /
These operations are described below:

cd directory

sh

!command

The specified directory becomes the current. directory. If no djrectory is specified, the
current value of the home option is used as the target directory. Mter a cd the current file
is not considered to have been edited so that write restrictions on preexisting files still
apply.

A new shell is created. You may invoke as many commands as you like in this shell. To
return to vi, type a CNTRL-D to terminate the shell.

The remainder of the line after the exclamation (!) is sent to a shell to be executed. Within
the text of command the characters "%" and "#" are expanded as the filenames of the
current file and the last edited file and the character " ! " is replaced with the text of the pre
vious command. Thus, in particular, " ! ! " repeats the last such shell escape. If any such
expansion is performed, the expanded line is echoed. The current line is unchanged by this
command.

If there has been "[No write]" of the buffer contents since the last change to the editing buffer, then a diag
nostic is printed before the command is executed as a warning. A single exclamation (!) is printed when the
command completes.

Other Commands

The following command descriptions explain how to use miscellaneous ex commands that do not fit into the
above categories:

abbr Maps the first argument to the following string. For example, the following command

:abbr rainbow yellow green blue red

maps "rainbow" to "yellow green blue red". Abbreviations can be turned off with the unab
breviate _(;QJ;Ill1land, a& iiJ:

:una rainbow

map, map! Maps any character or escape sequence to an existing command sequence. Characters mapped
with map! work only in insert mode, while characters mapped with map work only in command
mode.

nu Prints each specified line preceded by its buffer line number. The current line is left at the last
line printed. To get automatic line numbering of lines in the buffer, set the number option.

preserve The current editor buffer is saved as though the system had just crashed. This command is for
use only in emergencies when a w command has resnlted in an error and you don't know how to
save your work.

= Prints the line number of the addressed line. The current line is unchanged.

recover file
Recovers file from the system save area; The system saves a copy of the editing buffer only if
you have made changes to the file, the system crashes, or you execute a preserve command.
Except when you use preserve you will be notified by mail when a file is saved.

set argument
With no arguments, set prints those options whose values have been changed from their defaults;

April 30, 1987 Page 20

VI (C) VI (C)

with the argument all it prints all of the option values.

Giving an option name followed by a question mark (?) causes the current value of that option to be printed.
The "?" is unnecessary unless the option is Boolean valued. Switch options are given values either with

set option

to turn them on or

set nooption

to tum them off. String and numeric options are assigned with

set option=value

More than one parameter may be given to set ; all are interpreted from left to right.

tag label
The focus of editing switches to the location of label. lf necessary, vi will switch to a different file in the
current directory to find label. If you have modified the current file before giving a tag command, you
must first write it out. If you give another tag command with no argument, then the previous /abel is
used.

Similarly, if you type only a CNTRL-], vi searches for the word immediately after the cursor as a tag.
This is equivalent to typing ":tag", this word, and then a RETURN.

The tags file is normally created by a program such as ctags, and consists of a number of lines with three
fields separated by blanks or tabs. The first field gives the name of the tag, the second the name of the file
where the tag resides, and the third gives an addressing form which can be used by the editor to find the
tag. This field is usually a contextual scan using I pattern I to be immune to minor changes in the file.
Such scans are always performed as if the nomagic option was set. The tag names in the tags file must
be sorted alphabetically. There are a number of options that can be set to affect the vi environment.
These can be set with the ex set command either while editing or immediately after vi is invoked in the
vi start-up file, .exrc.

The first thing that must be done before you can use vi, is to set the terminal type so that vi understands how
to talk to the particular terminal you are using.

Each time vi is invoked, it reads commands from the file named .exrc in your home directory. This file nor
mally sets the user's preferred options so that they need not be set manually each time you invoke vi. Each of
the options is described in detail below.

Options

There are only two kinds of options: switch options and string options. A switch option is either on or off. A
switch is turned off by prefixing the word no to the name of the switch within a set command. String options
are strings of characters that are assigned values with the syntax option=string . Multiple options may be
specified on a line. Vi options are listed below:

autoindent, ai default: noai
Can be used to ease the preparation of structured program text. For each line created by an append,
change, insert, open, or substitute operation, vi looks at the preceding line to determine and insert an
appropriate amount of indentation. To back the cursor up to the preceding tab stop, you can type
CNTRL-D. The tab stops going backward are defined as multiples of the shiftwidth option. You cannot
backspace over the indent, except by typing a CNTRL-D.

April 30, 1987 Page 21

VI (C) VI (C)

Specially processed in this mode is a line with no characters added to it, which turns into a completely
blank line (the whitespace provided for the autoindent is discarded.) Also specially processed in this
mode are lines beginning with a caret (A) and immediately followed by a CNTRL-D. This causes the
input to be repositioned at the beginning of the line, but retains the previous indent for the next line.
Similarly, a "0" followed by a CNTRL-D repositions the cursor at the beginning but without retaining the
previous indent. Autoindent doesn't happen in global commands.

autoprint ap default: ap
Causes the current line to be printed after each ex copy, move, or substitute command. This has the same
effect as supplying a trailing "p" to each such command. Autoprint is suppressed in globals, and only
applies to the last of many commands on a line.

autowrite, aw default: noaw
Causes the contents of the buffer to be automatically written to the current file if you have modified it
when you give a next, rewind, tag, or ! command, or a CNTRL-A (switch files) or CNTRL-] (tag go to)
command.

beautify, bf default: nobeautify
Causes all control characters except tab, new line and formfeed to be discarded from the input. A com
plainUs registered the first time a backspace character is discarded. Beautify does not apply to command
input.

directory, dir default: dir=/tmp
Specifies the directory in which vi places the editing buffer file. If this directory is not writable, then the
editor will exit abruptly when it fails to write to the buffer file.

edcompatible default: noedcompatible
Causes the presence or absence of g and c suffixes on substitute commands to be remembered, and to be
toggled on and off by repeating the suffixes. The suffix r causes the substitution to be like the com- \,
mand, instead of like &.

errorbells,eb default: noeb
Error messages are preceded by a bell. If possible, the editor always places the error message in inverse
video instead of ringing the bell.

hardtabs, ht default: ht:=8
Gives the boundaries on which terminal hardware tabs are set or on which the system expands tabs.

ignorecase, ic default: noic
Maps all uppercase characters in the text to lowercase in regular expression matching. In addition, all
uppercase characters in regular expressions are mapped to lowercase except in character class
specifications enclosed in brackets.

lisp default: nolisp
Autoindent indents appropriately for LISP code, and the () { } [[and]] commands are modified to have
meaning for LISP.

list default: nolist
All printed lines will be displayed unambiguously, showing tabs and end-of-lines.

magic default: magic
If nomagic is set, the number of regular expression metacharacters is greatly reduced, with only caret (A)
and dollar sign ($) having special effects. In addition the metacharacters "-" and "&" in replacement
patterns are treated as normal characters. All the normal metacharacters may be made magic when
nomagic is set by preceding them with a backslash (\).

April 30, 1987 Page 22

(

VI (C) VI (C)

mesg default: nomesg
Causes write permission to be turned off to the terminal while you are in visual mode, if nomesg is set.
This prevents people writing to your screen with the XENJX write command and scrambling your screen
as you edit.

number, n default: nonumber
Causes all output lines to be printed with their line numbers.

open default:open
If set to noopen, the commands open and visual are not permitted from ex. This is set to prevent confu
sion resulting from accidental entry to open or visual mode.

opttmtze, opt default: optimize
Output of text to the screen is expedited by setting the terminal so that it does not perform automatic car
riage returns when printing more than one line of output, thus greatly speeding output on terminals
without addressable cursors when text with leading whitespace is printed.

paragraphs, para default: para=IPLPPPQPP TPbp
Specifies paragraph delimiters for the { and } operations. The pairs of characters in the option's value are
the names of the nroff macros that start paragraphs.

prompt default: prompt
Ex input is prompted for with a colon (:). If noprompt is set, when ex command mode is entered with the
Q command, no colon prompt is displayed on the status line.

redraw default: noredraw
The editor simulates (using great amounts of output), an intelligent terminal on a dumb terminal. Useful
on! y at very high speed.

remap default: remap
If on, mapped characters are repeatedly tried until they are unchanged. For example, if o is mapped to 0
and 0 is mapped to I, o will map to I if remap is set, and to 0 if noremap is set.

report default: report=S
Specifies a threshold for feedback from commands. Any command that modifies more than the specified
number of lines will provide feedback as to the scope of its changes. For global commands and the undo
command, which have potentially far reaching scope, the net change in the number of lines in the buffer
is presented at the end of the command, subject to this same threshold. Thus notification is suppressed
during a g command on the individual commands performed.

scroll default: scroll=1/2 window
Determines the number of logical lines scrolled when CNTRL-D is received from a terminal input in com
mand mode, and the number of lines printed by a command mode z command (double the value of
scroll).

sections default: sections=SHNHH HU
Specifies the section macros for the [[and]] operations. The pairs of characters in the option's value are
the names of the nroff macros that start paragraphs.

shell, sh default: sh=/bin/sh
Gives the pathname of the shell forked for the shell escape command " ! " , and by the shell command.
The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8
Gives the width of a software tab stop, used in reverse tabbing with CNTRL-D when using autoindent to
append text, and by the shift commands.

April 30, 1987 Page 23

V/ {C) VI (C)

showmatch, sm default: nosm
When a) or } is typed, moves the cursor to the matching (or { for one second if this matching character
is on· the screen.

tabstop, ts default: ts=8
The editor expands tabs in the input file to be on tabstop boundaries for the purposes of display.

taglength, t1 default: 11=0
The first taglength characters in a tag name are significant, but all others are ignored. A value of zero
(the default) means that all characters are significant.

tags default: tags=tags /usr/lib/tags
A path of files to be used as tag files for the tag command. A requested tag is searched for iri the
specified files, sequentially. By default files named tag are searched for in the current directory and in
/usr!lib.

term default=value of shell TERM variable
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are produced for the experienced user.

warn default: warn
Warn if there has been "[No write since last change]" before a shell escape command (!).

window default: window=speed dependent
This specifies the number of lines in a text window. The default is 8 at slow speeds (600 baud or less),
16 at medium speed (1200 baud), and the full screen (minus one line) at higher speeds.

w300, wl200, w9600
These are not true options but set window (above) only if the speed is slow (300), medium (1200), or
high (9600), respectively.

wrapscan, ws default: ws
Searches using the regular expressions in addressing will wrap around past the end of the file.

wrapmargin, wm default: wm=O
Defines the margin for automatic insertion of new lines during text input. A value of zero specifies no
wrap margin.

writeany, wa default: nowa
Inhibits the checks normally made before write commands, allowing a write to any file that the system
protection mechanism will allow.

Regular Expressions

A regular expression specifies a set of strings of characters. A member of this set of strings is said to be
matched by the regular expression. Vi remembers two previous regular expressions: the previous regular
expression used in a substitute command and the previous regular expression used elsewhere, referred to as
the previous scanning regular expression. The previous regular e)<pression can always be referred to by a null
regular expression: e.g., "//" or "??".

The regular expressions allowed by vi are constructed in one of two ways depending on the setting of the
magic option. The ex and vi default setting of magic gives quick access to a powerful set of regular expres
sion metacharacters. The disadvantage Of magic is that the user must remember that these metacharacters are
magic and precede them with the backslash (\) to use them as "ordinary" characters. With nomagic set,

April 30, 1987 Page 24

VI (C) VI (C)

regular expressions are much simpler, there being only two metacharacters. The power of the other metachar
acters is still available by preceding the now ordinary character with a "\". Note that "\" is thus always a
metacharacter. In this discussion the magic option is assumed. With nomagic the only special characters are
the caret (A) at the beginning of a regular expression, the dollar sign ($) at the end of a regular expression, and
the backslash (\). The tilde (-) and the ampersand (&) also lose their special meanings related to the replace
ment pattern of a substitute.

The following basic constructs are used to construct magic mode regular expressions.

char

$

An ordinary character matches itself. Ordinary characters are any characters except a caret (A) at the
beginning of a line, a dollar sign ($) at the end of line, a star (*) as any character other than the first, and
any of the following characters:

. \ [-

These characters must be escaped (i.e., preceded) by a backslash (\) if they are to be treated as ordinary
characters.

At the beginning of a pattern this forces the match to succeed only at the beginning of a line.

At the end of a regular expression this forces the match to succeed only at the end of the line.

Matches any single character except the newline character.

I< Forces the match to occur only at the beginning of a "word"; that is, either at the beginning of a line, or
just before a letter, digit, or underline and after a character not one of these.

I> Similar to "\<", but matching the end of a "word", i.e. either the end of the line or before a character
which is not a letter, a digit, or the underline character.

[string]
Matches any single character in the class defined by string. Most characters in string define themselves.
A pair of characters separated by a dash (-) in string defines the set of characters between the specified

lower and upper bounds, thus " [a-z] " as a regular expression matches any single lowercase letter. If the
first character of string is a caret (A) then the construct matches those characters which it otherwise
would not. Thus " [lla-z]" matches anything but a lowercase letter or a newline. To place any of the
characters caret, left bracket, or dash in string they must be escaped with a preceding backslash (\).

The concatenation of two regular expressions first matches the leftmost regular expression and then the
longest string that can be recognized as a regular expression. The first part of this new regular expression
matches the first regular expression and the second part matches the second. Any of the single character
matching regular expressions mentioned above may be followed by a "star" (*) to form a regular expression
that matches zero or more adjacent occurrences of the characters matched by the prefixing regular expression.
The tilde (-) may be used in a regular expression to match the text that defined the replacement part of the
last s command. A regular expression may be enclosed between the sequences "\(" and "\)" to remember
the text matched by the enclosed regular expression. This text can later be interpolated into the replacement
text using the notation

\digit

where digit enumerates the set of remembered regular expressions.

The basic metacharacters for the replacement pattern are the ampersand (&) and the tilde (-) these are given
as "\&" and "\-" when nomagic is set. Each instance of the ampersand is replaced by the characters
matched by the regular expression. In the replacement pattern the tilde stands for the text of the previous
replacement pattern.

April 3D, 1987 Page 25

VI (C) VI (C)

Other metasequences possible in the replacement pattern are always introduced by' a backslash (\). The
sequence "\n" is replaced by the text matched by the nth regular subexpression enclosed between "\(" and
"\)" . When nested, parenthesized subexpressions are present, n is determined by counting occurrences of
"\(" starting from the left. The sequences "\u" and "\!" cause the immediately following character in the
replacement to be converted to uppercase or lowercase, respectively, if this character is a letter. The
sequences "\U" and "\L" turn such conversion on, either until "\E" or "\e" is encountered, or until the end
of the replacement pattern.

Limitations

When using vi, you should note the following limits:

250,000 lines in a file

I 024 characters per line

256 characters per global command list

128 characters per filename

128 characters in the previous inserted and deleted text

I 00 characters in a shell escape command

63 characters in a string valued option

30 characters in a tag name

Notes

The Jusr! lib! ex3.7preserve program is used to restore vi buffer files that were lost as a result of a system
crash. The program searches the /tmp directory for vi buffer files and places them in the directory
/usr/preserve. The owner can retrieve ,these files using the -r option.

April 30, 1987 Page 26

;"

W (C) W (C)

Name

w - display who is on and what they are doing

Synopsis

w [-u] [-k kernel] [user ...]

Description

W prints a summary of the current activity on the system, including what each user is doing. The heading line
shows the current time of day, how long the system has been up, the number of users Jogged into the system,
and the number of jobs, or processes running.

The fields output are: the users login name, the name of the tty the user is on (also shows if messages are dis
abled by displaying a " * " in front of the tty name), the time of day the user logged on, the number of
minutes since the user last typed anything, the number of jobs the user is running, and the name of the current
process.

The -u flag displays only the header line. The -k flag allows specifying an alternate kernel (for when the
system is not booted on /xenix).

If any user names are included, the output will be restricted to those users.

Files

/etc/utrnp Who's Jogged on

/dev/procs What they're doing

/dev/kmem How long the system has been up

See Also

who(C), finger(C), ps(C), .qps(C)

Notes

The notion of the "current process" is muddy. The current algorithm is "the last descendant of the highest
numbered process on the terminal"'. This fails, for example, when the user is running a program in back
ground and is sitting idle at the shell prompt. (In cases where no process can be foundi w prints a "-" .)

Background processes are not shown, even though they can account for much of the load on the system.

April 30, 1987 Page 1

XMAIL (C) XMAIL (C)

Name

xmail - Improved mail program.

Syntax

xmail [options] [user ...]

Description

Xmoil is an improved version of the mail program. it Jets you use any editor available on the system for
creating mail. Xmail maintains a local working mailbox for later reference of past messages and new mail.

If you wish to read your mail, type:
xmail [options]

The available options are:

�d Overrides the initialization file .xmailrc "maildir=11 option

-q Sets quiet mode when you are not sending mail. In quiet mode, xmail does not display the mes
sages in your file when

·
it starts up or when you enter a new mailbox. This is the same as the "set

-showmsgs" option in .xmailrc.

When used while sending mail, the -q option sets "quick mode. When "quick" mode is set, xmail
does not automatically enter the editor, regardless of how the "editmail" option is set. Instead,
xmail prompts for "Subject" and other information without invoking the editor.

-R Makes the mailfile a read only file. That is, you cannot get new mail, delete messages, or edit
messages. When -R is used, xmail does not make a copy of the mailbox and therefore loads the
mailbox faster. This option is useful if you only wish to look at the mailbox .

. f mailfile Opens mai/file as the mailbox instead of the default mailbox.

-m Opens a mailbox file in the user's mail directory instead of in the current working directory (used
with the -f option).

·S subject Sets the subject line to subject when sending mail.

RC Files

When you invoke xmail, it reads the file "/usr/lib/xmail.rc". Xmail gets the initialization options for the system
from this file. Next, xmail tries to open the .xmailrc in your home directory. From this file, xmail gets the
options that you set. You can set or change these options temporatily by using the xmail "o" command. You
can also set them permanently by editing the .xmailrc file.

The options are:

alias mailname username [username ...]
Creates a user alias. This sets mailname to expand to one or more user addresses.

autodelete userid [userid .•.]
Instructs xmail to delete new mail from the specified user(s) when you exit your mailbox.

full_ name=name

April 3D, 1987 Page I

XMAIL (C) XMAIL (C)

full name=OFF
Allows you to specify your full name for xmail to use when it is sending network mail. when xmail sends
network mail, it adds this line to the message:

From: system!user (Full Name Here)

Use the fullname option to change the name shown or to specify OFF if you don't want your full name
used.

ignore userid [userid •.•]
Instructs xmail to automatically delete any mail coming from a user whose login name is userid. To
display the current ignore list, type the following at the mail> prompt:

o show ignores

mailbox=name
Changes the name of the default working mailbox from .mbox to name. Xmail opens name in your home
directory.

maildir=directory
Changes the current working directory when you run xmail for the duration of the mail session. Xmai/ -d
will override this option.

record file=filename
record-file=OFF

Tells xmail to save a copy of all mail that you send out in filename. This option acts independently of
autocc. This option differs from the autocc option in that instead of sending the message through the
system mailer, it is copied into the specified file.

savembox=name
Change the name of the default save mailbox from mbox to name.

set [•]option
Sets specific parameters for xmail. Possible options are given next.

Note:

autocc

Specify the minus sign H to turn
the option off.

Tells xmail to automatically send you a carbon copy (Cc:) of all mail that you send.

autoprint
Displays the next message automatically when you delete or save the current message.

banner
Uses a banner saying "user's Mail" when printing mail.

clear_hdr
Clear the screen when displaying message headers with the header command (h), or when displaying
option settings.

confirm
Sets xmail to require a RETURN on commands that do not accept parameters such as the new mail
command (n). When confirm is set On, xmail only accepts RETURN and the KILL and ERASE char
acters when you select such a command.

April 30, 1987 Page 2

XMAJL (C) XMAIL (C)

deletesave
Automatically deletes messages once you have saved them with the save commaud.

editmail
Automatically invokes the editor when sending mail. If you tum off this option, xmail prompts you
for header information aud then for the message itself (with a > prompt for each line).

getnewmail
Automatically gets new mail when you start xmail in your default working mailbox.

ignore_cr
Tells xmail to ignore the RETURN key when prompting for a command. If this option is off,
RETURN acts the same as the = command: it reads the next message.

includetext
Includes the text of the message to which you are replying in your message. This option only works
when the editmail option is turned ON, as otherwise you are not allowed to edit the message before
you add your own text.

indenl=string
Indents forwarded mail aud the included text of reply mail with string. The default is no indention.

mesg
Lets you allow or disallow messages from other users during the mail session.

prompt_nl
Controls the newline in front of xmail's prompts. Some find extraneous newlines annoying.

showdelete
Display deleted messages when showing message headers.

showlines
Tells xmail to display the number of lines and bytes when displaying message headers. Xmail uses
the format lines/bytes when displaying the size.

showmsgs
Displays messages currently in your mailbox when you start up xmail, or enter a new mailbox.

strict
Does not allow lines in the header block which xmail does not recognize. If this option is off, you
can place anything in the header block. To edit the header block, you must also invoke the editmail
option.

verbose
Displays messages indicating xmail' s progress while loading a mailbox, updating a mailbox, or per
forming other functions.

setenv V AR value [value ...]
Sets the environment variable V AR to the value(s) given.

signtile=signaturefile
signfile=OFF

Tells xmail to add the text found in signaturefile to your message template before you reach the editor, or
where to find your signature when using sendmail' s put signature commaud (p). If you specify OFF,
xmail does not include a signature file.

sysalias name user [user •••]
Creates a system alias. which is invisible to the user (not shown by the A commaud). This is normally

April 3D, 1987 Page 3

XMAIL (C) XMAIL (C)

used by the system administrator to create a system-wide alias in the /usr/lib/xmail.rc file. To display the
system aliases, type at the mail> prompt:

o show sysaliases

umask value
Sets the umask while running xmail to the requested value while running xmail.

unalias name
Removes name from xmail' s alias list.

Defaults For Xmail Option Settings:
maildir=.
mailbox=-/.mbox
savembox=-/mbox
record_file=OFF
signfile=OFF
set prompt_nl showmsgs -getnewmail -autodelete
set mesg -showlines
set -ignore_cr -autocc verbose -showdelete banner
set -autoprint -confirm strict -includetext
set -showlines

Xmail Commands

When you startup xmail, it tells you which version number, and how many messages are in the mailbox you
have selected or in your default mailbox if you didn't select one. Xmail also shows whether or not you have
received new mail.

Xmail then displays its prompt. There is a set of commands which you can enter at this prompt.

NOTE
The term msg#-/ist refers to a set of messages which you can specify at this prompt. You may specify
them in any of the following forms:

number single message
number number list of messages
number-number range of messages

for current message
$ for last message
* all messages in file

For example: d I 2 4-7 .-1 1 14-$

The xmail commands are:

a name list Adds a user alias to xmai/' s list.

A Display xmai/' s current alias list.

c Checks system mailbox for new mail.

d msg#-list Delete message(s) from the mailbox.

D Delete the current message from the mailbox. This is the same as d ENTER.

April 30, 1987 Page 4

XMAJL (C)

e msg#-list

E

f msg#-list user

F [-p] str [file]

g [-R] mailfile

G [-R] mailfile

h msg#-list

H

m [-s 'subj'] user

n

o option

0

p msg#-list

p

q

Q

r msg#-list

R

s msg#-list file

s

t msg#-list

T

\,__ ___ _.../ u msg#-list

April 30, 1987

XMAJL (C)

Lets you edit the specified message.

Lets you edit the current message. This is the same as e ENTER.

Forward a message to user.

Find a string in the specified file. Xmail Jooks for files in the current directory. Specify
the -p option if you want the output duplicated by the printer. You can specify a list of
files by separating each with a space. Specify "." to indicate the current working
mailbox (default).

Goes to the specified mailfile after updating the current mailbox. Specify the -R option
if you want read only access to mailfile.

Goes to the specified mailfile but does not update the current mailbox. Specify the -R
option if you want read only access to mailfile.

Shows a header for each message specified. If you specify only one number, xmail
displays a screenful of headers starting at that message number. If you omit msg#-lisr,
xmail displays the next screenful of messages.

Shows a header for the last screenful of messages

Displays the contents of the current directory.

Sends a message to the specified user(s) by first invoking the editor. If you specify -s
with a subject enclosed in quotes, xmail will insert the subject into the header block.

Gets new mail from the system mailbox.

Lets you enter a .xmailrc option.

Displays the current .xmailrc option settings.

Prints the specified message(s) on the system printer.

Prints the current message on the system printer. This is the same as p ENTER.

Exits xmail and updates the mailbox.

Exits xmail but does not update the mailbox. Any new mail is still saved.

Sends a reply to specified message(s).

Sends a reply to the current message. This is the same as r ENTER.

Saves the specified message(s) to file. If you omit file, xmail saves the file to the
default save file (usually -/mbox).

Saves the current message(s) to file (usually -/mbox).

Types (displays) the specified message(s). You can omit "t" and simply type the mes
sage number.

Types (displays) the current message. This is the same as t ENTER.

Undelete message(s) in the mailbox.

Page 5

XMAIL (C) XMAIL (C)

v Display the version number of xmail.

Displays the previous message.

+ or = Displays the next message.

ENTER Displays the next message if the ignore_cr option is turned off.

Starts up a shell.

!command Runs a shell command and returns to xmail.

Displays a header line for the current message and the current mailbox name.

? Display xmail 's help screen.

Sending Mail

After exiting the editor when sending mail, xmail displays a sendmail> prompt. At this prompt, you can enter
one of the following commands:

a file Add the contents of file to the message.

c Continue adding text to the message.

d Display the message.

e Re-edit the message.

p Add the signature file to the message.

q Quit.

s Send the message.

? Display help screen.

The following commands are only available from "sendmail>" if you have entered xmail and have read in a
mailbox:

h

r msg#-list

Display message headers.

Read the specified messages into text.

Display the current message header.

The !etc!usemap File

When sending mail, xmail looks at the address. If it is a uucp network address in the form system/user, xmail
attempts to open the file /etc/usemap. If the file exists, xmail tries to find a uucp path for system. If the path
exists, xmail substitutes that path for system. If there is not an entry for system, xmail displays a warning
message. If /etc/usemap does not exist, xmail leaves the address alone.

Xmail expects /etc/usemap to contain a sorted list of system names followed by at least one space, then the
path to that system with a %s for the user name. For example:

fiakey
mcp
trsvax

April 30, 1987

doc!fiakey!%s
sneezy!eagle!mcp!%s
trsvax!%s

Page 6

XMAJL (C) XMAIL (C)

Special Features Available While Sending Mail

Xmail has several special features available when sending mail. You may send a copy of your message to a
shell command or save a copy of the message from the "To:", "Cc:" or "Bcc:11 lines. You may also specify a
mailing list file from there. Here is an example of how you use the features:

% xmail everybody
One moment please ...

Xmail enters the editor. The following is a sample screen:
To: everybody *others
Subject:
Return-receipt-to: me
Cc: *yetothers I /pr I lpr/ +everybody
Bee: theboss

Notice the "Cc:" line. The *yetothers tells xmail to open the file "yetothers" and send the message to every
person in the file. The I I pr I lpr/ tells xmail to write a copy of the message to the command "pr I lpr". (You
can use any delimiter you wish, as the character after the " I " is taken as a delimiter). The +everybody
appends a copy of the message to the file "everybody." Here is a list of "Cc:" line options:

* Reads a file and sends mail to the list of users contained in the file.

+ Appends the message to the specified file.

Writes a copy of the message to a command.

The "Bee:" line (blind-carbon-copy) sends a copy of the messages to anyone listed, but the "Bee:" line itself is
not included in the message.

The "Return-receipt-to:" line is an instruction to the receiving mailer to send mail back to the sender ack
nowledging the receipt of the message. In this case, an acknowledgement will be sent to the user "me".

Also available is the 11Retum-receipt-from:" line. This lets you specify from whom you wish to receive a
return receipt. This is useful when you are sending mail to a group of people but only want a return receipt
from one or just a few.

"Return-receipt-to:" and "Return-receipt-from:" are mutually exclusive.

Notes

The /usr/lib/xmail_recover program is used to restore new mail that had not been saved as a result of a system
crash. This is called by /etc/rc when the system is booted.

Files

/usr/lib/xmail
jusr/lib/xmail.cmd.hlp
/usr/lib/xmail.opt.hlp
/usr/lib/xmail.set.hlp
/usr/lib/xmail_recover
/usr/lib/xmlock

April 30, 1987

mail program
commands help text
options help text
"set" help text
xmail recovery program
xmail system mailbox
locking program

/usr/spool/mail/*
-/.mbox
/usr/lib/xmail.rc
-/.xmailrc
/tmp/xm.#

post office
old mail
system-wide xmail options
user's xmail options
xrnail temporary files

Page 7

Contents

Miscellaneous (M)

intro
acu
aliases, aliases.hash, maliases,
faliases
aliashash
ascii
cd
cfg
console
daemon.mn
default
dial
environ
fd
getty
graphics
group
fixperm
hd
init
ld
login
lp
machine
makekey
mem,kmem
messages
micnet
null
passwd
profile
screen
systemid
term
term cap
terminals
top, top.next
tty
ttys
utmp,wtmp

Introduction to miscellaneous features and files.
Modem auto-dialer interface.

Micnet aliasing files.
Micnet alias hash table generator.
Map of the ASCII character set.
Cartridge disk.
Configures /xenix
Console terminal interface.
Micnet mailer daemon.
Default program information directory.
Dials a modem.
The user environment.
Floppy disk.
Sets terminal mode.
High-resolution graphics interface
Format of the group file.
Correct or initialize file permissions or ownership.
Hard disk.
Process control initia1ization.
Invokes the link editor.
Gives access to the system.
Line printer.
Description of host machine.
Generates an encryption key.
Memory image file.
Description of system console messages.
The Micnetdefaultcommands file.
The null file.
The password file.
Sets up an environment at login time.
Console screen interface
The Micnet system identification file.
Conventional names.
Terminal capability data base.
List of supported terminals.
The Micnet topology files.
General terminal interface.
Login terminals file.
Formats ofutmp and wtmp entries.

ACU (M) ACU (M)

Name

acu - Modem Auto-dialer interface.

Description

The Automatic Call Unit interface is provided by the files /devlcua[Ol] which are device entries, and by their
corresponding driver which simulates a standard DN dialer. To place an outgoing call one forks a sub-process
trying to open /dev/cu/0 and then opens the corresponding file /dev/cuaO file and writes a number on it. The
driver translates the call to proper format for the Automatic Dial Module.

The codes for the phone numbers are the same as in the DN interface:

0-9 dial 0-9
delay 4 seconds

< end-of-number

The entire telephone number must be presented in a single write system call. The phone number must have
an end-of-number code.

It is also required that the provided line devices (/dev/cul[Ol]) be used and not the tty devices (/dev/tty[l2])
when dialing out (as with the cu or uucp commands).

The minor number of the line device (eg, /dev/cul?) is the minor number of the serial line that the modem
with automatic call capabilities is connected to. The minor number for the dial device (eg, /dev/cua?) is a
little different. It has the high bit ON to indicate an ACU device (Ox80). The lower 5 bits of its minor
number correspond with the minor number of the corresponding serial device. Bits 6 and 7 are set to indicate
what speed you would like to dial at. When set to 0 (00, both bits OFF), this indicates that the kernel should
figure out what speed the modem is set at and dial at that speed. This is mostly useful for modems which
have an external speed switch. If they are set to I (01), this indicates that the kernel should dial out at 300
baud unconditionally. When they are 2 (10), the kernel dials out at 1200 baud unconditionally. This way,
you can select a speed on modems which auto-baud.

For example, a modem on /dev/ttyOI (serial channel A) would have a dialer minor number of 129 (= l I Ox80)
and a line minor number of l .

Files

/dev/cuaO
/dev/cual
/dev/cu!O
/dev/cul l

See Also

cu(C), uucp(C)

Notes

virtual dialer #0 (uses tty OJ)
virtual dialer #I (uses try02)
the line which is connected to dialer 0
the line which is connected to dialer 1

Currently, only the following units are supported:
Radio Shack Modem II
DC-2212
DC-1200 (with an Automatic Call Unit installed)
DCM-7

April 30, 1987 Page I

(

CFG (M)

Name

cfg - Configures /xenix

Syntax

cfg [-n xenix] [Tables] [Mise]

Tables may be '-<I' or one or more of the following:

buffers=n inodes=n files=n locks=n procs=n clists=n

n above may be 'a' or an integer greater than 0.

Mise may be one or more of the following:

[maxprocs=p] [maxmem=m] [nodename=name]
[swapdev=a I swapdev=mm,nn swplo=dd nswap=nn]

Description

CFG (M)

Cfg allows you to configure the size of various system tables and parameters. By default, the size of these
tables is determined by how much memory is installed in your machine:

Mem size Buffers Inodes Files Locks Procs Clists
5 12k 25k 100 100 200 60 200
1.0 meg 50k 100 100 200 60 200
1 .5 meg lOOk 120 120 240 70 200
2.0 meg l50k 140 140 280 80 200
2.5 meg l50k 160 160 320 90 200
3.0 meg 150k 200 200 400 100 200

Note: It is not currently possible to install more than l megabyte of memory.

Cfg allows you to select the size of any of these tables. For example:

cfg buffers=200

sets the number of system buffers to 200. Cfg will respond:

/xenix is now configured as follows:
Buffers 200
In odes AutoConfig
Files AutoConfig
Locks AutoConfig
Procs AutoConfig
Clists AutoConfig
Maxprocs 15
Maxmem 256k
Nodename 11!1

Swapdev AutoConfig

This indicates that /xenix will reserve 200 buffers when it boots next. Because each system buffer has 512
bytes, the kernel will reserve 1 OOk of memory for system buffer use. To set /xenix back to automatic
buffering, type:

April 3D, 1987 Page 1

CFG (M)

cfg buffers=a

Cfg will respond:

/xenix is now configured as follows:
Buffers AutoConfig
Inodes AutoConfig
Files AutoConfig
Locks AutoConfig
Procs AutoConfig
Clists AutoConfig
Maxprocs 15
Maxmem 256k
Nodename
Swapdev AutoConfig

This indicates that /xenix will automatically select the number of buffers based on memory size.

cFG (M)

The 'nodename' option allows you to change the name of your system that is returned by the 'uname' system
call [see unarne(S)].

The '-d' option resets all options except 'nodename' and 'swapdev' to their default values, which are shown
in the example above.

As with the configuration disk in earlier , versions of 68000/XENIX, it is assumed that the system adminis
trator has the technical understanding of the relationships between the various parameters and their effects on
system performance. Some incorrect configurations can destroy data.

Cfg may only be run by the superuser.

Diagnostics

cfg: You must be superuser to run this program
The, use:r was not logged in as root, nor was the su command used to change to root.

cfg: No namelist ,
The program was unable to find the required symbols in /xenix.

cfg: cfg not supported in that xenix
The user tried to run cfg on an older version of xenix.

cfg: Can't open xenix
The program was unable to open the file /xenix.

cfg: Can't read xenix
The program was unable to read the file /xenix.

cfg: Can't write xenix
The program was unable to write the new configuration.

cfg: Not enough data in /xenix
The file /xenix did not match its namelist. This may indicate a corrupted /xenix file.

cfg: Can't seek for read
The program can't position to' read the old configuration.

April 30, 1987 Page 2

/

(

CFG (M)

cfg: Can't seek for write
The program can't reposition to write the new configuration.

cfg: Please type a number of items from min to max
The user specified a number of items less than min or greater than max.

cfg: Please type a number for item from min to max
The user specified a number for item less than min or greater than max.

cfg: Missing major number for 'swapdev'
cfg: Missing minor number for 'swapdev'

The user gave an incorrect 'swapdev' specification.

cfg: You must specify swapdev, swplo, and nswap together

CFG (M)

The user gave one or more of swapdev, swplo, and nswap without specifying all of them.

cfg: Too many characters in nodename
The user specified a nodename which was greater than 8 characters long.

cfg: Illegal character in nodenarne
The user specified a nodename which had a character other than a-z, 0-9, '-', and '_' in it.

cfg: Unknown option
The user gave cjg an unknown option.

cfg: Missing argument for -n
The user gave the '-n' option without another argument.

cfg: Too many item change specifications
The user specified more than one of 'a' or a number of item.

cfg: You must specify "-d" alone.
The user gave the '-d' option with another change request,

See Also

configuration(M)

April 30, 1987 Page 3

•'
I
"---

CONSOLE (M) CONSOLE (M)

Name

console - The system console terminal interface

Description

The standard Tandy 6000 supports three terminals. One of these terminals is the system console. The system
console communicates with the processor through a special interface, instead of a serial interface. Because
the system console does not use a serial interface, console ignores requests to change line speeds.

The console has a "screen-saver" feature which helps preserve the monitor in the Tandy 6000. The console
automatically darkens the console display after 20 minutes of inactivity. This feature is similar to the one
found in Tandy DT-100 terminals. The display reappears when you ![Jess a key, or when XENIX sends new
data to the screen. The lsHIFrl � I CAPS I I LOCK I and IREPEA _I do not tum the screen back on when
pressed by themselves.

Two keystrokes control the screen-saver feature. Pressing I CTRLI � turns the screen back on if it was off.
This keystroke combination is only used by XENIX to tum the console screen back on. Pressing the ICTRLI�
combination will not send data to any programs which read the console keyboard. Pressing ICTRLI D toggles
the screen-saver feature on and off. When screen-saver is enabled with ICTRLI D the screen goes dark
immediately as a confirmation, instead of waiting 20 minutes.

Following is a list of the video and keyboard control codes:

Video control codes

Value(s) ID Effect(s)

00h-D6h Ignored Undefined - No effect

07h Bell Sounds the console beeper on systems that have a
beeper.

08h BS Backspaces without wrapping backward

09h HT Performs a Modulo 8 horizontal tab

OAh LF Performs a line feed without a carriage return

OBh Ignored Undefined - No effect

OCh FF Clears the screen and homes the cursor

ODh CR Performs a carriage return without a line feed

OEh-!Ah Ignored Undefined - No effect

!Bh ESC Starts an ESCape sequence (defined as follows):

ESC A Cursor up

ESC B Cursor down

ESC C Cursor right

April 30, 1987 Page I

CONSOLE (M)

Video control codes (continued)

Value(s) ID
ESC D

ESC E

ESC F

ESC G

ESC H

ESC I

ESC J

ESC K

ESC L

ESC M

ESC N

ESC O

ESC P

ESC Q

ESC R

ESC R @

ESC R D

ESC R C

ESC R c

ESC R G

ESC R g

ESC S

ESC T

ESC U

ESC V

April 30, 1987

CONSOLE (M)

Effect(s)
Cursor left

Clears the screen and homes the cursor

Undefined - No effect

Undefined - No effect

Homes the cursor

Undefined - No effect

Clears to the end of the screen

Clears to the end of the line

Inserts a line

Deletes a line

Undefined - No effect

Undefined - No effect

Inserts a character

Deletes a character

Starts an ESC R sequence

Cancels reverse video

Starts reverse video

Turns the cursor ON

Turns the cursor OFF

Starts low resolution graphics mode (codes 40h-5Fh
are displayed as graphics characters OOh-lFh)

Cancels low resolution graphics mode

Undefined - No effect

Undefined - No effect

Undefmed - No effect

Undefined - No effect

Page 2

CONSOLE (M) CONSOLE (M)

Video control codes (continued)

Value(s) ID Effect(s)

ESC W Undefined - No effect

ESC X Undefined - No effect

ESC Y <Row+20h><Col+20h> Starts a cursor positioning sequence

ESC Z Undefined - No effect

ESC [Starts an ESC [sequence

ESC [? 3 3 h Turns the cursor blink ON

ESC [? 3 3 I Turns the cursor blink OFF

ESC [_ <SPACE> q Changes the cursor to an underline

ESC [<SPACE> q Changes the cursor to a block

ESC A

ESC

ESC ' <minutes+ 20h>

ICh-IFh Ignored

20h-7Fh ASCII

Enables the screen-saver feature

Disables the screen-saver feature

Changes the screen-saver timing

Undefined - No effect

Prints a standard ASCII character on the console
display

Note: Values enclosed within "<>" represent single characters.

Keyboard codes

Key

I HOLD I

I BREAK I

ITl

II]

[;±]

!±;]

ICTRLIIBACK SPACE I

April 30, 1987

Code Sequence Produced

13h/l lh Sends alternating DC3 <AS> and DC! <AQ> codes

03h ETX AC

!Bh 41h ESC A

!Bh 42h ESC B

!Bh 43h ESC C

!Bh 44h ESC D

7Fh DEL A?

7Ch < I >

Page 3

CONSOLE (M)

Keyboard codes (continued)

Key

lc1RLI[i]

lcTRLiill

lc1RLI [J]

lc1RLII±l

lc1RLI�

ta:BL][ill

ta:BIJill

lc1RLI!2l

lc1RLilZI

lc1RLI[]

lc1RLI�

Files

/dev/console

See Also

graphics(M), screen(M)

April 30, 1987

CONSOLE (M)

Code Sequence Produced

7Ch I

OOh

lOh

lEh

IF

7E

lCh

5Ch

5Ch

60h

None

None

NULL

GS A]

RS AA

US A_

\

\

Turns on the console display if it was turned off by
the screen-saver feature

Toggles the screen-saver feature ON and OFF

Page 4

GETTY (M) GETTY (M)

Name

getty - Sets terminal mode.

Syntax

/etc/getty char [login]

Description

Getty automatically adapts a terminal's serial line to allow proper communication between the terminal and
the system. It is one of three programs (init(M), getty(M), and login(C)) used by the system to enable a ter
minal and allow user logins.

Getty is initially called by init which passes a single character argument char (init reads the argument from
the ttys file). It then writes a "login:" message, indicating the user may log in on the machine.

The optional login argument is a login name to use. If this argument is present, the terminal line is set to the
first speed specified by char, and call login with that name. Getty does not prompt the user. The login argu
ment is normally specified in the inittab file (see init(M)), and the login name usually does not have a pass
word. See init(M) for more details. If the user types a name and terminates it with a newline (ASCII LF) or
carriage return (ASCII CR), getty scans the name for uppercase alphabetic characters. If only uppercase char
acters are found, getty adapts the system to map all subsequent lowercase characters into the corresponding
uppercase characters. Furthermore, if the name terminates with a carriage return character, getty sets the ter
minal's serial line mode to CRMOD (see ioctl(S)).

If, instead, the user presses the BREAK key, getty writes the login message again. It also changes the serial
line speed if char is one of those which cause "cycling" as described below. This allows the system to adapt
to terminals with various line speeds.

After a name has been typed and scanned, getty passes it to login(C) which asks for the user's password and
completes the login process.

The char argument may be any one of the following:

Intended for an on-line Teletype model 33, for example, an operator's console.

0 Cycles through 300-1200-150-1 10 baud. Useful as a default for dialup lines accessed by a variety of ter
minals.

I Optimized for a !50-baud Teletype model 37.

2 Intended for an on-line 9600 baud terminal that requires delays, for example, the Textronix 4104.

3 Starts at 1200 baud, cycles to 300 and back. Useful with 212 datasets where most terminals run at 1200
speed.

4 Useful for an on-line console DECwriter (LA36).

5 Same as 3 above, but starts at 300.

6 Intended for machine-to-machine (such as over a network) logins at 2400 baud.

7 Useful for an on-line 4800 baud terminal.

8 Useful for an on-line 1200 baud terminal.

April 30, 1987 Page I

GEITY (M)

9 Intended for an on-line 9600 baud terminal that does not require delays.

GEITY (M)

The following types are intended for general-purpose on-line terminals (unlike the specialized settings above),
and differ only in the baud rate:

a 50 baud

b 75 baud

c 1 10 baud

d 1 34.5 baud, usually with 2 stop bits.

e !50 baud

f 200 baud

g 300 baud

h 600 baud

1 200 baud

j !800 baud

k 2400 baud

4800 baud

m 9600 baud

P Autosequencing 300-1 200-2400 baud dial-up line.

Q Autosequencing 1200-2400-300 baud dial-up line.

R Autosequencing 2400-300-1200 baud dial-up line.

April 30, 1987 Page 2

GRAPHICS (M)

Name

graphics - The high-resolution graphics card interlace.

Syntax

include <sys/graphics.h>
include <sys/ioctl.h>

Description

GRAPHICS (M)

Graphics is a seekable device interlace for the Tandy 6000 high-resolution graphics board. The interlace
works like a 19200 byte long text file. Each byte corresponds to eight pixels on a scan line. The graphics
board scans the pixels left to right, starting with the most significant bit in each byte. The graphics board pro
vides 240 display lines with 640 pixels per line. Because each byte stores 8 pixels, each line contains 80
bytes.

These ioctl commands are available with the graphics interlace:

TIOCEXCL Sets exclusive use on the device. This is the default mode when the device is first opened.
No other users can open the device until it is closed, or until the current user invokes the
TIOCNXCL ioctl command.

TIOCNXCL Releases exclusive use of the device. This permits other users to open and use the device
while you have it open.

GIOCGETC Gets a copy of the graphics control word. The graphics control word controls various aspects
of the operation of the graphics board. The control bits of this word are described below.

GIOCSETC Sets the graphics control word. This ioctl command uses a pointer to the new control word
data.

GIOCCBIC Clears bits in the graphics control word. This ioctl command uses a pointer to the control
word mask.

GIOCCBIS Sets bits in the graphics control word. This ioctl command uses a pointer to the control word
mask.

You can set the following bits in the graphics control word:

GR _ENABLE Enables the graphics board: This makes the contents of the graphics memory appear on the
console display. This is a default setting.

GR_ WAITS Enables video memory wait periods. This reduces hashing when updating video memory.
This is a default.

GR_INC_X Selects 'X' register increment mode when GR_X_RDCLK or GR_X_ WRCLK is set. This is
a default setting.

GR _DEC_ X Selects 'X' register decrement mode when GR_X_RDCLK or GR_X_ WRCLK is set.

GR _INC_ Y Selects 'Y' register increment mode when GR_ Y _RDCLK or GR_ Y _ WRCLK is set. This is
a default setting.

GR_DEC_Y Selects 'Y' register decrement mode when GR_Y_RDCLK or GR_Y_WRCLK is set.

April 30, 1987 Page 1

GRAPHICS (M)

GR_X_RDCLK

GRAPHICS (M)

Selects increment or decrement mode of the 'X' register after each read operation from
graphics memory. This is a default setting.

GR _X_ WRCLK Selects increment or decrement mode of the 'X' register after each write operation to
graphics memory. This is a default setting.

GR Y RDCLK Selects increment or decrement mode of the 'Y' register after each read operation from
graphics memory. This is a default setting.

GR_Y_WRCLK Selects increment or decrement mode of the 'Y' register after each write operation to
graphics memory. This is a default setting.

GR AUTOCLK Selects increment mode of the 'Y' register. The 'Y' register is incremented and the 'X'
register is set to zero whenever the contents of the 'X' register reaches 80 in increment
mode. This is a default setting.

GR_ W _ASYNC Selects asynchronous write mode. The write(S) system call will return immediately
instead of awaiting output completion. This enables an application to continue running as
long as the write(S) system call buffer remains intact 11ntil completion of the next 1/0
operation. Your applications should use dual buffering when running in asynchronous
mode. If you do not use dual buffering, the display output will be unpredictable.

Files

/dev/graphics

See Also

console(M), screen(M)

April 30, 1987 Page 2

/NIT (M) /NIT (M)

Name

init - Process control initialization.

Syntax

/etc/init

Description

The init program is invoked as lhe last step of lhe boot procedure and as lhe first step in enabling terminals
for user logins. /nit is one of three programs (init, getty(M), and login(M)) used to initialize a system for exe
cution.

/nit creates a process for each terminal on which a user may log in. It begins by opening the console device,
/dev/console, for reading and writing. It then invokes a shell which asks for a password to start the system in
maintenance mode. The user may type lhe password or terminate the shell by typing ASCII end-of-file
(CNTRL-D) at the console. If the shell terminates, init performs several steps to begin normal operation. It
invokes a shell and reads the commands in lhe /etc/rc file. This command file performs housekeeping tasks
such as removing temporary files, mounting file systems, and starting daemons. Then init reads the file
/etc/ttys and forks several times to create a process for each terminal device in the file. Each line in the
/etc/ttys lists the state of the line (0 for closed, 1 for open), the line mode, and the serial line (see ttys(M)).
Each process opens the appropriate serial line for reading and writing, assigning the file descriptors 0, 1 , and
2 to the line and establishing it as the standard input, output, and error files. If lhe serial line is connected to
a modem, lhe process delays opening the line until someone has dialed up and a carrier has been established
on lhe line.

Once init has opened a line, it executes the getty program, passing the line mode as an argument. The getty
program reads lhe user's name and invokes login(M) to complete the login process (see getty(M) for details).
Init waits until the user logs out by typing ASCII end-of-file (CNTRL-D) or by hanging up. It responds by
waking up and removing the former user's login entry from the file utmp, which records current users, and
makes a new entry in lhe file wtmp, which is a history of logins and logouts. Then the corresponding line is
reopened and getty is reinvoked.

Init has special responses to lhe hangup, interrupt, and quit signals. The hangup signal SIGHUP causes init to
change lhe system from normal operation to maintenance mode. The interrupt signal SIGINT causes init to
read the ttys file again to open any new lines and close lines that have been removed. The quit signal
SIGQUIT causes init to disallow any further logins. In general, these signals have a significant effect on lhe
system and should not be used by a naive user. Instead, similar functions can be safely performed with the
enable(C), disable(C), and shutdown(C) commands.

[nit attempts to prevent lhrashing caused by problems opening the line or having prompts echoed back to lhe
computer. Init inserts a 20 second delay if getty terminates wilhin 30 seconds after it was started, and repeats
40 times without ever running more than 2 minutes. If !his occurs anolher 40 times, init will disable lhe line.

If getty runs more than 2 minutes, init assumes !hat the line is working properly. This can occur from one of
two causes:

A user logged in on lhe line.

Getty
is waiting for a user to log in, and is not receiving a lot of characters.

April 30, 1987 Page 1

INIT (M) !NIT (M)

Getty resets the timer count after it detennines that the line is working properly.

If init disables a line, it sends a mail message similar to the one below to "root". The message indicates the
time that the line was disabled and identifies which line was disabled.

From root Tho Jul iO 13:15:01 1986
Subject: Iuit: Thrashing problem on line tty04.
This line will be disabled.

!nit will never automatically disable the console. However, if you repeatedly type CONTROL-D at the con
sole, init will insert a 20 second delay. Leave the keyboard alone for 2 minutes and the delay-insertion will
stop.

If you enable a thrashing line, it will remain enabled for at least 20 minutes. It may take longer than 20
minutes to be disabled. Because init inserts 20 second pauses on a thrashing line, the thrashing line will not
load the system very much.

!nit also inserts a 10 second delay after it fails to open a tty device.

The "ps -ef' command will show you which terminals are active. You will see a variety of processes in the
"COMMAND" colunm. These processes may include terminals which are not logged in. Here is a list of
sample messages and descriptions which may occur due to unlogged terminals:

init 0 04

init N 04

- 3 or - 9

init T 04

init F 04

/etc/init

Line tty04 is enabled, but has no carrier detect signal. This is normal, and typical of a
dial-in line that is not in use. If this occurs on a direct-wired terminal that is turned on and
should be working but is not, the cable is probably incorrectly connected.

Line tty04 is enabled, and is executing a I second pause before starting getty. This is
normal, but does not occur frequently. The line is apparently not thrashing.

These processes indicate that getty is running on a line. The terminal line can be found
under the "TTY" column on the "ps -f' display. The number after the "-" is the speed
code from the /etc/ttys file. The number may be either a number or letter. This is normal,
and is typical of a direct-wired terminal that is not logged in.

Line tty04 is enabled, and is pausing for 20 seconds before starting getty because the line
appears to be thrashing. This indicates trouble with the line or with what is connected to
the line.

Line tty04 is enabled, but the system was unable to open line tty04. The system is waiting
10 seconds before trying again. This indicates trouble with the line which may include:

No hardware for the line

Enabling the line while an outgoing
uucp or cu call was in progress on the same line

The driver is hung

This display does not indicate that something is echoing characters back to the computer.

Process I (see the "PID" colunm of the :·ps -ef' display) should always show this. Other
processes may display this briefly before changing to one of the other forms.

!nit provides the ability to use a program other than /etc/getty for individual communication lines. This is
desirable when you do not want the system to give users a "login:" prompt. It is also desirable when you do

April 30, !987 Page 2

!NIT (M) INIT (M)

not want to make the standard login available on a dial-up line.

You can specify an alternate getty program in the /etc/inittab file. Include one text line for each terminal that
will use the alternate program. Each line contains four colon separated fields. The first field contains the char
acter "0". The second field contains the terminal identifier. The terminal identifier is "co" for the console, or a
two digit terminal number for other lines. The third field is empty. The fourth field contains the name of the
alternate getty program for that terminal, and a optional space and argument. The program name and the
optional argument must each be less than 32 characters long.

The standard /etc/getty may be invoked with a second argument consisting of a login name. Getty will
automatically set up the line baud rate and other parameters. Then, getty invokes the appropriate login pro
gram without issuing any prompts. Normally, this login will not have a password, and a special program will
be specified in the password file shell field. This enables the user to interact only with the specified program.

WARNING: Do not try to prevent the user from gaining access to a standard shell by entering something
in .profile and then specifying /bin/sh as the shell. This method is not secure. The user will
be able to access a standard shell.

Since /etc/getty does not issue any prompts or accept any input, it can not perform automatic baud rate
switching. It will use the first baud rate code specified in the /etc/ttys file. Here is an example of a /etc/inittab
file:

0:01::/etc/getty bbs
0:02::/etc/getty
0:05::/etc/mygetty xyzfoo

This will run /etc/getty on line I, but will automatically log in as "bbs". The password file entry might look
like this:

bbs::204:20:Bulletin Board System:/usr/bbs:/usr/bbs/bbsprog

!nit runs /usr/bbs/bbsprog when a call comes in on modem line ttyOI . The program might be a simple shell
script that gives the latest news. The program could also be a complicated message system that asks the user
for identification and provides different levels of access for different users.

The second line in the example runs a standard getty on line tty02. This is the same thing that is done when
/etc/inittab does not contain an entry for tty02.

The third line in the example runs the custom program /etc/mygetty on line tty05. The program is passed the
line speed character for line tty05 as the first argument, and "xyzfoo" as the second argument. The program
/etc/mygetty must be able to interpret "xyzfoo" and perform the appropriate actions.

When a program is invoked in place of getty, the first argument is the speed code. The speed code is typically
9 for hardwired lines, and 3 for modems. The second argument is the optional argument specified in
/etc/inittab. If the optional argument is not specified, the second argument is a zero length string. File descrip
tors 0, I , and 2 are open to the line, but the baud rate and other terminal" parameters are completely uninitial
ized. Your getty program must be able to set up these parameters before using the line. If you want to include
automatic baud rate switching, you must do, it yourself.

The program will be running as root. You will probably want to set the current user and group IDs to some
thing else. One way to do this is to invoke login with the name of a user without a password. Next, invoke a
shell consisting of the applications program that you want to run. See the warning of the previous page about
system security.

If you do not invoke login, you will probably want to make your program do the following:

Make an entty in /etc/utmp and /usr/adm/wtmp so that the
who command can list the user. To do this, put an entry in the nth slot in /etc/utmp where n =

April 30, 1987 Page 3

INIT (M) INIT (M)

ttyslot(). Then add the record to the end of the /usr/athn/wtmp file. Your program may put whatever
you like in the "user name" field. /nit will make the logout records for you.

Set the user and group IDs to something other than root.

Set the HZ, TZ, TERM, HOME, and PATH enviromnent variables. HZ and TZ
are typically in /etc/default/login. TERM is typically in /etc/ttytype, although your program may
instead ask the user for TERM.

Invoke an application program.

You will probably want to make your application program do some of the following things:

Ignore or trap the interrupt and quit characters. If your program does
not do this, an interrupt or quit character will cause a logout.

Trap, but do
not ignore the hangup signal.

When your getty program (or alternate getty program) terminates, it will restart. /nit measures the time from
logout to logout. [nit will disable the line if it repeatedly terminates within 30 seconds. If your program is
running on a dial-in line, it will not be invoked until the modem detects a canier. Programs that only output a
short message and do not accept input from the user will execute repeatedly on hardwired lines. /nit will con
sider the program thrashing and will disable the line.

Files

/dev/tty*

/etc/utmp

/usr/athn/wtmp

/etc/ttys

/etc/rc

/etc/inittab

See Also

disable(C), enable(C), login(M), kill(C), sh(C), shutdown(C), ttys(M), getty(M)

April 30, 1987 Page 4

/

MESSAGES (M) MESSAGES (M)

Name

messages - Description of system console messages.

Description

This section describes the various system messages which may appear on the system console. The messages
are categorized as follows:

Fatal
Recovery is impossible.

System inconsistency
A contradictory situation exists in the kernel.

Abnormal
A probably legitimate but extreme situation exists.

Hardware
Indicates a hardware problem.

Fatal system messages begin with "panic: " and indicate hardware problems or kernel inconsistencies that are
too severe for continued operation. After displaying a fatal message, the system will stop. Rebooting is
required.

System inconsistency messages indicate problems usually traceable to hardware malfunction, such as memory
failure. These messages rarely occur since associated hardware problems are generally detected before such
an inconsistency can occur.

Abnormal messages represent kernel operation problems, such as the overflow of critical tables. It takes
extreme situations to bring these problems about, so they should never occur in normal system use.

Hardware messages normally specify the device, dev , that caused the error. Each message gives a device
specification of the form nnlmm where nn is the major number of the device, and mm is its minor number.
The command pipeline

ls -1 /dev I grep nn I grep mm

may be used to list the name of the device associated with the given major and minor numbers.

System Messages

** ABNORMAL System Shutdown **
This message appears when errors occur during system shutdown.' It is usually accompanied by other
system messages. System inconsistency, fatal.

bad block on dev nn/mm
A nonexistent disk block was found on, or is being inserted in, the structure's free li�t. System incon
sistency.

bad count on dev nn/mm
A structural inconsistency in the superblock of a file system. The system attempts a repair, but this mes
sage will probably be followed by more complaints about this file system. System inconsistency.

Bad free count on dev nn/mm
A structural inconsistency in the superblock of a file system. The system attempts a repair, but this

April 30, 1987 Page I

MESSAGES (M) MESSAGES (M)

message will probably be followed by more complaints about this file system. System inconsistency.

iaddress > 2A24
This indicates an attempted reference to an illegal block number, one so large that it could only occur
on a file system larger than 8 billion bytes. Abnormal.

Inode table overflow
Each open file requires an inode entry to be kept in memory. When this table overflows the specific
request (usually open(S) or creat(S)) is refused. Although not fatal to the system, this event may
damage the operation of various spoolers, daemons, the mailer, and other important utilities.
Anomalous results and missing data files are a common result. Abnormal.

interrupt from unknown device, vec=d
panic: unknown interrupt

This message indicates that an unknown, unused interrupt (number d) occured on the 68000. This usu
ally indicates a 68000, or, more rarely, a Z80 hardware problem. Hardware fatal.

no file
There are too many open files, the system has run out of entries in its "open file" table. The warnings
given for the message "inode table overflow" apply here. Abnormal.

no space on dev nn/mm
This message means that the specified file system has run out of free blocks. Although not normally as
serious, the warnings discussed for "inode table overflow" apply: often user programs are written casu
ally and ignore the error code returned when they tried to write to the disk; this results in missing data
and "holes" in data files. The system administrator should keep close watch on the amount of free disk
space and take steps to avoid this situation. Abnormal.

** Normal System Shutdown **

[Z80 Control System Halted]
This message appears when the system has been shutdown properly. It indicates that the machine may
now be rebooted or powered down.

Out of inodes on dev nn/mm
The indicated file system has run out of free inodes. The number of inodes available on a file system is
determined when the file system is created (using m/ifs(C)). The default number is q\lite generous, this
message should be very rare. The only recourse is to remove some worthless files from that file system,
or dump the entire system to a backup device, run m/ifs(C) with more inodes specified, and restore the
files from backup. Abnormal.

out of text
When programs linked with the ld -i or -n switch are run, a table entry is made so that only one copy
of the pure text will be in memory even if there are mnltiple copies of the program running. This mes
sage appears when this table is full. The system refuses to run the program which caused the overflow.
Note that there is only one entry in this table for each different pure text program. Multiple copies of
one program will not require multiple table entries. Each "sticky" program (see chmod(C)) requires a
permanent entry in this table; nonsticky pure text programs require an entry only when there is at least
one copy being executed. Abnormal.

panic: blkdev
An internal disk I/0 request, already verified as valid, is discovered to be referring to a nonexistent disk.
System inconsistency ,fatal.

panic: devtab
An internal disk I/0 request, already verified as valid, is discovered to be referring to a nonexistent disk.
System inconsistency ,fatal.

April 30, 1987 Page 2

MESSAGES (M) MESSAGES (M)

panic: iinit
The super-block of the root file system could not be read. This message occurs only at boot time.
Hardware ,fatal.

panic: 10 err in swap
A fatal l/0 error occurred while reading or writing the swap area. Hardware ,fatal.

panic: memory parity
A hardware memory failure trap has been taken. Hardware or system inconsistency, fatal.

panic: mmusub: chk
An error occurred during memory management operations. System inconsistency, fatal.

panic: no fs
A file system descriptor has disappeared from its table. System inconsistency ,fatal.

panic: no imt
A mounted file system has disappeared from the mount table. System inconsistency ,fatal.

panic: no procs
Each user is limited in the amount of simultaneous processes he can have; an attempt to create a new
process when none is available or when the user's limit is exceeded is refused. That is an occasional
event and produces no console messages; this panic occurs when the kernel has certified that a free pro
cess table entry is available and yet can't find one when it goes to get it. System inconsistency , fatal.

panic: Out of swap
There is insufficient space on the swap disk to hold a task. The system refuses to create tasks when it
feels there is insufficient disk space, but it is possible to create situations to fool this mechanism.
Abnormal, fatal.

panic: Timeout table overflow
The timeout table is full. Timeout requests are generated by device drivers, there should usually be
room for one entry per system serial line plus ten more for other usages.

Supervisor trap d
panic: trap in sys

The 68000 CPU has generated a TRAP number d while executing kernel or device driver code. This
message is preceded with an information dump describing the trap. Hardware or system inconsistency,
fatal.

panic: proc on q
The system attempts to queue a process already on the ready-to-run process queue. System incon
sistency,fatal.

Warning: bad configuration, resetting to defaults.
The parameters specified with the 11Cfg11 command require an unreasonable amount of memory be used
for XENJX, and would leave the available user memory area too small to be usable. The system ignores
table size parameters and uses the defaults. This message only occurs at boot time. This message may
be caused by running a system with Jess memory than it ordinarily has. Abnormal.

Device Driver Messages

{ Hard, Floppy, Cartridge} Drive n: <specific message>
These messages indicate a specific error, and include the following:

bad format
This means the user tried to read or write an unformatted or foreign disk.

April 30, 1987 Page 3

MESSAGES (M)

Further I/0 aborted until device closed
Device closed; error cleared

MESSAGES (M)

This means an error occurred, and the driver refused to do any more l/0 until the program closed the
device.

active disk changed
This message means that the user changed a floppy while XENIX was doing l/0 on it.

drive not ready
active drive not ready

This means that the user tried to use a drive, and it was not ready. This can happen, for example, if
the user tries to mount a floppy drive which has no disk in the drive.

drive write protected
active drive write protected

The user tried to write to a drive which was write-protected.

{Hard, Floppy, Cartridge) Drive N' {hard, soft) eiroi HHHH while
{reading, writing, formatting) PLACE

An 1/0 error of some sort occurred. "hard" means the data was lost and "soft" means the data was written
or read correctly.

PLACE will indicate where the error occured on the media and will include 'Cylinder', 'Head' or 'Side',
and 'Sector'; or 'Block' numbers.

'HHHH' will be four digits of status information from the hardware that may be useful to technicians in
case of hardware failure.

April 30, 1987 Page 4

SCREEN (M) SCREEN (M)

Name

screen - The console screen interface.

Description

The screen device is a seekable interlace to the console video memory. The interlace works like a 1 920 byte
long text file. Each byte corresponds to a character on the console screen. The console screen provides 24
Jines, each with 80 columns.

There are two ioctl commands supported by the screen interlace:

TIOCEXCL

TIOCNXCL

Files

/dev /screen

See Also

Sets exclusive use on the device. This is the default mode when the device is first opened.
No other users can open the device until it is closed, or until the current user invokes the
TIOCNXCL ioctl command.

Releases exclusive use of the device. This permits other users to open and use it while you
have it open.

console(M), graphics(M)

April 30, 1987 Page I

'

Index

Miscellaneous (M)

aliases. hash file . aliases
ASCII character set .. ascii
Cartridge disk . cd
Configuration, xenix cfg
Default infonnation . default
/dev/kmem file . mem
Encryption, key . makekey
Environment, setup . profile
Environment, user . environ
faliases file aliases
File permissions . fixperm
Floppy disk . fd
Graphics interface .. graphics
Group entries group
Hard disk hd
Host machine, description . .' . machine
Initialization, system init
Install software .. install
Line printer . lp
Link editor . ld
Login, system .. login
Login, records . utmp
maliases file .. aliases
Memory image, actual .. mem
Memory image, virtual mem
Messages, system .. messages
Micnet, alias hash file . aliases
Micnet, alias hash program . aliashash
Micnet, default commands . micnet
Micnet, forwarding aliases . aliases
Micnet, machine aliases .. aliases
Micnet, mailer daemon . daemon.mm
Micnet, system identification systemid
Micnet, topology files . top
Micnet, user aliases aliases
Modem auto-dialer interface . acu
Modem dialer . dial
Null file .. null
Password entries : passwd
Screen interface, console . screen
Serial terminal interface console
Terminal, capabilities . termcap
Terminal, interface . tty
Terminal, login file . ttys
Terminal, login modes . getty
Terminal, name list . terminals
Terminal, names . term
top.next file . top
wtmp file . utmp

875·8128

